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Summary 
 
A variety of factors is governing the operational conditions of jack–up platforms. The 
platforms are moved to different locations, which are causing changes in water depth, 
environmental and seabed conditions, drilling depths, payload etc. Insight should be gained in 
how the different factors affect the lifetime in order to be able to make a reliable prediction of 
the safety. The structure of the jack-up platform, usually consisting of three legs, which are 
supporting the platform containing living quarters, installations for power generation, 
machinery and equipment for drilling or production facilities, differs from a fixed platform. 
Aspects as the need for more flexibility and the development of marginal fields, initiate also a 
trend for jack-up platforms to operate in deeper water.  
 
The subject of this research project is durable reliability of jack-up platforms with the aim to 
explore the possibilities for the extension of the life-time. Aspects as fatigue, fracture and 
failure due to extreme environmental loads are investigated. The uncertainties in loads, 
material characteristics and structural modelling are investigated. A deterministic approach 
cannot properly take these uncertainties into account.  
 
For the reliability calculations, a method, based on refined stress states, is presented. The 
fracture mode is of importance when extreme environmental loads are combined with an 
existing crack in a structural element, which may be due to the fabrication process or fatigue. 
To estimate the statistical information about the crack a method based on the Monte Carlo 
simulation technique is presented. This method uses a fatigue crack growth formulation to 
specify the crack size.  
 
For the ultimate failure mode under extreme environmental loads the axial and bending 
stresses are combined to establish the time history of the usage factor. 
 
Due to the redundancy of the structure the system effect may be important. For this purpose a 
method is presented to specify the limit state function for sequences of failure leading to 
structural collapse and the failure probabilities of these sequences are calculated.  
 
The branch and bound technique is used to establish the branch tree to identify the important 
failure sequences. Then the system failure probability is calculated by combining the most 
important sequences leading to structural collapse. For this purpose The First Order Multi 
Normal approach (FOMN) and bound techniques are used. 
 
For a case study, the ‘Neka’ platforms which was chosen in this thesis, the failure probability 
of the structural system in the combination of fracture and fatigue failure modes proved to be 
the most important. The results show significant system effects. The conclusion may be 
drawn that this type of structural failure deserves significant attention during the ageing of 
jack-up platforms. 
 
This research work does not claim to have solved all issues related to the structural reliability 
of a jack-up platform. However, a number of valuable stepping-stones have been developed 
as a basis for further research.   
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1 

1. INTRODUCTION 

 

1.1 BACKGROUND  

Jack-up structures are generally used for exploration and production of hydrocarbons. The 
combination of mobility, the possibility to elevate the platform above the sea level for a range 
of water depths, and to serve as a fixed platform made them attractive in the offshore industry 
over the last 40 years. 
 
Various circumstances and conditions are influencing the ageing of jack-up platforms. The 
jack-up platform is a movable object, which is basically being designed to work at any 
location, worldwide for given maximum water depths and sea states, combined with different 
sea bed conditions. Moreover the platform is often transported with the legs in fully raised 
position, from one offshore location to another, resulting in completely different loads on the 
structure.  
 
During the pre-loading, required on locations with a soft seabed, unexpected and 
asymmetrical loadings may be the result when a sudden soil failure takes place. During 
drilling operations the loads on the structure will vary with the well depth. Because of the 
differences in water depth at different locations, the leg length supporting the structure may 
differ considerably, as well as the loading resulting from the environmental conditions (sea-
state, winds and currents, the position of the platform above the water level, depending on 
e.g. wave height and tidal differences. 
 
Differences in temperatures have an effect on the aggressiveness of seawater influencing the 
corrosion, variations in water depth will cause that the area, which is attacked by both wind 
and water, cannot be properly protected by e.g. cathodic protection while the coating, being 
subject to mechanical damages is vulnerable.  
 
These conditions are differing for fixed platforms designed for a specific location with 
predictability of the environmental conditions and hence the loading and other factors 
influence the ageing of the structure. 
 
This is also a reason that in practice for the design of a jack-up a deterministic approach is 
used by analyzing the most severe environmental circumstances for the different conditions, 
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which may be expected during the lifetime, whereby for each new operational situation a 
thorough analysis will be made, based on known environmental parameters. 
 
The introduction of high tensile steels in the leg of a jack-up structure, improved clamping 
systems and innovative solutions to transfer the forces from the legs into the platform have 
been leading to considerable reductions in weight and higher payloads which made it possible 
to improve the performance and increase the operational water depth. 
 
Over the time the offshore industry moved into deeper waters with more severe conditions.  
The jack-up platforms followed this trend and are today also used as production platforms.   
The increasing investments launched the search for costs reductions and the extension of the 
lifetime is an important parameter influencing the efficiency. The deterministic approach may 
well be suitable for the basic design. On the other hand the number of factors influencing the 
lifetime is large, is difficult to predict and is originating from different sources. The analysis 
of the effect of ageing on the lifetime requires other approaches which make it possible to 
combine different factors. Methods such as reliability calculations can be helpful to gain 
insight in this complex matter. 

1.2 FOCUS   

The deterioration process is not only limited to a specific material or human life, it 
encompasses everything belonging to this world but the types of deterioration differ from one 
to another. For instance, in human life, disability might be a sign of aging or deterioration but 
for materials, change of geometry, loss of thickness or reduction of strength could be the first 
sign of a deterioration process. Nowadays, researchers are giving more attention to the 
deterioration processes of specific structures such as nuclear power plants. Also for offshore 
platforms deterioration may have a significant impact, not only from economical viewpoint, 
but also with regard to physical damage and potential environmental pollution. In fact, due to 
deterioration, the actual safety of a structural system, as estimated at the time of design, even 
when checked continuously during its lifetime, decreases. As a matter of fact, deterioration 
introduces the time factor into the design and it is not possible to deal with it without 
considering a design or service life. In order to assess the current and future performance of 
an existing structure with respect to extension of the projected lifetime or because of the 
appearance of significant signs of damage, consideration should be given to the deterioration 
of any element of a structure.  
 
The question, “how is it possible to get a better insight into the factors influencing the 
lifetime of a jack-up structure” cannot be answered without bringing a priority in the different 
causes for failure. Although the interests of the offshore industry are primarily on the 
economical aspects, it is clear that the environmental aspects are of principal importance. It is 
therefore mandatory to be able to predict the operational lifetime of offshore platforms by 
including the impact on the deterioration processes e.g. fatigue.  
 
The focus of the industry has been primarily on production facilities, which require huge 
investments compared to the facilities needed during the exploration phase. However the 
importance of exploration is increasing with the continuous increasing demand for oil and gas 
while the reserves are not increasing in the same pace.  
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From a preliminary literature study it became apparent that the research of the effect of 
ageing on the lifetime of jack-up platforms is rather limited and consequently not much is 
known about the ageing of jack-up platforms. Much research has been performed to 
investigate the fatigue reliability of jacket type platforms (Karadenize et al. 1983, Shetty, 
1992 and Dalane, 1993) or Tension Leg Platforms (Hovde, 1995) but for jack-up structures 
this has been restricted to extreme environmental loads (Karunakaran, 1993, Daghigh, 1997 
and Cassidy, 1999). So little attention has been paid to investigate the fatigue reliability of 
jack-up platforms. For jack-up platforms, as Onoufriou (1999) states, the structural 
configuration and modes of operation differ significantly from fixed platforms and therefore 
further work is needed to develop a reliability technique based on existing methods currently 
applied to jacket platforms.  
 
One of the differences between jack-ups and fixed offshore structures is non-linearity in 
nature of response due to P-δ effect, the drag term in the hydrodynamic load calculation and 
the integration of wave loads to the actual water surface, even if the structure behaves 
linearly. This non-linearity has an influence on the response and cannot be modelled properly 
by a linear traditional approach as often used for fixed platforms, (Karunakaran, 1993). 
Furthermore, due to this non-linearity, the suitable procedure to predict the distribution 
function of non-linear responses for both reliability calculations under fatigue degradation 
and extreme environmental loads becomes essential. Often these distributions are obtained 
for axial and bending stresses separately, Daghigh (1997). This approach gives conservative 
results because maximum axial and bending stresses may not occur at the same time. 
Furthermore, sometimes the state of axial stresses changes from tension to compression, 
which shows the failure mode is altered from yielding to buckling, and using only one failure 
mode in yielding or buckling for the whole process would not sufficiently reflect the damage 
state. Hence, a proper procedure is required to improve this method. 
 
The investigation of Sharp (1992) on damaged offshore structures installed in the North Sea 
for the period up to 1987 shows that the highest percentage of damage requiring repair arises 
from fatigue degradation. Figure 1.1 shows the type of damage requiring repair and it can be 

Figure 1.1 Observation of damage on offshore 
platforms, (after Sharp, 1992) 
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observed that fatigue degradation represents a significant part (31.3%) of the damages of 
offshore platforms. This is one of the reasons to focus this study on a reliability method to be 
used in an engineering environment for movable, complex, dynamically sensitive jack-up 
structures for deep water, when fatigue and extreme environmental loads are the main causes 
of failure. 
 
With the increasing water depths for jack-up operations, as described in DNV (1992), the 
fatigue degradation becomes even more important and the strength reduction due to this 
degradation should be taken into account not only in the design stage but also during the 
lifetime of the structure. The main reasons are: 
 

• Increase of water depth leads to more flexible structures, which means that the 
dynamic amplification of the response will increase. 

• To meet the economic requirements to operate in deep water the trend is to increase 
the strength of the legs of platforms and, at the same time limit, as much as possible 
the increase in size or weight. This leads to the application of high strength steel 
material, which might increase the possibility of fatigue failures. 

• When operating in areas with more severe sea conditions, the wave loads that are 
important in connection with fatigue may become more dominant. 

 
The jack-up structure consists of various components and behaves in a nonlinear and 
dynamic manner. Since many degradation phenomena may influence the fatigue of the 
structure and reduce the strength, the uncertainties in fatigue characteristics and 
environmental loads change the value of the deterministic approaches in comparison to a 
probabilistic method.  
 
Because of the complexity and magnitude of the problem of ageing, this research is limited to 
a methodology for a reliability calculation of the structure of jack-up platforms due to fatigue, 
fracture and finally extreme environmental loads. When these types of platforms have been in 
operation for a great part of their original design-life, and the intention is to extend their 
utilization, the research into the effect of factors influencing the safety of the structures with 
regard to extreme environmental loads and fatigue (or a combination) is essential. Apart from 
the uncertainties in loads, material characteristics and structural modelling, a deterministic 
method cannot adequately deal with these uncertainties. 
 
Most of the work on structural reliability refers to the reliability of single structural 
components where it is possible to use reliability methods such as FORM, SORM and Monte 
Carlo Simulation.  The design practice of today is therefore mainly based on component 
level. However, the safety of the overall structure (the system) may be of greater interest 
since the system reliability takes into account the effects on the whole system, and the 
structural system consists of many individual elements of which the failure of one element 
may not lead to a system collapse.   
 
Since the classification societies require regular inspections of jack-up platforms during 
regular intervals over the lifetime, this may provide useful information that can be used to 
monitor the condition of the structure. The probability of a structural failure may therefore be 
updated with the use of the outcome of these inspections and makes it possible to treat the 
uncertainty associated with fatigue and inspection processes. 
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This leads to the following main problem for this research work: 
 

• The limited availability of investigations on the fatigue damage of jack-up platforms 
and the need to consider the structural damage, when an extension of the lifetime is 
being anticipated. 

• The possibility of fatigue damage, also when a jack-up platform is used as a 
production facility i.e. a permanent facility. 

• The uncertainty in the characteristics of fatigue, environmental loads or material 
properties, which makes the deterministic approach less suitable. 

• The specific structural stress states of jack-up platforms, which differ from other 
bottom funded offshore platforms such as jacket or tension leg platforms. 

• The possibility of combination of fatigue damage with the other failure modes such as 
extreme environmental loads or fracture. 

• The failure of one element may not lead to structural collapse. The behaviour of a 
structure as a system should therefore be taken into account.  

 
The intention is to take the following steps to analyse these problems: 
 

• Extending a reliability approach, which can be used to monitor the safety of jack-up 
platforms till the end of their service life. 

• Specify a degradation model in accordance with the fatigue damage. 
• Investigate the possibility of the combination of fatigue damage with other failure 

modes such as extreme environmental loads and fracture. 
• Explore the system effect on the reliability of the structure and compare it with the 

component reliability.  
• Determine the failure probability due to fatigue damage and investigate the factors 

that can change this failure probability. 
 
Summarizing, the main question is “How is it possible to determine the reliability of complex 
and dynamically sensitive offshore structures such as jack-up platforms on component and 
system level due to extreme environmental loads and subjected to degradation by fatigue?” 
 
The key questions of this research work are: 
 

• How can we determine the reliability of a structure on component and system level 
and improve this method so it may be used for complex, dynamic sensitive structures 
such as jack-up platforms? 

• How can a reliability analysis be improved to consider degradation due to fatigue?  
• Which factors have a significant effect on the reliability of structures? 

 

1.3 ORGANIZATION 

The structure of this research work is illustrated in figure 1.2. the work has been divided into 
four sections. The first and last sections are devoted to describe the research problem and the 
findings from this work. The second section shows the theoretical principles required for the 
reliability analysis and presents the basic concept of uncertainty in the offshore environment. 
In addition, the mechanical failure criteria, which define safe and failure states of 
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components, are discussed in this section. These failure criteria actually form our limit state 
functions required in the third chapter.  In the third section, the application of reliability 
approaches described in the second section is shown for a jack-up structure and several 
parameters influencing the reliability calculation are investigated. 
 
Chapter 2 focuses on fatigue and fracture mechanics and describes a method to determine the 
fatigue strength and the loading function. Several formulations for the geometry function, 
which play an important role in the fatigue strength function, are presented. Moreover, 
several models for the fatigue loading function are discussed. The fracture failure is one of 
the important failure modes of structures when extreme environmental loads are combined 
with a crack, which may exist in a structural element due to the fabrication process or due to 
fatigue. In the following sections of this chapter the fracture mechanics criterion is presented 
and the failure assessment diagram concept, which accounts for the interaction of elasto-
plastic and fracture failures, is discussed. 
 
In a reliability calculation it is needed to specify the limit state function. At first the limit state 
functions are presented for fatigue failure and sources of uncertainties in this formulation are 
discussed. The ultimate limit state function is then introduced based on the design code for 
offshore structures and at the end the fracture limit state is presented.  
 
Chapter 3 gives a brief review of the structural reliability theory, and provides descriptions of 
the various methods for component and system reliability analysis required in this research. 
At first, analytical approximation methods such as First Order Reliability Method (FORM) 
and Second Order Reliability Method (SORM) are presented and then the Monte Carlo 
(MCS) simulation techniques and the Importance Sampling method (IS) are discussed. 
Furthermore, a brief description of the most common methods of system reliability by FORM 
and simulation techniques is presented. In addition, the branch and bound technique to 

Figure 1.2 Outline of thesis 
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identify the important failure sequences leading to system collapse are discussed and the 
response surface technique, which is an important method when random parameters cannot 
explicitly be specified in the limit state function, is presented. At the end, the results of 
several methods of FORM, SORM, MCS and IS are compared for three limit state functions 
of fatigue, fracture and extreme environmental loads. 
 
Chapter 4 shows the application of the reliability method at component level for several 
failure modes.  First the reliability of structures based on a fatigue failure mode is studied and 
the effect of several factors such as the geometry function, the structural damping, spectra 
and stress models are examined. Furthermore, the updating of fatigue reliability based on 
inspection results and the methods of inspections are investigated. Furthermore, the 
traditional formulation for the ultimate limit state function in extreme environmental loads is 
presented and an approach is recommended to determine the reliability of structural elements 
under extreme environmental loads using the time history of the usage factor.  
 
The combination of fatigue and extreme environmental loads becomes often critical and may 
lead to fracture. This type of failure mode has been investigated in this chapter as well and a 
new method in accordance with the fatigue crack growth formulation is presented to specify 
the crack size needed in fracture limit state function. The reliability results of the fracture 
assessment diagram recommended by the British Standard Institute (BS7910, 1999) are 
compared with the reliability results of the Dijkstra method (Dijkstra et al., 1994). 
 
A system reliability formulation for fatigue failure is given in Chapter 5. At first, a procedure 
for a system reliability calculation based on the sequence of fatigue failures is presented and 
then this method is applied for the jack-up platform. The weakened structure after the first 
fatigue failure, may fail in combination with extreme environmental loads. Therefore, the 
system reliability based on a combination of fatigue with extreme environmental loads and a 
fracture failure are investigated in detail in this chapter as well.  
 
Chapter 6 summarizes the main conclusion from this work and suggests areas for future 
work. 
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2.   LIMIT STATE MODELS 

 

2.1     INTRODUCTION 

The objective of a structural design is to build proper structures meeting functional, safety 
and economical requirements. These aspects are closely connected to each other and an 
iterative procedure is necessary to achieve an optimal design. The consequences of failure 
concern the safety of humans, pollution, and the cost of structures and equipment. Therefore, 
the assessment of the safety of offshore platforms including jack-up rigs is becoming 
increasingly important.  
 
The current design practice is to use safety factors for a number of failure modes or limit 
states. Limit state means that the structure is at its limits to meet a set of defined 
requirements. When the structure fulfils this requirement, it is in the safe state. Vice versa, 
the structure is in the failure state when this requirement is not met. The boundary between 
the safe and failure state is called the limit state function or performance function.  
 
For offshore structures four limit states are generally recognized in the regulations, e.g. DNV 
specification (notes no. 30.6,1992): 
 

• Fatigue Limit State (FLS)  
• Ultimate Limit State (ULS) 
• Serviceability Limit State  
• Progressive Collapse Limit State 

 
The fatigue limit state is defined in relation to the danger of failure considering the effect of 
cyclic loading and material degradation. The ultimate limit state refers to a failure due to loss 
of capacity resulting from the maximum loading. The serviceability limit state is defined in 
accordance with the requirements for normal operations or the durability of a structure e.g. a 
limitation on excessive vibrations. The progressive collapse limit state refers to failures due 
to abnormal load effects e.g. impact or accidental loads.  
 
In this chapter, the procedures to determine the fatigue and ultimate failure modes are 
presented and briefly discussed in relation to their importance to assess the safety over the 
liftime. The uncertainties in these limit states will be dealt with as well. The other limit state 
discussed in this chapter is fracture failure mode. In fact, this type of failure mode is a 



Chapter 2 
___________________________________________________________________________ 
10 

specific form of material toughness under extreme environmental loads when defects are 
present in joints due to fatigue or fabrication.  The background and importance of these three 
limit states for the reliability analysis of jack-up platforms in relation to this research will be 
explained. 
 

2.2     SOURCES OF UNCERTAINTIES IN MARINE ENVIRONMENT 

Several sources of uncertainties exist in the marine environments. They can generally be 
divided into two main categories, i.e. physical and knowledge uncertainties (Ditlevsen and 
Madsen 1996, Melchers 1999). The knowledge uncertainty is further split up into 
measurement, statistical and model uncertainty.  
 
The knowledge uncertainties can be reduced by collecting accurate information or using 
sophisticated models. Physical uncertainty, also named inherent or intrinsic uncertainty 
shows the natural randomness of quantity. This type of uncertainty can further be measured 
in the terms of relative frequencies of observation in specified intervals or other relevant sets. 
The wave height, wind speed and the fatigue parameters are the examples of this type of 
uncertainties for offshore structures. 
 
The measurement uncertainty arises from inaccuracies in the methods and tools used to 
assess a quantity. Better instruments or measuring systems can reduce this type of 
uncertainty. The statistical uncertainty arises from the limit number of samples of 
observation. The uncertainty in this category may reduce if a larger number of sample sizes 
are used. A distribution function and its parameters are determined from a specific limited 
sampling size. The Bayesian approach can help to modify the original distribution function 
when more sample sizes are available. 
 
The model uncertainty is the uncertainty due to imperfection and the idealization made in the 
formulation of models for loads and resistances. This type of uncertainty has two sources. 
The first source of model uncertainty comes from the restriction in the number of basic 
random variables to idealize the process and ignores other random variables, which are 
considered to be of secondary importance for the mathematical model. Another source is 
resulting from the idealization of the mathematical expression.  
 
The most important sources of uncertainties in offshore structures are, Hovde (1995): 
 

1. Material fatigue parameters. 
2. Environmental conditions such as data for long-term variation of sea states. 
3. Spectra and wave load modelling. 
4. Structural modelling. 
 

Some of these sources of uncertainty, such as the material fatigue parameters C and m, initial 
and critical crack sizes in the crack growth model or wave height variations of the sea states 
are fundamentally random in nature. Other sources of uncertainty such as wave load 
modelling or structural modelling are due to imperfect or incomplete knowledge of exact 
modelling. In reliability analysis, uncertainties are generally represented by random variables 
in which the statistical characteristics such as mean values, standard deviations, or in some 
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situation the correlation between variables are presented to specify the statistic nature of 
random variables. 
In order to determine the reliability or the failure probability due to fatigue or fracture failure 
modes, it is required to investigate the mechanics of fatigue and fracture and become aware 
of the parameters that may have influence on them. In this chapter the fatigue and fracture 
mechanics are therefore presented in detail and the various parameters that may have 
influence are discussed. 
 

2.3     FATIGUE MECHANICS 

To specify a fatigue limit state, it is required to know the mechanical behaviour of fatigue. 
Fatigue is the process of damage accumulation in material initiated from yielding in the 
material by the sliding of atomic layers. This sliding is caused by a combination of 
dislocations and local stress concentrations and each slip, however small, is related to small 
deteriorations in the material structure, Sobczyk and Spencer (1992). The dislocations are 
increasing under cyclic stresses and combined to each other cause the plastic deformations. 
Microscopic cracks are thus created and joined to each other to produce final major cracks. 
The total time of two phases of crack initiation and growth constitute the complete lifetime of 
fatigue damage accumulation, as shown in figure 2.1. 

The fatigue crack typically occurs on the free surface of the body at places of high stress 
concentrations e.g. weld toes, surface imperfections, grinding boundaries, etc. Based on the 
material properties and the type of loading, the nucleation phase can be of a different 
importance in estimating the fatigue life. Experimental observations indicate that at high-
cycle fatigue (low stress amplitudes) a significant proportion of the usable fatigue life might 
be consumed by the crack initiation period whereas at low-cycle fatigue (high stress 
amplitude), fatigue crack starts to develop in the early cycles, Collins (1993). In addition, in 
some structural details such as offshore platforms where defects are practically unavoidable 
due to the fabrication process, crack propagation may be considered to begin during the first 
load application, Baker et al. (1988).  
 
Two methods can generally be used to evaluate fatigue damage. The first method, which is 
based on fatigue tests, is named the S-N curve approach. The S-N approach is normally 
suitable to evaluate actual details against a set of standard experiments but this method cannot 
provide a proper notification during the operating time, especially when a crack due to 
fatigue damage occurs. Another approach, known as the crack propagation, is based on the 
relation between propagation of the crack size and the stress range. As the dimension of the 
crack size is involved in this method, the inspection of the structure during operation and the 

Figure 2.1 Nucleation and propagation of crack (after Sobczyk and Spencer, 1992) 
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detection or no detection of any crack may provide a reasonable result for updating the safety 
of platform. Because of this benefit, this approach is utilized in this research work to specify 
the fatigue limit state function. As the formulation of the fatigue limit state function with this 
method involves several parameters, which should be clearly defined and examined, a 
detailed description of this approach is required and presented in the following section. 
  
The fatigue crack growth model is presented in the following section in detail and the semi-
elliptic model of crack propagation will be discussed next.  The stress intensity factor models 
applied for tubular joints by different researchers are briefly reviewed. The fatigue strength 
and loading functions are introduced and the stress distribution, hot spot stress, long-term 
stress ranges in tubular joint are discussed afterwards. The fatigue safety margin or limit state 
function is presented in section 2.4. This section ends by describing the uncertainties in 
fatigue characteristics and types of probabilistic models used to specify the random variables. 

2.3.1 Fatigue crack growth model 

The fatigue crack growth model is based on fracture mechanics and assumes the existence of 
a flaw or crack e.g. at the weld toe due to a welding process. The starting point for a 
description of crack propagation in fracture mechanics is the relation between the crack 
growth rate, da/dN, and the stress intensity factor range, ∆K=Kmax-Kmin.  
 
A typical representation of crack growth behaviour in steel material obtained from 
experimental data is illustrated in figure 2.2, Naess (1985). As shown in this figure, the crack 
growth actions in metals can generally be categorized into three phases i.e. crack initiation, 
crack propagation and final fracture. 
 
The first region, the crack initiation phase is related to microscopic material behaviour and a 
rational theory describing this stage is limited. A description given by Sobczyk and Spencer 
(1992) relates the time consumed by crack nucleation and the time that the micro-crack grows 
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Figure 2.2 Representation of fatigue crack growth in 
steel structure, Naess (1985) 
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Figure 2.3 Semi-elliptical surface crack, Raju and 
Newman (1981)
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to make a macro-crack of a measurable size, see figure 2.1. Since defects are always 
supposed to be present in welded structures due to the fabrication process, the initiation stage 
is usually considered less important and crack initiation is consequently neglected. 
 
The second part of crack propagation is usually assumed to be the period with the largest 
contribution to the fatigue lifetime. During this phase, the crack propagation is stable, follows 
a power law relation, and is relatively insensitive to microstructure and tensile properties. 
During the last phase, when the maximum stress range intensity factor ∆K in the applied 
stress cycle reaches a value of about 70 percent of the material fracture toughness KC, the 
crack growth rate, da/dN increases rapidly due to the interaction between fatigue and the 
fracture mechanism, leading to an unstable fracture at ∆K=KC. 
 
Since the most important contribution of a crack propagation comes from the second phase, 
the crack growth is often idealized as the dotted line in figure 2.2. The general description of 
this line, originally presented by Paris and Erdogan (1963), is now accepted as the 
formulation for fatigue crack growth in metal. Based on this formulation the increment in the 
crack size dr (φ) during a load cycle dN at a specific point along the crack front is related to 
the range of the stress intensity factor ∆Kr (φ) for that specific load cycle with 

0)(,))()(()(
>∆∆= φφφφ

r
m

rr KKC
dN

dr                (2.1) 

where Cr(φ) and m are fatigue parameters for that specific point along the crack front, and φ is 
the location angle. By extending this expression in the directions of depth and length, the 
expressions for the propagation of the crack in the depth and the surface of flaw can therefore 
be specified. More details on this approach are presented in the following sections. 

2.3.2 Semi-elliptical crack propagation 

To derive an expression for the propagation of a crack in the depth and the surface of flaw, 
the problem is simplified by considering that the fatigue crack growth has initially a semi-
elliptical shape and remains semi-
elliptic during the propagation of a 
crack, see figure 2.3. The crack 
depth (a) and the crack length (2c) 
are regarded as two parameters 
sufficient to describe the crack 
front during propagation. As a 
consequence of this assumption, 
the following pair of differential 
equations is used instead of the 
general equation (2.1) for the 
deepest point and the end-point of 
the crack at the surface, Raju and 
Newman (1981). 

00)(,)( aNaKC
dN
da m

AA =∆=        (2.2) 

00)(,)( cNcKC
dN
dc m

CC =∆=      (2.3) 
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Two subscripts C and A refer to the end point and the deepest point of the crack, respectively. 
Shang-Xian (1985) revealed that the material parameters CA and CC are independent of the 
crack growth model and could only be related to each other by the following expression. 

C
m

A CC 1.1=                                             (2.4) 

Moreover, Shang-Xian showed that the material property m depends on the fatigue crack 
propagation and is independent of the crack size in both directions of depth and surface. The 
failure criterion normally refers to a critical value of the crack depth a or the crack length c, 
thus it is be convenient to rewrite the last equations as follows, 

00 )(,)( cac
K
K

C
C

da
dc m

A

C

A

C =
∆
∆

=                (2.5) 

0 0( ) , ( )m
A A

da C K N a N
dN

= ∆ =                (2.6) 

The general expression for the stress intensity factor is aYK πσ= , where the geometry 
function Y accounts for the effect of all boundaries, i.e. width, thickness, crack front, etc. If 
substitute this expression in equation (2.5), it will be clear that this equation is independent of 
the stress history and solely depends on the propagation of the crack. 
 
The calculation of stress intensity factors for tubular joints is a difficult task due to the 
complex geometry and the three dimensional nature of the stress distribution. The fatigue 
crack observed in the member joint is highly irregular and an exact analytical solution does 
not exist. However, in the last decay several attempts have been made to develop 
approximations for tubular joints. These can be grouped into two main categories: 
experimental stress intensity factors and analytical stress intensity factors. Several stress 
intensity factors can be found in the handbooks such as Sih (1973), Tada et al. (1973, 2000), 
Rooke and Cartwright (1976) for idealized components, specific crack geometries and a 
simple stress distribution while the most applied geometry functions in offshore structure are 
originating from modifications of expressions presented by Raju and Newman (1981) for 
plates, later modified for pipes and rods, subjected to remote membrane and bending stresses, 
Raju and Newman (1986).  
 
Based on the results of a three-dimensional finite elements analysis, Raju and Newman 
(1981) developed an empirical expression for the stress intensity factor K (φ) for a surface 
crack in a finite plate subjected to tension and bending loads. The equation has been fitted on 
the finite element results for two types of remote tension and bending loads applied to a 
surface cracked-plate. The inferred stress intensity equation from this research is given by 

( )1/ 2 1 /
( ) ( ) π  1/Q ( , , , )

1 /
b t

t b
b t

H a a cK a F
t c b

σ σ
φ σ σ φ

σ σ
+

= +
+

                         (2.7) 

where σt is the remote uniform tension stress, σb is the remote outer-fibre bending stress. 
Also, a is the crack depth, c is the half of crack length, t is the thickness of plate, b is the half 
width of panel. Moreover, φ is the angle that defines the position of considered point, Q is the 
shape factor, F and H define the boundary-correction factor. In the investigation of Raju and 
Newman (1986) to determine the stress intensity factors of rods and pipes, they demonstrated 
that the difference in stress intensity factors between semi-elliptical cracks in a plate and a 
pipe with a low thickness to diameter ratio is small. Later Karlsen (1986) observed good 
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agreement between the results of finite element analyses of K and T joints and the Raju-
Newman’s expression with correction factors to assume the local stress concentration 
introduced at the weld toe. 
 
The stress intensity factors based on the Raju and Newman approach for the deepest point A 
(φ = π/2) and the end surface point C (φ = 0) of tubular elements are specified with 

A total A

C total C

K a Y

K c Y

σ π

σ π

∆ = ∆

∆ = ∆
              (2.8) 

 YA and YC are geometry functions for the deepest and end surface points of the crack and are 
specified in accordance with the following expressions.  

1/ 2 1(1/ ) ( , , 0, )
1 2

A
A
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+
               (2.9) 
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(1/ ) ( , , 0, 0)

1
C

C
H a aY Q F
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α

α
+

=
+

             (2.10) 

σtotal and α  are the summation and the ratio between remote bending and membrane stresses, 
respectively. HA and HC are the H-values taken at φ = π/2 and φ = 0, respectively. Details 
about F, Q and H functions are presented in Appendix A.  
 
Now, if the stress intensity factors are substituted in expression (2.5), it is clear that this 
expression is independent of the stress ranges and only depends on the crack growth shape 
and stress ratio (α). By either fixing the ratio of a/c or expressing the crack length (2c) as a 
function of the crack depth (a) with the method presented by Shang-Xian (1985), equation 
(2.5) can be reduced to a constant and solved independently of equation (2.6). This model is 
referred to as a one-dimensional crack growth model.  
 
For offshore tubular elements, Kirkemo (1988) recommends using Raju-Newman’s 
expression with a weld toe correction factor given by Smith and Hurtworth (1984) to consider 
the effect of a discontinuity in the weld toe due to the welding. The geometry function 
derived in this work is the multiplication of Y unwelded and Mk, where Y unwelded is the geometry 
function of a semi-elliptical crack using a linear stress field (Raju and Newman equation) 
with a fixed aspect ratio. According to this approach, the geometry function expression for a 
constant a/c and α equal to 0.15 and 5 respectively is given by,  

( )
1.08 0.7( / )

( ) 1.0 1.24exp( 22.1( / )) 3.17exp( 357( / ))

welded k unwelded

unwelded

k

Y M a Y
Y a t
M a a t a t

=

= −

= + − − −

                                (2.11) 

where t is the thickness of an element and a is the crack depth. In another investigation, 
Aghakouchak and Stiemer (2001) recommend the following expression for the geometry 
function of a tubular element,  

2 3 41.4557 6.352( / ) 20.833( / ) 30.506( / ) 15.744( / )AY a t a t a t a t= − + − +                           (2.12) 

which was established based on the polynomial fitting of the mean value of experimental 
data. However, the applied stress ratio and crack aspect (a /c) for deriving this expression are 
not clear.  
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Moan et al. (1993) modified the approach of Kirkmo considering the variations of the aspect 
ratio, a/c with a propagation of a crack. They explained that the two-dimensional crack 
growth model proposed by Raju and Newman might give a wrong aspect ratio evolution due 
to coalescence of the crack. From fatigue tests it is observed that, when the joint is subjected 
to a fatigue load, multiple micro-cracks are initiated in the region of the maximum hot spot. 
These micro-cracks grow independently for some time and coalescence occurs from a single 
long dominant crack. Therefore, the aspect ratio presented in this research is divided into two 
stages, one before coalescence, the other one during and after coalescence of the crack.  
 
The geometry functions derived, based on these methods, are a simplification of the 
complexity of the problem. Hence, usually in the reliability analysis a random geometry 
correction factor δY is used to consider uncertainties arising from this simplification, crack 
coalescences and weld geometry effects, Shetty (1992). 
 
Since the selection of the geometry function may influence the reliability index, and no 
preference is given for tubular joints especially for jack-up platforms, these geometry 
functions will be compared in chapter 4 to select a proper geometry function.  
 

2.3.3 Fatigue strength function and fatigue loading function 

Jack-up structures are subjected to (oscillatory) stresses due to environmental loading. To 
specify an expression to relate the propagation of the crack through the thickness of a specific 
element with the number of stress ranges, the geometry function derived in the preceding 
section is substituted in equation (2.6). Under a variable amplitude loading, the integration of 
this equation through the thickness from an initial defect size a0 to a crack size a(t) after time 
t gives the following expression.  

( )0

( )( )

1

N ta t m
ima

iA A

da S
C Y aπ =

= ∑∫              (2.13) 

where Si is substituted for ∆σi,total in the stress intensity equation and shows the stress-range 
magnitude for the ith  stress cycle. Moreover, N (t) is the number of stress cycles likely to 
occur during the service time. Since the right hand side of this equation is only depending on 
the loading and the left hand side to the crack growth, we name them as the fatigue loading 
function, ψL(t) and the fatigue strength function, ψR(t) respectively. For offshore structures, it 
is assumed that the stress cycle interaction effects are usually of minor importance, (Shetty 
1992). In such case, the distribution of the fatigue loading function in accordance with the 
long-term wave condition may be specified independent of a fatigue strength function and the 
interaction of cycles can be ignored.  
 
A direct procedure of calculating the distribution of the loading function is based on 
simulating the stress time-history, and counting all the stress cycles in accordance with a 
specific cycling counting method. When the stress process is narrow-banded, the stress cycle 
can easily be identified and the stress range distribution can simply be specified with the 
standard deviation of the stress process and using a Rayleigh distribution.  But this is not a 
case for a wide-banded stress range, as usually occurs in offshore structures and more 
sophisticated cyclic counting methods have to be used. Several counting methods have been 
presented in Downing and Socie (1982). The rainflow counting method is a widely used 
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approach because it gives good results on a fatigue damage prediction. Since the rainflow 
counting method is computationally very expensive, a much simpler approach such as peak 
counting methods have been recommended for marine structures.  
 
The peak counting method is an accepted alternative method to the rainflow counting. In this 
method, the local maximums of the stress process are of more concern and each of these local 
maxima are paired with the local minima of the same size. This assumption is conceptually 
validated, as in a large stress process it is possible to find for each local maximum a local 
minimum of the same magnitude. The distribution function of these local maximums can 
therefore be derived using Gaussian or non-Gaussian assumptions on the original stress 
process, Madsen et al. (1986).  
 
Since the stress cycle in equation (2.13) is random, for a large number of stress cycles N (t) 
the summation term can approximately be estimated with its expected values as  
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∑              (2.14) 

The expected number of stress ranges E [N(t)] and mth value of stress range E[Sm] can  be  
specified if the probability density function of the stress range is known. In the case of the 
peak counting method, the expected number of stress ranges may be taken as the expected 
number of peaks in the stress time history, hence, E [N(t)]=νp t and the mth expected stress 
range can be determine with,  

0
[ ] ( )m m

SE S S f s ds
∞

= ∫              (2.15) 

 in which fS (s) is the probability distribution of stress range (S) and νp is the expected 
frequency of the peaks. Where the stress process is stationary, Gaussian and narrow-banded it 
can be shown that the stress peaks and stress ranges follow a Rayleigh distribution. For this 
case, the fatigue loading function can simply be assessed from 

L, n b 0ψ (t) ν (2σ 2) ( 1)
2

m mt= Γ +               (2.16) 

where ν0 is the expected frequency of zero-crossings of the stress process. Moreover,σ is the 
root mean square value of the stress process and Γ( ) is the Gamma function. Due to its 
simplicity, the Rayleigh distribution is widely used in design practices for modelling stress 
ranges in tubular joints but as already stated, the exact stress process in offshore structures is 
wide-banded and non-linear. Sarkani et al. (1996) showed the narrow-banded assumption can 
reduce the time to fatigue failure. Hence, the wide-banded model should be used in the 
fatigue damage calculation. It is interesting to note that if the stress process is wide-banded 
and Gaussian, the distribution of a stress peak in accordance with the bandwidth parameter 
varies between Rayleigh and Gaussian distribution, Wirsching et al. (1995).   
 
Wirsching and Light (1980) presented an empirical correction factor for wide-banded fatigue 
damages.  The correction term is based on simulating the time history of a specific wide-
banded stress process and using the rainflow counting method to estimate the stress range. 
The correction factor of this specific wide-banded process is therefore estimated by 
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comparing it with a narrow-banded result. This approach is repeated for several spectra 
bandwidth parameter ε and the final expression for the loading function is derived as follows, 

L L,n b L,n bψ (t)=λψ (t)=[ +(1- ) (1-ε) ]ψ (t)

=0.926-0.03   ,      =1.587 -2.323

ba a

a m b m
             (2.17) 

where in this expression λ is the Wirsching correction factor and m is the fatigue material 
characteristic as explained in section 2.3.2. It is notable that the correction factor generally 
approaches the narrow-banded results when the spectra bandwidth approaches to one. 
 
In another procedure, based on results derived from extensive time history simulations of 
wide-banded stress spectra, Zhao and Baker (1990) recommended to use the combination of 
two distribution functions to specify the whole stress range distribution. According to the 
technique described in this research the characteristics of the theoretical distribution function, 
e.g. mode and moments, are specified in a way to be as close as possible to the characteristics 
of the distribution function obtained from simulation. This model is finally validated by 
comparing with the rainflow counting method. The probability distribution presented in this 
research is a combination of Weibull and Rayleigh distributions using a weighting parameter 
ω, which is depending on the spectra irregularity factor (α). The loading function specified in 
this research is as follows, 

m m -m / b
L p

m mψ (t)= ν t (2σ) [(1-ω) ( 2) Γ(1+ )+ω(8-7α) Γ(1+ )]
2 b

            (2.18) 
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=  + >

                             (2.19) 

where νp is the expected frequency of peak and the spectra irregularity factor (α) is related to 
the spectral bandwidth (ε) with α2=1-ε2. 
 
The assumption of Gaussianity in a stress process can be violated due to the non-linearity in a 
structure, the drag term of hydrodynamic loads and the variability in the submerged sections 
when the waves are passing a structure. Hence, Gaussian models may significantly 
misrepresent the stress process. For a non-Gaussian process, Winterstein (1988) and Jensen 
(1990) have shown the Hermit model may provide better results than other distribution 
models because it is possible to take the higher moments (up to four) of the stress process 
into account.  
 

2.3.4 Stress distribution in tubular joints and long-term stress range 

In fatigue crack growth analysis, the determination of the critical stress for each component is 
an essential task. The stress analysis of tubular joints, although basically simple in geometry, 
is complicated, while even much more complicated details are being used in the offshore 
industry. In addition, the presence of the weld at the intersection causes major variations in 
the stress distribution. This complex stress distribution is generally controlled by the 
combination of three nominal, geometry and notch stresses, Etube (2001).  
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Stresses resulting from the finite element analysis of structures as beam and column elements 
are termed the nominal stresses. These nominal stresses are obtained from the finite element 
analysis using the external loads and finite element modelling of the structure.  The nature of 
such stresses is entirely dependent on the shape configuration of the joints and the type of 
loading. The second stresses, geometrical stresses, arise from the differences in the stiffness 
of brace and chord wall, which varies along the intersection, causing the tube wall to bend in 
order to ensure compatibility in the deformation of the chord and brace walls at the 
intersection. This deformation, which depends on the mode of loading, therefore changes the 
stress distribution and produces the geometrical stresses. The notch stresses are the result of 
discontinuities introduced at the weld toe due to an abrupt change. These stresses are 
influenced by the weld size and the weld geometry, and are independent of the overall joint 
geometry. 
 
The complexity in the calculation of geometrical and notch stresses and the need to better 
represent the stress distribution in tubular joint leads to the use of stress concentration factors 
in fatigue analysis.  
 
In fatigue analysis, it is assumed that the hot spot stresses entirely control the fatigue life of 
tubular welded joints and occur at places, which are most highly stressed. This is a stress at 
the weld toe calculated by scaling the nominal stresses and using a Stress Concentration 
Factor (SCF). As the fatigue damage may occur anywhere around the intersection, the hot 
spot stresses should not only be evaluated for a specific point. Hence, several points around 
the circumference of the intersection with the most highly and likely damage potential should 
be selected as the places for fatigue damage occurrence. 
 
Since fatigue is the damage accumulation of the long-term distribution of the stress ranges in 
a specific joint, the short-term loading function expressed in the last section can not directly 
be applied for the long-term calculation of fatigue damage, hence a modification is required. 
If the long-term wave climate is represented by several sea-states, the long-term cumulative 
fatigue loading over a service exposure time t can be related by a weighted summation of the 
load contribution from an individual short-term sea state,  

1
( ) [ ]ω

kl m
L i i i

i
t E S t Pψ

=
= ∑                   (2.20) 

where Ei[Sm] and ωi are the mth expected of the stress range and the weighting function, 
respectively.  Pi is the relative occurrence frequency of ith sea-state and the superscript l in 
this formulation indicates the long-term summation. When the stress process is narrow-
banded, the average peak of response will be almost the same as the average zero crossing. 
However, in a jack-up structure, as well as in other sensitive dynamic structures, this may not 
be a valid assumption and the original frequency derived from the stress process should be 
incorporated due to the wide-banded nature of the process.  The weighting factor therefore is 
expressed for each sea state as ω i = νpi /ν

l, where νpi is the average peak-frequency of the 
stress-cycles in the specific sea-state. νl is the long-term average frequency of the stress range 
and can be estimated from the following expression.  
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As in a fatigue calculation the number of sea states is usually large, it is desirable to use a 
distribution, which makes it possible to model and analyze the stress ranges in the long-term. 
Due to its simplicity, the Weibull distribution is often used as a long-term distribution of 
stress ranges and its parameters can be found by fitting them on the combination of the 
outcome of several short-term descriptions of the stress range. By using the Weibull 
distribution function for the long-term stress range, the loading function can be obtained with 
the expression,  

( ) ν (1 )l l m
L

mt t A
B

ψ = Γ +              (2.22) 

where A and B are scale and shape functions of the Weibull distribution, respectively. The 
final expression for the propagation of a fatigue crack in the specific hot spot point of the 
joint can be obtained by substituting the loading function into formulation (2.13). Hence, the 
final expression to relate the fatigue strength function to the fatigue loading function is as 
follows.  

( )0

( )
ν (1 )

a t l m
ma

A A

d a mt A
BC Y aπ

= Γ +∫              (2.23) 

This expression is the original formulation to relate the fatigue crack growth a (t) with the 
fatigue loading function. 

2.4     FATIGUE LIMIT STATE FUNCTION  

In a reliability analysis, the fatigue limit state function or safety margin must be defined. The 
fatigue limit state function shows the limit between safe and failure state. The element is in a 
safe state if a specific requirement, here the fatigue resistance, is fulfilled and vice versa the 
element is in a failure state when this requirement is not met.  
 
In the fatigue degradation process, usually the strength of a structural detail is described in 
terms of time to failure because the strength degrades over the time. The time of propagation 
of a crack from the initial size a0 to a specific size a(t)  is given by equation (2.23). The time 
required to develop a critical crack size such as aC r can be determined with  

 
( )0

1τ
ν (1 )

C ra
cr mal m

A A

da
mA C Y a
B

π
=

Γ +
∫               (2.24) 

where the critical crack size may be specified based on the through-the-thickness crack of a 
tubular element. This critical propagation time of crack τcr is subjected to several sources of 
uncertainties, which are coming from the modelling and the characteristics of the sea 
environment, the structure and fatigue. Some of these uncertainties are random in nature 
(inherent) while others are random due to lack of knowledge. 
 
Development of through-the-thickness cracks may not cause a significant change in strength 
or stiffness of a member to provoke section failure.  The crack should propagate significantly 
along the circumference of a tubular section before final failure occurs. The time to develop 
such a crack will be a combination of the time to develop a through-the-thickness crack and 
the time needed for the crack to propagate around the circumference. Hovde (1995) claimed 
that this extra time is most likely small when compared to the time required to develop a 
through-the-thickness crack and the conservative assumption would be to neglect this time. 
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Contrary to this opinion, Hanna and Karsan (1989) revealed that the time to develop a section 
failure (τf) could be related to the time of the first through-the-thickness crack with τf=δ tf τCr, 
where δtf being a random correction factor. Test data showed that δtf is relatively independent 
of the stress parameters and can be represented by a random variable. However, in a 
probabilistic approach for the scheduling of the inspections time of the British Gas platforms 
provided by WS Atkins, a constant deterministic value of 1.11 is reported, which this value is 
based on reviewing the published information and in-house data carried out by Oakely et al. 
(1994).  
 
