]
TUDelft

DELFT UNIVERSITY OF TECHNOLOGY
MSc THESIS

Gaussian Hardy spaces

' Supervisor:
Author: Prof. dr. J.M.A.M. VAN
Jonas TEUWEN

NEERVEN

02,/04/12






Introduction

This thesis is based on a preprint by Pierre Portal [Pori2).

This thesis is about Hardy spaces and in particular the Gaussian Hardy spaces. Here
we replace the Lebesgue measure with the Gaussian measure i.e.,

dy(z) = r~2e 1 dz for z € R

The ultimate goal is to build an equally rich theory as in the Lebesgue measure case.

There is an abundance of equivalent definitions for the Hardy spaces on (R%, |- ).
We will only name the few of them that are relevant for this thesis. The first one is the
atomic Hardy space H} (R?). Here an atom is a complex-valued function a defined
on R? which is supported on a cube @ and is such that

1
QI
The space atomic H'(R?) denoted by HL (R?) is defined by

/ a(z)dr =0 and ||al| g (ge) <
Q

H;t(Rd) = Z/\jaj: a; atoms, )\j S C,Z |/\J| < o0
J J

with norm
||f||H;t(Rd) := inf § |>\j|3 = E Aja;
J J

This definition is equivalent to some maximal function Hardy spaces and some conical
square function Hardy spaces but more about those later on.

There are now important questions one can ask. What is the dual space? It is
know that this is BMO(R?). Furthermore the Calderén-Zygmund operators are not
bounded on L!(R?%). We do have that the operator is bounded on weak L'. This
is sometimes enough but a downside to this space is that it is not a Banach space.
Luckily we do have boundedness on H'(R?)! It can be shown that the atomic space
H (RY) is a proper subspace of L'(RY).

We could now try to replace the Lebesgue measure with the Gaussian measure
and try to mimic all arguments. However, this quickly fails. Many of the covering
arguments in harmonic analysis rely on the doubling property of the measure. That
is: if p1 is a doubling measure then we have for all » > 0 and x in R? that there exists
C > 0 independent on r and z such that

w(B(z,2r)) < Cu(B(z,r)).
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The Gaussian measure is unfortunately not doubling.

Mauceri and Meda have tried to answer these questions at least partially in [MMO7]
in the case of a Gaussian Hardy space. They have taken the route of an atomic Hardy
spaces as in done in the Lebesgue measure case. For this space they have proven that
the dual is BMO(7). Unfortunately they have proven in the follow-up paper [MMSI0]
that some Riesz transforms are only bounded on this space in dimension one. This is
surely unsatisfactory. One possible reason that this happens is that their definitions of
the atoms do not relate well enough to the nature of the Ornstein-Uhlenbeck operator.
They have the same cancellation condition [a = 0 which appears to be unnatural.
One could try to drop this condition but it can be shown that in the Euclidean case
we then just get the space L'(R%). This will be subject of future research.

The Mauceri and Meda paper did develop a potentially useful technique in Gaussian
harmonic analysis. This is the tool of the so called admissible balls. Here we are
averaging only over balls where the radius is at maximum a fixed parameter a times
m(x) = min(1,|z|~!) where z is the center of the ball. The key observation here is
that on these balls the Gaussian measure is doubling. Using this observation we could
again try to adapt the usual arguments. We can quickly see that this fails. Admissible
balls are small when their centre is far away from the origin. Tools like the Whitney
decompositions of open set at least require that the size of the balls is comparable to
their distance to the boundary of that open set. This way these balls would have to
be very large.

So we first try a different route. Pierre Portal in [Porl2| has taken the approach
of a maximal function and a conical square function Hardy space. In the Lebesgue
measure case these are defined using

2
Mu(z) == sup |e" 2u(y)l,
(y,t)€ls

Su(z) = ( I e Pay ff) g

1By, )]

where,
Iy = {(y,t) € R% x (0,00): |y — 2| < t}.

and A =% j 8? is the Laplacian. Now the Hardy spaces can be defined as the com-
pletion of the space of compactly supported functions C.(R?) with respect to the
norm

Il = T fll ey + 1o (mey

where this gives equivalent norms if we pick T to be either M or S.
In this thesis we are interested in the Gaussian versions of the Hardy spaces on R%.
That is, we replace the Lebesgue measure with the Gaussian measure, i.e.,

dy(z) = r2e 17y,

Our main question is if the Hardy spaces hy,.. ,(7) and hl .4 . (7) are the same
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for some a,a’ > 0. These spaces are defined as follows. First let L be the Ornstein-

Uhlenbeck operator
1 *
Li==5) 0;0
J

and let
Tyu(z) := sup \etzLU(y)L
(y,t)€TS ()
1
1 2 AN
Soulz) = // Ve hu(y) P dy(y) S |
‘ ( 2 1B 1) t
where,

T4 (y) = {(y,t) ER % (0,00): [y—a| <t < amin{l,lxll}}.

Now hl.. .(v) and bl

Mmax.a quad,a’ () are the completions of the smooth compactly supported

functions C2°(RY) with respect to the norms

lullny. . vy = Taullor ) + [luller (s

max,a

and

lullnz, o = 1Sartll iy + llull L),

quax

respectively.
One direction of the equivalence of the norms is already proven in [MvNP10a), there
is proven that
[SarullLr () S N TaullLr -
We are then, of course, interested in the other direction. In particular we will prove
that
1T5ullLr vy S I1Sarullor ) + lullzrq)-

Setup of the proof

In the first chapter the required definitions are given. Also, a few preliminary lemmas,
propositions and theorems are given which turn out to be very useful in the sequel.
The proof is based around a Calderén reproducing formula which is also proven in this
chapter.

The second chapter treats the kernel estimates of the kernels of the operators in
the Calderén reproducing formula. A few technical lemmas are given to prove these
estimates. Another useful lemma is the lemma that gives the off-diagonal estimates
for an operator in the Calderén reproducing formula. There will be situations where
these off-diagonal estimates will not work, so another lemma is given which can be
used when those estimates fail.
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In the third chapter, the notion of molecules is introduced. Here there is proven
that a certain operator is a molecule and that the h}naxya—norm of a certain class of
molecules is always bounded by a constant under the right assumptions. This proof
fills the remainder of this chapter.

The fourth chapters handles the remainder terms, the required estimates are given.

Finally, in the last chapter the equivalence is proven with the results from the
previous chapters. This ends the proof that the Hardy spaces hl (7) and h} (7)

max,a quad,a’
are the same for certain a,a’ > 0.

Prerequisites

The material in this report should be understandable after following a basic course in
functional analysis and measure theory. Knowing the notions of Bochner integrals and
interpolation might come in handy.
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1 Preliminaries

In this chapter we introduce the preliminaries which will be used later on in this
thesis. In the first two sections we introduce techniques which will be useful in the
later sections of this chapter. The study of the Ornstein-Uhlenbeck operator is partly
what this thesis is about so we introduce and some of its properties in the next section.
The necessary tools to prove our main result are introduced in the next three sections.
Here we give a Calderon reproducing formula, a doubling property for the Gaussian
measure and we introduce the local and global regions of for example the Mehler
kernel. The next section introduces the spaces this thesis is about. Finally, the last
three sections give technical results which will be useful in the sequel.

1.1 Interchanging integrals and derivatives

In this section we present some results that will be used to rigorously justify inter-
changing integrals and derivatives.

We will use Hille’s theorem which states that under some conditions closed operators
and Bochner integrals commute to interchange integrals and weak derivatives.

The following theorem is a theorem taken from [DUTT].

1.1 Theorem (Hille). Let (A, u) be a o-finite measure space and let v : A — E be
w-Bochner integrable and let T be a closed linear operator with domain 2(T) in E
taking values in a Banach space F. Assume that f takes its values in 2(T) p-almost
everywhere and the p-almost everywhere defined function Tu : A — F is pu-Bochner
integrable. Then [, udp in Z(T) and

T/ud,uz/Tudu.
A A

Remark. In [DUT7| this theorem is proven for finite measure spaces but the proof
extends to o-finite measure spaces.

The following lemma will turn out to be very useful together with theorem

1.2 Lemma. The weak derivative 0, fori =1,...,d with domain W12(R?) is closed
on L*(R%).

Proof. Let u,, in W12(R%) and u be such that u,, — u in L?(R%). Furthermore assume
that d,,u, — v. We will show that u in W12(R?) and 0,,u = v. Let ¢ be a test
function. Then

‘/ (ot~ )00, & QA| < it — ull e 102, Sl 2sy — 0 a5 m > .
R
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And similarly
V (@rattn — 0)6 AN < [9r,10n — vl 2|9l 2 gty > 0 25 m > oo
R

So u in Wh2(R%) and 9,,u = v. |

Using this lemma we can apply theorem to interchange the integral and deriva-
tive.

1.2 Interpolation

In what follows we will need to use some interpolation results. We will recall the
Riesz-Thorin and the Marcinkiewicz interpolation theorems from [Gra0§].

1.3 Theorem (Riesz-Thorin interpolation theorem). Let (X,u) and (Y,v) be two
measure spaces. Let T be a linear operator defined on the set of all simple functions
on X taking values in the set of measurable functions on'Y . Let 1 < pg,p1,qo,q1 < 00
and assume that

[Tul| Lo < Mollul[zro,

[TullLar < Milullzes,

for all simple functions w on X. Then for all 0 < 0 < 1 we have
I Tullzs < My~ MY ||ul s

for all simple functions u on X, where

11— 0 0 1 1-90 n 0

[1.1] — +— and — = —.
p Do D1 q qo q1

By density, T has a unique extension as a bounded operator from LP(X, u) to LI(Y,v)
for all p and q as in |1.1].

Before we recall the Marcinkiewicz interpolation we define the weak LP spaces.

1.4 Definition. For u a measurable function on X, the distribution function of u is
the function d,, : [0,00) — [0, 00| defined as follows:

dy(a) = p({[u] > a}).

For 0 < p < oo the space weak LP(X, ) is defined as the set of all p-measurable
functions u such that

1
Jullzos = sup {du(7)7: 7 > 0}

is finite.



1.3 The Ornstein-Uhlenbeck operator

An operator is said to be of weak type (p,q) if it maps LP to weak L9.

1.5 Theorem (Marcinkiewicz interpolation theorem). Let (X, u) and (Y,v) be mea-
sure space and let 0 < pg < p1 < oo. Let T be a sublinear mapping defined on the
space LPO(X) 4+ LP1(X) and taking values in the space of the measurable functions on
Y. Assume that there exist two positive constants Ay and Ay such that

| Tull Lro.o vy < AollullLro(x), for allu in LP°(X),

| Tul| Lpr.oo(vy < AnllullLe (xy, for all w in LP*(X).

Then for all pg < p < p1 and for all u in LP(X) we have the estimate
|TullLe vy < Allullzex),

where the constant A only depends on p,po,p1, Ag and A;.

1.3 The Ornstein-Uhlenbeck operator

We will be primarily concerned with the Ornstein-Uhlenbeck operator on R? and in
particular its semigroup. The Ornstein-Uhlenbeck operator is the correct replacement
in the Gaussian case for the Laplacian as the latter one is not symmetric in L?(7)
where

dy(z) = r2e 7’ dy

is the Gaussian measure. The Ornstein-Uhlenbeck operator is given by

1¢ 1
L= —52(9;‘@ =A-aV,
=1
where
82* = —0; + 2x;

is the formal adjoint of 9; in L?(v).

The survey of [Sj697] gives some results about the Ornstein-Uhlenbeck operator
which we will now briefly summarize. On L?(v), the ClOSUI‘EE of the Ornstein-Uhlenbeck
operator L generates a semigroup e*” and for this semigroup the normalized Hermite
polynomials (Ha)aezi form an orthonormal basis of eigenfunctions. In particular we

have the action of etL

[12] et Z CgHg = Z 67t\ﬁ|65H5

BEZT BEZT

LFor the definition of closure see [RS72], page 250]. This book is also useful for the other functional
analysis needed in this thesis.



Preliminaries

where
d

H, = ®hm and hq, (z) =

i=1
are the normalized Hermite polynomials, |3] = 81 + ...+ 84 and Z; = {0,1,2,...}.

