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Introduction
This thesis is based on a preprint by Pierre Portal [Por12].

This thesis is about Hardy spaces and in particular the Gaussian Hardy spaces. Here
we replace the Lebesgue measure with the Gaussian measure i.e.,

dγ(x) = π−
d
2 e−|x|

2

dx for x ∈ Rd.

The ultimate goal is to build an equally rich theory as in the Lebesgue measure case.
There is an abundance of equivalent definitions for the Hardy spaces on (Rd, | · |).

We will only name the few of them that are relevant for this thesis. The first one is the
atomic Hardy space H1

at(R
d). Here an atom is a complex-valued function a defined

on Rd which is supported on a cube Q and is such that∫
Q

a(x) dx = 0 and ‖a‖L∞(Rd) 6
1

|Q| .

The space atomic H1(Rd) denoted by H1
at(R

d) is defined by

H1
at(R

d) :=

∑
j

λjaj : aj atoms, λj ∈ C,
∑
j

|λj | <∞


with norm

‖f‖H1
at(R

d) := inf

∑
j

|λj | : f =
∑
j

λjaj

 .

This definition is equivalent to some maximal function Hardy spaces and some conical
square function Hardy spaces but more about those later on.
There are now important questions one can ask. What is the dual space? It is

know that this is BMO(Rd). Furthermore the Calderón-Zygmund operators are not
bounded on L1(Rd). We do have that the operator is bounded on weak L1. This
is sometimes enough but a downside to this space is that it is not a Banach space.
Luckily we do have boundedness on H1(Rd)! It can be shown that the atomic space
H1

at(R
d) is a proper subspace of L1(Rd).

We could now try to replace the Lebesgue measure with the Gaussian measure
and try to mimic all arguments. However, this quickly fails. Many of the covering
arguments in harmonic analysis rely on the doubling property of the measure. That
is: if µ is a doubling measure then we have for all r > 0 and x in Rd that there exists
C > 0 independent on r and x such that

µ(B(x, 2r)) 6 Cµ(B(x, r)).
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The Gaussian measure is unfortunately not doubling.
Mauceri and Meda have tried to answer these questions at least partially in [MM07]

in the case of a Gaussian Hardy space. They have taken the route of an atomic Hardy
spaces as in done in the Lebesgue measure case. For this space they have proven that
the dual is BMO(γ). Unfortunately they have proven in the follow-up paper [MMS10]
that some Riesz transforms are only bounded on this space in dimension one. This is
surely unsatisfactory. One possible reason that this happens is that their definitions of
the atoms do not relate well enough to the nature of the Ornstein-Uhlenbeck operator.
They have the same cancellation condition

∫
a = 0 which appears to be unnatural.

One could try to drop this condition but it can be shown that in the Euclidean case
we then just get the space L1(Rd). This will be subject of future research.
The Mauceri and Meda paper did develop a potentially useful technique in Gaussian

harmonic analysis. This is the tool of the so called admissible balls. Here we are
averaging only over balls where the radius is at maximum a fixed parameter a times
m(x) = min(1, |x|−1) where x is the center of the ball. The key observation here is
that on these balls the Gaussian measure is doubling. Using this observation we could
again try to adapt the usual arguments. We can quickly see that this fails. Admissible
balls are small when their centre is far away from the origin. Tools like the Whitney
decompositions of open set at least require that the size of the balls is comparable to
their distance to the boundary of that open set. This way these balls would have to
be very large.
So we first try a different route. Pierre Portal in [Por12] has taken the approach

of a maximal function and a conical square function Hardy space. In the Lebesgue
measure case these are defined using

Mu(x) := sup
(y,t)∈Γx

|et2∆u(y)|,

Su(x) :=

(∫∫
Γx

1
|B(y,t)|

|t∇et2∆u(y)|2 dy dt
t

) 1
2

,

where,
Γx :=

{
(y, t) ∈ Rd × (0,∞) : |y − x| < t

}
.

and ∆ =
∑
j ∂

2
j is the Laplacian. Now the Hardy spaces can be defined as the com-

pletion of the space of compactly supported functions Cc(Rd) with respect to the
norm

‖f‖H1 := ‖Tf‖L1(Rd) + ‖f‖L1(Rd)

where this gives equivalent norms if we pick T to be either M or S.
In this thesis we are interested in the Gaussian versions of the Hardy spaces on Rd.

That is, we replace the Lebesgue measure with the Gaussian measure, i.e.,

dγ(x) = π−
d
2 e−|x|

2

dx.

Our main question is if the Hardy spaces h1
max,a(γ) and h1

quad,a′(γ) are the same
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for some a, a′ > 0. These spaces are defined as follows. First let L be the Ornstein-
Uhlenbeck operator

L := −1

2

∑
j

∂∗j ∂j

and let

T ∗au(x) := sup
(y,t)∈Γax(γ)

|et2Lu(y)|,

Sau(x) :=

(∫∫
Γax(γ)

1

γ(B(y, t))
|t∇et2Lu(y)|2 dγ(y)

dt
t

) 1
2

,

where,

Γax(γ) :=

{
(y, t) ∈ Rd × (0,∞) : |y − x| < t < amin

{
1,

1

|x|

}}
.

Now h1
max,a(γ) and h1

quad,a′(γ) are the completions of the smooth compactly supported
functions C∞c (Rd) with respect to the norms

‖u‖h1
max,a(γ) := ‖T ∗au‖L1(γ) + ‖u‖L1(γ),

and

‖u‖h1
quad,a′ (γ) := ‖Sa′u‖L1(γ) + ‖u‖L1(γ),

respectively.
One direction of the equivalence of the norms is already proven in [MvNP10a], there

is proven that
‖Sa′u‖L1(γ) . ‖T ∗au‖L1(γ).

We are then, of course, interested in the other direction. In particular we will prove
that

‖T ∗au‖L1(γ) . ‖Sa′u‖L1(γ) + ‖u‖L1(γ).

Setup of the proof
In the first chapter the required definitions are given. Also, a few preliminary lemmas,
propositions and theorems are given which turn out to be very useful in the sequel.
The proof is based around a Calderón reproducing formula which is also proven in this
chapter.
The second chapter treats the kernel estimates of the kernels of the operators in

the Calderón reproducing formula. A few technical lemmas are given to prove these
estimates. Another useful lemma is the lemma that gives the off-diagonal estimates
for an operator in the Calderón reproducing formula. There will be situations where
these off-diagonal estimates will not work, so another lemma is given which can be
used when those estimates fail.
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In the third chapter, the notion of molecules is introduced. Here there is proven
that a certain operator is a molecule and that the h1

max,a-norm of a certain class of
molecules is always bounded by a constant under the right assumptions. This proof
fills the remainder of this chapter.
The fourth chapters handles the remainder terms, the required estimates are given.
Finally, in the last chapter the equivalence is proven with the results from the

previous chapters. This ends the proof that the Hardy spaces h1
max,a(γ) and h1

quad,a′(γ)
are the same for certain a, a′ > 0.

Prerequisites
The material in this report should be understandable after following a basic course in
functional analysis and measure theory. Knowing the notions of Bochner integrals and
interpolation might come in handy.
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1 Preliminaries
In this chapter we introduce the preliminaries which will be used later on in this
thesis. In the first two sections we introduce techniques which will be useful in the
later sections of this chapter. The study of the Ornstein-Uhlenbeck operator is partly
what this thesis is about so we introduce and some of its properties in the next section.
The necessary tools to prove our main result are introduced in the next three sections.
Here we give a Calderón reproducing formula, a doubling property for the Gaussian
measure and we introduce the local and global regions of for example the Mehler
kernel. The next section introduces the spaces this thesis is about. Finally, the last
three sections give technical results which will be useful in the sequel.

1.1 Interchanging integrals and derivatives
In this section we present some results that will be used to rigorously justify inter-
changing integrals and derivatives.
We will use Hille’s theorem which states that under some conditions closed operators

and Bochner integrals commute to interchange integrals and weak derivatives.
The following theorem is a theorem taken from [DU77].

1.1 Theorem (Hille). Let (A,µ) be a σ-finite measure space and let u : A → E be
µ-Bochner integrable and let T be a closed linear operator with domain D(T ) in E
taking values in a Banach space F . Assume that f takes its values in D(T ) µ-almost
everywhere and the µ-almost everywhere defined function Tu : A → F is µ-Bochner
integrable. Then

∫
A
u dµ in D(T ) and

T

∫
A

udµ =

∫
A

Tudµ.

Remark. In [DU77] this theorem is proven for finite measure spaces but the proof
extends to σ-finite measure spaces.
The following lemma will turn out to be very useful together with theorem 1.1.

1.2 Lemma. The weak derivative ∂xi for i = 1, . . . , d with domain W 1,2(Rd) is closed
on L2(Rd).

Proof. Let un inW 1,2(Rd) and u be such that un → u in L2(Rd). Furthermore assume
that ∂xiun → v. We will show that u in W 1,2(Rd) and ∂xiu = v. Let φ be a test
function. Then∣∣∣∣∫

Rd

(un − u)∂xiφ dλ
∣∣∣∣ 6 ‖un − u‖L2(Rd)‖∂xiφ‖L2(Rd) → 0 as n→∞.
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And similarly∣∣∣∣∫
Rd

(∂xiun − v)φ dλ
∣∣∣∣ 6 ‖∂xiun − v‖L2(Rd)‖φ‖L2(Rd) → 0 as n→∞.

So u in W 1,2(Rd) and ∂xiu = v. �

Using this lemma we can apply theorem 1.1 to interchange the integral and deriva-
tive.

1.2 Interpolation
In what follows we will need to use some interpolation results. We will recall the
Riesz-Thorin and the Marcinkiewicz interpolation theorems from [Gra08].

1.3 Theorem (Riesz-Thorin interpolation theorem). Let (X,µ) and (Y, ν) be two
measure spaces. Let T be a linear operator defined on the set of all simple functions
on X taking values in the set of measurable functions on Y . Let 1 6 p0, p1, q0, q1 6∞
and assume that

‖Tu‖Lq0 6M0‖u‖Lp0 ,
‖Tu‖Lq1 6M1‖u‖Lp1 ,

for all simple functions u on X. Then for all 0 < θ < 1 we have

‖Tu‖Lq 6M1−θ
0 Mθ

1 ‖u‖Lp

for all simple functions u on X, where

[1.1]
1

p
=

1− θ
p0

+
θ

p1
and

1

q
=

1− θ
q0

+
θ

q1
.

By density, T has a unique extension as a bounded operator from Lp(X,µ) to Lq(Y, ν)
for all p and q as in [1.1].

Before we recall the Marcinkiewicz interpolation we define the weak Lp spaces.

1.4 Definition. For u a measurable function on X, the distribution function of u is
the function du : [0,∞)→ [0,∞] defined as follows:

du(α) := µ({|u| > α}).

For 0 < p < ∞ the space weak Lp(X,µ) is defined as the set of all µ-measurable
functions u such that

‖u‖Lp,∞ := sup
{
γdu(γ)

1
p : γ > 0

}
is finite.
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An operator is said to be of weak type (p, q) if it maps Lp to weak Lq.

1.5 Theorem (Marcinkiewicz interpolation theorem). Let (X,µ) and (Y, ν) be mea-
sure space and let 0 < p0 < p1 6 ∞. Let T be a sublinear mapping defined on the
space Lp0(X) + Lp1(X) and taking values in the space of the measurable functions on
Y . Assume that there exist two positive constants A0 and A1 such that

‖Tu‖Lp0,∞(Y ) 6 A0‖u‖Lp0 (X), for all u in Lp0(X),
‖Tu‖Lp1,∞(Y ) 6 A1‖u‖Lp1 (X), for all u in Lp1(X).

Then for all p0 < p < p1 and for all u in Lp(X) we have the estimate

‖Tu‖Lp(Y ) 6 A‖u‖Lp(X),

where the constant A only depends on p, p0, p1, A0 and A1.

1.3 The Ornstein-Uhlenbeck operator
We will be primarily concerned with the Ornstein-Uhlenbeck operator on Rd and in
particular its semigroup. The Ornstein-Uhlenbeck operator is the correct replacement
in the Gaussian case for the Laplacian as the latter one is not symmetric in L2(γ)
where

dγ(x) = π−
d
2 e−|x|

2

dx

is the Gaussian measure. The Ornstein-Uhlenbeck operator is given by

L := −1

2

d∑
i=1

∂∗i ∂i =
1

2
∆− x · ∇,

where

∂∗i = −∂i + 2xi

is the formal adjoint of ∂i in L2(γ).
The survey of [Sjö97] gives some results about the Ornstein-Uhlenbeck operator

which we will now briefly summarize. On L2(γ), the closure1 of the Ornstein-Uhlenbeck
operator L generates a semigroup etL and for this semigroup the normalized Hermite
polynomials (Hα)α∈Zn+ form an orthonormal basis of eigenfunctions. In particular we
have the action of etL

[1.2] etL

 ∑
β∈Zn+

cβHβ

 =
∑
β∈Zn+

e−t|β|cβHβ

1For the definition of closure see [RS72, page 250]. This book is also useful for the other functional
analysis needed in this thesis.
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where

Hα =

d⊗
i=1

hαi and hαi(x) =
2−

αi
2√
αi!

(−1)αi
∂αi

∂xαi
e−x

2

are the normalized Hermite polynomials, |β| = β1 + . . . + βd and Z+ = {0, 1, 2, . . .}.
Different formulas for these polynomials are given in [Sjö97]. We also have the identity
which follows immediately from the properties of the semigroup

[1.3] LetLu = ∂te
tLu for t > 0 and u in L2(γ).

Another property of the Ornstein-Uhlenbeck operator that will be often used is the
expression for the action of the semigroup as integration against the Mehler kernel,
that is,

[1.4] etLu(x) =

∫
Rd

Mt(x, y)u(y) dy,

where the Mehler kernel Mt is given by

Mt(x, y) = π−
d
2

(
1− e−2t

)− d2 exp

(
−|e

−tx− y|2
1− e−2t

)
.

One important thing to note is that

Mt(x, y) = Mt(y, x)e|x|
2−|y|2 .

From the Mehler kernel expression the pointwise estimate |etLf | 6 etL|f | of the
Ornstein-Uhlenbeck semigroup can be easily deduced as follows

|etLu|(x) =

∣∣∣∣∫
Rd

Mt(x, y)u(y)dy
∣∣∣∣ 6 ∫

Rd

Mt(x, y)|u(y)| dy = etL|u|(x).

Another thing we can deduce from [1.4] is that etL is self-adjoint for all t > 0. To see
this let u and v be in L2(γ) and note〈

etLu, v
〉

=

∫
Rd

∫
Rd

Mt(x, y)u(y)v(x) dy dγ(x)

=

∫
Rd

∫
Rd

Mt(x, y)u(y)v(x)dγ(x) dy

=

∫
Rd

∫
Rd

Mt(y, x)e|x|
2−|y|2u(y)v(x)dγ(x)dy

=

∫
Rd

∫
Rd

Mt(y, x)u(y)v(x)dx dγ(y)

=

∫
Rd

u(x)etLv(x) dx

=
〈
u, etLv

〉
.
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We can also show that the Ornstein-Uhlenbeck semigroup is bounded on Lp(γ) for
1 6 p 6 ∞ using Riesz-Thorin and duality. We proceed by using the theorem 1.3
from section 1.2. First remark that etL is bounded on L2(γ) because it is a strongly
continuous semigroup on L2(γ). Furthermore remark that etL is bounded on L∞(γ).
To see this note that

‖etLu‖L∞(γ) 6 ‖u‖L∞(γ)

∫
Rd

Mt(x, y)1 dy = ‖u‖L∞(γ)

where we have used that etL1 = 1. By the preceding theorem we can now conclude
that etL is bounded on Lp(γ) for 2 6 p 6∞.

We can prove that etL is bounded on Lp(γ) for 1 6 p 6 2 by duality. Let f in Lp(γ)
for 1 6 p < 2. Let q be the conjugate exponent of p. Then,

‖etLu‖Lp(γ) = sup
‖v‖Lq(γ)61

|〈etLu, v〉|

= sup
‖v‖Lq(γ)61

|〈u, etLv〉|

6 sup
‖v‖Lq(γ)61

‖u‖Lp(γ)‖etLv‖Lq(γ)

. ‖u‖Lp(γ).