To take into account the uncertainty in loads, stress calculation and stress concentration 
factors, Dalane (1993) recommended to modify the stress range described in the previous 
sections by multiplying them with the three random model corrections factors, δF, δS and 
δSCF, each one representing the uncertainty in the loads, stress calculation and stress 
concentration factors in the specific hot-spot point respectively. Fatigue failure is therefore 
defined when the random fatigue propagation time (τf) becomes less than the service time of 
the structure. The safety margin or limit state function required in fatigue reliability can 
therefore be expressed with  
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δ δ δ π
− = −

Γ +
∫               (2.25) 

where τ Service time is the  service time of the structure. The structure is in a safe state when this 
limit state function is larger than zero and vice versa, is in failure state when it is smaller than 
zero. The probability of occurrence of such an event is called the probability of fatigue 
failure.  

2.4.1 Uncertainty in fatigue characteristics 

The characteristics of crack growth are usually generated in laboratories under constant 
amplitude and cyclic loading on simple specimens with known stresses. During controlled 
crack growth tests under constant amplitude loading, the propagation of a crack shows 
considerable scatter, Virkler et al. (1979). Among several probabilistic models proposed to 
describe the stochastic nature of crack propagation, it seems that a simple random modelling 
of the parameters C and m in the Paris and Erdogan equation yields a proper representation.  
 
In the random crack growth approach, either both or just one of the material parameters C 
and m may be expressed as random variables. The test result showed negative correlation 
between these parameters with a typical magnitude of –0.95, (see e.g. Tanaka et al., 1981, 
Cortie and Garrett, 1988). However, this correlation is not based on the physical property of 
the crack growth parameters but follows from the mathematical form of the crack 
propagation law, Madsen (1997). In common practice, the value of m is fixed and all the 
uncertainty is expressed through the value C, Hovde (1995). A general approach is to assume 
a lognormal distribution for C.  In accordance with the DNV specification (notes no. 30.2, 
1984), the mean of lnC is  –29.84 for an element in air or in the case of cathodic protection 
with the standard deviation of 0.55, and m is supposed as a deterministic parameter, which is 
equal to 3.1. For an element in seawater without cathodic protection, the mean and standard 
deviation of lnC in accordance with this specification are recommended to be –31.01 and 
0.77 respectively, and m is 3.5. However, these values are proposed for use when no other 
relevant data are available.  Several other intermediate values of the standard deviations are 
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recommended by e.g. Faber et al. (1992), Shettey and Baker (1990), Snijder et al. (1987), 
respectively 0.29, 0.25, 0.30. In this research work, the values recommended in the DNV 
specification are applied. 
 
In fatigue reliability analysis, it is necessary to specify the statistical characteristics of the 
initial crack size. The crack is assumed to initiate from very small defects, which originate 
from the welding process. The size and occurrence rates of defects vary considerably and are 
influenced by the fabrication yard, the welding procedure, the welding position, the type of 
joints, etc. (Baker et al., 1988), which as a matter of fact are all factors of uncertainty. 
 
Data on probabilistic types of initial weld defects are rarely reported. Kountoris and Baker 
(1989) recommended using lognormal distribution with a mean of 0.73 and standard 
deviation 0.78 for initial weld defects. These values are obtained through statistical analysis 
of a large amount of weld defect data from the Conoco Hutton Tension Leg Platforms.  
However, these values may lead to incorrect results for tubular joints because the quality and 
quantity requirements for the detection of weld defects in a TLP differ significantly from 
those in tubular joints of jackets or jack-up platforms. The latest investigation on non-
propagating crack detection during the period from 1972 till 1995 on North Sea jacket 
platforms by Moan et al. (2001) showed that the initial crack depth could be specified by an 
exponential distribution with a mean value of 0.38 mm.  However, they explained that using 
this value for fatigue calculations without any modification of the fracture mechanics and 
response analysis model could lead to overly conservative results. Bokalrud and Karlsen 
(1982) found that the initial crack depth could be expressed by the exponential distribution 
with a mean value of 0.11 mm.  
 
The threshold on the stress intensity range is imposed to consider the effect of a non-crack 
propagation section of crack growth, see figure 2.2.  However, in reliability analysis this 
threshold limit is often ignored. This assumption may lead to a conservative result for the 
failure probability calculation of fatigue limit state, Hovde (1995). 
 

2.5     ULTIMATE LIMIT STATE 

The objective of structural design is to ensure that the stresses resulting from maximum 
loading on a structure are adequately below the specific limit. This condition requires the use 
of the ultimate limit state in a reliability analysis. The ultimate limit state refers to a failure 
due to the loss of capacity caused by the maximum environmental loading. Typically, two 
types of ultimate limit states may be utilized for a reliability calculation of jack-up platforms.  
 
The first ultimate limit state is based on a global response of the platform and the global 
failure caused by the overturning moment or shear force. This type of ultimate limit state has 
been applied in the research projects of Karunakaran (1993), Jensen et al. (1991) and Van de 
Graaf et al. (1993). In this method, it is not possible to investigate the failure of an individual 
element or joint due to the extreme environmental load. However, failure of an individual 
element or joint may reduce the resistance of the structure significantly.  
 
The second ultimate limit state function refers to the loss of capacity of a structural element 
or joint in accordance with the formulation specified in the codes such as API RP 2A-LRFD 



Limit State Models 
___________________________________________________________________________ 

 

23

(1993) or NORSOK (1998). This approach has already been applied for jacket platforms by 
Shetty (1992) and Dalane (1993), and for a jack-up platform by Daghigh (1997).  
 
In the present research study the ultimate limit state function has been derived based on the 
second approach. Details are presented in the following sections. First, the concept of a usage 
factor or a utilization ratio is discussed. Furthermore, a new methodology is recommended to 
consider the correlation between random variables in the ultimate limit state function directly.  
 
Several formulations are given in the design code to specify different types of losing capacity 
due to the interaction of several types of loading configurations. These formulations, which 
are also known as failure modes or criteria, are usually expressed as a normalized function of 
the stresses in the members. They should not exceed a specific value i.e. one. The value of 
this function is generally referred to as the “utilization ratio” or “usage factor”, U, and a code 
failure occurs if it exceeds this value. An example of a utilization ratio for buckling of a 
tubular member in combination of compression and bending stresses is presented in API RP 
2A-LRFD (1993) as follows, 
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             (2.26) 

where fC is the axial compression stress, fby and fbz are the bending stresses in  y and z 
direction respectively. Fcn and Fbn are the nominal capacity of the element in axial 
compression and bending stresses, which depend on the characteristics of the elements. Other 
parameters of this formulation are presented in API RP 2A-LRFD(1993). In the next 
chapters, other formulations of usage factors for combination of tension and bending stresses 
are presented. It should be kept in mind that all the strength reduction factors in the 
formulation are setting into one to represent the ultimate limit of failure. The structural 
element is in a safe state when the usage factor expression is less or equal than one and it is in 
the failure state when it exceeds one. 
 
Based on a code specification, various failure modes for each member and a connection may 
be specified e.g. yielding, punching or buckling. Daghigh (1997) investigated these failure 
modes for a jack-up platforms and Dalane (1993) for a jacket platform. They concluded that 
the most important failure mode for jack-up and jacket structures is the stability failure mode.  
However, it has not been investigated whether this is the case for bracing elements when 
these components are under both axial tension and compression stresses. Therefore, in the 
following section a methodology to specify the ultimate limit state for a combination of 
different failure modes that may occur in structural elements is presented. 
 

2.5.1 An approach to specify the ultimate limit state 

The structural elements during the lifetime of a structure are under different combinations of 
loads, such as the combination of tension and bending stresses or compression and bending 
stresses. A single specific failure mode cannot sufficiently represent the potential of the 
failure of an element. Furthermore, the correlation of stress distributions such as axial and 
bending stresses should be taken into account in reliability analysis. 
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In the research of Daghigh (1997), the 
reliability analysis has been carried out 
based on determination of a probability 
distribution of maximum stresses 
(axial and bending stresses) using the 
time history of axial and bending 
stresses separately and the ultimate 
(buckling) limit state, however, 
without any assumption on the 
correlation between stresses or the 
possibility of the changes in the failure 
modes (yielding or buckling) over the 
stress process. To overcome this 
shortcoming and consider this effect 
simultaneously a method proposed by 
Videiro and Moan (1999) is considered 
here.  
 
The method is based on the application of the probability distribution determined with the 
time history of the utilization ratio and not on the probability distribution of axial and 
bending stresses individually. By using the time history of the usage factor, it becomes 
possible to model different failure modes when the stress-state of a structural element 
changes during the time. For example, the bracing element of a jack-up structure is 
occasionally under the combination of tension and bending stresses or compression and 
bending stresses, see figure 2.4. Therefore, it is possible to simulate the time history of the 
usage factor applying two failure modes, one when the element is under combination of axial 
tension and bending stresses and another one when under compressive and bending stresses. 
 

2.6     FRACTURE MECHANICS  

The fracture failure mode is an important failure mode of a structure when extreme 
environmental loads are combined with a crack, which may be present in a structural element 
as a built-in crack resulting from the fabrication process or from fatigue. As already 
illustrated in the crack growth diagram figure 2.2, the material fracture toughness is a limit to 
the stress intensity factor. In a simple way this is a limit for fracture criteria, which the stress 
intensity of the flawed element should not violate. However, the actual fracture behaviour is 
more complex. In the following sections the fracture mechanics criterion is presented and the 
concept of the failure assessment diagram, which accounts for the interaction of elasto-plastic 
and fracture failure, is discussed. 

2.6.1 Fracture Mechanics criteria 

The fracture failure involves the unstable propagation of a crack, which may be caused either 
from a brittle or a ductile behaviour of materials. The fracture mechanic models are therefore 
grouped into two categories, namely; the linear elastic fracture mechanics methods (LEFM), 
where brittle fracture governs; and the elasto-plastic fracture mechanics methods (EPFM), 
where ductile fracture failure is dominating.  It is important to note that the most approaches 
available to model fracture mechanics are only suitable in restricted situations and should be 

Figure 2.4 Axial stress in bracing element of 
jack-up platform, HS =16.1m 
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handled with care. For example, the linear elastic fracture mechanics methods i.e., the energy 
balance approach and the stress intensity approach, should not be used for structures 
exhibiting a significant plastic flow around the crack tip, while the crack tip opening 
displacement (CTOD) method and the J-integral method are the methods available for 
structures that show an elasto-plastic behaviour, Shetty (1992). 
 
Among several elastic-plastic fracture mechanics methods, the method presented by the 
British standard Institute is most widely used in the offshore industry. The early version of 
this guidance is based on so called CTOD design curve derived from wide plate tests, 
PD6493 (BSI, 1980), but has nowadays been revised and updated in BS7910 (1999) based on 
the J-integral method. 
 
The applicability of linear elastic fracture mechanics (LEFM) has been investigated by 
Turner (1984) who demonstrated that the method might be satisfactory when applied on a 
very small crack tip plastic zone such as in the case of high tensile material under plain strain. 
However, this approach may lead to incorrect results when the size of a plastic zone is large. 
It is more convenient for a practical application to adapt the procedure to cover the entire 
range from linear elastic to fully plastic behaviour, i.e. an analysis that accounts for both 
brittle fracture and plastic collapse. The failure assessment diagram (FAD) recommended by 
the British Standard Institute (BS7910, 1999) is an example of such an analysis. At low 
stresses, this analysis reduces to LEFM but predicts a collapse well, and at intermediate and 
high stresses the method applies the EPFM model if necessary. 

2.6.2 Failure Assessment Diagram 

The failure assessment diagram recommended in BS7910 (1999) has been developed to 
describe the interaction between fracture and collapse of flawed structures. This standard 
offers three levels of assessment methods based on complexity and accuracy appropriate for a 
specific situation. All these three levels are expressed in the failure assessment diagrams 
where the vertical axis is a ratio of the parameters causing failure in terms of fracture 
mechanics and the horizontal axis is the ratio of the parameters causing plastic collapse (see 
figure 2.5). Structural failure occurs 
when the checking point is located 
outside the failure assessment diagram 
and no-failure takes place when it is 
located inside this diagram. However, 
the acceptability can still be 
demonstrated even if an initial 
assessment shows that the existing 
flawed element is unacceptable. This 
validation can be done by improving 
the quality of the input data in fracture 
mechanics or applying a higher 
assessment level of the fracture 
assessment diagram.  
 
The first level of the failure assessment 
diagram presented in BS7910 is a 
conservative preliminary procedure, 

Figure 2.5 Failure Assessment Diagram,         
BS 7910 (1999) 
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which is easy to apply. For this level, the fracture assessment diagram is specified in 
accordance with the material data on fracture toughness and the applied stress. The second 
level, which is more complicated than the first one, provides the normal procedure for a 
general analysis. This level is an elastic-plastic based approach and uses detailed material 
stress-strain behaviour. The failure assessment diagram is proposed on the basis of a fracture 
analysis of power law hardening materials relating fracture toughness to stress flow. This 
method gives good results for materials with high strain hardening behaviour. The third level 
is the most advanced method and mainly used for ductile materials, which exhibit some 
stable amount of crack growth before fracture, O’Dowd (2001). 
 
The failure assessment diagram of level 2 is suitable for most materials, which do not exhibit 
a yield discontinuity in the stress-strain curve. This diagram is described by the following 
expression,  

2 6
,max[1 0.14 ][0.3 0.7exp( 0.65 )]                rf r r r rK L L for L L= − + − ≤                         (2.27) 

where Lr is the plastic collapse parameter and Krf is the non-dimensional fracture parameter at 
failure. The failure assessment diagram of this level is shown in figure 2.5. The failure 
assessment diagram is a curve varying from Krf =1 at Lr =0 to Krf =0 while Lr is changing 
from 0 to a very large value. At high values of Lr the cracked component will be in a situation 
of general yielding and may fail due to plastic collapse instead of fracture.  
 
For this situation of general yielding the EPFM analysis is not satisfactory and hence a cut-
off is imposed on the failure assessment curve at Lr = Lr, max where beyond this limit Krf is 
taken to be zero. It should be noted that the failure assessment diagram was derived as a 
lower bound on a number of test results and is therefore expected to be conservative. The cut-
off limit, Lr max, is defined as the ratio of the average of the ultimate strength and the yield 
strength to the yield strength of material, (σY+σU )/2σY. Lr, max varies from 1.15 for low alloy 
steels and welds to about 1.8 for austenitic steels. Marley (1991) and Hovde (1995) 
recommended using the value of 1.25 for typical welded details of marine structures, because 
it is a typical cut-off limit for mild steel welds. However, care should be given for the high 
strength steel material used in the jack-up platforms. For the typical high strength material, 
the cut-off limit of 1.04 is obtained from the test results, Etube (2001). 
 
The fracture parameter Kr in the failure assessment diagram is formulated as, (BS7910, 1999) 
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π σ σρ ρ ρ
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= + + = + = +                    (2.28) 

in which KI is the linear elastic stress intensity factor and KIC is the material fracture 
toughness, σ p and σ S are primary and secondary stresses,  respectively. Furthermore, ρc is a 
correction factor to account for the plasticity interaction and is defined by the following 
expression, BS7910 (1999), 
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where  
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Lr is the plastic collapse parameter and defined as the ratio between the reference section 
stress (σ ref) and the yield strength (σ y),  

ref
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σ
σ

=              (2.31) 

As is clear from equation (2.28), the total stresses can be separated into primary (σ p) and 
secondary stresses (σ S). The primary stresses are resulting from all external loads caused by 
waves and winds, currents and sustained loads. Secondary stresses are the result from 
residual stresses in the structure due to welding and fabrication and are generally considered 
as self-balancing over the brace-chord assembly at the joint.  The estimation of the magnitude 
and distribution of residual stresses in welded components is very complicated and depend on 
the type of weld, the overall geometry of the joint, the heat input during welding process, the 
speed of welding process, and the yield strength of the material, etc. These stresses may also 
be removed using post weld heat treatment of the weld and surrounding parent material. 
However, it is not possible in practice to relieve stresses in all joints in a structure or to 
control the stress relieving process properly. Therefore, the design codes often recommend a 
conservative value of tensile yield strength to account for the effect of the residual stresses 
which are considered to be uniformly distributed through the thickness of plate close to the 
weld, Shetty (1992). 
 
To calculate the plastic collapse parameter (Lr), two methods are presented in BS7910 (1999), 
one in line with the local collapse analysis and another one based on global collapse. In the 
local collapse analysis, the reference section stress (σref) is computed from an appropriate 
formulation based on crack shape, joint geometry and applied loads. However, it is stated that 
this method may lead to conservative results whilst the use of the global approach tends to 
give a more realistic prediction of plastic collapse in tubular joints.  In the global collapse 
analysis, the joint capacity is therefore taken into account and the plastic collapse parameter 
is presented with the following expression, 
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             (2.32) 

where σf is the flow strength which is specified to be the average of the yield and the ultimate 
tensile strength (σf =(σy+σu)/2). σa, σab,i and σab,o  are the applied axial, in-plane and out-of-
plane bending stresses; and σac, σbc,i and σbc,o are the plastic collapse strength in the cracked 
condition for the axial, in-plane and out-of-plane bending capacity of the joint respectively. 
  

2.7     FRACTURE LIMIT STATE 

In the sections (2.4) and (2.5), it is shown how the limit state of fatigue and ultimate 
environmental loading can be specified. Sometimes, the jack-up platform is under extremely 
high magnitude loading and due to fatigue or as a result of fabrication processes, small 
defects may occur in tubular joints. The combination of a very high single load with a small 
crack may cause an unstable crack extension. Moreover, the use of high tensile steels, which 
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Figure 2.6 Dijkstra method to specify fracture 
limit state  

is the trend in the offshore industry with the aim to reduce weight and cost in deep water 
operations, increases the risk of fracture failure. This shows that it would be valuable to 
present a method to take into account this type of failure in the reliability analysis. 
Furthermore, this type of failure criterion has not yet been applied in the reliability analysis of 
jack-up platforms. 
 
To establish a fracture limit state for a reliability analysis, the fracture assessment diagram 
can be used to extend the probabilistic model by treating the major source of uncertainty 
through a set of random variables. The safety margin is therefore formulated as, 

2 6
1 [1 0.14 ][0.3 0.7exp( 0.65 )]f rf r r r rg K K L L K= − = − + − −              (2.33) 

where Kr is a fracture parameter, which is defined by equation (2.28) and Krf is the fracture 
failure parameter described with expression (2.27). In this expression, it is required to specify 
the crack dimension at extreme loads. The crack dimension a(t) may be taken as the random 
initial weld defect dimension a0 used in the crack growth or more appropriately using the 
crack dimensions after a service exposure of duration t when fatigue is considered.  
 
The fracture failure occurs due to extreme primary loading. The maximum stresses can be 
calculated from the maximum wave loads in a marine structure and can be related to random 
environmental parameters, Marley (1991) and Hovde (1995).  
 
Dijkstra et al. (1994) presents a method to describe the fracture limit state function in 
accordance with the fracture results of 38 fracture experiments for tubular and wide plate 
elements as shown in figure 2.6. He recommends using the circular limit state to represent the 
fracture failure appropriately, where the angle of spreading is given to be independent and 
only the radius of a circle would be a relevant parameter to represent the failure mode. The 
fracture limit state is therefore 
described through this method with, 

2f f actg R R= −                        (2.34) 

where Rf is the radius of the fracture 
failure while it is recommended to 
suppose a lognormal distribution in 
such as way that its mean and standard 
deviation is setting into 1.7 and 0.4 
respectively (Dijkstra et al., 1994).  Ract 
is the acting fracture radius and is 
specified through the following 
expression depending on the plastic 
collapse parameter Lr and the fracture 
parameter Kr,  

 2 2
act r rR K L= +                            (2.35) 

This method is also recommended in 
the draft of JCSS (2004) for fracture 
probabilistic analysis of metallic 
structures, however a lower standard 
deviation of 0.306 is proposed.  
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2.8     CONCLUDING REMARKS  

In this chapter, three limit state functions of fatigue; ultimate and fracture have been 
presented in detail. At first, the fatigue crack mechanism has been described using the semi-
elliptical crack growth propagation model. An important factor in the crack growth 
formulation is the geometry function. One factor influencing the geometry function is the 
bending to membrane stress ratio. Several geometry functions have been presented in the 
literature. Since, these functions have been derived for the special case of tubular elements in 
a jacket platform, the direct application of these formulations may lead to incorrect 
estimations of fatigue and fracture reliability for jack-up platforms. Some modifications 
should therefore be applied before any application. This aspect will be investigated in chapter 
4 in detail, and a new formulation based on the jack-up stress state (bending to membrane 
stress ratio) and the correction due to weld toe profile will be presented. 
 
The fatigue crack may propagate during the service time of the platform and reduces the 
strength of structural elements. The combination of fatigue damage (crack) and the extreme 
environmental loads may increase the failure probability of the structure. Due to this 
problem, the ultimate and fracture failure modes are also considered in this investigation and 
the failure probability for these failure scenarios shall be calculated. The limit state functions 
for these two failures modes have been presented in detail.  
 
For the ultimate limit state, an approach proposed by Videiro and Moan (1999) is described 
in detail. The benefit of this method is the direct application of the interaction formulation 
when the stress state of the element changes from tension to compressions. Moreover, the 
correlation between the stresses (axial and bending) is also implicitly incorporated in the 
formulation. 
 
The fracture failure of the jack-up may differ from the jacket platform due to structural 
configuration and dimensions, the effect of the jacking mechanism and the use of high 
strength materials in the legs. The further investigation on this type of failure mode will be 
essential, if extreme environmental loads occur after the development of a serious (fatigue) 
crack. For the fracture failure, at first a brief review of the fracture mechanic has been 
presented. Then, two approaches of failure assessment diagram recommended by BS 7910 
(1999) and Dijkstra et al. (1994) have been described.  
 
To some extent the three failure mechanisms seem to overlap. Fatigue will probably always 
lead to some kind of fracture or yielding. Collapse due to yielding is present in both the 
fracture and the ultimate limit states. On the other hand, given the present formulations as 
taken form the literature, it is not possible to leave one out, without an unaccounted for 
reduction of the failure domain. Note also that in all three limit state models different material 
parameters may play a role. They also seem to refer to different levels of structural detail: 
member, cross section or local hot spot point. Maybe that in the future these formulations can 
be better streamlined. 
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3.   RELIABILITY ANALYSIS 

 

3.1     INTRODUCTION 

In the previous chapter, formulations of limit states according to three failure criteria of 
fatigue, ultimate and fracture mechanics have been presented and the uncertainties in the 
parameters of the limit states functions have been described. In this chapter, the focus is on 
the description of different reliability approaches to estimate the failure probability. The aim 
is to investigate the accuracy of reliability approaches for calculation of the failure 
probability for each limit state function and compare the calculation time required for each 
method.  
 
The reliability methods are generally categorized into four levels of increasing complexity of 
approach (see for instance; Melchers, 1999, and Nowak and Collins, 2000). The first level is 
the deterministic reliability method and uses only one “ characteristic” value to describe each 
uncertain variable. Examples of this method are the load and resistance factor formats or the 
allowable stresses method applied in the code specifications. Nowadays these specifications 
are upgraded to a higher level by using the partial safety coefficient derived with higher 
levels. The next level is the second moment method. In this level, mean and variance of 
variables are used to describe uncertainty in the random variables. Sometimes to supplement 
this method, the correlation between random variables may further be taken into account. The 
third level, which adopted in this research, utilizes the joint probability distribution of all 
uncertain variables to describe their randomness.  Finally, the level four method incorporates 
the engineering economic aspects into level three and optimizes with respect to cost and 
utility. This level is often used to assess the target reliability required in the reliability 
calculation. 
 
In the third level, if the joint distribution functions of all basic random variables are known,  
fX (x), and a failure mode specified by g(x) describes the limit state function the failure 
probability can then be evaluated with the following integral, 

( ) 0

( )f X
g x

P f x dx
≤

= ⋅⋅⋅∫ ∫ ∫ ∫                (3.1) 

The analytical solution of this integral cannot be generally carried out except for very simple 
models and alternative techniques are needed for complex problems in reliability analysis. 
The alternative methods are analytical approximations, Monte Carlo Simulations (MCS) and 
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Figure 3.1: Transformation of single 
random variable into Normal 
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numerical integration methods.  More details about these methods can be found in Ditlevsen 
and Madsen (1996), Melchers (1999), Nowak and Collins (2000). 
 
The numerical integration method is only suitable for a case with the limited number of 
random variables and the simple limit state function, Der Kiureghian (2004). Therefore, this 
approach would not be appropriate for the case of fatigue or fracture limit state due to 
incorporating several random variables with a complex limit state function. The analytical 
approximations such as first and second order reliability method (FORM and SORM) or 
simulation methods such as Monte Carlo and important sampling would be more appropriate 
for the general complex case of limit state such as fatigue and fracture. However, the 
simulation-based method is more time consuming and sometimes in the case of MCS may not 
lead to the appropriate results (according to the coefficient of variation of estimated failure 
probability) when the number of simulations is beyond of computer limitations. 
 
In the following sections, the approximation and simulation methods applicable for the 
evaluation of the component and system reliability are briefly reviewed. By using several 
examples, their efficiency and accuracy are investigated for the fatigue, ultimate and fracture 
limit state functions, presented in the previous chapter.  

3.2     ANALYTICAL APPROXIMATION METHODS 

The analytical approximation methods are generally categorized into the First Order 
Reliability Method (FORM) and the Second Order Reliability Method (SORM). In these 
approximation methods, the original problem is first transformed into a standard normal 
probability space and the failure probability is then calculated by converting the original 
hyperplane failure surface into the tangential and quadratic approximation. Transformation to 
the standard normal space is of importance in a reliability analysis because the reliability 
index in this space has a geometry interpretation as the shortest distance to origin, Hasofer 
and Lind (1974).  

3.2.1  Transformation to the standard 
Normal space 

In the approximation methods, the reliability 
calculation should be carried out in the 
standard independent normal space. Since the 
original basic random variables are in general 
not mutually independent and normally 
distributed, a procedure is required to 
transform the vector of basic variables, X, into 
a vector of independent standard normal 
variables, U. In most cases the Rosenblatt 
transformation procedure can be performed, 
Hohenbichler and Rackwitz (1981), i.e.; 

1 2 1( ) ( , ,..., )     =1,2,...,ni i iU F X X X X i−Φ =       (3.2) 

where Φ( ) is the standard normal distribution 
and F(Xi|X1,X2,…, Xi-1) is the cumulative 
distribution of Xi conditional on X1, X2,…, Xi-1. 
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The vector of mutually independent standard normal variables, U=[U1,U2,,…,Un], can 
separately be transformed  by 

1
1 2 1: ( ( , ,..., ) )     =1, 2,..., ni i iT U F X X X X i−

−= Φ                        (3.3) 

This transformation is usually carried out numerically step by step, i.e. the first step X1 is 
transformed into a standard normal variable and followed in the second step by a 
transformation of X2 |X1 into standard normal variables and this procedure is continuing to the 
end, see figure 3.1. In the Rosenblatt transformation, the joint distributions of variables are 
important to be available but in some situations only the marginal probability distribution 
with a correlation coefficient between the random variables are available. In this case, the 
Nataf transformation (Der Kiureghian and Liu, 1986) can be applied. In the Nataf 
transformation, the equivalent Normal random variables can be obtained by the following 
expression,  

1
1

1
0

1

( ( )
:        u

( ( )n

F X
T L

F X

−

−

−

 Φ
  =  
 
Φ  

#                          (3.4) 

where L0 is the Choleski decomposition of the correlation matrix R0, i.e. R0=L0 L0
T.The R0 is 

the correlation matrix between random variables in the Normal space, R0=[ρ0,ij], and can be  
related to the correlation of random variables in the original space, R=[ρ,ij], for each two 
random variables with the following expression, (Der Kiureghian and Liu, 1986). 

( )2 0,, ,ρj ji i
ij i j ij i j

i j

xx
z z dz dz

µµ
ρ ϕ

σ σ

∞ ∞

−∞ −∞

 − −
=        
∫ ∫                (3.5) 

 
The close form approximate expression to relate ρ0,ij with ρij is provided in Der Kiureghian 
and Liu (1986) for several probability distributions. This approach has been used in the 
reliability program in this research work to calculate the correlation in the Normal space. 
Moreover, the Nataf transformation is applied to determine the equivalent normal random 
variables. 
 

3.2.2 First Order Reliability Method (FORM) 

In the first order reliability method, the random variables are firstly transformed into the 
standard normal space by one of the methods explained in the previous section and the failure 
surface is then replaced by its tangent hyperplane. The reliability index in this space is 
defined as the shortest distance between this tangent hyperplane and origin and an iteration 
procedure must be carried out to search for the shortest distance.  According to this 
procedure, the transformed tangent hyperplane on the failure surface is given by, 

1
u u i

1
( ) ( ( ))    ( )=β

n

i
i

g x g T u g u uα−

=
= ⇒ −∑                (3.6) 

where β is the first order reliability index and defined as the shortest distance from the origin 
to the failure surface and its sign is determined as the sign of g u (0), see figure 3.2 . αi is the 
component of the unit normal to the failure surface with direction towards the failure space 
(direction cosine) and T-1 is inverse transformation specified in equation (3.3) . The closest 
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point to the origin on the failure surface 
is defined as the design point, u*, and 
can be determined by a search algorithm 
with the purpose to minimize Σ(ui

2). An 
iteration algorithm presented by Liu and 
Der Kiureghian (1991) or Nowak and 
Collins (2000) can be used to determine 
this minimum distance to the origin, 
which gives the reliability index. More 
details about these two methods are  
given in appendix E.1. 

By minimizing this function, the design 
point can be determined with ui

* = βα i
* 

in such a way that the component of the 
unit vector is given by  

( )

* *
*

1/ 2
2* *

1

( ) /

( ) /

u i i
i

n

u j j
j

g u u

g u u

α

=

∂ ∂
= −

 
∂ ∂ 

  
∑

         (3.7) 

The direction cosineα i
* is a measure of the sensitivity of the reliability index to change in the 

corresponding random variable, u i
*. Furthermore, a positive α-value indicates a load variable 

and a negative α-value indicates a resistance variable. The quantity (α i
*)2 is commonly 

attributed to the importance factor of the variable and the value is an indication of the 
uncertainty fraction that can be associated with the corresponding random variable.  
 
The failure probability according to this method can be determined with, 

,FORM u=P[ ( ) 0]= (-β)fP g u ≤ Φ                             (3.8) 

In the iteration procedure of the FORM approach for finding the shortest distance from the 
origin, care should be given to the search algorithm because sometimes the iteration process 
leads to the global maximum instead of minimum. Furthermore, for failure surfaces with 
several minimum points, the iteration procedure may only focus on one of the local minima 
instead of a global one (local minimum). It thus becomes necessary to try several starting 
points for the iteration routine or generally apply another procedure such as MCS to 
determine the failure probability.   
 
In the case of a highly nonlinear failure surface, the FORM algorithm sometimes may not 
represent the exact failure probability content and other procedures such as SORM or Monte 
Carlo Simulation techniques will be more essential and proper than using the FORM method.  
 

3.2.3 Second Order Reliability Method (SORM) 

The FORM method presented in the previous section, generally gives accurate results for 
practical engineering problems. However, when the failure surface is highly nonlinear, the 
approximation used in this method may not satisfactorily represent the failure probability 
content of the original failure surface and a modification to increase the accuracy of this 

Figure 3.2: First and second order 
approximation of limit state in standard 
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method is essential. For this situation, the quadratic approximation to the failure surface at the 
design point is suggested to give a better estimation than tangent hyperplane, see figure 3.2, 
(Tvedt, 1983, Breitung, 1984; Der Kiureghian et al., 1986).   
 
The quadratic approximation is therefore carried out by using the second order Taylor 
expansion of the limit state function in standard normal space, hence, 

* *
u i i j

1 1 1

1( )= β- + ( ) ( )
2

n n n

i i ij j
i j i

g u u u u D u uα
= = =

− −∑ ∑∑                (3.9) 

where β is the first order reliability index and Dij = Hij /|∇g(u*)|. Hij is the second order 
partial derivation of the limit state function and ∇g(u*) is the gradient vector of the limit state 
at the design point.  Due to the application of the second order of Taylor series expansion, 
this approach is nominated the second order reliability method (SORM).  Based on this 
formulation Breitung (1984) gave an asymptotic expression for the failure probability when 
the reliability index is approaching infinity, β→ ∞ in term of main curvatures of the limit 
state function at the design point. The failure probability can therefore be calculated with, 

1 1/ 2
,SORM

1
( β ) (1 β κ )

n

f j
j

P
− −

=
= Φ − −Π              (3.10) 

where κi for j=1,2,..,n-1 are the main curvatures of the limit state at the design point. This 
method may not give a good probability content for the small reliability index, β; therefore 
Tvedt (1983) provided a three-term approximation to the exact failure probability as  

,SORM 1 2 3fP A A A= + +              (3.11) 

where A1, A2 and A3 can be calculated with the following expressions; 
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            (3.12) 

φ ( ) is the standard normal density function and i in the third term is an imaginary unit. As is 
clear, the first term of the Tvedt approach is the same as the Breitung approximation and the 
other terms are the higher order modification expressions applied in this method. The SORM 
reliability index can therefore be estimated with, 

1
SORM ,SORMβ = - ( )fP−Φ              (3.13) 

In addition to these two methods, several improvements on the second order approximations 
are also presented in literature, for instance the asymptotic improvement presented by 
Hohenbichler and Rackwitz (1988) or a modified close form approximation provided by 
Koyluoglu and Nielsen (1994).  
 
In the FORM and SORM methods, the focus has been on the approximation of the original 
limit state with the first and second terms (order) of the Taylor series and searching the 
design point. In these methods, no attention has been given to the type of the final probability 
distribution of the performance function. If the final distribution is known or specified, it 
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would be an easy task to calculate the failure probability. This idea is followed by Tichy 
(1994) and Zhao and Ono (2001), who employ the higher moment of the performance 
function to specify the characteristics of the probability distribution.  
 
Tichy (1994) recommended using the three-parameter lognormal distribution in which up to 
the third moment of the performance function is applied to specify the characteristics of the 
lognormal distribution. Later Zhao and Ono (2001) use a more refined distribution function 
such as Pearson, Johanson and Edgeworth’s series with up to the fourth moment of the 
performance function to specify the characteristics of the distributions. To determine the 
higher moments of performance function, the point estimation method has been utilized in 
this research. Actually, these approaches can be suggested as a modified level two which 
could be used for level three. Since the accuracy of the point estimation method depends on 
the nonlinearity of the limit state function and may lead to an inaccurate failure probability, 
Daghigh and Shabakhty (2003) applied the Monte Carlo Simulation technique to improve the 
calculation of the higher moment of the limit state function. Furthermore, they extended this 
method to be used in a system reliability calculation, however the results showed more 
dependency on nonlinearity of the limit state function and may not provide accurate results if 
the limit state is nonlinear.   
 

3.3     SIMULATION METHOD 

The analytical approximation methods presented in the previous sections usually give a good 
approximation on the general limit state function with a small probability of failure. 
Nevertheless, when the limit state function is not continuous or the probability distributions 
of the random variables are not continuous either, the accuracy or feasibility of these methods 
become doubtful and an alternative method should be applied. An alternative to the analytical 
approximation method is the Monte Carlo Simulation (MCS) technique. The simulation 
method may occasionally be the only applicable approach for a reliability calculation. The 
base of this method is on the simulation of random variables according to their probability 
distributions. In the following sections a brief description of this method and an improved 
method based on Importance Sampling (IS) are presented. 
 

3.3.1 Monte Carlo Simulation (MCS) 

The basis of Monte Carlo simulation is simply on the mathematical interpretation of the 
integral in equation (3.1). This means that instead of solving this equation with numerical or 
analytical methods, the integral is calculated by counting the number of the acquired specific 
outcomes (here failures) in the total simulation.  
 
To calculate the failure probability according to this method, equation (3.1) should be 
modified with the multiplication of an indicator function, I (.), which takes the value ‘one’ for 
outcomes in the failure states and the value ‘zero’ in safe state, therefore, 

( 0)

( ) ( ( ) 0) ( )f X X
g x x

P f x dx I g x f x dx
≤

= ⋅⋅⋅ = ⋅⋅⋅ ≤∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫                                 (3.14) 

It means that the indicator function identifies the integration domain and as is clear from this 
equation, the failure probability is easily calculated as the expectation of indicator function. 
An estimate to the failure probability can therefore be given with 
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l
1

1[ ( ( ) 0] ( ( ( ) 0)
N

f x i
i

P E I g x I g x
N =

= ≤ = ≤∑              (3.15) 

where xi is the ith random vector simulated from the joint distribution function  fx(x) and N is 
the total number of simulations. The accuracy of this estimation is therefore dependent on the 
number of total simulations and increases by increasing the number of simulations. However, 
the number of simulations required to achieve a certain level of accuracy depends on an 
unknown failure probability. This method, which gives an unbiased estimate of the failure 
probability, is usually referred to as the Crude Monte Carlo simulation, Melchers (1999). An 
estimate for the variance of a failure probability estimator is given by Nowak and Collins 
(2000) as, 

ˆ ˆ ˆ(1 )ˆ[ ]
1 1

f f f
f

P P P
Var P

N N
−

= ≈
− −

             (3.16) 

The failure probability in the structural reliability problems is generally small; therefore, a 
considerable amount of simulations has to be generated to get a sufficient number of 
outcomes in the failure state. For instance, if the target failure probability is somewhere 
around 0.0001 (according to a reliability index 3.71) and the coefficient of variation of the 
estimated failure probability is restricted to ten percent, one million simulations are required 
to reach such accuracy. Therefore, the Crude Monte Carlo simulation is in most cases of 
structural reliability extremely time consuming and impractical for a very low failure 
probability and a further improvement of the simulation technique is required. The 
importance sampling technique is one of such techniques and is reviewed in the following 
section.  

3.3.2 Importance Sampling Method (IS) 

The purpose of importance sampling is to improve the simulation technique by focusing on 
the important section of a failure space and not on the entire possible space. This procedure 
therefore reduces the number of simulations and is shown to give sufficient accuracy in 
practice, (Melchers, 1989; Ibrahim, 1991; Engelund and Rackwitz, 1993).  
 
According to this procedure, the sampling is carried out in the vicinity of the design point by 
using a new distribution function hx(x) instead of the original joint distribution function of 
random variables, fx(x), therefore the  failure probability can be  estimated with, 

( ) ( )( ( ) 0) ( ) ( ( ) 0)
( ) ( )

X X
f X x

X Xx

f x f xP I g x h x dx E I g x
h x h x

 
= ⋅⋅ ⋅ ≤ = ≤ 

 
∫ ∫ ∫ ∫                 (3.17) 

where hx(x) is the importance-sampling density function and an unbiased estimate of the 
failure probability can be obtained by, 
 

1

( )1ˆ ( ( ) 0)
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N
X i

f i
X ii

f x
P I g x

N h x=
= ≤∑              (3.18) 

in such a way that xi is simulated from the importance sampling, hx(x) instead of the original 
probability distribution, fx(x) . The appropriate selection of this distribution in reliability 
analysis becomes very important because it affects the required number of simulations and 
the accuracy of estimation. A criterion for selecting the importance sampling distribution is to 
minimize the variance of the failure probability estimator and therefore this method is known 
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as the variance reduction technique. For the failure probability estimator defined by equation 
(3.15), the variance of estimator can be specified with, Melchers (1999), 

2
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( )1 ( ( ) 0) ˆ( )ˆ[ ]
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f xI g x
PN h x

Var P
N N

=

 
≤ 
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∑

             (3.19) 

It is obvious that the most optimal importance sampling function is a function, which its 
value its value is one in the failure state and zero in the safe state.  However, it is extremely 
difficult to specify such a function for the general case. Some feasible importance sampling 
techniques are proposed in the literature, e.g. conditional expectation, (Mebarki and Sellier, 
1995), directional sampling, (Nie and Ellingwood, 2000), Markov simulation algorithm (Au 
and Beck, 1999) and Latin hypercube sampling, (Olsson et al., 2003). 
 
A reasonable strategy to specify an importance sampling density function would be to 
simulate around the first order reliability (FORM) design point. The sampling density may 
therefore be selected as the independent multi-normal probability density function with mean 
values equal to the design point and the variance one.  
 

3.4     SYSTEM RELIABILITY 

In the previous sections, it is described how to estimate the failure probability of a single 
limit state but in practical situations, more than one limit state function should be considered 
whether or not failure of one element leads to structural collapse. This situation is therefore 
concerned with the computing of the reliability of a structural system. 
 
For the safety assessment, even for simple structures composed of just one element, various 
failure modes such as fatigue, fracture or ultimate failure under combination of stresses 
should be supposed. Moreover, the structural system is originally composed of many 
members and joints and using only one failure mode may not sufficiently represent the safety 
of the complete system. In system reliability, the concern is on the combination of these 
failure modes and the calculation of the system failure probability based on the significant 
failure sequences leading to a structural collapse.  
 
In the following sections, a brief description of the most common methods of system 
reliability by FORM and simulation techniques is presented. In addition, the branch and 
bound technique to identify the important failure sequences leading to system collapse is 
discussed. Also, the response surface technique, which is an important method when the 
random parameters cannot explicitly be incorporated in the limit state function, is presented. 
In the end, the conditional and unconditional failure probability is discussed to mix all time-
dependent and time-independent random variables in the failure probability calculation.  

3.4.1 Series and parallel systems 

The system failure (collapse) event can be considered as the combination of basic failure 
events (elements) in series and parallel arrangement in which each of the elements in the 
parallel system constitutes by failure events and each series system comprises of a member of 
parallel systems. Hence, the final system failure probability can be estimated based on the 
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probability of occurrence of such a system failure event. According to this model, the whole 
system can be split up into series systems where its component is a parallel sub system. 
 
In the parallel system, the system failure occurs when all of the components in the system 
fail. Therefore, if the first order approximation is used to describe the hyperplane, the failure 
probability of this parallel system with n components described by the limit state functions, 
gi(u), can be calculated with, (Thoft-Christensen and Murotsu ,1986): 
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where R is the correlation matrix between the limit state function and defined with elements 
Rij=αi

Tαj . The β =[β1, β2,…, βn,]T is the vector of the first order reliability indices of each limit 
state and Φn ( ) is the standard multi-normal distribution function.  
 
In contrast to the parallel system, the series system fails if any of its components fails. Using 
the same first order approximation, the failure probability of series system can therefore be 
calculated with 
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The calculation of the probability of failure of series and parallel systems are therefore 
reduced to the evaluation of the standard multi-normal integral Φn (β, R). However, the 
calculation of this integral is difficult for problems of large dimensions, but several 
approximation methods have been given in the literature such as the efficient methods 
proposed by, Hohenbichler and Rackwitz (1983), Tang and Melchers (1987), a product of 
conditional marginal distribution presented by Pandey (1998), Pandey and Sarkar (2002) and 
finally an elegant and efficient simulation algorithm developed by Ambartzumian et al. 
(1998).  

3.4.2 Simulation Technique  

The simulation methods explained in the section 3.3 can be extended to apply for system 
reliability. The indicator function should be changed in such a way that it reflects the 
characteristic of the system, i.e. 
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for series systems and 
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for parallel systems. 
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To use the advantage of the importance sampling technique, a direct application of a uni-
modal sampling density function as shown in the section 3.3.2 is not sufficient in system 
reliability and some care should be given because it may lead to very large errors, Melchers 
(1991). Instead, the multi-modal sampling function presented in Melchers (1990) or a 
sequential conditioned importance sampling method described by Ambartzumian et al. 
(1998) might be useful to apply in system reliability calculations.  
 

3.4.3 Using bounds technique 

Rather than using FORM approximation or simulation methods, an alternative approach is to 
develop an upper and lower bound on the probability of failure of a structural system. The 
crude bound on the failure probability of any series system when the failure modes are 
somewhere between completely independent and fully dependent, is given by, (Boole, 1854 
and Cornell, 1967); 
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Since this bound is too wide for some practical systems, a narrower bound is recommended 
by Ditlevesen (1979). The Ditlevsen upper bound for a series system is given by 
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and the lower bound  by 
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It is notable that the sequence of numbering can have an affect on the Ditlevsen bounds. 
Therefore, to obtain the best narrowest bound many different numbering sequences should be 
tested. 

3.4.4 Branch and Bound search algorithm 

In offshore structures such as jack-up platforms, failure of one element may not lead to a 
system failure and several elements may fail before the system collapses. Identification of 
these failure sequences is therefore essential in system reliability.  
 
For typical structures, a large number of failure sequences leading to a system collapse can be 
expected but only a few of them contribute significantly to the system failure probability.  To 
identify the important failure sequences, which have large probabilities of occurrence, a 
specific search technique should be used. 
 
A robust search technique is the branch and bound search technique (Guenard 1984, Thoft-
Christensen and Murotsu, 1986), which identifies the collapse sequences in decreasing order 
of importance. The first sequence identified based on this technique has the largest 
probability of occurrence and the second one has the second largest probability of occurrence 
and so on. Following this procedure, it is possible to generate a failure tree and to evaluate 
the upper and the lower bound on the system reliability. 
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The first step in the branch and bound technique is to start from an intact structure and to 
compute the failure probability for each member or joint (based on type of limit state) in the 
structure. This shows the first branches in the failure tree. Suppose the failure probability of 
element m1 has the maximum probability in the failure tree. The focus now shifts to this 
element and the damaged state of this member (m1), hence the failure sequence leading to the 
second failure element (supposed here to be m2) is specified. This is the most likely to occur 
damage state. The subsequent failure represents the next branch in the failure tree and shows 
the second damage state e.g. failure of member m2 followed by m1 and the probabilities of 
such damage states should be computed. The sequence of failures leading to this damage 
state is therefore the most likely to occur system collapse. The focus then shifts to the next 
most likely damage state and the probability leading to this damage state is computed as well. 
This process continues until the next collapse state is identified and its probability is 
calculated. By combining all probabilities of these failure sequences, the final system failure 
probability can be specified. 
 
The sequence of events corresponding to the system collapse for the failure of n members in a 
given sequence with the highest probability of occurrence can be expressed with, 
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1 ... n
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where 1 2 1, ,..., j

j

m m m
mE − is the event that member mn in the failure sequence will fail next, given that 

m1 ,m2,,..,mj-1 members already failed in that sequence. Since the focus was on the globally 
most likely to occurring damage state, the system collapse reached in this way is the most 
important one and has the highest probability of occurrence.  
 