Different formulas for these polynomials are given in [Sj697]. We also have the identity
which follows immediately from the properties of the semigroup

2-F 0%
(_1)0” axaie ’

(e72:

[1.3] Lettu = opettu for t > 0 and w in L?(y).

Another property of the Ornstein-Uhlenbeck operator that will be often used is the
expression for the action of the semigroup as integration against the Mehler kernel,
that is,

[1.4] tu@) = | Mi(ay)u(y)dy,
where the Mehler kernel M; is given by
_a o4 et —y|?
My(a,y) =775 (L= e™) * exp <|1_e—2t|> '

One important thing to note is that

M, (z,y) = My(y, z)el** 11",

From the Mehler kernel expression the pointwise estimate |e'Xf| < e'f|f| of the
Ornstein-Uhlenbeck semigroup can be easily deduced as follows

Palto) = | [ sttt < [ il s = o),

Another thing we can deduce from [I.4] is that e’ is self-adjoint for all ¢ > 0. To see
this let v and v be in L?(v) and note

uo)= [ ] Mg dydr@)
Rd, Rd
_ / My (, y)u(y)v(z)dy(z) dy
Rd Rd
_ / Mi(y, 2l y(y)o(z)dy(z) dy
Rd JRA
- / My(y, )u(y)o(z)dz dy(y)
Rd JRA

:/Rd u(z)ev(z) da

= (u,etbo).



1.4 A Calderén reproducing formula

We can also show that the Ornstein-Uhlenbeck semigroup is bounded on LP(v) for
1 < p < oo using Riesz-Thorin and duality. We proceed by using the theorem [I.3]
from section First remark that e'” is bounded on L?(y) because it is a strongly
continuous semigroup on L?(y). Furthermore remark that e*’ is bounded on L ().
To see this note that

el < sl [ Mooy =l

where we have used that e!*1 = 1. By the preceding theorem we can now conclude
that e'” is bounded on LP(7y) for 2 < p < oc.

We can prove that e*” is bounded on LP(7) for 1 < p < 2 by duality. Let f in LP(v)
for 1 < p < 2. Let ¢ be the conjugate exponent of p. Then,

I ulley = sup (e, v)]
vl Layy <1

= sup  |(u,ev)|
lvllLay <1

< sup ullpegylle ol pay
lvllLa <1

S ||UHLP(7)-

So we have
e ullr(y) S lullpey)

for all w in LP(y) and 1 < p < co. Another method is to use Jensen’s inequality and
e!’1 = 1. Note that for u in LP(y) and 1 < p < oo we have by Jensen’s inequality and
the convexity of x +— P that

@ = ([ M) < [ P =)

A good reference about the properties of strongly continuous semigroups is [ENO06]|.

1.4 A Calderén reproducing formula

In this section we will prove a Calderén reproducing formula (the name goes back to
[Cal64]) which will be central in the proof of the equivalence of the norms on hl

i max,a
and hquad)a.

1.6 Lemma. For all N in Zy and A > 0 and for all u in L?(y) we have that
2wt acrn, dt
[1.5] u="C (L)Y e Ty -+ udy,
0

where C' = %AN“,
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Proof. We first prove the result for the Hermite polynomial u := Hg for some multi-
index 8 and then we use . First let 5 = 0. Then Hg = 1, so we can calculate the
right-hand side

* 2 7 \N+1_At?L dt
C/ (tL) le 1——|—/ 1dy=C-0+1= Hp.
0 3 R

So now assume that 3 # 0. For these Hg the last integral in will evaluate to zero
(by integration by parts) so we compute the first one. Using LN 1 Hg = |8|N 1 Hg we
obtain

Oo(t2L)N+leAt2LH @: Oo(t2L)N+1€fAt2|ﬂlH d
0 S o

_ |6‘N+1HB /Oo (2(N+1) ,— AL |8] dt
0

t
N! |ﬂ| N+1H
T2 (Am) g
_ MA*(N#’DH/B
2

Hence we see that C' = %AN *1 is the right constant. To finish the proof we apply
to this result. holds for all Hermite polynomials whose span is a dense subset
of L?(«y) and the LHS of depends continuously in L?(y) on u. So by continuity
the result now follows for general u in L?(v). [ ]

1.5 A doubling property for the Gaussian measure

The Gaussian measure is non-doubling. This means that there does not exist a constant
C > 0 such that
V(B(z,2r)) < Cy(B(x,r))

for all  in R? and > 0. The Lebesgue measure does have the doubling property,
and that is what for example makes the Whitney type decompositions work. To work
around this problem we first define classes of so called admissible balls on which the
Gaussian measure is doubling. These admissible balls B, with admissibility parameter
a are introduced in [MMO7] as follows. Set

B, :={B(z,r):z € R,0 <r <am(z)}

m(e) = min {1, 7}

We recall the result from [MMO07]| which will act as a substitute for the doubling
property of the Lebesgue measure on admissible balls when working with the Gaussian
measure.

where



1.6 The local and global regions

1.7 Lemma. There exists a constant Cq > 0 only depending on the dimension d such
that for all a,b > 1 and all B(x,r) in B, we have that

[1.6] Y(B(x,br)) < Cge?® @+ (B(x,r)).

1.6 The local and global regions

The technique in Gaussian harmonic analysis of splitting the kernels such as the Mehler
kernel in a global and local part is well known and goes back to [Muc69]. The idea
behind this is that the local part behaves like some kind of Calderéon-Zygmund oper-
ator (for more about these operators see [Gra09|) and the global part has nice decay
properties.

We will split the Mehler kernel into a local and a global part. For all a > 0, the
local region is defined as

N, = {(z,y) e R*: |z — y| < am(z)},

The global region is then the complement of N,. A typical result that can be obtained
using this splitting technique is the weak type (1,1) of the local part of the Hardy-
Littlewood maximal operator and the L'(y) boundedness of its global part as proven
in [HTV00, theorem 2.7]. Furthermore, we also define the local region N, (B)

No(B) :={y € R?: |cp — y| < am(cp)}.

1.7 The Hardy spaces

This is a preliminary section on Hardy spaces with the Gaussian measure. The Hardy
spaces in the Euclidean case are interesting because for example certain singular in-
tegral operators map H' (which is a closed subspace of L!) to L' while they do not
necessarily map L' to L'. An example of this phenomenon is the Riesz transform. In
the Euclidean cases there exists an abundance of equivalent characterizations for the
Hardy space h'(v). However, one has to go through a considerable amount of work to
obtain these equivalences.

In this report we consider two possible characterizations of the Hardy spaces with
respect to the Gaussian measure. The eventual goal is to prove the equivalence of
these.

These spaces are defined using the non-tangential maximal function 7] and the
conical square function S

* 2
Tru(z) == sup " Fu(y)],
(y,t)eTrs(v)

— 1 e Lay(u)|2 ﬁ
Sau(x) T (/I‘g('y) ’Y(B(y,t)) |tv (y)| d’y(y) + ) ’

Nl
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Figure 1.1: The cone Ty in R? x (0,00).

where
Te(v):={(y,t) € R x (0,00) : |y —z| <t < am(z)}.

NoW N o(7) and 2.4 ,(7) are defined as the completions of the space of smooth
compactly supported functions C°(R?) with respect to the norms

lullny,,.. .0 = ITaullzr ) + lullzry),
and

lalln,.., . = ISaullzaey + lull o,
respectively.

Given A, a > 0 we define the admissible cone FQA’“) (v) with aperture A and admis-
sibility parameter a based at the point x as

LA (y) = {(y,t) € R x (0,00) : |y — x| < At and t < am(z)}

For simplicity we will also write I';(y) := 1"551’1)(7) and I'%(y) := ri ().
For an example of such a cone see figure
The following lemma about the cones states a fact that we will often use.

1.8 Lemma. If (y,s) in T'%(y) and z in B(y, s) then (z,s) in Fg’a)(w).

The proof is straightforward, so we skip it.

1.8 A useful lemma

In this section we give a lemma that will be useful throughout the text.
We recall the lemma from [MvNPI0D, lemma 2.3].



1.9 The boundedness of some non-tangential maximal operators

1.9 Lemma. Let a >0 and z,y in R If |z — y| < am(x) then m(z) < (1 + a)m(y)
and m(y) < 2(1 4+ a)m(z).

This lemma wil turn out to be extremely useful for example when changing domains.

1.9 The boundedness of some non-tangential
maximal operators

In this section we will prove the boundedness of some non-tangential maximal operators
which will turn out to be very useful in the sequel. The proof of the first part depends
heavily on the global/local dichotomy. For the second part we also use interpolation.

1.10 Proposition. Let A,a > 0 and let T := w. Then, for u in C°(RY),

(i) ||z~ sup M2 (y, z)1ew, (y, 2)|u(z)| dz

S llullzeys
(y,t)ert* @ (4) /R

L ()

(ii) ||z — sup M2 (y, z)|u(z)|dz Slullpreyy for all 1 < p < oc.
(y,t)eTs ) (v) /RY LP(5)
Additionally, the sublinear operator
u sup M2 (y, z)|u(2)| dz

(y)eriH® (v) /R
is of weak type (1,1).

Before we continue with the proof we state a theorem which will give us an lemma
that will be useful. The following lemma is a small modification of [PUR0S| lemma
1.1].

1.11 Lemma. Let A,a > 0. For all z in R and all u in L*(y) we have

sup e Pu(y)| S sup

B lu(z)dv(z).
(y,)ert™ @ (y) r>0 Y(B(z,7)) /B(w,r)

Furthermore, from [HTV00, theorem 2.7] we get the following theorem

1.12 Theorem. Consider the mazimal function Myu defined by

1
Myu(w) :=sup Zrp0 05

Then the operator M, is bounded on L'(7).

/ o, (2 9)]u(y)| dv(w).
B(z,r) 2

We will also need the following weak type (1, 1) estimate on an “admissible maximal
function” which is proven in [MyvNPI10al lemma 3.2].
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1.13 Lemma. Let a > 0. Foru in L} (RY) put

loc

1
Mu(z) == sup 7-/ w) | dy(y).
o B(x,r)eB, V(B(z,1)) B(w,r)\ ()l dv(y)

Then for all T > 0,
Ty ({Mgu>7}) S llullp 4
with the implied constant only depending on a and d.

Proof of proposition[I.10, We begin with the proof of Let z in RY, (y,2) in CN,

and (y,t) in FiA’a)(v). We claim that

1
|z — z| > §m(x)

To see this first note that by definition of N, we have that |y — z| > 7m(y) and by
definition of T (7) that |y — z| < At < Aam(z). Furthermore we have by the
reverse triangle inequality that
|z — 2| 2 |z -yl — |z -y
> tm(y) — Aam(x).

Now, by lemma |1.9| we have that m(y)(1 + aA) > m(x) so we get

.
1+aA

[ — 2| > 7m(y) — adm(z) > ( - aA) m(a) = tmx),

where the last equality follows from the definition of 7. So,

T~ sup M= (y, 2)1gn, (y, 2)|u(z)| dz
()Tt (v) JRA Li(v)
(i)
<[] sw M (y, 9)lgn, (2, 2)|u(2)] dz| do(z)
Re | (y,t)eri™® (v) /R? 2

(ii) 1
< sui‘/ 1 x, 2)|u(2)| dy(z) dy(z).
Lo B o Tony @A) ) )

Where we have used in (i) that by previous inequality and the definition of N 1 we have
that 1oy (y,2) < 1gn, (2,2). Furthermore in (ii) we have used and lemma
2

Theorem gives us that this is smaller than a constant times ||u||z1(y). This con-

cludes the proof of
To prove we first apply lemma to ly — z| < m(y), ly — z| < Aam(x) to find
a 7’ such that |z — 2| < 7'm(z). So,

sup M2 (y, 2)1n, (y, 2)[u(2)| dz
(y,t)erit @) (v) Y R?
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11

= sup Mt2 (y,Z)lNT (yaZ)lB(w,T’m(w))(Zﬂu(Z)‘ dz
(y)eri ) (v) /R

(i) 1

< sup / Lo (2)u(2)] dv(2)
B(z,r)

1

r>0 V(B(x, 7))
[1.7] - swp
re(0,7'm(x)) ’)’(B(l', T))

/ Ly (2, 2)]u(2)] dy (2)
B(z,r)

where we have used lemma in (i).
We can now finish the proof using the Marcinkiewicz interpolation theorem. We will
first show that

[1.8] T osup Mz (y, 2)|u(z)| dz
(y.t)ers® (v) /R

is of weak type (1,1) and bounded on L*° (). By lemma the RHS of is of
weak type (1,1). Combining this with part [(i)| we see that [1.8] is of weak type (1,1).
The L*°(y) boundedness result for follows from lemma as follows. Let u in
HU”LOQ(,Y). Then

1
sup Mol u(:)| s Ssp i [ Jula)|d(2) < el
(y,t)eT{M ™ () Y RY r>0 Y(B(z,7)) /B2

Hence now follows from the Marcinkiewicz interpolation theorem (theorem [1.5).
|

Remark. Many results in this thesis are given for functions in C°(R%). Since the
Gaussian measure is a finite regular measure we have that C>°(R?) is dense in LP(v)
for 1 < p < 0o. This way we can extend all these results on C°(R?) to the appropriate
LP(v)-spaces by density.

