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Preface

The research for this thesis was conducted within the SiBnatessing in the En-
crypted Domain (SPEED) project which was funded by the EeaopUnion within

the Sixth Programme Framework. It started in December 20@6fiaished in De-

cember 2009. The goal of the project was to foster the advaeceof the mar-

riage between Signal Processing and Cryptographic teshsjgooth at theoretical
and practical level. The objective was the initiation andedi@ment of a totally new
and unexplored interdisciplinary framework and techn@sdor signal processing in
the encrypted domain that address the problem of secunuitimedia communica-
tion/consumption, and digital signal manipulation.

In this European project, the following parties were inealy Universia degli Studi
di Siena, Univers# degli Studi di Firenze, Katholieke Universiteit Leuvenyhr
Universitaet Bochum, Philips Electronics Nederland B.\d &elft University of
Technology.

During the SPEED project, security and privacy problemsewvesal multimedia ap-
plications were addressed and a set of solutions that mergptgraphy and signal
processing was proposed. In this thesis, we present thégeduhe research con-
ducted in Delft University of Technology.

Z. Erkin, Delft, December 2009.






Table of Contents

Preface

List of Tables

1 Introduction
1.1 Case Scenario: Automated Medical System . . . ... ... ...
1.2 PreservingPrivacy . . ... ... ... .. ...
1.3 Signal Processing and Cryptographic Tools

1.3.1 Linear Operations and Homomorphism . . . .. ... ...

1.3.2 Non-linear Operationsand MPC . . . . .. ... ... ...
1.4 ProblemStatement . .. .. ... ... ... .. .. ... ...,
1.5 ThesisOutline. . .. ... .. ... ... .. ... .. .. ...,
1.6 Contributions . . . . . . .. ...
References . . . . . . . . . . e

2 Protection and Retrieval of Encrypted Multimedia Content
2.1 Introduction . . . . . . . . ...
2.2 Encryption Meets Signal Processing . . . . . . ... ... .. ..
221 Introduction. . . . . . . . ...
2.2.2 Cryptographic Primitives . . . . . . ... ... ... ....
2.2.3 Importance of Security Requirements . . . . . ... ...
2.2.4 Compression of Encrypted Signals . . . . . . . ... ...

i

List of Figures i
id

i



iv Table of Contents
2.3 Analysis and Retrieval of Content . . . . . . .. ... ... .... E
231 CIUSMNG . .« o o oo []29
2.3.2 RecommenderSystems. . .. .. ... .......... l: 34
24 ContentProtection . ... ...................... D 37
241 WatermarkingofContent. . . . ... .. ... ....... L | 37
2.4.2 Client-side Watermark Embedding . . . . . ... ... ... .| 39
2.4.3 BuyerSellerProtocols . .. ... .............. | 42
2.4.4 Secure Watermark Detection . . . . .. ... ....... .| 43
2.5 ProblemStatement . .. ... ... ... .. oL .| 45
References . . . . . . . . . . . | | 48
3 Privacy-Preserving Face Recognition |55
3.1 Introduction . . . .. ... ... L_| 56
3.2 CryptographicTools . ... ... .. ... ... . ......... ,_| 58
3.3 FaceRecognition . . ... ...... ... .. ... ... ... .| 58
3.4 Privacy-Preserving Eigenfaces . . . . ... ... ... ... ... 5¢
3.4.1 Setup and Key Generation . . . . . ... .......... .| 60
3.4.2 Private Recognition Algorithm . . . . . .. ... ... ... .| 61
3.5 Comparison Protocol . . . .. .................... .| 64
3.5.1 AHigh-level View of the Protocol . . . . ... ....... __|64
3.5.2 Computingzmod 2] . . . ... ... .. |65
3.5.3 Comparing Private Inputs . . . .. .. ... ........ |, | 65
3.6 Security(Sketch) . .. ... ... ... ... . D 66
3.7 Implementation . .. .. ..., ... ... .. L .| 67
3.8 RelatedWork . . . ... ....................... .| 70
3.9 Conclusionsand FutureWork . . . . .. .. ... .. ... ..... .| 71
References . . . . . . . . . . L1 72
4 Privacy-Preserving User Clustering in a Social Network 35
4.1 Introduction . . . . . . ... :|76
4.2 Privacy-Preserving Clustering . . . . . .. .. .. ... ... ... ﬁ
4.2.1 Computing Encrypted Distances . . . . . . ... ... .. .| 78
4.2.2 Preparinguserdata . . ... ... .. .. .......... .| 79
4.2.3 UpdatingCentroids . . . . . ... ... ... ........ | 80
4.2.4 Termination Control and Getting User Labels . . . . . ... 18]
4.3 Comparison Protocol . . . . ... ... ... .. .. ... ..... .| 82
4.4 Security (Sketch) . . . . ... | 83
45 Experiments . . ... ... .. ... .. ... .| 84
451 Reliability. . . . ... ... oo | 185




Table of Contents

4.6
4.7

45.2 Round Complexity . . . ... ... ... ... ...,
45.3 Communication Complexity . . . . ... ... ... ....
4.5.4 Computational Complexity . . . . .. ... .. ... ....
Variations . . . . . ..
Conclusion . . . . . . . ...

References . . . . . . . . . . e

5 Privacy-Preserving Recommender System

5.1 Introduction . . . ... .. .. ... ... .. l;l 92
5.2 Collaborative Filtering . . . . . . . .. ... ... ... ... 9
5.3 Preliminaries . . .. ... ... 95
5.3.1 Homomorphic Cryptosystems . . . .. .. ... ... ... 95
5.3.2 Secure Multiplication Protocol . . . . . ... .. ... ... 9
5.3.3 Secure Decryption Protocol . . . . .. ... .. ...... 96
5.4 Privacy-Preserving Collaborative Filtering . . . . . .. ... ... b
5.4.1 Step 1: Initialization . . . .. ... .. ... ... ..., 96
5.4.2 Step 2: Finding SimilarUsers . . . . . ... ... ... .. 97
5.4.3 Step 3: Generating Recommendations . . . . . ... ... | 99
5.4.4 Packing Encrypted Values . . . ... ... ... ... .. .. /100
5.5 Determining the first users with highest similarity . . . . . . . .. 100
551 Comparison. . . . . ... .. ... _.__|100
5.5.2 Obtaining thep Sharing of the Carry-bits . . . . . . .. .. 01
5.6 SecurityAnalysis . . . . .. ... ... L.__|102
5.7 Performance Analysis . . . . .. ... ... :l 104
58 Conclusion . .. ... ... ... ... 05
References . . . . . . . . . . :|106
6 Anonymous Fingerprinting @
6.1 Introduction . . . . . .. ... ... :1110
6.2 Watermarking and Encryption Preliminaries . . . . . . . ...... . EZ
6.2.1 Basic Quantization Index Modulation . . . . .. ... .. ]1
6.2.2 Homomorphic Encryption Schemes . . . . .. ... ... 113

6.3
6.4

6.5

Kuribayashi and Tanaka Anonymous Fingerprinting Rmalto . . . .

Anonymous Fingerprinting Using Advanced Watermarkdohemes __1.{7

6.4.1 Subtractive Dither Quantization Index Modulation . . . .

6.4.2 Distortion-CompensatedQIM . . . . ... ... ... .. _.__|120
6.4.3 Rational Dither Modulation . . ... ... ... ...... 21
Experimental Validation . . . ... ... ... ... ...... 312

6.5.1 Subtractive Dither QIM . . .+« o [ hioa



Vi Table of Contents

6.5.2 Distortion-Compensated QIM . . . . .. ... ... ...
6.5.3 Rational Dither Modulation . . . .. ... ... .....

L. 1126
26

6.6 Security Aspects of Buyer ldentity . . . . .. ... .. ... ...
6.7 Conclusion . . ... ... ...
References . . . . . . . . . .
6.A Tableof Parameters . . . . .. ... .. .. ... ... ......

7 Discussion

7.1 \Variations in the protocols with respect to use scesario . . . . . .

7.2 Achievements . . . ... ... . ...
7.2.1 DataRepresentation . ... ................
7.2.2 Linear Operations and Homomorphism . . . . ... ...
7.2.3 Non-Linear Operationsand MPC . . . . ... ... ...
7.2.4 DataExpansionand Packing . . . ... ..........
7.2.5 Computational and CommunicationCosts . . . . . .. ..