So we have
‖etLu‖Lp(γ) . ‖u‖Lp(γ)

for all u in Lp(γ) and 1 6 p 6 ∞. Another method is to use Jensen’s inequality and
etL1 = 1. Note that for u in Lp(γ) and 1 6 p <∞ we have by Jensen’s inequality and
the convexity of x 7→ xp that

(etL|u(x)|)p =

(∫
Rd

Mt(x, y)|u(y)| dy
)p
6
∫
Rd

Mt(x, y)|u(y)|p dy = etL|u(x)|p.

A good reference about the properties of strongly continuous semigroups is [EN06].

1.4 A Calderón reproducing formula
In this section we will prove a Calderón reproducing formula (the name goes back to
[Cal64]) which will be central in the proof of the equivalence of the norms on h1

max,a
and h1

quad,a.

1.6 Lemma. For all N in Z+ and A > 0 and for all u in L2(γ) we have that

[1.5] u = C

∫ ∞
0

(t2L)N+1eAt
2Lu

dt
t

+

∫
Rd

udγ,

where C = 2
N !A

N+1.
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Proof. We first prove the result for the Hermite polynomial u := Hβ for some multi-
index β and then we use [1.2]. First let β = 0. Then H0 = 1, so we can calculate the
right-hand side

C

∫ ∞
0

(t2L)N+1eAt
2L1

dt
t

+

∫
Rd

1 dγ = C · 0 + 1 = H0.

So now assume that β 6= 0. For these Hβ the last integral in [1.5] will evaluate to zero
(by integration by parts) so we compute the first one. Using LN+1Hβ = |β|N+1Hβ we
obtain ∫ ∞

0

(t2L)N+1eAt
2LHβ

dt
t

=

∫ ∞
0

(t2L)N+1e−At
2|β|Hβ

dt
t

= |β|N+1Hβ

∫ ∞
0

t2(N+1)e−At
2|β| dt

t

=
N !

2

( |β|
A|β|

)N+1

Hβ

=
N !

2
A−(N+1)Hβ .

Hence we see that C = 2
N !A

N+1 is the right constant. To finish the proof we apply
[1.2] to this result. [1.5] holds for all Hermite polynomials whose span is a dense subset
of L2(γ) and the LHS of [1.5] depends continuously in L2(γ) on u. So by continuity
the result now follows for general u in L2(γ). �

1.5 A doubling property for the Gaussian measure
The Gaussian measure is non-doubling. This means that there does not exist a constant
C > 0 such that

γ(B(x, 2r)) 6 Cγ(B(x, r))

for all x in Rd and r > 0. The Lebesgue measure does have the doubling property,
and that is what for example makes the Whitney type decompositions work. To work
around this problem we first define classes of so called admissible balls on which the
Gaussian measure is doubling. These admissible balls Ba with admissibility parameter
a are introduced in [MM07] as follows. Set

Ba :=
{
B(x, r) : x ∈ Rd, 0 < r 6 am(x)

}
where

m(x) := min

{
1,

1

|x|

}
.

We recall the result from [MM07] which will act as a substitute for the doubling
property of the Lebesgue measure on admissible balls when working with the Gaussian
measure.
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1.7 Lemma. There exists a constant Cd > 0 only depending on the dimension d such
that for all a, b > 1 and all B(x, r) in Ba we have that

[1.6] γ(B(x, br)) 6 Cde
2a2(2b+1)2γ(B(x, r)).

1.6 The local and global regions
The technique in Gaussian harmonic analysis of splitting the kernels such as the Mehler
kernel in a global and local part is well known and goes back to [Muc69]. The idea
behind this is that the local part behaves like some kind of Calderón-Zygmund oper-
ator (for more about these operators see [Gra09]) and the global part has nice decay
properties.
We will split the Mehler kernel into a local and a global part. For all a > 0, the

local region is defined as

Na :=
{

(x, y) ∈ R2d : |x− y| 6 am(x)
}
,

The global region is then the complement of Na. A typical result that can be obtained
using this splitting technique is the weak type (1, 1) of the local part of the Hardy-
Littlewood maximal operator and the L1(γ) boundedness of its global part as proven
in [HTV00, theorem 2.7]. Furthermore, we also define the local region Na(B)

Na(B) := {y ∈ Rd : |cB − y| 6 am(cB)}.

1.7 The Hardy spaces
This is a preliminary section on Hardy spaces with the Gaussian measure. The Hardy
spaces in the Euclidean case are interesting because for example certain singular in-
tegral operators map H1 (which is a closed subspace of L1) to L1 while they do not
necessarily map L1 to L1. An example of this phenomenon is the Riesz transform. In
the Euclidean cases there exists an abundance of equivalent characterizations for the
Hardy space h1(γ). However, one has to go through a considerable amount of work to
obtain these equivalences.
In this report we consider two possible characterizations of the Hardy spaces with

respect to the Gaussian measure. The eventual goal is to prove the equivalence of
these.
These spaces are defined using the non-tangential maximal function T ∗a and the

conical square function S∗a

T ∗au(x) := sup
(y,t)∈Γax(γ)

|et2Lu(y)|,

Sau(x) :=

(∫
Γax(γ)

1

γ(B(y, t))
|t∇et2Lu(y)|2 dγ(y)

dt
t

) 1
2

,
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Figure 1.1: The cone Γ0 in R2 × (0,∞).

where
Γax(γ) :=

{
(y, t) ∈ Rd × (0,∞) : |y − x| < t < am(x)

}
.

Now h1
max,a(γ) and h1

quad,a(γ) are defined as the completions of the space of smooth
compactly supported functions C∞c (Rd) with respect to the norms

‖u‖h1
max,a(γ) := ‖T ∗au‖L1(γ) + ‖u‖L1(γ),

and

‖u‖h1
quad,a(γ) := ‖Sau‖L1(γ) + ‖u‖L1(γ),

respectively.
Given A, a > 0 we define the admissible cone Γ

(A,a)
x (γ) with aperture A and admis-

sibility parameter a based at the point x as

Γ(A,a)
x (γ) :=

{
(y, t) ∈ Rd × (0,∞) : |y − x| < At and t 6 am(x)

}
For simplicity we will also write Γx(γ) := Γ

(1,1)
x (γ) and Γax(γ) := Γ

(1,a)
x (γ).

For an example of such a cone see figure 1.1.
The following lemma about the cones states a fact that we will often use.

1.8 Lemma. If (y, s) in Γax(γ) and z in B(y, s) then (z, s) in Γ
(2,a)
x (γ).

The proof is straightforward, so we skip it.

1.8 A useful lemma
In this section we give a lemma that will be useful throughout the text.
We recall the lemma from [MvNP10b, lemma 2.3].
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1.9 Lemma. Let a > 0 and x, y in Rd. If |x− y| < am(x) then m(x) 6 (1 + a)m(y)
and m(y) 6 2(1 + a)m(x).

This lemma wil turn out to be extremely useful for example when changing domains.

1.9 The boundedness of some non-tangential
maximal operators

In this section we will prove the boundedness of some non-tangential maximal operators
which will turn out to be very useful in the sequel. The proof of the first part depends
heavily on the global/local dichotomy. For the second part we also use interpolation.

1.10 Proposition. Let A, a > 0 and let τ := (1+aA)(1+2aA)
2 . Then, for u in C∞c (Rd),

(i)

∥∥∥∥∥x 7→ sup
(y,t)∈Γ

(A,a)
x (γ)

∫
Rd

Mt2(y, z)1{Nτ (y, z)|u(z)| dz
∥∥∥∥∥
L1(γ)

. ‖u‖L1(γ);

(ii)

∥∥∥∥∥x 7→ sup
(y,t)∈Γ

(A,a)
x (γ)

∫
Rd

Mt2(y, z)|u(z)| dz
∥∥∥∥∥
Lp(γ)

. ‖u‖Lp(γ) for all 1 < p 6∞.

Additionally, the sublinear operator

u 7→ sup
(y,t)∈Γ

(A,a)
x (γ)

∫
Rd

Mt2(y, z)|u(z)| dz

is of weak type (1, 1).

Before we continue with the proof we state a theorem which will give us an lemma
that will be useful. The following lemma is a small modification of [PUR08, lemma
1.1].

1.11 Lemma. Let A, a > 0. For all x in Rd and all u in L2(γ) we have

sup
(y,t)∈Γ

(A,a)
x (γ)

|et2Lu(y)| . sup
r>0

1

γ(B(x, r))

∫
B(x,r)

|u(z)|dγ(z).

Furthermore, from [HTV00, theorem 2.7] we get the following theorem

1.12 Theorem. Consider the maximal function Mγu defined by

Mγu(x) := sup
r>0

1

γ(B(x, r))

∫
B(x,r)

1{N 1
2

(x, y)|u(y)| dγ(y).

Then the operator Mγ is bounded on L1(γ).

We will also need the following weak type (1, 1) estimate on an “admissible maximal
function” which is proven in [MvNP10a, lemma 3.2].
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1.13 Lemma. Let a > 0. For u in L1
loc(Rd) put

M∗au(x) := sup
B(x,r)∈Ba

1

γ(B(x, r))

∫
B(x,r)

|u(y)|dγ(y).

Then for all τ > 0,
τγ({M∗au > τ}) . ‖u‖L1(γ)

with the implied constant only depending on a and d.

Proof of proposition 1.10. We begin with the proof of (i). Let x in Rd, (y, z) in {Nτ
and (y, t) in Γ

(A,a)
x (γ). We claim that

|x− z| > 1

2
m(x).

To see this first note that by definition of Nτ we have that |y − z| > τm(y) and by
definition of Γ

(A,a)
x (γ) that |y − x| < At 6 Aam(x). Furthermore we have by the

reverse triangle inequality that

|x− z| > |z − y| − |x− y|
> τm(y)−Aam(x).

Now, by lemma 1.9 we have that m(y)(1 + aA) > m(x) so we get

|x− z| > τm(y)− aAm(x) >

(
τ

1 + aA
− aA

)
m(x) =

1

2
m(x),

where the last equality follows from the definition of τ . So,∥∥∥∥∥x 7→ sup
(y,t)∈Γ

(A,a)
x (γ)

∫
Rd

Mt2(y, z)1{Nτ (y, z)|u(z)| dz
∥∥∥∥∥
L1(γ)

(i)
6
∫
Rd

∣∣∣∣∣ sup
(y,t)∈Γ

(A,a)
x (γ)

∫
Rd

Mt2(y, z)1{N 1
2

(x, z)|u(z)| dz
∣∣∣∣∣ dγ(x)

(ii)
.
∫
Rd

sup
r>0

1

γ(B(x, r)

∫
B(x,r)

1{N 1
2

(x, z)|u(z)| dγ(z) dγ(x).

Where we have used in (i) that by previous inequality and the definition of N 1
2
we have

that 1{Nτ (y, z) 6 1{N 1
2

(x, z). Furthermore in (ii) we have used [1.4] and lemma 1.11.

Theorem 1.12 gives us that this is smaller than a constant times ‖u‖L1(γ). This con-
cludes the proof of (i).
To prove (ii) we first apply lemma 1.9 to |y − z| 6 m(y), |y − x| 6 Aam(x) to find

a τ ′ such that |z − x| 6 τ ′m(x). So,

sup
(y,t)∈Γ

(A,a)
x (γ)

∫
Rd

Mt2(y, z)1Nτ (y, z)|u(z)| dz
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= sup
(y,t)∈Γ

(A,a)
x (γ)

∫
Rd

Mt2(y, z)1Nτ (y, z)1B(x,τ ′m(x))(z)|u(z)| dz

(i)
. sup

r>0

1

γ(B(x, r))

∫
B(x,r)

1B(x,τ ′m(x))(z)|u(z)| dγ(z)

= sup
r∈(0,τ ′m(x))

1

γ(B(x, r))

∫
B(x,r)

1N ′τ (x, z)|u(z)| dγ(z)[1.7]

where we have used lemma 1.11 in (i).
We can now finish the proof using the Marcinkiewicz interpolation theorem. We will

first show that

[1.8] x 7→ sup
(y,t)∈Γ

(A,a)
x (γ)

∫
Rd

Mt2(y, z)|u(z)| dz

is of weak type (1, 1) and bounded on L∞(γ). By lemma 1.13 the RHS of [1.7] is of
weak type (1, 1). Combining this with part (i) we see that [1.8] is of weak type (1, 1).
The L∞(γ) boundedness result for [1.8] follows from lemma 1.11 as follows. Let u in
‖u‖L∞(γ). Then

sup
(y,t)∈Γ

(A,a)
x (γ)

∫
Rd

Mt2(y, z)|u(z)| dz . sup
r>0

1

γ(B(x, r))

∫
B(x,r)

|u(z)| dγ(z) 6 ‖u‖L∞(γ).

Hence (ii) now follows from the Marcinkiewicz interpolation theorem (theorem 1.5).
�

Remark. Many results in this thesis are given for functions in C∞c (Rd). Since the
Gaussian measure is a finite regular measure we have that C∞c (Rd) is dense in Lp(γ)
for 1 6 p <∞. This way we can extend all these results on C∞c (Rd) to the appropriate
Lp(γ)-spaces by density.
We will also need the L2(γ) boundedness of T ∗a . We now state this as a lemma.

1.14 Lemma. The operator T ∗a is bounded on L2(γ).

Proof.

‖T ∗au‖2L2(γ) =

∫
Rd

∣∣∣∣ sup
(y,t)∈Γax(γ)

et
2L|u(y)|

∣∣∣∣2 γ(x)
(i)
6 ‖u‖2L2(γ).

Where (i) follows from proposition 1.10(ii). �

1.15 Definition. Let A, a > 0. We define the global part of T ∗(A,a)
a by

T
∗(A,a)
glob u(x) := sup

(y,t)∈Γ
(A,a)
x (γ)

∣∣∣∣∫
Rd

1{Nτ (z, w)Mt2(z, w)u(w) dw
∣∣∣∣,

where τ := (1+aA)(1+2aA)
2 .
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Remark. We will also write T ∗(1,a)
glob = T ∗aglob.

Proposition 1.10(i) gives the boundedness of the global part of T ∗a .

1.16 Corollary. Let u in L2(γ), A, a > 0. Then we have

‖T ∗(A,a)
glob u‖L1(γ) . ‖u‖L1(γ).

1.10 Gaussian tent spaces
In [MvNP10b] the Gaussian tent spaces are introduced as follows. Let

D :=
{

(x, t) ∈ Rd × (0,∞) : t < m(x)
}
.

The Gaussian tent space t1,2(γ) is defined as the completion of Cc(D) with respect to
the norm

‖A‖t1,2(γ) :=

∫
Rd

(∫∫
Γx(γ)

1

γ(B(y, t))
|A(y, t)|2 dγ(y)

dt
t

) 1
2

dγ(x).

Compared to [MvNP10b] we will use the notation t1,2(γ) rather than T 1,2(γ) to em-
phasise the local nature of this space (and we do the sam
e with the Hardy spaces).
In the same article ([MvNP10b]) theorem 3.4 gives an atomic decomposition for

t1,2(γ). As in the Euclidean case, this atomic decomposition will turn out to be very
useful. Using an atomic decomposition we will only have to check results for atoms and
then the rest follows reasonably easy. We first define what an atom is in the Gaussian
context.

1.17 Definition. Given a > 0 a function A : D 7→ C is called a t1,2(γ) a-atom if there
exists a ball B in Ba such that

(i) supp(A) ⊂
{

(y, t) ∈ D : t 6 d(y, {B)
}
and,

(ii)
∫
Rd

∫ ∞
0

|A(y, t)|2 dγ(y)dt
t

6
1

γ(B)
.

Now the atomic decomposition is as follows.