We will also need the L?(vy) boundedness of T*. We now state this as a lemma.

1.14 Lemma. The operator T, is bounded on L?().

Proof.
(12 t°L ’ @ 2
1Tgullz2(y) =/ sup e" Pu(y)l] () < [lullzz(y-
R |(y,t)erg(y)
Where (i) follows from proposition |1.10(ii)| |

1.15 Definition. Let A,a > 0. We define the global part of T:(A’a) by

T;l(o’:’a)u(x) = sup ’/ e, (2, w) My (2, w)u(w) dw|,
(yt)ers™® (y) /R

where T 1= 7(1+GA)S+2QA),
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Remark. We will also write Tg&)’a) = T3ion-

Proposition |1.10(i)| gives the boundedness of the global part of 7.
1.16 Corollary. Let u in L?(v), A,a > 0. Then we have
*(A,a
T (A,a)

glob Ul S llullz)-

1.10 Gaussian tent spaces

In [MvNP10Db| the Gaussian tent spaces are introduced as follows. Let
D= {(z,t) € R x (0,00) : t <m(x)}.

The Gaussian tent space t12(v) is defined as the completion of C..(D) with respect to

the norm
B # 2 % ' T
HAHth(,Y) = /Rd (//1:‘1(7) ’}/(B(y,t))‘A(%t)l d’)/(y) ; ) d'Y( )

Compared to [MvNPI0b] we will use the notation #12(«y) rather than T%2(y) to em-
phasise the local nature of this space (and we do the sam

e with the Hardy spaces).

In the same article ([MvNP10Db|) theorem 3.4 gives an atomic decomposition for
t12(). As in the Euclidean case, this atomic decomposition will turn out to be very
useful. Using an atomic decomposition we will only have to check results for atoms and
then the rest follows reasonably easy. We first define what an atom is in the Gaussian
context.

1.17 Definition. Given a > 0 a function A: D — C is called a t**(7) a-atom if there
exists a ball B in B, such that

(i) supp(A) C {(y,t) € D:t < d(y,CB)} and,

. ~ o dy(y)dt 1
i [ ] awer S <

Now the atomic decomposition is as follows.

1.18 Theorem. For all u in t*2(vy) and a > 1, there exists a sequence
(An)n>1 € 1 and a sequence of t12(v) a-atoms (Ay,)n>1 such that

(i) u= Z)‘”A” and,
n=1

(i1) > Anl SN Fller2)-

n=1
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Using the Calderén reproducing formula [1.5] and the atomic decomposition we can
prove the following corollary. The proof follows quite directly from those results. This
corollary will be the actual underlying identity when proving the equivalence of the
“non-tangential maximal function Hardy space” and the “conical square function Hardy
space” in the last chapter.

1.19 Corollary. ForallN inZ,,a>1,b> % and o > a? there exists Cp, Cy, C3, Cy >
0 and d sequences of atoms (Ay j)nez, and numbers (A, j)nez, such that for all u in
Cx(RY) and z in RY:

d oo 2 5
u(z) = / udy — C Z Z Anj / (t2L)Ne%Lt8;J, A, iz, t)%
R4 0

j=1n=1
d > 2 t2 de
+C2Y > Ay /0 L) o] (L) e htay; A j(x, -
[1.9] j=1n=1

a242 dt

d m(x)
b .2
—-Cs E /0 (tZL)Ne?Ltﬁzj(lgD(t,x)tatje a Lu(x))T
j=1

14a)2¢2 dt
+C4/ ( >(tQL)NJrle( +a) t Lu(m) 77

and

d [ee]
222 il Sl -
j=1n=1 ’

Where 0} = =0y, + 2x; denotes the adjoint of 9y, in L2(v).
Proof. First remark that L = —1 > ; 070; and hence

[1.10]
2 7 \N+1 ML d 2 \N 1 2 A% 21 a242p
L)Y e e fu(z) = —Z(t L) Et 0y, 0p;e'a Pe e Fu(x)

2,2

1

d +2 t
Z(tQL)Ne?Lw;j [1p(z,t) + Lgp (2, )]ty e = Fu(z).
i=1

DN | =

The first line follows from the definition of L and the second follows from the fact that

L and its semigroup commute.
(1.2 2 .
We would like to have an atomic decomposition for x +— 1p(x,t)t0,,e oLy, j=
1,...,d. To show that this exists, we show that this term lies in ¢12(y). First let

T () = {(y,t) € R x (0,00): |z —y| < t < a'm(y)}. Furthermore let Sa be S, with

z,

I'% () replaced by T'% (). Then by [MyNP10a, remark 4.2]

(2, ) = 1p (@, )0, e Lu(@)|| 10 (7)
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1 2 2 AN
/ (// D Itf'? see U hu(y)? dv(y)> dy(x)
Rd ' () (B t

/ </ / 1D )'tawe‘* L(y)lzd’y(y)dtt> dy().
R4 B(wz,t) Y

We can now substitute ¢ — y/at to get that the RHS is smaller than a constant times

1D (y, vat) a?t?L 2 @ T
/Rd (/ / z,vat) Y y, \/*t))|tayj€ u(y)| d’y(y) ; > d,y( )

* 1p(y,Vat) PP 2 dt 3 )
. /Rd </ /B<x van V(B y,ft))nv W) dr(w) t) dy().

Because v(B(y, y/at)) = v(B(y,t)) we get that the RHS in [f] is smaller than a constant

times
1D y,ft) a2t2L 2 g 2 .
/Rd (/ /B(ac var) V(B(y,1)) el ) t) ).

By the change of aperture formula [MvNP10b| theorem 3.8] we have

S

(@) = 1p (@, )t 5 Lu(@)]| 10 (7)

< (/ fo iD pa Ve“2f2Lu<y>|2dv<y>f> ()
/ / / Ip y,at) n v 2L 29 dt 2 d
Rd Bla.aty V(B¥,1)) [tVe" “u(y)| ’Y(ZJ)T ~(z)

|S U”Ll

|uHh1 < 00,

quad,a

N

<
<

where the second inequality follows from the substitution at — ¢. By theorem [I.1§ we

(L2 . oy
can now conclude that h : (z,t) — 1D(x,t)t83,j67t2Lu has an atomic decomposition
for j=1,...,d. Le.,

(0,000, 2u = 3 Ny Ay (,) with 3 Mgl S il < o0
n=1 n=1
forj=1,...,d.
Using lemma and [1.10] we get after setting C’' := %C that

& a? dt
u(x) :/ ud'y—f—C/ (tQL)N+1€(1+a )tQLu(:L')T
R4 0
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0,2 dt
/Rd udy + C e (tQL)NHeHthLu(x) —
o

t
4 m@
/ * 2 \N_EL a2y, dt
-C Z/ (t°L) e« "td; [Ip(x,t) + lgp(z,t)]t0s,e =" “u(x) —
=0 ! t
e a2 dt
= / udy + C (tQL)NHeHthLu(J;) —
R =g t
d e 2 2 2 dt
-y i (PL)Ne = 107 1p (@, t)t0y e« Pu(z) —
j=1

t
mi@)

Z/ dt

Lta* lep(@, 0)t0y, L u(z) —

t
> o2 dt
:/ udfy+C/ (RPL)YN e a1 Ly(z) =
Rd m(z) t
m(x)
b .2 dt
1.11 - An / (BPL)Newhtor Ay (x,t) —
[ J ;nz:l J )e oy g(@ )t
d m(x)
b L N o227 dt
—C’Z (t*L)YNewLtor ep(z,t)td, e u(x)?
j=1"0

We have switched the (Bochner) integrals and the sum. To see that this is allowed
first note that if the series Y, g, converges in t"?(7) to f then the series converges in
L? (d’y%) as well. From this we can deduce that for almost all z we have that

oo N dt o dt
/0 nz_:lgn(x,t)t%/o fx,t)

We can now switch integration and summation to yield the desired result
We can split [1.11] to obtain

m(z)

4 > b t2 dt
S s [ @ e oz A G
0

j=1n=1
d oo

2
- Zz)‘n,a/ L)Y 7Lta* An,j(xvt)%
j=1 0

n=1

e 2 2 dt
S3S y / s o (PD)Y S E405, An y(2,6)
0 b !

[

=1n=1

where (i) uses that 42 < 2. This gives [L.9]. We have shown above that

a2
||(.’E;t) — 1D(xut)tazj37t2L Htl 2(y) ~ ” Hh

quad,a
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o)
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22 Pl S Nl
j=1n=1

follows. This concludes the proof. |



2 Kernel estimates

In this chapter we will find explicit expressions for some of the kernels of the operators
that occur in the reproducing formula [1.9]. For these kernels we will find the needed
estimates for the next two chapters. We will also give some appropriate off-diagonal

estimates and give an inequality that can be useful when those off-diagonal estimates
fail.

2.1 Some useful integral kernels

Having integral kernels for operators can make the analysis of those operators much
easier as one can see in the section on the Ornstein-Uhlenbeck operator. In this section
we will compute the kernels of the operators that occur in the corollary to the Calderon
reproducing formula .

2.1 Definition. Givent,a>0,j =1,...,d and N in Z, we denote by K> y o and
K2 N o, the kernels defined, given u in L?(v) by

[21] Kt2,N,a(x7y) = t2N [aﬁvMs(xa y)} 5:%

R () = 23410, [0 Mi(y, )] e exp(laf? — [yP).

We can easily find expressions for these kernels by using the Mehler kernel as kernel
to the semigroup e‘~.

2.2 Proposition. The kernels K2 n,o and Rt%N,a«,j are given by
t2
2.2 | Kowalzuty) dy = (L)Y uo),
Rd
o 27 \N 2L
23 [ Kooty dy = (PLY e 03, u(a).
R4 !

Proof. The proof is based around the identity . By we have

2
[e3

2PN B Ly () — 2N [N (. 1)
(L buta) =¥ (o [ aa o yput)as]

:/dtQN [0 M(x,y)] ,_ .2 u(y) dy,
R «@



18 Kernel estimates

where the second equality follows from theorem [I.1] together with lemma [I.2] So we
can conclude that holds. We can compute [2.3] using duality. Let u,v in C>*(R%)
then

+2
<(t2L)NeFLt8;u, v>
2

= <u, 8mje%Lt(t2L)Nv>

By, [u(w)e ] 1(e2L) Ve Lu(y) dy

d,, _u(y)ef\y\f (/ NN M (y, )] ,_ 12 v(x) dx> dy
L d Rd, «@

8y, [uly)e 7] 2N (9N M, (y, )] _ 2 v(@)el*” dy(w) dy

_ 12
T«

2 v(x) dy(z) dy

_ 2
T«

0,, [uly)e! = 2N 9N b (y, )],

<

/ / u(y)el? W RNt [N M (y, 2)] 2 v(z) dy(z) dy
Rd JRA T

:/Rd [/Rd u(y)e|x|27|y\2t2N+1ayj [c’)éVMs(y,x)]s:% dy| v(z) dy(z).