7.3 Openlssues . . .. .. . . e

7.4 Conclusion . .. ... ...

References . . . . . . . . . .

List of Abbreviations
List of Symbols
Summary
Samenvatting
Acknowledgements

Curriculum Vitee

gl &l &l ] Bl Bl



List of Figures

1.1

21
2.2
2.3
2.4
2.5

2.6
2.7

2.8
2.9

3.1
3.2

4.1
4.2

51
5.2

6.1

Privacy-preserving medical diagnosis system. . . . . ... ... Dl
Separate processing and encryption of signals. . . . . . ... .. |_;|_$
Compression of an encrypted signal,fr@ Y E’
Clustereddataset. . . . . . .. ... ... ... .. ... ..., D 30
Shared dataset on whiégfrmeans algorithmisrun. . . . . .. . .. D31
Privacy preserving collaborative filtering with useef@rence pertur-

bation. . . . . . . . |:|36
A digital watermarkingmodel . . . . ... ... .. ... ... .. D 39
Encryption and following joint decryption and waterkiag proce-

dure proposed irme] .......................... 41
The scheme of the Buyer Seller protocol proposemn [65].. . .. Ei%
Run time of operations for the Paillier scheme with défe key IengthsDS
Privacy-Preserving Face Recognition. . . . ... ... .. .. ... @
Relation between scale factor and detectionrate. . . . . . . . .. E{a
User chain created to update the cluster centroids. . . . .. . .. @)
Binary tree used to formuservect®. . . . .. ... .. ... ... 53
lllustration of packing preference vectors. . . . ... ....... Ei%
llustration of packingi’s to obtainX 4 inclear. . .. ..... ... Bg

Quantizer input-output characteristic . . . . . .. ... ..... E{B



viii

List of Figures

6.2
6.3
6.4
6.5
6.6
6.7
6.8

Subtractive Dither QIM . . . . . ... ... ... 118
Distortion-Compensated QIM . . . . . ... ... ... ..... 012
Rational Dither Modulation . . . . .. ... ... .. ........ ﬂ
SD-QIM BER as a function ofthe DWR. . . ... .. ... ... | ._[125
SD-QIM and DC-QIM BER as a functionof WNR. . . . . ... .| 127
RDM BER as afunctionof WNR. . . . . ... ... ....... 28
KT BER as a function of the gain factor for KT SD-QIM, KT DC-
QIMandKTRDM. . . . . . . . . . . e Dlzg



List of Tables

2.1
2.2

3.1
3.2

4.1
4.2

51
5.2

Some (probabilistic) encryption systems and their hoorphisms.
Time consumption for various operations for Pailligmtosystem. . .

Computational Complexity (sec.). . . . .. ... ... ... . ...
Communication Complexity(kB). . . . . ... ... ... .. ...

Parameters. . . . . . . . . ...
Computational Complexity (in minutes). . . . . ... ... .. ..

Computational Complexity (Paillier). . . . . . .. .. ... .. .. @
Computational Complexity (DGK). . . . . ... ... ... ...\ El



List of Tables




One

Introduction

“...the right to be let alone”
Warren and Brandeis

Today, we are witnessing one of the most important brealdtitre in history. Started
in the form of electronic mails, text messaging and World &itleb, we have created
a virtual world that has the advantage of accessibility faom place at any time and
offers almost unlimited variety of services unlike any o fthysical counterparts.
In this virtual world, people can access information andvidedge instantly, create
groups to share and discuss ideas, do shopping, entergairsétves and much more.
As the advantages of the virtual world are undisputed, manetfons from the real
world are brought to the virtual one, resulting in an inchegly connected world.

A close look at the services today shows that most of the sesviely on data
processing. Typical data for an online shopping site woelthle identifiers, properties
and the quantities of the products on sale. For a social mktsite personal data such
as likes and dislikes would be considered. Regardless @fhkcation type, most of
the services rely highly on data collected from the userggigh better applications in
terms of service experience. As an example, for a shoppiegitstan be very helpful
to show the most popular products on the first page of the web®f course, to add
such a functionality, the service provider needs to recod @rocess the shopping
patterns of the users. To make the system even more ateatiiese sites can offer
personalization. Depending on demographic propertiesences and past actions,
the service provider can generate specific recommendatianspecific users may
like.

Despite the fact that a more connected world simplifies gEofves by providing
several services, the available information on the useoslifie applications creates
a serious privacy risk for the users. Every piece of dateect#d contains sensitive
information about the users that can be abused by otheepanitluding the service
provider [14]. In addition to the privacy considerationloétusers, the service provider
may have his own concerns for securing his service againgtime users who may
try to abuse the service for their own benefit. In either caseface a challenging
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problem in the virtual world in which involved parties do rfatly trust each other
with their sensitive data.

1.1 Case Scenario: Automated Medical System

To illustrate the problem of lack of trust, consider the epéaof patient-doctor rela-
tion. During a medical examination, the patiémnistshis doctor on the confidentiality
of the examination result. The patient-doctor relationugtlon the strong assump-
tion that the doctor will keep his Hippocratic Oath. Now, giee that due to the
lack of doctors and increasing number of patients in socetyautomated system
for medical diagnosis is to be deployed. This system cansisn expert system
with a large database of recordings on diseases and thepteym. Regularly or on

demand, a device given to the patient makes some measuseoretite patient and
sends its data to the central system where the expert sysesmd make a diagno-
sis. Depending on the analysis, the expert system may sudiffesent things such

as conducting another set of analysis, making an appoiritates hospital or even

prescribing medicine.

In this scenario, both sides, the patient and the servicégeng have several ad-
vantages. The patient can have medical check-ups at anwtithat any place, elimi-
nating a tedious procedure of making appointments with toéad. At the same time,
the service provider can keep the expert system online wittifficulty and serve a
lot more people concurrently. In general, the whole medigatem can benefit from
reducing the expenses, saving time and valuable resoufbesquestion fundamen-
tal to this thesis is whether we can move the trust model beviee doctor and the
patient to the virtual world.

A straightforward approach to secure this medical systenaliysconsiders the
confidentiality of the communication channel and the statath. These precautions
may prevent attackers from obtaining highly privacy-séwvesidata. However, the real
privacy threat in this scenario arises from the fact that ot a valid assumption for
the patient to fully trust the service provider with his medirecords. The service
provider may have an interest in collecting information lo@ patients since this type
of data can be particularly interesting for insurance camgsor employers. In the
case of misuse, the consequences will be severe for thepwiahe patient.

In summary, in online applications where the service prewahd the user interact
virtually, the involved parties may have sensitive data thay would like to keep
secret from the other parties. For instance in dating siéea aocial network, the
service provider finds similar other users based on useefemnces. In the case
of online shopping sites, the service provider tries toease his profit by providing
targeted advertisements by observing user’s shopping/wetzand/or profile. In either
case, the service provider needs to access the privacitreemata of the users. As
this constitutes a serious privacy risk for the users, soseesumay not prefer to use
the service at aIIﬂﬂ?]. And for those who choose to gestheice, which has no
proper privacy protection, are open to privacy breache Situation can get worse
as in the case of surveillance systems in which the userseémg monitored without
their consen@4].
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1.2 Preserving Privacy

In order to protect the privacy of the patient, we considen tlifferent solutions:
using a trusted third party (TTP) and secure signal prongssUsing the medical
system scenario as an example, we illustrate how a TTP caaupger to a privacy-
preserving solution. In such a setting, the TTP, who is &digly all parties, receives
the privacy-sensitive data from the patient and the algoritrom the service provider.
The TTP can either run the algorithm by using the private datlae patient and report
the outcome himself or he can anonymize the patient’s datgise them to the server
to be processed. In either case, the security and the privamerns are eliminated as
the patient’s privacy sensitive data and the algorithm afe im the hands of the TTP.
The problem with this approach is that in real life it is nosgaf not impossible, to
find TTPs that do not have motives of business, politics,latbusiness, it is strongly
believed that TTPs are vulnerable, costly and ri@/ [22ug linstead of giving away
the privacy-sensitive data and the algorithm to a TTP, weecgtore cryptographic
techniques.

A solution based on cryptographic techniques would be dsvisl The device
provided to the patient makes the measurements, encrygtiath and sends it to the
automated system. Upon receiving the data, the automatditahesystem runs its
algorithm on the encrypted data and obtains the diagnosigty@gain in encrypted
form. The encrypted diagnosis is then sent to the patientieleeypts the encrypted
message and obtains the diagnosis (Eigl. 1.1). As a consegjube patient does not
reveal his medical data to the automated system but obtaéndiagnosis which is in
turn unknown to the automated system.