1.18 Theorem. For all u in t1,2(γ) and a > 1, there exists a sequence
(λn)n>1 ∈ `1 and a sequence of t1,2(γ) a-atoms (An)n>1 such that

(i) u =

∞∑
n=1

λnAn and,

(ii)
∞∑
n=1

|λn| . ‖f‖t1,2(γ).
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Using the Calderón reproducing formula [1.5] and the atomic decomposition we can
prove the following corollary. The proof follows quite directly from those results. This
corollary will be the actual underlying identity when proving the equivalence of the
“non-tangential maximal function Hardy space” and the “conical square function Hardy
space” in the last chapter.

1.19 Corollary. For all N in Z+, a > 1, b > 1
2 and α > a2 there exists C1, C2, C3, C4 >

0 and d sequences of atoms (An,j)n∈Z+
and numbers (λn,j)n∈Z+

such that for all u in
C∞c (Rd) and x in Rd:

u(x) =

∫
Rd

udγ − C1

d∑
j=1

∞∑
n=1

λn,j

∫ 2

0

(t2L)Ne
t2

α Lt∂∗xjAn,j(x, t)
dt
t

+ C2

d∑
j=1

∞∑
n=1

λn,j

∫ 2

0

1[m(x)
b ,2](t)(t

2L)Ne
t2

α Lt∂∗xjAn,j(x, t)
dt
t

− C3

d∑
j=1

∫ m(x)
b

0

(t2L)Ne
t2

α Lt∂∗xj (1{D(t, x)t∂xje
a2t2

α Lu(x))
dt
t

+ C4

∫ ∞
m(x)
b

(t2L)N+1e
(1+a)2t2

α Lu(x)
dt
t
,

[1.9]

and

d∑
j=1

∞∑
n=1

|λn,j | . ‖u‖h1
quad,a

.

Where ∂∗xj = −∂xj + 2xj denotes the adjoint of ∂xj in L2(γ).

Proof. First remark that L = − 1
2

∑
j ∂
∗
j ∂j and hence

(t2L)N+1e
(1+a2)t2

α Lu(x) = −
d∑
i=1

(t2L)N
1

2
t2∂∗xj∂xje

t2

α Le
a2

α t
2Lu(x)

= −1

2

d∑
i=1

(t2L)Ne
t2

α Lt∂∗xj [1D(x, t) + 1{D(x, t)]t∂xje
a2t2

α Lu(x).

[1.10]

The first line follows from the definition of L and the second follows from the fact that
L and its semigroup commute.
We would like to have an atomic decomposition for x 7→ 1D(x, t)t∂xje

a2t2

α Lu, j =
1, . . . , d. To show that this exists, we show that this term lies in t1,2(γ). First let
Γ̃a
′

x (γ) = {(y, t) ∈ Rd× (0,∞) : |x−y| < t < a′m(y)}. Furthermore let S̃a′ be Sa′ with
Γa
′

x (γ) replaced by Γ̃a
′

x (γ). Then by [MvNP10a, remark 4.2]∥∥(x, t) 7→ 1D(x, t)t∂xje
a2

α t
2Lu(x)

∥∥
t1,2

(γ)
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=

∫
Rd

(∫∫
Γx(γ)

1D(y, t)

γ(B(y, t))
|t∂yje

a2

α t
2Lu(y)|2 dγ(y)

dt
t

) 1
2

dγ(x)

6
∫
Rd

(∫ ∞
0

∫
B(x,t)

1D(y, t)

γ(B(y, t))
|t∂yje

a2

α t
2Lu(y)|2 dγ(y)

dt
t

) 1
2

dγ(x).

We can now substitute t→ √αt to get that the RHS is smaller than a constant times

∫
Rd

(∫ ∞
0

∫
B(x,

√
αt)

1D(y,
√
αt)

γ(B(y,
√
αt))
|t∂yjea

2t2Lu(y)|2 dγ(y)
dt
t

) 1
2

dγ(x)

6
∫
Rd

(∫ ∞
0

∫
B(x,

√
αt)

1D(y,
√
αt)

γ(B(y,
√
αt))
|t∇ea2t2Lu(y)|2 dγ(y)

dt
t

) 1
2

dγ(x).[*]

Because γ(B(y,
√
αt)) > γ(B(y, t)) we get that the RHS in [*] is smaller than a constant

times ∫
Rd

(∫ ∞
0

∫
B(x,

√
αt)

1D(y,
√
αt)

γ(B(y, t))
|t∇ea2t2Lu(y)|2 dγ(y)

dt
t

) 1
2

dγ(x).

By the change of aperture formula [MvNP10b, theorem 3.8] we have∥∥(x, t) 7→ 1D(x, t)t∂xje
a2

α t
2Lu(x)

∥∥
t1,2

(γ)

.
∫
Rd

(∫ ∞
0

∫
B(x,a2t)

1D(y, a2t)

γ(B(y, t))
|t∇ea2t2Lu(y)|2 dγ(y)

dt
t

) 1
2

dγ(x)

.
∫
Rd

(∫ ∞
0

∫
B(x,at)

1D(y, at)

γ(B(y, t))
|t∇et2Lu(y)|2 dγ(y)

dt
t

) 1
2

dγ(x)

6 ‖S̃au‖L1(γ)

6 ‖u‖h1
quad,a

<∞,

where the second inequality follows from the substitution at→ t. By theorem 1.18 we
can now conclude that h : (x, t) 7→ 1D(x, t)t∂xje

a2

α t
2Lu has an atomic decomposition

for j = 1, . . . , d. I.e.,

1D(x, t)t∂xje
a2

α t
2Lu =

∞∑
n=1

λn,jAn,j(x, t) with
∞∑
n=1

|λn,j | . ‖h‖t1,2(γ) <∞

for j = 1, . . . , d.
Using lemma 1.6 and [1.10] we get after setting C ′ := 1

2C that

u(x) =

∫
Rd

udγ + C

∫ ∞
0

(t2L)N+1e
(1+a2)
α t2Lu(x)

dt
t
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=

∫
Rd

udγ + C

∫ ∞
m(x)
b

(t2L)N+1e
1+a2

α t2Lu(x)
dt
t

− C ′
d∑
j=1

∫ m(x)
b

0

(t2L)Ne
t2

α Lt∂∗xj [1D(x, t) + 1{D(x, t)]t∂xje
a2

α t
2Lu(x)

dt
t

=

∫
Rd

udγ + C

∫ ∞
m(x)
b

(t2L)N+1e
1+a2

α t2Lu(x)
dt
t

− C ′
d∑
j=1

∫ m(x)
b

0

(t2L)Ne
t2

α Lt∂∗xj1D(x, t)t∂xje
a2

α t
2Lu(x)

dt
t

− C[

d∑
j=1

∫ m(x)
b

0

(t2L)Ne
t2

α Lt∂∗xj1{D(x, t)t∂xje
a2

α t
2Lu(x)

dt
t

=

∫
Rd

udγ + C

∫ ∞
m(x)
b

(t2L)N+1e
1+a2

α t2Lu(x)
dt
t

− C ′
d∑
j=1

∞∑
n=1

λn,j

∫ m(x)
b

0

(t2L)Ne
t2

α Lt∂∗xjAn,j(x, t)
dt
t

[1.11]

− C ′
d∑
j=1

∫ m(x)
b

0

(t2L)Ne
t2

α Lt∂∗xj1{D(x, t)t∂xje
a2

α t
2Lu(x)

dt
t
.

We have switched the (Bochner) integrals and the sum. To see that this is allowed
first note that if the series

∑
n gn converges in t1,2(γ) to f then the series converges in

L2(dγ dt
t ) as well. From this we can deduce that for almost all x we have that∫ ∞

0

N∑
n=1

gn(x, t)
dt
t
→
∫ ∞

0

f(x, t)
dt
t
.

We can now switch integration and summation to yield the desired result.
We can split [1.11] to obtain

d∑
j=1

∞∑
n=1

λn,j

∫ m(x)
b

0

(t2L)Ne
t2

α Lt∂∗xjAn,j(x, t)
dt
t

(i)
=

d∑
j=1

∞∑
n=1

λn,j

∫ 2

0

(t2L)Ne
t2

α Lt∂∗xjAn,j(x, t)
dt
t

−
d∑
j=1

∞∑
n=1

λn,j

∫ 2

0

1[m(x)
b ,2](t

2L)Ne
t2

α Lt∂∗xjAn,j(x, t)
dt
t

where (i) uses that m(x)
b 6 2. This gives [1.9]. We have shown above that∥∥(x, t) 7→ 1D(x, t)t∂xje

a2

α t
2Lu(x)

∥∥
t1,2(γ)

. ‖u‖h1
quad,a
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so,
d∑
j=1

∞∑
n=1

|λn,j | . ‖u‖h1
quad,a

follows. This concludes the proof. �



2 Kernel estimates

In this chapter we will find explicit expressions for some of the kernels of the operators
that occur in the reproducing formula [1.9]. For these kernels we will find the needed
estimates for the next two chapters. We will also give some appropriate off-diagonal
estimates and give an inequality that can be useful when those off-diagonal estimates
fail.

2.1 Some useful integral kernels
Having integral kernels for operators can make the analysis of those operators much
easier as one can see in the section on the Ornstein-Uhlenbeck operator. In this section
we will compute the kernels of the operators that occur in the corollary to the Calderón
reproducing formula [1.9].

2.1 Definition. Given t, α > 0, j = 1, . . . , d and N in Z+ we denote by Kt2,N,α and
K̃t2,N,α,j the kernels defined, given u in L2(γ) by

Kt2,N,α(x, y) = t2N
[
∂Ns Ms(x, y)

]
s= t2

α

[2.1]

K̃t2,N,α,j(x, y) = t2N+1∂yj
[
∂Ns Ms(y, x)

]
s= t2

α

exp(|x|2 − |y|2).

We can easily find expressions for these kernels by using the Mehler kernel as kernel
to the semigroup etL.

2.2 Proposition. The kernels Kt2,N,α and K̃t2,N,α,j are given by∫
Rd

Kt2,N,α(x, y)u(y) dy = (t2L)Ne
t2

α Lu(x),[2.2] ∫
Rd

K̃t2,N,α,j(x, y)u(y)dy = (t2L)Ne
t2

α Lt∂∗xju(x).[2.3]

Proof. The proof is based around the identity [1.4]. By [1.3] we have

(t2L)Ne
t2

α Lu(x) = t2N
[
∂Ns

∫
Rd

Ms(x, y)u(y) dy
]
s= t2

α

=

∫
Rd

t2N
[
∂Ns Ms(x, y)

]
s= t2

α

u(y) dy,
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where the second equality follows from theorem 1.1 together with lemma 1.2. So we
can conclude that [2.2] holds. We can compute [2.3] using duality. Let u, v in C∞c (Rd)
then 〈

(t2L)Ne
t2

α Lt∂∗xju, v
〉

=
〈
u, ∂xje

t2

α Lt(t2L)Nv
〉

=
〈
u, ∂xj t(t

2L)Ne
t2

α Lv
〉

=

∫
Rd

u(y)∂yj

[
t(t2L)Ne

t2

α Lv(y)
]
dγ(y)

= π−
d
2

∫
Rd

u(y)∂yj

[
t(t2L)Ne

t2

α Lv(y)
]
e−|y|

2

dy

= −π− d2
∫
Rd

∂yj

[
u(y)e−|y|

2
]
t(t2L)Ne

t2

α Lv(y) dy

= −π− d2
∫
Rd

∂yj

[
u(y)e−|y|

2
](∫

Rd

t2N+1
[
∂Ns Ms(y, x)

]
s= t2

α

v(x) dx
)

dy

= −
∫
Rd

∫
Rd

∂yj

[
u(y)e−|y|

2
]
t2N+1

[
∂Ns Ms(y, x)

]
s= t2

α

v(x)e|x|
2

dγ(x) dy

= −
∫
Rd

∫
Rd

∂yj

[
u(y)e|x|

2−|y|2
]
t2N+1

[
∂Ns Ms(y, x)

]
s= t2

α

v(x) dγ(x) dy

=

∫
Rd

∫
Rd

u(y)e|x|
2−|y|2t2N+1∂yj

[
∂Ns Ms(y, x)

]
s= t2

α

v(x) dγ(x)dy

=

∫
Rd

[∫
Rd

u(y)e|x|
2−|y|2t2N+1∂yj

[
∂Ns Ms(y, x)

]
s= t2

α

dy
]
v(x) dγ(x).

We have applied Fubini in the last line. This is allowed because u, v are in C∞c (Rd).
So we can conclude [2.3] holds. �

2.2 Three technical results
In the sequel we need to know how certain derivatives of the Mehler kernel behave,
so one goal of this section is to find quantitative information about these. Useful
estimates on the exponential terms that occur in Mehler kernel will also be given.

2.3 Lemma. Let N in Z+. There exists a polynomial of 2d + 1 variables PN such
that for all x, y in Rd

∂Ns Ms(x, y) = (1− e−2s)−N

× PN
(
e−s,

(
e−sxj − yj√

1− e−2s

)
j=1,...,d

,
(√

1− e−2sxj

)
j=1,...,d

)
Ms(x, y).
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Proof. Let j = 1, . . . , d, s > 0 and x, y in Rd. We have, for N = 1,

∂sMs(x, y) = −(1− e−2s)−1

× de−2sMs(x, y) + ∂s

( |e−sx− y|2
1− e−2s

)
Ms(x, y),

which is of the asserted form and,

∂s

(
e−sxj − yj√

1− e−2s

)
= −(1− e−2s)−1[*]

×
(
e−sxj

√
1− e−2s + e−2s e

−sxj − yj√
1− e−2s

)
,

∂s

(√
1− e−2sxj

)
=
(
1− e−2s

)−1
(
e−s
√

1− e−2s
)
,[*]

∂s

(
[e−sxj − yj ]2

1− e−s
)

= −
(
1− e−2s

)−1

[(
2e−s

√
1− e−2sxj

)
[*]

×
(
e−sxj − yj√

1− e−2s

)
+

(
e−sxj − yj√

1− e−2s

)2

2e−2s

]
.

For N > 2 the proof now follows by induction using [*]. �

2.4 Corollary. Let N in Z+ and j = 1, . . . , d. There exists a polynomial of 2d + 1
variables QN such that for all x, y in Rd and s > 0 we have that

∂xj∂
N
s Ms(x, y) = (1− e−2s)−(N+ 1

2 )

×QN
(
e−s,

(
e−sxj − yj√

1− e−2s

)
j=1,...,d

,
(√

1− e−2sxj

)
j=1,...,d

)
Ms(x, y).

Proof. We skip this proof since it is similar to the proof above. �

The following lemma will be useful when transfering estimates from M t2

α

to Mt2 . It
follows quite directly after applying the mean value theorem to the function ξ 7→ ξα.

2.5 Lemma. For C, T > 0, α > 1, t in (0, T ] and all x, y in Rd we have that
[2.4]

exp

(
−C |e

− t2α x− y|2

1− e−2 t
2

α

)
6 exp

(
−C α

2e2a2

|e−t2x− y|2
1− e−2t2

)
exp

(
C
t4 min(|x|2, |y|2)

1− e−2 t
2

α

)
Proof. Let t in (0, T ] and α > 1. Applying the mean value theorem to the function
f(ξ) = ξα gives, for 0 < ξ < ξ′

f(ξ)− f(ξ′) = αξ̂α−1(ξ − ξ′) for some ξ̂ in [ξ, ξ′].
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Picking ξ = 1 and ξ′ = e−2 t
2

α gives

[*]
1− e−2t2

1− e−2 t
2

α

= αξ̂α−1 for some ξ̂ in
[
e−2 t

2

α , 1
]
.

Using that α−1
α t2 6 T 2 we have that

[2.5] αe−2T 2

6 αe−2t2 α−1
α

(i)
6

1− e−2t2

1− e−2 t
2

α

(ii)
6 lim

t↓0

1− e−2t2

1− e−2 t
2

α

= lim
t↓0

αe−2t2

e−2 t
2

α

= α.

Where (i) uses [*] and the monotonicity of ξ 7→ αξα−1. (ii) uses basic calculus since
the function in question is monotone. To prove [2.4] note that

|e− t
2

α x− y| > |e−t2x− y| − |e−t2 − e− t
2

α ||x|
> |e−t2x− y| − |e−t2 − 1||x|
> |e−t2x− y| − t2|x|.