We have applied Fubini in the last line. This is allowed because u,v are in C>°(R?).
So we can conclude holds. ]

2.2 Three technical results

In the sequel we need to know how certain derivatives of the Mehler kernel behave,
so one goal of this section is to find quantitative information about these. Useful
estimates on the exponential terms that occur in Mehler kernel will also be given.

2.3 Lemma. Let N in Z . There exists a polynomial of 2d + 1 wvariables Py such
that for all x,y in RY

ONM,(z,y)=(1—e )N

x Py (eS, (w) (Vi=ey) ) M., (z,y).
j=1,...,d J
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Proof. Let j=1,...,d, s> 0 and z,y in R%. We have, for N =1,

OsMy(z,y) =—(1—e )"
le 5z — y|?

x de™%* My(x,y) + s ( e

)Ms@c,y),

which is of the asserted form and,

e %x; —y; s\
i . (AL ) = -
- S —2s€ T — Yy
X (e *zi\/1—e 25 472 J ‘7),
( J V1 — e 2s

1 e () s e (i),
SR e R B [(ze—smxj)

1—es
" <e—sxj —yj) N (6_5%‘ _yj>22e—2$
V1—e2s 1—e 25

For N > 2 the proof now follows by induction using ﬂﬂ ]

2.4 Corollary. Let N in Zy and j = 1,...,d. There exists a polynomial of 2d + 1
variables Qn such that for all z,y in R* and s > 0 we have that

00, 0N My (,y) = (1 — e7>)~(VF2)

xQn|e?, (exj—yj> , (\/1 — ef2sxj) ‘ M (x,y).
1—e 2s j=1 d j=1,....d

Proof. We skip this proof since it is similar to the proof above. ]

The following lemma will be useful when transfering estimates from M2 to M;2. It
follows quite directly after applying the mean value theorem to the function & £

2.5 Lemma. For C,T > 0,a > 1,t in (0,T] and all x,y in R? we have that
[2.4]

2 2 —t2 2 4.0 2 2
«r— « — t*m
exp (—C'e : y| ) < exp (—C ez — ] ) exp (Cm(lm| all >)

2a? _ 212 _gt2
2e 1—e 1—e 2%

Proof. Let t in (0,7] and a > 1. Applying the mean value theorem to the function
f(&) = €2 gives, for 0 < £ < ¢’

F(&) = f(&) = a1 (g — &) for some € in [€,£].
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2
Picking £ =1 and & = e~ 2% gives

1— e—2t2 N 1 N 2t2
[*] — == ag*™" for some & in [e‘ o, 1} .
1—e*a

Using that “=1¢? < T2 we have that

2 2 2
o2 Co2za-1 () 1 — e~ 2t (ii) . 1—e 2t . ae 2

[2.5] ae T Lae T < ——— < lim———— =lim - = a.
1— 28 tl0 ] _ 22 ilo 2t

Where (i) uses EII and the monotonicity of £ — af*~1. (ii) uses basic calculus since
the function in question is monotone. To prove [2.4] note that

2 2 2 2
e Sr—y| > le Pz -y — et —e Tl
> ez -yl — e — 1|z
> e —y| - 2zl.

By 2ab < a? + b% we have

_2
2Ae= 5z —y)? + t*|2%) > (le” Tz — y| + £2]a])?
> e x —yf?
Hence,
2. 2
e wx y|22‘e 5 yl t4|2|?

Using this we get,

2 2 —2¢2 —¢2 2 41,12

e ax— Cll—e e " x— t*|x
O iy e el G e DAY (P

1—e 2% 2 |1 —e28| 1—e? 1—e 2%

—t? 2 4),.12
a letr—y t*|x
S exp (CQeW | 1 e*2t2| ) b (C | |2t2> ’

where the last line follows from [2.5]. We can prove the other part the same way,
noting

+2 o a—1

ey

42 _a—1,2
etsc—e at

WV
)
8
\
)

WV
@
o~
S
8
|
=
|
[
|
Q)
|
Q
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2
> e o~y Py,

And as before we conclude that

2 2 ‘642 —y* 4 2
le”ex —y* > =t yl%,

—t? 2 41,12
z —y| [yl
< — —_— .
< exp < 0262a2 = ) exp (C1 gy

This concludes the proof of the lemma. |

2.3 Kernel estimates

Here we will compute useful estimates for the integral kernels that occur in the
Calder6n reproducing formula . They will turn out to be useful when estimat-
ing the terms in that formula. The estimates will be proven using the results from the
previous section.

2.6 Lemma. Let N inZ,,j=1,...,d,a>0anda > 4e2”. Lett in (0,T) for some
T > 0 and let z,y in RY. Furthermore let C > 0 be a positive constant independent
on t, x and y not necessarily the same at all instances. Then we have that

a e~
4e20® 1 —e

(1) If tmin(|z|, [y]) < C then M (x,y) < exp (

a le”
4e20? 1 — =2t

(it) If tlz| < C then |Ki2 no(2,y)] S exp <—

- < a le Tty —af?
(iii) If tly| < C then Ky n o (2, y)| S exp R TR m—"Ts M2 (z,y).
The implicit constants in the inequalities are only depending on the dimension d, a
and a.

Proof. We will first show using . C is a general constant, not necessarily the
same at all instances.

M,z (z,y)

_d _£2
=Cy (1—6_2§> 2exp _7|e oyl
1—6*2£

a
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-4 —t? 2 4 2,02
AN a ez —y| t* max(|x]*, [y|*)
< _ 22) _ fuiniealen N b IR L BV
< Cy (1 e exp ( T — > exp ( Y
2N\ 2 2
_c 1—e 2% 1@ le=tx —y|? o et x —y|?
B T2 eXp de20® | 1 _e-22 | PP\ Tz 1 _o2®

t* max(|z|?, |y|?
X exp <w> M2 (z,y)

1—e 2%

< a 1letz—y? a le Pz —yf?
S Caraexp {1 a 4625‘2} 1_e2e )P T 1 o2p

44 2 1,12
X exp <Hm(|”3||y)> Mya (2, 9)

+2
1—e 2%

Q \e‘tza: —y|?

4e20? 1 — 2t

< C4,1,0 €Xp ( ) Mz (2, y).

Where we have used in the fourth line and in the last line that o > 4e27” and

4 9 9 2 T2
oxp (LU ¢y (0P <o (0T,

1-e2% 1-e2% 1— 2%
Next we will show in a similar way using [2.4].

K2 .0 (2, y)]

2
_p2\7N a2\ "F e Ta—yl?
=Cy (1_6 22) | P [t2N (1—6 Qa) exp <—|2r2|

2 2
2\ N 1—e 2% le= &z — y|?
= 1— —2%) Pylt?V [ — = g
Cd( e | Pt = exp Y

ez —yf?
xexp | ———5— | My2(z,y)

1—e 22
o2\ a 1leta—yl?
"l < Cal Py (1 —ee ) P <[1 B 462‘12} 1—e2t?
2
a |e"z—y)? ¢t max(|z[?, [y|*)
X exp ( de2a® ] _ o212 exp 1—6—*2% Mz (z,y)

2\ N
The only problem for the function ¢ — t2N (1 — 6_2?) on (0,7 lies in the point 0.

However, the limit ¢ | O is finite. This means that this function is bounded. Another
issue that can arise is that

2
a 1letr—yP?
[Pl exp ([1 B 462‘12} 1—e2t?
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is unbounded in x,y or t. However, we can quickly see that

2
e —y™ a le -yl
L -
1= —2t2M 4e2a? 1 — e—2t?

e

is uniformly bounded in ¢,z and y for all integers M and for « sufficiently large. The

same holds for
M a 1letz—y?
1— 20 |gM (1 - o]
e 2™ exp el AT

because we have that |z| < Ct~!. Hence the RHS in [¥] is smaller than

2
a etz —yl?
C(d,N,T,a €xXp <_ 462a2 1— e_2t2 Mt2 (1‘7 y)

We end with the proof of using .
K2, N0, (2, )] = N[0y, 00 My, 2)|| _ 2 exo(|z]* — [y[?)
_ t2N+1(1 _ 6_2%)_(N+§)|QN‘Mﬁ (y, )
x exp(|z[* — |yl*)
2. (N4l 2\ "% \e_%y—xP
= 2N+ (] — =25~ (V3) Q| (1_6—27) exp | ——2 L
x exp(|a|* — [y|*)

92 (Nil a ety —xf?
§t2N+1(1_€ 2%) (N+2)|QN\exp —— —
2e 1—e 2

t* max(|z|?, |y|?
coxp (FRBUD ) ol - o)
T

+2
o2 (N4l 1—e?a
< Cd’atQN-‘rl(l —e %) (N+2)|QN| (M)

a 1ley—af? a ley—af?
X exp [1 - 462(12} T oxXp |~ o T M= (z,y)

< C4,N,1,0 €XP (

2a? _ot2
4e%” 1 _ 2

where we have estimated t — t2V+1(1 — e’zta )~ (N+3) and

2
(z,y,t) — |Qn]|exp ({1 - 4e2a2} W) in the same was as before. [ ]
1—e
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2.4 Off-diagonal estimates

Decomposition into annuli

We will often need to estimate integrals which are integrated over the whole of R?.
This will often not be possible to do directly, so we decompose R? into annuli. Then
we can estimate the integrals over those sets and then sum to obtain an estimate for
the integral over the whole of R.

So, given a > 0, B = B(cp,rp) in B, and k in Z, we consider the following sets

B(CB,QT‘B) lfl{):O7

B) :=
Ck( ) {B(CB,2k+1)TB)\B(CB,QkTB) 1f]<}>1

The estimates

The following lemma will play an important role in the next chapter.

2.7 Lemma (Off-diagonal estimates). Let N in Zy, a >0, j =1,...,d, B in B,,
a > 82" and k in N. Then we have for all u in L*(v) that

ONH1 7N 2L« o rB\? ik
chk(B)l(O,rB)(t)(t L7ew axj)lBuHLQ(w) S exp <_12862°ﬁ (7) 4 ) llullz2(y)-

Where the implied constant only depends on a,a,d and N.

Proof. For t < rp < am(cp) and y in B we have by lemma[L.9]that ¢ < a(1+ a)m(y).
Given z in R? we have by the triangle inequality that

2 2

[2.6] ly—zP <2(le "y —aP+ (1 —e")?y?).
So we have that

1 2 —£2\2) |2 2 2

Sy =zl = —e )yl  <lemy — 2

Furthermore note that

2
o Jet'y —af o ly-f o
exXp <_ 4e2a® ] _ o212 < exp TRe2a? ] — o2z ) P (4e2a2 (t\y|)2>
[2.7]
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Where the last line follows from ¢ < a(1 4+ a)m(y). So using lemma definition
and proposition [2.2] we get

2
/ </ |K’f27N7ad(fE7y)ll(o,m)(t)|U(y)|dy) dy(x)
Cr(B) B
e~y — af? 2
[0 e Yy—
S o M, 1 t d d
~ Lk(B) </B eXp( 462@2 1 _e—2t2 ) t (x7y) (O,T’B)( )|u(y)‘ y) ’Y(Z‘)

</ /exp .« ly —x|? Mo (.11 Ol dy 2d7(x)
~Jewm \Un 16e2¢*  ¢2 2\ Y)H(0,rB) .

Now we have for z in Cx(B) and y in B that |z — y| > 2¥~1rp for k in N from the
definition of C(B), so

2
/ ( / |f<t2,N,a,j<x,y>|1<om3><t>|u<y>|dy> a/(a)
c.(B)\/B

2
(0% rB 2 b1 / /
S Tt \ 1) 4 M2 (z, dy) d
exP( 16¢27° ( t) ) s \Us w2 (2, y)|u(y)|dy | dy(x)
« rg\2 ._ 2
S e <_16 () ) e fullEz )

o (rB\? i
< exp (_W (7) 4" 1) ||UH%2(7)-

Which concludes the proof of this lemma. |

2.5 When the off-diagonal estimates fail

We conclude with a property of the sets C(B) in the local region N, (B). We recall
Ny = {(z,y) e R*: |z — y| < am(z)},

It will be helpful when the off-diagonal estimates fail.
Before we state the main lemma of this section we first give two auxillary results.