In the medical scenario we assume that each party plays hisral properly.
That is, the steps defined by the protocol are followed and anipolation either
on the data or in the algorithm is made. This type of modelwknassemi-honest
model, also expects the parties to record the previous messa order to deduce
more information than they are supposed to have. In the dasaripulating the data
or the steps of the protocol, extra precautions should entakensure the correctness
of the protocol. These precautions usually consist of agzphic protocols such as
zero-knowledge proofs in which one party tries to prove tother that a statement is
true without revealing the statement itsﬁ?{lZ]. This s@gumodel is often referred to
asmalicious cas®r active adversarynodel mZ]. Throughout this thesis, we assume
that all parties act according to the semi-honest model.

1.3 Signal Processing and Cryptographic Tools

The proposed system based on cryptographic techniquetomated medical system
scenario provides the necessary privacy protection fopétient. However, realizing
the system described in Fig_1L.1 presents a number of clgakehe goal of encryp-
tion is to make the original message unreadable in such ahleyhly the recipient
of the message with the right key can read it. After the ertayp the structure of
the original message is destroyed and the resulting cigx¢tdoks totally random.
As a result, once the message is encrypted, operations ongheh as sorting and
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Patient Automated System
Key
¢ Internet
Measurements £ " Encrypted Data
— > Encr >
P ...01110100110...
Key Process
Diagnosis Decrypt Encrypted Data
< ...00110010101...

Figure 1.1: Privacy-preserving medical diagnosis system.

averaging a set of encrypted values become non-trivialréfbee, we need to deploy
cryptographic protocols to process data in the encryptedado

Before describing existing cryptographic tools for praieg encrypted data, we
need to identify what kind of processing is required in oalmultimedia applications
in general. A wide variety of services available on the Iné¢today possess similar
features. The data in question is usually a set, or moreg@lyc vector, of values that
might be preferences of users (social network sites), likedislikes (recommender
systems) and media files (audio, image and video). The seprimvider processes
the data depending on the service demanded. As an exampilee tase of social
networks, the focus is on finding the most similar users basetheir preferences.
In the case of recommender systems, the service providenéesls to find the most
similar users and then generate recommendations by agmgime statistical meth-
ods like averaging similar users’ ratings. Many other exi@span be given here such
as finding other copies of a picture or matching the face matfia user to a celebrity.

In all of the applications mentioned above and consideretiigithesis, we see
that the data possess the structure of signals, that is tieegoarelated values from
a small range, and the applications consist of common dpasafrom the field of
signal processing such as averaging and quantization. tBeeigh the classification
of signal processing operations is out of the scope of tiisi&{8], the operations we
observe in multimedia applications can be grouped in twmary categories:

* Linear operations: This group consists of operations such as linear transforms
correlation, linear filtering, computation of differencedeerror signals.

» Non-linear operations: Distance computation, comparison, thresholding and
quantization can be named here as examples.

Considering that the data in multimedia applications aieapy-sensitive and we
propose to ensure the confidentiality of the data by meansafyption, we need
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to realize the linear and non-linear parts of a signal preiogsapplication under en-
cryption. In order to process encrypted data, we can expbritomorphic encryption
schemeandsecure multi-party computatigqiMPC) techniques.

1.3.1 Linear Operations and Homomorphism

In cryptography, a number of public key cryptosystems passeproperty calledo-
momorphisnsuch that after encrypting a message, there is some steyateserved
that can be exploited to process it in the encrypted donﬂiin I particular, this
means that an operation on the encrypted data correspoadsttwer operation on the
plain text. For instance, the multiplication of two enciigpis with amultiplicatively
homomorphic cryptosystem like RSE[Zl] gives us the enagigbroduct of these
messages:

D (Epr(m1) X Epr(ma)) = my X ma, (1.1)

wherem, , my are messages ant,;, and D correspond to encryption and decryp-
tion functions with the public and the secret key, respetfivA second type of ho-
momorphism allows us to have the encrypted sum of messagasmltiplied in the
encrypted domain. This property is calladditivehomomorphism:

Dsk(Epk(ml) X Epk(mg)) =my + ma, (1.2)

where E,;, and Dy, are defined as before but for an additively homomorphic cryp-
tosystem like PailIier@S]. As a consequence of additivenbmorphism, a message
can be multiplied with a public constanby raising the encryption of the message to
the power of that constant:

Dy (Epr(m)€) =m - c. (1.3)

Depending on the particular cryptosystem used, additiomualtiplicationt can
be carried out on encrypted values. This allows us to reéitiear operations in the
encrypted domain. As an example, consider that the sintyilafitwo users A and B,
is to be calculated in a recommender system. Assume thatusachs represented
by his preference vectdr, andVjp, respectively. In order to obtain the similarity
value, the inner product df4 andVg is needed. This inner product computation can
be realized in a secure way as follows: ugeencrypts his vectoV, and sends it to
userB. Upon receiving/4, userB computes the inner product by using the additive
homomorphism property of the cryptosystem as shown below:

1Recently, fully algebraic cryptosystems were proposefifjraf@i [11] based on polynomials and lat-
tices, respectively. However they are highly inefficienb®used in practice but very important to prove
the existence of such cryptosystems.
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N
Epea(<Va,Ve >) = Ep,(>_ Vai-Vaa)
=1
= Ep,(Va1-Ve1+...+Van-Ven)
= Epy,(Va) ' - By (Van) 2N
N
= [ EBora(Va)>, (1.4)

i=1

where< V4, Vg > represents the inner product of user vectidgsand V. In other
words, the inner product of one encrypted and one plain veeto be calculated with
multiplications and exponentiations in the encrypted dioma

1.3.2 Non-linear Operations and MPC

In the case of non-linear operations, homomorphic progempt sufficient. In such
casessecure multiparty computatiofMPC) techniques known from cryptography
must be usedﬂS]. These techniques allows to evaluate éidangith secret inputs
from a number of parties such that each party will only kn@oivn contribution and
the intended result of the function.

The field of MPC and its sibling secure function evaluationlgand many pos-
itive results have been publishéﬂiiﬂ L3, 26]. In literatuve see that MPC can be
based on different techniques ranging from circuit scramgbio secret sharing and
public-key cryptosystems. In all of these techniques, tleaiis the evaluation of a
circuit either Boolean or arithmetic over some field or ritgthe case of circuit ap-
proach with two playerst and B, a functionf with secret inputs from both parties is
constructed as a Boolean circuit by uskerEach wire of every gate is associated with
two keys, one key for bit value 1 and another key for bit valuglfe keys are used to
construct the truth tables. Then, the shuffled truth tableseant to useB. In order
to evaluate the functiorf, userB also needs to know the input of usér To obtain
his inputs, usemB initiated an Oblivious Transfer (OT) protoc&[[lZ]. OT poobls
allows B to acquire the correct input for each wire without reveahinginput to user
A. Together with his input bits and the oblivious transfer s&iud’s bits, userB can
evaluate the Boolean circuit and obtain the result.

While Boolean circuits for any functiori can be constructed easily, the size of
the circuit plays an important role for the efficiency. In t@se of complex functions
and operations like multiplication, the size of the cirayibws dramatically. As size
grows, the construction and the evaluation of the functiecone more cumbersome.
As most real-world applications are infeasible to rephraitle a Boolean circuit due
to the required size of the circuit, we do not consider thipraach in this thesis.
Instead, we focus on evaluation of circuits over integetswse the term MPC in that
context.

To illustrate the role of MPC in realizing non-linear opéoas in the encrypted
domain, assume that parywould like to compute the minimum squared Euclidean
distance of his his vectdr, to one of theK vectors in ank dimensional space. User
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A andB want to keep their vectors secret. The squared Euclidesamndis for the two
vectorsV, andV3, forj = 1to K is:

=
-

D*(Va, Vi) = > (vai — v} ,)?

|
<}

Vi =2 va vl + (vh )2 (1.5)

I
=)

i

Imagine that usel3 provides the encrypted inpufS,, (v% ;) and By, (v ,)?).
Then, the squared Euclidean distances can be computed byl asefollows:

R—1
Epipy (D?(Va, V) (va; — V2
rke ) pkB Aji Bz
=0

H Pk UA i) Epkp (UB ) Fva 'Epks((vé,i)Q) (1.6)

Notice that the first and the second terms can be computeddnyysvhile the third
term is provided directly by usds. After having computed( squared distances, user
A has to find out the minimum of these values. As he does not gesise decryption
key, he cannot observe the contents of the encryptions anidedeimself. Since find-
ing the minimum requires comparison and it is not a linearafyen, userd and B
need to run a cryptographic protocol based on MPC techn[@&!m compare the en-
crypted squared distances. Unlike the straightforwardiegtpn of homomorphism
property, MPC techniques are interactive and involve ugwamplicated protocols.
Depending on the function to be implemented, time, comparigiower, bandwidth
and storage space requirements can be demanding.