The system collapse might happen in another scenario than the most likely one; therefore, 
other important failure sequences should be taken into account in the system reliability. The 
second most important failure sequence can be identified by continuing the branch and bound 
technique and focusing on the second most likely damage state that leads to the second 
system collapse. To identify all important system collapses, this process should be pursued 
until all the important failure sequences are identified, i.e. all failure sequences with a 
relatively high probability of occurrence. The system failure probability is then the 
probability that any of these important sequences will occur. If k possible failure sequences 
are identified in the brand and bound technique, the system event Esys can easily be 
formulated as the event that any one of the k failure sequences occur, i.e. 

 1 2 ...sys kE E E E= ∪ ∪ ∪              (3.28) 

where Ej is the event corresponding to jth failure sequences leading to system collapse and 
specified in the same way of equation (3.27). The final system failure probability can 
therefore be computed with the following expression. 
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It is important to note that the sequence of failure given in equation (3.27) should be 
formulated as the intersection of two other events 1 2 1 1 2 1 1 2 1, ,..., , ,..., , ,...,j j j
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the remaining members. Since the survival events are related to the intersection of several 
events according to the remaining elements, the exact calculation of the sequence of failure 
involves a large number of intersections. To simplify the computation, the second event is 
neglected in the structural system reliability analysis, i.e. it is assumed that 1 2 1 1 2 1, ,..., , ,...,j j

j j

m m m m m m
m mE F− −≈ . 

This approximation may usually cause a small error in the final estimation of the system 
failure probability because the neglected events may have a large probability of occurrence, 
and the approximation of events Ei are overlapping each other resulting in a small error in the 
probability calculation of the union of the events, (Guenard, 1984). 
 

3.4.5 Response Surface Method (RSM) 

In the reliability analysis of an offshore structure, the uncertainty in random variables such as 
yielding stress, which is related to the mechanical characteristic of structure, may have a 
significant effect on the response of platform and therefore on the calculated failure 
probability. Since these random variables cannot explicitly be incorporated in the limit state 
function, a specific technique such as the response surface method can be applied.  
 
The basic concept of a response surface is generally to approximate the implicit limit state 
function g(x) by using an  explicit polynomial function, ĝ (x). The method follows a simple 
algorithm using the Monte Carlo Simulation method to generate random variables and the 
response surface function is fitted on the results of simulation, (Lee et al., 1993, Das and 
Zheng, 2000) i.e..  
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where r is the number of random variables and m is the number of points for which the limit 
state function should be evaluated. The suitability of the response surface obtained in this 
way relies mainly on the proper selection of sampling points. Bucher and Bourgund (1990) 
utilized the elementary statistical information of basic random variables i.e. mean values and 
standard deviations, to increase the efficiency and accuracy of simulations applied to specify 
the response surface. This procedure has been later modified by Kim and Na (1997) using the 
vector projection approach to shift the sampling point close to the response surface. 

3.4.6 Conditional and unconditional failure probability 

In the reliability analysis, it is essential to distinguish types of random variables originating 
from time variation of a random process. Based on time variation, the random variables are 
generally categorized into three types. The first one (Z) represents uncertainty in variables, 
which are independent of time and named time-independent random variables, see figure 
(3.3). The initial crack size, material fatigue characteristics, drag and inertia coefficients of 
hydrodynamic loads or physical and mechanical characteristics of structures such as 
diameter, thickness or modulus of elasticity are all examples of this type of random variables, 
Loseth and Bjerager (1989).  
 
Another type of variables is related to the time and is called time dependent random 
variables. Some of the time dependent random variables vary little or may remain nearly 
constant during a short period of time, Y(t) but over a longer period of time these will vary 
too. The significant wave height (HS) and the zero crossing period (TZ) in a scatter diagram 
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are examples of this type of random 
variables. Other time dependent variables 
have a fast variation with time and 
represent deviations from the slow 
process, X(t). Wave surface elevation, 
wave velocity and acceleration, the 
stresses in the structural elements such as 
axial and bending stresses are all the 
examples of this type of random variables.  
 
The fast process may be conditionally 
related to the slow process, 
X(t)=X(Y(t),Z,t) such as wave surface 
elevation which is considered for a given 
value of the significant wave height. 
Furthermore, the slow process such as a 
wave surface variation is often assumed 
stationary for the average period of a sea 
state duration. Hence, the stochastic 
process, Y(t) can be approximated by N 
rectangular pulses with duration D=T/N. The problem of combining N sea states can therefore 
be approximated with the combination of a conditionally independent short-term response, 
Loseth and Bjerager (1989). 
 
In both the fatigue and ultimate limit state, the stresses are fast time variations and the interest 
is on the determination of failure probability of the structure in the long-term. Therefore, the 
appropriate method to determine the long-term failure probability based on the fast stress 
process is a main concern. Two approaches can generally be applied to determine the long-
term failure probability.  
 
In the first method, which is usually applied in fatigue reliability, the long-term stress 
distribution is calculated through the combination of short-term stress range distributions and 
the failure probability is then calculated using the fatigue limit state function with parameters 
of the long-term stress range distribution. 
 
In the second method, which is often used for failure probability calculations of the ultimate 
limit state function, the short-term failure probability is calculated for each sea-state in the 
scatter diagram and the long-term failure probability is obtained by combining the short-term 
failure probabilities. To simplify this method, a kind of response surface method may be 
utilized to relate the parameters of the short-term stress distributions in the scatter diagram 
and use this response surface to determine the long-term failure probability. This method has 
been applied in the research work of Karunakaran (1993) to determine the long-term failure 
probability of a jack-up platform.  
 
In case of the second method, the failure probability for a particular slow process (short term 
sea-state) can be evaluated with 

( , ) { ( ( ), , ) 0 , };  t [0,T]S i i iP F y z P g X y Z t Y y Z z= ≤ = = ∈             (3.31) 

Figure 3.3 Representation of time-independent, Z, 
slow time-variation, Y, and fast time-variation, X, 

random variables, Loseth and Bjerager (1989) 
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P(FS| yi,z) is the conditional failure probability for a given set of random time-dependent, yi, 
for example individual sea-state and time-independent random variables, z. T is the reference 
period for the reliability analysis. Usually, T is referenced to one year or to the required 
service time of a structure called design lifetime.  The long-term probability of failure can be 
obtained from the combination of conditional failure probability for each individual short-
term sea-state. This long-term failure probability is calculated by combining for each 
individual sea-state, Yi from all sea states i=1,2,…, N with the following expression, 

( ) ( , ) ( )L S i Y
Y

P F z P F y z f y d y= ∫                      (3.32) 

P (FL | z) is the conditional failure probability for a given set of time independent random 
variables, z, and fY (y) is the probability density distribution of a slow time-dependent process. 
In practice, such an analysis requires a considerable amount of computation time and effort, 
since large numbers of short-term simulation are required.  By integrating equation (3.32) for 
time-independent random variables, the unconditional failure probability can finally be 
evaluated. Mathematically, the final failure probability can be determined with the following 
expression, 

( ) ( ) ( )L L ZZ
P F P F z f z dz= ∫              (3.33) 

where P(FL ) is the unconditional failure probability and fZ (z) is the joint density function of 
time independent random variables. 
 
The long-term approach described in this section may be a complex and time-consuming task 
but leads to an improved failure probability calculation. To simplify the calculation time the 
randomness of the slow time-variation process may be modelled by a specific probability 
distribution using the concept of the return period to specify the extreme event of this 
process. The return period is defined as the average time between two successive statistically 
independent events. Hence, the extreme event of the slow process is estimated through the 
probability distribution fitted on the slow process, f (y) according to observed data and using 
the return period (say 50 or 100 years) to specify the extreme events. This model is often 
applied in the offshore industry to specify the design storm or the highest significant wave 
height that may occur during the lifetime of a structure.  

3.5     EXAMPLE APPLICATION 

In this section, some examples are given to show the accuracy and sensitivity of the reliability 
approach as presented in this chapter for several limit state functions. Furthermore, these 
examples provide a comparison of the different strategies used for reliability calculations. 

3.5.1 Example of the fatigue limit state function 

To investigate the efficiency and to compare the accuracy of the reliability methods, the 
fatigue limit state function presented in the second chapter is considered here. To take into 
account the uncertainties in the hydrodynamic loads, the stress calculations and the stress 
concentration factors, the final stress range distribution model has been modified by 
multiplying three random variables,δF δS and δSCF, of which each one represents the 
uncertainty in the loads calculation, the stress calculation and the stress concentration factor 
in the specific hot-spots, respectively. They have a lognormal distribution with the mean 
value equal to one and coefficients of variation of 0.1, 0.15 and 0.1 respectively. Due to the 
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one leg detailed model of the jack-up platform, a higher value of 0.15 is assumed for the 
coefficient of variation of the stress model uncertainty. Furthermore, to simplify the 
calculation the geometry function is assumed constant in this example.  The statistical 
parameters of the basic random variables are given in table 3.1 with the following fatigue 
limit state function, 
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δ δ δ
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− Γ +∫                                 (3.34) 

To determine the reliability index through this limit state function, two computer programs 
have been provided in line with the first (FORM) and second order (SORM) procedures 
described in this chapter. The reliability indices are calculated and shown in table 3.2 for the 
service time of structures varying from 10 to 30 years.  
 
Two other computer programs based on Monte Carlo (MCS) and Importance Sampling (IS) 
simulation techniques have been prepared to check the accuracy of the first and second order 
approximation solutions. A rule of thumb for a sufficient number of simulations is that the 
crude Monte Carlo simulation should be carried out with at least 100/Pf samples (see e.g. 
DNV, notes no. 30.6, 1992), where Pf is the prospected failure probability. However, it is also 
recommended that the simulation should be carried out in such a way that the estimated Pf 
has a coefficient of variation less than 10% According to this rule of thumb and taking the 
lowest failure probability determined in the SORM method is 0.0003357 (β =3.401), 
therefore at least 298000 simulations are required. We tried 3.0E5 simulations to calculate the 
failure probability in the Monte Carlo Simulation.   
 
The calculated coefficients of variation for each simulation technique is shown between the 
parenthesis in front of the reliability results for the service time varying from 10 to 30 years 
in table 3.2. The largest coefficient of variation calculated according to the number of 
simulations was 9.53%, which is less than 10%. 
 
Table 3.1:  Characteristics of variables in the fatigue limit state function  __________________________________________________________________________________________ __________________________________________________________________________________________ 
 
Variable   Distribution  Mean value        Coeff. of Var.         Imp. factor   
                                                                µ           COV                      α2 (%) 
 
 
a0  (mm)   Exponential  0.11      1.00                  11.80         
aC  (mm)   Normal   28.0      0.04                  2E-4          
lnCA  (N, mm)  Normal              -29.84          St. Dev.=0.55    23.96         
δtf   Lognormal  1.50   0.50                  20.23         
δy   Normal   1.00   0.10                  7.28         
δF   Lognormal  1.00   0.10                  8.67       
δS   Lognormal  1.00   0.15                  19.38  
δSCF   Lognormal  1.00   0.10                   8.67  
A (N/mm2)  Fixed   11.47   -----                   -----   
B   Fixed   1.22   -----                   -----   
ν (Cycle/year)  Fixed   6.277E+6  -----                   -----   
m   Fixed   3.10   -----                   -----   
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In an important sampling technique, it is needed to specify the importance sampling density 
function. A reasonable strategy is to select the multi-normal probability density function with 
mean values equal to the design point and the unit variance. Hence, in the calculation 
procedure for importance sampling, 5000 simulations are carried out with the normal 
distribution function for the importance-sampling density function in accordance to the mean 
values equal to the design point derived in the FORM method and the unit variance. This 
corresponds to the highest coefficient of variation of 5.85 % in the calculations. The 
reliability index derived based on the simulation methods are compared with FORM and two 
SORM approaches and shown in table 3.2 
 
 As becomes clear from this table, the FORM approach gives slightly more conservative 
results than SORM and the simulation techniques i.e. IS and MCS. Furthermore, the 
difference between the first order (FORM) and the second order (SORM) approximations is 
not much because the nonlinearity in the limit state function is not significant. The two 
SORM approaches give approximately the same reliability index but the Tvedt 
approximation shows a marginally higher reliability than the Breitung approach, because the 
Breitung approach is an asymptotic approximation and the differences between these two 
methods decrease when the reliability index increases. 
 
To examine the influence of uncertainty on the reliability index, a sensitivity analysis has 
been carried out. The importance factors calculated for random variables in a service time of 
20 years are illustrated in table 3.1.The major sources of uncertainties arise from the material 
parameter C, the random correction factor for time to failure δtf and the random stress 
calculation δS. These variables contribute 63.57 % to the total uncertainty. The critical crack 
depth, which is here the thickness of the element has the lowest importance factor and may be 
treated as deterministic parameter.  
 
Table 3.2:  Reliability index based on fatigue limit state function  __________________________________________________________________________________________ __________________________________________________________________________________________ 
 
Ser. FORM         SORM         SORM     Impor.         MCS FORM*      SORM* 
Time        (Breitung)     (Tvedt)    Sampl.                                                                       
 
 
10  3.349         3.396      3.400 3.401 (5.66)  3.377 (9.53) 3.350        3.401   
15  2.975         3.023      3.028 3.039 (5.04) 3.019 (5.12) 2.976        3.029   
20  2.711         2.760      2.766 2.750 (4.90) 2.781 (3.50) 2.712        2.767   
25  2.507         2.557       2.564 2.558 (5.85) 2.560 (2.51) 2.509        2.564   
30  2.342         2.391      2.399 2.391 (5.69) 2.402 (2.01) 2.343        2.399   
 
 
FORM      0.060 CPU-Second    β=3.349 
SORM (Breitung)    0.061 CPU-Second    β=3.396 
SORM (Tvedt)     0.062 CPU-Second    β=3.400 
Important Sampling    5.358 CPU-Second    β=3.401 
MCS      283.70 CPU-Second    β=3.377 
 
* Reliability index determined with STRUREL program 
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To compare the calculation time of each method, the time spent for the calculation 10- years 
service time is shown in the second section of table 3.2 for each method. It is clear that the 
FORM and SORM approaches require less computation time than the simulation methods. 
The FORM approach generally takes less calculation time than other approaches and the 
difference of this method is not so significant compared to the others and it may be concluded 
that this approach is appropriate for fatigue reliability calculations. 
 
To compare the accuracy of the results determined by the program developed for this specific 
purpose called FRP (Fatigue Reliability Program) and a standard reliability program such as 
STRUREL, the same limit state function has been entered into the STRUREL and the results 
are shown in the last two columns of table 3.2. Comparison of the results shows small 
difference and good accuracy between both programs. The difference may be related to the 
calculation algorithm for derivation of the limit state. In STRUREL, the derivation of the 
limit state function is calculated using the finite difference method but in the FRP programs, 
this derivation is obtained analytically since the expression of the limit state function was 
available analytically.   
 
Based on the comparison of the results of the reliability approaches derived in this example, it 
may generally be concluded that the FORM approach gives appropriate results for the fatigue 
limit state function and can be used in the following chapters for the fatigue reliability 
calculation of jack-up platforms. 
 

3.5.2 Example of ultimate limit state function 

In this section, the ultimate limit state function is used to investigate the efficiency of the 
reliability methods. The ultimate limit state is specified based on API RP2A-LRFD (1993) 
and is simplified for tubular cross section as follows, 
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where fa and fbm  are the axial compressive and maximum bending stresses in the elements 
and Fcn, Fb and Fe are the nominal axial compressive, bending and Euler buckling strengths 
respectively and are given by API (1993).These parameters are dependent on diameters, 
lengths, thicknesses, elastic section modules, module of elasticity, etc and can finally be 
related to a yielding stress. Therefore, three random variables are assumed, two for 
compressive and bending strength and one for yielding stress. The Weibull distributions are 
used to fit on the maximum results of time history simulation of compressive and bending 
stresses and the Gumbell distributions are used to extend for the extreme results of storm 
duration (3 hours). The random variables and their characteristics are given in table 3.3. 
 
Four computer programs are provided for the reliability calculations based on the ultimate 
limit state function according to the FORM, SORM, important sampling (IS) and Monte 
Carlo simulation techniques described in the previous sections and the results are shown in 
table 3.3.  
 
The MCS result is calculated for 3.0E5 simulations as already done for the first example and 
also shown in table 3.3. As is clear from this table, although the calculation time of the MCS 
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approach took longer than any of the other methods, this technique does not lead to good 
results for this number of simulations. Based on the rule of thumb recommended by DNV 
(notes no. 30.6, 1992) for the number of simulations, at least 1.28E8 simulations should be 
carried out. This number of simulations exceeded the memory restriction of the available 
computer and could therefore not be carried out.  Therefore, we restrict to use 1.28E7 
simulations and the result of MCS is shown in the last row of the table 3.3. The coefficient of 
variation of this number of simulations is better than before but is not sufficient, not being 
less than 10 percent. 
 
The importance sampling method is carried out according to the 5000 simulations with the 
multi-normal distribution function for the importance sampling density function. The mean 
value of this distribution is set equal to the design point derived in the FORM solution and 
the unit variance. This corresponds to the coefficient of variation of 3.96 % in calculation. 
The reliability index derived with this method is compared with FORM and two SORM 
approaches in table 3.3. 
 
The FORM method requires the minimum calculation time compared to the other methods. 
The MCS method spends a lot of time to calculate the failure probability and may generally 
not be an appropriate method when the calculation time is limited.  
 
The FORM result shows good agreement with the important sampling but the SORM 
approach gives a somewhat less conservative outcome than FORM. The non-linearity 
imposed in the SORM technique may be suggested as a reason for this difference.  
 
The sensitivity analysis based on the importance factors of the random variables shows a high 
influence of axial and yielding stresses with 62.39% and 21.65% respectively. The bending 
stress has the lowest influence with a total uncertainty of 15.96%.  
 
 
Table 3.3:  Probabilistic data for the ultimate limit state function and calculated reliability index  ________________________________________________________________________________________ ________________________________________________________________________________________ 
 
Variable  Distribution  Mean value        Coeff. of Var.         Imp. factor             
                                                                 µ           COV                      α2 (%)                    
                                                                                                                                                                  
 
fa (kN/m2) Gumbel   177352.23    0.132              62.39              
fb (kN/m2) Gumbel   243123.90  0.133                  15.96               
σ Y  (kN/m2) Lognormal  689000.0   0.080                  21.65               
 
FORM*             β=4.746                           Pf =1.037E-6                      
SORM*            β=4.616                           Pf =1.956E-6                      
FORM      4.070 CPU-Second        β=4.746                           Pf =1.036E-6                      
SORM (Breitung)    4.080 CPU-Second        β=4.626                           Pf =1.866E-6                      
SORM (Tvedt)     4.130 CPU-Second        β=4.627                          Pf =1.855E-6                      
Important Sampling     11.64 CPU-Second        β=4.639               Pf =1.748E-6(COV=3.96%) 
MCS (3.0E5)     414.69 CPU-Second        β=4.504               Pf =3.333E-6(COV=100%) 
MCS (1.28E7)     1879.0 CPU-Second        β=4.617               Pf =1.9466E-6(COV=20%) __________________________________________________________________________________________ __________________________________________________________________________________________ 
* Reliability index determined with STRUREL program 
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To compare the results of the provided computer programs and a standard reliability program 
such as STRUREL (1997), the same limit state function has been employed in STRUREL 
and the results are given in the first two rows of the second section of table 3.3. A comparison 
of the results shows good accuracy between the FORM results but a somewhat larger 
difference between the SORM approaches. These differences can be related to the different 
formula used in STRUREL and the developed program. In STRUREL the SORM result is 
estimated in accordance with the method presented by Hohenbichler and Rackwitz (1988) but 
in the developed program the method presented by Breitung and Tvedt has been applied.  
 
As the final consequence of comparison of these results, the FORM approach can be 
supposed to prepare a good outcome for this limit state and may be the appropriate method to 
be applied for further calculation in the next chapters. 
  

3.5.3 Example of fracture limit state function 

In this example, we use the fracture mechanics limit state and investigate the efficiency and 
accuracy of several reliability methods presented in this chapter through this limit state. The 
fracture limit state function is presented in the second chapter based on the mechanics of 
fracture and it is shown that structural elements are in the failure state if the following 
expression becomes less than zero, 

2 6 ( ) ( )
( ) [1 0.14 ][0.3 0.7exp( 0.65 )]

p s
Y F SCF

rf r r r c
IC

Y a a
g X K K L L

K
δ π δ δ σ σ

ρ
+

= − = − + − − −              (3.36) 

The parameters of this expression have been presented in detail in section 2.7.  Here the three 
random modification variables δY, δF and δSCF are added. As for the fatigue limit state 
function, these three random variables are used to consider the uncertainties in the geometry 
function, the load calculation and the stress concentration factor. The global plastic analysis 
has been employed to specify the collapse plastic parameter (Lr). The statistical 
characteristics of the random variables for the fracture limit state function are presented in 
table 3.4. As is clear from this table, a relatively brittle steel type has been chosen to specify 
the fracture toughness. More details about the random variables are given in appendix G.  
 
 
Table 3.4:  Statistic characteristics of random variables in fracture limit state function  __________________________________________________________________________________________ __________________________________________________________________________________________ 
 
Variable   Distribution  Mean value        Coeff. of Var. Imp.  factor 

            µ           COV       α2 (%)    
  
 
σ P  (kN/m2)   Gumbel   169700   0.035        0.04 
K IC (kN/m2√mm) * Lognormal  6500000  0.25      55.66 
σ Y  (kN/m2)  Lognormal  689000   0.08        3.83 
a0   (mm)  Exponential  0.11       1.00      37.70 
δy   Normal   1.00   0.10        2.09 
δF   Lognormal  1.00   0.10        0.34 
δSCF   Lognormal  1.00   0.10        0.34 
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* This fracture toughness corresponds to the CTOD equal 0.3 
To specify the characteristics of the Gumbel distribution of the primary stress, the Weibull 
distribution is fitted on the maximum of the time history simulation of the primary stresses 
and the Gumbel distribution is utilized for the extension of the storm duration (3 hours). This 
type of extreme response calculation is the same approach as the extreme stress calculation in 
the ultimate limit state function, the differences are that the axial and bending stresses are 
firstly modified with the stress concentration factor and subsequently combined with each 
other to give the final primary stress.  
 
Three computer programs are provided for reliability calculations according to the FORM, 
SORM and important sampling (IS) procedures described in the previous sections and the 
results are calculated for the secondary to yield stress ratio (σ S /σ Y) varying from 0.4 to 1.0. 
 
The failure probabilities calculated by FORM, SORM and importance sampling technique are 
compared in table 3.5. The Monte Carlo Simulation has not been done here because of the 
problem of memory restriction described in the previous example; instead, the importance 
sampling is carried out for 5000 simulations with the multi-normal distribution function for 
the importance sampling density function. The mean value of this distribution is set into the 
design point derived in the FORM solution and using the variance equal to one. This 
corresponds to the maximum coefficient of variation of 4.75 % in our estimation and this 
approach may generally be supposed to lead to an accurate result and constitutes the basis for 
a comparison. The obtained reliability index derived with this method is compared with 
FORM and two SORM approaches in table 3.5. 
 
By comparing the results, it can clearly be observed that the FORM method gives good 
approximate results compared to IS, while SORM provides a slightly closer estimation on the 
failure probability to the IS solution. 
 
 
Table 3.5 Reliability results for fracture limit state function  __________________________________________________________________________________________ __________________________________________________________________________________________ 
 
σ S /σY     FORM   SORM       SORM  Import             FORM*        SORM* 
   (Breitung)  (Tvedt)    Samp. (Cov %) 
 
0.4      8.599 8.607  8.607  8.606 (4.75)           8.600          8.608 
0.6      7.772 7.786  7.786  7.787 (4.52)           7.773          7.787 
0.8      7.116 7.134  6.134  7.133 (4.20)           7.117          7.135 
1.0      6.579 6.600  6.600  6.595 (4.01)           6.580          6.601 
 
 
FORM      0.120 CPU-Second    β=6.579 
SORM (Breitung)    0.140 CPU-Second    β=6.600 
SORM (Tvedt)     0.150 CPU-Second    β=6.600 
Important Sampling    8.192 CPU-Second    β=6.595 
 
* Reliability index determined with STRUREL program 
 
To compare the results of the provided computer programs and a standard reliability program 
such as STRUREL, the same limit state function is applied in the STRUREL and the results 
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are given in the two last columns of table 3.5. A comparison of the results shows good 
accuracy between the FORM results of both programs. The same trend is observed for the 
SORM results as well.  
 
The sensitivity analysis based on the importance factor shows a great influence of the fracture 
toughness and crack size with a combination of 93.36%, while the primary stress has the 
lowest influence on the total uncertainty.  
 
By comparing the reliability results, the general conclusion can be drawn that the FORM 
approach provides an appropriate approximation result to calculate the reliability index for 
the fracture limit state. Furthermore, the calculation time for this method is less than for the 
other methods. 
 

3.6     CONCLUDING REMARKS 

In this chapter, the reliability methods for the calculation of the failure probability or 
reliability index have been presented. Furthermore, by using several examples the accuracy of 
these methods for the calculation of the failure probability based on three fatigue, fracture 
and ultimate limit state functions were investigated.   
 
At the first step, the non-Normal variables should be transformed into the Normal space with 
one of the transformation methods presented in this chapter. The Nataf transformation 
technique is used to determine the equivalent random variable in the Normal space. The first 
order approximation (FORM) method is used to calculate the reliability index. This method is 
based on the first order Taylor series expansion of the limit state in the normal space, using a 
tangent hyperplane to approximate the original space. Moreover, an iteration algorithm 
presented by Liu and Der Kiureghian (1991) or Nowak and Collins (2000) can be used to 
determine the minimum distance to the origin, which gives the reliability index.  When the 
limit state is nonlinear, the first order may not be appropriate and therefore the second order 
(SORM) of Taylor series is applied to approximate the limit state function. Furthermore, the 
Monte Carlo simulation and the important sampling (IS) techniques may be used to evaluate 
the failure probability.  
 
According to the presented method, several computer programs are provided for the fatigue, 
fracture and ultimate limit state functions and the results and computation time are compared. 
To test the accuracy of the provided programs, the same limit state functions have been 
entered into STRUREL and the results are checked with the acquired solution of the provided 
programs. The results show good agreement between the FORM results of STRUREL and 
the provided programs. Furthermore, the FORM approach takes less calculation time but give 
an acceptable approximation of the failure probability. 
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4.   COMPONENT RELIABILITY OF JACK-UP 
PLATFORMS 

 

4.1     INTRODUCTION 

In the second chapter, a procedure to derive fatigue, fracture and ultimate limit state functions 
under extreme environmental loads has been described.  Due to the stress state of a jack-up 
platform, a direct application of the fatigue limit state function using a traditional geometry 
function may lead to an incorrect estimation of the reliability index and a modification is 
therefore required before considering any application. This modification is presented in this 
chapter using the correct membrane to bending stress ratio calculated from the time history of 
the hot spot stress at the specific point. The differences in the fatigue reliability results 
between the traditional geometry function and this method are discussed.  
 
Furthermore, the impact of wave spectra, the total damping in the structure and the stress 
range distributions on the calculation of the fatigue reliability has to be investigated. Based 
on these investigations a proper selection of the models for wave spectra, total damping and 
non-linear and wide-banded models of stress range distributions and related parameters has to 
be made. These aspects are investigated in this chapter, the results are compared and 
conclusions drawn. The inspection of a platform may provide valuable information to update 
the failure probability of the structure. The formulation and the procedure to update the 
fatigue reliability according to the inspection information are explored in this chapter and it is 
shown that the detection or non-detection of cracks may affect and change the fatigue 
reliability. 
 
The stress state of a jack-up platform changes due to the cyclic behaviour of hydrodynamic 
loads in such a way that it varies from tension to compression or vice versa. The traditional 
approach is to use a limit state for compression or tension separately to check the possibility 
of failure but in this section an attempt is made for a new approach, by combining these two 
limit state functions and applying the concept of the time history of the usage factor. Finally, 
the results are compared with the traditional approach. 
 
Since the fatigue damage discloses its effect as a crack occurs in structural joints, the 
combination of this crack with the extreme environmental loads may cause a significant 
fracture failure. This type of failure is subject of the last section of this chapter and a 
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procedure to calculate the failure probability due to the fracture failure is discussed and 
presented.  
 
Figure 4.1 shows the schematic flowchart of the calculation procedures and the basic steps 
that will follow in the rest of this chapter. The number shown in each box of the flowchart 
refers to the number of the section describing the details. 
 

Figure 4.1: Schematic presentation of the reliability analysis procedure followed in this section 
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4.2     MODEL OF NEKA PLATFORM 

In order to be able to obtain, examine and investigate the reliability of a jack-up platform, the 
Neka jack-up model is considered here. The overall configuration and dimensions of this 
platform are shown in figure 4.2 and the finite element model used in this research is given in 
figure 4.3. Since the fatigue damage originates in the intersections or joints of the elements, 
the stress distribution around the joints should be specified. Due to memory restriction of the 
computer, all structural details of the platform cannot be modelled and only a detail of one 

leg is considered here. However, the validation of the main concept of this research may not 
be violated by this simplification. For the other two legs, the truss legs are idealized as string 
beam elements with the equivalent stiffness and hydrodynamics properties described in the 
Site Specific Assessment of Mobile Jack-up Units, Bulletin 5-5A (Bennett, 994). The adapted 
computer model is a three-dimensional space frame with totally 524 elements and 229 nodes.  
 
The platform rests on spudcans at the base of each leg. The soil-structure interaction may be 
an important aspect in the dynamic response of a jack-up, depending on the soil condition. 
This subject has been investigated by Cassidy (1999), Shabakhty and Daghigh (2003). 
Generally, two methods can be applied to model the soil-structure interaction. The finite 
element method is sophisticated and expensive but makes it possible to consider the variation 
of the soil properties with depth. In the second model, the foundation is modelled as a rigid 
body and the spring representing the soil is used as an uncoupled element. This method is a 

Lleg 
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e
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f 
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Figure 4.2 Overview of Neka jack-up platform Figure 4.3 Finite elements model of Neka 
jack-up 
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more simple and popular approach, which can be applied in the modelling of soil-structure 
interaction, Etube (2001).  The second approach is employed here because the focus of this 
research work has been on the structural aspects of the jack-up platform.  
 
The leg hull connections are a permanent structural factor of the platform behaviour and 
should be given proper attention. For the purpose of this study these connections are 
represented by linear springs located at the position of the lower and upper guide levels. The 
leg-hull interface is a three-dimensional structure and the realistic behaviour is complicated 
due to the effect of the clearance in leg-guides, backlash in the jacking system and the 
resulting interaction. The jack-up model under investigation is provided with a fixation 
system consisting of a clamping mechanism and in this case the linear spring model is 
generally considered to properly represent the leg-hull connection. The direction of the 
dominant wave loading is longitudinal from the fore leg to the aft legs, perpendicular to the 
line connecting the two aft legs. This assumption is on the bases of the critical direction 
leading to structural failure, Daghigh (1997). The reference sea states (HS, TZ) are selected 
from the scatter diagram of the Hutton area (Marex 1979) and the hydrodynamic loads 
corresponding to each sea state are calculated with the NOSDA program, (Liu and Massie, 
1988).  
 
To obtain the hydrodynamic loads on the jack-up platform an improved version of the 
NOSDA program is developed. The original NOSDA program uses the Deterministic 
Spectrum Amplitude (DSA) for the simulation of the wave surface. In this method, the wave 
surface in each time step is computed by using the Airy wave theory with the uniform 
random phase. But, as Grigoriu (1993), Morooka and Yokoo (1997) demonstrated, this 
approach does not lead to the Gaussian nature of the wave surface except for a high number 
of random phase combinations. Hence, for a limited number of phase combinations, they 
recommend to apply the random Rayleigh amplitude in addition to the random phase because 
this model better represents the Gaussian nature of the wave surface.   This model is 
known as the Non-Deterministic Spectrum Amplitude (NDSA) and is applied in the modified 
version of the NOSDA program, see 
appendix E. 
  
The wave particle velocity and 
acceleration according to this method 
can be calculated with the first and 
second derivation of the wave surface 
through the Airy wave theory. The 
wave kinematics up to the 
instantaneous water surface is taken 
into account using the Wheeler 
stretching profile (1970). The water 
particle kinematics are therefore 
simulated at the nodal points along 
the submerged and surface-piercing 
elements in order to obtain accurate 
nodal point forces through the 
numerical integration of the 
distributed hydrodynamic force 
intensities. 

Table 4.1 Characteristic of jack-up platform 

Characteristics Quantity 

Platform length L=54.86 m 

Platform width B=53.34 m 

Hull depth d=7.62 m 

Spacing between for and aft 
legs f=35.45 m 

Spacing between aft legs g=40.95 m 

Guides distance e= 14.3 m 

Total leg length Lleg=125 m 

Water depth D=95.0 m 
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The hydrodynamic loads arising from currents are calculated by simply adding the current 
velocity given by a current profile to the simulated water particle velocity. In this research 
work, only the tidal current velocity is taken into account with the power exponent type 
model recommended by DNV (2000) to model the variation of current velocity with the 
water depth. The maximum tidal current velocity 1.2 m/s at the still water level corresponds 
to a 50-year return period recommended by Marex report (1979) is adopted in the same 

Figure 4.4 The flowchart of the steps and the programs, which are 
written or developed to calculate the fatigue reliability index.  
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direction of the wave propagation. For fatigue analysis, the current loads can normally be 
neglected as recommended in the Site Specific Assessment of Mobile Jack-up Units, Bulletin 
5-5A (Bennett, 994). 
 
The static wind load for the elements outside of the water is calculated and added to the wave 
and current loads. The wind velocity variation is described through the DNV (2000) 
specification and the reference wind velocity of 36.5 m/s for a 50-year return period as 
recommended by Marex (1979) is applied in the dominating wave direction. Since in the 
fatigue reliability calculation the stress range is of more interest, this static load is only 
applied for the ultimate and fracture reliability analysis and ignored in the fatigue reliability 
calculation. Moreover, in the following section the overall damping of 5 percent is used for 
the low and medium sea states in the fatigue reliability sections and 11 percent for the 
structural response for high sea states in the extreme environmental loads and fracture failure 
sections to consider the effect of relative velocity according to the recommendation of 
Daghigh (1997). However, in the section 4.3.4 the variation of fatigue reliability with the 
damping ratio will be investigated. 
 

4.3     FATIGUE RELIABILITY 

The component reliability of a jack-up structure based on a fatigue limit state function 
depends on several parameters such as stress distribution models, bending to membrane stress 
ratio, wave spectra models and structural damping, which each one can change the estimated 
failure probability. In this section, these effects will be investigated in detail and it will be 
shown how they may affect and change the estimated failure probabilities or reliability 
indices.  
 
The detail and steps followed in this section are shown in figure 4.4. Furthermore, several 
computer programs are written or developed to calculate the fatigue reliability index in this 
section. As it is observed from figure 4.3, they generally consist of four original programs. 
ANSYS is used for the Finite Element analysis and for obtaining axial and bending stresses 
in each joint of element. In this research work, only the dynamic analysis has been carried out 
to compute the stresses. The modified version of NOSDA is also developed to calculate the 
hydrodynamic loads. The IF and FRP programs are written to calculate the Influence Factor 
(IF) and the Fatigue Reliability (FRP) in each hot spot point of the joint of the structure. More 
details about the original concept of these programs are discussed in appendix D and E, 
respectively.          

4.3.1 Stress calculation and distribution 

As described in the second chapter, the computation of the stress parameter is essential for a 
fatigue reliability calculation. Since fatigue is the structural degradation arising from the 
combination of stress ranges in several sea states, the long-term distribution of the stress 
ranges must be obtained. This may conveniently be carried out by combining the possible 
environmental conditions as a finite set of stationary sea states, characterized by the 
significant wave height (HS) and the zero-crossing period (TZ). A short-term stress range 
distribution can therefore be established by using the time history of the stress response, and 
the fitting of a specific distribution on the stress ranges. The final long-term distribution is 
then specified by combining the short-term results in such a way that the various occurrences 
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of each sea state are taken into account 
through the wave scatter diagram. The wave 
scatter diagram of the Hutton area (Marex 
1979) is used in this research work, see 
appendix C. Firstly the scatter diagram is 
divided into five blocks, in which each sea 
state in the centre point of the block 
represents that block. The stress process of 
each sea state is then calculated using the 
ANSYS finite element program. The hot-spot 
stress is calculated by multiplying the 
nominal stress derived in the finite element 
analysis with the Stress Concentration Factor 
(SCF). Several SCF’s have been presented in 
the literature, e.g. Kuang et al. (1975), 
Wordsworth and Smedly (1978), Efthymiou 
(1988), Hellier et al. (1990) with different 
formulations for the SCF.  The discrepancy 
between these formulations is mainly due to 
the type of method used for the analysis, the 
location of the SCF calculation, the chord end 
fixation conditions and the range of joint 
geometries studied to develop the equation. 
The formulations of Efthymiou cover most of 
the geometry of the joints in the supposed jack-up model and also consider different types of 
loading conditions from in planar and non-planar bracing elements. This formulation has 
therefore been used in this work. Since some differences may be observed between the 
predicted SCF and the test results, in the reliability method this discrepancy is expressed in 
the term of the random correction model, δSCF, Shetty (1992). 
 
Several points around the brace-chord intersection can be considered as the highest potential 
points for the fatigue damage. According to the DNV RP-C203 (2002) recommendation, the 
hot-spot stresses should be calculated for 8 points around the intersection as illustrated in 
figure 4.5 in such a way that its angular distribution covers the whole section for each 45 
degrees around the intersection of joint.  
 
The hot-spot stresses are calculated through the method presented in Efthymiou (1988) using 
the Influence Factor (IF), which considers the effect of the SCF arising in planar and non-
planar braces, with the following expression, 

,
, ,

1 1

( )
( )

n n
nom j

hs i ij ij n j
jj j

F t
t IF IF

A
σ σ

= =
= =∑ ∑                                                                                        (4.1) 

where Fnom,j are the nominal sectional forces and moments determined from the finite element 
analysis, Aj are the corresponding sectional constants (e.g. area or sectional modulus), and n 
is the total number of degrees of freedom in all bracing member ends and in the two chord 
ends. In general, there are six load cases for each free end, but a common approach for the 
fatigue analysis of offshore platforms is to neglect the effect of the torsional moment and 
shear forces in the fatigue damage calculation, Kirkemo (1988).  The axial tension loads, the 

Figure 4.5 Hot-spot points around 
intersection of brace/chord 
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in plane and out of plane bending moments are consequently used for each free end and the 
hot-spot stresses are calculated for 8 points around the intersection of brace and chord. In the 
reliability calculation, the distribution function of the stress range should be specified. This 
distribution can be determined using the peak counting method presented by Madsen et al. 
(1986). According to the peak counting method, the stress range is defined as twice the value 
of the local maxima of the stress time history. It means that all local maxima above zero are 
counted and paired with a local minimum of the same size independent of their locations in 
the time history. Several distribution functions may be supposed to fit on the stress range but 
the goodness of fit can be applied to ranking according to its significance.  
 
The statistical analysis of the hot-spot stress ranges for the diagonal bracing element below 
the guiding system (element number 295 in figure 5.2) in the connection with the chord 
element is carried out for 8 points around the intersection, see figure 4.6. The results show 
that the Weibull distributions gives the highest ranking among several distribution functions 
e.g. Normal, Rayleigh, Lognormal, Pareto, Gamma and Erlang based on the goodness of fit 
using the Chi-square test. The same rank is observed through the Kolmogorove-Smirnov (K-
S) and Anderson-Darling test (A-D). The K-S test uses the absolute deviation of the fitted 
distribution from the sample distribution and the A-D test measures the quadratic deviation of 
the fitted distribution to the sample distribution, with a higher weighting factor in the tails. 
 
It should be noted that if the stress process was stationary, Gaussian and narrow-banded, it 
could be expected that the stress range follows the Rayleigh distribution. However, this is not 
the case for the jack-up platform under investigation because of the nonlinearity in the stress 
process. This nonlinearity is actually arising from the drag terms in the hydrodynamic load 
calculation, the P-δ effect and the integration of water particle kinematics up to the 
instantaneous water surface individually or in combination of them. Furthermore, it is shown 

Figure 4.6: Stress range distribution for significant wave height 5.0 m at saddle point (θ =0) 
(Right) and crown point (θ =90) (Left) 
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by Karunakaran (1993) that the statistical nature of the response for the excitation near to the 
resonance of the platform may approach the Gaussian or Normal distribution 
(Normalization). Therefore, we suppose three (Weibull, Rayleigh and Normal) distribution 
functions to fit on the stress range by the using Maximum Likelihood (ML) method and these 
distributions are compared with the samples of the hot spot stress ranges for two saddle and 
crown points (zero and 90 degrees) around the intersection of the joint in figure 4.6. As can 
be seen from this figure, the Rayleigh distribution has a poor fitting on the data, while the 
Weibull distribution gives a better approximation. Furthermore, the Normal distribution 
shows significant differences for the lower tail and intermediate values of data. This trend is 
observed for other hot-spot points around the intersection as well and it is generally supposed 
that the Weibull distribution could appropriately be applied to model the hot-spot stress 
distribution around the intersection.  
 
Table 4.2:  The Weibull distribution parameters of stress ranges for several sea states in a diagonal 
bracing around an intersection (A is the scale and B the shape parameter of a Weibull distribution). 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Position (θ )   0              45            90            135         180            225             270            315             

 
Hs=1.75(A) 8.232      7.603        4.450      5.104        6.220         5.282          4.594       7.674   

 (B) 1.6563    1.6471      1.6631    1.6493      1.6420       1.6422        1.6453     1.6142 
Hs=3.25(A) 14.468    13.572      7.894      9.098        11.055       9.409          8.246       13.624 

 (B) 1.4090    1.4495      1.4337    1.4458      1.4308       1.4376        1.4605      1.4151 
Hs=5.00(A) 19.532    17.601      10.510    12.009      14.659       12.493        10.797      18.296 

 (B) 1.2877    1.2230      1.2896    1.2705      1.2673       1.2804        1.2642      1.2840 
Hs=7.75(A) 24.795    23.150      13.570    15.431      18.789       15.928        13.852      22.889 

 (B) 1.1562    1.1737      1.1892    1.1638      1.1562       1.1550        1.1560      1.1173 __________________________________________________________________________________________ 
 
Long  (A) 12.543    11.587      6.814      7.805        9.503         8.084         7.035        11.736 
Term  (B) 1.4713    1.4606      1.4848    1.4760      1.4673       1.4741       1.4768      1.4571 

 
 
The Weibull distribution has been already used for other response quantities e.g. base shear, 
overturning moment and deck displacement by Kjoey et al. (1989) and Karunakaran (1993). 
Daghigh (1997) used this for two cases of quasi-static and dynamic response of jack-up 
platforms. It is interesting to note that in case the Weibull shape parameter (B) approaches to 
one, this distribution function represents the exponential distribution and when it comes near 
to two, it gives the shape of Rayleigh distribution. From table 4.2, it can be observed that, 
when the significant wave height decreases the shape parameter of the Weibull distribution 
increases, causing the stress range to approach the Rayleigh distribution. 
 
In fact for lower significant wave heights, the behaviour of the structure can be considered as 
being quasi-static and therefore the stress range should approach the Rayleigh distribution but 
the drag term in the Morison equation changes the distribution tail from Rayleigh to 
exponential. The deviation of the stress distribution from Rayleigh to exponential can be 
reduced by the presence of the dynamic amplification for the higher significant wave heights 
as observed from table 4.2. These results have already been reported in the research work of 
Farnes and Moan (1994). 
 



Chapter 4 
___________________________________________________________________________ 
62 

As can be seen from the comparison of the Weibull scaling parameters (A) in table 4.2, this 
parameter increases by an increasing significant wave height. Since in the fatigue limit state 
function the loading function is proportional to the scaling parameter of the material fatigue 
characteristic (parameter m), an increase in the scaling parameter enhances the failure 
probability for the constant fatigue strength. However, a decline of the shape parameter 
intensifies this enhancement but it should be kept in mind that the occurrence of this sea state 
is rarely observed.  The long-term distribution of the stress range is calculated and illustrated 
in table 4.2. It can easily be observed that the high contribution in the long-term stress range 
is coming from the lower sea states because of the high occurrences of these sea states in the 
scatter diagram.  
 
Table 4.3: Reliability index and failure probability around the intersection of a diagonal bracing 
element  (element no. 295) using the Kirkemo model for the geometry function, the service time (τ) is 
set to 20 years. 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Position (θ )    0             45            90              135            180            225                270          315       

 
 

HS = 1.75 (Pf) 3.71E-5   1.23E-5   7.81E-10    1.42E-8      5.31E-7       2.84E-8      1.79E-9    1.69E-5   
                (β) 3.962       4.218       6.038         5.552          4.880           5.429          5.903       4.146       
HS = 3 .25(Pf) 3.92E-2   2.04E-2   6.24E-5     3.75E-4       3.53E-3       5.86E-4      9.48E-5    2.44E-2   
               (β) 1.760       2.047      3.836          3.371          2.694           3.246          3.732        1.970       
HS = 5.0 (Pf) 2.59E-1   2.04E-1   3.49E-3     1.37E-2       6.20E-2       1.79E-2      5.35E-3    1.98E-1   
               (β) 0.645       0.827       2.697         2.208          1.538           2.098          2.552        0.849      
HS = 7.75(Pf) 6.68E-1   5.63E-1   5.05E-2     1.26E-1       3.19E-1       1.56E-1      6.89E-2    6.16E-1   
               (β) -0.436     -0.159      1.639         1.144           0.470          1.011          1.484        -0.294     __________________________________________________________________________________________ 
 
Long      (Pf) 9.22E-3   4.59E-3   4.95E-6     4.00E-5       5.34E-4     6.58E-5        8.67E-6    5.32E-3   
term        (β) 2.356    2.605       4.420         3.944           3.272         3.824           4.297         2.554      

 
 
To calculate the fatigue reliability, the same expression as equation (3.34) is applied here 
with the three random model corrections,δF δS and δSCF, to take into account the uncertainties 
in the hydrodynamic load, the stress calculation and the stress concentration factor, 
respectively, i.e.  

( )0
g(X)=δ ν τ (1 )

δ

Cra l m m m m
tf F S SCFma

A Y A

da mA
BC Y a

δ δ δ
π

− Γ +∫                                                        (4.2) 

The random variables have the same statistical uncertainty as shown in table 3.1 and the 
Weibull distribution parameters are used according to the table 4.2.  The reliability 
calculation has been carried out using the Kirkemo model for the geometry function and the 
stress range distributions are calculated and given in table 4.3.  
 