2.8 Lemma. If |z —y| < 7m(y) < 7(1 4+ 7)m(x) then we have e~lol® ~ emlul®,
Proof. By the reverse triangle inequality we have

ol = [o] < {1+ T)m(a)
and,

|z — |yl < Tm(y).
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Hence we have that,

z|* < |y* 4 2rm(y)y| + 7>m(y)?

and,
|y|2 < \:c|2 +27(1 4+ 7)m(x)|z| + 72(1 + T)zm(x)z.

So we have , )
e 17l° ~ o lul®

This concludes the proof of this lemma.
2.9 Lemma. If we have el*” ~ eVl then da dy(y) ~ dy(z) dy.
As the proof of this lemma is obvious we omit it.

2.10 Lemma. Let a,7 > 0 and B = B(cp,rp) in B,. Then for all k in Zy
7(C(B) N N.(B)) < 2*4(B).

Where the implied constant is independent on k.

Proof. Let k in Z; and = in Cx(B) N N,.(B). By lemma we have |z — cp| <
Tm(cg) < 7(1 + 7)m(x), hence by lemma we have that e~ 171" ~ e~le51* for all 2
in N, (B) where the implicit constants are independent on 7, k, B and x. Furthermore

we have
’Y(B):/d/y:e—lcgp/ dl‘ﬁ?‘Be_‘cBP,
B B

For k in Z we have

+(C(B) N N,(B)) = / dy
C1(B)NN.(B)

~ el / d\
Cw(B)NN,(B)

S e—'CB‘Q/ dA
26+

< (2Frp)terles

~ 2k~ (B).

This concludes the proof of the lemma.



3 Molecules

In this chapter we will introduce molecules. We will prove that the h}nax,a norm of

a certain class of molecules is always bounded by a constant. Furthermore, we prove
that the function [3.1] on the molecules from the Calderén reproducing formula 1.9
is such a molecule.

3.1 Molecules

We first define molecules.

3.1 Definition. Let N in N, a > 0 and C > 0. A function u in L?(vy) is said to be
a (B, N, C)-molecule if there exists B = B(cg,rp) in Bs and @ in the domain D(LY)
of LV such that v = LN 4 and

. _cuk 1 .
(i) 1oy (myullrzcy) < e” 9 ——= for all k in Z,

Vi)

1
(ii) [|[1c, Byt L2(y) < 7°2BN6_C4k for all k in Z, .

V7 (B)

The next proposition will be useful with the theorem of the next section.

3.2 Proposition. Let N in N, 7 =1,....d and o > ge2a”. Furthermore, let B =
B(ep,rp) in By and A a t12(y) atom associated with B. The function

"B N £ dt
[3.1] T / (L) e "0 Az, t) "
0
is a (2, N,272%a)-molecule.
Proof. We first treat the case k = 0 separately. For this it suffices to bound

TB t2 dt
R / (PL)Ye P10y, A, 1) S
0

L2 ()

from above by a constant times 4/ 'y(B)il. We first claim that the Riesz transforms
R; = aTjL’% for j = 1,...,d are bounded on L?(v). To see this we will use Hermite
polynomials. Let u =Y ¢, H, be a function in L?(y). First note that 0.0z, Ho () =
2a;Hy (). Then '

<u,L_%8;j8ij_%u> = <u,L_é8;j8ij_é Z caHa>

d
a€ZY
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= Z Ca <u,L_%8;j8$jL_%Ha>

d
oceZJr

= Z Ca <u, |a\*%2aj|a|*%Ha>

a€Zd

Z cO¢2aj|oz|_1 < Z CBHB,HQ>

acZd BeZd

=2 Z Z catpajla| ™t (Hg, Hy)

a€Zi BezZq

=2 Z |Ca|20‘j|a‘_1

d
aEZJr

<2 Z |Ca|2

d
a€Zy

= 2[|ulZ2(,)

To finish the case &k = 0 it suffices to bound

dt

3.2] t2L)N *Lta* Az, )b(w) dy(w) —

R4

for all b with b =" cgHp and Y |c|? < 1. We can view this as an inner product on
L?(7) and apply duality to obtain that is equal to

Al R (LN Ph(z) dy () L

[3.3] 5 :

We can now apply the boundedness of the Riesz transforms and Cauchy-Schwarz to
obtain that 3.3] is smaller than or equal to a constant times

([ f o) ([ e )

S\/@(/O /Rd|(t2L)N+§ebe(x)2d7(:r)dtt)é.

This reduces to problem to proving that

[ ] ieny e twp a7
0 R4 t
is bounded. Now,

"B 1 t
[ [ Ienssiesimpae
0 Rd
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N4l t2L 2 dt
e (PLN Ry (0)| dole) T

LS

2 5 dt
<Y lesl / (1g))?N 2ol

Bezd
S D esl
BeZL

<1

As required. Furthermore we have
B 2 dt . - "B 2 dt
(PL)NewLtdr Az, t)— = LNa for a(x) := 2Nl Az, t)—
0 Lj t 0 Tj t
The same argument now gives

|l 2y S TH

V(B)
We can now prove the result for £ in N. So let £ in N. By lemma [2.7] we have

/TB
0

210y (@) (L)Y e Lt0] A1)

L2y t

s 2 dt
5/0 exp ( 12868 ) |z = A(z, 1) 12y s
i 2 dt
(0% k T'B
:/0 [exp( o ( ) )] o = A, )la) T
o g "B o e (TB)? dt
S oxp (_ 256¢5 ) /0 xp <_256€2az4 (T) ) o= A Dll2) =
1
o "B o re\2\ dt]?
<o (i) [0 (-t (2))
eXp( 256¢8 [ , P 12862 t t
rs dt
y </O o Az, )22y S )
1
) :
o a 1)\ dt]?
< exp (gt s T
eXp( 256¢8 )[/0 eXp( 12868 t2> t]
s dt
X </0 |z — A(z, t)||L2(,y) >

a 1

Furthermore we have

dt

"B 2 "B 2 dt
/ (tQL)Ne?LtB;jA(x,t)T = LN for u(x) := / tQNeELtaijA(m,t)?.
0 0 '
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And finally note that as before, when we replace N by 0 we get by using the same
argument as before that

_ e 2 2 dt
||1Ck(B)uHL2(7) < ’I“QBN/ Hx —> 1Ck(3)(l‘)1(0m5)(t)€ o Ltaij(l‘,t)‘ —
0 L2(y) t
1
< 2N exp ~ O gk .
( 229 ) v(B)
This concludes the proof. |
3.2 The h! norm of a molecule

max,a

Here we prove that the h,, , norm of any molecule is bounded. We do this by splitting

the integral that defines the norm into pieces and then we estimate them separately.

3.3 Theorem. Let a >0 and let u be a (2, N, C)-molecule with o > 23°, N > % and
C > 22, Then u in h} and ||u||pe < 1.

Proof. Let
o0 o0 o0 o0
fullng,, ST+ D T+ > I
k=0 1l=0 k=0 =0
where
2
B [ s et o),
R? (y,s)€lg (7)<
2
h= [ s (e Pl WU (@) dy(@),
Cu(B) (y,5)eTa (7),53 25 (0.22)
2 ~
I 12/ sup ILN e e,y ()a(y) |11y, 1(m(z))dy(x).
Ci(B) (y,5)€Te(7),s2 72 [ Ca ’1}

where the appropriate C, will be chosen later on. B(cp,rp) (which is a ball from Bs)
contains the support of u. Note that using lemma and with the 7 from proposi-

tion (with A = 2) we get

R? (y,s)eTe(y),s< £

Rd
<[ sw Mo (2, w)L, (2,0) + g, (2 w)fu(w)| dw dy ()
R? (z,5)€Te(7),s< A /R
< / sup Mea (2, w) gy, (2 ) [u(w) | dw dy(z)
R

@ (2,5)€Ta(7),s< 2 JRA

a

+/ sup Mgz (z,w)1n, (z,w)|u(w)| dw dy(x)
R (

2,8)€Ta(y).s< 22 /R



3.2 The hl norm of a molecule 31

max,a

o0 o0
Sl + Y > I,

k=0 1=0

where the last line follows from proposition [L.10[ and where

I}ff ::/ sup / Mg (z,w)ly, (z,w)|u(w)]| dw dy(x).
Cw(B) (z.9)€ls (1).s< & JCu(B)

We also have using lemma [I.7] and C large enough that

lullzr iy <D ey myullie)

k=0
< Z I1c, ) Iz 1oy Byullzz ()
k=0
— [Y(2F1B) oy
éz ——e
—\ (B
(oo}
<Y Ve o
k=0
<1

So now we still have to estimate I}ff We first estimate 1)°¢ for k < | + 2. Using

proposition [1.10{ii)| we get

Illcolc < /V(2k+1B)

2
X / sup / Mg (z,w)1n, (z,w)|u(w)|dw | dy(z)
R \ (z,9)€T¢(y) JCu(B)

< /7(21B)

2
X / ( sup /Msz(z,w)lcl(B)(w)|u(w)|dw> dvy(x)
R4 \ (2,5)€T¢(y) /R4

< VeSE 02 [y (BY gy myull 12 ()

Thus we have

[N

Nl

oo I+2

3.4] > ny st

=0 k=0
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Finally we estimate I}COZC for k > 1+ 2. We will use 1emmag To be able to
use this lemma we should verify that ¢ < m(w) for all w in C;(B). First note that
|z — x| < 2am(z) hence by lemma [I.9 we get that m(z) < (1+ 2a)m(z). Furthermore
note that |z — w| < 7m(z) hence again by lemma we get m(z) < (1 4+ 7)m(w).
Finally

(14 2a)m(z)
ava(l+2a)(1+ 7)m(w).
This proves the claim. Substituting s = ﬁ, with lemma we obtain

= | sup [ MG (2 w)lu(w)] dods @)
OxB) (2 p)erl VoY (4) pr TAB) T
—¢? 2
« e Z— W
5/ sup M2 (2, w) exp <_48|1_2t2|>
Ou(B) (2 er/ Y=oV (4) 1grg ¥ C1B) o T

X Ly, (2, w)lu(w)] dw dv ().
Note that this estimate holds for all k,7 in Z,. For z in Cy(B), w in Cj(B), t <
min{rp, ay/a(l + 2a)m(z)} and |z — z| < % we have
e e —wl = (e ~ Dz = (2= 2) ~ (- w)
> —w| o -z — (1—e )z,
Furthermore we have |z — w| > [(2F +1) — (2 + 1)]rg > 2¥"1rp and |z — 2| < 222,

Also (1 —e™*)|z| < 2|2] together with ¢ < av/a(l +2a)7 gives (1 —e™)|2| <
av/a(1 + 2a)rp, hence

B

2
|e—t2z —w| > <2k—1 _ ﬁ —ava(l + 2a)> TB.

Let M, in N be such that % +ay/a(1+42a) < 2Mea, Then for [ +2 < k < Mg o+2
we get that k — 2 < M, o and hence

2
ok=1 _ —_ _ay/a(l 4 2a) > 281 — 2Me

Vo

> 2Ma,a+1 _ 2Ma,r1
2

Therefore,

g2 2
a etz —wl? a (w1 2 3
. < [ - — -2
exp ( R T > < exp < 18 (2 NG ava(l + 2a) =T
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2
o E1 2
@ oM 2)
< ——(2Mem)2)
exp( 8€8< )
k < M, o we get using proposition |1.10)ii)|
sup

ocC «
1% S o (~ s @) [
¢ Cr(B) (, et/ vaeva)

x 1y (z,w)|u(w)| dw dy(z)
()

a
S exp (=5 (27)?) {121 B) Loy mul e

a ’y(Qk'HB)
< = oMy a2

NQXP( 55 2 )) ~(B)
(i)

8e

So, for I +2 <
M2 (z,w)

( ) t<rp Cl(B)

—c4l

Where we have used proposition [I.10]and Cauchy-Schwarz in (i) and lemma
Hence,

in (ii).