1.4 Problem Statement

As illustrated by the medical system scenario, severe @yitlareats in online multi-
media applications exist. This problem cannot be solvedgmyaying secure channels
or keeping privacy-sensitive data of the users encryptedeserver side. While these
security measures eliminate a number of security threats dutside attackers, they
are not sufficient to protect the sensitive data against seify the service provider
which creates the biggest potential risk.

In this thesis, we focus on principled solutions to protéet privacy of users in
multimedia applications. For this purpose we propose t@khe privacy-sensitive
data safe by means of encryption during processing. Thiaph eliminates the risk
of possible privacy abuses as the sensitive data is onlyaaito the owner but not
to the other parties. However, once encrypted, the streigtudata is destroyed as
a consequence of the encryption procedure. In order to gsoeecrypted data, we
investigate cryptographic tools such as homomorphism aR@ kchniques.
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The homomorphism is typically used for implementing lineperations but it is
not sufficient for developing non-linear operations. MP€&ht@ques, being inefficient
for realizing linear operations, provide a basis to implatrtte non-linear parts of
an application. However, these techniques are mostly geaed do not consider the
signal aspects of the application and thus, if they are egpulirectly, the result will be
costly in terms of time, computation power, bandwidth regunent or storage capac-
ity. Therefore, this thesis focuses on solutions for prgagrprivacy in multimedia
applications by introducing a new idea, to the best of oumkadge, which proposes
using cryptographic tools that exploit the signal proaagsispects of the application.

In order to illustrate the idea of the integration of signadqessing and cryptogra-
phy, we have selected prototypical applications. In paldic we focus on face detec-
tion, clustering, recommender systems and digital corftegerprinting. These ap-
plications are selected as they consist of common signakgsing operations such as
scaling, correlation, distance computation, threshgl@ind finding minimums which
can be seen in other multimedia applications too. In ordere#tize privacy pre-
serving version of multimedia applications, such operatishould be realized in the
encrypted domain efficiently. To achieve this goal, we haldressed the following
challenges:

 data representation,

« realizing linear and non-linear operations in the enaygptomain,

« data expansion due to encryption,

e communication and computation costs of using cryptogapiotocols.

After presenting cryptographic tools that are related toppurpose and signal aspects
of multimedia applications in ChaptEl 2, a more formal peoblstatement will be
given in Sectiofi Z15.

1.5 Thesis Outline

This thesis is organized to cover all aspects of the selgui@dtypical applications.
In order to have a clear view on the available cryptograpbidstand existing solu-
tions that address similar problems, we start with an oe@ndhapter. The overview
is followed by a number of chapters each of which concerdrate one particular
multimedia application and presents a complete solutioa.fid4lize the thesis with
a discussion that summarizes what has been achieved antl efatienges require
further research.

Chapter 2
Protection and retrieval of encrypted multimedia content: When
cryptography meets signal processing

A new approach to design privacy preserving multimedia iappbns that merges
cryptography and signal processing requires an undeiisguoflboth disciplines. As
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cryptography is not a familiar subject in signal processiommmunity, we start Chap-
ter[2 with a brief introduction to cryptographic tools thatncbe used in designing
cryptographic protocols and discuss the security requergmin privacy-preserving
signal processing applications. In order to illustratettbe of the cryptographic tools,
we summarize related work in the field for a number of seleafgaications. Chap-
ter[2, which has been published as “Protection and retrighvahcrypted multimedia
content: When cryptography meets signal processing” by KnEA. Piva, S. Katzen-
beisser, R. L. Lagendijk, J. Shokrollahi, G. Neven, and MrrBan Eurasip Journal

on Information Security20 pages, 2007, ends with the formal problem statement of
this thesis.

Chapter 3
Privacy-Preserving Face Recognition

Identification systems based on biometric data have becoaoreasingly important
for commercial use. In this chapter we consider surveibasystems as an example
and investigate its privacy aspects. Such systems playcéatrole in providing se-
curity as they enable authorities to monitor physical lmeet in real time and thus,
they are deployed in vast numbers. It is also possible tosrisurveillance systems
for tracking and locating purposes as they cover almostyavejor highway, street
and square. Therefore, we propose a solution based on grgptac techniques that
can be used to hide the face image of a person captured byrttexaaut still permits
to check if that person has a record in a remote database.rdtexpl we propose is
based on Eigenface algorith|n__[23] that finds the most sirpiggison in the database.
However, instead of an image in the clear, our protocol ascap encrypted image.
This significant change in the setting introduces challsnig¢he detection algorithm
which requires to realize signal processing operations siscprojection, distance
computation, minimum distance computation and threshgldt the encrypted do-
main. The proposed solution for the surveillance systerpaiticular face detection,
can be generalized to many other signal processing applisat This chapter is an
integral copy of “Privacy-preserving face recognition” byErkin, M. Franz, J. Gua-
jardo, S. Katzenbeisser, R. L. Lagendijk, and T. Toft in@tte Symposium on Privacy
Enhanced Technologies (PETpages 235-253, 2009.

Chapter 4
Privacy-Preserving User Clustering in a Social Network

A very common application on the Internet is finding simila&ople in social net-
works. As the purpose of the social networks may change fratingl to finding

people with the same disease, users of such social netwakaot want to reveal
their highly privacy-sensitive data to others and to the&iserprovider. In Chaptdd 4,
we address this problem and propose a way to find similar uisersocial network

without revealing user preferences. The solution is basedidely used K-means
clustering aIgorithmlEO] where people are assigned to tbstrsimilar group. Here,
we propose a method based on secure multiparty computatibnitjues to realize the
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steps of K-means algorithm such as computing distancesetexisting cluster cen-
troids, finding the closest cluster and updating the cedéraihen the user’s data are
encrypted. This chapter is an integral copy of “Privacyspreing user clustering in a
social network” by Z. Erkin, T. Veugen, T. Toft, and R. L. Lagiik in the First IEEE
Workshop on Information Forensics and Security (WIFSp8yes 96—100, 2009.

Chapter 5
Privacy-Preserving Recommender System

Getting recommendations has become very common for ordirdéces such as shop-
ping, traveling, dating, etc. Such services generate regamdations based on user
information which can be obtained from user's demograpfficrmation, preferences
and past actions. As the information collected by the systambe abused by the
service provider, the protection of the data is necessaryChHaptef’b, we propose
a solution for recommender systems that can generate theéedqecommendation
by using encrypted ratings of users. In this system, theeprovider does not get
information on its users whereas the users can get accwedenmendations. This
chapter is an integral copy of “Privacy-preserving ceitesl recommender system”
by Z. Erkin, T. Veugen, T. Toft and R. L. Lagendijk in thREEE Transactions on
Information Forensics and Securjt§in preparation) 2010.

Chapter 6
Anonymous Fingerprinting

Similar to the trust problem between the service providertae users in the applica-
tions presented in the previous chapters, a digital coteyegr may have problems in
trusting the seller. In general, the seller of a digital emprotects himself by embed-
ding a watermark in the content. In this way, he can provewissoship of the content
during a dispute. In order to identify the source of illegatdbution, he can also em-
bed the identity of the buyer. This approach, also known ggefjorinting, has the
disadvantage that the seller possesses the fingerpring diter in clear. Having the
fingerprint of the buyer in clear, the seller can embed it artg digital content without
the buyer knowing it and accuse him for illegal distributlater on. To eliminate this
threat, anonymous fingerprinting protocols were develdpeskd on cryptographic
tools such as homomorphic cryptosystems and zero-knoelpdupf protocols| [16].
However, despite the security and correctness of the peapetocols, the underly-
ing watermarking system is vulnerable even to the simpléstlks. In Chaptdr]6, we
propose to adapt state-of-the-art watermarking schentestragainst several types
of attacks and address the problems of working in the enedygbmain. This chap-
ter is an integral copy of “Anonymous fingerprinting with e QIM watermarking
techniques” by J. P. Prins, Z. Erkin, and R. L. Lagendijk ia Burasip Journal on
Information Security2007:1-7, 2007.
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Chapter 7
Conclusion and Discussions

Considering the multimedia applications and solutions@néed in previous chapters,
in ChaptefY we summarize proposed solutions that combimeagraphy and signal
processing to develop privacy-preserving multimedia iggfibns. Since we are in-
terested in principled solutions for preserving privacynaltimedia applications, this
chapter discusses the common approaches in our proposeidissland connects the
pieces from each chapter to form an understanding on theagreblem of working
in the encrypted domain. We analyze what has been achiegacddiag the problems
stated in Chaptdr] 2 and we conclude discussing which prabigith require further
research.