By 2ab 6 a2 + b2 we have

2(|e− t
2

α x− y|2 + t4|x|2) > (|e− t
2

α x− y|+ t2|x|)2

> |e−t2x− y|2.

Hence,

|e− t
2

α x− y|2 > |e
−t2x− y|2

2
− t4|x|2.

Using this we get,

exp

(
−C |e

− t2α x− y|2

1− e−2 t
2

α

)
6 exp

(
−C

2

[
1− e−2t2

1− e−2 t
2

α

]
|e−t2x− y|2

1− e−2t2

)
exp

(
C

t4|x|2

1− e−2 t
2

α

)

6 exp

(
−C α

2e2a2

|e−t2x− y|2
1− e−2t2

)
exp

(
C

t4|x|2

1− e−2 t
2

α

)
,

where the last line follows from [2.5]. We can prove the other part the same way,
noting ∣∣∣e− t2α x− y∣∣∣ =

∣∣∣e−(αα−
α−1
α )t2x− y

∣∣∣
= e

α−1
α t2

∣∣∣e−t2x− e−α−1
α t2y

∣∣∣
>
∣∣∣e−t2x− e−α−1

α t2y
∣∣∣

>
∣∣∣e−t2x− y∣∣∣− ∣∣∣1− e−α−1

α t2
∣∣∣ |y|
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>
∣∣∣e−t2x− y∣∣∣− t2|y|.

And as before we conclude that

|e− t
2

α x− y|2 > |e
−t2x− y|2

2
− t4|y|2,

and

exp

(
−C |e

− t2α x− y|2

1− e−2 t
2

α

)
6 exp

(
−C

2

[
1− e−2t2

1− e−2 t
2

α

]
|e−t2x− y|2

1− e−2t2

)
exp

(
C

t4|y|2

1− e−2 t
2

α

)

6 exp

(
−C α

2e2a2

|e−t2x− y|2
1− e−2t2

)
exp

(
C

t4|y|2

1− e−2 t
2

α

)
.

This concludes the proof of the lemma. �

2.3 Kernel estimates
Here we will compute useful estimates for the integral kernels that occur in the
Calderón reproducing formula [1.9]. They will turn out to be useful when estimat-
ing the terms in that formula. The estimates will be proven using the results from the
previous section.

2.6 Lemma. Let N in Z+, j = 1, . . . , d, a > 0 and α > 4e2a2 . Let t in (0, T ] for some
T > 0 and let x, y in Rd. Furthermore let C > 0 be a positive constant independent
on t, x and y not necessarily the same at all instances. Then we have that

(i) If tmin(|x|, |y|) 6 C then M t2

α

(x, y) . exp

(
− α

4e2a2

|e−t2x− y|2
1− e−2t2

)
Mt2(x, y),

(ii) If t|x| 6 C then |Kt2,N,α(x, y)| . exp

(
− α

4e2a2

|e−t2x− y|2
1− e−2t2

)
Mt2(x, y),

(iii) If t|y| 6 C then |K̃t2,N,α,j(x, y)| . exp

(
− α

4e2a2

|e−t2y − x|2
1− e−2t2

)
Mt2(x, y).

The implicit constants in the inequalities are only depending on the dimension d, a
and α.

Proof. We will first show (i) using [2.4]. C is a general constant, not necessarily the
same at all instances.

M t2

α

(x, y)

= Cd

(
1− e−2 t

2

α

)− d2
exp

(
−|e

− t2α x− y|2

1− e−2 t
2

α

)
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6 Cd
(

1− e−2 t
2

α

)− d2
exp

(
− α

2e2a2

|e−t2x− y|2
1− e−2t2

)
exp

(
t4 max(|x|2, |y|2)

1− e−2 t
2

α

)

= Cd

(
1− e−2 t

2

α

1− e−2t2

)− d2
exp

([
1− α

4e2a2

] |e−t2x− y|2
1− e−2t2

)
exp

(
− α

4e2a2

|e−t2x− y|2
1− e−2t2

)

× exp

(
t4 max(|x|2, |y|2)

1− e−2 t
2

α

)
Mt2(x, y)

6 Cd,T,α exp

([
1− α

4e2a2

] |e−t2x− y|2
1− e−2t2

)
exp

(
− α

4e2a2

|e−t2x− y|2
1− e−2t2

)

× exp

(
t4 max(|x|2, |y|2)

1− e−2 t
2

α

)
Mt2(x, y)

6 Cd,T,α exp

(
− α

4e2a2

|e−t2x− y|2
1− e−2t2

)
Mt2(x, y).

Where we have used [2.5] in the fourth line and in the last line that α > 4e2a2 and

exp

(
t4 max(|x|2, |y|2)

1− e−2 t
2

α

)
6 exp

(
C

t2

1− e−2 t
2

α

)
6 exp

(
C

T 2

1− e−2T
2

α

)
.

Next we will show (ii) in a similar way using [2.4].

|Kt2,N,α(x, y)|

= Cd

(
1− e−2 t

2

α

)−N
|PN |t2N

(
1− e−2 t

2

α

)− d2
exp

(
−|e

− t2α x− y|2

1− e−2 t
2

α

)

= Cd

(
1− e−2 t

2

α

)−N
|PN |t2N

(
1− e−2 t

2

α

1− e−2t2

)− d2
exp

(
−|e

− t2α x− y|2

1− e−2 t
2

α

)

× exp

(
|e−t2x− y|2

1− e−2t2

)
Mt2(x, y)

6 Cd|PN |t2N
(

1− e−2 t
2

α

)−N
exp

([
1− α

4e2a2

] |e−t2x− y|2
1− e−2t2

)
[*]

× exp

(
− α

4e2a2

|e−t2x− y|2
1− e−2t2

)
exp

(
t4 max(|x|2, |y|2)

1− e−2 t
2

α

)
Mt2(x, y)

The only problem for the function t 7→ t2N
(

1− e−2 t
2

α

)−N
on (0, T ] lies in the point 0.

However, the limit t ↓ 0 is finite. This means that this function is bounded. Another
issue that can arise is that

|PN | exp

([
1− α

4e2a2

] |e−t2x− y|2
1− e−2t2

)
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is unbounded in x, y or t. However, we can quickly see that

|e−t2x− y|M
√

1− e−2t2
M

exp

([
1− α

4e2a2

] |e−t2x− y|2
1− e−2t2

)

is uniformly bounded in t, x and y for all integers M and for α sufficiently large. The
same holds for √

1− e−2t2
M
|x|M exp

([
1− α

4e2a2

] |e−t2x− y|2
1− e−2t2

)

because we have that |x| 6 Ct−1. Hence the RHS in [*] is smaller than

Cd,N,T,α exp

(
− α

4e2a2

|e−t2x− y|2
1− e−2t2

)
Mt2(x, y).

We end with the proof of (iii) using [2.4].

|K̃t2,N,α,j(x, y)| = t2N+1 |∂yj∂Ns Ms(y, x)|
∣∣
s= t2

α

exp(|x|2 − |y|2)

= t2N+1(1− e−2 t
2

α )−(N+ 1
2 )|QN |M t2

α

(y, x)

× exp(|x|2 − |y|2)

= t2N+1(1− e−2 t
2

α )−(N+ 1
2 )|QN |

(
1− e−2 t

2

α

)− d2
exp

(
−|e

− t2α y − x|2

1− e−2 t
2

α

)
× exp(|x|2 − |y|2)

. t2N+1(1− e−2 t
2

α )−(N+ 1
2 )|QN | exp

(
− α

2e2a2

|e−t2y − x|2

1− e−2 t
2

α

)

× exp

(
t4 max(|x|2, |y|2)

1− e−2 t
2

α

)
exp(|x|2 − |y|2)

6 Cd,αt
2N+1(1− e−2 t

2

α )−(N+ 1
2 )|QN |

(
1− e−2 t

2

α

1− e−2t2

)− d2

× exp

([
1− α

4e2a2

] |e−t2y − x|2
1− e−2 t

2

α

)
exp

(
− α

4e2a2

|e−t2y − x|2

1− e−2 t
2

α

)
Mt2(x, y)

6 Cd,N,T,α exp

(
− α

4e2a2

|e−t2x− y|2

1− e−2 t
2

α

)
Mt2(x, y).

where we have estimated t 7→ t2N+1(1− e−2 t
2

α )−(N+ 1
2 ) and

(x, y, t) 7→ |QN | exp

([
1− α

4e2a2

]
|e−t

2
y−x|2

1−e−2 t
2
α

)
in the same was as before. �
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2.4 Off-diagonal estimates

Decomposition into annuli
We will often need to estimate integrals which are integrated over the whole of Rd.
This will often not be possible to do directly, so we decompose Rd into annuli. Then
we can estimate the integrals over those sets and then sum to obtain an estimate for
the integral over the whole of Rd.
So, given a > 0, B = B(cB , rB) in Ba and k in Z+ we consider the following sets

Ck(B) :=

{
B(cB , 2rB) if k = 0,
B(cB , 2

k+1)rB) \B(cB , 2
krB) if k > 1.

The estimates
The following lemma will play an important role in the next chapter.

2.7 Lemma (Off-diagonal estimates). Let N in Z+, a > 0, j = 1, . . . , d, B in Ba,
α > 8e2a2 and k in N. Then we have for all u in L2(γ) that∥∥∥1Ck(B)1(0,rB)(t)(t

2N+1LNe
t2

α L∂∗xj )1Bu
∥∥∥
L2(γ)

. exp

(
− α

128e2a2

(rB
t

)2

4k
)
‖u‖L2(γ).

Where the implied constant only depends on α, a, d and N .

Proof. For t 6 rB 6 am(cB) and y in B we have by lemma 1.9 that t 6 a(1 + a)m(y).
Given x in Rd we have by the triangle inequality that

[2.6] |y − x|2 6 2(|e−t2y − x|2 + (1− e−t2)2|y|2).

So we have that

1

2
|y − x|2 − (1− e−t2)2|y|2 6 |e−t2y − x|2.

Furthermore note that

1− e−2t2 6 2t2,

so

exp

(
− α

4e2a2

|e−t2y − x|2
1− e−2t2

)
6 exp

(
− α

8e2a2

|y − x|2
1− e−2t2

)
exp

( α

4e2a2
(t|y|)2

)
. exp

(
− α

16e2a2

|y − x|2
t2

)
.

[2.7]
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Where the last line follows from t 6 a(1 + a)m(y). So using lemma 2.6, definition 2.1
and proposition 2.2 we get

∫
Ck(B)

(∫
B

|K̃t2,N,α,j(x, y)|1(0,rB)(t)|u(y)| dy
)2

dγ(x)

.
∫
Ck(B)

(∫
B

exp

(
− α

4e2a2

|e−t2y − x|2
1− e−2t2

)
Mt2(x, y)1(0,rB)(t)|u(y)| dy

)2

dγ(x)

.
∫
Ck(B)

(∫
B

exp

(
− α

16e2a2

|y − x|2
t2

)
Mt2(x, y)1(0,rB)(t)|u(y)| dy

)2

dγ(x).

Now we have for x in Ck(B) and y in B that |x − y| > 2k−1rB for k in N from the
definition of Ck(B), so

∫
Ck(B)

(∫
B

|K̃t2,N,α,j(x, y)|1(0,rB)(t)|u(y)| dy
)2

dγ(x)

6 exp

(
− α

16e2a2

(rB
t

)2

4k−1

)∫
Ck(B)

(∫
B

Mt2(x, y)|u(y)|dy
)2

dγ(x)

6 exp

(
− α

16e2a2

(rB
t

)2

4k−1

)
‖et2L|u|‖2L2(γ)

. exp

(
− α

16e2a2

(rB
t

)2

4k−1

)
‖u‖2L2(γ).

Which concludes the proof of this lemma. �

2.5 When the off-diagonal estimates fail
We conclude with a property of the sets Ck(B) in the local region Nτ (B). We recall

Na :=
{

(x, y) ∈ R2d : |x− y| 6 am(x)
}
,

It will be helpful when the off-diagonal estimates fail.
Before we state the main lemma of this section we first give two auxillary results.

2.8 Lemma. If |x− y| 6 τm(y) 6 τ(1 + τ)m(x) then we have e−|x|
2 ' e−|y|2 .

Proof. By the reverse triangle inequality we have

|y| − |x| 6 τ(1 + τ)m(x)

and,
|x| − |y| 6 τm(y).
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Hence we have that,

|x|2 6 |y|2 + 2τm(y)y|+ τ2m(y)2

and,
|y|2 6 |x|2 + 2τ(1 + τ)m(x)|x|+ τ2(1 + τ)2m(x)2.

So we have
e−|x|

2 ' e−|y|2 .
This concludes the proof of this lemma. �

2.9 Lemma. If we have e|x|
2 ' e|y|2 then dx dγ(y) ' dγ(x)dy.

As the proof of this lemma is obvious we omit it.

2.10 Lemma. Let a, τ > 0 and B = B(cB , rB) in Ba. Then for all k in Z+

γ(Ck(B) ∩Nτ (B)) . 2kdγ(B).

Where the implied constant is independent on k.

Proof. Let k in Z+ and x in Ck(B) ∩ Nτ (B). By lemma 1.9 we have |x − cB | 6
τm(cB) 6 τ(1 + τ)m(x), hence by lemma 2.8 we have that e−|x|

2 ' e−|cB |
2

for all x
in Nτ (B) where the implicit constants are independent on τ, k,B and x. Furthermore
we have

γ(B) =

∫
B

dγ ' e−|cB |2
∫
B

dx ' rdBe−|cB |
2

.

For k in Z+ we have

γ(Ck(B) ∩Nτ (B)) =

∫
Ck(B)∩Nτ (B)

dγ

' e−|cB |2
∫
Ck(B)∩Nτ (B)

dλ

. e−|cB |
2

∫
2k+1B

dλ

. (2krB)de−|cB |
2

' 2kdγ(B).

This concludes the proof of the lemma. �



3 Molecules
In this chapter we will introduce molecules. We will prove that the h1

max,a norm of
a certain class of molecules is always bounded by a constant. Furthermore, we prove
that the function [3.1] on the molecules from the Calderón reproducing formula [1.9]
is such a molecule.

3.1 Molecules
We first define molecules.

3.1 Definition. Let N in N, a > 0 and C > 0. A function u in L2(γ) is said to be
a (β,N,C)-molecule if there exists B = B(cB , rB) in Bβ and ũ in the domain D(LN )
of LN such that u = LN ũ and

(i) ‖1Ck(B)u‖L2(γ) 6 e
−C4k 1√

γ(B)
for all k in Z+,

(ii) ‖1Ck(B)ũ‖L2(γ) 6 r
2N
B e−C4k 1√

γ(B)
for all k in Z+.

The next proposition will be useful with the theorem of the next section.

3.2 Proposition. Let N in N, j = 1, . . . , d and α > 8e2a2 . Furthermore, let B =
B(cB , rB) in B2 and A a t1,2(γ) atom associated with B. The function

[3.1] x 7→
∫ rB

0

(t2L)Ne
t2

α Lt∂∗xjA(x, t)
dt
t

is a (2, N, 2−29α)-molecule.

Proof. We first treat the case k = 0 separately. For this it suffices to bound∥∥∥∥x 7→ ∫ rB

0

(t2L)Ne
t2

α Lt∂∗xjA(x, t)
dt
t

∥∥∥∥
L2(γ)

from above by a constant times
√
γ(B)

−1
. We first claim that the Riesz transforms

Rj = ∂xjL
− 1

2 for j = 1, . . . , d are bounded on L2(γ). To see this we will use Hermite
polynomials. Let u =

∑
cαHα be a function in L2(γ). First note that ∂∗xj∂xjHα(x) =

2αjHα(x). Then〈
u, L−

1
2 ∂∗xj∂xjL

− 1
2u
〉

=

〈
u, L−

1
2 ∂∗xj∂xjL

− 1
2

∑
α∈Zd+

cαHα

〉
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=
∑
α∈Zd+

cα

〈
u, L−

1
2 ∂∗xj∂xjL

− 1
2Hα

〉
=
∑
α∈Zd+

cα

〈
u, |α|− 1

2 2αj |α|−
1
2Hα

〉

=
∑
α∈Zd+

cα2αj |α|−1

〈 ∑
β∈Zd+

cβHβ , Hα

〉

= 2
∑
α∈Zd+

∑
β∈Zd+

cαcβαj |α|−1 〈Hβ , Hα〉

= 2
∑
α∈Zd+

|cα|2αj |α|−1

6 2
∑
α∈Zd+

|cα|2

= 2‖u‖2L2(γ).