M,
[3.5] Z Z Lo <1
1=0 k=I+2
We still need an estimate for k > max{l, M, } + 2. For such k we have k > M, o +2
hence 282 > 2Ma.a Then
k=1 _ Ta ava(l 4 2a) > 281 — 9Maa
> 2k71 _ 2k72
— gk—2
So,
2
a etz —wl? O ko
b <4681 — ) <ew (g @Y7).
Hence,
1 S e (5222 [ sup Mg (z,w)
‘ OB (2 pyerlVEYD () i<rp T OB

X 1y (z,w)|u(w)| dw dy(z)
(i)

« _
< exp (—55 (22) 1@ B aymyulliae
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2k+1B
S, exp (_&(2k72)2) 7( )6704l.

8e® v(B)
(i) Q@ ok—2y2) 8(2FT24+1)2 —c4t
< exp (—@(2 ) ) e € .

Where we have used proposition and Cauchy-Schwarz in (i) and lemma/|l.7]in (ii).
Finally, we have for o large enough, for example a > 23° suffices, that

[3.6] > > Iy S L.
1=0 k=max(Mg,a,l)+2

Combining , and this concludes our estimate for I.
Next, we will estimate I,’Cvl for k < l. Note that

2
I, = / sip 1 Pl @I, (m(z) dy()
Ci(B) (y,5)€Tg(7),s> 2 (O’ 1Cq >

_ / sup Mo (2 0) Loy ) (w)u(w)] dw
Cr(B) (Z,S)GFZ(W)xS>TT% R4

X 1<0 2;,‘B>(m($)) dy(z)

' Chq

<\H(@+1B)

S VB e, myull 2y

8(2k+2+1)2€704l

T+  sup / Mg (z,w)|1e,(py(w)u(w)| dw
(Z,S)El—‘g(’y) Rd LQ('y)

—~
=

A

e

Where (i) follows from proposition So,

oo 1 oo 1
S Y e e <
=0 k=0

=0 k=0

What is left is the estimate of I}, for & > [. For this let  in C%(B) such that

m(x) < 22% Let (y,s) in T'%(y), then s < am(z) and y in B(z, s). Furthermore let z
in B(y,s) and w in C;(B). Note that we have

|$ - w| = (2k+1 - ZZ)TB > (2l+1 - QZ)TB = ZZTB.

And
|z —z| < |z —y|+ ly — 2| < 2s < 2am(x).
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So

]

This shows that (z,w) in CN,.

Where we have taken C, = (2 + 4a)7 + 2a and

Ti= w as in corollary (with A = 1). We have also used that |z—z| < 2a
implies m(z) < (2 + 4a)m(z) by lemma Hence by corollary we have

4 (y,5)€TE(7),52 T2

ST

R4 (y,s)era(y

>IB d
\/a R

< Z 1 Tgion e () flll e ()

<3 /R P g A OOy () (0

'y T Cq

Moz, 0)1 sy w)uw) (o) (M )

» " Cq

Where (i) follows from definition and [f. (ii) follows from corollary [1.16]

Next we estimate I,’c’l Let x in Rd (v,

(2/Vea,a/Va) _t
t) in T'y ()andzlnB(y,\/a)

We have |z —y| < —= & hence by lemma H we have

t < avam(z)

<ava (1 " t) m(z) < mz).

Ja

Hence by definition 2.1} [f] and lemma 2.q[ii)|

+2 ~ _
LN S (L ()| < 02N /

5 t—QN

Ci(B)

5 t—QN

K2, N o (2, w)a(w)| dw

Ci(B)

a etz —w|?

_4620'2 1— 672t2 ) ‘a(w” dw

M2 (2, w)|a(w)| dw

M2 (z,w) exp

Ci(B)
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— 2 re
=t"Ne" 1, fl(y).

So,
"o } N _s°L ~
I, = / s LY Pl ()W) 1y, 1 (m(x)) ()
Cr(B) (y,S)EFZ(W),s2TTBa {Tal}
— 2 ~
</ sup Y ey ()AL, 1 (m(0) ()
Ck(B)( t)EF(l/ﬁyaﬁ)(’y),tZ’l‘B [Ta’ i|
2N lob 1
SrpN IR + T
Where
g | sup M, 0) g, (2w ()| dw o 2)
Cr(B) (z,t)gFS/ﬁ“ﬁ)(w C1(B)
J}ff ::/ sup 2N M2 (z,w)1y, (2, w)|u(w)|dw
Ck(B) (z,t)eFS/\/a'aﬁ) (’Y),t>TB CL(B)

Ay | (o) ().
Ta »
Here 7 is as in proposition but with the A, a there equal to 1//a and a/+/a here
respectively. Proposition |1.10| gives that

oo 00 o0
lob .
ZZ‘]EJO S ZHICl(B)u”Ll('y)
=0 k=0 =0

o0

S Z \VY2LB) e, )@l L2 (v
=0

oo
142 2 gl
< T%NZes(z +1)% ,—C4

~Y
=0

2N
B .

Next we estimate JloC For z in C(B) and m(z) > 2;& we have when k£ <1 +1

|z — cp| (2'“+1 +rs

NN
“" ?T‘
3
/\
\_/

INCINCIN NN

(1—|—2C) (cB)

m(cp)-

\]I\DL\D
S A
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max,a

Where the second to last line follows from lemma[T.9] So by definition

Tt < / sup e
CR(BINN(B) (y 1yer(/ Voo™ (4 150y

X M2 (z,w)1n, (2, w)|t(w)| dw dvy(x).
Ci(B)
For k <1+ 1 we now have that
oo I+1 oo I+1

ZZ loc < IEQNZZ\/’V(C]C(B)QNT’(B))

1=0 k=0 1=0 k=0

T sup M2 (z,w)1y, (z,w)|u(y)| dw
(yi)ergl/ﬁ’a\/&)(’)’) Cu(B) L2(7)

oo [+1
< T§2N DD 2Byl
=0 k=0

1
ok§ ,—C4!

l

+

A
I Mg

o
E
Il

1 0
1.
Where (i) follows from proposition and lemma [2.10}

Finally we estimate J}ff for k& > l + 1 to complete the proof. We first use the
substitution t = ia and lemma - to get

A

Jloc 5 / sup S_2N
Cr(B)NN.:(B) (z,s)el"il/a’aa)(’y),s)rB

[ M (), (e w)w)] duwdo (2)
c(B)

< / sup s 2V M2 (z,w)
Ck(B)ﬂNT/(B) Cl(B)

—s2 _ 2
xm%—af Z@)wwmmw

4e2¢° 1 —e72s
Where (i) follows from lemma [2.6(i)} For this we still need to verify that s < m(w).
We have z in RY, s < aam(z) and |z — z| < 2s, so |z — 2| < 2aam(z) = 2am(z).
From (z,w) in N, we obtain |z — w| < 7m(z) and hence by lemma [1.9| we have
s < aam(z) < aa(l 4+ 2a)m(z) < aa(l + 2a)(1 + 7)m(w) < m(w).
This proves the claim. Furthermore we are in the situation that = in Cy(B), w in
Ci(B), s < aam(z) and |z — 2| < Zs 50

752

e z—w| =2 |z—w|— (1 - 6752)|Z| > (28 — 2 p — afa + 242)s,
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where
2
(1- 6_82)\z| < 82zl € aa (1 + a) m(z)|z]s < ala + 2a%)s,
e
by lemma for large a. Let M = M, , be such that aa®(a + 2a?) < 2M. Now we

pick the region for k,1 where 2M < (2% — 2171)rp < 2% — 2'+1 then we have

2k — 21 _ 40 (a + 2a?)

(28 — 2 Y)rp — a(a + 2a%)s > (
(28 — 2 )rp —2M

A\VARR

WV

1
5(2k 7 2l+1)rB-
So, note that because exp(—z) < 2~V

[*] 572N exp <02 <?>2> < 572N <C2N (7’5)2]\]) _ 072NT52N'

Therefore,

—s? _ 2
/ sups [ Motz w)ep [~ 2200 170 dwdy(a)
Cw(B)NN...(B) Ci(B) de?” 1 —e2°

ok _ ol+1)2,.2
< / sup 52V exp (_ 042 i ( 2)27“3)
Cx(B)NN,./(B) 16e2e” 1 —e™25

X M2 (z, w)|a(w)| dw dy(z)
Ci(B)

2
< / sup s 2 exp (— ag*z (2F — 2!F1)2 (B> )
Cx(B)NN./(B) 32e4 s

X /CZ(B) Mgz (z,w)|u(w)] dw dy(x)

Sl =2 [

[ Mot wlitw)|dedy(z)
Cw(B)NN,.(B) JCy(B)

where we have used [f] in (i), proposition in (ii) and lemma in (iii). We have

S nr st

where the sum ranges over all (k,l) such that 2 < £(2% — 2!*1)r5. This holds

for C large enough and an N such that 2N > <. We still need an estimate for

2
2M > 1(2k — 2+1). Note that

Q) B i
TiF <A@ BN e 1,y 2 ()
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< \/V@HB)r g 1ey syl L2 ()

k42 2 iyl
568(2 +1)% ,—C4

where (i) follows from proposition Over a finite sum, this is certainly finite. This
completes the proof. |






4 The remainder terms

In this chapter we will handle the remainder terms

dt
(i) = |—>/ me) (2NN e LB;jA(x,t) e
e (+a?)e? a2t? dt
(i) z {ENFLLN o La;:kj(ch(%t)t(?xje a L)U(x)?7
0
oo 2122 dt
(i) s | (2L)N+1e e Pule) 7
b

where v in L'(y) and A is a t12(y) 2-atom. When we compare the first displayed
equation with corollary [I.I9] we note that we can replace the 2 in the upper bound of
the integral by rp because A is supported in B(cg,rp). This is what we will do in the
next lemma.

4.1 The estimates

4.1 Lemma. Let N inZ,,j=1,...,d, b>0 and o > 23". Furthermore, let A be a
t12 () 2-atom associated with the ball B = B(cg,rg) in By. Then we have

dt

rB .2
X = / l[w 2] (t)t2N+1LN€FL8;jA(JJ,t) — <1.
0 )

~

t L1 (v)

Proof. For y in B we have by lemma [1.9| that m(y) ~ m(cg). Moreover we have

"B 2 de
T +—>/ Lmo) (N LN e sy Aw,t) —
0

L]
/Rd/TB/Rd'K”NaJ z,y) Ay, )Idy*dv( )

:Z/ / /'R”»Nw(f”vy)A(y»t)\ddev(x).
k—0YCr(B) /0 B

L1 (v)
rB

lfago g (0PN LY L0, 40 ) | a0
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Where we have used the decomposition of R? into annuli and that the support of A
lies in B in (i). For t < rp < 2m(cp) and y in B we get ¢ < m(y). So we can apply
lemma |2.6{(iil)| to obtain that the RHS of the previous estimate is smaller than

le=ty — z)? dt
exp . M= (z,y)| Ay, t)| dy — dy(x).
LMJ'/ <4§1%% (A, 0 dy § (@)

Now we can use the same argument as in lemma[2.7 that is [2.6]2.7]. We recall that
2
ale "y —af? a ly—af
@q)<4€816“2 <ew (g ) e (b))

a ly—af?
SeXp <_868 t2 .