1.6 Contributions

This thesis focuses on principled solutions to protect tivapy in multimedia appli-
cations and thus, a number of prototypical applicationseveelected to identify the
challenges for processing encrypted signals. Severatibatibns have been made:

« For the first time, to the best our knowledge, the idea of @ssing encrypted
data within the context of signal processing is addressatiaims for better
efficiency in terms of computational complexity and bandwicequirements
such that the proposed solutions can be considered to beyeepin real life
[Ia, ﬂ]. To achieve this goal, the following major challenges addressed:

— Data representation. The applications we consider are from the field of
signal processing and thus, they operate on signal valubeseTsignal
values can be integer values in the beginning like pixeleskf an image
but they mostly become real values after processing. THergth of the
values can also change depending on the operation. Uné&teiyncur-
rently most of the existing homomorphic cryptosystems wamkinteger
values. Thus, we propose a strategy for data represenfatiarorking in
the encrypted domain that copes with real values and pessigansion
in bit length of signals throughout the processing.

— Linear Operations and Homomorphism. The homomorphism property
of the public key cryptosystems is exploited for designimg linear parts
of privacy-preserving multimedia applicatio&ﬁ’é[ﬂﬁ]. In particu-
lar, scaling, projection and correlation computationsraetized by using
homomorphism property given that one of the inputs of the matation
such as scaling factor is known in plain. In such a case, tigned output
can be computed by one party by carrying out multiplicatiand expo-
nentiations on the encrypted data. We address severat lopesations
for different settings and propose methods to realize trezadjpns with
minimum overhead.

— Non-linear operations and MPC.Realizing non-linear operations with
encrypted data is a challenging task as it requires to desigriographic
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protocols based on MPC techniques. |Ih|__[15|,—_|8 9], we proposeneber
of cryptographic protocols for several non-linear operagiincluding dis-
tance computation, thresholding and comparison. The gegpsolutions
differ significantly depending on the setting. In distanoenputation of
two user vectors, for instance, the homomorphism propersuificient
for the computations of the linear parts. For the squared,tdrere is no
interaction needed as it can be computed and sent in therbiegiaf the
protocol @]. However, if the vectors are both encrypted ahduld be
kept secret from the owner of the decryption key, homomarphprop-
erty is not sufficient alone and running a cryptographic geot is neces-
sary E$]. The proposed cryptographic protocols for suclesaahich are
based on homomorphism and MPC techniques, are particuleviioped
for the signal processing applications to achieve betfariefcy in terms
of computational and communication costs compared toiegisblutions
that use generic cryptographic tools.

Data expansion. Since we use semantically secure cryptosystems,
data expansion after encrypting a signal value, which ishharoaller
compared to the key size of the encryption scheme, coreditmtmajor
drawback for the storage and transmission of the encrypaéal dn ad-
dition, we deploy interactive cryptographic protocolsealize non-linear
operations which increase the bandwidth requirementdurthhis prob-
lem is addressed i|E|[9] and an effective solution, namelg gatcking, is
proposed to be used. Instead of encrypting individual $igamples, we
pack a number of them in one encryption and process the paciadater
on. As a consequence, the cryptographic protocols for geicg the en-
crypted data are modified to reflect the change in the coniirucData
packing considerably reduces the communication and catipogal costs
since less number of encryptions are transmitted and psedes

Computational costs. The realization of signal processing operation
the encrypted domain introduces overhead in terms of caatipatpower
and bandwidth requirements compared to the original systienplain.

For instance finding the minimum of a thousand values can loe do
a few microseconds but a similar operation with a thousarmlypied
values takes time in the order of minutes. The challenge ofmizing

the computation power is addressed]IﬂED 8, 9] which focudesigning
the cryptographic protocols that minimize the number ofrapens on the
encrypted data.

the

n
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Two

Protection and Retrieval of Encrypted
Multimedia Content: When Cryptog-
raphy Meets Signal Processing

This chapter, excluding the last section, has been puldisise‘Protection and Re-
trieval of Encrypted Multimedia Content: When Cryptograpiigets Signal Process-
ing”, by Z. Erkin, A. Piva, S. Katzenbeisser, R. L. LagendijkShokrollahi, G. Neven
and M. Barni in theEurasip Journal on Information Securjt2007.
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Abstract

The processing and encryption of multimedia content areeigdly considered se-
guential and independent operations. In certain multimedintent processing sce-
narios, it is however, desirable to carry out processingatliy on encrypted signals.
The field of secure signal processing poses significantexgdls for both signal pro-
cessing and cryptography research; only few ready to gy ifuégrated solutions are
available. This paper first concisely summarizes cryptolgj@primitives used in ex-

isting solutions to processing of encrypted signals, asdutises implications of the
security requirements on these solutions. The paper thetinces to describe two

domains in which secure signal processing has been takes aglzallenge, namely
analysis and retrieval of multimedia content, and multimmembntent protection. In

each domain, state-of-the-art algorithms are describéckllf, the paper discusses
the challenges and open issues in the field of secure signegsing.

2.1 Introduction

In the past few years, the processing of encrypted signaleimerged as a new and
challenging research field. The combination of cryptogi@péchniques and signal
processing is not new. So far, encryption was always corsidas an add-on after
signal manipulations had taken place (see Fifure 2.1).r&tamce, when encrypting
compressed multimedia signals such as audio, images, ded,\irst the multime-
dia signals were compressed using state-of-the-art casipretechniques, and next
encryption of the compressed bit stream using a symmetymasystem took place.
Consequently, the bit stream must be decrypted before tHignmadia signal can be
decompressed. An example of this approach is JPSEC, thesexteof the JIPEG2000
image compression standard. This standard adds seleatiwggtion to JPEG2000 bit
streams in order to provide secure scalable streaming @ngestranscoding [45].

In several application scenarios, however, it is desiréblearry out signal pro-
cessing operations directly on encrypted signals. Suctpproach is calledecure
signal processingencrypted signal processingr signal processing in the encrypted
domain For instance, given an encrypted image, can we calculatm#an value of
the encrypted image pixels? On the one hand, the relevamegrgfng out such signal
manipulations —i.e. the algorithm — directly on encryptieghals is entirely dependent
on the security requirements of the application scenaraeunonsideration. On the
other hand, the particular implementation of the signatessing algorithm will be
determined strongly by the possibilities and impossikditof the cryptosystem em-
ployed. Finally, it is very likely that new requirements fayptosystems will emerge

z(n) Process Channel Process | #(n)

(Compress) Encrypt Decrypt (Decompress)——=

Figure 2.1: Separate processing and encryption of signals.



2.2. Encryption Meets Signal Processing 17

from secure signal processing operations and applicatidasce, secure signal pro-
cessing poses a joint challenge for both the signal praogssid the cryptographic
community.

The security requirements of signal processing in encdyptemains depends
strongly on the considered application. In this survey payetake an application-
oriented view on secure signal processing and give an axgrof published appli-
cations in which the secure processing of signal amplityndigs an important role.
In each application, we show how signal processing algmstland cryptosystems
are brought together. It is not the purpose of the paper toritheseither the signal
processing algorithms or the cryptosystems in great dddaflrather focus on pos-
sibilities, impossibilities, and open issues in combinihg two. The paper includes
many references to literature that contains more elabsigi@l processing algorithms
and cryptosystem solutions for the given application sgend is also crucial to state
that the scenarios in this survey can be implemented momegifiy by using trusted
third entities. However, it is not always easy to find trustatities —with high com-
putational power, and even if one is found, it is not certhat it can be applicable in
these scenarios. Therefore, the trusted entities eithaptlexist or have little role in
discussed scenarios in this paper.