To finish the case k = 0 it suffices to bound

[3.2]
∣∣∣∣∫ rB

0

∫
Rd

(t2L)Ne
t2

α Lt∂∗xjA(x, t)b(x) dγ(x)
dt
t

∣∣∣∣
for all b with b =

∑
cβHβ and

∑ |cβ |2 6 1. We can view this as an inner product on
L2(γ) and apply duality to obtain that [3.2] is equal to

[3.3]
∣∣∣∣∫ rB

0

∫
Rd

A(x, t)Rj(t
2L)N+ 1

2 e
t2

α Lb(x) dγ(x)
dt
t

∣∣∣∣
We can now apply the boundedness of the Riesz transforms and Cauchy-Schwarz to
obtain that [3.3] is smaller than or equal to a constant times(∫ ∞

0

∫
Rd

|A(x, t)|2 dγ(x)
dt
t

) 1
2
(∫ rB

0

∫
Rd

|(t2L)N+ 1
2 e

t2

α Lb(x)|2 dγ(x)
dt
t

) 1
2

.
1√
γ(B)

(∫ rB

0

∫
Rd

|(t2L)N+ 1
2 e

t2

α Lb(x)|2 dγ(x)
dt
t

) 1
2

.

This reduces to problem to proving that∫ rB

0

∫
Rd

|(t2L)N+ 1
2 e

t2

α Lb(x)|2 dγ(x)
dt
t

is bounded. Now,∫ rB

0

∫
Rd

|(t2L)N+ 1
2 e

t2

α Lb(x)|2 dγ(x)
dt
t
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6
∫ rB

0

∫
Rd

∣∣∣∣ ∑
β∈Zd+

cβ(t2L)N+ 1
2 e

t2

α LHβ(x)

∣∣∣∣2 dγ(x)
dt
t

6
∑
β∈Zd+

|cβ |2
∫ ∞

0

(t2|β|)2N+1e−2 t
2

α |β|
dt
t

.
∑
β∈Zd+

|cβ |2

6 1.

As required. Furthermore we have∫ rB

0

(t2L)Ne
t2

α Lt∂∗xjA(x, t)
dt
t

= LN ũ for ũ(x) :=

∫ rB

0

t2Ne
t2

α Lt∂∗xjA(x, t)
dt
t
.

The same argument now gives

‖ũ‖L2(γ) . r
2N
B

1√
γ(B)

.

We can now prove the result for k in N. So let k in N. By lemma 2.7 we have∫ rB

0

∥∥∥x 7→1Ck(B)(x)(t2L)Ne
t2

α Lt∂∗xjA(x, t)
∥∥∥
L2(γ)

dt
t

.
∫ rB

0

exp

(
− α

128e8
4k
(rB
t

)2
)
‖x 7→ A(x, t)‖L2(γ)

dt
t

=

∫ rB

0

[
exp

(
− α

256e8
4k
(rB
t

)2
)]2

‖x 7→ A(x, t)‖L2(γ)
dt
t

6 exp
(
− α

256e8
4k
)∫ rB

0

exp

(
− α

256e2a2
4k
(rB
t

)2
)
‖x 7→ A(x, t)‖L2(γ)

dt
t

6 exp
(
− α

256e8
4k
)[∫ rB

0

exp

(
− α

128e2a2
4k
(rB
t

)2
)

dt
t

] 1
2

×
(∫ rB

0

‖x 7→ A(x, t)‖2L2(γ)

dt
t

) 1
2

6 exp
(
− α

256e8
4k
)[∫ 1

0

exp

(
− α

128e8

1

t2

)
dt
t

] 1
2

×
(∫ rB

0

‖x 7→ A(x, t)‖2L2(γ)

dt
t

) 1
2

. exp
(
− α

229
4k
) 1√

γ(B)
.

Furthermore we have∫ rB

0

(t2L)Ne
t2

α Lt∂∗xjA(x, t)
dt
t

= LN ũ for ũ(x) :=

∫ rB

0

t2Ne
t2

α Lt∂∗xjA(x, t)
dt
t
.
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And finally note that as before, when we replace N by 0 we get by using the same
argument as before that

‖1Ck(B)ũ‖L2(γ) 6 r
2N
B

∫ rB

0

∥∥∥x 7→ 1Ck(B)(x)1(0,rB)(t)e
t2

α Lt∂∗xjA(x, t)
∥∥∥2

L2(γ)

dt
t

. r2N
B exp

(
− α

229
4k
) 1√

γ(B)
.

This concludes the proof. �

3.2 The h1
max,a norm of a molecule

Here we prove that the h1
max,a norm of any molecule is bounded. We do this by splitting

the integral that defines the norm into pieces and then we estimate them separately.

3.3 Theorem. Let a > 0 and let u be a (2, N,C)-molecule with α > 235, N > d
4 and

C > 212. Then u in h1
max,a and ‖u‖h1

max,a
. 1.

Proof. Let

‖u‖h1
max,a

6 I +
∞∑
k=0

∞∑
l=0

I ′k,l +
∞∑
k=0

∞∑
l=0

I ′′k,l.

where

I :=

∫
Rd

sup
(y,s)∈Γax(γ),s6 rB√

α

|es2Lu(y)|dγ(x),

I ′k,l :=

∫
Ck(B)

sup
(y,s)∈Γax(γ),s> rB√

α

|es2L1Cl(B)(y)u(y)|1(
0,

2lrB
Ca

)(m(x)) dγ(x),

I ′′k,l :=

∫
Ck(B)

sup
(y,s)∈Γax(γ),s> rB√

α

|LNes2L1Cl(B)(y)ũ(y)|1[
2lrB
Ca

,1

](m(x)) dγ(x).

where the appropriate Ca will be chosen later on. B(cB , rB) (which is a ball from B2)
contains the support of u. Note that using lemma 1.8 and with the τ from proposi-
tion 1.10 (with A = 2) we get

I =

∫
Rd

sup
(y,s)∈Γax(γ),s6 rB√

α

∣∣∣∣∫
Rd

Ms2(z, w)u(w) dw
∣∣∣∣ dγ(x)

6
∫
Rd

sup
(z,s)∈Γax(γ),s6 rB√

α

∫
Rd

Ms2(z, w)[1Nτ (z, w) + 1{Nτ (z, w)]|u(w)| dw dγ(x)

6
∫
Rd

sup
(z,s)∈Γax(γ),s6 rB√

α

∫
Rd

Ms2(z, w)1{Nτ (z, w)|u(w)| dw dγ(x)

+

∫
Rd

sup
(z,s)∈Γax(γ),s6 rB√

α

∫
Rd

Ms2(z, w)1Nτ (z, w)|u(w)| dw dγ(x)
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. ‖u‖L1(γ) +

∞∑
k=0

∞∑
l=0

I loc
k,l ,

where the last line follows from proposition 1.10 and where

I loc
k,l :=

∫
Ck(B)

sup
(z,s)∈Γax(γ),s6 rB√

α

∫
Cl(B)

Ms2(z, w)1Nτ (z, w)|u(w)| dw dγ(x).

We also have using lemma 1.7 and C large enough that

‖u‖L1(γ) 6
∞∑
k=0

‖1Ck(B)u‖L1(γ)

6
∞∑
k=0

‖1Ck(B)‖L2(γ)‖1Ck(B)u‖L2(γ)

6
∞∑
k=0

√
γ(2k+1B)

γ(B)
e−C4k

.
∞∑
k=0

√
e8(2k+2+1)2e−C4k

. 1.

So now we still have to estimate I loc
k,l . We first estimate I loc

k,l for k 6 l + 2. Using
proposition 1.10(ii) we get

I loc
k,l 6

√
γ(2k+1B)

×

∫
Rd

(
sup

(z,s)∈Γax(γ)

∫
Cl(B)

Ms2(z, w)1Nτ (z, w)|u(w)| dw
)2

dγ(x)

 1
2

6
√
γ(2k+1B)

×

∫
Rd

(
sup

(z,s)∈Γax(γ)

∫
Rd

Ms2(z, w)1Cl(B)(w)|u(w)| dw
)2

dγ(x)

 1
2

.
√
e8(2k+2+1)2

√
γ(B)‖1Cl(B)u‖L2(γ)

.
√
e8(2k+2+1)2e−C4l .

Thus we have

[3.4]
∞∑
l=0

l+2∑
k=0

I loc
k,l . 1.
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Finally we estimate I loc
k,l for k > l + 2. We will use lemma 2.6(i). To be able to

use this lemma we should verify that t . m(w) for all w in Cl(B). First note that
|z − x| < 2am(x) hence by lemma 1.9 we get that m(x) 6 (1 + 2a)m(z). Furthermore
note that |z − w| 6 τm(z) hence again by lemma 1.9 we get m(z) 6 (1 + τ)m(w).
Finally

t 6 a
√
αm(x)

6 a
√
α(1 + 2a)m(z)

6 a
√
α(1 + 2a)(1 + τ)m(w).

This proves the claim. Substituting s = t√
α
, with lemma 2.6(i) we obtain

I loc
k,l =

∫
Ck(B)

sup

(z,t)∈Γ
(1/
√
α,a
√
α)

x (γ),t6rB

∫
Cl(B)

M t2

α

(z, w)1Nτ (z, w)|u(w)|dw dγ(x)

.
∫
Ck(B)

sup

(z,t)∈Γ
(1/
√
α,a
√
α)

x (γ),t6rB

∫
Cl(B)

Mt2(z, w) exp

(
− α

4e8

|e−t2z − w|2
1− e−2t2

)
× 1Nτ (z, w)|u(w)| dw dγ(x).

Note that this estimate holds for all k, l in Z+. For x in Ck(B), w in Cl(B), t 6
min{rB , a

√
α(1 + 2a)m(z)} and |z − x| < 2t√

α
we have

|e−t2z − w| = |(e−t2 − 1)z − (x− z)− (x− w)|
> |x− w| − |x− z| − (1− e−t2)|z|.

Furthermore we have |x−w| > [(2k + 1)− (2l+1 + 1)]rB > 2k−1rB and |x− z| 6 2rB√
α
.

Also (1 − e−t
2

)|z| 6 t2|z| together with t 6 a
√
α(1 + 2a) 1

|z| gives (1 − e−t
2

)|z| 6
a
√
α(1 + 2a)rB , hence

|e−t2z − w| >
(

2k−1 − 2√
α
− a√α(1 + 2a)

)
rB .

LetMa,α in N be such that 2√
α

+a
√
α(1+2a) 6 2Ma,α . Then for l+2 6 k 6Ma,α+2

we get that k − 2 6Ma,α and hence

2k−1 − 2√
α
− a√α(1 + 2a) > 2k−1 − 2Ma,α

> 2Ma,α+1 − 2Ma,α

= 2Ma,α .

Therefore,

exp

(
− α

4e8

|e−t2z − w|2
1− e−2t2

)
6 exp

(
− α

4e8

(
2k−1 − 2√

α
− a√α(1 + 2a)

)2
r2
B

1− e−2r2B

)
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6 exp

(
− α

8e8

(
2k−1 − 2√

α
− a√α(1 + 2a)

)2
)

6 exp
(
− α

8e8
(2Ma,α)2

)
.

So, for l + 2 6 k 6Ma,α we get using proposition 1.10(ii)

I loc
k,l . exp

(
− α

8e8
(2Ma,α)2

)∫
Ck(B)

sup

(z,t)∈Γ
(1/
√
α,a
√
α)

x (γ),t6rB

∫
Cl(B)

Mt2(z, w)

× 1Nτ (z, w)|u(w)|dw dγ(x)

(i)
. exp

(
− α

8e8
(2Ma,α)2

)√
γ(2k+1B)‖1Cl(B)u‖L2(γ)

. exp
(
− α

8e8
(2Ma,α)2

)√γ(2k+1B)

γ(B)
e−C4l

(ii)
6 exp

(
− α

8e8
(2Ma,α)2

)
e8(2k+2+1)2e−C4l .

Where we have used proposition 1.10 and Cauchy-Schwarz in (i) and lemma 1.7 in (ii).
Hence,

[3.5]
Ma,α∑
l=0

Ma,α∑
k=l+2

I loc
k,l . 1.

We still need an estimate for k > max{l,Ma,α}+ 2. For such k we have k >Ma,α + 2
hence 2k−2 > 2Ma,α . Then

2k−1 − 2√
α
− a√α(1 + 2a) > 2k−1 − 2Ma,α

> 2k−1 − 2k−2

= 2k−2.

So,

exp

(
− α

4e8

|e−t2z − w|2
1− e−2t2

)
6 exp

(
− α

8e8
(2k−4)2

)
.

Hence,

I loc
k,l . exp

(
− α

8e8
(2k−2)2

)∫
Ck(B)

sup

(z,t)∈Γ
(1/
√
α,a
√
α)

x (γ),t6rB

∫
Cl(B)

Mt2(z, w)

× 1Nτ (z, w)|u(w)|dw dγ(x)

(i)
. exp

(
− α

8e8
(2k−2)2

)√
γ(2k+1B)‖1Cl(B)u‖L2(γ)
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. exp
(
− α

8e8
(2k−2)2

)√γ(2k+1B)

γ(B)
e−C4l .

(ii)
6 exp

(
− α

8e8
(2k−2)2

)
e8(2k+2+1)2e−C4l .

Where we have used proposition 1.10 and Cauchy-Schwarz in (i) and lemma 1.7 in (ii).
Finally, we have for α large enough, for example α > 235 suffices, that

[3.6]
∞∑
l=0

∞∑
k=max(Ma,α,l)+2

I loc
k,l . 1.

Combining [3.4], [3.5] and [3.6] this concludes our estimate for I.
Next, we will estimate I ′k,l for k 6 l. Note that

I ′k,l :=

∫
Ck(B)

sup
(y,s)∈Γax(γ),s> rB√

α

|es2L1Cl(B)(y)u(y)|1(
0,

2lrB
4Ca

)(m(x)) dγ(x)

=

∫
Ck(B)

sup
(z,s)∈Γax(γ),s> rB√

α

∫
Rd

Ms2(z, w)|1Cl(B)(w)u(w)|dw

× 1(
0,

2lrB
Ca

)(m(x)) dγ(x)

6
√
γ(2k+1B)

∥∥∥∥∥x 7→ sup
(z,s)∈Γax(γ)

∫
Rd

Ms2(z, w)|1Cl(B)(w)u(w)| dw
∥∥∥∥∥
L2(γ)

(i)
.
√
γ(2k+1B)‖1Cl(B)u‖L2(γ)

. e8(2k+2+1)2e−C4l .

Where (i) follows from proposition 1.10(ii). So,

∞∑
l=0

l∑
k=0

I ′k,l .
∞∑
l=0

l∑
k=0

e8(2k+2+1)2−C4l . 1.

What is left is the estimate of I ′l,k for k > l. For this let x in Ck(B) such that

m(x) < 2lrB
Ca

. Let (y, s) in Γax(γ), then s 6 am(x) and y in B(x, s). Furthermore let z
in B(y, s) and w in Cl(B). Note that we have

|x− w| > (2k+1 − 2l)rB > (2l+1 − 2l)rB = 2lrB .

And
|x− z| 6 |z − y|+ |y − x| < 2s 6 2am(x).
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So

|z − w| > |x− w| − |x− z|
> 2lrB − 2am(x)

> (Ca − 2a)m(x)

>
1

2 + 4a
(Ca − 2a)m(z)[*]

= τm(z).