The results show that the zero and 315-degree hot-spot positions are more critical than the 
other points and give the highest failure probability, see table 4.3. However, this cannot be 
generalized for other members of the structure and each one should be investigated separately 
to find the critical hot spot. Since the Kirkemo model of the geometry function is used in 
these calculations and this model is based on a bending to membrane stress ratio 5, these 
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Figure 4.7 Reliability index β as function of 
time for different α ratios at zero hot spot 

results cannot directly be applied for jack-up platforms and a correction is required before 
any application. Section 4.3.2 discusses this correction, by using the exact bending to 
membrane stress ratio derived from time history of the hot spot stress process. 

4.3.2 The bending to membrane stress ratio and selecting of a geometry function   

In the calculation of the fatigue damage of tubular joins, the geometry function plays an 
important role because it takes into account the correction arising from boundary effects due 
to the loading and crack geometry, Etube (2001).  
 
In the second chapter, several approaches to determine the geometry function are discussed 
and presented, e.g. Kirkemo, Moan and Aghakouchak. It should be noted that all these 
geometry function formulations may not directly be applied for the fatigue reliability analysis 
of jack-up platforms because they have been specified from the individual bending to 
membrane stress ratio (α ) (four in the case of the Moan and five in the Kirkemo 
formulation), which is originally derived from the stress distribution of fixed jacket 
platforms. Therefore, this ratio would not be a reliable case for the stress distribution of the 
jack-up platforms. Consequently, it is necessary to modify the geometry function through the 
specific bending to membrane stress ratio calculated from the stress analysis of the jack-up 
platforms and hence obtain a new geometry function through this new α ratio. Moreover, a 
correction in the geometry function should be applied to consider the discontinuity of the 
welding toe profile (Mk (a) in formulation 2.11), Smith and Hurworth (1984). This type of 
stress ratio modification and weld toe correction is applied in the computer program 
developed for this purpose and its flowchart is shown in the figure 4.4. By using this stress 
ratio in the crack growth formulation, it is also possible to derive an expression to constitute 
the relation between the crack aspect (a/c) and the propagation of the crack through the 
thickness (a/t). This relationship must be specified in the two-dimensional Raju and Newman 
geometry function because it describes the shape of crack propagation. 
 
The variation of the reliability index with the bending to membrane stress ratio (α), is 
calculated and shown in figure 4.6 for an 
example of a diagonal bracing element 
of the platform below the jacking system 
in the forward leg (element no. 295) and 
at the zero hot-spot. In this calculation, 
the Raju and Newman formulation is 
applied to calculate the geometry 
function because with this approach it is 
possible to take the variation of the 
stress ratio α and a/c into account. As 
can be seen from figure 4.7, the 
reliability index of the zero α gives the 
lowest value but this value increases 
with an increasing value of α. The stress 
process is pure membrane when α 
approaches to zero and using this ratio in 
the fatigue reliability calculation may 
lead to a conservative result. On the 
contrary, the stress process is pure 
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bending when α is approaching to infinity and applying this stress ratio in a reliability 
calculation may lead to a higher reliability index. Therefore, the calculation of the appropriate 
α ratio is essential and should be based on the actual stress process.  
 
Table 4.4:  The expected bending to membrane stress ratio in the stress-peak for several sea states in 
a diagonal bracing of a jack-up structure (element no.295) below the lower guide. 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Position (θ )   0             45               90         135         180             225           270            315    

  
 

HS = 1.75    1.0438    0.6816       0.1680    0.8283    1.0246       0.7029      0.1694      0.8315 
HS = 3 .25   0.9922    0.6593       0.0837    0.7627    0.9876       0.6810      0.0886      0.7584 
HS = 5.00    0.9770    0.6525       0.0682    0.7328    0.9643       0.6650      0.0700      0.7364 
HS = 7 .75   0.9618    0.6490       0.0538    0.7220    0.9568       0.6499      0.0553      0.7137 
Long term   1.0135    0.6685       0.1208    0.7833    1.0002       0.6835      0.1235      0.7884 

 
 
The calculated α ratios for several hot spots of element no. 295 are shown in table 4.4. The 
value of α changes for each hot-spot point and sea state but in the most cases the sea state 
variation is not significant. However, the maximum range is restricted to one and it shows 
that the behaviour of the peak stress in this element is predominated by equal bending to 
membrane stress ratio. This can be related to the configuration of the leg structure, in which 
the axial stress of the element is higher than the bending stress. The long-term α ratio can be 
calculated by combining the α ratio of each sea state according to its occurrence probability. 
This long-term α is calculated and shown in the last row of table 4.4 as well. 
 
The Raju and Newman geometry function formulation is derived for tube shape elements 
without any discontinuity in the shape 
but the exact tubular joints in offshore 
structures have discontinuity in shape 
due to the weld profile. The Moan and 
Kirkemo’s formulation considers this 
discontinuity by using a correction term 
presented by Smith and Hurworth 
(1984). Consequently, it is required to 
apply this correction term in the Raju 
and Newman formulation to consider 
the discontinuity of weld toe profile. 
By using this α and applying the 
correction term given by Smith and 
Hurworth (1984) for the discontinuity 
in shape due to the weld toe profile, the 
final reliability indices for several hot 
spots of brace element number 295 are 
calculated for a number of service 
times and illustrated in figure 4.8.  As 
becomes clear from this figure, the zero 
hot spot intersection gives the lowest 

Figure 4.8 Reliability index β as function of 
service time for different hot-spots (θ ) 
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reliability index (the maximum failure probability) and in contrary θ =180 gives the highest 
reliability index during the service time of the structure. The intersection of this element can 
generally be divided into four hot-spot zones in which the most critical zones to fatigue 
failure are located between angles of 315 and 45 degrees.  
 
To show the differences between the reliability results of the formulation presented by the 
three approaches of Kirkemo, Moan and Aghakouchak in comparison with the proposed 
method, the reliability indices are calculated for these methods and compared in table 4.5. 
Furthermore, the results of the Raju and Newman formulation without correction proposed by 
Smith and Hurworth are also calculated and illustrated in table 4.5. As can be seen from the 
reliability results, the reliability index through the Raju and Newman formulation without the 
weld toe profile correction gives a higher value than the others and should not be used 
directly in a reliability calculation. The reason for this difference can be related to the 
correction term for the consideration of the discontinuity in the shape due to the weld toe 
profile. The reliability indices derived according to the Kirkemo’s geometry function give 
conservative values. However, compared to Moan’s formulation, no significant difference 
can be observed. Actually, this difference can be related to the coalescence of micro cracks in 
the initial phase of the crack propagation assumed in the Moan’s approach and ignored in the 
Kirkemo’s proposal.  The Aghakouchak formulation gives a lower reliability index than Raju 
and Newman but a higher one than Moan and Kirkemo and is close to the proposed method 
in this research. It is not clear which correction Aghakouchak applied to incorporate the 
discontinuity in the welding profile or the bending to membrane stress ratio.  
 
Table 4.5:  The calculated reliability index or failure probability for different geometry function 
formulations, service time is 20 years. 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Method Kirkemo       Aghakouchak           Moan            Two dimensional           Proposed 
                                                                                      Raju and Newman           method 
Position (θ ) 

 
0        β   2.3565      3.0102         2.5532            3.7114                     2.9629       
          Pf   9.225E-3   1.305E-3      5.336E-3         1.0307E-4                 1.524E-3   
45      β  2.6046      3.2465         2.7944             3.9608                    3.2398       
          Pf  4.599E-3   5.842E-4      2.599E-3          3.7357E-5                5.980E-4   
90      β  4.4195      4.9947        4.5455              5.3938                    4.5418       
          Pf  4.947E-6   2.947E-7      2.739E-6          3.4492E-8                 2.788E-6   
135    β  3.9441       4.5390        4.081               5.1551                      4.4113       
          Pf  4.006E-5   2.825E-6      2.2439E-5        1.268E-7               5.138E-6 
180    β  3.2719         3.8909       3.420               4.5954                 3.8838     
          Pf   5.341E-4    4.995E-5      3.137E-4        2.160E-6               5.142E-5 
225    β  3.8235          4.4225        3.967               5.1522                  4.4814       
          Pf   6.577E-5   4.8772E-6      3.643E-5        1.288E-7               3.708E-6  
270    β  4.2967         4.8755         4.4276               5.277                 4.4205        
          Pf  8.669E-6    5.426E-7      4.763E-6         6.5649E-8              4.924E-6    
315    β  2.5540        3.1982         2.7452            3.8118                   3.0089        
         Pf   5.325E-3    6.915E-4      3.024E-3        6.898E-5                1.311E-3    
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The proposed method gives higher reliability indices than the Kirkemo and Moan approaches 
but lower ones than the Aghakouchak and the two-dimensional Raju and Newman methods 
without a correction term of the weld toe profile. The differences can be related to the 
bending to membrane stress ratio assumption used in each method. In the proposed method 
the actual bending to membrane stress ratio is first calculated from the time history of the 
stress process and then substituted in the two-dimensional Raju and Newman formulation 
with a correction term for the weld toe profile to determine the final geometry function.  
 

4.3.3 Effect of spectral models on fatigue reliability 

The fatigue reliability calculation requires that the stress distribution of the stress range 
according to the wave characteristics, and the corresponding wave spectral densities are 
known. Both models are subject to uncertainties. For dynamically sensitive structures such as 
jack-up platforms, the choice of the spectral model may have a significant effect on the 
prediction of the stress range distribution and changes the fatigue reliability. In this section, 
the emphasis is therefore on the investigation of the effect of spectral model choice on the 
estimated fatigue reliability indices.  
 
There are several wave spectra to represent 
the wave energy but the appropriate choice 
of spectra varies with the location and 
condition, depending on some variables such 
as wind duration and fetch length. The P-M, 
(Pearson-Moskowitz, 1964) and the 
JONSWAP (Hasselmann et al., 1973) 
spectra are two widely implemented spectra 
in the design of offshore structures. The P-M 
model is used to represent severe storm wave 
conditions in offshore structural design 
where the fetch length and the duration of 
the wind are infinite; this model is named a 
full-developed sea spectrum. The 
JONSWAP spectrum has been mainly 
developed for the fetch limited sea condition 
of the North Sea, which looks peakier than 
the P-M spectrum. In the preceding sections, 
the P-M spectrum is used to represent the 
wave energy but in this section, the result of 
this model will be compared with the 
JONSWAP spectrum.  
 
The fatigue reliability computation is carried out for element number 295 at the zero hot spot. 
The results are illustrated in figure 4.9 and show that the use of the P-M spectrum gives a 
lower reliability index than the JONSWAP spectrum but the differences are not so high, 
especially during the first five years of service time. However, these differences increase with 
the service time of the platform.  
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Table 4.6: The loading function, zero and peak frequency 
for several damping ratios at zero hot-spot of element 295
__________________________________________________ __________________________________________________ 
                   Fatigue loading function                                 
 Damping         Service time                                               
 Ratio                                       
                  2              10             25           ν0        νP      
    ↓                 
 2.0%    3720       18603       46506       0.199       0.224  
 5.0%    2108       10542       26355       0.158       0.195  
 7.0%    1876       9383         23457       0.149       0.184  
10.0%    1734       8671         21678       0.141       0.169  

4.3.4 Variation of fatigue reliability with overall damping of platform 

The response of a jack-up platform is estimated according to the solution of the dynamic 
equation of motion of a structural model, which typically is carried out with a Finite Element 
Method (FEM). Part of the energy in the dynamic equation dissipates within the damping 
term of the equation and some uncertainty is included in the choice of this term.  
 
The total damping consists of three elements: structural, soil and hydrodynamic damping. 
The structural damping is described by a linear viscous damping and can be modelled with a 
proportional Rayleigh model. The proportional Rayleigh model damping means that the 
damping is proportional to either one or both of stiffness and mass, in which the 
proportionality factors can be estimated according to the important natural frequencies of  a 
structure. 
 
The soil-structure interaction is an important aspect in the jack-up dynamic response and this 
area is getting research interest, Cassidy (1999), Shabakhty et al (2003). The soil-structure 
interaction model is indeed in a nonlinear manner and soil damping in this model is 
automatically accounted for by the hysteretic behaviour of the nonlinear model but usually 
the linearized model is applied.  When the linearized soil-structure interaction modelling is 
employed, the soil damping can be introduced by specifying linear dampers at the foundation 
nodes.  However, it is often difficult to calculate the required characteristics of damping 
coefficients corresponding to the linearized soil-structure interaction analysis. Therefore, the 
soil damping is often accounted for by increasing the damping level specified in a 
proportional Rayleigh model for the structure, Karunakaran (1993).  
 
The hydrodynamic damping is implicitly modelled as part of the hydrodynamic load term 
when the generalized Morison equation is used to calculate the hydrodynamic load. The 
hydrodynamic damping becomes important only in case where the structural movements are 
large compared to the diameter of the loaded member and it is recommended to discard this 
effect when the movements are less than the diameter of the loaded member, DNV (2000). 
This situation mainly occurs for low and medium sea states. Moreover, experimental studies 
on jack-up platforms have shown that the hydrodynamic damping can sufficiently be 
expressed as fixed damping added to the structural damping, Grundlehner (1995).  
 
There are several approaches to measure the structural damping. The structural damping can 
be measured from the free vibration of a structural model in a laboratory test. In this method, 
the transit response of the structure 
in still water is registered from the 
specific initial displacement and the 
damping of the structure is 
calculated according to the 
logarithmic decay of response.  
 
The estimated and recommended 
overall damping of jack-up 
platforms in literature gives 
different values. For example, in an 
analytical investigation of Torhaug 
(1996) 3% damping ratio is 
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assumed to be an adequate value to reflect 
the overall damping of the model under 
investigation. In the other work, Etube 
(2001) recommends to use a 4% damping 
ratio. Moreover, the model test of a jack-up 
carried out by Marine Structures Consultant 
(MSC) in the offshore wave basin of the 
Danish Hydraulic institute in Denmark gives 
a total value of 5% damping, Karunakaran 
and Spidsoe (1995). Batista et al. (1986) 
report higher values ranges from 10.5% to 
11.5% and lower values between 2% to 4% 
are also given in Hambly et al. (1990). The 
overall damping ratio of jack-up platforms 
appears to vary significantly from 2 up to 10 
percent and there is consequently some 
uncertainty in the proper selection of this 
value. Direct incorporation of the damping 
uncertainty in the fatigue reliability 
calculation is a difficult task, in particular 
when the time history simulation of the stress process is used to determine the stress range 
distribution. In the following section an attempt is made to investigate the variation of the 
damping ratio with fatigue reliability by changing this ratio. 
 
The ranges between 2% and 10% are assumed here for the overall damping ratio of the 
proposed jack-up platform. The short-term stress range distributions are calculated for the 
zero hot-spot position of element 295 and the long-term distributions are determined through 
the occurrence of each sea state for each damping ratio. The fatigue reliability indices are 
calculated for several service times using the method described in section 4.3.2 taking into 
account the bending to stress ratio, the correction of the geometry function for discontinuity 
in the weld toe profile and finally using the 2-D method of Raju and Newman to specify the 
crack aspect ratio (a/c).  
 
The reliability indices are calculated and shown in figure 4.10 .As becomes clear from this 
figure, the reliability indices increase for a higher damping ratio and decrease by increasing 
the service time. The increase in reliability indices for the damping ratio between 5% and 7% 
is not high but is significant between the 2% and 10% ratio. These differences can be related 
to the response of the platform in each damping ratio according to the value of the fatigue 
loading function and the number of stress ranges. For the 10% damping ratio, the fatigue 
loading function has the smallest value compared to other ratios. Furthermore, the number of 
stress ranges, which is related to the number of the zero or peak frequency (according to 
narrow or broad-banded assumption), has for the 10% damping ratio the lowest values, see 
table 4.6, therefore the reliability indices will normally increase in this case. However, as can 
be observed from this table, the difference between 5 and 7 percent damping ratio is not so 
much. According to these results, it becomes clear that the uncertainty in damping can 
considerably change the fatigue reliability and more investigation should be carried out to 
specify the damping ratio. The damping ratio may be incorporate in the reliability calculation 
as a random variable and the reliability calculation is carried out by using a method described 
in section 3.4.6 as a time independent variable or applying the response surface technique as 

Figure 4.10 Comparison of reliability 
index β for several damping ratios 
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Table 4.7: The Statistical characteristics of stress
processes in zero hot spot for element no.295 
__________________________________________________ __________________________________________________ 
Sea                                              Irregularity     Spectra     
State      Skewness    Kurtosis         Factor       Bandwidth 
 (HS)                                                  (α)               (ε)         

 
 1.75         0.0663      3.3041         0.9051            0.4251    
 3.25        -0.0738      3.5947         0.8577            0.5141    
 5.00        -0.3792      3.8476         0.7563            0.6542    
 7 .75       -1.0226      4.8925         0.6333            0.7739    
10.45       -1.7780      7.9906         0.4619            0.8870    

given in section 3.4.5. However, this aspect is not pursued further in this research work and a 
deterministic value of 5 % damping ratio is applied for the structural analysis in the case of 
the significant wave height being less than 10 m as recommended by Daghigh (1997).  
 

4.3.5 Effect of nonlinear and wide-banded stress models on fatigue reliability 

As described in section 2.3.3, in case 
the stress process is Gaussian and 
narrow-banded, the stress cycle follows 
the Rayleigh distribution.  But the 
validity of this model is doubtful for a 
drag-dominated offshore structure like 
this jack-up platform due to the 
nonlinearity in the stress process. This 
nonlinearity can be observed when the 
skewness and kurtosis of the hot spot 
stress processes are compared for 
several sea states in table 4.7.  This 
nonlinearity, as may be observed from 
this table, increases by increasing the 
significant wave height. The 
comparison of the irregularity factor for the lower sea state with other sea states, of which the 
lower one is likely to be more Gaussian than the other ones, shows that the narrow-banded 
assumption cannot be validated.  The band correction is therefore recommended in several 
publications.  For example Wirsching and Light (1980) give only a correction term in 
accordance with the bandwidth parameter. Zhao and Baker (1990) propose a combination of 
two Weibull and Rayleigh probabilistic models according to the bandwidth parameters. 
Winterstein (1988) demonstrates that the Hermite model may provide a better probabilistic 
model for the stress range than the other probabilistic models, because in this model it is 
possible to take the higher statistic moments of the non-linear response into account.  
 
Table 4.8:  The calculated loading function for different wide-banded and nonlinear models at zero 
degree hot-spot point when the service time is 20 years. 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Model            Peak         Narrow-banded     Wide-banded     Wide-banded        Hermite         Rainflow  

          Counting        (Rayleigh)            (W. & L.)         (Z. & B.)              (W.)       Counting  
 
 

HS =  1.75      5237.9           5507.9                   4484.4               5041.8                6003.8             7828.9   
HS =  3.25      38113            32502                    26638                 29213                38149              54811    
HS =  5.00      110890          80279                    65398                73387                 106980            121500  
HS =  7 .75     337890          244320                  195650              231060               432380            298809  
HS =10 .45     537460          363590                  296480              331540               801020            514281  

 
 
In this section an attempt is made to examine the nonlinear Hermite (Winterstein, 1988) 
model and other wide-banded correction models presented by Wirsching and Light (1980), 
Zhao and Baker (1990), and compare the fatigue reliability indices estimated in accordance 
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with these method and rainflow counting method. Also, the fatigue reliability results of the 
traditional narrow-banded Rayleigh and the proposed Weibull model (peak counting) are 
compared. 
 
Firstly, the loading functions necessary in reliability estimation are calculated according to 
each method and the fatigue reliability indices are then calculated for several sea states. The 
results of the fatigue loading function are given in table 4.8. By using these loading functions 
in fatigue limit state, the fatigue reliability indices are calculated and presented in table 4.9 
respectively. 
 
The rainflow counting method gives the highest loading function for the three lower sea 
states but for the two higher sea states lower than the peak counting and the non-linear 
Hermite model. For the lower sea states, the differences between the loading functions for all 
methods are not significant but grow with an increasing significant wave height. 
 
The two wide-banded correction approaches presented by Wirsching and Light (W&L), and 
Zhao and Baker (Z&B) generally give lower loading functions than the Narrow-banded 
assumption (Rayleigh model) but the nonlinear Hermite approach proposed by Winterstein 
(W.) provides the highest loading function. The stress range in the Hermite model depends 
only on the kurtosis of the hot spot stress process, which for lower sea state tends to approach 
the Gaussian distribution but deviates significantly for higher sea state, see table 4.7.  
 
Table 4.9:  The calculated reliability index (β) for different models of loading function when the 
service time is 20 years. 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Model            Peak        Narrow-banded    Wide-banded     Wide-banded        Hermite          Rainflow 

       Counting     (Rayleigh)             (W. & L.)         (Z. & B.)          (W.) Counting     
  

 
HS = 1.75(m) 4.049            3.995       4.217     4.090                  3.901       3.614 
HS = 3.25       1.905            2.077       2.291     2.191                  1.904           1.514 
HS = 5.00       0.756            1.104            1.324     1.200                  0.795           0.658 
HS = 7 .75     -0.436           -0.089                  0.148   -0.030                  -0.700          -0.305 
HS =10 .45    -0.932           -0.515      -0.296   -0.416                  -1.357          -0.885 

 
 
The reliability indices are calculated for each sea state and illustrated in table 4.9. Generally, 
the results of the rainflow counting method are conservative compared to other methods. The 
W&L correction model gives higher reliability indices than others. For the lowest sea states 
the results of most methods, except the rainflow counting, are close to each other but for 
higher sea states good agreement can be observed between the rainflow and the peak 
counting method. The narrow-banded assumption and the band corrections models (W&L 
and Z&B) generally give a higher reliability index and using these methods may lead to 
unconservative results. 
 
Generally, it can be concluded that the proposed Weibull model gives a good approximation 
for the higher sea state and almost the same trend as other methods for the lower sea states 
comparing to the rainflow counting method. 
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4.4     UPDATING OF FATIGUE RELIABILITY THROUGH INSPECTION      
RESULTS 

The inspection of jack-up platforms may provide good information for risk management 
related to the hazard of loss of structural integrity. The Classification societies therefore 
prescribe regular annual, intermediate and full inspection programs, which could be 
undertaken at intervals of 1, 2 and 4 years respectively, Onoufriou and Dixon (1996). 
Moreover, a jack-up platform can be dry-docked, making it possible to clean and inspect the 
entire structure in detail, which is raising the quality of the inspection and repairs. 
Uncertainties incorporated in the inspection procedures and the results of inspections such as 
detecting or not detecting any crack could be used for fatigue reliability updating.  
 
Methods to update the reliability or failure probability are generally divided into three main 
categories for which a selection depends on the available information and additional details 
of the structure. They are categorized into event updating, variable updating and statistical 
updating, Moan and Song (2000).  
 
The number of random variables considered in the reliability calculation can be changed 
according to the uncertainties in variables but the inspection information may be used to 
update the basic variables. This type of updating is known as variable updating and the failure 
probability can therefore be calculated by replacing the updated random variables in the new 
safety margin. In this type of updating, a sensitivity analysis could also be carried out to limit 
the number of basic random variables without impairing the accuracy of the results. 
 
Updating of the statistic characteristics of random variables like the mean value, the standard 
deviation or the type of probability distribution is called statistical updating.  Sometimes the 
inspection of joints provides information about the distribution of the basic random variables 
such as the distribution of initial crack size. Also, more tests on fatigue characteristics and a 
regression analysis may reveal statistic characteristics other than supposed already, all these 
new information could be applied for statistical updating. 
 

4.4.1 Event updating through inspection results 

The inspection of jack-up platforms provides information about the existence or non-
existence of fatigue cracks. The detection or no detection of cracks, which are depending on 
the inspection quality, incorporates uncertainty and they could be specified through the 
events represented by the equations 4.4 and 4.5 for detection and no detection of crack 
respectively. These events can be used to update the failure probability and this type of 
updating is known as event updating. The updated failure probability can be estimated with 
calculating the following conditional probability, 

[( ( ) 0) ][ ( ) 0 ]
[ ]

U I
f I

I

P g X EP P g X E
P E

≤ ∩
= ≤ =                      (4.3) 

where EI  is the possible result from inspection event and g (X) is the safety margin (limit 
state function) described by equation 4.2.  
 
Basically two results can be imagined from inspection. Firstly, crack detected, measured and 
eventually repaired and secondly, no crack detected. If during an inspection process a crack is 
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detected and measured at time tI, the event or event margin corresponding to the detection of 
the crack is expressed with, 

( )0
ν (1 ) 0

δ

Ia l m m m m
I F S SCFma

A Y A

da mE t A
BC Y a

δ δ δ
π

 
 ≡ − Γ + ≈ 
  
∫                          (4.4) 

where aI is the measured crack size at time tI  and is a random variable due to uncertainty in 
the interpretation of a measurement instrument. Other terms in equation 4.4 are the same 
expression as in equation 4.2. The failure probability may then be calculated using the 
condition probability presented in equation 4.3.  
 
An inspection does not increase the reliability of the structure, but makes it possible to take 
the corrective action such as repair if a crack is detected. The safety margin after repair 
follows the same expression as equation 4.2 with the exception that a revised initial crack size 
and fatigue characteristic after the repair should be utilized in this expression.  
 
If no crack is detected during the inspection process, this means that no crack exists or that 
the existing crack size is too small to be detected by the inspection instrument or applied 
inspection method. The event margin for this case for the inspection time at tI can be 
specified with,  

( )0
no crack ν (1 ) 0

δ

Da l m m m m
I F S SCFma

A Y A

da mE t A
BC Y a

δ δ δ
π

 
 ≡ − Γ + > 
  
∫                                                (4.5) 

where aD is the detectable crack size. Since the detectable crack size depends on the 
inspection method and the detection instrument, it should also be regarded as a random 
variable and specified by a specific Probability Of Detection (POD) curve.  Several 
formulations of POD are available but a commonly exponential distribution is used, Moan et 
al. (2001), 

D
( ) 1 exp( )

λ
D

D D
aP a = − −                                  (4.6) 

In which λD is the mean detectable crack size. If the same joint with the same POD is 
inspected several times, it is expected that a repeated inspection should improve the chances 
of finding the defects. For n inspection times and the same POD as in formulation 4.5 for 
each inspection, the likelihood of a successful POD can be improved and be calculated 
through the following term, 

, ( ) 1 exp( )
λ

D
D n D

D

naP a = − −                                                                                                               (4.7) 

where PD,n (aD) is the POD after n independent inspections of the same joint. It seems from 
equation 4.7 that after applying several inspections with an unfavourable technique, a 
reasonable success can be expected if the inspection is repeated several times. This 
expression can only be used when each inspection result is independent from the results of 
other inspections. Since this is difficult in practice to achieve by the same inspection team i.e. 
repeating the same inspection without being influenced by the results of earlier inspections, it 
might be better to carry the inspection out at different times or by different teams. However, 
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Figure 4.11 Effect of inspections on updating of 
fatigue reliability without crack detection, inspections 

at 4 years 
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usually it might be easier to do several inspections at one time, in particular during a dry-
docking period. Usually the specialized and experienced teams carry out the inspections. 
When cracks are found, the location and size are registered, and depending on the finding the 
decision for repair will be taken. The repair will be inspected again to check it has been 
executed properly. However, in case that a crack or imperfection is considered not to be 
significant, a repair may be postponed to the following inspection. During fabrication the 
initial inspection of the structure is a part of the production process and a similar procedure 
will be followed. This is the usual practice of the classification societies. 
 
The inspection procedures of offshore structures are usually carried out through field 
inspection by visual checks of joints or more sophisticated non-destructive tests (NDT) such 
as Magnetic Particle Inspection (MPI), Eddy Current Inspection (ECI), alternating current 
field measurement (ACFM) or flooded member detection (FMD) to detect the surface 
defects. Also, the Ultrasonic Testing (UT) and Alternating Current Potential Drop (ACPD) 
are used to measure the depth of surface defects, Baker and Descamps (1999). The success of 
an inspection technique to detect or measure the crack size varies from one NDT method to 
other one. For any given NDT, there is always a critical size below which a crack may not be 
detected. Moreover, where a crack size is measured, it must be treated with a certain 
uncertainty depending on the accuracy of the utilized equipment and the skills of the 
operators. 
 

4.4.2 Updating fatigue reliability through inspection with no-crack detection  

To illustrate the process of updating the fatigue reliability through the inspection information, 
the same joint of the brace element (element number 295) in the previous section is 
considered and the inspection method is specified through the exponential distribution with 
the mean detectable size equal to 1.3 mm. This type of inspection is related to the MPI 
method with a 90 % probability of detection of a 40 mm long crack, Kirkemo (1988). In this 
model, the surface length of crack 
(2c) is measured by MPI and the 
fatigue crack aspect ratio (a/c) is 
assumed to be equal to 0.15 for 
tubular elements.  
 
Supposing the inspection is carried 
out at a 4-year service time with no 
crack detection, figure 4.11 shows 
the results of a reliability updating. 
As is clear from this figure, the 
inspection of the joint increases the 
fatigue reliability, which decreases 
with the service time and become 
higher than the no-inspection 
results at the end of the service 
time. A joint may be inspected 
repeatedly and independently, 
involving an improved POD. In 
figure 4.11, the influence of 
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repeated inspections on reliability updating is shown for three and five periodical inspections 
of the same joint. It is observed that this effect has some positive influence on the fatigue 
reliability, however this is very low up to 8 year but increases with the service time after that 
period. 
 
This approach gives an idea to establish a criterion for the inspection of a platform. The 
inspection time can e.g. be scheduled in such a way that a minimum level of reliability, which 
can be called the target reliability, is maintained. When the reliability index reaches this level, 
an inspection is recommended.  For the second inspection time, the same process could be 
followed and continued for the next inspection time by retaining the fatigue reliability up to 
the end of service time higher than the target reliability. More details about this method and 
scheduling method are given in Onoufriou (1999) and Shabakhty et al. (2002).   
 

4.4.3 Updating the fatigue reliability through inspection with crack detection  

If the inspection information leads to the detection and measurement of a specific crack size, 
and finally the crack is repaired, the event margin for this inspection information can be 
specified through the expression 4.5 and the safety margin is modified according to the new 
material fatigue characteristics. To investigate this type of updating on fatigue reliability, the 
same joint as in the previous section is considered here again and the assumption is that the 
crack is detected and measured during the inspection process after the 4th year of service 
time with a mean detection size of 4 mm. Furthermore, due to the uncertainty in the 
measurement the crack size is assumed to follow the normal distribution with a coefficient of 
variation of 0.10, Moan and Song (2000).  
 
After the repair, the uncertainty in the initial crack size, material fatigue characteristics and 
geometry function may change due to 
variation of material characteristics but it 
is supposed that the same material will 
be used after repair. Hence, the statistic 
characteristics of the initial crack size 
(a0), fatigue characteristics (m and C) 
and geometry function will follow the 
same probabilistic models as the 
previous one and are also assumed to be 
statistically independent. The updated 
reliability through this type of inspection 
is shown in figure 4.12. The reliability 
index increases immediately after repair 
but drops below the level obtained by the 
no- inspection after 12 years service 
time. This may be related to entering a 
larger uncertainty than anticipated in the 
fatigue reliability calculation, which is 
acting after repair.  
 
Comparing figure 4.11 and 4.12, it can be noted that the increase in the reliability index is 
higher in case of no-detection of a crack than in the case of the finding and repairing of any 

Figure 4.12 Fatigue updating through 
crack detection, measuring and finally 
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crack. This can be related to the fact that in the scenario of detection of a crack it may be 
expected to find a new crack in the future. The finding of a crack is for instance an indication 
that the stresses are higher than expected.  
 

4.5     RELIABILITY OF JACK-UP PLATFORM IN EXTREME ENVIRONMENTAL 
LOADS 

One of objectives of a design code is to ensure that the stresses in the structural elements 
resulting from extreme environmental loads are adequately below the specific limit. There are 
several failure modes for each member and connection in a design code. Each of these failure 
modes e.g. buckling, punching or yielding is usually expressed as a function of the stresses in 
the members and normalized in such a way the combination is retained below a value of 1.0. 
The value of this function is generally known as the “ utilization ratio”, U, and code failure 
occurs if it exceeds 1.0.  
 
The time history of stress response in structural elements of offshore structures such as jack-
up platforms is not always in a specific state due to cyclic behaviour of wave loads and often 
varies from tension into compression and vice versa from compression into tension. One 
single failure mode may not sufficiently represent the potential of the failure of an element 
and some modification should be applied when the stress state changes. In this section, the 
reliability calculation according to the traditional method of using one failure mode for 
yielding or buckling is compared with the new method which combines these two failure 
modes by using the time history of usage factors and the results are finally compared with 
each other. 

4.5.1 Extreme environmental loads  

To calculate the structural response under extreme environmental load commonly three 
approaches may be used concerning the complexity and time consuming of each one, Farnes 
and Moan (1994). These methods are categorized into design wave, design storm and finally 
long-term approach.  
 
In the design wave approach, the extreme environmental wave loads can be specified for a 
specific wave height and associated wave period according to a typical return period, say 50 
years, and the hydrodynamic loads are estimated using a proper wave theory depending on 
the water depth and wave steepness. By applying the calculated hydrodynamic loads in this 
way, the maximum response can easily be determined through the analysis process.  
 
In the design storm method, the extreme environmental load is specified for a significant 
wave height and zero crossing period according to specific return period, as carried out for 
the design wave method.  Wave energy spectra such as P-M or JONSWAP are used to 
express the distribution of the wave energy upon the wave frequency range in this sea state. 
The hydrodynamic loads can finally be calculated using this wave spectra with the uniform 
random phase lag as explained in section 4.2 for DSA or in combination with a random 
Rayleigh distribution of amplitude for NDSA. The maximum response is finally predicted 
using the specific distribution function to fit on the peak of time history of response.  
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The long-term approach is more complex and time consuming than other methods but yields 
an improved estimate of extreme response. In this method the sea states are specified through 
the scatter diagram and the hydrodynamic load and response for each sea state in a scatter 
diagram is calculated using the method described for the design storm. A specific distribution 
function, such as the Weibull or Hermite distribution is fitted on the peak response for each 
sea state and the long-term distribution function of response is calculated using the 
combination of these short-term responses through the occurrence probability of sea states 
described in the scatter diagram. To simplify this approach without reducing the accuracy, 
Farnes and Moan (1994) recommended to divide the scatter diagram into several blocks and 
assumed that each short term response function changes slowly from each block to an other 
one for slightly and moderate non-Gaussian response process and is kept constant within each 
blocks. The final expression for response distribution is smoothed in a way that the 
contribution of all blocks is accounted for.  
 
To reach a certain level of accuracy to predict the short-term response distribution of a 
platform, we require a long time history simulation of the hydrodynamic loading and the 
application of these loads in a finite element program to determine the time history of the 
stress response. In the last decade, a specific approach has been developed to prevent this 
long time history simulation using the constrained wave simulation approach in such a way 
that the most probable extreme wave crest occurs in a shorter time of simulation, Tromans et 
al. (1991). Therefore, the extreme structural response can directly be related to the extreme 
wave crest. The validation of this assumption has been investigated for quasi-statically 
responding structures by Tromans et al. (1992) and later for dynamic sensitive structures such 
as jack-up platforms by Harland et al. (1996) and Taylor et al. (1997). They compared the 
results of the constrained simulation technique with the long time history simulation and 
concluded that the constrained technique gives adequate approximation.     
 
To specify the extreme environmental loads for a jack-up structure, the design storm method 
has been used. Therefore, it is required to establish a probabilistic approach to predict the 
extreme environmental load for a specific return period, assumed to be 50 years here. The 
inverse FORM method recommended by Winterstein et al. (1993) is applied because in this 
method it is possible to take the joint distribution of random environmental parameters into 
account.  
 
In this approach, the contour of environmental parameters such as the significant wave height 
and zero crossing period is related to a specific return period, Tr, according to the following 
expression, 

2 2 1
1 2 (1 )SS

r

T
U U

T
−+ = Φ −                         (4.8) 

where TSS is the sea state duration (here 3 hours) and two auxiliary normal random variables 
U1 and U2 , which can be specified through the distribution function of the significant wave 
height, FHS(hS) and the conditional zero crossing period, FTZHS

(th) respectively with the 
following formulations, 
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Figure 4.13 shows the Hs-Tz contour for 
10, 20, and 50 years return periods 
derived for the Hutton area according to 
the scatter diagram of the Stevenson 
station, Marex (1979). The three 
parameter Weibull distribution is fitted on 
the significant wave height and the 
conditional lognormal distribution is 
applied to specify the zero crossing period 
conditioning the significant wave height, 
see appendix C.  

The extreme hydrodynamic loads on the 
structure can be supposed to occur with 
the highest wave height during a specific 
return period, say 50 years and the 
maximum stresses in the structural 
elements will consequently result from 
this wave height. As can be observed 
from figure 4.13, according to the 
Winterstein method for 50 years return period, the highest wave height is 16.1 meter, with an 
associated zero crossing period of 11.30 second. This observation is in good agreement with 
the recommendation of the Marex report for extreme wave heights but gives a discrepancy in 
the zero crossing period. In the Marex report, the zero crossing period is derived by limiting 
the steepness of wave height into 1/18, which results in a zero crossing period of 13.6 
seconds. However, it should be kept in mind that the advantage of the Winterstein method for 
predicting the extreme environmental load is that the joint distribution function of the 
significant wave height and zero crossing period has been appropriately taken into account. 

To compare the discrepancy of the results of these two methods, the time history of axial and 
bending stresses are calculated through the finite element analysis (ANSYS program) and a 
specific distributions function such as Weibull is fitted on the maximum response according 
to the method described by Farnes and Moan (1994). The Weibull probability distribution 
function is found to be a proper distribution to be used for response calculations due to its 
flexibility, its simplicity to fit on the sample distribution and finally its possibility to define 
the extreme value properly, Karunakaran (1993). This distribution function has already been 
utilized for the response calculation of jack-up platforms by Farnes (1990), Kjeoy et al. 
(1989) and Daghigh (1997). The Hermite model has also been employed to model the 
probability distribution function of response by Torhaug (1996) due to its possibility to take 
the higher statistical moments of the stress processes into account to specify the Hermite 
distribution. 
 
If the response maxima follow the Weibull distribution, the extreme response will follow a 
Gumbel type I extreme value distribution, Gumbel (1958). The expected value of the extreme 
response may then be calculated in terms of the Weibull parameters of the maxima with the 
following expression, Bury (1975),  

( ) ( )
1 1 λ
λ λ

0.57722µ α ln( ) ln( )
λm pm eX N N

− 
= + + 

 
             (4.10) 
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Figure 4.13 Hs-Tz contours according to the 
Winterstein method for several return periods



Chapter 4 
___________________________________________________________________________ 
78 

where µ, α, λ are the shift,  scaling and shape parameters of the Weibull distribution and N is 
the number of maximums within the storm duration. The results of the expected values of the 
extreme responses for axial and bending stresses in several elements below the lower guide in 
the forward leg are calculated and given in table 4.10 for two design storms methods, one as 
proposed by Winterstein and the other one with the wave steepness limitation method 
recommended in Marex. 
 
Table 4.10:  The estimated expected value of extreme stress responses in several elements of the 
structure below the lower guide according to the design storm derived from the Winterstein approach 
and the recommendation of Marex for a 50-year return period (unit MPa). 
__________________________________________________________________________________________ __________________________________________________________________________________________ 
 
                                                    Winterstein method                        Marex   Recommendation      
                                                      HS =16.1, TZ =11.3                                  HS =16.1, TZ =13.6              
                                                                                
Element                                Axial stress          Bending stress            Axial stress         Bending stress 

  
 

D. Brace (Ele. no.295)           79.4                 108.0              67.0      93.4         
D. Brace (Ele. no.296)         -77.1                 107.1            -67.8      92.4         
H. Brace (Ele. no.169)         -37.0                   89.1             -31.9      79.0         
H. Brace (Ele. no.170)          51.4                 105.9              45.9      98.8         

 
 
As can be seen from this table, the design storm through the Winterstein method gives higher 
stress responses than the Marex recommendation. The design sea storm recommended by 
Winterstein is applied in the following section because not only in this method the joint 
distribution of the significant wave height and the zero crossing period can be taken 
appropriately into account but also this method gives the higher extreme stress values for 
structural elements.   
 

4.5.2 Reliability in extreme environmental loads 

By using the wave characteristics specified in the preceding section, the axial and bending 
stress responses of jack-up structures can be calculated and the Weibull distributions are used 
to fit on the maximum axial and bending stress responses. The reliability calculation can 
therefore be carried out by using the ultimate limit state functions described in API RP 2A-
LRFD(1993) for several elements below the lower guide by checking the combination of 
tension or compression with the bending stresses. In this specification, two limit state 
functions or usage factors are presented for the combination of tension and bending stresses 
as follows, 
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and three expressions for the combination of compression and bending stresses, 
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The structural elements should be checked for all these limit state functions. It should be 
noted that all the resistance reduction factors in these expressions are set to the value one to 
represent the ultimate capacity of an element.  
 
The axial stress in the structural elements are not always in the same stress state due to the 
cyclic action of wave loads and may change from compression into tension as shown for the 
brace element below the lower guide (element 296) in figure 4.14. Therefore an approach is 
required to take into account this variation of axial stress. This approach is originally based 
on the time history of the usage factor recommended by Videiro and Moan (1999). To derive 
the reliability of the elements using this approach, the time history of the usage factor should 
firstly be derived according to the stress state of an element, i.e. if the element is in tension, 
using the combination of tension and bending, equations 4.11 and 4.12, and if the element is 
in compression using the combination of compression and bending, equations 4.13 until 4.15, 
see figure 4.14. Therefore, the usage factor is specified applying the maximum values derived 
from these limit state functions in each step of the time history and the Weibull distribution is 
used to fit on the maximums of the time history simulation of the usage factor.  
 
To extend the maximum result for the extreme prediction of storm duration, there are 
generally three approaches to be used to predict the extreme distribution. These are the 
Poisson type model, the extreme value distribution of independent maxima (or minima) 
based on the multiplication law and finally the asymptotic Gumbel distribution. Daghigh 

Figure 4.14 Time history of axial stress (left) and usage factor (right) in brace element 
no. 296 
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(1997) investigated these three methods for a jack-up platform and concludes that the 
Gumbel distribution gives the highest failure probability. Therefore, the asymptotic Gumbel 
model is used as the basis to extend the extreme response of the usage factor for the storm 
duration (three hours) in the following sections. The failure probability is therefore calculated 
where the probability of the Gumbel distribution is less than one.  
 
Since the reliability result of the proposed method has not been compared with the traditional 
method in the research work of Videiro and Moan (1999), the results of the proposed method 
are compared with the traditional methods in table 4.11.Two cases are considered for the 
traditional methods, one without correlation between axial and bending stress and other one 
with correlation. For the traditional method, firstly the distribution functions of axial and 
bending stresses are calculated from the time history of the stress process individually. The 
Weibull distributions are then fitted on the maximums of the stress process. The Gumbel 
distributions are used to extend the extremes of the stress distribution for storm duration (3 
hours) and the reliability calculations are carried out for each limit state function described by 
equations 4.11 through 4.15 individually regarding the axial tension or compression of an 
element. The smallest reliability (highest failure probability) is therefore assumed to be the 
critical one.  
 
Table 4.11:  Comparing the calculated reliability indices according to the traditional approach 
without and with correlation between axial and bending stresses and using the proposed approach. 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
                        Traditional approach                                        Proposed approach using  
     ________________________________________        time history of usage factor  

Element                         without correlation          with correlation                   
 
 

D. Brace (Ele. no.296)         8.075                        6.041                      6.689    
D. Brace (Ele. no.295)        11.236                        8.290                      8.762    
Chord (Ele. no.52)         5.358                        3.855                      3.948    
Chord (Ele. no.53)         5.269                        3.754                      3.861    

 
 
The results of the proposed method are compared in table 4.11 for some elements below the 
lower guide comparing with the traditional method for two cases, considering the correlation 
between axial and bending stresses and without this correlation. This correlation is calculated 
based on time history of axial and bending stresses. As can be seen from the calculated 
reliability indices in table 4.11, the results of the proposed method are generally lower than 
the traditional method without correlation but are in good agreement when the correlation 
effect is taken into account. The difference between these two methods (the proposed and the 
traditional method with correlation) can be related to the variation of axial stresses from 
tension to compression. It means that in the traditional method only the maximum of the time 
history of the tension section in the case of the yielding, or the compression section of the 
time history in the case of the buckling, has been taken to specify the distribution function of 
the axial stress, which ignoring other section of the time history in this model. But in the 
proposed method, the distribution function is established through the maximum time history 
of the usage factor, and the variation of the stress state from tension to compression is 
directly incorporated in the time history of the usage factor. 
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 It could be stated that the general benefit of the proposed approach in comparison with the 
traditional method is that not only the correlation between axial and bending stresses but also 
the axial stress variation (from compression to tension or vice versa) can directly be taken 
into account in the reliability calculation.   
 
The design storm approach is based on the wave height with the specific return period. 
However, during the lifetime of platform, in reality, the structure may experience the bigger 
wave height than is expected with return period more than 50-years; say 100. Hence, the 
exact reliability index (or the failure probability) should be obtained based on the long-term 
approach to incorporate possible wave heights that may occur during the lifetime of the 
platform. To determine the long-term reliability index, an approximate method is presented in 
appendix H. The design storm approach turns out to give relatively high reliability indices. 
This means that if this approach is being maintained in the future, a higher value for the 
return period of the sea state should be selected; say 100 or 200 years instead of 50 years. To 
avoid possible misunderstanding, it should be noted that this statement only deals with the 
mathematical equivalence of the two methods. It is not a plea for a heavier design. The 
optimum design should follow from a proper risk analysis, involving all kinds of safety 
measures and failure consequences.    
 

4.6     FRACTURE RELIABILITY  

The combination of extreme environmental loads with a small crack in structural joints due to 
fabrication process or fatigue degradation may cause unstable crack extension and fracture 
failure. The mechanism of this type of failure mode has already been presented in section 2.5 
and a new method to calculate the failure probability through this failure mode is given in the 
following section.  
 
By using the failure assessment diagram of level 2 recommended by the British Standard 
Institute (BS7910, 1999), the following expression has been derived in section 2.7 for 
fracture limit state function. 