In this paper we will survey applications that directly marlate encrypted sig-
nals. When scanning the literature on secure signal proggsisibecomes imme-
diately clear that there are currently two categories umndgch the secure signal
processing applications and research can be roughly fidmsshamely content re-
trieval and content protection. Although the security objes of these application
categories differ quite strongly, similar signal procaegstonsiderations and crypto-
graphic approaches show up. The common cryptographic fprésiare addressed
in Sectio 2.R. This section also discusses the need forylgientifying the secu-
rity requirements of the signal processing operations iivangscenario. As we will
see, many of the approaches for secure signal processitgsed on homomorphic
encryption, zero-knowledge proof protocols, commitmestiesnes, and multiparty
computation. We will also show that there is ample room fteraktive approaches
to secure signal processing towards the end of Selcfion 2QioR 2.8 surveys secure
signal processing approaches that can be classified agftaetrieval”’, among them
secure clustering and recommendation problems. Sdc#bdigcusses problems of
content protection, such as secure watermark embeddindetadtion. Finally, Sec-
tion[2Z.8 concludes this chapter with the formal problem didin of this thesis.

2.2 Encryption Meets Signal Processing

2.2.1 Introduction

The capability to manipulate signals in their encryptedrfas largely thanks to two

assumptions on the encryption strategies used in all aifgits discussed. In the
first place, encryption is carried out independently onvitllial signal samples. As a
consequence, individual signal samples can be identifi¢gkeirencrypted version of
the signal, allowing for processing of encrypted signale@ample-by-sample basis.
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If we represent a one-dimensional (e.g. audio) sigh#hat consists o/ samples as
X = [$17x27$37~'~7x]\1717xM]T7 (21)

wherez; is the amplitude of thé'” signal sample, then the encrypted versiorXof
using keyk is given as

Ek(X) = [Ek(xl),Ek(:CQ),Ek(xg),...,Ek(xM_l),Ek(xM)]T. (22)

Here the superscript “T” refers to vector transpositiontd\that no explicit measures
are taken to hide the temporal or spatial structure of theasighowever, the use
of sophisticated encryption schemes thatsamantically securéas the one irJES])
achieves this property automatically.

Secondly, onlypublic key cryptosystems are used that have particitanomor-
phic properties. The homomorphic property that these publicdkggtographic sys-
tem provide, will be concisely discussed in Secfion 2. 1X%iinple terms, the homo-
morphic property allows for carrying out additions or mpli¢tations on signal ampli-
tudes in the encrypted domain. Public key systems are basétedntractability of
some computationally complex problems, such as

« the discrete logarithm in finite field with a large (prime)nmoer of elements
(e.g., EIGamal cryptosysteﬂﬂ35]),

« factoring large composite numbers (e.g., RSA cryptow@]),

« deciding if a number is an"* power inZ,,- for large enough composite(e.g.,
Paillier cryptosysten@S]).

It is important to realize that public key cryptographicteyss operate on very large
algebraic structures. This means that signal amplitugélsat were originally repre-
sented in 8 to 16 bits, will require at least 512 or 1024 bitsgignal sample in their
encrypted formE), (z;). This data expansion is usually not emphasized in liteeatur
but this may be an important hurdle for practical applidabibf secure signal pro-
cessing solutions. In some cases however, several signales can be packed into
one encrypted value in order to reduce the size of the whateypted signal by a
linear factor[[6D].

A characteristic of signal amplitudes is that they are usually within a limited
range of values, due to the 8 to 16 bits amplitude representédrmat of sampled
signals. If a deterministic encryption scheme would be psadh signal amplitude
would always give rise to the same encrypted value, makiegsy for an adversary
to infer information about the signal. Consequently, pholigtic encryption has to
be used, where each encryption uses a randomization oririgiridctor such that
even if two signal samples; andx; have the same amplitude, their encrypted values
E,ilz;) and E,i[z;] will be different. Herepk refers to the public key used upon
encrypting the signal amplitudes. Public key cryptosystame constructed such that
the decryption uses only the private kdy, and that decryption does not need the value
of the randomization factor used in the encryption phaskerddryption schemes that
achieve the desired strong notionsefmantic securitgre necessarily probabilistic.
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Cryptosystems operate on (positive) integer values orefalgebraic structures.
Although sampled signal amplitudes are normally represkimt 8 to 16 bit (integer)
values when they are stored, played, or displayed, inteatedignal processing op-
erations often involve non-integer signal amplitudes. kMarounds for non-integer
signal amplitudes may involve scaling signal amplitudethwionstant factors (say
factors of 10 to 1000), but the unavoidable successive tipasaof rounding (quanti-
zation) and normalization by division pose significant drades for being carried out
on encrypted signal amplitudes.

In Sectiol 2.2.R we first discuss four important cryptogiajimitives that are
used in many secure signal processing applications, nametpmorphic encryption,
zero knowledge proof protocols, commitment schemes, anteenultiparty compu-
tation. In Sectioi 2.2]13 we then consider the importancecnftimizing the security
requirements of the signal processing application. It immiggless to speak about
secure signal processing in a particular application ifgbeurity requirements are
not specified. The security requirements as such will alserdene the possibility
or impossibility of applying the cryptographic primitivesAs we will illustrate by
examples—and also in more detail in the following sectionsmeapplication sce-
narios simply cannot be made secure because of the inhafenation leakage by
the signal processing operation, because of the limitatadnhe cryptographic prim-
itives to be used, or because of constraints on the numbemntefactions between
parties involved. Finally, in Sectidn 2.2.4 we briefly disstihe combination of signal
encryption and compression using an approach quite diffém®m the ones discussed
in Sections 3 and 4, namely by exploiting the concept of apdaiith side informa-
tion. We discuss this approach here to emphasize that glthmany of the currently
existing application scenarios are built on the four crgpaphic primitives discussed
in Sectior Z.2.R, there is ample room for entirely differapproaches to secure signal
processing.

2.2.2 Cryptographic Primitives

Homomorphic Cryptosystems

Many signal processing operations are linear in natureearity implies that multi-
plying and adding signal amplitudes are important openaticAt the heart of many
signal processing operations, such as linear filters anelation evaluations, is the
calculation of the inner product between two signXlandY. If both signals (or
segments of the signals) contdih samples, then the inner product is defined as:

Y1
Y2 M
<X, Y >= X'y = [.’171,51327...,56']\4} . : :Zmlyl (23)
: i=1
Ym

This operation can be carried out directly on an encryptgdadiX and plain text
signalY if the encryption system used has the additive homomorpioisguty, as we
will discuss next.
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Formally, a (public key) encryption systeR),(-) and its decryptiorD(-) are
homomorphic if those two functions are maps between the agesgroup with an
operationf; (-) and the encrypted group with an operatiti-), such that ifx andy
are taken from the message space of the encryption schenmavee

N(@y) = Dsk(fo(Epr(2), Epr(y)))- (2.4)

For secure signal processing, multiplicative and additeenomorphisms are impor-
tant. Tablé€ 211 gives an overview of encryption systems adltlitive or multiplicative
homomorphism. Note that those homomorphic operations [@ukea to a modular
domain (i.e., either in a finite field or in a ririg, )—thus, both addition and multipli-
cation are taken modulo some fixed value. For signal pracgsgiplications, which
usually require integer addition and multiplication, ittieis essential to choose the
message space of the encryption scheme large enough seéhifdws due to modu-
lar arithmetic are avoided when operations on encrypteal al& performed.

Another important consideration is the representatioheftdividual signal sam-
ples. As encryption schemes usually operate in finite modidemains (and all mes-
sages to be encrypted must be represented in this domainjppimg is required
which quantizes real-valued signal amplitudes and tréeskhe signal samples &f
into a vector of modular numbers. In addition to the requieatithat the computa-
tions must not overflow, special care must be taken to reptesgative samples in a
way which is compatible with the homomorphic operation kteby the cryptosys-
tem. For the latter problem, depending on the algebraicttre of the cipher, one
may either encode the negative value by the modular inverse—! in the underly-
ing algebra of the message space or by avoiding negative ensrehtirely by using a
constant additive shift.