This shows that (z, w) in {Nτ . Where we have taken Ca = (2 + 4a)τ + 2a and
τ := (1+2a)(1+4a)

2 as in corollary 1.16 (with A = 1). We have also used that |z−x| < 2a
implies m(z) 6 (2 + 4a)m(x) by lemma 1.9. Hence by corollary 1.16 we have

∞∑
l=0

∞∑
k=l

I ′k,l

6
∞∑
l=0

∫
Rd

sup
(y,s)∈Γax(γ),s> rB√

α

|es2L(1Cl(B)(y)u(y))|1(
0,

2lrB
Ca

)(m(x)) dγ(x)

6
∞∑
l=0

∫
Rd

sup
(y,s)∈Γax(γ),s> rB√

α

∣∣∣∣∫
Rd

Ms2(z, w)1Cl(B)(w)u(w) dw
∣∣∣∣ 1(0,

2lrB
Ca

)(m(x)) dγ(x)

(i)
6
∞∑
l=0

‖T ∗aglob|1Cl(B)f |‖L1(γ)

(ii)
. ‖u‖L1(γ)

. 1.

Where (i) follows from definition 1.15 and [*]. (ii) follows from corollary 1.16.
Next we estimate I ′′k,l. Let x in Rd, (y, t) in Γ

(2/
√
α,a/

√
α)

x (γ) and z in B
(
y, t√

α

)
.

We have |x− y| < t√
α
hence by lemma 1.9 we have

t 6 a
√
αm(x) 6 a

√
α

(
1 +

t√
α

)
m(z) . m(z).

Hence by definition 2.1, [*] and lemma 2.6(ii).

|LNe t
2

α L(1Cl(B)f̃)(y)| . t−2N

∫
Cl(B)

|Kt2,N,α(z, w)ũ(w)| dw

. t−2N

∫
Cl(B)

Mt2(z, w) exp

(
− α

4e2a2

|e−t2z − w|2
1− e−2t2

)
|ũ(w)| dw

. t−2N

∫
Cl(B)

Mt2(z, w)|ũ(w)| dw
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= t−2Net
2L|1Cl(B)f̃ |(y).

So,

I ′′k,l =

∫
Ck(B)

sup
(y,s)∈Γax(γ),s> rB√

α

|LNes2L1Cl(B)(y)ũ(y)|1[
2lrB
Ca

,1

](m(x)) dγ(x)

6
∫
Ck(B)

sup

(z,t)∈Γ
(1/
√
α,a
√
α)

x (γ),t>rB

t−2Net
2L|1Cl(B)(z)ũ(z)|1[

2lrB
Ca

,1

](m(x)) dγ(x)

. r−2N
B Jglob

k,l + J loc
k,l .

Where

Jglob
k,l :=

∫
Ck(B)

sup

(z,t)∈Γ
(1/
√
α,a
√
α)

x (γ)

∫
Cl(B)

Mt2(z, w)1{Nτ (z, w)|ũ(w)| dw dγ(x)

J loc
k,l :=

∫
Ck(B)

sup

(z,t)∈Γ
(1/
√
α,a
√
α)

x (γ),t>rB

t−2N

∫
Cl(B)

Mt2(z, w)1Nτ (z, w)|ũ(w)| dw

× 1[
2lrB
Ca

,1

](m(x)) dγ(x).

Here τ is as in proposition 1.10 but with the A, a there equal to 1/
√
α and a/

√
α here

respectively. Proposition 1.10 gives that

∞∑
l=0

∞∑
k=0

Jglob
k,l .

∞∑
l=0

‖1Cl(B)ũ‖L1(γ)

.
∞∑
l=0

√
γ(2lB)‖1Cl(B)ũ‖L2(γ)

. r2N
B

∞∑
l=0

e8(2l+2+1)2e−C4l

. r2N
B .

Next we estimate J loc
k,l . For x in Ck(B) and m(x) > 2lrB

Ca
we have when k 6 l + 1

|x− cB | 6 (2k+1 + 1)rB

6 2k+2rB

6 2l+3rB

6 23Cam(x)

6 23Ca(1 + 23Ca)m(cB)

=: τ ′m(cB).
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Where the second to last line follows from lemma 1.9. So by definition

J loc
k,l 6

∫
Ck(B)∩Nτ′ (B)

sup

(y,t)∈Γ
(1/
√
α,a
√
α)

x (γ),t>rB

t−2N

×
∫
Cl(B)

Mt2(z, w)1Nτ (z, w)|ũ(w)| dw dγ(x).

For k 6 l + 1 we now have that
∞∑
l=0

l+1∑
k=0

J loc
k,l 6 r

−2N
B

∞∑
l=0

l+1∑
k=0

√
γ(Ck(B) ∩Nτ ′(B))

·

∥∥∥∥∥∥x 7→ sup

(y,t)∈Γ
(1/
√
α,a
√
α)

x (γ)

∫
Cl(B)

Mt2(z, w)1Nτ (z, w)|ũ(y)| dw

∥∥∥∥∥∥
L2(γ)

(i)
. r−2N

B

∞∑
l=0

l+1∑
k=0

√
2kdγ(B)‖1Cl(B)ũ‖L2(γ)

.
∞∑
l=0

l+1∑
k=0

2k
d
2 e−C4l

. 1.

Where (i) follows from proposition 1.10 and lemma 2.10.
Finally we estimate J loc

k,l for k > l + 1 to complete the proof. We first use the
substitution t = s√

α
and lemma 2.6(i) to get

J loc
k,l

(i)
.
∫
Ck(B)∩Nτ′ (B)

sup
(z,s)∈Γ

(1/α,aα)
x (γ),s>rB

s−2N

×
∫
Cl(B)

M s2

α

(z, w)1Nτ (z, w)|ũ(w)| dw dγ(x)

.
∫
Ck(B)∩Nτ′ (B)

sup s−2N

∫
Cl(B)

Ms2(z, w)

× exp

(
− α

4e2a2

|e−s2z − w|2
1− e−2s2

)
|ũ(w)| dw dγ(x).

Where (i) follows from lemma 2.6(i). For this we still need to verify that s . m(w).
We have x in Rd, s 6 aαm(x) and |x − z| < 2

αs, so |x − z| < 2
αaαm(x) = 2am(x).

From (z, w) in Nτ we obtain |z − w| 6 τm(z) and hence by lemma 1.9 we have

s 6 aαm(x) 6 aα(1 + 2a)m(z) 6 aα(1 + 2a)(1 + τ)m(w) . m(w).

This proves the claim. Furthermore we are in the situation that x in Ck(B), w in
Cl(B), s 6 αam(x) and |x− z| < 2

αs so

|e−s2z − w| > |z − w| − (1− e−s2)|z| > (2k − 2l+1)rB − α(a+ 2a2)s,
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where
(1− e−s2)|z| 6 s2|z| 6 αa

(
1 +

2

α
a

)
m(z)|z|s 6 α(a+ 2a2)s,

by lemma 1.9 for large α. Let M = Ma,α be such that aα2(a + 2a2) 6 2M . Now we
pick the region for k, l where 2M 6 1

2 (2k − 2l+1)rB 6 2k − 2l+1, then we have

(2k − 2l+1)rB − α(a+ 2a2)s > (2k − 2l+1 − aα2(a+ 2a2)

> (2k − 2l+1)rB − 2M

>
1

2
(2k − 2l+1)rB .

So, note that because exp(−x) 6 x−N

s−2N exp

(
−C2

(rB
s

)2
)
6 s−2N

(
−C2N

(rB
s

)2N
)

= C−2Nr−2N
B .[*]

Therefore,∫
Ck(B)∩Nτ′ (B)

sup s−2N

∫
Cl(B)

Ms2(z, w) exp

(
− α

4e2a2

|e−s2z − w|2
1− e−2s2

)
|ũ(w)| dw dγ(x)

6
∫
Ck(B)∩Nτ′ (B)

sup s−2N exp

(
− α

16e2a2

(2k − 2l+1)2r2
B

1− e−2s2

)
×
∫
Cl(B)

Ms2(z, w)|ũ(w)| dw dγ(x)

6
∫
Ck(B)∩Nτ′ (B)

sup s−2N exp

(
− α

32e2a2
(2k − 2l+1)2

(rB
s

)2
)

×
∫
Cl(B)

Ms2(z, w)|ũ(w)| dw dγ(x)

(i)
. [(2k − 2l+1)rB ]−2N

∫
Ck(B)∩Nτ′ (B)

∫
Cl(B)

Ms2(z, w)|ũ(w)| dw dγ(x)

(ii)
6 [(2k − 2l+1)rB ]−2N

√
γ(Ck(B) ∩Nτ ′(B))‖1Cl(B)ũ‖L2(γ)

(iii)
. (2k − 2l+1)−2Ne−C4l2k

d
2 ,

where we have used [*] in (i), proposition 1.10 in (ii) and lemma 2.10 in (iii). We have∑∑
J loc
k,l . 1.

where the sum ranges over all (k, l) such that 2M 6 1
2 (2k − 2l+1)rB . This holds

for C large enough and an N such that 2N > d
2 . We still need an estimate for

2M > 1
2 (2k − 2l+1). Note that

J loc
k,l

(i)
6
√
γ(2k+1B)r−2N

B ‖etL1Cl(B)ũ‖L2(γ)
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6
√
γ(2k+1B)r−2N

B ‖1Cl(B)ũ‖L2(γ)

. e8(2k+2+1)2e−C4l

where (i) follows from proposition 1.10. Over a finite sum, this is certainly finite. This
completes the proof. �





4 The remainder terms

In this chapter we will handle the remainder terms

(i) x 7→
∫ 2

0

1[m(x)
b ,2](t)t

2N+1LNe
t2

α L∂∗xjA(x, t)
dt
t
,

(ii) x 7→
∫ m(x)

b

0

t2N+1LNe
(1+a2)t2

α L∂∗xj (1{D(x, t)t∂xje
a2t2

α L)u(x)
dt
t
,

(iii) x 7→
∫ ∞
m(x)
b

(t2L)N+1e
(1+a2)t2

α Lu(x)
dt
t
,

where u in L1(γ) and A is a t1,2(γ) 2-atom. When we compare the first displayed
equation with corollary 1.19 we note that we can replace the 2 in the upper bound of
the integral by rB because A is supported in B(cB , rB). This is what we will do in the
next lemma.

4.1 The estimates
4.1 Lemma. Let N in Z+, j = 1, . . . , d, b > 0 and α > 237. Furthermore, let A be a
t1,2(γ) 2-atom associated with the ball B = B(cB , rB) in B2. Then we have∥∥∥∥x 7→ ∫ rB

0

1[m(x)
b ,2](t)t

2N+1LNe
t2

α L∂∗xjA(x, t)
dt
t

∥∥∥∥
L1(γ)

. 1.

Proof. For y in B we have by lemma 1.9 that m(y) ' m(cB). Moreover we have∥∥∥∥∥x 7→
∫ rB

0

1[m(x)
b ,2](t)t

2N+1LNe
t2

α L∂∗xjA(x, t)
dt
t

∥∥∥∥∥
L1(γ)

=

∫
Rd

∣∣∣∣∫ rB

0

1[m(x)
b ,2](t)t

2N+1LNe
t2

α L∂∗xjA(x, t)
dt
t

∣∣∣∣ dγ(x)

6
∫
Rd

∫ rB

0

∫
Rd

|K̃t2,N,α,j(x, y)A(y, t)| dy dt
t
dγ(x)

=

∞∑
k=0

∫
Ck(B)

∫ rB

0

∫
B

|K̃t2,N,α,j(x, y)A(y, t)| dy dt
t
dγ(x).
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Where we have used the decomposition of Rd into annuli and that the support of A
lies in B in (i). For t 6 rB 6 2m(cB) and y in B we get t . m(y). So we can apply
lemma 2.6(iii) to obtain that the RHS of the previous estimate is smaller than

[*]
∞∑
k=0

∫
Ck(B)

∫ rB

0

∫
B

exp

(
− α

4e8

|e−t2y − x|2
1− e−2t2

)
Mt2(x, y)|A(y, t)| dy dt

t
dγ(x).

Now we can use the same argument as in lemma 2.7, that is [2.6-2.7]. We recall that

exp

(
− α

4e8

|e−t2y − x|2
1− e−2t2

)
6 exp

(
− α

8e8

|y − x|2
t2

)
exp

( α

4e8
(t|y|)2

)
. exp

(
− α

8e8

|y − x|2
t2

)
.

We can use this to obtain that [*] is smaller than a constant times

∞∑
k=0

∫
Ck(B)

∫ rB

0

∫
B

exp

(
− α

4e8

|y − x|2
t2

)
Mt2(x, y)|A(y, t)| dy dt

t
dγ(x).

For x in Ck(B) and y in B we have |x− y| > 2k−1rB for k > 1 so we get∥∥∥∥∥x 7→
∫ rB

0

1[m(x)
b ,2](t)t

2N+1LNe
t2

α L∂∗xjA(x, t)
dt
t

∥∥∥∥∥
L1(γ)

.
∞∑
k=0

∫
Ck(B)

∫ rB

0

exp

(
− α

8e8

(rB
t

)2

4k−1

)∫
B

Mt2(x, y)|A(y, t)| dy dt
t
dγ(x)

=

∞∑
k=0

∫ rB

0

exp

(
− α

8e8

(rB
t

)2

4k−1

)∫
Ck(B)

∫
B

Mt2(x, y)|A(y, t)| dy dγ(x)
dt
t

6
∞∑
k=0

∫ rB

0

exp

(
− α

8e8

(rB
t

)2

4k−1

)√
γ(Ck(B))‖x 7→ et

2L|A(x, t)|‖L2(γ)
dt
t

(i)
.
∞∑
k=0

e8(2k+2+1)2
√
γ(B) exp

(
− α

4e8
4k−1

)∫ rB

0

‖x 7→ et
2L|A(x, t)|‖L2(γ)

dt
t

(ii)
.
∞∑
k=0

e8(2k+2+1)2 exp
(
− α

4e8
4k−1

)
. 1.

Where (i) follows from the doubling property [1.6]. (ii) in its turn follows for a similar
argument as in proposition 3.2, the boundedness of the semigroup and the fact that
A is an 2-atom. This completes the proof. �

From corollary 1.16 we immediately obtain
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4.2 Corollary. Let a, b > 0, N in Z+, j = 1, . . . , d and α > 237. Furthermore, let A
be a t1,2(γ) 2-atom associated with the ball B = B(cB , rB) in B2. Then we have∥∥∥∥T ∗aglob

(
x 7→

∫ rB

0

1[m(x)
b ,2](t)t

2N+1LNe
t2

α L∂∗xjA(x, t)
dt
t

)∥∥∥∥
L1(γ)

. 1.

We will use this corollary (which follows from lemma 4.1) to prove the required
estimate for the h1

max,a.

4.3 Proposition. Let a > 0, N in Z+, j = 1, . . . , d and α > 240. Furthermore, let A
be a t1,2(γ) 2-atom associated with the ball B = B(cB , rB) in B2. Then we have∥∥∥∥x 7→ ∫ rB

0

1[m(x)
b ,2](t)t

2N+1LNe
t2

α L∂∗xjA(x, t)
dt
t

∥∥∥∥
h1
max,a

. 1.

Proof. We have∥∥∥∥∥x 7→
∫ rB

0

1[m(x)
b ,2](t)t

2N+1LNe
t2

α L∂∗xjA(x, t)
dt
t

∥∥∥∥∥
h1
max,a

=

∥∥∥∥T ∗a (x 7→ ∫ rB

0

1[m(x)
b ,2](t)t

2N+1LNe
t2

α L∂∗xjA(x, t)
dt
t

)∥∥∥∥
L1(γ)

=

∥∥∥∥∥x 7→ sup
(y,t)∈Γax(γ)

∣∣∣∣et2L ∫ rB

0

1[m(z)
b ,2](t)t

2N+1LNe
t2

α L∂∗zjA(z, t)
dt
t

∣∣∣∣
∥∥∥∥∥
L1(γ)

=

∫
Rd

sup
(y,t)∈Γax(γ)

∣∣∣∣∫∫
R2d

Mt2(z, w)

×
(∫ rB

0

1[m(w)
b ,2](s)K̃s2,N,α,j(w, v)A(v, s)

ds
s

)
dv dw

∣∣∣∣ dγ(x)

=

∫
Rd

sup
(y,t)∈Γax(γ)

∣∣∣∣∫∫
R2d

[1Nτ (z, w) + 1N{τ
(z, w)]Mt2(z, w)

×
(∫ rB

0

1[m(w)
b ,2](s)K̃s2,N,α,j(w, v)A(v, s)

ds
s

)
dv dw

∣∣∣∣ dγ(x).