2 6
1

( ) ( )
[1 0.14 ][0.3 0.7exp( 0.65 )]

p s
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f rf r r r c
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δ π δ δ σ σ
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= − = − + − − −           (4.16) 

where, the three random modification variables δY, δF and δSCF are added to consider the 
uncertainties in the geometry function, the load model calculation and stress concentration 
factor respectively. 
 
The fracture assessment formulation recommended in BS7910 is a lower bound on the test 
results and it may be expected that most failures occur far from this limit and this formulation 
may contain a relatively significant level of safety, Muhammad et al. (2000).  
 
As described in chapter 2, Dijkstra et al. (1994) presents a method to describe the fracture 
limit state function according to fracture results of 38 experiments. He recommends using the 
circular limit state to represent the fracture failure where the angle of spreading is given to be 
independent and only the radius of the circle would be a relevant parameter to represent the 
failure mode. The fracture limit state is therefore defined through this method given by, 

2f f actg R R= −                  (4.17) 
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where Rf is the radius of the fracture failure. It is recommended to approximate Rf with a 
lognormal distribution in such as way that its mean and standard deviation is set to 1.7 and 
0.4 respectively (Dijkstra et al, 1994.).  Ract is the acting fracture radius and is specified 
through the following expression depending on the plastic collapse parameter Lr and the 
fracture parameter Kr,  

 2 2
act r rR K L= +               (4.18) 

In both expressions of the fracture limit state functions, it is required to specify the crack size. 
In this research we supposed that a crack in a structural joint arises from fatigue degradation 
and propagates with an increasing service time of the structure. The crack size is a random 
parameter because it depends on several other random variables such as fatigue 
characteristics, hydrodynamic load, stress and stress concentration factors, geometry function 
and finally initial crack size. This random fatigue crack size at can be determined using the 
crack growth formulation in fatigue with the following expression.  
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δ δ δ
π

= Γ +∫                         (4.19) 

As some of the parameters of this expression are random variables, the Monte Carlo 
Simulation (MCS) technique has been applied to simulate the random variables. The 
simulated variables are therefore placed in this expression and the formulation is solved to 
determine the crack size. By repeating this simulation several times the statistics of the 
random crack size can be calculated. The results of the simulation method for a random crack 
size according to the characteristic of the stress response of element 295 below the lower 
guide of the forward leg as well as its histogram are shown in figure 4.15 for 4 to 20 years 
service time. 
 
The statistical analysis of the crack size shows that the lognormal distribution gives the best 
fit among several distribution functions e.g. Normal, Rayleigh, Weibull, Gamma and Beta 
based on tests of goodness of fit using the Chi-square test. The same trend is also observed 
using the Kolmogorove-Smirnov (K-S) and Anderson-Darling (A-D) tests. The fitted 
lognormal distributions with the simulated histograms are shown in figure 4.15. As is clear 
from this figure, an appropriate approximation between the fitted distribution and the 
simulated histogram of random fatigue crack size can be observed. 
 
To compare the fracture reliability results for two limit state functions described in this 
section, equations 4.16 and 4.17 have been applied and the calculated crack size through the 
fatigue propagation expression are substituted in these equations. The reliability analysis has 
been carried out by the FORM method. The statistical characteristics of random variables in 
these expressions have the same characteristic as given in table 3.4 except the lognormal 
distribution is used to specify the crack size. The mean and standard deviation of the crack 
size is calculated for the service time range from ½ to 25 years and given in table 4.12. The 
Weibull distribution is fitted on the maximum of the time history simulation of the primary 
stress and the Gumbel distribution is utilized to extend for the storm duration (3 hours).  The 
original interaction of fatigue and fracture is complex. In this thesis this time-variant problem 
is approximated by a time-invariant method. Furthermore, the stress calculation is carried out 
with the design storm method. The encountered sea state during the critical part of the 
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lifetime of structure may be higher or lower than the wave height with a 50 years return 
period. These issues will be discussed in section 5.4 in details.  
  
Table 4.12:  The mean and standard deviation of crack size calculated according to fatigue crack 
growth formulation for varying service time 
__________________________________________________________________________________________ __________________________________________________________________________________________ 
 
Service time (years)   ½                   1               4             8              10            15          20              25 
 

 
Mean (mm)   0.174          0.200        0.368       0.555        0.651       0.987      1.309     1.575 
St. dev. (mm)   0.109          0.122        0.238       0.399        0.505       0.842      1.238     1.520 
 
 
This type of extreme response calculation is the same approach as the extreme stress 
calculation in the ultimate limit state function but the differences are that the influence factors 

Figure 4.15 Comparing the histogram and fitted lognormal density function of the crack 
size for several service times through fatigue crack propagation using the Monte Carlo 
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are applied in axial and bending stresses to consider the hot spot stress. The calculated 
Gumbell distribution of primary stress has the mean value 169700 (MPa) and a coefficient of 
variation 0.035.  
 
According to the BS 7910 (1999), generally two approaches can be applied to specify the 
plastic collapse parameter (Lr) in the fracture limit states, one based on the global collapse 
analysis and the other one in accordance with the local collapse analysis. However, in this 
specification the global collapse method is preferred for tubular joint in offshore structure 
because the local approach usually gives conservative result while the use of the global 
approach tends to give more realistic predictions of plastic collapse. In case of a global 
approach, the plastic collapse parameter can be calculated from, 

2
, ,

, ,
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y ac bc i bc o
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σ σ σσ
σ σ σ σ
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             (4.20) 

where σf is the flow strength which is specified to be the average of the yield (σy ) and the 
tensile strength (σu ). σa, σab,i and σab,o  are the applied axial, in-plane and out-of-plane 
bending stresses. σac, σbc,i and σbc,o are the plastic collapse strength in the cracked condition 
for the axial, in-plane and out-of-plane bending capacity of joint respectively. 
 
Table 4.13 The characteristic of the Weibull distribution and the expected value of the extreme 
applied stress in the intersection of element 295 with the chord 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Variable       µ      α      λ     N      Extreme Stress 
(unit)  (kN/m2)  (kN/m2)         response(kN/m2)   

 
 

σa       14785   6476.5     0.89365  1800.3           81798 
σab,i    4055.9   1920.3  0.92955  1615.9               21951 
σab,o  76.03  25.454  0.84965   1879.3               375.1 

 
 
The applied axial, in-plane and out-of-plane bending stresses are calculated from the stress 
analysis of the structure using the Weibull distribution to fit on the maximum of stress 
process.  
 
 The expected values of the extreme responses can therefore be calculated in terms of the 
Weibull parameters such as expression 4.10. The results of the expected value of extreme 
applied axial, in-plane and out-of-plane bending stresses are respectively illustrated in table 
4.13 for element 295. 
 
The plastic collapse strength in the cracked condition for the axial, in-plane and out-of-plane 
bending capacity of an element can be calculated in accordance with the formulation 
presented in the Norwegian specification (NORSOK standard, Revision 1, 1998). We utilized 
this specification because in this code the plastic strength of the cracked joint can directly be 
estimated with the following expression, 

, , , , ,  ,      ,  ac AR a un bc i AR b i bc o AR b oF F Fσ σ σ σ σ σ= = =              (4.21) 
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Where σa,un, σb,i and σb,o are the axial, in-plane and out-of-plane bending capacity of un-
cracked  joint and the modification term FAR is given by the following expression, 

11
qm

c
AR

A
F

A Q β

  = −        
             (4.22) 

Ac is the cracked area of the brace/chord intersection and A is the full area of the brace/chord 
intersection. For part-thickness cracks, mq=0.0 and the cracked area can be calculated from 
the crack size dimension, Ac =0.5*πac (where a is the crack depth and c is half of the crack 
length).  
 
The un-cracked resistance of the joint is calculated in accordance with the NORSOK 
specification using the geometry characteristic of the intersection of element 295 with the 
chord (such as ratio between brace and chord thickness, diameter, etc) for the K bracing 
configuration, and the results are σa,un=2.116σy, σb,i =3.598σy  and σb, o =2.481σ y for the 
axial, in-plane and out-of-plane bending strength respectively. By substituting these values in 
expression 4.20, a formulation can be provided to relate the plastic collapse with the crack 
size and the yield stress. Therefore, the plastic collapse parameter (Lr) in each iteration of the 
reliability program is determined in accordance with the statistics of the crack size and other 
random variables in the searching algorithm of the FORM method.   
 
Table 4.14:  Comparison the reliability index results through two proposed fracture limit state 
functions for random crack propagation during the service time and the secondary stress to yield stress 
ratio (σ S /σY). 
__________________________________________________________________________________________ __________________________________________________________________________________________ 
                                                    gf1                                                                        gf2  
                                          
σ S /σY                       0.4          0.60            0.80           1.0             0.4            0.60          0.80          1.0        
Service time  

 
1/2 year  5.981       5.346          4.755        4.238          6.115        5.568        5.091      4.679 
1   year   5.934       5.293          4.699        4.179          6.071        5.522        5.044      4.631 
4   year   5.831       5.181          4.578        4.052          5.979        5.425        4.943      4.528 
8   year   5.623       4.954          4.335        3.795          5.794        5.229        4.739      4.318 
10 year   5.587       4.913          4.290        3.746          5.760        5.193        4.700      4.276 
15 year   5.469       4.782          4.147        3.591          5.654        5.079        4.579      4.150 
20 year   5.397       4.701          4.057        3.494          5.588        5.008        4.504      4.070 
25 year   5.342       4.639          3.988        3.417          5.537        4.953        4.444      4.007 
 
 
The reliability calculation is carried out for several secondary stresses to yield stresses ratios 
(σ S /σY) varying from 0.4 to 1.0 and a service time varying from 1/2 to 25 years. 
 
Table 4.14 shows the reliability results calculated through the failure assessment diagram gf1, 
expression (4.16), and the method recommended by Dijkstra gf2, equation (4.17). As can be 
seen from this table, the Dijkstra method gives overall higher reliability indices than the 
failure assessment diagram and the discrepancy between these two methods increases with 
increase of the service time of platforms. Furthermore, the results show that the reliability 
indices decline with enhancing the secondary stress to yield stress ratio. The size of the 
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fatigue crack will enlarge by increasing the service time of the platform and it could be 
generally concluded that the possibility of fracture failure increases.   
 

4.7     CONCLUSIONS  

 
The reliability of jack-up platform in component level is calculated for three failure modes of 
fatigue, extreme environmental loads and fracture and several factors, which can affect this 
calculation are discussed and the results are compared with each other.  
 
Among several distribution functions fitted on the short-term stress range, through the test of 
goodness of fit, it is concluded that the Weibull distribution gives the highest rank between 
the fitted distributions and is therefore appropriated for application in fatigue reliability 
calculations.  
 
In fatigue reliability calculations the geometry function plays an important role because it 
takes into account several corrections arising from the effects of loading and crack 
geometries. Since the structural characteristic of a jack-up platform differs significantly from 
a fixed jacket platform, the behaviour of the structure is different and the traditional 
expression for the geometry function used in tubular elements of jacket platforms should not 
directly be applied for jack-up platforms and some modification is required before any 
application. It is shown that the bending to membrane stress ratio (α ) may change the fatigue 
reliability considerably if a proper ratio is not selected in the fatigue reliability analysis of 
jack-up platforms. Moreover, the calculation of this ratio shows that it varies between zero 
and one for several hot spot pints around the intersection of a brace element and differs 
significantly from the recommended value of 4 or 5 for jacket platforms by Moan and 
Kirkemo respectively. By using the calculated bending to membrane stress ratio (α ) and the 
two-dimensional geometry function presented by Raju and Newman, a new geometry 
function is specified for jack-up elements in accordance with the actual bending to membrane 
stress ratio. However, the fatigue reliability indices calculated in this way might give 
excessive values if the correction of the weld toe profile is not employed. In this comparison, 
the same model uncertainty has been considered for the reliability calculation. However, in 
the actual situation, the model uncertainty may differ. But this issue does not change the final 
conclusion because the bending to membrane stress ratio will vary for a jack-up compared to 
jacket platforms and this difference should be incorporated in the fatigue crack growth 
calculation.  
 
Two widely used wave spectra in offshore engineering are P-M and JONSWAP. The first 
spectrum is used for the fully developed sea states and the second one for the fetch limit 
condition. The proper selection of the type of spectra may often be doubtful and in question. 
To investigate the effect of the choice of a spectrum on the fatigue reliability, the fatigue 
reliability calculation has been carried out for these two spectra models and the fatigue 
reliability indices are compared with each other in figure 4.9. The results show that the 
JONSWAP spectrum generally gives a higher reliability index for the selected element in the 
jack-up under investigation but the differences are not significant for the first five years of the 
service time.  
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The estimated and reported overall damping of jack-up platforms in the references vary 
significantly from 2 to 10% and hence there is some uncertainty about the proper selection of 
this value. The effect of the variation of the overall structural damping on the fatigue 
reliability has also been investigated. The results show that the fatigue reliability indices grow 
with an increase of the damping ratio, as can be seen from figure 4.10. However, this growth 
is not so significant for damping ratios between 5 and 7% but is important for values between 
2 and 10%.  Hence, a proper selection of the overall damping ratio for jack-up structure will 
be an essential task before any fatigue reliability calculation and it may significantly change 
the estimated reliability index.  
 
The stress process in a jack-up structure is nonlinear and broad-banded. The distribution of 
the nonlinear and broad-banded stress process can be determined using the rainflow counting 
method. Since this method is complex and time consuming, less complex and easier 
analytical formulations are recommended in the literature to take into account the broad-
banded effect by correction of the narrow-banded assumption. Two such models presented by 
Wirsching and Light (W&L), Zhao and Baker (Z&B) as well as the nonlinear Hermite model 
described by Winterstein are examined and the fatigue reliability results are compared with 
the rainflow counting method. Furthermore, the results of the narrow-banded (Rayleigh) and 
the proposed Weibull distribution model of the stress range are also compared with the 
rainflow counting method. As can be seen from table 4.9, the rainflow counting method gives 
the lowest fatigue reliability indices compared to the other methods for several sea states. The 
correction model of W& L gives the highest reliability indices and would be unconservative 
if used in a reliability analysis. The Narrow-banded and Z&B correction models generally 
give also higher reliability indices than the rainflow counting method but they are close to 
each other and lower than W&L. The nonlinear Hermite model shows some discrepancy for 
the higher sea state. The proposed Weibull model gives a better approximation for the higher 
sea states than other methods and a little higher for the lower sea states compared to the 
rainflow counting method. However, the results of the lower sea states of the proposed 
method are close to other methods, indicating that this method is an acceptable alternative 
method to the rainflow counting. 
 
The inspection of a platform during operation provides valuable information to update the 
fatigue reliability. The application of this information in the reliability updating of a jack-up 
platform is shown for two cases in section 4.4. The fatigue reliability increases with applying 
the inspection information for no-crack detection or other situations such as detecting a crack, 
measuring and finally repairing. 
 
The maximum stresses in the structural elements occur when the platform is confronted with 
extreme sea states that may occur in a specific return period. The inverse FORM method 
presented by Winterstein is used to specify the extreme sea state or design storm for a 50-year 
return period. An approach is presented to determine the reliability of structural elements 
under extreme environmental loads using the time history of the usage factor. The results of 
traditional methods for two cases with and without correlation between axial and bending 
stresses are compared with the proposed method in table 4.11. It is shown that the proposed 
method gives a good approximation for the reliability calculation of the ultimate limit state 
when the correlation between axial and bending stresses is taken into account. Furthermore, 
the benefit of the proposed method is that the axial stress state variation can directly be 
accounted in the reliability calculations.  
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The combination of fatigue and extreme environmental loads may become critical leading to 
fracture failure. This type of failure mode has also been investigated in this research and the 
results of the fracture assessment diagram recommended by the British Standard Institute 
(BS7910, 1999) are compared with the Dijkstra (Dijkstra et al., 1994) method in table 4.14. 
The results show that this method gives lower reliability indices than Dijkstra for several 
secondary to yield stress ratios and service times but the maximum difference between them 
is restricted to 17% in the case of secondary stress to yield stress ratio equal one.  
 
The crack size is an important factor in the fracture limit state function. This crack is assumed 
to occur through fatigue degradation and is therefore specified with the fatigue crack growth 
expression. Since some of the parameters in the fatigue formulation are random variables, the 
MCS technique has been applied to simulate variables. The statistical characteristics of the 
random crack size for several service time periods of platforms are estimated and it is shown 
that the lognormal distribution gives the best distribution according to the test of the goodness 
of fit using the Chi-square as shown in figure 4.15.  
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5.   SYSTEM RELIABILITY OF JACK-UP PLATFORMS 

 

5.1     INTRODUCTION 

In the previous chapters, a procedure to calculate the reliability for fatigue, fracture and 
ultimate failure modes has been described. As the jack-up structure is an assembly of several 
elements, failure of one element may not lead to structural collapse. This reserve strength 
relates to the redundancy of the structure and can be taken into account by using system 
reliability approaches.  
 
Most research works on system reliability of jack-up platforms focus on overload failure, e.g. 
Daghigh (1997) and Karunakaran (1993), and little attention has been given to fatigue 
failures. The primary reason for this may be associated to past and present assumptions made 
for the design and construction of a jack-up platform. This platform is designed for a 
combination of maximum water depth and environmental conditions, which allows to operate 
on all locations where the conditions are within these limits. Nowadays the jack-up platforms 
are designed to operate in deeper water or for operations for longer periods of its lifetime on a 
specific site. Hence, the fatigue damage should be highlighted as an important aspect, 
Onoufriou (1996). This is in particular the case for various types of offshore platforms. For 
jacket platforms research has been carried out by e.g. Karadeniz et al. (1983), Shetty (1992), 
Karamchandani et al. (1992), and tension leg platforms by Hovde (1995), Siddiqui and 
Ahmad (2001). Since the structural model and stress distribution in jack-up structures differ 
from these types of offshore platforms, further research on the system reliability of jack-up 
platforms in sequences leading to structural collapse is required. 
  
In system reliability, the interest is the occurrence of a sequence of element failures leading to 
structural collapse and its probability of occurrence. There are very large numbers of 
sequences leading to structural collapse and it is not possible in practice to include all of them 
in the calculation. However, only few of the failure sequences contribute significantly to the 
total failure probability. Hence, a search technique can be used to identify the important 
failure sequences and the system failure event may be approximated as the union of the 
identified sequence events leading to the structural collapse. 
   
In this chapter a methodology is presented for the system reliability calculation of jack-up 
platforms as a consequence of sequences of fatigue failures. The base of this method is on the 
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procedure described by Dalane (1993). The benefit of this method is the possibility of using 
the FORM method to determine the failure probability in the sequence of fatigue failures. 
Furthermore, the correlation among the elements as well as the correlation between the 
failure modes can be taken into account explicitly. The branch and bound technique can be 
used to identify the important sequences in the branch tree leading to a system collapse. This 
approach is applied to calculate the system reliability for the jack-up (Neka) platform under 
investigation and the system effect is shown through the calculated system reliability index.  
 
After fatigue failure of the first element, the weakened structure may fail due to overload in 
the next storm. This overload may cause elements to fail in yielding or buckling, or in a 
combination of these, with a propagation of the fatigue crack leading to the fracture failure. 
These types of failures are discussed in this chapter and the system failure probabilities are 
obtained for combination of a fatigue failure with extreme environmental load failures and 
fracture failures.  
 

5.2     SYSTEM RELIABILITY DUE TO A SEQUENCE OF FATIGUE FAILURES 

Due to the redundancy of structures, failure of the first element in fatigue may not lead to 
system collapse. After a member has failed, the applied loading continues to be supported by 
the remaining members, and a redistribution of the forces in the structure takes place. It may 
be expected that each remaining element in the damaged structure has already some fatigue 
damage accumulated and due to the increase or decrease of the stresses, the rate of damage 
accumulation may change. 
 
In the proposed system formulation, the two-dimensional crack growth method is used to 
estimate the time for developing a through-thickness crack at a critical hot spot in a section, 
(Shabakhty et al., 2003). A correction factor is included to account for the fact that section 
failure usually occurs some time after the development of a through-thickness crack. A crack 
or a fatigue failure may develop at both ends of a member. Hence, it is convenient to assume 
two end joints, instead of a member, in order to define where the fatigue failure occurs. 
Moreover, to obtain the critical hot spot, each joint is divided into 8 points regularly 
distributed around an intersection and the calculation should be repeated for all points to 
identify the critical hot spot. The bending to membrane stress ratio from the stress history is 
correctly taken into account for each point and the geometry function needed in crack growth 
formulations is modified and extended through this ratio, as described in section 4.3. The 
proposed formulation properly models the total damage at a joint in the critical hot spot, i.e. it 
accounts for the changes in stresses due to failures of other members.  
 
In the following sections, an expression for the first fatigue failure is reformulated using the 
fatigue limit state function described in section 2.4. This expression has been extended in 
such a way that it will be possible to consider several sequences of fatigue joint failure, when 
the first joint failure occurs and is followed by other joint failures respectively.   
 

5.2.1 Formulation of the first fatigue failure 

The growth of a fatigue crack at a given hot spot is modelled with the Paris-Erdogan law, as 
described in the second chapter. The propagation of the crack is a function of several fatigue 
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and load parameters, of which some have random characteristics. The crack growth 
parameters can therefore be divided into two sections, the parameters that are related to the 
fatigue loading function, and the others that are related to the fatigue strength function. By 
applying some modification factors mentioned in the previous chapters to take into account 
the model uncertainties in the hydrodynamic load, the stress calculation and finally the stress 
concentration factor , the fatigue loading function can be specified as, 
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The time-to-failure can therefore be linked to the propagation of the crack through the 
thickness and a random correction model to consider a section failure. The time-to-failure for 
a specified joint based upon this model has random characteristics due to the fact that it 
depends on many random variables. The static characteristics of these variables are shown in 
table 5.1. By using this expression, the random time-to-failure of the joint e.g. J1 can be 
specified by the following expression. 

1  1

0 1

1 1 1 1

1
1 1 1

1

( )
η ν (1 ) ( )( )

J th J

J

J J J J

tf aR th
J maml m m m m

J J JF S SCF Y
J

a daT
mC A Y a a

B

δψ

δ δ δ δ π
= =

 Γ +  
∫             (5.3) 

If this random time-to-failure becomes less than the lifetime of the structure (Tlife), fatigue 
failure is expected to occur in this joint and vice versa. If it is greater than the expected 
lifetime it means that the joint is functioning well. Therefore, the limit state function required 
in the reliability analysis based on fatigue failure of the first joint can be expressed by 

1 1J J lifeg T T= −                (5.4) 

and its probability of failure determined with the following expression. 

1 1 1 1[ 0] [   0]= [  ]fJ J J life J lifeP P g P T T P T T= ≤ = − ≤ ≤                                     (5.5) 

This expression will be used for each joint in the structure and its failure probability can be 
calculated.  The joint with the highest failure probability is likely to be the first joint to fail. 
However, this may not be generally true and other possibilities should be considered. The 
branch and bound technique can be applied to determine the most important failure sequences 
of the joints under fatigue and concentrate the attention on these failure sequences. 
 

5.2.2 Sequence of joint failures in fatigue  

The next step is to establish a formulation for the next joint to fail when the first failure 
occurs. In this case, when the first joint, which fails due to fatigue degradation is J1 and the 
relevant element is disconnected from the structure, the next joint that fails subsequently 
might be a joint J2. The total random time to reach the sequence failure of joint J2 can 
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therefore be divided into the time when the first joint is in an intact state and reaches to 
failure, TJ1, and the time of failure of joint J2, i.e. TJ2 fJ1 -TJ1, see figure 5.1. 
 
In terms of the linear damage accumulation model for fatigue damage, the joint J2 has a 
fatigue strength function like expression 5.2, but the fatigue loading function is the 
combination of two terms. The first one is the fatigue loading function in joint J2 when joint 
J1 is in an intact state and reaches to failure and the next one from the failure of joint J1 to J2. 
The total fatigue loading function can therefore be estimated from the following expression,  

 2 2  2 1  2 1 2 1 1( ) ( ) ( )L J J L J J L J fJ J fJ JT T T Tψ ψ ψ= + −                (5.6) 

where ψL J2(TJ2) is the total fatigue loading function of joint J2; ψL J2(TJ1) and ψL J2fJ1(TJ2fJ1-
TJ1) are the fatigue loading functions of joint J2 before and after failure of joint J1 
respectively.  

By using equation 5.6 as a loading function and applying the same modification factors to 
consider the uncertainties in the hydrodynamic load, the stress concentration factor and the 
time to section failure, the following expression can be generated to relate the fatigue strength 
function and loading function of joint J2. 
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As may be noted from this expression, the left hand side is the fatigue strength function and 
the right hand side shows the total fatigue loading at the time of failure. The modification δtfJ2 
is applied to consider the correction of section failure. This modification is then modelled 
independent of the loading function i.e. does not change when the fatigue loading function 
changes. The time to failure of J2 followed by J1 can therefore be expressed by reformulating 
expression 5.7 as, 
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Figure 5.1 Sequence of fatigue failure of joint J2 followed by J1 
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and the failure probability can be calculated for the sequence failure of joint J2 followed by J1 
with,  

1 1 2 2 1 2 1[(  ) (   ) (   )]life lifeJ J Jf J f J J f JP P T T T T T T= ≤ ∩ ≤ ∩ ≤                 (5.9) 

The last term in the right hand side of the expression 5.9 is added to confirm the sequence of 
J2 followed by J1. This condition, however, can easily be released without introducing an 
important error. The only consequence is that the failure domain is enlarged with a part of 
another failure scenario, but this will automatically be accounted for in the system analysis. 
So, for reason of simplicity, 5.9 is replaced by the following expression. 

  2 1 2 1 1[(  ) (   )]f J fJ J fJ life J lifeP P T T T T≈ ≤ ∩ ≤                    (5.10) 

To find a formulation for the higher sequences of a joint failure, the same approach as for 
two-sequence failures can be utilized. Assume that the failure of joint Jn is followed by the 
failure of joints J1, J2,… ,Jn-1  respectively, the loading function can then be specified by the 
combination of all relevant  loading functions in the sequence of the failures respectively, i.e.,   
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By using this loading function and applying the same modification factors to represent the 
uncertainty in the load, stress and concentration factor, the following general equation can be 
derived for the time to failure of joint Jn when a failure of joints J1, J2, …, Jn-1 have already 
occurred respectively, 
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The fatigue loading function for this sequence failure of joints can be obtained from, 
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Hence, the final failure probability of the sequences of k joints failure i.e. J1, J2, J3,…,Jk can 
be calculated with the intersection of all these component failures i.e., 
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The same assumption of expression 5.9 can be applied here to confirm the occurrence of the 
sequences of k joint failure i.e. J1, J2, J3,…,Jk , respectively. 
 
The number of joint failures that should be taken into account in the sequences depends on 
the redundancy of the structure and the importance of the joint failures with respect to system 
collapse. In a redundant structure, numerous sequences can be supposed to cause the system 
to collapse and make the system reliability calculation a hard computational work. However, 
it is observed that all these sequences do not participate significantly in the final failure 
probability and only some of them contribute considerably, hence the search technique is 
established to identify the important sequences.  
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5.2.3 Search technique to identify dominating failure sequences 

In redundant offshore structures, innumerable failure sequences can be expected to occur but 
only some of them contribute significantly to the collapse or system failure and others have a 
very low probability of occurring. In system reliability, identification of these important 
sequences is essential and several methods have been developed to distinguish dominant 
failure sequences. These methods can be generally classified into two categories, 
deterministic and probabilistic approaches.  
 
Incremental loading and plastic collapse analysis are two examples of deterministic methods. 
In the incremental loading, the random variables are fixed at their mean values and a 
deterministic analysis is performed to identify the sequence of section failures leading to 
structural collapse. By assuming a proportional loading condition, the load factor is gradually 
increased to cause a sequence of element failures, Daghigh (1997). To determine additional 
failure sequences, the value of some variables can be modified and a deterministic analysis is 
repeated to specify a new failure sequence. This method basically uses a deterministic search 
strategy and obtains important failure paths without many repetitions of structural analysis, 
but can not ensure that all the probabilistically dominant failure paths are identified, Moses 
(1982).  
 
In plastic collapse analysis, an ideal plastic behaviour of a material is considered and based 
on this model the analytical formulation for the plastic limit state function is developed. 
Hence, the final plastic mechanism leading to structural collapse is identified using the β-
unzipping method in connection with basic plastic mechanisms. It is not possible to guarantee 
that the β-unzipping method identifies all significant mechanisms but reasonably good results 
may be expected.  Since some of the plastic mechanisms are excluded in this method, the 
reliability index determined with this approach is therefore an upper bound of the correct 
generalized system reliability index, Thoft-Christensen and Murotsu (1986). 
 
The simulation-based and branch and bound techniques are two main methods of 
probabilistic approaches. The simulation-based method is constructed on the bases of the 
Monte Carlo simulation technique and is a computationally expensive tool for reliability 
assessment of large structures. The structural analysis needs to be repeated several times for 
each sampling point, taking into account the numbers leading to failure of the structure. 
Furthermore, to increase the efficiency and reduce the simulation time, an importance 
sampling technique in combination with the directional simulation technique can be 
employed, Waarts and Vrouwenvelder (1998).  
 
The branch and bound technique, which is used in this research work, is the most robust 
method to specify system failure, Thoft-Christensen and Murotsu (1986). In this approach the 
failure sequences are identified based on the sequences in decreasing order of importance. 
This means that the first failure sequence belongs to the largest probability of failure which 
has the maximum probability of occurrence corresponding to the damaged state and the 
second one is the second largest one and so on. Therefore, the first step will be to compute 
the failure probability of each joint by using expression 5.5 for most of the joints in the 
structure with a high failure probability. As a result, the calculated failure probability shows 
the first branches in the failure tree. Let joint J1 has the largest computed failure probability 
i.e. the most likely damaged state. The focus should now shift from this joint to the next joint 
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failure, assumed here to be joint J2. This failure sequence in fact represents a new damage 
state in the failure tree and the failure probability can be calculated with an expression such 
as equation 5.10. Note that the probability of occurrence of this damage state is the 
probability that joint J1 fails and joint J2 fails subsequently. However, this can be extended 
for other joints in the structure to determine their failure probability. Hence, the sequence 
with a maximum probability of failure in the second branch leads to the next damage state 
with a maximum probability of occurrence. This process continues to reach the damage state, 
which constitutes a collapse of the system. The sequence of failures leading to this damage 
state is the most-likely sequence. Since the focus until now was on the most-likely damage 
state with maximum probability of occurrence, the collapse state reached in this way is the 
most important one and is named the collapse state with the highest probability of 
occurrence.  
 
The system collapse may happen in another sequence than expected and considered already. 
Hence, the contribution of other collapse sequences should be taken into account. To 
establish a different system collapse, it is necessary to consider other scenarios that may 
occur and lead to a system collapse. The system collapse based on the maximum probability 
of occurrence is the sequence with the highest failure probability but it is possible to shift the 
focus in a branch tree to the next failure sequence, which has the second highest probability, 
i.e. the next most-likely to occur damage state. If this is not the collapse state, the search 
technique is continued until the damage states under study constitute the system collapse. The 
sequence leading to this system collapse is the second most important failure sequence. If this 
process is continued for other failure sequences i.e. third, fourth most-likely damage states, it 
will be possible to identify several collapse states and their probability of occurrence. Since 
some of these collapse states are not disjoint, the total system probability is computed based 
on the union of these collapse sequences.  
 
In this research, the branch and bound technique has been established to identify the 
sequences leading to a system collapse and the system probability of failure is determined 
through the combination of the most-likely failure sequences leading to a system collapse. 
 

5.2.4 System reliability of the Neka jack-up platform due to a sequence of fatigue 
failures 

To illustrate the procedure of determining the system reliability based on a sequence of 
fatigue failures, the Neka jack-up platform (see figure 5.2) is considered here again. Due to 
computer memory restriction, it is not possible to use the full details of the three legs. In 
addition, the simulation results shows that the critical stresses usually occur in the first leg for 
several sea states for the considered wave direction. Thus, we shift the focus to the detailed 
models of the forward leg and suppose that failure of this leg causes the structural collapse. 
However, the present approach can be exercised for a fully detailed model of the three legs. 
The configuration of the Neka jack-up platform and the element number is illustrated in 
figure 5.2. This figure shows the finite element model utilized in the structural analysis and 
the details of the elements below the lower guide in the first leg. 
 
Fatigue failure usually occurs in the intersection of an element at a welding joint. Hence, for 
each member in the structure two potential fatigue failures can be expected at the ends of 
each member. An element fails and is separated from the structure if a joint failure in any of 
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the ends of an element occurs. From the finite element analysis of the structure, it is observed 
that structural collapse often occurs when any two brace members of the structure in one bay 
fail or if a chord member fails. 
 
The hot spot stresses around the intersection (8 points) are computed using the time history of 
the stress process described in section 4.3 and the long-term distribution functions of all the 
hot spot points are calculated for each joint through the peak counting method and by 
applying the influence function described in section 4.3. The bending to membrane stress 
ratios are calculated for all hot spot points according to the stress time history and the 
geometry function is modified by using this ratio and a correction term to consider 
discontinuities arising from the welding toe profile, as recommended by Smith and Hurworth 
(1984).  
 
The characteristics of uncertain parameters of the fatigue limit state function in equation 5.4 
have been discussed in section 2.4.1 and appendix G, summarized in table 5.1. The random 
fatigue characteristic, C, is modelled as a lognormal distribution in which the mean value and 
standard deviation of its natural logarithm are –29.84 and 0.55 for joints in air and –31.01and 
0.77 for joints in seawater, respectively (units N and mm). These values are selected in 
accordance with the DNV (1984) specification. The other fatigue characteristic (m) in line 
with this specification is taken as a deterministic parameter, which is equal to 3.1 for joints in 
air and 3.5 for joints in seawater.  
 
For each member in the structure, the two-end joints denoted as S for the start and E for the 
end of an element are considered and the fatigue reliability calculations are carried out for 
eight hot spot points regularly distributed in the intersection (varying from zero to 315 

Figure 5.2 Neka jack-up finite element model and detail of elements 
below the lower guide in the first leg 
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degrees) of each joint and the maximum one is selected as the critical one. The results of the 
reliability calculations for the 10 highest values are given in table 5.2 according to the 20-
years design lifetime. The mean value of the fatigue life Tmean is also given in table 5.3. This 
mean time to fatigue failure is calculated based on the Taylor series expansion up to the first 
term of the random time to fatigue failure around mean values. For the general case, the 
Taylor series expansion is given by,  

J1 J1 1 J1 J1 J11 0 J1  J1

2
2

1 2
[ ] [ ]

( , , , , , , , )

( ) 1 ( )( [ ]) ( [ ]) ( [ ])
2
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T f a a C

df x d f xT f E X X E X X E X
dx dx

δ δ δ δ δ

= =

=

= + − + − +
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"
          (5.15) 

If the higher terms of this series are ignored, the calculated random fatigue time will be as 
follows, which is an approximation to the exact value.  

1[ ] ( [ ])m fJT E T f E X= ≈              (5.16) 

This type of approximation is called the tangent associate to f (X) by Ditlevsen (1981). 
However, a higher approximation, up to the second Taylor series expansion is recommended 
by Ditlevesen, which involves the variance of the random variables in the calculation of the 
mean fatigue time to failure. 
 
Table 5.1:  Characteristics of random variables in the fatigue limit state function 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Parameter                      variable     Distribution       Mean value          Coefficient of variation  
                                                                           µ          COV                   

                                                                               
 

Initial crack size (mm)  a0       Exponential  0.11                    1.00               
Member thickness  (mm)             ath       Normal  vary                 0.04               
Fatigue parameter in air     lnCA       Normal  -29.84   St.dev.=0.55               
Unit (Nmm-3/2,mm/cycle) 
Fatigue parameter in water lnCA       Normal  -31.01    St.dev.=0.77              
Unit (Nmm-3/2,mm/cycle) 
Section failure model  δtf       Normal  1.50           0.50                     
Geometry function model  δy       Normal  1.00           0.10                     
Load model    δF       Lognormal  1.00           0.10                     
Stress model   δS       Lognormal  1.00           0.15                     
Stress concentration model δSCF       Lognormal  1.00           0.10                     
Fatigue parameter in air     m       Fixed   3.10           -----                      
Fatigue parameter in water m       Fixed   3.50           ----- 

 
 
From table 5.2, it is clear that in most cases the highest failure probability occurs at the end of 
element (E) and at a hot spot point situated in the position of 270 degrees. However this will 
not always be valid for all of the components in a structure, as it will be observed in a branch 
tree later. This hot spot position has a combination of axial and in plane bending stresses. 
Moreover, due to the symmetry shape of the brace elements in the leg, the calculated failure 
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probability for each two elements in one bay have the same probability but this balance may 
not maintained after the first joint failure occurs.  
 
Table 5.2: Failure probability around the intersection of joints, (Pf), for 20 years lifetime. 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Elements     0      45         90            135     180           225          270       315     

  
 

296E, 298E  6.86E-5   6.63E-5   5.86E-3    5.80E-4     5.49E-5       4.78E-3  3.77E-2    5.17E-3   
295E, 297E  6.58E-5   3.16E-4   3.11E-3    3.11E-4     6.64E-5       3.59E-3  2.79E-2    3.57E-3   
290E, 292E  1.65E-5   1.59E-4   1.81E-3    1.52E-4     1.54E-5       2.21E-3  1.98E-2    2.25E-3   
289E, 291E  3.31E-5   1.90E-4   2.07E-3    2.02E-4     3.84E-5       2.38E-3  1.97E-2    2.32E-3   
284E, 286E  3.69E-6   3.73E-5   5.27E-4    3.81E-5     3.60E-6       7.08E-4  8.22E-3    7.03E-4   

 
 
It is interesting to note that the calculated mean fatigue life for several hot spot points and 
elements is significantly higher than the design lifetime (20 years). Moreover, the variation of 
fatigue failure around the hot spot point shows good correspondence with the variation of the 
mean fatigue time i.e. the highest calculated failure probability coincides with the lowest 
mean fatigue life, see table 5.3. This observation can help to use the mean fatigue life as the 
bases for finding the critical hot spot and focus on it instead of using extensive time-
consuming reliability calculations for each hot spot point to find the critical one. 
 
Three random correction models δF, δS, δSCF are applied in the fatigue limit state function to 
consider uncertainties in the load, in the stress and in the stress concentration factor model 
respectively.  The uncertainties in the load and in the hot spot stress calculation are assumed 
to be independent in all states of the structure (intact or damage), but the uncertainty in the 
stress model is assumed to be dependent as the structure state changes from intact to damage. 
 
Table 5.3: Mean fatigue life Tmean  (in years) around the intersection of joints. 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Elements     0      45         90            135     180           225              270      315     

  
 

296E, 298E    589     337         178            349              619            190              89           185   
295E, 297E   595      409         217            411             593             208              101          208   
290E, 292E      805      483         255            489             817             241              115          239   
289E, 291E   693         464         246            457             671             236              116          238   
284E, 286E 1093      676         358            672            1098            331              159          332   

 
 
Changes in the state of the structure due to failure of an element cause a change in the stress 
distribution of other elements and in the corresponding uncertainty. Therefore, the 
uncertainty in the stress calculations is represented by a random variable for each damage 
state. However, the uncertainty in the different states are assumed to be the same, e.g. in a 
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damaged state where joints J1, J2,…,Jn-1 failed, δSJnfJ1,J2,…,Jn-1 is still assumed lognormal with a 
mean value 1.0 and coefficient of variation 0.15. 
 
The correlation between the random variables is an important parameter, which can affect the 
estimated failure probability, Vrouwenvelder (2004). No correlation between the random 
variables δF and δSCF is assumed either in each individual joint or between two joints in intact 
or damage state, but the stress model uncertainty (δS) is supposed to be correlated both at the 
different joints and in the different states of the structure. To specify this correlation, the time 
history of the stress process is used as an indication. Both for the intact and damaged state of 
the structure, the correlation coefficient is estimated with, 

 
[ ]SJi SJjδ ,δ

,
ρ Ji Jj

Ji Jj

Cov S S

Var S Var S

  =
  i

                  (5.17) 

where SJi and SJj are the hot spot stresses in the two joints Ji and Jj under investigation 
respectively. The same expression can be used to specify the correlation between joints when 
the structure is in a damaged state. The correlation between the stress model calculation in 
joint 296E270 (end of element 296 in hot spot 270) and joint 290E (correlation between δSJ296 
and δSJ290) are calculated for several hot spots and sea states. The results are given in table 
5.4, which show strong correlations between these model uncertainties. 
 
Furthermore, it can be concluded from this table that the variation of the correlation 
coefficient around the intersection and the sea states is less significant. However, a small 
difference is observed for higher sea states (significant wave height 7.75 and 10.45) but since 
most fatigue damage arises from lower sea states (the lower sea states have a higher 
occurrence probability in scatter diagrams), it can be stated that the correlation does not vary 
so much with the significant wave height and therefore can sufficiently be represented only 
by a lower sea state. 
 
Table 5.4: Correlation between stress uncertainty in joint 296E270 and several hot spot points in joint 
290E for a number of sea states. 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Position (θ )   0      45        90                135     180           225             270    315 

  
 

HS = 1.75 0.992    0.995       0.995 0.995    0.992        0.988 0.988    0.988  
HS = 3 .25 0.989    0.993       0.993 0.993    0.989        0.988 0.984   0.985  
HS = 5.0 0.984    0.989       0.990 0.989    0.984        0.988 0.978   0.978  
HS = 7.75 0.975    0.984       0.985 0.984    0.975        0.988 0.964   0.965  
HS = 10.45 0.968    0.982       0.983 0.982    0.968        0.988 0.951   0.952  
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This conclusion is furthermore validated by comparing the estimated correlation coefficient 
for other elements in the platform in which the same trend has been observed for its variation. 
Hence, it may generally be concluded that only one value would be appropriate to represent 
the correlation in the fatigue reliability analysis without considering any variation around the 
intersection or the sea state. However, for the reliability calculations in the following section, 
the variation of the correlation coefficient around the intersection has been taken into account 
due to the possibility of changing the sign of a correlation coefficient, see table 5.5. This table 
shows the correlation between hot spot stresses around the intersection of element 170, 298 
and 52 when element 296 is in a damaged state. This table shows that the correlations 
between stress models before and after failure of element 296 is low.  
 
By calculating the correlation between the stress uncertainties in two situations of intact and 
damaged state for other joints in the structure, it is possible to enter the estimated value in 
expression 5.10 to determine the failure probability of the second joint when the first joint has 
already failed.  

Figure 5.3 Branch tree obtained for fatigue failure sequences 
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Table 5.5: Correlation between stress uncertainties in several hot spot points around the intersection 
of the second joint failure when the first joint failure is 296E270. 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Position (θ )   0      45        90                135     180           225             270    315 

  
 

Ele170S -0.0384     0.0423     0.0422  0.0423    -0.0414     -0.0420 -0.0421  -0.0420 
Ele170E -0.0415    -0.0418    -0.0418 -0.0417    -0.0387      0.0422  0.0420   0.0420 
Ele298S  0.0437     0.0438     0.0436  0.0433      0.0428     0.0427  0.0429   0.0432 
Ele298E  0.0433     0.0447     0.0449  0.0448     0.0432      0.0419  0.0418   0.0421 
Ele52S   0.0575     0.0587     0.0609         0.0627      0.0632     0.0622  0.0602   0.0581 
Ele52E   0.0637     0.0615     0.0591  0.0580     0.0583      0.0597  0.0619   0.0638 

 
 
Many sequences leading to the system collapse can be supposed for the jack-up, but the 
branch and bound technique can be applied to identify the important sequences leading to 
system collapse. Figure 5.3 shows the obtained branch tree for the jack-up platform in 
sequence of fatigue failure. 
 
Due to the symmetric shape of the K bracing elements, two important joint failures are 
identified in the branch tree, 296E270 and 298E270, with a failure probability of 0.037753. It 
should be kept in mind that each element has two end joints, with letter S and E standing for 
the start and end of element respectively. Furthermore, the last three numbers indicate the 
critical position of the hot spot.  The failure sequences with the failure probabilities smaller 
than 2.0E-5 are not shown in this figure.  
 
Due to the symmetric shape of the structural element configuration, the most likely joint 
failure in the intact state is at the hot spot point 270 in the end of elements 296 and 298 
respectively. The probability for this failure occurrence is 0.0377. The most likely collapse to 
occur is at the end joint of element 296 followed by failure of the end joint of element 298, 
for which its probability of occurrence is 0.0037. The second most likely failure sequence is 
the failure of the joint at the end of element 298 followed by the failure at the end of element 
296. The eight highest failure sequences are ranked and shown in figure 5.3. It can generally 
be observed that there is an increase in the reliability from the first to the second fatigue 
failure and therefore there is a low probability of occurrence for the second fatigue failure, 
even after the first fatigue failure occurs.  
 
To investigate the relative importance of the random variables in the limit state function, a 
sensitivity analysis should be carried out for all random variables. In the independent 
standard normal space, the relative importance of the corresponding random variable can be 
obtained from,  

  at the design point
[ ][ ]

i
i T

g

g g
α

∇
= −
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                     (5.18) 

However, care should be given when the random variables are correlated. In this case, an 
importance ordering of the elements in the standard normal space does not imply the same 
importance ordering in the original space. Hence, a modification should be applied to 
transform dependent random variables into the independent space and later on calculate the 



System Reliability of Jack-up platforms 
___________________________________________________________________________ 
102 

importance factor. The final importance factor resulted from this transformation is given by 
Der Kiureghian (2004) with the following expression,    

u,x

u,x

J

J
i

i
D

D

α
γ

α
= −

�

�              (5.19) 

where idiag[ ]D σ=
�

is the diagonal matrix of the standard deviations and Ju, x is the triangular 
matrix obtained from the decomposition of the covariance matrix  -1 -1

u,x u,x=J (J )TΣ
�

. These 
standard and covariance matrices are slightly different from the original standard and 
covariance of random variables and are calculated using the linear transformation of random 
variables, which are considered as equivalent normal of the variables at the design point, Der 
Kiureghian (2004). The result of the calculated importance factors for the variables in the 
most important sequence, failure of 296E270 followed by 298E270 is given in table 5.6. 
 