We can use this to obtain that Eﬂ is smaller than a constant times

= "B a |y —af? dt
Z/ / /exp (—48|y 72 | )Mtz(fr,y)|A(y,t)|dytdw(w).
0 Cr(B) JO B €

For z in Ci(B) and y in B we have |x —y| > 28~ 1rg for k > 1 so we get

"B 2 de
T r—)/ Lme) (N LN s oy Aw,t) —
) :

b

L ()

/Ck(B)/ eXp( *S(TTB)Qﬂ 1)/BMtz(x,y)|A(y,t)|dydttdry(x)

o0 o dt

zz/em(gs ¢ [ Matelawniayane) §
00 Cr(B)
%) rB o

<3 [ (<o (7)) VATGBNe - ¢ HAw Ollncy T
k=0

(i) X . "B dt

< 827 +1)? ~v(B) exp (—%4’“71) / |z — €t2L|A(93vt)|||L2(7) n
k=0 0

(i) =

< 8(2k+2+1)2 ox _&4k—1)

N p 3
poars ( de

<1

Where (i) follows from the doubling property [L.6]. (ii) in its turn follows for a similar
argument as in proposition [3.2] the boundedness of the semigroup and the fact that
A is an 2-atom. This completes the proof. |

From corollary [[.16] we immediately obtain
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4.2 Corollary. Let a,b >0, N inZ,,j=1,...,d and o > 237. Furthermore, let A
be a tY2(7y) 2-atom associated with the ball B = B(cp,rp) in Ba. Then we have
<1

s 2 dt
‘ T;l%b <.’E — / 1[M 2] (t)t2N+1LN6%La;jA((E,t) ) N
0 v Li(%)

t
We will use this corollary (which follows from lemma to prove the required
estimate for the hl

max,a*

4.3 Proposition. Leta >0, N inZ,, j=1,...,d and a > 2%°. Furthermore, let A
be a tY2(vy) 2-atom associated with the ball B = B(cp,rp) in By. Then we have

" ON+1pN 2L dt
x>—>/ Um0V LN 10 A1) <1
0 v ' P
Proof. We have
"B t2 dt
T / 1[%72] (t)t2N+1LN€7L8;jA(.’E,t) —
0 ’ hrlna a
e IN+1pN 21 dt
= ’T; (:1: »—>/ 1[1,L(w> 2] N LN e 9, Az, 1) )
0 b E /Ly

dt
T+ sup —

(y,t)eTg(v)

= / sup / M2 (z,w)
R4 (y,t)elg(v) I/ JR24

"B - ds
X (/o 1[$,Q](S)Ks2,N,a,j(w7U)A(U78) s) dv dw| dy(x)

)

B 2
8 [ g (OFY LN L A1)
0 J !

L ()

= / sup
R? (y,t)erg(v)

X (/OTB 1[$)2}(3)K‘927N7a7j(w,U)A(v,s) ds> dvdw|dy(z).

S

//RM [n, (2,w) + 1ng (2, 0)]| M2 (2, w)

Given corollary [£:2) we only have to estimate for the 7 as in corollary

/ sup / Mz (z,w)1n, (2, w)
R (yt)erg(|/ JR2

"B - ds
X / 1[m<bw) 2] (8)Ks2 N, (w,v)A(v, s) . dv dw‘ dvy(z).
0

So, it is sufficient to estimate

I::/ sup / M2 (z,w)1y, (2, w)
R (,0)eT () ] JR24

"B ~ ds
X /0 1[%4 ()| Ks2, N0, (w,v)A(v, 5)| e dv dw dy(x).
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Where we have used lemma [[.8
Note that for v in B we have |[v—cp| < rp < 2m(cp) and hence rp < 2m(cg) < m(v)
by lemma So by lemma [2.6(iii)| we have that

rg
15/ sup / Mtz(z,w)lNT(z,w)/ 1[mw) 2](8)
R (z,t)€Tg(y) J/ /R24 0 b

g2 2
Sy — d
X exp ( oz|evw> M2 (w,v)|A(v, s)| L v dw dvy(z).
s

C 4e8 1 — e—25°

We write

%)
I 5 Iloc + Z‘Z—glob7
k=0

where

TB
Jloc :/ sup // M2 (y, 2)1n, (yaz)/ 1[M 2] (1)
R (y,5)€T%(y) / JR24 0 o

—¢2 2
a le Vw—z dt
X exp (‘4|1_2|> M (z, )1, (z, w) | Aw,1)] 5 dw dz dy(z)

rB
]Ebb :/ sup // Mg (y,z) 1N, (yvz)/ 1[’"<2) 2] (t)
Ci(B) (y,8)€Te(y) J JR24 0 o

a e P w—z|? dt
X exp <_M|1_6_%J> MtQ(Z,w)lch (Z,UJ)IA(U)7t)| 7 d'IUdZd’Y(x)

We will first estimate I,%l‘)b. For w in B (recall that A is supported in B), z in C(B),
|z —y| < am(z), ly — 2| <™m(y), t < rp and m(z) < brg, we get, using lemma

|lw—cp| <rp
< 2m(cp)
< 2(1+ 2ym(w),

and hence by t < rp we have t < m(w). Furthermore we have

|z — 2| <[z —y[+ |y — 2]

<
< am(z) + ™m(y).

We also have m(y) < 2(1 4 a)m(x). Hence we get
|z — z| < [a+ 27(1 + a)]m(z).
Furthermore we also have

m(z) < [1+a+27(1+a)lm(z)
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<[I+a+27(1+a)lbrg.

Let Copr :=b[1+a+27(1+a)]la + 27(1 + a)]. Then
e Pw—z>lw—a|—|z—2z - (1—e)w| > 2" 2rg — Coprrp — 2wl

Note that t < rp < m(w) implies that t?|w| < C'rg for some C' > 0. Let M = M,
in N be such that C,p, + €’ < 2Mavia,

Note that for k < My p.0 +2, z in Ck(B) and |z — z| < [a+27(1 +a)}m(z) hence by
lemma [I.9) we have m(z) ~ m(z) ~ m(cp). In particular we have m(z) > km(cp) for
some k > 0. We first apply Cauchy-Schwarz and exp(—z) < 1 to [ ,fbb. To complete
the estimate we need to estimate the term

Iglob
) v
lom s [ Malein w2) [ 1m0
(y,8)€Tg(v) / JR2 0 b
at
< Mz, 0) g, (2. )| A(w. )] L dwaz|  A(C(B)
£2()
rs . dt
<lom s [ May 02) [ s 0 HAG | T s
(v.5)€re(7) JR4 0 v L2(v)
X V(Ck( )
oy dt
Em(cgp),2 t) T sup MSQ(?%Z)INT(yaZ)e |A(Z,t)|d2 e
0 b (y,5)€r%(y) /R L2(v)
x \/7(Ck(B))
Gy (s at
2L at
S A TR )) P Y W VaT )
2mes) g\ 2 / fro dt
<</ t) ([ 1o 00y ) VA5
Em(cp) 0
1
<
S 7(Cr(B))
v(B)

Where (i) follows by Cauchy-Schwarz and (ii) follows by proposition [1.10(ii)l So we
get by Cauchy-Schwarz that

Ma,b,a+2 Ma b,a+2

Z Iglob < Z 2k+1B)

a,,b,a+2

k42 1)2
5 Z 68(2 +1)
k=0
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<1

For k > Mg p o + 2 we may estimate the RHS of H

ok —lpp — CoprTB — t2|w|

> 2" g — Cuprrp —C'rp
> (2t —2Myrp
=

21@72,’43.

So, similarly to the case £ < M, p o + 2 we have to estimate after applying Cauchy-
Schwarz and proposition [1.10{ii)
T+ sup / M2 (y, 2)
(v) JR24

<\ HEIB) e s
Y,s @

TB —t? _ 42 dt
X / exp <a|ewz|> Mz (z,w)|A(w, t)] - dwdz
0

4e8 1 —e 2t

L2(y)
<A/7(2kH1B)||lz —  sup M, (y, 2)
(y,5)€rg(v) JR2d
r5 k=27 \ ? dt
X / exp (_048 ( TB) > M2 (z,w)|A(w, t)| — dwdz
0 46 t t
L2(v)

"B a [(2F2rp 2
< ok+1p -
Vs [ exp< = (5

T+ sup M2 (y, z)et2L|A(z, t)| dz
(y:s)elg(y) /R4

X

L2(v)

B o k=2, 2 2 dt
< 7(2k+1B)/ exp <_468 ( ; B) > ||x — el L|A(x7t)|||L2(,y) i
0
a o[ [P dt) 2
< \/7(21B) exp (—8? (2k 2) ) (/0 | — A(x7t)||%2(w) t)
1
" /”B a (2 2%rp 2\ dt)’
o TP\ Taes Tt t

A i (1 a2
e

Where in the last term we have used that the integral in the penultimate line is finite.
Hence,

o0

Z I]%lob 5 1

k:Mu,b,a+2
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for « large enough.

If we bound I'°° by a constant our proof is done, so that is what we will now do.

First remark that for ¢ in |:ml()z) , 2} we have

2
a eV w — z|? o2 _d
My2(z,w) exp <_4@31_crzﬁ> <(1—e)72

< (1)
4.1 )
262 1
S\1+e8) m(z)d
< 1
~ m(z)¢

by calculus. For w in B (as A is supported in B), (z,w) in Ny, (y,2) in N; and (y, s)

in T'%(-y) we have

[z =yl +y =2+ |z — w| + [w - cp]

|z —cp| <
< am(z) +71m(y) + m(z) + 2m(cp)
<

by lemma Similarly

<le—yl+ly — 2]+ |z — wl
< am(z) +1m(y) + m(z)
<

m(w).

|z —wl

2 2 . . . . .
We have e~ 1#I" ~ ¢~1*I" which can be shown using a similar argument as in lemma

Therefore we have dw dvy(z) ~ dy(w) dz by lemma Hence,

rB
Iloc < / sup // M, (yaz)lNT (yvz)/ 1[M 2] (t)
Rd (y,s)€l2(y) J JR2d 0 v

1 dt
X Wh\h (z,w)|A(w, t)] " dwdz dy(z)

B 1
< / / sup Moy, 2)1y (9, 2) Lo (1)
0 m(CB)d R (y,s)ele(v) JRE [Tz]

X / 1N, (z, w)|A(w, t)| dy(w) dz dx dt
R4 t

(i) ["B 1
</ 761/ sup / M2 (y, z) dz
gm(es) MCB)? JB (e am(cs)) (v,s)eTa(y) R

x/ |A(w,t)|d'y(w)dx%
R t
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A o AGw, g2y de &
< - w w, ot X —
%m(cB) m(CB)d B(cg,Am(cg)) © t

where we have used in (i) that there exist x, A > 0 such that m(z) > xm(cp) and
|z —cp| < Am(cp). Note that by Cauchy-Schwarz and the fact that A is supported in
B we have

& = Al Dllzs ) < VABllz = A, 8)] 2.
Furthermore, we have

/ dz ~ m(cp)?.
B(cp,Am(cg))

Hence,
(es) qr\ ? ;
e mles) qe\* /[ dt\ ?
1° £ \/4(B) (/ t) ([ 1o Aol 7)) 51
%m(cB) 0
This completes the proof of the present proposition. |

Next we will estimate the term on page

4.4 Proposition. Let a,a’ >0, N inZ,, j=1,...,d and o > 8¢+, Let b > 2e.
Then

m(x)

a2+ L] dt

b 2
x r—)/o tzNHLNe%La;j lgp(z,t)t0z, € o= ~“Ju(x) ; Sl o -

ht ,

maz,a

Proof. First note that || T ullp1(y) < [|ullzec(). To see this recall that the semigroup
generated by L is positive. This means that |e*Fu| < e*F|u|. Furthermore note that

esElu(z)| = s(z,y)|u
)l = [ M lutw)ldy

< ||u||Loc(,y)/ M (z,y)1dy
Rd
= [Jull ()

where we have used that e“1 = 1. So,

* 2
[Touliey = [ sw e buly)]dria)
R? (y,t)erg’ (v)

< / sup e Flu(y)] dy(z)
R? (y,t)era’ (v)

< / [l oo () dy(x)
Rd

= ||lull oo (4)-
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Thus it is sufficient to show that

m(x)
b 2 242 dt
x> ; t2N+1LNe%L8;j [lgp(z, t)to,;e a2 Nu(x) -

S llullzr iy
Lo ()

To prove this claim, first fix z in R? and consider ¢ > 0 and y in R? such that
m(y) <t < ™2 So, m(y) < 1 hence |y| > 1. We have 2e|z| < b|z|. Furthermore we
have |y| =1 < (b|z|)~! hence 2e|x| < blz| < |y|. So

2 2
ey —al = eyl — |2
> Wy
e
_lyl o,
T 2 + 2e ~ Izl
2 vl
26
This gives, using lemma and tly| < b
_ I|2
t K N (2, y)| S < Iyldexp< ” Qaz e_ztz ) My>(z,y)
< lyl"exp (75 2|e "y~ af?) Mea(a, )
[4.2] < |y|dexp( e vl?) Mee(a,y)

2 1 o} 1
X |y| exp <_ 16202 +1 |y| ) m(x)d
< exp (— iyl

S P 1662‘12“ )

Where (i) follows from |y| < ¢t~1 and |y| > 1. (ii) follows from the argument of
that shows that M (z,y) < m(z)~%. (iii) follows from |y| < m( ). Now,

m(x)

2 a242 dt
t2N+1LNe%L8;j [1ED(x,t)t8wje o L} u(x) -
0
e 2,2 dt
~ a“t
< [ K (9) [Lop(y, 019y, ¢™FF July) dy
0
m()

KtQ,N@,j (33, y)ch(ya t)ayj Mﬂ (y7 Z)U(Z) dz dy dt|.
R JRI o

To continue this estimate we need to estimate |0y, M ,2.2 (y, 2)|.