Given corollary 4.2 we only have to estimate for the τ as in corollary 1.16∫
Rd

sup
(y,t)∈Γax(γ)

∣∣∣∣∫∫
R2d

Mt2(z, w)1Nτ (z, w)

×
∫ rB

0

1[m(w)
b ,2](s)K̃s2,N,α,j(w, v)A(v, s)

ds
s

dv dw
∣∣∣∣ dγ(x).

So, it is sufficient to estimate

I :=

∫
Rd

sup
(z,t)∈Γax(γ)

∫∫
R2d

Mt2(z, w)1Nτ (z, w)

×
∫ rB

0

1[m(w)
b ,2](s)|K̃s2,N,α,j(w, v)A(v, s)| ds

s
dv dw dγ(x).
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Where we have used lemma 1.8.
Note that for v in B we have |v−cB | < rB < 2m(cB) and hence rB < 2m(cB) . m(v)

by lemma 1.9. So by lemma 2.6(iii) we have that

I .
∫
Rd

sup
(z,t)∈Γax(γ)

∫∫
R2d

Mt2(z, w)1Nτ (z, w)

∫ rB

0

1[m(w)
b ,2](s)

× exp

(
− α

4e8

|e−s2v − w|2
1− e−2s2

)
Ms2(w, v)|A(v, s)| ds

s
dv dw dγ(x).

We write

I . I loc +

∞∑
k=0

Iglob
k ,

where

I loc =

∫
Rd

sup
(y,s)∈Γax(γ)

∫∫
R2d

Ms2(y, z)1Nτ (y, z)

∫ rB

0

1[m(z)
b ,2](t)

× exp

(
− α

4e8

|e−t2w − z|2
1− e−2t2

)
Mt2(z, w)1N1

(z, w)|A(w, t)| dt
t
dw dz dγ(x)

Iglob
k =

∫
Ck(B)

sup
(y,s)∈Γax(γ)

∫∫
R2d

Ms2(y, z)1Nτ (y, z)

∫ rB

0

1[m(z)
b ,2](t)

× exp

(
− α

4e8

|e−t2w − z|2
1− e−2t2

)
Mt2(z, w)1{N1

(z, w)|A(w, t)| dt
t
dw dz dγ(x).

We will first estimate Iglob
k . For w in B (recall that A is supported in B), x in Ck(B),

|x− y| < am(x), |y − z| < τm(y), t 6 rB and m(z) 6 brB , we get, using lemma 1.9

|w − cB | < rB

< 2m(cB)

6 2(1 + 2)m(w),

and hence by t 6 rB we have t . m(w). Furthermore we have

|x− z| 6 |x− y|+ |y − z|
6 am(x) + τm(y).

We also have m(y) 6 2(1 + a)m(x). Hence we get

|x− z| 6 [a+ 2τ(1 + a)]m(x).

Furthermore we also have

m(x) 6 [1 + a+ 2τ(1 + a)]m(z)



4.1 The estimates 45

6 [1 + a+ 2τ(1 + a)]brB .

Let Ca,b,τ := b[1 + a+ 2τ(1 + a)][a+ 2τ(1 + a)]. Then

[*] |e−t2w − z| > |w − x| − |x− z| − (1− e−t2)|w| > 2k−12rB − Ca,b,τrB − t2|w|.

Note that t 6 rB . m(w) implies that t2|w| 6 C ′rB for some C ′ > 0. Let M = Ma,b,α

in N be such that Ca,b,τ + C ′ 6 2Ma,b,α .
Note that for k 6Ma,b,α + 2, x in Ck(B) and |x− z| 6 [a+ 2τ(1 +a)]m(x) hence by

lemma 1.9 we have m(z) ' m(x) ' m(cB). In particular we have m(z) > κm(cB) for
some κ > 0. We first apply Cauchy-Schwarz and exp(−x) 6 1 to Iglob

k . To complete
the estimate we need to estimate the term

Iglob
k,l

(i)
6

∥∥∥∥∥x 7→ sup
(y,s)∈Γax(γ)

∫∫
R2d

Ms2(y, z)1Nτ (y, z)

∫ rB

0

1[m(z)
b ,2](t)

×Mt2(z, w)1{N1
(z, w)|A(w, t)| dt

t
dw dz

∥∥∥∥∥
L2(γ)

√
γ(Ck(B))

6

∥∥∥∥∥x 7→ sup
(y,s)∈Γax(γ)

∫
Rd

Ms2(y, z)1Nτ (y, z)

∫ rB

0

1[m(z)
b ,2](t)e

t2L|A(z, t)| dt
t
dz

∥∥∥∥∥
L2(γ)

×
√
γ(Ck(B))

6
∫ rB

0

1[κbm(cB),2](t)

∥∥∥∥∥x 7→ sup
(y,s)∈Γax(γ)

∫
Rd

Ms2(y, z)1Nτ (y, z)et
2L|A(z, t)|dz

∥∥∥∥∥
L2(γ)

dt
t

×
√
γ(Ck(B))

(ii)
6
∫ rB

0

1[κbm(cB),2](t)
∥∥∥x 7→ et

2L|A(x, t)|
∥∥∥
L2(γ)

dt
t

√
γ(Ck(B))

6

(∫ 2m(cB)

κ
bm(cB)

dt
t

) 1
2 (∫ rB

0

‖x 7→ A(x, t)‖2L2(γ)

dt
t

) 1
2 √

γ(Ck(B))

.
1√
γ(B)

√
γ(Ck(B)).

Where (i) follows by Cauchy-Schwarz and (ii) follows by proposition 1.10(ii). So we
get by Cauchy-Schwarz that

Ma,b,α+2∑
k=0

Iglob
k .

Ma,b,α+2∑
k=0

√
γ(2k+1B)

γ(B)

.
Ma,b,α+2∑
k=0

e8(2k+2+1)2
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. 1.

For k > Ma,b,α + 2 we may estimate the RHS of [*]

2k−1rB − Ca,b,τrB − t2|w| > 2k−1rB − Ca,b,τrB − C ′rB
> (2k−1 − 2M )rB

> 2k−2rB .

So, similarly to the case k 6 Ma,b,α + 2 we have to estimate after applying Cauchy-
Schwarz and proposition 1.10(ii)

Iglob
k 6

√
γ(2k+1B)

∥∥∥∥∥x 7→ sup
(y,s)∈Γax(γ)

∫
R2d

Ms2(y, z)

×
∫ rB

0

exp

(
− α

4e8

|e−t2w − z|2
1− e−2t2

)
Mt2(z, w)|A(w, t)| dt

t
dw dz

∥∥∥∥∥
L2(γ)

6
√
γ(2k+1B)

∥∥∥∥∥x 7→ sup
(y,s)∈Γax(γ)

∫
R2d

Ms2(y, z)

×
∫ rB

0

exp

(
− α

4e8

(
2k−2rB

t

)2
)
Mt2(z, w)|A(w, t)| dt

t
dw dz

∥∥∥∥∥
L2(γ)

6
√
γ(2k+1B)

∫ rB

0

exp

(
− α

4e8

(
2k−2rB

t

)2
)

×
∥∥∥∥∥x 7→ sup

(y,s)∈Γax(γ)

∫
Rd

Ms2(y, z)et
2L|A(z, t)| dz

∥∥∥∥∥
L2(γ)

dt
t

6
√
γ(2k+1B)

∫ rB

0

exp

(
− α

4e8

(
2k−2rB

t

)2
)
‖x 7→ et

2L|A(x, t)|‖L2(γ)
dt
t

6
√
γ(2k+1B) exp

(
− α

8e8

(
2k−2

)2)(∫ rB

0

‖x 7→ A(x, t)‖2L2(γ)

dt
t

) 1
2

×
(∫ rB

0

exp

(
− α

4e8

(
2k−2rB

t

)2
)

dt
t

) 1
2

6 e8(2k+2+1)2 exp
(
− α

8e8

(
2k−2

)2)
.

Where in the last term we have used that the integral in the penultimate line is finite.
Hence,

∞∑
k=Ma,b,α+2

Iglob
k . 1
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for α large enough.
If we bound I loc by a constant our proof is done, so that is what we will now do.

First remark that for t in
[
m(z)
b , 2

]
we have

Mt2(z, w) exp

(
− α

4e8

|e−t2w − z|2
1− e−2t2

)
6 (1− e−2t2)−

d
2

6 (1− e−2
m(z)2

b2 )−
d
2

6

(
2b2

1 + e−8

)d
1

m(z)d

.
1

m(z)d

[4.1]

by calculus. For w in B (as A is supported in B), (z, w) in N1, (y, z) in Nτ and (y, s)
in Γax(γ) we have

|x− cB | 6 |x− y|+ |y − z|+ |z − w|+ |w − cB |
6 am(x) + τm(y) +m(z) + 2m(cB)

. m(cB)

by lemma 1.9. Similarly

|x− w| 6 |x− y|+ |y − z|+ |z − w|
6 am(x) + τm(y) +m(z)

. m(w).

We have e−|x|
2 ' e−|w|2 which can be shown using a similar argument as in lemma 2.10.

Therefore we have dw dγ(x) ' dγ(w) dx by lemma 2.9. Hence,

I loc 6
∫
Rd

sup
(y,s)∈Γax(γ)

∫∫
R2d

Ms2(y, z)1Nτ (y, z)

∫ rB

0

1[m(z)
b ,2](t)

× 1

m(z)d
1N1(z, w)|A(w, t)| dt

t
dw dz dγ(x)

.
∫ rB

0

1

m(cB)d

∫
Rd

sup
(y,s)∈Γax(γ)

∫
Rd

Ms2(y, z)1Nτ (y, z)1[m(z)
b ,2](t)

×
∫
Rd

1N1
(z, w)|A(w, t)| dγ(w) dz dx

dt
t

(i)
6
∫ rB

κ
bm(cB)

1

m(cB)d

∫
B(cB ,λm(cB))

sup
(y,s)∈Γax(γ)

∫
Rd

Ms2(y, z) dz

×
∫
Rd

|A(w, t)|dγ(w) dx
dt
t
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6
∫ rB

κ
bm(cB)

1

m(cB)d

∫
B(cB ,λm(cB))

‖w 7→ A(w, t)‖L1(γ) dx
dt
t

where we have used in (i) that there exist κ, λ > 0 such that m(z) > κm(cB) and
|x− cB | 6 λm(cB). Note that by Cauchy-Schwarz and the fact that A is supported in
B we have

‖x 7→ A(x, t)‖L1(γ) 6
√
γ(B)‖x 7→ A(x, t)‖L2(γ).

Furthermore, we have ∫
B(cB ,λm(cB))

dx ' m(cB)d.

Hence,

I loc .
√
γ(B)

(∫ m(cB)

κ
bm(cB)

dt
t

) 1
2 (∫ ∞

0

‖x 7→ A(x, t)‖2L2(γ)

dt
t

) 1
2

. 1.

This completes the proof of the present proposition. �

Next we will estimate the term (ii) on page 41.

4.4 Proposition. Let a, a′ > 0, N in Z+, j = 1, . . . , d and α > 8e2a2+1. Let b > 2e.
Then∥∥∥∥∥x 7→

∫ m(x)
b

0

t2N+1LNe
t2

α L∂∗xj [1{D(x, t)t∂xje
a2t2

α2 L]u(x)
dt
t

∥∥∥∥∥
h1
max,a′

. ‖u‖L1(γ).

Proof. First note that ‖T ∗a′u‖L1(γ) 6 ‖u‖L∞(γ). To see this recall that the semigroup
generated by L is positive. This means that |esLu| 6 esL|u|. Furthermore note that

esL|u(x)| =
∫
Rd

Ms(x, y)|u(y)|dy

6 ‖u‖L∞(γ)

∫
Rd

Ms(x, y)1 dy

= ‖u‖L∞(γ)

where we have used that esL1 = 1. So,

‖T ∗a′u‖L1(γ) =

∫
Rd

sup
(y,t)∈Γa′x (γ)

|et2Lu(y)| dγ(x)

6
∫
Rd

sup
(y,t)∈Γa′x (γ)

et
2L|u(y)| dγ(x)

6
∫
Rd

‖u‖L∞(γ) dγ(x)

= ‖u‖L∞(γ).
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Thus it is sufficient to show that∥∥∥∥∥x 7→
∫ m(x)

b

0

t2N+1LNe
t2

α L∂∗xj [1{D(x, t)t∂xje
a2t2

α2 L]u(x)
dt
t

∥∥∥∥∥
L∞(γ)

. ‖u‖L1(γ).

To prove this claim, first fix x in Rd and consider t > 0 and y in Rd such that
m(y) < t 6 m(x)

b . So, m(y) < 1 hence |y| > 1. We have 2e|x| 6 b|x|. Furthermore we
have |y|−1 6 (b|x|)−1 hence 2e|x| 6 b|x| 6 |y|. So

|e−t2y − x| > e−t2 |y| − |x|

>
|y|
e
− |x|

=
|y|
2e

+
|y|
2e
− |x|

>
|y|
2e
.

This gives, using lemma 2.6(iii) and t|y| 6 b−1.

t−1|K̃t2,N,α,j(x, y)|
(i)
. |y|d exp

(
− α

4e2a2

|e−t2y − x|2
1− e−2t2

)
Mt2(x, y)

6 |y|d exp
(
− α

4e2a2
|e−t2y − x|2

)
Mt2(x, y)

6 |y|d exp
(
− α

16e2a2+1
|y|2
)
Mt2(x, y)

(ii)
6 |y|d exp

(
− α

16e2a2+1
|y|2
) 1

m(x)d

(iii)
6 exp

(
− α

16e2a2+1
|y|2
)
.

[4.2]

Where (i) follows from |y| 6 t−1 and |y| > 1. (ii) follows from the argument of [4.1]
that shows that Mt2(x, y) . m(x)−d. (iii) follows from |y| 6 m(x)

b . Now,∣∣∣∣∣
∫ m(x)

b

0

t2N+1LNe
t2

α L∂∗xj

[
1{D(x, t)t∂xje

a2t2

α L
]
u(x)

dt
t

∣∣∣∣∣
6

∣∣∣∣∣
∫ m(x)

b

0

∫
Rd

K̃t2,N,α,j(x, y)
[
1{D(y, t)t∂yje

a2t2

α L
]
u(y)dy

dt
t

∣∣∣∣∣
6

∣∣∣∣∣
∫ m(x)

b

0

∫
Rd

∫
Rd

K̃t2,N,α,j(x, y)1{D(y, t)∂yjM a2t2

α

(y, z)u(z) dz dy dt

∣∣∣∣∣ .
To continue this estimate we need to estimate |∂yjM a2t2

α

(y, z)|.

∣∣∣∂yjM a2t2

α

(y, z)
∣∣∣ =

∣∣∣∣∣M a2t2

α

(y, z)
2e−

a2t2

α (e−
a2t2

α yj − zj)
1− e−2 a

2t2

α

∣∣∣∣∣
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.M a2t2

α

(y, z)
|e− a

2t2

α y − z|
1− e−2 a

2t2

α

.

So,∣∣∣∣∣
∫ m(x)

b

0

t2N+1LNe
t2

α L∂∗xj

[
1{D(y, t)t∂xje

a2t2

α L
]
u(x)

dt
t

∣∣∣∣∣
6
∫ m(x)

b

0

∫
Rd

∫
Rd

K̃t2,N,α,j(x, y)1{D(y, t)t
∣∣∣∂yjM a2t2

α

(y, z)u(z)
∣∣∣ dz dy dt

t

.
∫ m(x)

b

0

∫
Rd

∫
Rd

K̃t2,N,α,j(x, y)1{D(y, t)tM a2t2

α

(y, z)
|e− a

2t2

α y − z|
1− e−2 a

2t2

α

|u(z)| dz dy dt
t

(i)
.
∫ m(x)

b

0

∫
Rd

∫
Rd

K̃t2,N,α,j(x, y)1{D(y, t)tMt2(y, z) exp

− α

4e2a2

∣∣∣e− a2t2α y − z
∣∣∣2

1− e−2 a
2t2

α


[*]

× |e
− a2t2α y − z|

1− e−2 a
2t2

α

|u(z)| dz dy dt
t
.