Table 5.6:  Relative importance of random variables for sequence 296E270 followed by 298E270 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Random variable        Importance factor,γi (%)        Random variable             Importance factor,γi (%)  

  
 

a0,  (J296E270)                 0.021           a0   (J298E270)                   0.034   
ath  (J296E270)                 0.0004              ath  (J298E270)               0.0006 
δy    (J296E270)                2.621              δy    (J298E270)                 3.900 
δtf   (J296E270)       2.786           δtf    (J298E270)   4.439 
CA  (J296E270)       6.988           CA   (J298E270)    11.129 
δF    (J296E270)       2.528           δF     (J298E270)    4.027 
δS    (J296E270)       5.654           δS     (J298E270)     38.862 
δSCF (J296E270)       2.528           δSCF  (J298E270)    4.027 

           δS        (J298E270fJ296E270)  10.453 
 

 
As is clear from this table, the highest contribution arises from uncertainty in the stress model 
in the second joint failure (J298E270). The fatigue characteristics (CA) of the first and second 
joint failure have an important influence. The initial and through thickness crack size have 
little effect on the total uncertainty and according to this sensitivity analysis these types of 
random variables can be assumed as the deterministic values in the reliability calculation. 
Other random variables have a moderate contribution with varying values between 2.5 to 
5.7%. The sensitivity analysis shows that the total influence of the second joint is higher than 
the first one with 76.87% compared to 23.13%. 
 
In the structural reliability, any sequences leading to the structural collapse are defined as the 
cut set, therefore the event of failure of the end joint of element 296 followed by the end joint 
298 constitutes the first cut set, { }1 J298E270fJ296E270 J296E270[T ] [T ]life lifeC T T≡ ≤ ∩ ≤ . The most 
significant cut set event can be identified through the branch tree, shown in figure 5.3. The 
final system failure probability can therefore be calculated by combining the probability of all 
these cut set events. For very special cases, when all the cut sets are disjoints i.e. no two cut 
sets can simultaneously occur, the system failure probability is the summation of the 
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probabilities of all cut set failure events. However, this is not the case for the system 
reliability calculation of the jack-up platform under investigation and a more advanced 
method is required.   
 
In terms of series and parallel systems, the sequence leading to structural collapse (each cut 
set) constitutes the parallel system and the combination of all these sequences represents the 
series system. For the jack-up platform under investigation and based on eleven importance 
failure sequences leading to structural collapse, the series and parallel system model can be 
shown as the configuration presented in figure 5.4, where the first row shows the first joint 
failure and the second one the second failure sequences. According to this model, the system 
failure event can be represented with the following expression, 

{ }( ) 0
k

system j
k j C

g x
∈

 
 Ω ≡ ≤
 
 

∪ ∩                      (5.20) 

where Ck is the cut set number k . As has been discussed in section 3.4.4, in this expression 
due to simplification some intersections of surviving events of remaining members are not 
taken into account. The final system failure probability can be approximated with the 
following expression. 

( ),f system sys k
k

P P P C
 

= Ω =   
 
∪                      (5.21) 

When the structural failure event is modelled by such a series system of parallel subsystems, 
the final system failure probability can be evaluated according to the following steps. First, it 
is required to calculate the failure probability of each parallel system, then determine the 
correlation between the parallel systems and finally evaluate the probability of a series 
system. Furthermore, the intermediate step should be applied to model each parallel system 
as one equivalent safety margin. The equivalent linear safety margin can be derived for 
parallel systems (cut sets) using the method described in Gollwitzer and Rackwitz (1983). In 
this method, the equivalent safety margin of the equal element is defined in such a way that 
the corresponding reliability index of this element is equal to the final parallel system and it 
has the same sensitivity as the parallel system against changes in the basic variables. 
 
When all the equivalent elements of parallel systems are estimated, the final system failure 
probability can be computed by calculating the multi-normal probability distribution as 
described in chapter 3 for series systems. However, the direct calculation of this multi-normal 
distribution with a sufficient accuracy and efficiency is difficult and impractical, especially 
when the dimension of the multi-normal exceeds five, Pandey (1998). Hence, several 

Figure 5.4 System failure events as series and parallel system through eleven 
important fatigue failure sequences 
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approximation methods are recommended in literature to calculate this multi-normal 
distribution.  
 
To calculate the multi-normal probability in a series system, two approaches are exercised 
here. At first, the first-order approximation method proposed by Hohenbichler and Rackwitz 
(1983) is applied. In this method, the dimension of the multi-normal probability is reduced in 
each step by one using the concept of conditional multiplication in such a way that the 
corresponding probability is equivalent to the multiplication of reduced conditional 
distributions and the probability content of a single dimension. The conditional distributions 
are then recast into unconditional distributions using the first order concepts (FORM) . This 
approach is continued until all the multi-normal distributions are reduced into the 
multiplication of several uni-normal distributions, of which the number is equal to the 
dimension of the multi-normal distribution. Due to the linearization technique applied in this 
method, Tang and Melchers (1987) stated that the first order error might be quite significant 
in the case of a high correlation between random variables. Therefore, they recommend 
improving the first order multi-normal integral. They use the standard bivariate normal 
integral to calculate the conditional distribution, following the same algorithms explained 
earlier (see appendix E for more details about these methods). These approaches are called 
the Crude First Order Multi-Normal (Crude-FOMN) and Improved First Order Multi-Normal 
(Improved-FOMN) respectively. The system reliability index or the failure probability is 
calculated based on these two methods and given in table 5.7.  The results show that the 
improved method gives a higher reliability index but generally the difference between these 
two methods is not so significant.   
 
An alternative approach for system reliability calculation of a series system is to use the 
bound technique. The bound technique is originally derived from the general inclusion-
exclusion rule of a probability calculation. The system failure probability of a series systems 
when the sequence of failures (cut sets) are correlated (dependent), can be estimated from the 
inclusion-exclusion rule (Boole, 1854), such as:  

( ) ( ) ( ) ( )sys i i i j i j k
i i j i j ki

P P C P C P C C P C C C
< < <

 
Ω = = − ∩ + ∩ ∩ −  

 
∑ ∑ ∑ "∪        (5.22) 

The computation of the probability of the intersection event is difficult for a large number of 
components. Because of this difficulty, there has been a continued interest in developing 
bounds on the system probability that employ the marginal component probability (the first 
expression in the right hand side of equation 5.22) or the joint probability i.e. the bi-
component probability or tri-component probability (the second and third term in the right 
hand side of equation 5.22 respectively), Song and Der Kiureghian (2003). For series 
systems, the probability bound using uni-component probability is given by Boole (1984) 
with an expression like 3.24. Since this bound is often too wide for a practical application, 
Ditlevsen (1979) proposed a better bound by involving the bi-component in addition to the 
uni-component probability in the probability calculation, as already given in expressions 3.25 
and 3.26 for upper and lower bound respectively. The upper and lower bound are depending 
on the ordering of the cut sets and the order should be changed in such a way that the 
maximum of the lower bound and the minimum of the upper bound are derived. The results 
of the uni-component bounds and the Ditlevsen bounds for the series system shown in figure 
5.4 are calculated and given in table 5.7. The uni-component bounds give wider ranges than 
the Ditlevsen bounds as already expected. Moreover, the Ditlevsen bounds are close to the 
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result of the crude-FOMN and improved-FOMN. The discrepancy between the results of the 
FOMN approaches and Ditlevsen bounds can apparently be related to the approximation 
applied in FOMN approach for the linearization of non-linear limit state and the correlation 
effect between each two linearized limit stat functions. However, the differences are not so 
significant as can be observed from table 5.7.  
 
Table 5.7:  System reliability and failure probability of jack-up platform in sequences of fatigue 
failures 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
       Crude        Improved        Uni-component bounds               Ditlevsen bounds          

                 FOMN          FOMN              
                              Upper     Lower     Upper            Lower 

 

 
Pf         0.019484         0.016548      0.021406     0.003751    0.019516    0.014704  
β         2.0645         2.1309       2.0255     2.6737    2.0638    2.1779    

 
 
If the system failure probability of a jack-up structure is considered as the result obtained 
from improved-FOMN, it can generally be concluded that the system failure probability of 
platforms is lower than the first component failure in fatigue and the system effect is more 
important.  
 
The calculated lower failure probability for the system effect can be related to the redundancy 
of structures.  After fatigue failure of the first element, the environmental loads are 
transmitted by the frame action of the remaining elements and significant increases in stress 
parameters of many surviving elements can be expected. However, because the first failure 
will typically occur in a diagonal or a horizontal brace, the increase in stress parameters is not 
too large and some extra time is required before an additional member fails. Thus, to have a 
sequence of two fatigue failures occurring subsequently, the first failure must occur early 
(earlier than the second one) and the second failure must occur in the interval time between 
the first failure and the lifetime of platform. This would be far less than just a single failure 
occurring and therefore the probability of occurrence of a sequence of failures is less than 
that of an individual first failure. For structures with a higher degree of redundancy, e.g. jack-
up with X type of diagonal bracing elements, there will usually be a smaller change in the 
stress parameters and the system effects can be expected to be much larger than the platforms 
with the lower redundancy.  
 

5.3     SYSTEM RELIABILITY IN COMBINATION OF FATIGUE FAILURE WITH 
EXTREME ENVIRONMENTAL LOADS 

The platform, weakened due to a fatigue failure, may fail under extreme environmental loads 
that act on the structure subsequently. In this section, an attempt is made to determine the 
system failure probability when the first failure occurs in fatigue and is followed by extreme 
wave loads. The formulation for the initial failure is similar to the case of an entire sequence 
of failures in fatigue. The formulation for the subsequent failure under extreme loads is 
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presented in chapter 4. The failure modes utilized in this analysis are based on the 
formulations presented in the API RP 2A-LRFD (1993). For each element five limit state 
functions are considered here again. Two of these formulations are given to check the yield 
criteria (mode) and three other expressions to verify the buckling failure mode. The 
probability of occurrence of the sequence of fatigue failure followed by failure due to 
extreme environmental loads can be specified as, 

( ) ( )2, 1 2 1  1.0mf J f m fJ lifeP P T T U = ≤ ∩ >               (5.23) 

where Um2 is the usage factor of the second failure element specified with one of the 
formulations of 4.11 to 4.15 according to its stress state while the first element has failed due 
to fatigue damage. The application of these formulations depends on the stress state of the 
elements. It means that if the element is under a combination of tension and bending stresses, 
the expressions 4.11 and 4.12 will be relevant and if the element is under the combination of 
compression and bending stresses, the formulation 4.13 to 4.15 should be applied.  
 
To incorporate all these formulations in one model, the time history of the maximum usage 
factor described in section 4.5 is applied here as the bases for the ultimate failure calculation. 
Hence, the Weibull distribution is fitted on the maximum of the usage factor in accordance 
with the structural response due to extreme environmental loads (the hydrodynamic loads 
with a 50-year return period). Moreover, the Gumbell distribution is used to extend for the 
storm duration (3 hours). 
 
In a similar way as applied for the sequences of pure fatigue failure leading to system 
collapse, all the random variables in the fatigue limit state function have been considered to 
be independent except the stress model uncertainty. 
 
In fact, this correlation arises from the correlation between the hot spot stress and the axial 
and bending stresses respectively. It should be mentioned that this correlation is not high as is 
observed from table 5.8, which is calculated based on the hot spot stress history in the end 
joint of element 298 for the first failure in fatigue and the time history of the usage factor for 
the other elements as the second failure element in ultimate limit state. 
 
Table 5.8:  The correlation coefficient between the hot spot stress at the end of element 298 (point 
270 degree) and the usage factor of other elements after failure of the first element in fatigue 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Element    52       53       54        295  296  297   169       170        373          374 

  
 

Cor. 0.052      0.026     0.034       0.070         0.067  0.072    0.068      0.069     0.069         0.064 
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Just as for the fatigue failures, several sequences can be supposed to cause a system collapse 
in the combination of the fatigue failure followed by the ultimate failure. The branch tree can 
be used to identify the important sequences leading to system collapse. The branch tree can 
be established by using the failure probability determined by expression 5.23 for several 
elements and the results are given in figure 5.5. The first important failure sequence is failure 
of chord element 52 in compression following the fatigue failure of the end of element 296 at 
the hot spot point 270. Due to the symmetrical configuration of the leg element, the same 
failure probability value is estimated for the second sequences, failure of chord element 52 in 
compression following the fatigue failure of the end of element 298 at the hot spot point 270. 
It generally shows that after the failure of the bracing elements in fatigue, the redistribution of 

Figure 5.5 Branch tree obtained for combination of fatigue failures and extreme 
environmental loads  
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the stress in the remaining elements takes place in such a way that it increases the stress in the 
chord element and enhances the possibility of failure of this element. 
 
Moreover, as can be observed from figure 5.5, the failure of chord element 52 contributes 
considerably in the four most significant sequences leading to structural collapse and a strong 
dependency is found for this element failure in a system reliability calculation.Comparing the 
failure probability calculated in the branch tree of the sequences in fatigue failures, figure 5.3, 
with the sequences in combination of fatigue and ultimate failure modes, it follows clearly 
that the fatigue failure probability sequences are much higher than the ultimate failure modes. 
Hence, the system failure probability in sequences of fatigue failure is more significant than 
the combination with extreme environmental loads. 
 
For the eight important sequences shown in figure 5.5 the system failure probability can be 
calculated in terms of series and parallel systems. The sequences leading to structural 
collapse for the combination of fatigue failure and ultimate limit state constitute the parallel 
system and the union of these cut sets compose the series system. To calculate the system 
failure probability of the series system of a parallel subsystem, at first the equivalent limit 
state function is derived for each parallel system using the method described by Gollwitzer 
and Rackwitz (1983). The final system reliability is calculated by obtaining the failure 
probability of the whole series system using the multi-normal approximation or Ditlevsen 
bounds as explained in section 3.4.  The correlation between each component in a series 
system is estimated through the combination of the correlation between the random variables 
as well as the limit state functions (fatigue and ultimate). 
 
Table 5.9:  System reliability index and the system failure probability of a jack-up platform 
calculated in a combination of sequences of fatigue failures and extreme environmental loads 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
       Crude        Improved      Uni-component bounds         Ditlevsen bounds    

                 FOMN          FOMN              
                                           Upper           Lower                  Upper            Lower  

 
Pf      6.1618E-5       5.5294E-5      9.7858E-5 1.8708E-5    5.6839E-5    4.8896E-5 
β      3.8396       3.8661    3.7245 4.1229     3.8594    3.8960      

 
 
The system failure probability is computed according to the crude-FOMN and the improved-
FOMN methods. Furthermore, the uni-component and Ditlevsen bounds are calculated and 
given in table 5.9 as well. The reliability indices obtained through the crude-FOMN and 
improved-FOMN methods are within the uni-component bounds, however, the crude-FOMN 
is outside of Ditlevsen bounds. Ditlevsen bounds give much closer values than the uni-
component with the reliability index varying between 3.86 and 3.90. The improved-FOMN 
gives the value between Ditlevsen bounds and can here be supposed as the final system 
failure probability for combination of sequences in fatigue and extreme environmental loads. 
 
Comparing this system failure probability with the results of table 5.7 for sequences of 
fatigue failures shows that the fatigue failure sequences are more critical than the 
combination with extreme environmental loads.  
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5.4     SYSTEM RELIABILITY FOR A COMBINATIONS OF FATIGUE AND 
FRACTURE FAILURE MODES 

The results in chapter 4 and section 5.3 show that for the chosen jack up example 
combinations of a fatigue failure at the first joint and a fatigue failure in the second is more 
important than the combinations of fatigue and ultimate strength failure due to extreme 
environmental loads. In this section the combinations of fatigue failure at one and failure due 
to fracture at another joint will be considered. Four scenarios can be distinguished: 
 

1. Fatigue failure of the first joint followed by a fracture failure of the second joint. 
2. Fracture failure of the first joint followed by a fracture failure of the second joint. 
3. Fracture failure of the first joint followed by a fatigue failure of the second joint. 
4. Fatigue failure of the first joint followed by a fatigue failure of the second joint. 

 
However, the last failure scenario, fatigue failure of the first joint followed by the fatigue 
failure of the second joint has already been investigated in section 5.2.  
 
In the following sections a methodology for calculation of the system reliability for combined 
fatigue and fracture failure modes will be presented. Finally, all sequences will be combined 
to give the total system reliability. In the fracture formulation, the ratio between secondary to 
yield stresses (σ S /σY) is assumed to be 1.0 as recommended by Shetty (1992). The same 
procedure can be applied for other ratios. 
 
For the fracture limit state function in the following section, the crack size is assumed to 
occur due to fatigue degradation as indicated in chapter 4. Therefore, the fatigue-fracture 
interaction becomes a time-dependent problem and the time-variant reliability method should 
be applied. A time-variant method to deal with this problem has been presented by Marley 
(1991). In this method, the fatigue-fracture process is considered as a crossing problem, 
where the structural component fails when the strength, which deteriorates due to fatigue 
crack growth, is crossed by the load. The result of this method has been compared with a 
simple time-invariant approach, which assumes that the resistance is equal to the strength at 
the end of the service life. It is concluded that the approximated time-invariant method gives 
a higher failure probability but the difference is small and close to the more complex time-
variant. In the following section, the simple method of the time-invariant has been applied for 
the fracture reliability calculation. Furthermore, this approach has been extended for the 
fracture failure of the second joint (system reliability).  
 

5.4.1 Fatigue failure of the first joint followed by a fracture failure of the second joint 

In this failure scenario, the first joint failure takes place through fatigue and is followed by 
the fracture failure of the second joint. Expression 5.7 will be used with some modifications 
to specify the fatigue crack size in the fracture limit state function. The crack size is therefore 
a random variable because it depends on several uncertain parameters such as fatigue 
characteristics, uncertainties in hydrodynamic models and calculations, etc. The statistics of a 
random fatigue crack size can be calculated using a Monte Carlo simulation technique and 
applying the fatigue crack growth formulation for the second joint (expression 5.7) without 
the correction term for the section failure (δtf J2) as,  
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The MCS has been carried out for several elements and eight hot spot points for each end of 
the member of the structure. The characteristics of the fitted lognormal distribution on crack 
size are determined using the first and second moment of the statistics resulting from the 
MSC technique for each hot spot. Since in the simulation of a fatigue crack size only the 
cases where TJ1 is less than the lifetime of a platform is taken into account, this simulation 
would be the conditional simulation and the failure probability will be the conditional failure 
probability. The probability of failure for the combination of fatigue and fracture can 
therefore be estimated with the following expression. 

( ) ( ), 1 2 2 1 10   f J f J fJ J life J lifeP P g T T P T T   = ≤ ≤ ≤              (5.25) 

The second expression in this formulation is the fatigue failure event of the first joint, [TJ1≤ 

Figure 5.6 Branch tree obtained for fatigue failure of the first joint and 
fracture failure of the second joint 
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Tlife] and the conditional expression shows the subsequent fracture failure event [(g fJ2 ≤ 0) | 
(TJ1≤ Tlife)]. To specify the time of the first element failure in fatigue, the formulation 5.4 is 
recalled. The fracture limit state function can be described by expression 4.16 or 4.17. In the 
following section the formulation 4.16 has been applied because it gives a more conservative 
failure probability than expression 4.17. However, as is shown in section 4.6, the maximum 
difference is less than 17% between these two methods (limit state 4.16 and 4.17).   
 
The FORM approach is employed to estimate the failure probability of the first and second 
term in expression 5.25, but the crack size needed in the conditional expression is determined 
based on MCS. Details can be found in appendix I. Table 5.10 shows the characteristics of 
the random variables applied in the fracture limit state function. 
 
Similar to fatigue failure, several hot spot points around the intersection of an element can be 
supposed to be susceptible for fracture failure. It is assumed the eight points regularly 
distributed around the intersection of an element and the failure probability is then calculated 
for each one separately and the highest one is selected as the critical one. 
 
The results of the probability of failure for some elements (at both ends of the element) and 
their critical hot spot points are shown in table 5.11. These results are derived for the case 
that the first failure occurs at the end of element 296 due to fatigue damage and at the hot 
spot point 270. It can generally be observed that the failure probabilities of the both ends of 
element differ from each other and the highest one can be supposed to be the critical one.  
 
Similar to fatigue failure sequences in section 4.2.4, all the random variables in the fracture 
limit state function are considered to be independent except the primary stress, which is the 
only random variable that is supposed to be correlated with the primary stress of other 
elements The primary stress in the fracture limit state is calculated according to the extreme 
environmental wave loads that can be expected during the return period (here 50 years) but 
the stress history in fatigue is calculated through the long term combination of the several 
short term stress histories according to the scatter diagram.  
 
Table 5.10:  Statistic characteristics of random variables in fracture limit state function 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Parameter                      variable     Distribution       Mean value          Coefficient of variation 
                                                                           µ          COV                       

  
 

Primary stress (kN/m2)  σP    Gumbel   vary               vary              
Fracture toughness       KIC    Lognormal  6.5E6           0.25 
(kN/m2 √mm) 
Fatigue crack size (mm)  a    Lognormal  vary                 vary        
Geometry function    δy    Normal  1.00           0.10 
Load model    δF    Lognormal  1.00           0.10                   
Yield stress (kN/m2)  σY    Lognormal  6.89E5                0.08                
Stress concentration factor δSCF     Lognormal  1.00           0.10                         
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Table 5.11:  The failure probability of the second element failure in fracture when the first failure is 
in fatigue at the hot spot point of 270° in the end of element 296. The term S stands for start and E for 
the end of the element. 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
Element           169      170  172  295  297  53 

 

 
H. S. Point   90  270  315  90   270  270 
Pf (S)      2.1624E-6 9.8906E-7 1.6628E-9 3.6049E-6 5.8564E-5 3.5074E-4 
 
H.S. Point   270  90  0   270   270  180 
Pf (E)      1.1016E-7 3.8970E-3 7.5210E-5 7.5082E-4 3.5794E-3   1.3792E-3 

 
 
The important sequences of this failure scenario are found by using the branch tree method. 
The branch tree is established through the failure probability determined by expression 5.25 
for the combination of fatigue and fracture failure mode and the failure probability results 
higher than 1.0E-4 are shown in figure 5.6. 
 
The most important failure sequence is fatigue failure of the joint at the end of element 296 
(hot spot 270) followed by the fracture failure of the end of element 170 (hot spot point 90). 
The highest fourteen failure sequences identified through this branch tree are ranked in figure 
5.6 and the system reliability calculation is carried out according to these sequences. The 
procedure to calculate the system reliability is similar as before.  
 
The results of the system failure probabilities and the reliability indices according to the 
crude-FOMN and improved-FOMN are shown in table 5.12. The results of the uni-bounds 
and Ditlevsen bounds are calculated and shown in table 5.12 as well. As is clear, the results 
of the FOMN are within the uni-component bounds but crude-FOMN is outside of the 
Ditlevsen bounds. The Ditlevsen bounds give close results for the upper and lower bound. 
Since the improved-FOMN is within the Ditlevsen bounds, this failure probability can be 
assumed as the system failure probability of the jack-up platform for the combination of 
fatigue and fracture failure modes with a value of 0.0317. 
 
Table 5.12:  System failure probability calculated for the combination of sequences of fatigue failure 
of the first joint followed by fracture failure of the second joint 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
       Crude        Improved        Uni-component bounds          Ditlevsen bounds         

                 FOMN          FOMN        ___________________              ___________________          
                                  Upper           Lower                  Upper            Lower              

 
Pf      0.03306                0.03178       3.3802E-2  3.8970E-3              0.03258             0.03161                  
β      1.8376         1.8553       1.8276          2.6609       1.8442               1.8577          
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5.4.2 Fracture failure of the first joint followed by a fracture failure of the second joint 

In this failure scenario, the first joint failure occurs in fracture and followed by fracture 
failure of the second joint. For the first joint failure, the method described in section 4.6 is 
applied here. The required crack size in the fracture limit state function is obtained by using 
the fatigue expression 4.19 when the time is set equal to the lifetime of structure.  
 
After failure of the first joint in fracture, the crack size for the second joint failure is 
computed in accordance with the fracture limit state function of the first joint and the fatigue 
formulation of the second joint. It means that at first the characteristic of the random crack 
size is determined using MCS and fracture expression 4.16. Then, the simulated crack size 
from fracture limit state is substituted in the fatigue formulation to specify TJ1 (expression 5.3 
without the section failure model uncertainty, δtf). However, only the values of random crack 
size, which   makes TJ1 less than the lifetime (Tlife), are collected from the MCS. Now by 
substituting the simulated TJ1 in expression 5.24, the random crack size for the second joint 
failure is determined. By repeating this simulation several times, the statistics of the random 
crack size for the second joint failure are found.  Now, the statistical characteristics of the 
random crack are substituted in the fracture limit state to calculate the sequences of the 
second joint failure in fracture. Since in this approach, only the simulated values of the crack 
when fracture failure occurs are selected from the MCS, the calculated failure probability is 
the conditional failure probability.  The failure of this sequence can be estimated from, 

( ) ( ), 1 2 2 1 10 0 0f J f J fJ fJ fJP P g g P g   = ≤ ≤ ≤                  (5.26) 

where the second expression is the probability of a fracture failure event of the first joint, 
[gfJ1≤0] and the conditional expression shows the subsequent fracture failure event, 
[(gfJ2≤0)|(gfJ1≤0)]. The FORM approach has been applied to estimate the failure probability 
for the first and second term of this expression. The MCS has only been used to simulate the 
random crack size needed in fracture limit state. For the first failure, the fatigue formulation 
is utilized but for the second joint failure, the combination of fracture and fatigue expressions 
have been applied to simulate the crack size. Details can be found in appendix I. 
 
Table 5.13:  System reliability index and system failure probability calculated for the combination of 
sequences of the fracture failure of the first and second joint 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

       Crude        Improved        Uni-component bounds        Ditlevsen bounds         
                 FOMN          FOMN               
                                  Upper           Lower                  Upper         Lower              

 
Pf      0.02208               0.02207         0.0221        0.01087               0.02208                0.02207                  
β      2.0126        2.0127       2.0125        2.2947   2.0126                  2.0127         

 
 
The primary stress is the only random variable that is supposed to be correlated with the 
primary stress of other joints The primary stress in the fracture limit state is calculated 
according to the extreme environmental wave loads that can be expected during the return 
period (here 50 years, see section 4.6). 
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The calculated failure probabilities for this failure scenario are presented in figure 5.7 for 
several important sequences leading to structural collapse. Failure probabilities less than 
1.0E-6 are not shown in this figure. 
 
The first and second important failure sequences are the fracture failure of the chord element 
53 and 54 with the failure probabilities 0.0108 and 0.0106 respectively. The highest six 
failure sequences identified through this branch tree are ranked in figure 5.7 and the system 
reliability calculation is computed in accordance with these sequences and is given in table 
5.13. It is clear from result that the reliability index for this failure scenario is higher than the 
previous one. 
 

5.4.3 Fracture failure of the first joint followed by a fatigue failure of the second joint 

In this failure scenario, the first joint failure occurs in fracture and is followed by fatigue 
failure of the second joint. The same approach for the first joint failure in fracture is used as it 
is carried out in the previous section. The only difference is the second failure, which is 
assumed to occur in fatigue instead of fracture. 

Figure 5.7 Branch tree obtained for combination of the first joint 
failure in fracture and the second joint failure in fracture  
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For the second joint failure, the same expression for fatigue failure (5.7) is used here again 
but the random time to the first joint failure is estimated in accordance with the fracture limit 
state function and fatigue crack growth. It means that the MCS is used to simulate the crack 
size of the first joint by using the fracture formulation. Then, the simulated fracture crack size 
is substituted in the crack growth expression for the first joint to obtain TJ1  (expression 5.3 
without section failure model uncertainty, δtf). Since in this calculation, only the simulated 
values of the crack size when TJ1 is less than Tlife (fracture failure occurs) are selected from 
MCS, the calculated failure probability is therefore the conditional failure probability. The 
failure probability for this sequence can be obtained from the following expression. 

( ) ( ), 1 2 2 1 1 10 0f J fJ J fJ life fJ fJP P T T g P g   = < < <                       (5.27) 

The second expression is the fracture failure event in the first joint, [g fJ1≤0] and the 

Figure 5.8 Branch tree obtained for the combination of the first joint failure 
in fracture followed by the second joint failure in fatigue   
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conditional expression shows the subsequent fatigue failure event, [(TJ2fJ1≤ Tlife)| (gfJ1≤0)]. In 
this failure scenario, the primary stress is supposed to be the only correlated random variable 
with the primary stress of other joints for the system calculation. Furthermore, the stress 
uncertainty model in the fatigue limit state is also correlated with the primary stress in the 
fracture limit state. Details can be found in appendix I. 
 
The branch tree has been established and the result is shown in figure 5.8 for the failure 
probability higher than 1.0E-4. The highest fourteen failure sequences identified through this 
branch tree are ranked in this figure as well. The system reliability calculation is carried out 
in accordance with these sequences are given in table 5.14. As is clear from figure 5.8, one of 
the important failure sequences is fracture failure of bracing element 289 followed by fatigue 
failure of element 290. 
 
Comparing the calculated system failure probabilities in table 5.14 shows that the Ditlevsen 
bounds give closer results than the uni-component bounds with the values varying between 
0.0724 and 0.0820. The result of crude-FOMN is out of the Ditlevsen bounds but the 
improved-FOMN is within these bounds and can be supposed as the final system failure 
probability for this failure scenario. If we compare this failure probability with the values 
calculated for other failure scenarios, it can be concluded that this failure scenario gives the 
highest failure probability and care should be given to this failure state. However, it should be 
kept in mind that the result is probably a conservative approximation and conservative 
because of using the simplified time-invariant reliability approach, and applying the design 
storm with return period 50 years.  
 
Table 5.14:  System reliability index and system failure probability calculated for the combination of 
sequences of fracture failure of the first joint followed by fatigue failure of the second joint  
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
       Crude        Improved        Uni-component bounds                  Ditlevsen bounds         

                 FOMN          FOMN        ___________________              ___________________          
                                  Upper           Lower                  Upper            Lower              

 
Pf      0.0825                 0.0760         0.08916         0.01087            0.08208                   0.07242                  
β      1.3885        1.4320       1.3459           2.2947   1.3912                     1.4580          

 
 
The comparison of the calculated system failure probability for sequences of fracture failure 
of the first joint followed by fatigue failure of the second joint failure with the results of table 
5.13 (fracture failure of the first and second joint) and table 5.12 (fatigue failure of the first 
joint followed by the fracture failure of the second joint) shows that this failure scenario gives 
higher failure probability than the other combinations. Moreover, it shows that the fracture 
failure is an important failure mechanism. 
 



Chapter 5   
___________________________________________________________________________ 

117

5.4.4 System failure probability calculation for combinations of fracture and fatigue 
failures 

In this section we combine all failure sequences identified in the previous sections to 
calculate the final system failure probability of the Neka jack-up platform for the 
combination of fatigue and fracture. The forty-one important sequences identified in the 
previous sections are shown in figure 5.9. The final system failure probability is based on the 
failure probability calculated for each of the failure sequence and its correlation, which is 
estimated between the random variables and the limit state functions (see appendix F).  
 
The results are given in table 5.15 in accordance with the FOMN approaches and Ditlevsen 
bounds. The crude-FOMN and improved-FOMN results are within the Ditlevsen bounds. The 
Ditlevsen bounds give narrower results than the uni-component bounds. The final system 
failure probability for the jack-up structure can be supposed as the result of improved-FOMN 
with the value 0.1143. It is clear that this value is higher than the first joint failure in fatigue 

Figure 5.9 Branch tree obtained for the combination of the important 
sequences in fatigue and fracture failure of the first and the second joint  
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or fracture and care should be given to this type of failure in the structural analysis of jack-up 
platforms, when ageing is being investigated.  
 
Table 5.15:  System reliability index and system failure probability calculated for all combinations of 
fracture and fatigue in the first and the second joint failures 
__________________________________________________________________________________________ __________________________________________________________________________________________ 

 
       Crude        Improved        Uni-component bounds                  Ditlevsen bounds         

                 FOMN          FOMN        ___________________              ___________________     
                                  Upper           Lower                  Upper            Lower      

 
Pf      0.12719               0.11443         0.13641      0.0108                     0.13037               0.10406       
β      1.1398        1.2033       1.0966        2.2947                   1.1246                1.2588          

 
 

5.5     CONCLUDING REMARKS  

In redundant structures such as jack-up platforms, failure of one element in fatigue or fracture 
may not lead to the structural collapse. Therefore, the system effect is considered in a 
reliability calculation.  
 
In this chapter, several system reliability calculations have been investigated under different 
failure sequences.  The approaches to examine the factors leading to structural collapse are 
related to fatigue failure, fracture failure and ultimate failure due to extreme environmental 
loads. From chapter 4, it is observed that the result of the first joint failure in the ultimate 
failure mode is not the dominant one. Hence, the combination of the failures in fatigue and 
fracture are investigated. 
 
There are four possibilities for combination of sequences in fatigue and fracture. The first 
combination is the first and second joint failures in fatigue. The other three possibilities, i.e. 
combination of fatigue and fracture, fracture and fracture, fracture and fatigue of the first and 
the second joint respectively have been investigated for the system reliability calculation.  
 
A methodology for fatigue failure sequences of the first and second joint is presented to take 
into account fatigue degradation up to the time of fatigue failure. The result of the sequences 
of fatigue failure, calculated for eleven important sequences leading to structural collapse as 
given in table 5.7, shows that the system failure probability is lower than the first element 
failure probability and the system effect would be essential to be evaluated.  
 
For other three combinations of fracture and fatigue failure, the Monte Carlo simulation 
technique has been utilized to simulate the crack size due to fatigue or fracture failure. If the 
joint fails in fracture, the fracture formulation has been applied to simulate the crack size and 
if the joint fails in fatigue, the fatigue formulation is employed. Eight points around the 
intersection have been selected as the possible points for fatigue or fracture failure and the 
critical one, which gives the highest failure probability, is shown in each failure sequence. 
The failure probability of the structural system in combination of fatigue and fracture failure 
modes has been calculated through the combination of forty-one significant failure sequences 
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identified in the branch tree. As shown in table 5.15, the calculated system failure probability 
for the combination of fatigue and fracture is higher than the pure failure sequences in fatigue 
or the sequences in combination of fatigue and extreme environmental loads. Moreover, this 
failure probability is higher than the first joint failure in fatigue or fracture individually and 
the conclusion may be drawn that this type of structural failure deserves significant attention 
during the ageing of jack-up platforms. However, it should be kept in mind that in practical 
situation the platform will be inspected regularly (annual, intermediate and full inspection). 
Hence, the information acquired from inspection not only can be used to update the 
component failure probability (as shown in section 4.4) but also the system failure 
probability. Therefore, the actual failure probability of platform will change depending on 
inspection results. This system updating has not been investigated in this research work. 
 
For fracture reliability analysis, a simple but time-invariant approach has been applied with 
the extreme stresses estimated from a design storm (50 years). This assumption may lead to 
the conservative result due to the use of the time-invariant approach from one side.  From the 
other side, the maximum stress calculated in the design storm is based on 3 hours storm 
duration with the return period of 50 years, which under realistic conditions the storm 
duration may be longer or more (larger or smaller) sea state may encounter during the critical 
period of the lifetime of platform. This can lead to deviations from the calculated fracture 
failure probability, which need not to be conservative. Therefore, this should be subject of 
further investigation for the combination of time-invariant and design storm method.  
 
The referenced time applied for the fracture and fatigue reliability calculation is the lifetime 
of the structure (20 years). However, the provided method for system reliability calculation 
can be carried out for other service time periods e.g. one or four years.  In this case, the 
information acquired from the inspection can explicitly be incorporated in the system 
reliability and it could be suggested that the system failure probability estimated with or 
without inspection will be lower than the results for the lifetime period. For the calculation of 
the crack size for the second joint failure in fracture and fatigue, the time of the first joint 
failure (TJ1) being less than the lifetime (Tlife), is always selected from a MCS to make sure 
that the first joint failure occurs before the second one. 
 
The question of how the deteriorated structure in the first fatigue failure may fail in the other 
failure modes has been considered as well. In the new failure scenario, the sequences leading 
to structural failure are assumed to occur in the combination of fatigue and extreme 
environmental loads. The failure probability under extreme environmental loads is calculated 
through the time history of the usage factor and the failure event is combined with the fatigue 
failure event to specify the sequence failure in fatigue and ultimate failure modes. The final 
system failure probability is then estimated in accordance with the combination of eight 
important failure sequences leading to structural collapse. The result shows that the system 
failure probability in this case is smaller than the whole sequences in the fatigue failures, as 
shown in table 5.9 with the failure probability of 5.53×10-5.  
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6 CONCLUSIONS 

 

6.1 General 

 
The main problems for this research work as formulated in Chapter 1 are related to: 
 

• The limited investigations on the fatigue damage of jack-up platforms. 
• The occurrence of fatigue damage, for jack-up platforms as production facilities. 
• The uncertainty in the characteristics of fatigue, both environmental loads and 

material properties. 
• The specific structural stress states of jack-up platforms, which differ from jackets or 

tension leg platforms. 
• The possibility of a combination of fatigue failure with the other failures such as 

ultimate failure or fracture failure modes. 
• The failure of one element may not lead to the structural collapse and therefore to 

failure of the system.  
 

The goal was to develop a reliability approach, which may be used to monitor the safety of 
jack-up platforms. Moreover, to specify a degradation model arising from fatigue damage in 
order to make it possible to investigate fatigue damage in combination with other failure 
modes resulting from extreme environmental loads i.e. ultimate or fracture failure modes. 
Furthermore, to explore the system effects on the reliability of a structure and investigate 
which factors may affect the estimated failure probability. 
 
Firstly will be discussed to which extent the key questions, related to jack-up structures on 
component and system level have been answered. 
  
Secondly the way that the problem finally has been dealt with will be explained, compared to 
the intended approach, as well as the new elements, which have been introduced, and how the 
results of this approach are compared to earlier research. Then conclusions will be drawn 
from these results, indicating where improvements have been achieved and finally 
suggestions for the further research on the research on the ageing of jack-up platforms will be 
given. 
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 Although the methods used in this thesis are commonly known reliability-based methods, the 
particular circumstances for offshore jack-up platforms are the basis for an approach during 
the ageing and consequently the stress state of jack-up platforms. The approach aims at 
reflecting realistic situations occurring during the lifetime of a jack-up structure. 
 
The research on the effect of ageing on jack-up platforms started the last decade with the aim 
to evaluate the possibility of extending the lifetime. Results of research on the ageing of jack-
up platforms are rarely reported in the literature and more work is required to investigate the 
effect of ageing on this type of structures. The cause of this rare amount of investigation has 
not been explored but the availability of design rules and requirements of classification 
societies may play a role. Not only the move to operations in deeper water, other applications 
and changes in environmental conditions, but also the increasing average age of the platforms 
combined with the fact that the fatigue failure has been observed to be a major source of 
degradation for fixed platforms, induced the interest to search for methods enabling a reliable 
prediction of the lifetime.  
 
To specify a formulation for fatigue degradation, the mechanics of fatigue has been presented 
showing that the fatigue crack growth model can be used to specify the fatigue crack 
propagation through the structural thickness.  A semi-elliptic shape has been applied to model 
the crack propagation in depth and circumference. The geometry function is an important 
factor in the fatigue formulation because it takes into account the nature of stress and the 
crack size in the fatigue crack propagation. The geometry function should be specified in 
accordance with the configuration of the jack up platform and its stress states. Several 
formulations have been presented to specify the geometry function of tubular elements for 
which most are based on the expression of Raju and Newman. The presented formulations for 
the geometry functions of tubular elements are generally derived for the specific stress states 
of jacket platforms, which are not appropriate to use directly for jack-up platforms. 
Therefore, some modifications have been proposed to consider the actual stress state of jack-
up platforms.  
 
Several methodologies for fatigue reliability calculations, ultimate limit states calculations 
and finally fracture failures of jack-up platforms have been proposed and the results of these 
methods have been compared to the traditional methods. In the following sections, these 
results are discussed and presented.  

6.2 Reliability computation approaches 

Generally, three reliability approaches are recognized:  analytical approximation, simulation 
and numerical integration. The numerical integration method is only suitable in case of a 
limited number of random variables and a simple limit state function, making this approach 
not suitable in case of a fatigue or fracture failure modes in offshore structures not only 
because many random variables are involved but also as the limit state functions are complex. 
The analytical approximations such as First and Second Order Reliability method (FORM 
and SORM) or simulation methods such as Monte Carlo and Importance Sampling (MCS and 
IS) will be more appropriate.  However, the simulation method is more time consuming and 
sometimes in the case of MCS this may not lead to accurate results when the required number 
of simulations is too large.  
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In the analytical approximation methods, the original limit state function is approximated by 
the Taylor series expansion up to the first or second order in accordance with the non-
linearity of the failure surface at hand. The first order (FORM) is used when the first tem is 
appropriate and in case of non-linearity, the second order (SORM) may be applied. However, 
in this case, first the result of the first order approximation should be estimated and then the 
curvature of the second order is incorporated in the calculations. 
 
To investigate the efficiency of the reliability computation methods, several computer 
programs for the three limit state functions of fatigue, fracture and ultimate limit state 
functions have been provided to calculate the failure probabilities in accordance with the two 
analytical approximations (FORM and SORM) and the simulation methods (MCS and IS). 
The results obtained for the case of the fatigue limit state show that, although the calculation 
time needed for FORM is less than the other methods, this technique gives a good 
approximation compared to the SORM and IS methods with a maximum difference of 2 % 
for the reliability index.   
 
To check the accuracy of the developed computer program, the same fatigue limit state 
function has been entered into the STRUREL program. The results show good agreement 
between the FORM and SORM approaches of the developed program and the solution of 
FORM and SORM derived in STRUREL respectively. The maximum difference in the 
calculated reliability index is less than 0.35 % for SORM.  
 
The results of the reliability calculation for the ultimate limit state function lead to the 
following conclusions: 
 

• The FORM approach gives a close approximation compared to other methods with a 
3% higher reliability index. In this case the FORM result is on the unconservative 
side, compared to other methods but this difference is generally not significant. 

• The same values have been calculated for the FORM of the provided program and the 
STRUREL results. A somewhat higher value is observed for the SORM results of the 
provided program compared to STRUREL with 0.2% difference in the reliability 
index. The discrepancy between these two algorithms can be attributed to the 
analytical derivation method used in the provided program and the numerical method 
used by STRUREL. 

 
The results of the reliability calculations for the fracture limit state function yield to the 
following conclusions:  
 

• The SORM approach gives higher reliability indices than FORM but these are close 
to each other with a maximum difference of 0.4%. Furthermore, FORM results are 
maximum 0.3% lower than the IS solution and there is a close agreement between the 
provided program and the STRUREL solutions.  

 
The following conclusions may be drawn from estimated reliability indices for the three limit 
state functions for the fatigue, fracture and ultimate limit state functions: 
 

• The provided program gives a good approximation for FORM and SORM results in 
comparison with the STRUREL program. 
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• The FORM approach can be applied as a base for reliability calculations; however, in 
the case of the ultimate limit state a little higher reliability index can be expected for 
the FORM approach.  

 

6.3 Fatigue reliability calculation  

In fatigue reliability calculations, the hot spot stress ranges have to be determined. The hot 
spot stress range has been estimated by using the influence factor, where the effect of planar 
and non-planar elements has been taken into account. The peak counting method is then 
applied to determine the distribution of the stress range.  The test of goodness of fit shows 
that the Weibull distribution gives the best fit among different distribution functions for the 
short-term stress range, and this distribution function is therefore applied in the fatigue 
reliability calculations.  
 
The geometry function plays an important role because it takes into account several 
corrections arising from the effects of loading and crack geometries. Since the structural 
characteristics of a jack-up platform differ significantly from a fixed jacket platform, the 
behaviour of the structure is different and the traditional expressions for the geometry 
function used in tubular elements of jacket platforms have been modified for jack-up 
platforms.  
 
The first modification is related to the bending to membrane stress ratio (α ). As it is shown 
in figure 4.7, the bending to membrane stress ratio (α ) changes the fatigue reliability 
considerably and if no proper ratio is selected, the estimated reliability may vary 
significantly. The calculated α ratio for jack-up platforms shows that it varies between zero 
and one for several hot spot points around the intersection of a brace/chord joint as shown in 
table 4.4, and differs significantly from the values 4 and 5 recommended for jacket platforms. 
Hence, attention should be given in the selection of α ratio in the geometry function. 

 
The second modification is associated with the correction of the geometry function for the 
weld toe profile. A new geometry function for jack-up platforms is established, based on the 
combination of the Raju and Newman expressions with a correction term for the weld toe 
discontinuity and an exact α ratio determined from the stress time history. The results of this 
method have been compared with the geometry functions given by Moan, Kirkemo, and 
Aghakouchak in table 4.5. It is observed that: 
 

• The proposed method gives a higher reliability index than the Kirkemo and Moan 
approach with a maximum difference of 14% and 20% respectively for each method, 
however lower than Raju-Newman without the correction of Smith and Hurworth. 

• The Aghakouchak results are higher than the proposed method with a maximum 
difference of 10%. 

 
The comparison of the proposed method with other ones indicate that if the exact α ratio is 
not selected in the fatigue reliability calculation, the result may lead to an incorrect estimation 
of the reliability index of jack-up platforms.  
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The P-M and JONSWAP wave spectra have been widely applied in offshore engineering to 
model the wave energy spectra. The first spectrum is used for the fully developed sea states 
and the second one for the fetch limit condition. The proper selection of spectra may be in 
question. To investigate the effect of the choice of a spectrum on the fatigue reliability, the 
fatigue reliability calculation has been carried out for these two spectral models and the 
estimated reliability indices are compared with each other as shown in figure 4.9 for several 
service times. The results show that the JONSWAP spectrum generally gives a higher 
reliability index than P-M but are not significant. The highest differences for the first five 
years are limited to 2% and increasing to 3% at the end of the service time.  
 
The estimated and reported overall damping of jack-up platforms in the references vary 
significantly from 0.02 to 0.10 and hence there is some uncertainty about the proper selection 
of this value. The effect of the variation of the structural damping on fatigue reliability has 
also been investigated. The results indicate that the fatigue reliability indices grow with an 
increasing damping ratio as can be seen from figure 4.10. However, this growth is not so 
significant for damping ratios between 0.05 and 0.07 when the highest differences are 2% but 
the distinction becomes more considerable with a maximum of 13% for damping ratios 
between 0.02 and 0.05 and 24% between 0.02 and 0.10 at the end of service time.   
 