2,2 _a2t2

2e” % (em oy — 2)
1—e™

242
a“t
2 a

laijM(yaZ)‘ = ‘Maztz(y,z)
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e "y — |
e ey —2z
S Maze (y, 2) 22:2
o 1—e 2%
So,
5 2 dt

b 2 (L2
/ t2N+1LN€%La;], [IGD(%t)tane o
0

b - dt
< / / K2 N o j(z,y)lep(y, t)t laijEQtz (y, z)u(z)’ dzdy -
R JR4 o

rn.( ) 2,2

a

e ey — dt
/ [ R svasr)lon (o 06z (0, >7' o u(2)] dzay &
R JRA 1—e 2%
1
 a22 2
i 0 B o ’6 « y—Z’
S0 Remas@iien 0t 2 e | -1 5
0 Rd JRA e 1—e 2%
| _a2 2 | dt
e a y
X 1 2,,2t2 |U'( )|d2dy7

Where (i) holds because tly| < b~! so we can use lemma [2.6] . 6| with ¢ replaced by at.
Furthermore we have used that m(y) < t which follows from (y,¢) in CD. Note that

2
exp <—01€ >CZ§ <1

for all constants c1,co > 0 and for £ > 0. The implied constant is independent on &

and d.
In combination with we now conclude that the RHS in the above ﬂfﬂ is smaller
than

1
(0% 2
| e —WW) ¢ lu(y)| dy di

/ /Rd P "~ 16e 2a2+1} [yl ) v “lu(y)| dy(y) dt

So, for « large enough we have
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This estimate holds for all z in R? so we get

m(z)

b 2 2oy e
T PNHINTLY; [1gp (@, )10, e Hu(x) t

0

N HUHLl(w

This concludes the proof. |

4.5 Proposition. Let N in Z,, a > 0 and a,a’,b > 0. For allu in C(R?) we have
that

oo a2)e2 dt
x / (t2L)N+1e(1+a . Lu(z) —

<
mie) 7 ~ ||UHL1(7)-

hl

maz,a’

Proof. Let M > 1 and z in R%. Using the substitution %tQ = s and we get

M 2,,2
(14a?)t dt
L L PDN Ly )
C

(1+a2)Mm?2

E ds
~ sNTIGNFLeslyy(z) —|.
(+a?)ym(x)? s
b2 o

We can integrate the last integral IV times by parts and use the triangle inequality to
obtain

M

m(x)
b

< (14 a®)M? )kLkeuw?WL

<Z

u(x)

iv: ( 1+a ( )2>kLk (1+a[ )T(T)ZLU({E)
k=0
=: [A] + [B].

We estimate both sums separately. We begin with [A]. Note that using the chaos
decomposition and k£ in N we have

2

I e a3y = e Lrullfag = || 32 e Pleal 8 Hy

pezy L2(v)
k 2k
¥ = ¥ PP < e ()l
BeZT

where we have used e~2!81|5|2F < =2k (%)Zk.

Hence, given k£ =1,..., N we have

2402
p Qta®)m? o

H(MQL) e« u

(14+a?)M2
T5(M2L)re &y

hl,‘

max,a

L(v)
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(14+a?)M?2
ke#L

< ‘T;,(M2L) u

L2 ()

®

2 2
k (14+a“)M L
< e o u

orn)

L2 (%)

24,2
a®)M?

(a+
< M?*®||Lre = Ly

L2(y)

ko 2k
MW) HUHL?(v)
—0as M —

(%) Mle—Qk (

where (i) follows from lemma[I.14] and (ii) follows from [f].
Next we estimate the sum [B]. Using where we set t2 = (1 + a?)m(x)%b=2 we
get

b2«

k
<(1 + a2)m(:r)2> Lk, e (x)‘

2 2\ *
<(1+a Jm(z) ) L’“e(lﬂjz)f(z)%u(m)‘

b2
k=0
N

<2 /Rd 1K (14+a2)m(2)20-2 k.0 (2, ) [u(y) dy.
k=0

It remains to prove that

’T;‘, (x R (L ] dy) <l
R Li(y)
By lemma [2.6{ii)| it is sufficient to prove that
w3 | (x o [ Motans-smi)luts) dy) < Jullr.
R4 Lt (v)

We split the equation in in a global and a local part. Using proposition |1.10}(1)|
we estimate the global part as follows

g*l(éb (1’ = Ad M(1+a2)b*2m(z)2 (ZL’,y)‘U(y” dy)

L()

:/ sup / Ion, (2, w) My (2, w)
R4 (y,t)els(y)|/RA

2
x /R Misatyy-mgors (0, 0)u(o) o

dw dy(x)
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< / sup / Tow, (2 w) Mya (2, w)
R (z,t)ele (1) |/Re
<[ Mot s (0, 0)u(0) do duw d 2)
R
< / Mitsa2)p-2m(ey2 (@ 9)|u(y)| dy dy (@),
Rd JRA

We decompose the right hand side in a local and a global part. Let 7 := %(1 +

11 +a?)(1 + 2711 + a?). By proposition for the global part we have
/ M(1+a2)b_2m(z)2 (1’7 y)lcN.r (SL’, y)|u(y)| dy d’Y(x) S ||UHL1(’)')
Rd JRA
For (z,y) in N; we have m(z) ~ m(y) by lemma [L.9 hence

L | Moo s @i, @)l dydo o)

/Rd /B(z (@) d|“( )| dy dy(x).

Where the RHS of the previous inequality follows from the argument of that
shows that M (z,y) < m(z)~%. For (z,y) in N, we also have el ~ o= lv” by
lemma [2.8] therefore, using lemma [T.9]

N d|u< Ny s [ f d|u< )| dy dy ()
R4 J B(z,7rm(x)) R4 J B(z,7m(z))

1
8 )W\uwdy )

I
.

- om0l dy i o)

d

o

<
I —alulw)] deda(v)
~ u T ay\y
R4 J B(y,(14+7)m(y)) (y)d
< / ()] dy(v)

Rd

= [lullzr (4)-

i

Next we estimate the local part [4.3], that is we need an estimate for

/ sup / In,, (2, w) M (2, w)
R (y.)els (7)] /R

Moy . 0) )] oy o)
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Clearly the RHS can be estimated by

/ sup / lN.,_/(y7Z)Mt2 (y,Z)
R4 (y,t)erg(vy) JRE
<[ Mg s (2 w)u(w)] du dzd ),
R

Once we have estimated the following terms, the proof will be complete.

ngob = / sup Mt2 (yvz)lN,r/ (y,Z)
R4 (y,t)eTg(v) /R4

x /R Maampsmer (20, (2 0) u(w)| dw dz do ),

Jioe = / sup Mo (y, 2)1y., (3, 2)
R4 (y,t)ela(y) JR

X /dM(1+a2)b—2m(z)2(z,U))lNT,, (z,w)|u(w)| dw dz dy(x),
R

where 7/ is defined for the parameters (A4,a) = (1,a’) as in proposition and 7"
is defined as follows. For (z,y) in N, and (y,z) in N, we have by lemma that

m(z) ~ m(y) ~ m(z). Fix 7" as in proposition for the parameters (1,a) =
(1,+/1 + a2b~1) Using proposition we have

ngob ,S / sup Mt2 (Z/: Z)lNT/ (ya Z)
R (y,t)erg(y) JR4

X sup / Mg (n,w)ley ,, (0, w)|u(w)| dw dz dy(z)
(n,s)era JR4 T

5/ sup M2 (y, 2)1n_, (y, 2)||ull L1 () dz dy(x)
R4 (y,t)€rg(y) /R4

S ||UHL1(7)-

For (x,y) in Ny, (y,2) in N» and (2,w) in N;» we have m(z) ~ m(y) ~ m(z) ~ m(w)
by lemma We also have

|z —w| <z —w[+ |z —y[+|y - 2|
< 7"m(2) + 2am(x) + 7'm(y)
< Am(x).

for some A > 0. Let k > 0 be such that m(z) < km(w). We also the argument of
that shows that M (z,w) < m(z)~% < m(z)~%

1
Joe < / sup [ My, 2)n, (4. 7)— / ()| duw dz dy ()
R (y,t)ela(v) JRe m(2)? JB(zrm(=))
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1
< / sup [ My 2)n, (4, 2) / fu(ow)| duw dz dy ()
R¢ (y,t)€T%(y) JRe m(z)® J (e am(a))

),
< L u(w)| dw dy(z)
/R,d m(z)? B(z,Am(x)) )l (

(i) 1
< —|u(w / dx dy(w
/Rd m(w)d| ( )| B(z,Akm(w)) ( )

S el -

Where we have used lemma in (i). This completes the proof of the present propo-
sition. |






5 The equivalence

In this final chapter we will prove that the Hardy spaces as defined in the introduction
are actually the same. To do this all the results from the previous chapters together
with the Calderon reproducing formula are put together.

We first define another Hardy space using a non-tangential maximal function 772V&*

1 2
T(;Wg* = sup 7/ |et LU(Z)|2 d’Y(Z)
90 <W(B(y,t)) B(y.1)

(%,
(y,t)els?

1
2

We can quickly see that
17575 < 1 T511-

5.1 Theorem. Given a > 0, there exists a’ > 0 such that h} (7) = hl

quad,a maz,a’(v) with
equwalent norms.

Proof. For a > 0 we have by [MvNPI10al theorem 1.1] that there exists a’ > 0 such
that [|Siullpiy) S 1T ullr(y) for all uw € C°(R?). Fix the o’ from A}, . C h}

max,a quad,a

and choose a and b big enough. Let u € C2°(RY) and apply corollary We have

o / udy
Rd

lullp: = ‘
max,a

L1(v)
d 2 2\ N t2L dt
£ 33'—>/ (PL)Y e 407 An () |
j=1n=1 0 A a,al
d & 2 N tzL dt
+CY D Al xi—>/0 1[@?2]@)({@) e L0 An () — 1
j=1n=1 L
d % 2 \N t2L a2t2L dt
+CY |z (L)Y e L0y, (Ipp (1 @)t e ™= FJu(w) —
; 0
j=1 hax.a?
o )22 dt
+C xH[YL(w)(tZL)N+1e(1+a)t Lu(x)i
b hl ,
We have

T / udy
Rd

L ()
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2
<l / sup [P L1 dy(2)
R? (y,)T'e’ ()

= |lullpr(4)-

Moreover, proposition [3.2] together with theorem [3.3] gives us that for any 2-atom A,

2 2 \N 21 dt
T r—)/ (L) e« "td; A, j(x,t)— <1
0 s e
By proposition [£:3] we get
? 27 \N 2L o dt
£E'—>/ 1[#72]@)(15 L) e« t@IjAnyj(x,t)t’ S].
0 M’
Hence by corollary (final estimate),
o0 o0
S5 gl Sl
7=0n=0
For j =1,...,d we have by, proposition [{.4]
w 2 2,2 dt
ot * a‘t
oo [ ELYeR L (ot a0, Pyule) T < Jlull oy
0 W
Finally, by proposition [£.5 we have
o (t+a)?t? dt
z .—>/ (tZL)NHe S Lu(m) — S lullzr -
m(x) |
So
lullng o S lellne,, -

This completes the proof of the equivalence. |
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