Where (i) holds because t|y| 6 b−1 so we can use lemma 2.6 with t replaced by at.
Furthermore we have used that m(y) 6 t which follows from (y, t) in {D. Note that

exp

(
−c1

ξ2

d

)
c2ξ

d
. 1

for all constants c1, c2 > 0 and for ξ > 0. The implied constant is independent on ξ
and d.
In combination with [4.2] we now conclude that the RHS in the above [*] is smaller

than ∫ 1

0

∫
Rd

exp
(
− α

16e2a2+1
|y|2
)
et

2L|u(y)| dy dt

.
∫ 1

0

∫
Rd

exp
([

1− α

16e2a2+1

]
|y|2
)
et

2L|u(y)|dγ(y)dt.

So, for α large enough we have∫ 1

0

∫
Rd

exp
([

1− α

8e2a2+1

]
|y|2
)
et

2L|u(y)| dγ(y) dt

6 ‖et2Lu‖L1(γ)

. ‖u‖L1(γ).
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This estimate holds for all x in Rd so we get∥∥∥∥∥x 7→
∫ m(x)

b

0

t2N+1LNe
t2

α L∂∗xj [1{D(x, t)t∂xje
a2t2

α2 L]u(x)
dt
t

∥∥∥∥∥
L∞(γ)

. ‖u‖L1(γ).

This concludes the proof. �

4.5 Proposition. Let N in Z+, α > 0 and a, a′, b > 0. For all u in C∞c (Rd) we have
that ∥∥∥∥∥x 7→

∫ ∞
m(x)
b

(t2L)N+1e
(1+a2)t2

α Lu(x)
dt
t

∥∥∥∥∥
h1
max,a′

. ‖u‖L1(γ).

Proof. Let M > 1 and x in Rd. Using the substitution 1+a2

α t2 = s and [1.3] we get∣∣∣∣∣
∫ M

m(x)
b

(t2L)N+1e
(1+a2)t2

α Lu(x)
dt
t

∣∣∣∣∣ '
∣∣∣∣∣∣
∫ (1+a2)M2

α

(1+a2)m(x)2

b2α

sN+1∂N+1
s esLu(x)

ds
s

∣∣∣∣∣∣ .
We can integrate the last integral N times by parts and use the triangle inequality to
obtain∣∣∣∣∣
∫ M

m(x)
b

(t2L)N+1e
(1+a2)t2

α Lu(x)
dt
t

∣∣∣∣∣ .
N∑
k=0

∣∣∣∣∣
(

(1 + a2)M2

α

)k
Lke

(1+a2)M2

α Lu(x)

∣∣∣∣∣
+

N∑
k=0

∣∣∣∣∣
(

(1 + a2)m(x)2

b2α

)k
Lke

(1+a2)m(x)2

b2α
Lu(x)

∣∣∣∣∣
=: [A] + [B].

We estimate both sums separately. We begin with [A]. Note that using the chaos
decomposition [1.2] and k in N we have

‖LketLu‖2L2(γ) = ‖etLLku‖2L2(γ) =

∥∥∥∥∥∥
∑
β∈Zn+

e−t|β|cβ |β|kHβ

∥∥∥∥∥∥
2

L2(γ)

=
∑
β∈Zn+

e−2t|β||β|2k|cβ |2 6 e−2k

(
k

t

)2k

‖u‖2L2(γ)[*]

where we have used e−2t|β||β|2k 6 e−2k
(
k
t

)2k
.

Hence, given k = 1, . . . , N we have∥∥∥∥(M2L)ke
(1+a2)M2

α Lu

∥∥∥∥
h1
max,a′

=

∥∥∥∥T ∗a′(M2L)ke
(1+a2)M2

α Lu

∥∥∥∥
L1(γ)
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6

∥∥∥∥T ∗a′(M2L)ke
(1+a2)M2

α Lu

∥∥∥∥
L2(γ)

(i)
6

∥∥∥∥(M2L)ke
(1+a2)M2

α Lu

∥∥∥∥
L2(γ)

6M2k

∥∥∥∥Lke (1+a2)M2

α Lu

∥∥∥∥
L2(γ)

(ii)
6 M2ke−2k

(
kα

(1 + a2)M2

)2k

‖u‖L2(γ)

→ 0 as M →∞

where (i) follows from lemma 1.14 and (ii) follows from [*].
Next we estimate the sum [B]. Using [2.1] where we set t2 = (1 + a2)m(x)2b−2 we

get

N∑
k=0

∣∣∣∣∣
(

(1 + a2)m(x)2

b2α

)k
Lke

(1+a2)m(x)2

b2α
Lu(x)

∣∣∣∣∣
.

N∑
k=0

∣∣∣∣∣
(

(1 + a2)m(x)2

b2

)k
Lke

(1+a2)m(x)2

b2α
Lu(x)

∣∣∣∣∣
6

N∑
k=0

∫
Rd

|K(1+a2)m(x)2b−2,k,α)(x, y)||u(y)| dy.

It remains to prove that∥∥∥∥T ∗a′ (x 7→ ∫
Rd

|K(1+a2)b−2m(x)2,k,α(x, y)||u(y)| dy
)∥∥∥∥

L1(γ)

. ‖u‖L1(γ).

By lemma 2.6(ii) it is sufficient to prove that

[4.3]
∥∥∥∥T ∗a′ (x 7→ ∫

Rd

M(1+a2)b−2m(x)2(x, y)|u(y)| dy
)∥∥∥∥

L1(γ)

. ‖u‖L1(γ).

We split the equation in [4.3] in a global and a local part. Using proposition 1.10(i)
we estimate the global part as follows∥∥∥∥∥T ∗a′glob

(
x 7→

∫
Rd

M(1+a2)b−2m(x)2(x, y)|u(y)| dy
)∥∥∥∥∥

L1(γ)

=

∫
Rd

sup
(y,t)∈Γax(γ)

∣∣∣∣∫
Rd

1{Nτ (z, w)Mt2(z, w)

×
∫
Rd

M(1+a2)b−2m(x)2(w, v)|u(v)| dv
∣∣∣∣2 dw dγ(x)
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6
∫
Rd

sup
(z,t)∈Γax(γ)

∣∣∣∣∫
Rd

1{Nτ (z, w)Mt2(z, w)

×
∫
Rd

M(1+a2)b−2m(x)2(w, v)|u(v)|dv
∣∣∣∣ dw dγ(x)

.
∫
Rd

∫
Rd

M(1+a2)b−2m(x)2(x, y)|u(y)| dy dγ(x).

We decompose the right hand side in a local and a global part. Let τ := 1
2 (1 +

b−1
√

1 + a2)(1 + 2b−1
√

1 + a2). By proposition 1.10(i), for the global part we have∫
Rd

∫
Rd

M(1+a2)b−2m(x)2(x, y)1{Nτ (x, y)|u(y)|dy dγ(x) . ‖u‖L1(γ).

For (x, y) in Nτ we have m(x) ' m(y) by lemma 1.9, hence∫
Rd

∫
Rd

M(1+a2)b−2m(x)2(x, y)1Nτ (x, y)|u(y)| dy dγ(x)

6
∫
Rd

∫
B(x,τm(x))

1

m(x)d
|u(y)|dy dγ(x).

Where the RHS of the previous inequality follows from the argument of [4.1] that
shows that Mt2(x, y) . m(x)−d. For (x, y) in Nτ we also have e−|x|

2 ' e−|y|
2

by
lemma 2.8, therefore, using lemma 1.9∫
Rd

∫
B(x,τm(x))

1

m(x)d
|u(y)| dy dγ(x) .

∫
Rd

∫
B(x,τm(x))

1

m(y)d
|u(y)| dy dγ(x)

=

∫
Rd

∫
Rd

1B(x,τm(x))(y)
1

m(y)d
|u(y)| dy dγ(x)

.
∫
Rd

∫
Rd

1B(y,τ(1+τ)m(y))(x)
1

m(y)d
|u(y)| dy dγ(x)

.
∫
Rd

∫
B(y,(1+τ)m(y))

1

m(y)d
|u(y)| dxdγ(y)

.
∫
Rd

|u(y)| dγ(y)

= ‖u‖L1(γ).

Next we estimate the local part [4.3], that is we need an estimate for∫
Rd

sup
(y,t)∈Γax(γ)

∣∣∣∣∫
Rd

1Nτ′ (z, w)Mt2(z, w)

×
∫
Rd

|M(1+a2)b−2m(x)2(w, v)||u(v)| dv
∣∣∣∣ dw dγ(x)



54 The remainder terms

Clearly the RHS can be estimated by∫
Rd

sup
(y,t)∈Γax(γ)

∫
Rd

1Nτ′ (y, z)Mt2(y, z)

×
∫
Rd

M(1+a2)b−2m(x)2(z, w)|u(w)| dw dz dγ(x).

Once we have estimated the following terms, the proof will be complete.

Jglob :=

∫
Rd

sup
(y,t)∈Γax(γ)

∫
Rd

Mt2(y, z)1Nτ′ (y, z)

×
∫
Rd

M(1+a2)b−2m(z)2(z, w)1{Nτ′′ (z, w)|u(w)| dw dz dγ(x),

Jloc :=

∫
Rd

sup
(y,t)∈Γax(γ)

∫
Rd

Mt2(y, z)1Nτ′ (y, z)

×
∫
Rd

M(1+a2)b−2m(z)2(z, w)1Nτ′′ (z, w)|u(w)| dw dz dγ(x),

where τ ′ is defined for the parameters (A, a) = (1, a′) as in proposition 1.10 and τ ′′

is defined as follows. For (x, y) in Nτ and (y, z) in Nτ ′ we have by lemma 1.9 that
m(x) ' m(y) ' m(z). Fix τ ′′ as in proposition 1.10 for the parameters (1, ã) =
(1,
√

1 + a2b−1) Using proposition 1.10(i) we have

Jglob .
∫
Rd

sup
(y,t)∈Γax(γ)

∫
Rd

Mt2(y, z)1Nτ′ (y, z)

× sup
(η,s)∈Γãz

∫
Rd

Ms2(η, w)1{Nτ′′ (η, w)|u(w)| dw dz dγ(x)

.
∫
Rd

sup
(y,t)∈Γax(γ)

∫
Rd

Mt2(y, z)1Nτ′ (y, z)‖u‖L1(γ) dz dγ(x)

. ‖u‖L1(γ).

For (x, y) in Na, (y, z) in Nτ ′ and (z, w) in Nτ ′′ we have m(x) ' m(y) ' m(z) ' m(w)
by lemma 1.9. We also have

|x− w| 6 |z − w|+ |x− y|+ |y − z|
6 τ ′′m(z) + 2am(x) + τ ′m(y)

6 λm(x).

for some λ > 0. Let κ > 0 be such that m(x) 6 κm(w). We also the argument of [4.1]
that shows that Mt2(z, w) . m(z)−d . m(x)−d.

Jloc .
∫
Rd

sup
(y,t)∈Γax(γ)

∫
Rd

Mt2(y, z)1Nτ′ (y, z)
1

m(x)d

∫
B(z,τ ′′m(z))

|u(w)|dw dz dγ(x)
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6
∫
Rd

sup
(y,t)∈Γax(γ)

∫
Rd

Mt2(y, z)1Nτ′ (y, z)
1

m(x)d

∫
B(x,λm(x))

|u(w)| dw dz dγ(x)

6
∫
Rd

1

m(x)d

∫
B(x,λm(x))

|u(w)| dw dγ(x)

(i)
.
∫
Rd

1

m(w)d
|u(w)|

∫
B(x,λκm(w))

dx dγ(w)

. ‖u‖L1(γ).

Where we have used lemma 2.9 in (i). This completes the proof of the present propo-
sition. �





5 The equivalence

In this final chapter we will prove that the Hardy spaces as defined in the introduction
are actually the same. To do this all the results from the previous chapters together
with the Calderón reproducing formula are put together.
We first define another Hardy space using a non-tangential maximal function T avg∗

a

T avg∗
a := sup

(y,t)∈Γ
( 1
2
,a)

x (γ)

(
1

γ(B(y, t))

∫
B(y,t)

|et2Lu(z)|2 dγ(z)

) 1
2

.

We can quickly see that
‖T avg∗

a ‖ 6 ‖T ∗a ‖.

5.1 Theorem. Given a > 0, there exists a′ > 0 such that h1
quad,a(γ) = h1

max,a′(γ) with
equivalent norms.

Proof. For a > 0 we have by [MvNP10a, theorem 1.1] that there exists a′ > 0 such
that ‖S∗au‖L1(γ) . ‖T ∗au‖L1(γ) for all u ∈ C∞c (Rd). Fix the a′ from h1

max,a′ ⊂ h1
quad,a

and choose α and b big enough. Let u ∈ C∞c (Rd) and apply corollary 1.19. We have

‖u‖h1
max,a′

=

∥∥∥∥T ∗a′ ∫
Rd

udγ
∥∥∥∥
L1(γ)

+ C

d∑
j=1

∞∑
n=1

|λn,j |
∥∥∥∥x 7→ ∫ 2

0

(t2L)Ne
t2

α Lt∂∗xjAn,j(x, t)
dt
t

∥∥∥∥
h1
max,a′

+ C

d∑
j=1

∞∑
n=1

|λn,j |
∥∥∥∥x 7→ ∫ 2

0

1[m(x)
b ,2](t)(t

2L)Ne
t2

α Lt∂∗xjAn,j(x, t)
dt
t

∥∥∥∥
h1
max,a′

+ C

d∑
j=1

∥∥∥∥∥x 7→
∫ m(x)

b

0

(t2L)Ne
t2

α Lt∂∗xj (1{D(t, x)t∂xje
a2t2

α L)u(x)
dt
t

∥∥∥∥∥
h1
max,a′

+ C

∥∥∥∥∥x 7→
∫ ∞
m(x)
b

(t2L)N+1e
(1+a)2t2

α Lu(x)
dt
t

∥∥∥∥∥
h1
max,a′

.

We have ∥∥∥∥∥T ∗a′
∫
Rd

udγ

∥∥∥∥∥
L1(γ)
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6 ‖u‖L1(γ)

∫
Rd

sup
(y,t)Γa′x (γ)

|et2L1|dγ(x)

= ‖u‖L1(γ).

Moreover, proposition 3.2 together with theorem 3.3 gives us that for any 2-atom A,∥∥∥∥x 7→ ∫ 2

0

(t2L)Ne
t2

α Lt∂∗xjAn,j(x, t)
dt
t

∥∥∥∥
h1
max,a′

. 1.

By proposition 4.3 we get∥∥∥∥x 7→ ∫ 2

0

1[m(x)
b ,2](t)(t

2L)Ne
t2

α Lt∂∗xjAn,j(x, t)
dt
t

∥∥∥∥
h1
max,a′

. 1.

Hence by corollary 1.19 (final estimate),

∞∑
j=0

∞∑
n=0

|λn,j | . ‖u‖h1
quad,a

.

For j = 1, . . . , d we have by, proposition 4.4,∥∥∥∥∥x 7→
∫ m(x)

b

0

(t2L)Ne
t2

α Lt∂∗xj (1{D(t, x)t∂xje
a2t2

α L)u(x)
dt
t

∥∥∥∥∥
h1
max,a′

. ‖u‖L1(γ).

Finally, by proposition 4.5 we have∥∥∥∥∥x 7→
∫ ∞
m(x)
b

(t2L)N+1e
(1+a)2t2

α Lu(x)
dt
t

∥∥∥∥∥
h1
max,a′

. ‖u‖L1(γ).

So
‖u‖h1

max,a′
. ‖u‖h1

quad,a
.

This completes the proof of the equivalence. �
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