The stress process in a jack-up structure is non-linear and broad-banded. The stress range of 
the nonlinear and broad-banded process can be determined using the rain flow counting 
method. Since this method is complex and time consuming, less complex and easier 
analytical formulations are recommended. In this research work, a stress range based on the 
Weibull distribution of peak counting is proposed. This method is compared to other models 
presented by Wirsching and Light (W&L), Zhao and Baker (Z&B), as well as a nonlinear 
Hermite model presented by Winterstein. The fatigue reliability results calculated with these 
methods are compared with the rain flow counting method as well. The following 
conclusions are drawn: 
 

• The rain flow counting method gives the lowest fatigue reliability indices compared 
to the other methods for different sea states. This method is time consuming but 
generally believed to be the best model. 

• The correction model of W&L gives the highest reliability indices and would be 
unconservative if used in a reliability analysis.  

• The narrow-banded and Z&B correction model gives also higher reliability indices 
than the rain flow counting method but they are close to each other and lower than 
W&L.  

• The non-linear Hermite model shows some discrepancy for the higher sea states.  
• The proposed Weibull model gives a better approximation for the higher sea states 

and almost the same results as other methods for the lower sea states compared to the 
rain flow counting method.  

 
The inspection of a platform during operation provides valuable information to update the 
fatigue reliability. The application of this information in the reliability updating of a jack-up 
platform is shown for two cases of information. The fatigue reliability increases with the 
introduction of the inspection information for a no-crack detection or detecting a crack and 
finally repairing.  
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6.4 Extreme sea states  

The maximum stresses in the structural elements occur when the platform is confronted with 
extreme sea states that may occur in a specific reference period. The inverse FORM method 
presented by Winterstein has been applied to specify the extreme sea state or design storm for 
a 50-year return period. A proposed approach based on method described by Videiro and 
Moan is applied to determine the reliability of structural elements under extreme 
environmental loads using the time history of the usage factor. The results of the traditional 
methods are for two cases, with and without correlation between axial and bending stresses, 
compared with the proposed method and the conclusion is that: 
 

• The proposed method gives a good approximation for the reliability of an element 
comparing to the traditional method when the correlation between axial and bending 
stresses is accounted for.  

• The benefit of the proposed method is that the axial stress state variations from 
tension to compression or vice versa can directly be taken into account in the 
reliability calculations.  

 
The estimated failure probability based on the design sea state (storm) is a conditional 
probability. The extreme wave that the structure may experience during its lifetime (20 years) 
can be larger than the design storm with the return period of 50 years. In this situation, the 
long-term (unconditional) failure probability should be applied. An approximate approach is 
presented in appendix H to calculate the long-term failure probability. The results show a 
moderate difference between design storm (50 years) and long-term approach for the chord 
elements (52 and 53) but the discrepancy increase for the diagonal bracing elements (295 and 
296) 
 

6.5 Fracture reliability methods 

The fatigue degradation emerges its effect in the structural joint as a flaw. The combination 
of this flaw with extreme environmental loads may cause fracture failure. This type of failure 
mode has also been investigated in this research work and the results of the fracture 
assessment diagram recommended by the British Standard Institute are compared with the 
Dijkstra method. The crack size is an important factor in the fracture limit state function. In 
this research work, this crack is assumed to occur through the fatigue degradation and is 
therefore specified with the fatigue crack growth expression. Since some of the parameters in 
the fatigue formulation are random variables, the MCS technique has been applied to 
simulate the variables. The statistic characteristics of the random crack size for several 
service times of the platform have been estimated. The results show that the lognormal 
distribution gives the best-fitted results according to the test of the goodness of fit using Chi-
square on the random fatigue crack size.  
 
By using the characteristics of the lognormal distribution of the random fatigue size 
calculated by MCS in both fracture limit state functions based on the Dijkstra method and the 
fracture assessment diagram, the reliability indices have been estimated for several secondary 
to yield stress ratio and service times. The comparisons of the results show that the reliability 
indices of the Dijkstra method give higher values than the fracture assessment for several 
secondary to yield stress ratios and service times.  
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The general comparison of fatigue, ultimate and fracture reliability calculations for one 
element in the jack-up platform (the intersection of bracing element 295 with the chord) 
shows that the fatigue failure mode gives the lowest reliability or the highest failure 
probability with a reliability index 2.96 compared to other failure modes. The fracture failure 
gives the reliability index value of 3.41 when the secondary stress is close to the yield stress 
and has a lower reliability index than the extreme environmental loads with the value of 8.76 
but is not significantly far from values for fatigue. The reason for this high reliability index 
for ultimate limit state can be attributed to this fact that the original structural design of the 
jack-up platform has been carried out on the basis of the ultimate limit state check, and 
therefore a  proper safety can be expected with this calculation. Moreover, other reasons can 
be related to the design sea storm method used to specify the extreme wave loads. As shown 
in appendix H, the approximated long-term reliability index for this element is less than the 
one for the design sea storm (50 years return period) with the value 6.84 but it is higher than 
the failure probability in fatigue and fracture.  

6.6 System reliability calculations 

The system reliability of the jack-up platform under several failure sequences leading to 
structural collapse has been investigated. At first, a methodology for fatigue sequences 
leading to structural collapse has been presented to take into account fatigue degradation up 
to the time of fatigue failure. Sensitivity analysis is carried out to identify the importance of 
random variables. The comparisons of the sensitivity results show that: 
 

• The highest contribution to the total uncertainty arises from the stress model in the 
second joint failure with 39%. However, the fatigue characteristic (CA) shows also 
more influence than others with 11% for the second joint and 7% for the first joint. 
The initial and through thickness crack size have little effect on the total uncertainty 
and can be assumed as the deterministic variables in the reliability calculation. 

 
The correlation between the limit states is specified according to the correlation between the 
random variables of the stress uncertainty. By using the time history of the stress process in 
each hot spot point, this correlation has been specified.  
 
Each failure sequence event leading to a structural failure in the branch tree is modelled as a 
parallel subsystem and the structural failure event is formed as the series system, which 
combines all the parallel subsystems.  
 
The equivalent safety margin of a parallel system has been established in such a way that the 
relevant reliability index of the equivalent element is identical to the final parallel system and 
the random variables have the same sensitivity as the parallel system against changes in the 
basic variables. The First Order Multi Normal (FOMN) and bound techniques have been 
employed to compute the final failure probability of a series system. 
 
 The result of the sequences of fatigue failure calculated for eleven important sequences 
leading to structural collapse shows that: 
 

• A system reliability index resulting from Ditlevsen bounds techniques is varying 
between 2.06 and 2.18. 
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• The system reliability index calculated through the FOMN approaches gives a good 
approximation with the Ditlevsen results with maximum differences less than 6 
percent. 

• The system failure probability of a structure in this failure mode can be supposed, as 
the value calculated by the improved-FOMN being 0.0165, which is lower than the 
first element failure probability.  

 
The structure, which is weakened in the first fatigue failure, may fail in the other scenario that 
has already been described. In the new scenario, the sequences leading to a structural failure 
are assumed to occur in the combination of fatigue and extreme environmental failure modes, 
respectively. The extreme environmental failure probability is calculated through the time 
history of the usage factor and is combined with the fatigue failure to determine the failure 
probability of the sequence failure in fatigue and ultimate failure modes. The correlation 
between these two limit states is calculated using the time history of the usage factor and hot 
spot stresses in the individual hot spot points.  The final system failure probability is 
calculated according to the combination of eight important failure sequences leading to 
structural collapse. The FOMN and bound techniques have been applied to compute the 
system failure probability. The results show that: 
 

• A close value has been observed for the upper and lower Ditlevsen’s bound with the 
reliability index varying between 3.86 and 3.60 respectively.  

• The improved-FOMN method gives reliability index between the Ditlevsen bounds.  
• The system failure probability in this case has a great influence on the final failure 

probability and decreases significantly, however the overall system failure probability 
for this failure sequence is less than the pure failure sequences in fatigue. 

 
There are four possibilities for the combination of fatigue and fracture. The first combination, 
which is the first and second joint failures in fatigue, has already been investigated. The other 
three possibilities, i.e. the combination of fatigue and fracture, fracture and fracture, fracture 
and fatigue of the first and second joint respectively have been suggested for a system 
reliability calculation. For each failure scenario, the Monte Carlo simulation technique has 
been utilized to simulate the crack size due to fatigue or fracture failure. If a joint fails in 
fracture, the fracture formulation has been applied and if the joint fails in fatigue, the fatigue 
formulation has been used to simulate the crack size. The failure probabilities of these three 
failure scenarios have been estimated for important sequences leading to structural collapse 
and are shown in tables, 5.12, 5.13 and 5.14 for the combination of fatigue and fracture, 
fracture and fracture, fracture and fatigue for the first and second joint failures respectively. 
The results show that: 
 

• The combination of fracture failure of the first joint with the fatigue failure of the 
second joint gives a higher failure probability than the others with a value 0.076. This 
failure scenario is also high in comparison with the pure failure sequences in fatigue. 
The system failure probability in this case is higher than the first joint failure in 
fatigue or fracture. Therefore, care should be given to this failure scenario. 

• The minimum system failure probability occurs from a combination of a fracture 
failure of the first and second joints respectively with a value of 0.022. 

 



Chapter 6   
___________________________________________________________________________ 

129

The failure probability of the structural system in the whole combination of fatigue and 
fracture failure modes has been calculated through the forty-one significant failure sequences 
identified in the branch tree leading to structural collapse in the previous sections. The final 
failure probability is calculated using FOMN and Ditlevsen bounds. The results show: 
 

• The Ditlevsen bounds give the closest failure probability index for the upper and 
lower bound with values varying between 0.13 and 0.10 respectively. 

• The improved-FOMN result is within the Ditlevsen bounds and can be supposed as 
the final system failure probability for the whole combination of fatigue and fracture 
with a value of 0.11. 

• The calculated system failure probability is higher than the first failure element in 
fatigue and more than the sequences in combination of fatigue and extreme 
environmental loads. Moreover, for this case the system failure probability is also 
higher than the sequences in pure fatigue failures.  

 
Higher failure probabilities in a combination of fatigue and fracture show significant 
structural effects in a combination of fatigue and fracture and this failure scenario needs 
attention. Moreover, this high failure probability could obviously clarify why the 
classification societies enforce regular inspection programs to be undertaken during the 
service time of platform.   
 

6.7 Main findings  

The general conclusions that may be drawn are related to the results of the reliability 
calculations, the method used for the reliability calculations and the applicability for this type 
of calculations.   
 
The results: 
 

• Several failure scenarios leading to the structural collapse are examined and some 
methodologies for the system failure probability calculations have been presented. 
The results show that the sequences in combination of fatigue and fracture failures 
give the highest failure probability and care should be given to this type of failure 
modes in jack-up platforms. 

 
• The failure probabilities of fatigue and fracture failure modes are higher than the 

extreme environmental loads. This high probability can be attributed to this fact that 
the original design of jack-up platform is carried out on the basis of the extreme 
environmental loads and little attention has been given to the fatigue or fracture 
failure modes.  

 
 
The method: 
 

• The proposed method for the reliability calculations for extreme environmental loads 
is corresponding to the traditional method when the correlation between axial and 
bending stresses in the traditional method is accounted for. 
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• The model for the fatigue crack presented for the fracture reliability calculation 
includes the interaction of fatigue and fracture. The information derived from the 
inspection of the structure should be used to update not only the fatigue but also the 
fracture reliability. 

 
• The advantage of the proposed method for the  system reliability calculation is the 

possibility of incorporating damage due to  fatigue or fracture up to the time of 
calculation for the first, second and higher joint failures.   

 
• Due to the uncertainty in fatigue, fracture and ultimate environmental loads, the 

reliability approach applied in this research work would be an interesting method to 
take these uncertainties into account. The specification of the characteristic models of 
random variables are a challenging aspect and can change the estimated reliability.      

 
The applicability: 
 

• The method developed for fatigue reliability calculation in the present research is a 
basis for a tool to monitor the structural safety of a jack-up platform using an 
improved model of fatigue crack growth based on the actual stress history of jack-up 
platforms. However, a jack-up platform may be working on many different locations 
in varying water-depths and environmental conditions, an assessment of the 
reliability over the life time is more complex.   

 
• The ageing of a jack-up platform is related to the fatigue damage and the safety of a 

platform can be monitored during the service time by calculating the fatigue 
reliability. Hence, the inspection of a platform could be scheduled in such a way that 
the safety is kept higher than the target value (target reliability). 

 

6.8 Future developments in the reliability analysis of jack-up platforms 

Following the main conclusions the  topics that deserve further investigation concerning the 
applicability and the method are briefly discussed below.   
 

• The geometry function specified for a jack-up platform is originally established on 
the Raju and Newman formulation and a correction for the weld discontinuity due to 
the welding. This model needs more investigation and should be validated with the 
experimental results derived from the structural elements of jack-up platforms. 

 
• In this research the time history of the structural response is used to determine the 

probability distribution of the stress range. The frequency response method would be 
an alternative procedure to calculate the stress distribution but may lead into incorrect 
results for jack-up platforms due to the non-linearity in the structural response. The 
new frequency Volterra method, which takes this non-linearity into account, would 
be an option to be used for stress calculation of jack-up platform.  

 
• Due to the restricted information about the statistical data of the random variables 

needed for fatigue and fracture reliability analysis of jack-up platforms, the statistical 
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data of some random variables, e.g. the load calculation and the stress concentration 
factors, are selected for the example application based on the existing information for 
jacket platforms. Consideration should be given to the different operational 
conditions for jack-up platforms related to water-depth, environmental conditions. 
More investigation is required to validate this type of information for jack-up 
platforms and statistical information should be attributed to the random variables.   

 
• The calculated failure probability is based on a single directional wave, which is 

conservative. A better estimation can be obtained by taking the failure probability 
estimated for other possible direction into account. This case needs more study and 
further investigation. 

 
• The calculated failure probability in this research work is based on limited number of 

sea states and hydrodynamic wave load simulations, which involves a statistical 
uncertainty in the calculations. Incorporating the statistical uncertainty in reliability 
calculation may lead to more realistic estimation of the failure probabilities. This 
subject would be interesting for further research work. 

 
• Due to memory restriction a one leg detailed model of the jack-up platform has been 

used.  The fully detailed model of three legs may have some effect on the final 
results. The investigation of a fully detailed model of three legs model could provide 
insight in the model uncertainties related to the simplified platform. 

 
• The calculated system failure probability is based on the design storm method (50 

years return period). The actual storm encounter during the lifetime of platform may 
be higher than this return period. More investigation should be carried out to improve 
the proposed method for the long-term approach. 

 
• The system failure probability is calculated for the fracture and fatigue interaction 

based on the time-invariant method. The actual problem is time-variant method. The 
result can be improved by using a more advanced time-variant approach. Further 
research work on this issue is recommended. 
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Nomenclature 
 
 
Roman letters: 
 
a  Crack depth 
a0  Initial crack depth 
aD  Detectable crack size 
a (t)  Crack depth at time t 
ath  Crack depth through the thickness 
c  Half crack length 
c0  Half initial crack length 
da/dN  Crack growth rate 
fby   Bending stresses in y direction 
fbz  Bending stresses in z direction 
fC  Axial compression stress 
fS  Probability density function of stress range 
g ( )  limit state function 
m   Fatigue crack growth exponent 
t   Thickness of plate, time 
tcr  The critical propagation time of a crack 
tf  Time to develop a section failure  
tI  Time of inspection 
hx(x)  Importance sampling density function 
A  Scale factor of the Weibull distribution 
Ac  Cracked area 
Aj  Sectional constants (e.g. area or sectional modulus) 
B  Shape factor of the Weibull distribution  
CA   Fatigue material characteristic in depth 
CC   Fatigue material characteristic in length 
E[  ]  Expectation operator 
EI  Event of inspection 
F  Boundary-correction factor for tension stress 
Fbn   Capacity of the element in the bending stress 
Fcn   Capacity of the element in the axial compression stress 
FHS(hS)  Distribution function of the significant wave height 
FTZ�HS

(t�h) Distribution function of conditional zero crossing period 
Fnom,j  Nominal sectional forces and moments 
FAR  Correction of capacity for cracked element 
Fxc   Capacity of the element in the buckling 
H  Ratio between boundary-correction factors of bending and tension stresses 
HA Ratio between boundary-correction factors of bending and tension stresses for 

deepest point of a crack (crack depth) 
HC Ratio between boundary-correction factors of bending and tension stresses for 

end surface point of a crack (crack length) 
Hij The component of the second order partial derivation of the limit state 

function at the design point 
HS  Significant wave height 
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K  Stress intensity factor 
KI   Linear elastic stress intensity factor 
KIC   Material toughness 
Kmax  Maximum stress intensity factor 
Kmin.  Minimum stress intensity factor 
Kr  Fracture parameter 
Krf   Non-dimensional fracture parameter 
Lr   Plastic collapse parameter 
L0  Choleski decomposition of correlation matrix in Normal space 
Mk  Correction of geometry function for weld toe profile 
N (t)  Number of stress cycle at time t 
PD  Probability of crack detection 
PD,n  Probability of crack detection after n independent inspection 
Pf  Failure probability 
Pf, SORM  Failure probability calculated with SORM method 
Pi  The relative occurrence frequency of ith sea-state  
Q  Shape factor in Raju and Newman expression 
R  Correlation matrix in original space 
R0  Correlation matrix in Normal space 
Ract  Acting fracture radius 
Rf  Radius of the fracture failure 
S  Stress range 
TJ1  Random time of fatigue crack propagation for the first joint 
TJ2fJ1 Random time of fatigue crack propagation for the second joint after failure of 

the first joint 
Tlife  Design lifetime of platform 
Tr  Return period 
TSS  Sea state duration  
TZ  Zero-crossing period 
Xmpme  Expected value of the extreme response 
Y  Geometry function  
YA  Geometry function for deepest point of a crack (crack depth) 
YC  Geometry function for end surface point of a crack (crack length) 
Y unwelded geometry function of a semi-elliptical crack using Raju and Newman equation 
 
 
Greek letters: 
 
�  Ratio between bending and membrane stresses 
�i  Component of unit normal to the failure surface (direction cosine) 
�*  Unit normal vector at the design point 
�  Reliability index (based on FORM) 
�f, SORM  Reliability index calculated with SORM approach 
�F  Model uncertainty in load 
�S  Model uncertainty in stress 
�SCF  Model uncertainty in stress concentration factor 
�tf  Random correction factor for section failure 
�  Angle that defines the position of point 
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�  ( )  Standard Normal density function 
�i  Main curvature of the limit state at the design point 
�  Wirsching correction factor 
�D  Mean detectable crack size 
�i  Mean value of random variable Xi 
	0   Expected frequency of zero-crossings of the stress process 
	l  The long-term average peak-frequency of the stress range 
	p   Expected frequency of the peaks of the stress process 
�c  Correction factor to account for the plasticity interaction 

0,ij  Component of correlation matrix in Normal space 

ij  Component of correlation matrix in original space 
�a  Applied axial stress 
�ab,i  Applied in-plane bending stress 
�ab,o  Applied out-of-plane bending stress 
�ac  Plastic collapse strength in the cracked condition for the axial capacity 
�b   Bending stress 
�bc,i Plastic collapse strength in the cracked condition for the in-plane bending  

capacity 
�bc,o Plastic collapse strength in the cracked condition for the out-of-plane bending  

capacity 
�f  Flow strength 
�hs,i  Hot spot stress  
�i  Standard deviation of random variable Xi 
�n,i  Nominal stress 
� p   Primary stress 
� ref  Reference stress for plastic collapse consideration 
� S  Secondary stress 
�t   Tension stress 
�U  Ultimate tensile strength  
�Y  Yield strength  
� Service time  Service time of the structure 
� i  Weighting function of ith sea state 
�L (t)   Fatigue loading function at time t 
�L, nb (t) Fatigue loading function at time t for narrow-banded stress process 
�R (t)  Fatigue strength function at time t 
�K  Stress range intensity factor 
�KA  Stress range intensity factor for deepest point of a crack (crack depth) 
�KC  Stress range intensity factor for end surface point of a crack (crack length) 
��total   Total bending and tension stress range 

( )  Standard Normal distribution  

n( )  Standard multi-Normal distribution of degree n 
�( )  Gamma function 
�g(u*)  Gradient vector of the limit state at the design point 
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Abbreviation 
 
A-D  Anderson-Darling test 
API  American Petroleum Institute 
COV  Coefficient Of Variation 
DSA  Deterministic Spectrum Amplitude  
FEM  Finite Element Method 
FOMN  First Order Multi-Normal  
FORM  First Order Reliability Method 
IF  Influence factor 
IPB  In-Plane Bending 
IS  Important Sampling 
JONSWAP Joint North Sea Wave Project 
K-S  Kolmogorove-Smirnov test 
MCS  Monte Carlo Simulation 
ML  Maximum Likelihood 
NDT  Non-Destructive Test 
NDSA  Non-Deterministic Spectrum Amplitude 
NOSDA Nonlinear Offshore Structure Dynamic Analysis program 
OPB  Out-of-Plane Bending 
P-M  Pearson-Moskowitz 
POD  Probability Of Detection 
SCF  Stress Concentration Factor 
SORM  Second Order Reliability Method 
W&L  Wirsching and Light 
Z&B  Zhao and Baker 
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Appendix  A Geometry function 

A.1 Raju and Newman geometry function  

In fatigue and fracture limit states, the geometry function has to be specified. This function 
plays an important rule in fatigue and fracture because it takes into account the crack 
geometry and the mode of loading. Raju and Newman (1981) derived an expression for the 
geometry function Yφ for a surface crack in a finite plate exposed to a remote tension and 
bending loads. Later, they demonstrated that the difference in the geometry function between 
semi-elliptical cracks in a plate and a pipe with a low thickness to diameter ratio is small 
(Raju and Newman, 1986). In the investigation of Karlsen (1986) a good agreement is 
observed between the numerical results of a finite element calculation K and T joints and the 
Raju-Newman’s expression with correction factors to assume the local stress concentration 
introduced at the weld toe.  
 
The geometry function of the Raju and Newman method has been fitted on the finite element 
results for two types of remote tension and bending loads applied to a surface crack. The 
inferred geometry function from this research is given by 
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              (A.1) 

where σt and σb are the remote uniform tension and bending stresses respectively. σb /σ t 
shows the ratio between bending and tension stresses. a is the crack depth, c is the half the 
crack length, t is the thickness of the plate, b is the half width of the panel and φ is the angle 
that defines the position of the point considered in the crack front, see figure 2.3. Q is the 
shape factor; F and H define the boundary-correction factor. According to this method, the 
shape factor Q for an ellipse is given by the square of the complete elliptic integral of the 
second kind and is approximated by the following expression. 
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The boundary-correction factor for tension F is given by the following expression,  
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where 

( ) ( )

24

1 2 3
0.89 11.13 0.09  , 0.54 , 0.50 14.0 1

0.2 / 0.65 /
a aM M M
c a c c a c

   = − = − + = + − −   + +     

( ) ( ) ( ) ( ) ( )
0.252 2

2 2 2cos sin 1 0.1 0.35 1 sina af g
c t

φ φ φ φ φ
      = + = = + −      
         

           (A.4) 

fw is the finite-width correction factor which is calculated from the following expression, 
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The boundary-correction factor for bending is given by multiplying the F function with the 
new term H, which is specified according to the following expression, 
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In a welded joint a correction term for the local stress intensity magnification factor should be 
applied. This correction appears from nonlinearity in stress areas arising from local stress 
concentrations at the weld toe. Smith and Hurworth (1984) recommended the following 
expression to take this nonlinearity into account,  
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           (A.7) 

where Mred is introduced in order to include effects of local weld toe smoothing by for 
example grinding. Furthermore, ρ and θ are the weld toe radius and angle respectively. By 
multiplying this correction into the Raju and Newman geometry function, the final geometry 
function for tubular elements can be specified.  

A.2 Geometry function according to method of Moan et al. (1993)  

Due to coalescence of cracks, Moan et al. (1993) recommend to use two different stages one 
stage before and the other one during and after coalescence. They also explain that the two-
dimensional crack growth model proposed by Raju and Newman may give a wrong aspect 
ratio evolution due to the coalescence of the crack.  The crack aspect ratio (a/c) before 
coalescence is given with the following expression, 
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              (A.8) 

where k has a minimum value of 0.2, which corresponds to the low stress level where only a 
few crack initiation points are present with a great intermediate distance.  The k can be 
calculated with the following formulation. 
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The reference values are given as Kref =0.2 mm-1 , Sref =116.0 N/mm2 and tref =26.0 mm. The 
crack aspect ratio during and after coalescence is given with the following relationship, 
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where η1 and η2  are parameters that specify the crack aspect ratio during and after 
coalescence, and are assumed to be 150 and 0.15 respectively as specified in Moan et 
al.(1993). Furthermore, (a/t)coal and (a/c)failure are the crack shape and crack aspect ratio at the 
coalescence and through-thickness of an element, which are considered to be 0.05 and 0.1 
respectively as given in Moan et al.(1993). By substituting this aspect ratio in the Raju and 
Newman formulations, the geometry function can be derived for tubular elements.  

A.3 Geometry function according to the proposed method in this 
research 

In this research a two-dimensional crack growth formulation of Raju and Newman is applied 
to specify the geometry function for tubular elements with the modification of the bending to 
membrane stress ratio for each hot spot and the correction of the weld toe profile 
recommended by Smith and Hurworth (1984).  
 
If formulation 2.6 is rewritten in accordance with the multiplication of the geometry function 
and the stress range, the following expression, which is independent of the load history and 
only depends on the crack shape, can be derived,  
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Where YA and YC are the geometry function for the deepest point A (φ =π/2) and the end 
surface point C (φ =0) respectively as shown in figure 2.3. It should be kept in mind that only 
the bending to membrane stress ratio (α=σ b /σ t) from the stress history remains in this 
expression; therefore, by using this formulation a relation between the crack propagation in 
depth and in circumference direction for a specific α can numerically be generated. Starting 
from the initial small crack size (a/t)0 with the initial crack aspect ratio (a/c)i=0.1 the new 
crack length is calculated according to the formulation A.11 and the finite difference 
approach. Therefore the crack length in each iteration (cn/t) can be estimated from the last 
iteration (cn-1 /t) in accordance with the following expression, 
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By substituting the calculated crack shape for the specific α ratio in each iteration in the 
expressions A.1 for two cases of φ =π/2 and φ =0, the geometry function YA and YC can be 
numerically specified for the whole fatigue crack propagation model. However, it should not 
be forgotten to apply the correction of the weld toe profile recommended by Smith and 
Hurhworth (1984) for tubular elements. In the fatigue and fracture reliability calculations, the 
proposed method for the geometry function is carried out in the attached subroutine to the 
original reliability calculation program for each iteration process. 
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Appendix  B Description of jack-up platform 

B.1 Structural description  

The platform under investigation is the 
three legged type with the derrick 
cantilevered over the side. Figure B.1 
shows an overview of the platform in the 
site. The original technical specification of 
the Neka jack-up platform has been 
ordered by Rauma-Repola offshore 
company (Finland) and the platform is 
constructed in cooperation with the Iran 
Marine Industry Co. (SADRA). Friede 
and Goldman is the designer of this type 
of platform and the characteristics of the 
platform are specified in accordance with 
the second model of the class L-780 to 
operate in water depths of 95 meter in 
harsh environments. The weight of hull is 
80820 kN. The platform dimensions, 
length and width are 54.86 and 53.34 m 
respectively. The hull depth is 7.62 m and 
the hull draft (structural load line) is 4.57 m. The height of the double bottom is 1.524 m. The 
lattice legs have been designed from the frame structure with three tubular chords in each 
corner.  
 
 
Table B.1: Characteristics of Neka jack-up platform 

Characteristic Dimensions 

Leg design length 125 m 

Distance between leg guides 14.3 m 

Centre to centre of forward and aft legs 31.177 m 

Centre to centre of aft legs 36.0 m 

Bay height (legs) 6.0 m 

Side length of the triangular truss leg 9.9 m 

 
The chords provided with two gear racks on each side and are interconnected by horizontal 
and diagonal tubular bracings. The main leg characteristics are given in table B.1 and B2. 
Each bay of leg has 3 chord elements, 6 horizontal braces, 6 diagonal braces and 3 internal 
span breakers, i.e. in total 18 elements. Table B.2 gives the structural details of each bay. 
 

Figure B.1: An overview of Neka (Iran Khazar)
jack-up platform in the site  
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The leg-hull interface of the jack-up model is provided with a fixation system consisting of a 
clamping mechanism and in this case the linear spring model is considered to represent the 
leg-hull connection. Figure B.2 shows the leg-deck configuration applied for the jacking 
system of Neka jack-up platform for two cases of floating and clamping system when the 
fixation systems are engaged. More detail about the characteristic of the linear clamping 
system is given by Daghigh (1997).  
 

B.2 Environmental description 

Daghigh (1997) recommended to use the North Sea conditions for the load calculation. This 
assumption is in line with the specification of the environmental conditions given by Friede 

Table B.2: Structural details of lattice leg 

Element type 
 No. Specification Diameter × thickness 

(mm×mm) 
Length 

 (m) 

1 Chord element 800 × 50 6.0 

2 Horizontal braces 400 × 28 4.95 

3 Diagonal braces 360 × 28 7.78 

4 Internal span breakers 200 × 12 4.95 

Figure B.2 Three-dimensional jacking structure for the fixed and 
floating jacking system, after Daghigh (1997) 
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and Goldman for the design of the platform. Therefore, the information of the Hutton area of 
the North Sea from Marex report  (Marex, 1979) is used to specify the environmental 
conditions. The key environmental parameters applied in the ultimate limit state analyses are 
given as follows, Marex (1979), 
 

• Water depth (including tide and storm surge)   95 m 
• Significant wave height     HS =16.1 m 
• Wave period       TZ =13.6 s 
• One minute sustained wind speed     36.5 m/s   
      (at reference level 10 m above mean sea level)   
• Extreme surface current velocity     1.2 m/s 
 

These environmental parameters are specified in accordance with a 50-year return period as 
recommended in the Site Specific Assessment of Mobile Jack-up Units, Bulletin 5-5A 
(Bennett, 1994) for extreme environmental conditions. The wind force is calculated for the 
whole part of the platform above the water level and the power formulation recommended in 
Bulletin 5-5A is applied to specify the variation of the wind velocity above the sea level. 
Moreover, the hydrodynamic loads arising from currents are calculated by simply adding the 
current velocity given by a current profile to the simulated random water particle velocity. 
For the fatigue analysis, the current loads may normally be neglected as recommended in the 
Bulletin 5-5A (Bennett, 1994). In the ultimate reliability analysis, only the tidal current 
velocity is taken into account with the power exponent type model recommended by DNV 
(2000) to model the variation of current velocity with the water depth.  

B.3 Soil-structure interaction and Natural period  

At the bottom of each leg is a spud can to reduce the penetration of leg into the soil and 
transfer the load from structure to seabed. In the finite element analysis of the jack-up, six 
linear springs models (three transitional and three rotational springs) are used to model the 
soil-structure interaction with the following characteristics, 
 
Transitional  kx,,ky = 1.269 × 107  kN/m  
Vertical  kz = 1.338 × 107  kN/m  
Rotational  kxx,,kyy = 3.259 × 108  kNm/rad 
Transitional  kzz = 5.215 × 108  kNm/rad 
 
The three calculated natural periods of the structure based on this foundation characteristic 
are 6.79, 4.10 and 1.547 seconds for surge, sway and torsional modes respectively. 

B.4 Hydrodynamic coefficients 

The hydrodynamic coefficients used in this analysis are CD=0.65 and CM=2.0 as 
recommended in of the Site Specific Assessment of Mobile Jack-up Units, Bulletin 5-5A  
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 (Bennett, 1994). The hydrodynamic 
loads have been determined with the 
NOSDA program. The 
hydrodynamic coefficients for the 
equivalent legs are calculated in 
accordance with Bulletin 5-5A 
(Bennett, 1994). In this specification, 
the equivalent hydrodynamic 
coefficients are given based on the 
equivalent volume and the flow 
direction. Two cases, with and 
without marine growth have been 
considered for the elements below and above the MWL+2 respectively. Moreover, the 
minimum marine growth thickness 12.50 mm is added to the elements below the MWL+2. 
Furthermore, below the water level, the increase of roughness leads to the increase of drag 
coefficient, which is recommended CD=0.7 for the parametric study by Daghigh (1997). 
Table B.3 shows the hydrodynamic coefficients of jack-up legs for the heading direction. 
Moreover, DEQ shown in this table is the equivalent diameter for the hydrodynamic 
calculation, which is estimated in accordance with the total volume of one bay. 
 

B.5 Equivalent structural leg model 

In the finite element analysis of jack-up platform, only one leg is modelled in detail due to 
computer restrictions. For the other legs, equivalent stiffness characteristics are applied in the 
FEM analyses. The stiffness of the equivalent jack-up leg is characterized by the beam 

Table B.3: Equivalent hydrodynamic coefficients 
and diameter 

Parameter
Without marine 

growth 
 ( tm=0 mm) 

With marine 
growth 

( tm=12.5 mm) 

CD 2.669 2.777 

CM 1.830 1.824 

DEQ 1.954 2.053 

Figure B.2 Neka jack-up finite element model and detail of elements 
below the lower guide in the first leg 
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property given in Bulletin 5-5A (Bennett, 1994) and DNV (1984). The equivalent shear area 
of leg is specified in term of the “equivalent shear area“ of a two-dimensional lattice 
configuration. The stiffness properties are assumed to be the same for all direction unless the 
chords have different areas. This model is restricted for the symmetrical configuration of leg 
components. The equivalent stiffness parameters of a beam for a leg with three chords are 
given in table B.4. The finite element model of jack-up model is also shown in figure B.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table B.4: Equivalent stiffness characteristics  

Characteristic Description Quantity 

A Area 4374.3×10-4       (m2 ) 

AQY= AQz Shear area 5746.5×10-5       (m2 ) 

IY=IZ Moment of Inertia 7144.93×10-3 (m4 ) 

IT Torsional inertia moment  9386.90×10-4 (m4 ) 
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Appendix  C Sea scatter diagram  

For the calculation of the hydrodynamic load, the significant wave height and its attributed 
zero-crossing period has to be specified. As explained in section 3.4.6, the significant wave 
height is a slow time-dependent random variable and its variation is given as the sea scatter 
diagram. In this research work, the scatter data of the Hutton area at the Stevenson station 
(Marex, 1979) is used to specify the sea state. The scatter diagram of this station is shown in 
the figure C.1. These data have been acquired from three years recorded information of sea 
states in the Stevenson station by Marex (1979). The number in each contour shows the 
number of observations of sea state per total number of one thousand observations in a year.  
 

To specify the extreme environmental loads for the jack-up platform, the design storm 
method has been used. Therefore, it is required to establish a probabilistic approach to predict 
the extreme environmental load for a specific return period, assumed to be 50 years here. The 
inverse FORM method recommended by Winterstein et al. (1993) is applied because with 
this method it is possible to take into account the joint distribution of environmental 
parameters. The joint distribution of environmental parameters is specified in accordance 
with the DNV specification notes (no. 30.5, 2000) in which the combined Weibull and 
lognormal distributions are recommended to specify the significant wave height (HS) and the 
conditional zero crossing period (TZ HS). The Weibull distribution is specified with the 
following expressions, 
 

0 0

1 1 1
( ) exps s

H s S
H H H H

f H
H H H

ω ω
ω     − − = −        

               (C.1) 

Figure C.1: Wave scatter diagram of Stevenson Station  
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The parameters of this distribution is calculated based on characteristics of the sea scatter 
diagram given by the Marex report  (Marex, 1979) for the Stevenson station, see figure C.1. 
The Weibull distribution parameters are estimated in accordance with this scatter diagram as 
H0 =0.86, H1=2.555, ω=1.391. The conditional zero crossing period (TZ HS) is specified with 
the following density function,  

( ) 2
ln1 1( ) exp

22
Z

T z Z S
Z

T
f T H

T

µ
σπσ

  − = −      
               (C.2) 

where the characteristics of this distribution are calculated in accordance with the following 
expression, DNV (notes no. 30.5, 2000), 
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E T b b b H
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= = +

 = − = +  
                           (C.3) 

The parameters of the mean values of the log-normal distributions are obtained for the 
Stevenson station a0, a1 and a2 respectively as 0.7, 1.2154 and 0.1264 and for the standard 
deviation of the log-normal distribution b0, b1   and b2   as 0.005, 0.2266, -0.161 respectively. 
 
In the inverse FORM approach, the contour of the environmental parameters such as the 
significant wave height and zero crossing period is related to a specific return period, Tr, 
according to the following expression, 

2 2 1
1 2 (1 )SS

r

T
U U

T
−+ = Φ −                                      (C.4) 

where TSS is the sea state duration and is taken here  as 3 hours. Two auxiliary normal random 
variables U1 and U2 , which can be specified through the distribution function of the 
significant wave height, FHS(hS) and the conditional zero crossing period, FTZHS

(th) 
respectively are specified with the following formulations, 
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                                                                                         (C.5)        

By using this expression and formulation C.4, the Hs-Tz 
contour for 10, 20, and 50 years return periods can be drawn for 
the Stevenson station as shown in figure 4.13 of chapter 4. 

Since the application of the whole of a scatter diagram for load 
calculations is time consuming, the computation is restricted to 
5 blocks of the scatter diagram. Hence, the five sea-states 
shown in table C.1 are assumed as being representative for the 
whole scatter and the long-term calculations are carried out 
based on the combination of these sea states.  
 
The associated mean zero crossing period TZ for a specific 
significant wave height (HS) is obtained in accordance with the 
following formulation, which is recommended by the Marex 
(1979) report. 

10.17 30.24  z sT H= +                                                         (C.6) 

Table C.1: The sea states 
used for the long-term stress 
analysis in fatigue reliability 

Sea 
 State

HS  
(m) 

TZ 
 (s) 

1 1.75 6.93 

2 3.25 7.96 

3 5.00 9.00 

4 7.75 10.44 

5 10.45 11.68 
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Appendix  D Influence Factors (Stress Concentration Factors)  

In the fatigue reliability calculations, the hot spot stress range has to be obtained. At first, the 
hot-spot stress process is calculated by multiplying the nominal stress derived in the finite 
element analysis with the Stress Concentration Factor (SCF). Several SCF’s have been 
presented in the literature but since the formulations of Efthymiou (1988) cover most the 
geometry of the joints in the jack-up model and also consider different types of loading 
conditions from planar and non-planar bracing elements, this formulation has therefore been 
used in this work.  

 
The hot spot stress process is calculated for eight points around the intersection in such a way 
that its angular distribution covers the whole section for each 45 degrees. The hot-spot 
stresses are calculated through the method presented by Efthymiou (1988) using the Influence 
Factor (IF), which considers the effect of the SCF arising in planar and non-planar braces, 
with the following expression, 

,
, ,

1 1

( )
σ ( ) σ

n n
nom j

hs i ij ij n j
jj j

F t
t IF IF

A= =
= =∑ ∑                                                                                       (D.1) 

 where Fnom,j are the nominal sectional forces and moments determined from the finite 

Table D.1: Stress concentration factor (SCFone) for the intersection of element when one element 
is only loaded 

Joint Axial load In-plane 
 Bending 

Out-of-plane
 Bending 

Type of intersection Element Saddle Crown Crown Saddle 

D.B 2.407 2.949 2.480 1.405 
Chord & H.B & D.B (type 2) 

H.B 4.832 2.937 2.116 3.072 

H. Brace & D. Brace (type 3) D.B 2.781 4.640 2.593 2.245 

H. Brace & S.B. (type 1) S.B 3.571 3.170 2.106 2.152 

Figure D.1: Three types of intersections identified in the jack-up platforms for chord, 
horizontal brace (H.B.), diagonal brace (D.B.) and span-breaker (S.B.) intersections  
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element analysis, Aj are the 
corresponding sectional constants (e.g. 
area or sectional modulus), and n is 
the total number of degrees of 
freedom in all bracing member ends 
and in the two chord ends. In general, 
there are six load cases for each free 
end but a common approach for the 
fatigue analysis of offshore platforms 
is to neglect the effect of the torsional 
moments and shear forces in the 
fatigue damage calculation. 
 
 The influence factors are calculated 
for three types of joint configurations 
in accordance with the geometry 
characteristics of the chords, braces and span-breakers. These joints are illustrated in figure 
D.1 and the calculated influence factors are given in accordance with combination of SCF 
from table D.1 for the case that only one member is loaded and table D.2 when the element is 
loaded in the balance load. For example, the hot spot stress for axial load only can be 
calculated with the following expression, when the influence of other element is taken into 
account, see figure D.2, 

[ ]sinσ
sin

B B
hs A un B one balanced

A A
IF

ASCF SCF SCF
A

θ
σ σ

θ
= + −

���������������������������
              (D.2) 

 where σA and σB are the stress in the brace A and B respectively. θA and θB are the smallest 
angle of brace A and B with the horizontal element and, AA and AB are the cross section area 
of brace A and B respectively. SCFone is the stress concentration factor when one element is 
only loaded and can be specified with table D.1. Moreover, SCFbalanced is the stress 
concentration factor when the element is loaded in the balance load and is given by table D.2. 
In this equation only the effect of axial load has been considered but in the practical situation 
the effect of in-plane bending and out-of-plane bending stresses should be added. More 
details about this method and the effect of out-of-plane elements have been given in 
Efthymiou (1988). 
 

Table D.2: Stress concentration factor (SCFbalanced) for the intersection of element when the 
element is loaded in the balance load 

Joint Axial load In-plane 
Bending 

Out-of-plane 
Bending 

Type of intersection Element Saddle Crown Crown Saddle 

D.B 2.174 2.174 2.480 2.6250 
Chord & H.B & D.B (type 2) 

H.B 3.316 3.3156 2.116 3.611 

H. Brace & D. Brace (type 3) D.B 2.276 2.276 2.593 3.402 

H. Brace & S.B. (type 1) S.B 2.365 2.365 2.106 2.955 

Figure D.2: Definition of Influence function  
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Appendix  E The computer programs 

In this research work, several computer programs have been modified and written to carry out 
the reliability calculation, to calculate the hydrodynamic loads and to estimate the stress 
ranges. In the following sections the procedures of calculation methods are presented in 
detail. 

E.1     RELIABILITY CALCULATION ALGORITHMS 

As discussed in chapter 3, the calculation of the reliability index or the failure probability 
requires a searching algorithm to find the closest distance from the limit state function to the 
origin in the normal standard space. In this research work, two algorithms of gradient 
projection method described in Nowak and Collins (2000) and the modified version of 
Hasofer and Lind (1974) presented by Liu and Der Kiureghian (1991) have been applied for 
the reliability calculations of fatigue, fracture and ultimate limit state functions and some 
computer programs have been written to carry out these calculations. These two methods are 
presented in the following sections and the advantage or disadvantage of each method is 
described. 

E.1.1. Reliability calculation based on the Nowak algorithm 

The algorithm of Nowak and Collins (2000) is originally known as the gradient projection 
method, which solves the original problem by generating a sequence of the points to 
converge to the optimal solution. Hence, the bases of this method is an iteration procedure to 
satisfy the condition that the design point is situated on the limit state function and has the 
shortest distance (β) to the origin in the normal standard space. To satisfy this condition, for n 
random variables with the limit state function e.g. g (X1, X2,…, Xn) ≤ 0.0, an iterative 
procedure is required to solve a set of (2n+1) simultaneous equations with (2n+1) unknowns: 
β, α1, α2,…, αn, z1*, z2*,…, zn*, where αi is the direction cosine (sensitive factor), which is 
estimated from the following expression,  
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To calculate the derivation of the limit state 
function in the normal space, the following 
chain rule is applied,  
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Moreover, the following condition confirms 
that αi is the direction cosine, 
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i =∑                                              (E.3) 

Figure E.1: Design point and reliability 
index for a nonlinear limit state in 

normal standard space   
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where the relation between the design point and the direction cosine is specified with the 
following formulation, 

*
iβαiz =                                                                (E.4) 

Now, the design point should satisfy the expression g (x1*, x2*,…, xn*)= 0.0 to confirm that  
this point is situated on the limit state function. In accordance with these conditions, the 
following steps should be followed to determine the reliability index: 

1. Formulate the limit state function and appropriate parameters for all random variables 
involved, xi (i=1,…,n). 

2. Specify an initial design point {xi*} by assuming values for n-1 of the random 
variables (the mean value is often a reasonable choice). Solve the limit state function 
g (x1*, x2*,…, xn*)= 0.0 for the nth variable. This ensures that the design point is on 
the failure boundary. 

3. For each of the design point values xi* corresponding to a non-normal distribution, 
calculate the equivalent normal mean (µi

eq) and standard deviation (σi
eq) by the 

following expressions,  
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where *(x )
ix iF and *(x )

ix if are cumulative and density probability distribution of  non-
normal distribution. If one or more xi* values corresponds to a normal distribution, 
then the equivalent normal parameters are simply the actual parameters. 

4. Estimate the reduced variables {zi*} corresponding to the design point {xi*} using  

( )* *z x µ /σ
i i

eq eq
i i X X= −               (E.7) 

5. Determine the partial derivatives of the limit state function with respect to the reduced 
variable using equation E.2. Define a column vector {G} as the vector whose 
elements are the partial derivatives, 

{ } { }1 2, , ,T T
nG g g g= ∇ ∇ ∇"  where 

evaluated at desing point
i

i

gg
Z
∂

∇ = −
∂            (E.8) 

6. Determine an estimation of the reliability index (β) by the following expression, 

{ } { } { }*β { }/T TG z G G=               (E.9) 

7. Calculate the column contains cosine vectors, 

 { } { } { }α / TG G G=             (E.10) 

8. Determine the new design point in the reduced variable space for n-1 of the variables 
using expression E.4. 
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9. Calculate the corresponding design point values in the original space for the n-1 
variables in the step 7, using the inversed formula presented in step 4, * *x =µ +z *σ

i i

eq eq
i X i X  

10. Determine the value of the remaining random variables (i.e. the one that is not found 
in steps 8 and 9) by solving the limit state function g (x1*, x2*,…, xn*)= 0.0. This 
calculation is the same as the second step. 