In the context of the above inner product example, we reguiradditively homo-
morphic scheme (see Talile2.1). Hengeis the addition, and; is a multiplication:

r+y = Dsp(Epk(z) - Epp(y)), (2.5)
or equivalently:
Ep(z+y) = Ep(@)- Ep(y). (2.6)
Note that the latter equation also implies that
Epi(c-x) = (Epr(x))” 2.7)

for every integer constamrt Thus, every additively homomorphic cryptosystem also
allows to multiply an encrypted value with a constant avdéaor known as clear text.

The Paillier cryptosystenEES] provides the required horaguhism, if both ad-
dition and multiplication are considered as modular. Thergstion of a message:
under a Paillier cryptosystem is defined as

Ex(m) = ¢™r" mod n?, (2.8)

wheren = pq, p andgq are large prime numbey, € Z7 , is a generator whose order is
a multiple ofn, andr € Z} is a random number (blinding factor). We then easily see
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that
Ep()Bpi(y) = (9°r7)(9¥ry) mod n?
= ¢"t(ryry)" mod n?
= Eplz+y). (2.9)

Applying the additive homomorphic property of the Paill@mcryption system, we
can evaluate Eql(Z.3) under the assumption ¥aé& an encrypted signal and is a
plain text signal:

M M M
Epe <X, Y > = Ep (Z 931%) = HEpk(l”iyz‘) = H Epi(2:)"(2.10)
i=1 i=1

i=1

Here we implicitly assume that;, y; are represented as integers in the message space
of the Paillier cryptosystem, i.ew;, y; € Z,. Equation[[2.ID) essentially shows that
it is possible to compute an inner product directly in case ohthe two vectors
is encrypted. One takes the encrypted samplgs«x;), raises them to the power
of y; and multiplies all obtained values. Obviously, the resglthumber itself is
also in encrypted form. To carry out further useful signalgassing operations on
the encrypted result, for instance to compare it to a thidskamother cryptographic
primitive is needed, namely zero knowledge proof protqostsch is discussed in the
next section.

In the paper we focus mainly on public-key encryption schenas almost all
homomorphic encryption schemes belong to this family. Tolble exception is
the one-time pad (and derived stream ciphers), where mesdagen from a finite
group are blinded by a sequence of uniformly random groumetgs. Despite its
computationally efficient encryption and decryption pis®s, the application of a
one-time pad usually raises serious problems with regakeytalistribution and man-
agement. Nevertheless, it may be used to temporarily bfitefiediate values in
larger communication protocols. Finally, it should be mbtkat some recent work
in cryptography (like searchable encrypti@[ll] and oqfeserving encryptioﬂﬂ[4])
may also yield alternative ways for the encryption of siggahples. However, these
approaches have not yet been studied in the context of medigion.

To conclude this section, we observe that directly comjguitire inner product of
two encrypted signals is not possible since this would requiceyptographic sys-
tem that has both multiplicative and additive (i.e., algét)rhomomorphism. Recent
proposals in that direction liké [27, 28] were later provenbe insecure [77, 17].
Therefore, ngrovably secureryptographic system with these properties is known
to date. The construction of an algebraic privacy homomismlremains an open
problem. Readers can refer @[32] for more details on hontphio cryptosystems.

Zero-Knowledge Proof Protocols

Zero-knowledge protocols are used to prove a certain s&tear condition to a veri-
fier, without revealing any “knowledge” to the verifier extépe fact that the assertion
is valid [@]. As a simple example, consider the case whezgtbver Peggy claims
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Table 2.1: Some (probabilistic) encryption systems anit ttmomorphisms.

Encryption system fi(,) fal(ey )

Multiplicatively Homomorphic EI-Gamal [35] multiplication | multiplication
Additively Homomorphic El-Gamal [72] addition multiplication
Goldwasser-Micali [40] XOR multiplication
Benaloh [10] addition multiplication
Naccache-Stern [56] addition multiplication
Okamoto-Uchiyama [57] addition multiplication
Paillier [58] addition multiplication
Damgaard-Jurik [26] addition multiplication

to have a way of factorizing large numbers. The verifier \fietdll send her a large
number and Peggy will send back the factors. Successfurfaation of several large
integers will decrease Victor’s doubt in the truth of Peggslaim. At the same time
Victor will learn “no knowledge of the actual factorizatiomethod”.

Although simple, the example shows an important propertyesb-knowledge
protocol proofs, namely that they are interactive in natufée interaction should
be such that with increasing number of “rounds”, the prolitshaf an adversary to
successfully prove an invalid claim decreases signifigar@in the other hand, non-
interactive protocols (based on the random oracle modst) db exist. A formal
definition of interactive and non-interactive proof sysserauch as zero-knowledge
protocols, falls outside the scope of this paper, but carbed for instance ir@S].

As an example for a commonly used zero-knowledge proof,idenghe proof of
knowing the discrete logarithm of an element, to the basey in a finite field [71].
Having knowledge of discrete logarithimis of interest in some applications since if

y = ¢° mod p, (2.11)

then giverp (a large prime numbery, andy the calculation of the logarithmis com-
putationally infeasible. If Peggy (the prover) claims sm@ws the answer (i.e., the
value ofz), she can convince Victor (the verifier) of this knowledgehout reveal-
ing the value ofr by the following zero-knowledge protocol. Peggy picks ad@mn
numberr € Z,, and computes = ¢" mod p. She then sendsto Victor. He picks a
random challenge € Z,, and sends this to Peggy. She computesr — cx mod p
and sends this to Victor. He accepts Peggy’s knowledge ibfg®y© = ¢, since if
Peggy indeed used the correct logarithnm calculating the value of, we have

g’y modp = ¢ " “g") modp=g¢ =t mod p. (2.12)

In literature, many different zero-knowledge proofs exite mention a number
of them that are frequently used in secure signal processing

« proof that an encrypted number is non-nega@ [53];

« proof that shows that an encrypted number lies in a centaémal [12];
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 proof that the prover knows the plaintextcorresponding to the encryption
E() [33];

. proofsEtgat committed values (see Secfion 2.2.2) satisftamn algebraic rela-
tions [13].

In zero-knowledge protocols, it is sometimes necessarthiprover to commit to a
particular integer or bit value. Commitment schemes areudsed in the next section.

Commitment Schemes

An integer or bit commitment scheme is a method that allowseAio commit to a
value while keeping it hidden from Bob, and while also presey Alice’s ability to
reveal the committed value later to Bob. A useful way to Vigeaa commitment
scheme is to think of Alice as putting the value in a locked,kmnd giving the box
to Bob. The value in the box is hidden from Bob, who cannot dperlock (without
the help of Alice), but since Bob has the box, the value insalenot be changed by
Alice; hence, Alice is “committed” to this value. At a lataiage, Alice can “open”
the box and reveal its content to Bob.

Commitment schemes can be built in a variety of ways. As amei@ we review
a well-known commitment scheme due to Pederseh [61]. We fixlange primes
p and g such thatg|(p — 1) and a generatoy of the subgroup of ordeg of Z;.
Furthermore, we set = ¢ mod p for some random secret The valuesp, ¢,

g andh are the public parameters of the commitment scheme. To cbtaraivalue
m, Alice chooses a random valuec Z, and computes the commitment= g™ h"
mod p. To open the commitment, Alice sendsandr to Bob, who verifies that the
commitmentc received previously indeed satisfies= ¢™h” mod p. The scheme is
hiding due to the random blinding factey furthermore, it is binding unless Alice is
able to compute discrete logarithms.

For use in signal processing applications, commitment reelsethat are addi-
tively homomorphic are of specific importance. As with honoophic public key
encryption schemes, knowledge of two commitments allovestoicompute—without
opening—a commitment of the sum of the two committed values.eample, the
above mentioned Pedersen commitment satisfies this pyopgixten two commit-
mentsc; = ¢™*h™ mod p andec; = ¢™2h™ mod p of the numbersn; andms, a
commitmentc = g™ t™m2p"1 T2 mod p of my + mo can be computed by multiply-
ing the commitmentse = ¢;c; mod p. Note that the commitmentcan be opened
by providing the valuesi; + mo andr; + 2. Again, the homomorphic property only
supports additions. However, there are situations whesenivt possible to prove the
relation by mere additive homomorphism as in proving thatramitted value is the
square of the value of another commitment. In such circumests, zero-knowledge
proofs can be used. In this case, the party which possessepéhning information of
the commitments computes a commitment of the desired rdmuits it to the other
party and proves in zero-knowledge that the commitment wiagly computed in the
correct manner. Among others, such zero-knowledge proads f@r all polynomial
relations between committed values|[13].
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Secure Multiparty Computation

The goal of SMC is to evaluate a public functigfe:("), (), ... 2(™)) based on the
secretinputs:(),i = 1,2,..., m of m users, such that the users learn nothing except
their own input and the final result. A simple example, calMe’s Millionaire’s
Problem, is the comparison of two (secret) numbers in omleletermine ifz(!) >
), In this case the parties involved will only learn if theirmber is the largest, but
nothing more than that.