11. Repeat steps 3 up to 10 until β and the design point {xi*} converge. 
 
The benefit of this procedure is that it starts from an initial point which is situated on the limit 
state function and repeated in each iteration to ensure that the point is on the failure 
boundary. The disadvantage of this algorithm is that for some non-normal random variables 
the iteration of calculation of the design point may lead into the values in which the 
equivalent normal distribution cannot be estimated from the expressions E.5 and D6. 
Furthermore, if there is a correlation between random variable, it is not clear how the 
correlation is incorporated. However, Nowak and Collins (2000) recommends to apply the 
modified expressions of the sensitivity factor (formula E.10) and the expression for the 
calculation of the reliability index (formula E.9) by multiplying them with the correlation 
coefficient matrix [ρ] such as, 

{ } { } { }

{ } { } { }*

α [ρ] /

β { }/ [ρ]

T

T T

G G G

G z G G

=

=
             (E.11) 

But incorporating this correction it makes that the direction cosine (α) is violating the 
essential assumption of expression E.3 i.e. the summation of αi

2 does not become one. 
Furthermore, in some situations the iteration of this algorithm does not converge to a specific 
value due to the noisy condition of the fatigue and fracture limit state functions in the 
numerical procedure to calculate the geometry function and the integral of fatigue strength 
function. These problems lead to the application of another algorithm for the reliability 
calculation, which makes it possible to solve these problems and control the convergence 
criteria to increase the efficiency of the method. In the following section this method is 
described in detail. 

E.1.2. Reliability calculation based on Liu and Der Kiureghian Algorithm 

This method is a modified version of procedure presented by Hasofer and Lind (1974) to 
improve the convergence criteria by adding a line search scheme. The search direction for 
this algorithm is an extension of the gradient projection search direction described in the 
previous section. In the gradient projection algorithm, the starting trial point is located on the 
limit state and will be on the limit state for other iteration to the end. But the improved 
algorithm, starts outside of limit state and will converge to the point that is located on the 
limit state at the end.  The ordinary Hasofer and Lind approach uses the following iteration 
formula to find the design point 

1 iλ di i iz z+ = +             (E.12) 

where step size λi is set into one and the step direction vector di is estimated from: 
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In the improved version recommended from Liu and Der Kiureghian (1991), a new trial point 
is chosen in accordance with a step size obtained by using a merit function. The merit 
function is a function that its global minimum is located at the design point and the solution 
of this function in each iteration step converge to the design point. The step size is therefore 
specified in such a way that it minimizes the merit function, 

{ }λ argmin ( λd ) ( )i i i im z m z= + −             (E.14) 

Where the merit function m(z) should be defined in terms of z. In practice it is a feasible way 
to find a value λi so that the merit function is sufficiently reduced. The so-called Armijo rule 
provides such an approach whereby the step size is taken as bk,  k=1,2,… and 
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= + − ≤ ∇             (E.15) 

a is the positive user defined constant associated with Armijo-type line search schemes. It 
influences on how the user wants the merit function to decrease at each step. A typical value 
is 0.5. The following merit function is suggested to be appropriate for the reliability 
calculation, 
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where c is a positive constant. The step directional vector in this formulation has been given 
in such a way that it minimizes the merit function. 
 
According to this modification, the procedure for the reliability calculation is as follows: 

a. Transform the user-defined starting vector x in the original space (e.g., the mean 
values of random variables) into the vector u in the standard normal space in 
accordance with the following expression, 
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where Lo is the Choleski decomposition of the correlation matrix R0, which is 
calculated with,R0=L0 L0

T .The R0=[ρ0,ij] is the correlation matrix between random the 
variables in the Normal space and can be related to the correlation of the random 
variables in the original space, R=[ρ,ij], with the following expression, (Der 
Kiureghian and Liu, 1986). 
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The close form approximate expression to relate ρij into ρ0,ij is provided in Der 
Kiureghian and Liu (1986) for several probability distributions. This expression is 
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used in this section to obtain the equivalent correlation between each two random 
variables    

 
b. Transform vector u from standard normal space into x in the original space. 
c. Compute the gradient vector of the limit state function in the standard normal space, 
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                       (E.19) 

d. Estimate the step size λi in accordance with the maximum expression (E.15) and the 
merit function expression (E.16). 

e. Obtain the new iteration point by using the step size that is calculated with expression 
(E.15) in formulation (E.11). 

f. The calculation is continuing until convergence is achieved or the user-defined 
maximum of iteration is reached: 

E.2     MODIFIED PROGRAM FOR HYDRODYNAMIC LOAD CALCULATIONS  

To obtain the hydrodynamic loads on a jack-up platform, an improved version of the NOSDA 
program has been developed. The original NOSDA program (Liu and Massie, 1988) uses the 
Deterministic Spectrum Amplitude (DSA) for the simulation of the wave surface. In this 
method, the wave surface in each time step is computed by using the Airy wave theory with 
the uniformly distributed random phase, as, 

( ) [ ]
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= − + −∑                        (E.20) 

where ωi is a set of equally-spaced discrete wave frequency and ki is its associate wave 
number. εi is the random phase angle distributed uniformly in the range 0≤εi ≤2π. Moreover, 
x and y are the coordinates of a point in the horizontal Cartesian system and θ is the wave 
direction measured from x-axis. Ai is 
determined with the following expression,  

η= 2G (ω ) ωi iA ∆                               (E.21) 

where Gη(ωi) is the wave frequency 
spectrum, which is specified based on P-
M or JONSWAP spectra. This method is 
called the Deterministic Spectrum 
Amplitude (DSA).  But, as Grigoriu 
(1993), Morooka and Yokoo (1997) 
demonstrated, this approach does not lead 
to the Gaussian nature of the wave 
surface except for a high number of 
random phase combinations. Hence, for a 
limited number of phase combinations, 
they recommend to apply the random 
Rayleigh amplitude in addition to the 
random phase to represent better the 
Gaussian nature of the wave surface. 

Table E.1: Statistic characteristics of wave 
surfaces simulated in accordance with DSA and 
NDSA methods 

Significant wave 
height (HS) 

Stand. 
Dev. Skewness Kurtosis 

DSA 0.4837 0.0222 2.5333 
1.75 

NDSA 0.4350 -0.0021 3.0902 
DSA 0.9066 0.0212 2.5439 

3.25 
NDSA 0.8096 0.0007 3.0742 
DSA 1.3914 0.0089 2.5453 

5.00 
NDSA 1.2400 0.0007 3.0240 
DSA 2.1372 0.0113 2.5393 

7.75 
NDSA 1.944 -0.0018 3.0642 
DSA 2.8704 0.0298 2.5100 

10.45 
NDSA 2.6203 0.0137 3.0809 
DSA 4.2882 0.0459 2.5376 

16.10 
NDSA 3.9841 0.0094 3.0824 
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Therefore, the amplitude in this model is estimated with, 

2 2
1 2

η= 2G (ω ) ω
2

i i
i i

z z
A

+
∆                      (E.22) 

where z1i and z2i are two independent standard normal random variables. This model is 
known as the Non-Deterministic Spectrum Amplitude (NDSA) and is applied in the modified 
version of the NOSDA program. 
 
Table E1 shows the results of the statistical characteristics of the wave surfaces simulated in 
accordance with the DSA and the NDSA for combinations of 90 discrete wave frequencies 
(N) and totally 22 minutes simulation of time history.  The time step of simulation has been 
set into 0.25 second. A comparison of the statistic results for these two models indicates that 
the DSA is more non-Gaussian than the NDSA. Moreover, the NDSA satisfies the condition 
of wave simulation recommended by DNV (note 30.5, 2000) and would be an appropriate 
method for the hydrodynamic load calculation.  By using this irregular wave surface 
simulation and Airy wave theory, the water particle velocity and acceleration induced by the 
waves can be estimated for a specific point. The hydrodynamic loads are therefore calculated 
for the jack-up platform using the Morison equation. 

E.3     SYSTEM RELIABILITY, CRUDE AND MODIFIED FIRST ORDER MULTI 
NORMAL (FOMN) 

In chapter 3 it is shown that the reliability of series and parallel systems can be calculated in 
accordance with the probability content of a standard multi-normal distribution. The First 
Order Multi Normal (FOMN) concept can be applied to estimate the failure probability. This 
method, which was firstly proposed by Hohenbichler and Rachwitz (1983) and later modified 
by Tang and Melchers (1987), is essentially based on reducing the original multi-normal 
space by one through a multiplication of the conditional distributions and using the FORM 
approach to linearize the nonlinear term and estimate these conditional probabilities. 
According to this method, the probability content of a standard correlated normal vector X 
with n components can generally be estimated with, 

n

n i i
i 1

( β; ) βXR P X
=

 
Φ − = ≤ − 

 
∩              (E.23) 

where βi is the reliability index of ith component of β=[βi]and Rx is a positive definite 
correlation matrix of the vector X. The first step in FOMN is to transform the correlated 
standard normal vector X with the correlation matrix Rx =[ρij] into the uncorrelated standard 
vector U by the so-called Rosenblatt transformation. This linear transformation may be 
described by, 

X Uα=              (E.24) 

where α is the lower triangular matrix, of which its component is related to the component of 
the correlation matrix with the following expressions, 

 11 21 21 22 211  ,    ,  1α α ρ α α= = = −               (E.25) 

i1 i1                 i=3,4,...,n       α ρ=              (E.26) 
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j 1

ij ij ik jk jj
k=1

1/ 2
i-1

2
ii ij

j=1

          j=2,3,...,i-1    i=3,4,...,n 

1           

α ρ α α α

α α

−  
= −  

 


  = − 
 

∑

∑
            (E.27) 

By substituting the equations E.25-E27 into the expression E.23, the probability content can 
be calculated with the following expression. 

n n i

n i i ij j i
j=1i 1 i 1

( β; ) β β 0XR P X P Uα
= =

   
Φ − = ≤ − = + ≤         

∑∩ ∩             (E.28) 

The dimension of the multi normal probability can be reduced by one through the 
conditioning on U1≤ -β 1 as,  

( )
n i

n ij j i 1 1 1 1
j=1i 2

( β )1

( β; ) β 0 β βXR P U U P Uα
=

Φ −

  
Φ − = + ≤ ≤ − ≤ −     

∑ ��	�
∩            (E.29) 

It is noted that the probability content of the first term in the right hand side of this expression 
has one dimension less than original one and only depends U1. Furthermore, this conditioning 
does not affect U2, U3, etc, since all other variables are independent of each other. The 
conditional probability of equation E.29 can be estimated by using the following 
unconditional expression on U1 , 

l
n ni i

1ij j i 1 1 i1 ij j i
j=1 j=2i 2 i 2

β 0 β β 0P U U P U Uα α α
= =

      
+ ≤ ≤ − = + + ≤               

∑ ∑∩ ∩           (E.30) 

where l1U is required to be constrained for l1 1βU ≤ − . The conditional distribution function of 
U1 given that U1≤ -β1 can be obtained with, 

( ) 1 1
1 1 1

1

( ) / ( β ) ,     β
( ) β

1                    ,       β
u u

F u P U u U
u

Φ Φ − ≤ −
= ≤ ≤ − =  > −

            (E.31) 

Hence, l1U  can be determined with the following expression. 
 l l l1

1 1 11 1( β ) ( )   ,  βU F U U−  = Φ Φ − ≤ −                (E.32) 

Since in this expression any continuous distribution can be used to specify l
1( )F U , and in the 

FORM approach the normal probability distribution is of a more interest, the normal 
distribution is used to specify the F function, i.e. 

l l1
1 11( β ) ( )   U U−  = Φ Φ − Φ               (E.33) 

The expression E.29 can now be rewritten by using E.30 and E.33 as, 
n i

1
n i1 1 1 ij j i 1

j=2i 2

( β; ) ( ( β ) ( )) β 0 ( β )XR P U Uα α−

=

  
Φ − = Φ Φ − Φ + + ≤ Φ −     

∑∩                 (E.34) 
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The first term in the right hand side of this equation is a non-linear function with one-
dimensional space less than the original one. The next task is to linearize each of the non-
linear terms (limit state function) at the “design point” in the U space by using a FORM 
approach. Typically this approximation for the ith term of equation E.34 gives 

i i
1 (2)

i1 1 1 ij j i ij j i
j=2 j=1

( ( β ) ( )) β 0 γ β 0     i=2,3,...,nP U U P Uα α−
    

Φ Φ − Φ + + ≤ ≈ + ≤         
∑ ∑        (E.35) 

where γij are the direction cosines and βi
*=βi

(2) is the distance of origin to the limit state 
function at the design point determined by the FORM approach. The above intersection of the 
(n-1) hyperplane in the U space can be recast in the original correlated X space using the 
second moment algebra, so that it becomes, 

n i
(2)

n ij j i 1
j=1i 2

n
(2) (2)
i i 1

i 2

(2) (2)
n-1 1

( β; ) γ β 0 ( β )

                  β ( β )

                  ( β ; ) ( β )

X

X

R P U

P X

R

=

=

  
Φ − = + ≤ Φ −     

 
= ≤ − Φ − 

 
= Φ − Φ −

∑∩

∩              (E.36) 

where RX
(2) contains the correlation between any two linear hyperplane. Repetition of the 

whole process for the first term of the right hand side of the expression E.36 for (n-1) times 
eventually produces the multiplication of (n) normal distributions, as 

 (2) (n)
n 1 2 n( β; ) ( β ) ( β )...( β )XRΦ − ≈ Φ − Φ − −              (E.37) 

which shows that the multinormal probability content can be approximated into 
multiplication of (n) times normal probabilities. The procedure explained in this section 
shows the general concepts of FOMN approach.  
 
In the provided computer program for crude-FOMN, the FORM method has been applied to 
estimate the values (β2

(2), β3
(3),…, βn

(n)) and the linear limit state functions in expression E.35. 
Fortunately the first term in this expression is the only non-linear and hence it is possible to 
recast this in a two dimensional (U1,V) space. Thus, if the linear space (U2,U3,…,Un) is 
condensed into a V space, an equivalent limit state function in (U1,V) may be given with, 

1 i 1 2 i i( , ) ( ) β 0                       i=2,3,...,ng U V h U Vρ α= + + =                  (E.38) 

where 
i

2 1/ 2 1
i1 2 i1 1 1 1 i ij j 2

j 2
 ; (1 )   ;  ( ) ( ( β ) ( ))  ;  /h U U V Uρ α α α α α−

=

 
= = − = Φ Φ − Φ =  

 
∑          (E.39) 

The purpose is now to determine the linear limit state and the minimum distance of the origin 
to the limit state function (βi

*=βi
(2) ) at the design point. The search for the minimum distance 

βi
* in the equation E.38 can be reformulate into the following form, 

* 2 2 2
i 1 imin (β ) +           i=2,3,...,n U V=                (E.40) 

subject to  



Appendices 
___________________________________________________________________________ 
166 

1 ig ( , )=0U V              (E.41) 

After substituting Vi from E.39 into E.40, the minimization form becomes, 
* 2 2 2 2
i 1 i 1 2 min (β ) +(β + ( )) /  U h Uρ α=              (E.42) 

The minimization is equal to the finding of the root of the following equation,  
* 2 2

1 i 1 1 2 1 i 1 1G( ) (β ) / ( ) 0   or    G( ) α (β + ( )) '( ) 0U d d U U U h U h Uρ= = = + =             (E.43) 

where h’ (U1) is the derivation of h(U1).The shape of G(U1) is almost flat and the root can be 
obtained easily with one of the typical approaches. In our computer program, the Newton-
Raphson method has been applied to determine this root. In accordance with this method, the 
iteration procedure becomes finding the U1 with the following expression,  

1
1 1 1 1G( ) / G'( )k k k kU U U U+ = −              (E.44) 

where G’(U1) is the derivation of G(U1). This algorithm is fast and stable and in many cases a 
limited number of iterations are necessary to converge to U1

*. After obtaining U1
* and 

substitution in the expressions E.41, and E43, Vi
* and βi

* can be calculated. It should be kept 
in mind that the new correlation matrix RX

(2) should be determined in the U space and not in 
(U1,V) space, since the dimensions of the linear space vary. By using the expression E.39, the 
coefficients of the linear limit state function in expression E.35 can be calculated. This 
procedure can be continued to find the whole of the values β required in the expression E.37. 
 
The error may sometimes be quite significant in the case of a high correlation in X or high 
dimensions due to the linearization of the non-linear limit state function in expression E.35. 
Therefore, this requires a better approximation for the probability calculation, which is 
termed as an improved-FOMN. This method is essentially based on improving the calculation 
method for the conditional distribution of expression E.29. Instead of using expression E.31 
for the conditional distribution, the exact probability is estimated through the bivariate 
normal integral. Recalling the conditional probability in expression E.29 and carrying out a 
reverse Rosenblatt transformation, the following expression for conditional distribution can 
be derived. 

( )

( ) ( )

i

i, imp ij j i 1 1 i i 1 1
j=1

i, imp i i 1 1 1 1

i, imp 2 1 i i1 1

β 0 β β β

= ( β ) ( β ) / β

= ( β , β ; ) / ( β )

P P U U P X X

P P X X P X

P

α

ρ

 
= + ≤ ≤ − = ≤ − ≤ − 

 
≤ − ∩ ≤ − ≤ −

Φ − − Φ −

∑
           (E.45) 

where Φ2 ( ) is the bi-variate normal probability distribution. By using this formulation, the 
improved-FOMN probability can be estimated with the following expression, 

n i
(2)

n ij j i, imp 1
j=1i 2

( β; ) γ β 0 ( β )XR P U
=

  
Φ − = + ≤ Φ −     

∑∩              (E.46) 

where (2) 1
i, imp i, impβ ( )P−= − Φ and the rest of the procedure is identical with the crude-FOMN 

approach.  
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E.4     CYCLE COUNTING: PEAK AND RAINFLOW COUNTING METHODS 

In fatigue reliability calculation, the stress range needs to be specified. In this research work 
two peak and rainflow counting methods are applied. For this purpose, two computer 
programs have been extended based on the peak counting method described in Madsen et al. 
(1986) and the rainflow counting method given by Downing and Socie (1982). At first the 
time history of the hot spot stress process is calculated based on the multiplication of the 
nominal stresses calculated by a FEM and the Influence Factors given in appendix D.  
 
For the peak counting method, a local maximum of the stresses is then calculated and paired 
with a local minimum of the same size and the equivalent stress history is obtained. 
Furthermore, the local maxima and minima are paired to form the stress range independent of 
their relative location in the stress history.  Finally, a specific distribution function (Weibull) 
is fitted on the estimated stress ranges. 
 
In the rainflow counting method, the hot spot stress history is firstly converted into series of 
peaks and troughs. The interest of this method is the stress range, which specified as the 
difference in stress between a peak and the next trough. An overall range is therefore 
specified as the measure between a peak and a trough that is not in the next one but is in the 
one that occurs later, or between a trough and a later peak. This procedure is presented by 
Downing and Socie (1982) in detail. The base is on the one-dimensional vector array to keep 
track of those peaks and troughs, which have not formed a closed loop. In other words, once a 
closed loop has been determined, the peak and trough associated with it can be eliminated 
from the vector.  The following steps show the procedure of the rainflow counting calculation 
when X is the range under consideration and Y is the previous range adjacent to X. At first the 
peaks and troughs should be rearranged to begin and end with the maximum peak or 
minimum trough and put them into a vector. 

1. Read the (next) peak or trough in a vector, if it reaches the end of data stop the 
calculation. 

2. Form ranges X and Y by reading the data from the first step. 
3. Compare ranges X and Y: 

a. If X<Y, go to step 1 
b. If X≥Y, go to step 4 

4. Count the range Y, discard the peak and trough of Y and finally go to step 2. 
 
According to this procedure a computer program has been developed to calculate the stress 
range in the specific hot spot points of the bracing/chord intersections. The Weibull 
distribution is fitted on the stress range and the characteristics of the distribution have been 
utilized in the fatigue reliability calculations to estimate the reliability index.  
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Appendix  F Calculation procedure of Correlation between limit 
state functions  

In the system reliability calculations, the correlation between series and parallel systems 
should be included. This correlation has been established in accordance with the correlation 
between the random variables individually and the contributions of the random variables in 
the limit state functions. In a real situation, most of the random variables such as fatigue 
characteristics (m), initial crack size (a0), fracture parameter (KIQ) of one element may have a 
spatial correlation with another element but in this investigation this spatial correlation has 
not been considered. Only the stress model correction (δS) is assumed to have a spatial 
correlation, which is determined with the available time history of the hot spot stress process. 
In the following sections, the method applied to specify the correlation between parallel and 
series systems are presented. 
 

I.1 Correlation of a parallel system 

To calculate the failure probability of the sequence of fatigue failures in the end joints of 
member 296 followed with 298 at the hot spot points 270, see figure 5.3, the correlation 
between the elements of parallel systems have to be determined, as well as the equivalent 
failure probability. The general expression of the fatigue failure of the first joint in the term 
of the fatigue limit state function is given as follows,  

 J1J1

J1 J1 J1 J1 J1
0 J1

J1
J1 J1 J1

1 0, J1 , J1 1
1 1 1

1

( , , , , , , , )
( ) ( )ν (1 )

thatf
f th Y tf J F S SCF lifetimem m maml m m m

YJ J JF S SCF
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dag a a C T
m Y a aC A
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δ πδ δ δ
= −

Γ +
∫     (F.1) 

 If the FORM approach is used to calculate the failure probability, the tangent hyperplane 
approximation on the limit state function of the first joint failure in fatigue (296E270) can be 
given in accordance with the following expression, 

 
8

1 1
1
α +βf i i

i
g U

=

= −∑                 (F.2) 

In the expression of the second joint failure (equation 5.7), some of the random variables of 
the first joint failure are also included. Therefore, the first eight random variables will be the 
same as for the first joint failure and the other nine random variables belong to the second 
joint failure. However, the last random variable belongs to the stress uncertainty of the 
second joint failure following the first joint failure and is correlated to the stress uncertainty 
in the first joint failure and second joint failure. The general expression for the second joint 
failure is as follows, 
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Figure F.1: Correlation between the first 
and the third cut set  
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This expression can be written in the standard normal space in accordance with the FORM 
approach as, 

8 16

2 1 17 17 2
1 9
γ - γ -γ +βJ fJ i i i i i

i i
g U U U

= =

= −∑ ∑                 (F.4) 

Now, the correlation between these two linear limit state functions can be estimated as, 

 1 2 1
1 2 1

1 2 1

,
, fJ J fJ

fJ J fJ
fJ J fJ

Cov g g
g g

D g D g
ρ

    =        
               (F.5) 

Where D[ ] shows the standard deviation of the limit state function. Since the standard 
deviation is equal to one for the limit state function, it is only required to calculate the 
covariance between two limit state functions. The covariance between these two limit state 
functions can be estimated with the following expression, 

8

1 2 1 7 15 7 15 7 17 7 17
i=1

, α γ α γ  [ , ] α γ [ , ]fJ J fJ i iCov g g Cov U U Cov U U  = + +  ∑             (F.6) 

In this expression U7, U15 are related to the stress uncertainty in the first and second joint 
(δsJ1, δsJ2) respectively, and U17 corresponds to the stress uncertainty of the second joint 
when the first joint has failed (δsJ2fJ1). The correlation between these uncertainties can be 
estimated based on the stress time history of the hot spot stress processes. These correlations 
are in the standard space, therefore the method described by Der Kiureghian and Liu (1986) 
is applied to change the correlation from the non-normal (here lognormal) space into the 
normal space.  
 

I.2 Correlation of series system 

When the failure probabilities of the parallel systems have been calculated, the final system 
reliability can be obtained in accordance with the combination of the series system. At first, 
the equivalent linear safety margin has been derived for parallel systems, using the method 
described in Gollwitzer and Rackwitz (1983). In this method, the equivalent safety margin of 
the equal element is obtained in such a way that 
the corresponding reliability index of this 
element is equal to the final parallel system and 
has the same sensitivity as the parallel system 
against changes in the basic variables. There 
are 17 random variables for each equivalent 
safety margin. The final system reliability is 
obtained by combining these limit state 
functions and the correlation between the 
random variables. For instance, the correlation 
between the first and third cut set shown in 
figure 5.4 can be estimated in accordance with 
the linear limit state function, see figure F.1.  
The linear equivalent limit states are defined 
with the following expressions. 
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17

1 i i 1
i=1
ξ βC Cg U= − +∑   , 

17

3 i i 3
i=1
η βC Cg U ′= − +∑                (F.7) 

The correlation between them can be estimated with the following expression. 
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              (F.8) 

where ξ and η are the equivalent cosine direction of the random variables estimated for the  
equivalent first and second cut set respectively in 
accordance with the method presented by Gollwitzer 
and Rackwitz (1983). In this expression, the stress 
uncertainties have been assumed to be the only 
variables that have a correlation with each other in the 
intact and damage states and the other terms are 
independent. The covariances between the variables 
are obtained using the time history of the stress 
processes. When in the failure sequences some 
elements of other failure sequences are included, for 
instance the first and second cut sets in the figure 5.4, 
the covariance between equivalent limit states have to 
be modified and calculated in such a way that this 
correlation can be taken into account. For this case, 
the covariance between two cut sets can be calculated 
with the following expression, see figure F.2,  
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Cov U U Cov U U

′ ′= + +

′ ′ ′ ′+ + +
′ ′+ +

∑∑ ∑ ∑
           (F.9) 

The same procedure has been applied for the sequences of failures in a combination of 
fatigue and other failure modes i.e. fracture and ultimate limit states with regard to their 
common and correlated random variables. In the ultimate limit state only the usage factor and 
in the fracture limit state only the primary stress has been considered as a correlated variable 
with the stress uncertainty in the fatigue limit state function. 
 
 
 
 
 
 
 
 
 
 

Figure F.2: Correlation between the first 
and the second cut set  
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Appendix  G Modelling of random variables  

There are several sources of uncertainty in jack-up platform. Some of them are random in 
nature (physic) and others are due to restricted information (measurement and statistical 
uncertainty) or modelling of actual phenomena (load and structural modelling). The wave and 
hydrodynamic loading characteristics (significant wave height, drag and inertia coefficient), 
the structural material properties (yield and ultimate stresses, Young modulus), structural 
dimensions (thickness, diameter, length), fatigue parameters (C and m) and fracture 
parameter (KIC ) are examples of physic uncertainty.  This type of uncertainty is measured by 
collecting information from tests or environmental data.  Due to restricted information or the 
method applied to measure the quantity, statistical and measurement uncertainties are used in 
the calculation.  For instance, the approximation of a structural model in a finite element 
analysis, the wave load modelling and the calculation of stress concentration factors are 
considered in the model uncertainty. The uncertainty is represented with a random variable. 
There is limited information about the model uncertainty for jack-up platforms. Therefore, 
some of the model uncertainties have been taken from other offshore platforms (jacket 
platforms). However, these models should be modified to reflect the real situation of jack-up 
platforms. This concerns the load model, stress concentration and stress calculation. 
 
The uncertainty in the long-term environmental data can be described with the joint 
distribution of the significant wave height and zero crossing period in the form of a scatter 
diagram based on recorded data at a particular location. This can also be represented in terms 
of a marginal distribution for significant wave height and a distribution for zero-crossing 
periods conditional on the significant wave heights, as given in appendix C. For a stress range 
in fatigue reliability calculations, this uncertainty is described by the Weibull distribution 
with a scale parameter A and a shape parameter B, see section 2.3.4.  
 
Uncertainty in the load calculation (δF) is composed of contributions from wave load 
calculations, which partially arise from the inertia (CM) and drag terms (CD) in the Morison 
equation, the use of a simplified wave theory (Airy), and finally from the external loads (live 
and dead). Since there is little information about these variables, the lognormal distribution 
with a mean 1.0 and the COV=0.1 are used in this research work, as recommended by Dalane 
(1993) for jacket platform.  
 
According to the DNV specification, (notes 30.2, 1984) it is recommended to use a normal 
distribution for lnC in which its mean being –29.84 for an element in air or in the case of 
cathodic protection, and a standard deviation of 0.55.  Moreover, m is supposed to be 
deterministic parameter with the value 3.1. For an element in seawater without cathodic 
protection, the mean and standard deviation of lnC in accordance with this specification are –
31.01 and 0.77 respectively, and m is set to 3.5. Due to restricted information about the 
fatigue characteristics of the high tensile steel material used in the jack-up platform, the 
values recommended by the DNV specification are applied. 
 
Data on probabilistic types of initial weld defects in jack-up platforms are rarely reported in 
the literature. More detail about this random variable is given in section 2.4.1. The initial 
crack depth is taken as the exponential distribution with a mean value of 0.11 mm, Bokalrud 
and Karlsen (1982).  
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Usually a random geometry correction factor δY is used in the reliability analysis to consider 
uncertainties arising from simplifications, crack coalescences and weld geometry effects.  
The statistics of δY is assumed invariant to crack size, which implies that the geometry 
function YA (a) can be randomized by simply multiplying by δY. In the literature, this random 
variable is usually modelled as a normal variable with a coefficient of variation in the range 
0.05-0.20 (Dalane, 1993, Hovde, 1995, Shetty 1992). In the present study, the geometry 
function is modelled in accordance with the Newman and Raju (1981) method and by adding 
the empirical correction term given by Smith and Hurhworth (1984). δY is therefore modelled 
as the normal distribution with the coefficient of variation 0.1. 
 
The uncertainty in the stress concentration factor (δSCF) arises from the discrepancy between 
the parametric formula and the measured SCF. The lognormal distribution is usually applied 
to specify with the mean value equal 1.0 but there is a scatter in the coefficient of variation 
reported in the literature ranging from 0.05 to 0.25, (Aghakouchak and Stiemer, 2000; 
Dalane, 1993; Shetty 1992). Since there is not sophisticated information about this variable 
for jack-up platform, the value recommended by Dalane is used, COV=0.1.  
 
The stress model (δS) is presented in the fatigue analysis to take into account the uncertainty 
in the stress calculations due to the simplification of the actual model in FEM, the soil-
structure interaction, and any other uncertainty in the structural aspects. In the literature the 
uncertainty in this variable is sometimes combined with the load model, (Shetty, 1992, 
Aghakouchak and Stiemer, 2001).  As the load model, usually the lognormal distribution is 
used to describe the probability distribution of this random variable with the mean value 1.0. 
Dalane (1993) recommended to use the coefficient of variation of 0.1 to specify this random 
variable. Because reliable data about this random variable for the jack-up platform are 
lacking a value of 0.15 is taken for this variable because of the simplification of the leg 
elements in applied FEM model. Only this variable is assumed for the spatial correlation in 
the stress model of the jack-up platform and its correlation is estimated in accordance with 
the time history of stress process.  
 
The fracture toughness (KIC) is usually obtained from tests on simple specimens and a 
considerable scatter is generally observed in the test results. Furthermore, the fracture 
toughness may be affected by the plate thickness, the stress state, the temperature and the 
place where the sample is taken (weld metal, heat affected zone or parent metal). Usually, the 
lognormal distribution is recommended in the literature (Shetty, 1992, Marley, 1991, Hovde, 
1995) to specify the uncertainty in the fracture toughness. The coefficient of variation 
between 8 to 25% is reported based on the literature review performed by Marley (1991). 
However, the range between 20 and 30% is also reported by Shetty (1992). Herein the 
coefficient of variation 0.25 is assumed for the fracture toughness.  
  
The mean values reported for the linear-elastic fracture toughness ranges from 2800 to 7000 
MPa√mm (Shetty, 1992, Hovde, 1995). Due to limited available information for the fracture 
toughness of high strength steel material used in the jack-up platform, the relationship 

IC ICσ δYK E= is applied to specify the mean value of the fracture toughness with the crack tip 
opening displacement δ=0.3 and the mean value of the yield stress σY=689 MPa. Therefore, 
for this study the mean value KIC is assumed to be 6500 MPa√mm. This fracture toughness  
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As the other material parameters, the uncertainty in yield stress (σ Y ) arises from many 
sources such as manufacturer, the thickness of plate and fabrication procedure. The total 
uncertainty is therefore a function of the variability within each batch and variability between 
batches. Usually the lognormal distribution is used to model this uncertainty (Shetty, 1992). 
The coefficient of variation ranges from about 0.05 to 0.12 depending on the plate thickness 
and nominal yield stress. To be consistent with the data used by Daghigh (1997) for the Neka 
jack-up platform the yield stress is assumed lognormal with mean 689 MPa and coefficient of 
variation 0.08.  
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Appendix  H Long-term failure probability  

In chapter 4, the failure probability is calculated for the extreme (wave) environmental loads 
using the design storm approach. This method incorporates some uncertainty in the reliability 
calculation due to the random nature of the extreme wave that may occur during the lifetime 
of platform. In the following section an approximation is made to estimate the long-term 
failure probability.  
 
The stress distribution for a member within one sea state is given by the Weibull distribution 
according to section 4.5.2. The structure is loaded by a sequence of sea states during the 
lifetime. The failure occurs due to the maximum peak stress in one of the heavy sea states. If 
we follow the Turkstra’s rule, it is possible to assume that the failure occurs in the sea state 
with the highest significant wave height in the lifetime, and not in other sea states.  A small 
error may be made by this assumption. But, the Turkstra rule is convenient, as we only need 
to consider HS as an ordinary random variable with a distribution corresponding to the 
maximum in the lifetime (20 years).  
 
At first, the significant wave height and its corresponding zero crossing period for the 1000-
years return period is calculated based on method given by Winterstein et al. (1993). The 
estimated significant wave height and its corresponding zero crossing period are 18.668 (m) 
and 12.162 (s) respectively. For this condition the hydrodynamic loads are calculated with the 
NOSDA program and the structural analysis is carried out by ANSYS program (FEM 
analysis) to estimate the axial and bending stresses. In table H.1, the calculated reliability 
index in accordance with this wave height and corresponding ultimate limit state are given. 
 
Now, the conditional reliability indices β1 and β2 for two sea states with given fixed values of 
the significant wave height are available. For example consider the chord element 53, where 
β1=2.189 in case the significant wave height is 18.7 m (HS1) with a corresponding return 
period of 1000 years. The encounter probability in the 20 years lifetime of platform for this 
significant wave height can be calculated with the following formulation, Chakrabarti (1987), 

11 (1 )E
R

lP
T

= − −                                          (H.1) 

where TR is the return period (here 
1000 years) and l is the given duration 
(here 20 years ). 
The encounter probability according to 
this formulation is PE1=0.0198. For 
other sea state with β2=3.861 the 
significant wave height is 16.1 m    
(HS1) and the corresponding return 
period 50 years. The encounter 
probability for this significant wave 
height is PE2=0.332. So, β can be 
written as a function of HS or PE. The 
best way is to write β as a function of 
the standard normal random variable u 

Table H1:  The conditional and unconditional (long-
term) reliability indices  

Design storm 
Element 

Hs=16.1 
(50 years) 

Hs=18.67 
(1000 years) 

Unconditional 
(Long-term) 

296 6.689 5.325 5.401 

295 8.762 7.323 6.846 

52 3.948 2.547 3.273 

53 3.861 2.189 3.001 



Appendices 
___________________________________________________________________________ 

175

corresponding to PE = Φ(u). From PE1 = Φ (u1) follows u1 = -2.058 and from PE2 = Φ (u2) 
follows u2 = -0.433. Now, the limit state function to find the long-term reliability index can be 
formulated with, 

ν  -Z β=                                  (H.2) 

where ν is a standard Gaussian random variable and β is given by the following expression. 

1
1 2 1

2 1

-- ( - )
-

u u
u u

β β β β=                                  (H.3) 

In this formulation u is the random variable, which is directly related to the encounter 
probability. In this model, it is supposed that the sea state that is encountered during the 
lifetime of the platform has a random nature and this model incorporates implicitly this 
randomness. Furthermore, the actual variation of the reliability index with the encounter 
probability is of a non-liner manner, however, this linear model will impose some 
approximation to the exact value but it may be suggested as the first approximation. The 
following standard rules can be applied to estimate the mean and the variance of Z. 

1
1 2 1

2 1
2

2 2 1

2 1

µ ( ) - ( - )
-

-σ ( ) 1
-

uZ
u u

Z
u u

β β β

β β

=

 
= + 

 

                                 (H.4) 

This mean and variance leads in the end to the following unconditional reliability index. 

1 2 2 1
2 2

2 1 2 1

-µ ( )
σ ( ) ( - ) ( - )

l o n g
u uZ

Z u u
β ββ

β β
= =

+
                              (H.5) 

The calculated long-term reliability index for several elements (and approaches) is given in 
table H1, which shows that the long-term reliability index is less than the 50 years return 
period.  
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Appendix  I Failure probability for combined fatigue and 
fracture failure modes  

In section 5.4, several combinations of fatigue and fracture have been assumed for system 
failure probability calculation. In this appendix, the methods for calculation of the failure 
probability for these sequences are presented in detail. 
 

I.1 Fatigue failure of the first joint followed by a fracture failure of the second joint 

The first joint failure takes place through the fatigue degradation and is followed by the 
fracture failure of the second joint. For the first joint failure, the failure probability is 
calculated with the fatigue limit state function when the critical crack size is the thickness of 
element. This method is presented in section 4.3.2 in detail, where the bending to membrane 
stress ratio is estimated from the time history of the hot spot stress process. The limit state 
function for the first joint failure in fatigue is, 

 11

0 1

1 1 1 1

1
1 1 1

1
ν (1 ) ( )( )

th JJ

J

J J J J

atf
lifemaml m m m m

J J JF S SCF Y
J

daZ T
mC A Y a a

B

δ

δ δ δ δ π
= −

 Γ +  
∫               (I.1) 

The failure probability P [Z1≤ 0] is determined by FORM. For the second joint failure the 
limit state function is given by (4.16), 

2 6 , J2 , J2 , J2 J2 J2
2 , J2 , J2

, J2

( ) ( )
[1 0.14 ][0.3 0.7 exp( 0.65 )]

p s
Y F SCF

r r c
IC

Y a a
Z L L

K
δ π δ δ σ σ

ρ
+

= − + − − −             (I.2) 

Also, the failure probability P [Z2 ≤ 0] is determined by FORM. In this expression, it is 
assumed that a crack occur due to fatigue degradation and its dimension a (t) can be 
determined from the crack growth formulation (5.24) for the second joint as,  

J2 J2 J2
0  J2

J2

J2 J2fJ1 J2

( )
2 2 2 1

2

2 1 2 2 1 1
2 1

ν (1 )
( ) ( )

                   +ν (1 )( )

a t l m m m m
J F S SCF J J Jm m ma JY

l m m m m
J fJ F S SCF J J fJ life J

J fJ

da mC A T
BY a a

mC A T T
B

δ δ δ
δ π

δ δ δ

= Γ +

Γ + −

∫
                (I.3) 

In this expression, TJ1 should be specified. Since, it is supposed that the first joint failure 
occurs in fatigue, TJ1 can be obtained from fatigue crack growth formulation (5.3), where the 
critical crack size (acr J1) is equal to the thickness of element.  
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1
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1
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cr JJ

J
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J mal m m m m m

J J JF S SCF Y
J
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mC A Y a a

B

δ

δ δ δ δ π
=

 Γ +  
∫               (I.4) 

Now, we use MCS to simulate TJ1. However, only the values less than Tlife should be selected 
to confirm that the failure of the first joint occurs before the second one (conditional 
expression in equation 5.25). The design point estimated in the FORM approach for the 
failure probability calculation of the first joint can also be applied to improve the simulation. 
Finally, the lognormal distribution is used to specify the probability distribution of the crack 
size, in which its mean and standard deviation are obtained from simulation. By substituting 
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the statistical characteristics of a random crack into the fracture limit state function (I.2), the 
failure probability can be determined using the FORM approach. The failure probability of 
the failure sequences is therefore a multiplication of the conditional probability (I.2) for the 
second joint failure in fracture and the probability of the first joint failure in fatigue,  
Pf seq=P [Z1≤ 0] ×P [Z2≤ 0]. 

I.2 Fracture failure of the first joint followed by a fracture failure of the second joint 

This failure scenario is more complex than the first one, however, the method is almost the 
same.  The first joint failure takes place through fracture failure and is followed by a fracture 
failure of the second joint. To calculate the first joint failure in fracture, the method described 
in section 4.6 is employed here. The limit state function for the first joint failure in fracture is, 

2 6 , J1 , J1 , J1 J1 J1
3 , J1 , J1

, J1

( ) ( )
[1 0.14 ][0.3 0.7exp( 0.65 )]

p s
Y F SCF

r r c
IC

Y a a
Z L L

K
δ π δ δ σ σ

ρ
+

= − + − − −             (I.5) 

where the crack size (a) is specified in accordance with the fatigue crack growth expression 
as explained in section 4.6. The failure probability P [Z3≤ 0] is determined by FORM. Almost 
the same approach described in section I.1 is used for the second joint failure in fracture. The 
difference is in the critical crack size in expression I.4. Since the first joint has failed due to 
the combination of a crack and extreme environmental loads, the crack size should be 
reached to a critical size in the fracture expression (4.16), i.e. 

( )2 6, J1
, J1 , J1

, J1 , J1 , J1 J1 J1

( ) [1 0.14 ][0.3 0.7exp( 0.65 )]
( )

IC
r r cp s

Y F SCF

K
Y a a L Lπ ρ

δ δ δ σ σ
= − + − −

+
             (I.6) 

 Hence, the expression I.6 is used to simulate the critical crack size for the first joint failure. 
Now, the MCS is used to simulate the crack size in expression I.6 and apply it in expression 
I.4 to calculate TJ1. Only the values less than Tlife is selected in simulation to confirm that the 
failure of the first joint occur before the second one. By repeating several times this 
procedure and substituting in the expression I.3, the statistical characteristics (mean and 
standard deviation) of a crack size for the second joint can be obtained. The failure 
probability of the second joint failure in fracture can now be calculated with the FORM 
approach and using the limit state function I.2, where the statistics of crack size are estimated 
from the fracture formulation (I.6). The failure probability of the failure sequence can finally 
be computed by multiplying the first and second probability determined in the FORM 
approach, i.e. Pf seq=P [Z3≤ 0] ×P [Z2≤ 0]. 
. 

I.3 Fracture failure of the first joint followed by a fatigue failure of the second joint 

The calculation procedure for this failure scenario is similar to the method described in 
section I.2. The difference is on the second joint failure. The first joint failure probability is 
similar to the method described in section I.2. For the second joint failure in fatigue, the 
expression 5.8 is utilized again to specify the limit state function, but some modification 
should be applied into TJ1 to account the fact that the failure of the first joint occur in fracture. 
Rewrite the fatigue limit state of the second joint failure as, 
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            (I.7) 

since the first joint has failed in fracture, the critical crack size in expression I.4 should be 
reached to a critical size of the fracture expression. Therefore, the expression I.6 is used to 
simulate the critical crack size in accordance with the method described in section I.3. By 
substituting the estimated statistical characteristics of the critical crack size in the expression 
I.4 and combining with formulation I.7, the second joint failure probability in fatigue can be 
obtained. However, it should be kept in mind that the values of the crack size, which makes 
TJ1 less than Tlife, are selected in the simulation to confirm that the first joint failure occurs in 
fracture. The failure probability for the second joint failure P[Z4≤ 0] can finally be obtained 
by using FORM approach. In the end, the probability of the sequence for this failure scenario 
can be computed by multiplying the probability of the first joint failure in fracture, P [Z3≤ 0] 
and the second joint failure in fatigue P [Z4≤ 0], i.e. Pf seq=P [Z3≤ 0] ×P [Z4≤ 0]. 
. 
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Samenvatting 
 

Lange duur betrouwbaarheid van jack-up platforms, het effect van vermoeiing, breuk en 
extreme belastingen op de constructieve betrouwbaarheid 

 
Zelfheffende platforms werken op zee onder wisselende omstandigheden. Een voorbeeld is 
het verschil in locaties waar de platforms worden ingezet, waardoor niet alleen de waterdiepte 
varieert maar ook de weersomstandigheden en de bodem condities kunnen veranderen. Een 
verandering in de boordiepte leidt eveneens tot andere beladingscondities. Om een 
betrouwbare voorspelling van de levensduur van de zelfheffende platforms te kunnen maken 
is inzicht nodig in de factoren die daar invloed op uit kunnen oefenen. Een zelfheffend 
platform is meestal samengesteld uit drie poten die een horizontale doos constructie (het 
platform) ondersteunen. In en op het platform zijn onder meer de verblijven, installaties voor 
energieopwekking, machines, installaties en uitrustingen voor het boorbedrijf of de 
productiefaciliteiten, de opslag voor boorpijpen en casing en voorraden ondergebracht. Het 
zelfheffende platform verschilt qua constructie fundamenteel van vaste of drijvende offshore 
installaties op zee. De vraag naar meer flexibiliteit, onder meer bij de ontwikkeling van de 
zogenaamde marginale velden, maakt de inzet van zelfheffende platformen attractief  voor 
toepassingen als productie-eenheid in dieper waters. 
 
Het onderwerp van dit onderzoek is de betrouwbaarheid van zelfheffende platforms met het 
doel de mogelijkheden voor de verlenging van de levensduur te onderzoeken. Dit deel van 
het onderzoek concentreert zich op de constructie waarbij vermoeiing, breuk en het falen als 
gevolg van extreme belastingen een rol spelen. Daarbij speelt de onzekerheid, bijvoorbeeld 
als gevolg van de belastingen, maar ook materiaal eigenschappen en het modelleren van de 
constructie een rol. Deze onzekerheden worden onderzocht omdat een deterministische 
benadering, die bij het ontwerp onontbeerlijk is, hierbij geen oplossing kan bieden.  
 
Voor het berekenen van de betrouwbaarheid wordt een methode voorgesteld die gebaseerd is 
op een verfijnde methode voor het bepalen van de spanningen in een constructie. Het 
bezwijken van een constructie kan bijvoorbeeld het gevolg zijn van een breuk in een 
onderdeel ten gevolge van extreme belastingen in combinatie  met  een reeds bestaande 
imperfectie in een onderdeel als gevolg van het fabricage proces of vermoeiing. 
 
Om statistische gegevens over de scheur te verkrijgen wordt de zogenaamde Monte Carlo 
Simulatie techniek gebruikt, waarmee de groei van de scheur als gevolg van vermoeiing kan 
worden bepaald. 
 
Voor het bezwijken van de constructie onder extreme belastingen worden de axiale en buig 
spanningen in een onderdeel van de constructie gecombineerd om de ‘time history of the 
usage factor’ te bepalen.  
 
Het effect van de redundantie van de constructie is onderzocht door kans op bezwijken voor 
de combinaties van verschillende vormen van bezwijken te onderzoeken door de vergelijking 
van de waarschijnlijkheid daarvan voor elkaar opvolgende verschillende vormen van breuk, 
onder meer als gevolg van bij extreme belastingen. Daarbij is gebruik gemaakt van 
verschillende technieken die bij de bepaling van de betrouwbaarheid van constructies worden 
gebruikt en die geschikt zijn gemaakt voor de condities die voor zelfheffende platformen van 
toepassing zijn.   
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