There is a large body of literature on secure multiparty catajion; for exam-
ple, it is known l[__Y_b] that any (computable) function can balesated securely in the
multiparty setting by using a general circuit-based cartsion. However, the general
constructions usually require a large number of interactaunds and a huge com-
munication complexity. For practical applications in theldiof distributed voting,
private bidding and auctions, and private informationiegtl, dedicated lightweight
multiparty protocols have been developed. An example agleto signal processing
application is the multiparty computation known as Bitrelpietr finds the encryption
of each bit in the binary representation of a number whoseyption under an ad-
ditive homomorphic cryptosystem is giv[73]. We refer thader to] for an
extensive summary of secure multiparty computations ]jf[jr a brief introduc-
tion.

2.2.3 Importance of Security Requirements

Although the cryptographic primitives that we discussedhia previous section are
useful for building secure signal processing solutionis, inportant to realize that in
each application the security requirements have to be magdieieright from the start.
Without wishing to turn to formal definition, we choose to iate the importance of
what to expect from secure signal processing with three Isipgt illustrative two-
party computation examples.

The first simple example is the encryption of a (say audia)ai that contains
M samples. Due to the sample-by-sample encryption strategh@vn in Eq.[(2]2),
the encrypted signdl,, (X) will also contain}M encrypted values. Hence, thizeM
of the plain text signal cannot be hidden by the approach&ssed in secure signal
processing surveyed in this paper.

In the second example, we consider the linear filtering okthralX. In a (FIR)
linear filter, the relation between the input signal amplésX and output signal am-
plitudesY is entirely determined by the impulse respoltag, h1, . . ., h,-) through
the following convolution equation:

v = hori+hizi1+...+hewi, = Z hpi—p- (213)
k=0

Let us assume that we wish to compute this convolution in arseway. The first
party, Alice, has the signaX and the second party, Bob, has the impulse response
(ho, h1,...,h,). Alice wishes to carry out the convolution (2]113) using Bolnear
filter. However, both Bob and Alice wish to keep secret thaitad i.e., the impulse
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response and the input signal, respectively. Three diffesetups can now be envi-
sioned.

« Alice encrypts the signaX under an additive homomorphic cryptosystem and
sends the encrypted signal to Bob. Bob then evaluates thvelcion (Z.13) on
the encrypted signal as follows:

EPkA(yi) = EpkA (thmik>
k=0

11 Evka (haizi) = T Epra(zice)™ . (2.14)
k=0 k=0

Notice that the additive homomorphic property is used inaheve equation
and that indeed individually encrypted signal samples khba available to
Bob. Also notice that the above evaluation is only possibleoth X and
(ho, h1,...,h,) are integer-valued, which is actually quite unlikely in gtiee.
After computing Eq.[(Z14), Bob sends the result back to&licho decrypts
the signal using her private key to obtain the re3dltIn this setup Bob does
not learn the output signaf.

» Bob encrypts hisimpulse respon@g, i1, . . ., k) under a homomorphic cryp-
tosystem and sends the result to Alice. Alice then evaludesonvolution
(2.13) using the encrypted impulse response as follows:

Epes (i) = Epks (thxzk>
k=0

= |1 Boks(ioi) = [[ Bprn (hi)™*.  (2.15)
k=0 k=0

Alice then sends the result to Bob, who decrypts to obtairothiput signalY'.
In this solution Bob learns the output sigriél

« Alice and Bob engage in a formal multiparty protocol, whire function to be
evaluatedf (z1,xa,...,2ar, ho, h1, ..., h,) is the convolution equation, Alice
holds the signal values; and Bob the impulse responsg as secret inputs.
Both parties will learn the resulting output sigriél

Unfortunately, none of the above three solutions reallyig®s a solution to the se-
cure computation of a convolution due to inherent algorifinoperties. For instance,
in the first setup, Alice could send Bob a signal that consitsl-zero values and a
single “one” value (a so-called “impulse signal”). Afteradgpting the resulE,;, , (v;:)
that she obtains from Bob, it is easy to see f¥ais equal to(hg, h1, ..., h,.), hence
Bob’s impulse response is subsequently known to Alice. [@maittacks can be for-
mulated for the other two cases. In fact, even for an arlyitirgsut both parties can
learn the other’s input by a well-known signal processirgcpdure known as “decon-
volution”. In conclusion, although in some cases there naw Ineed for the secure
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evaluation of convolutions, the inherent properties ofdlgmrithm make secure com-
puting in a two-party scenario meaningless. (Neverthetbssprotocols have value if
used as building blocks in a large application where theutgignalY is not revealed
to the attacker.)

The third and final example is to threshold a signal’'s (weightmean value in a
secure way. The (secure) mean value computation is eqnivi@le¢he (secure) com-
putation of the inner product Eq.(2.3), wikithe input signal an& the weights that
define how the mean value is calculated. In the most simple, ves havey;, = 1
for all 4, but other definitions are quite common. Let use assume tlied Avishes
Bob to determine if the signal’s mean value is “critical’r fostance above a certain
threshold valu€,., without revealingX to Bob. Bob on the other hand does not want
to reveal his expert knowledge, namely the weighitsand the threshold’,.. Two
possible solutions to this secure decision problem aredlt@afing.

 Use secure multiparty computation, where the funcjién is a combination of
the inner product and threshold comparison. Both partilsowiy learn if the
mean value is critical or not.

« Alice sends Bob the sign& under additively homomorphic encryption. Bob
securely evaluates the inner product using Eg. (2.10).rAsdfteryptingZ’, us-
ing Alice’s public key, Bob computes the (encrypted versibithe) difference
between the computed mean and threshiold Bob sends the result to Alice,
who decrypts the result using her secret key and checks fahe is larger or
smaller than zero.

Although the operations performed are similar to the se@@inple, in this exam-
ple the processing is secure since Bob learns little abdaeAlsignal and Alice will
learn little about the Bob’s expert knowledge. In fact, ie fiirst implementation
the entire signal processing operation is ultimately cosédd into a single bit of in-
formation; the second implementation leaks more inforomthamely the distance
between the correlation value from the threshold. In boesathe result represents
a high information abstraction level, which is insufficidont launching successful
signal processing-based attacks. In contrast, in the elkabgsed on Eq. [(2.13)
the signal processing operation led to an enormous amounfasfmation—the en-
tire output signal—to be available to either parties, malgigmal processing-based
attacks quite easy.

As we will see in Sections 2.3 and .4, many of the two-partpse signal pro-
cessing problems eventually include an information cosdgon step, such as (in the
most extreme case) a binary decision. We postulate thatvimiparty linear signal
processing operations in which the amount of plain textrimition after process-
ing is in the same order of magnitude as before processingecure solutions exist
purely based on the cryptographic primitives discusselemtevious section, due to
inherent properties of the signal processing problems la@deiated application sce-
nario. For that reason, entirely other approaches to sesiginal processing are also
of interest. Although few results can be found in literatareapproaches not using
homomorphic encryption, zero-knowledge proofs, and mpaity computation proto-
cols, the approach discussed in the next section may wel shpossible direction
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for future developments.

2.2.4 Compression of Encrypted Signals

When transmitting signals that contain redundancy over sacre and bandwidth
constrained channel, it is customary to first compress ag ¢hncrypt the signal. Us-
ing the principles of coding with side information, it is hever also possible to inter-
change the order of (lossless) compression and encryporio compresencrypted
signals @4]. The concept of swapping the order of compoasand encryption is
illustrated in Figur€2]2. A signal from the message sowsdist encrypted and then
compressed. The compressor doeshave access to the secret key used in the en-
cryption. At the decoder, decompression and decryptiopar®rmed jointly. From
classical information theory, it would seem that only mialrgain could be obtained
as the encrypted signal has maximal entropy, i.e. no redwayda left after encryp-
tion. However, the decoder can use the cryptographic keetmde and decryphe
compressed and encrypted bit stream. This brings opptigsiior efficient compres-
sion of encrypted signals based on principle of coding wiille information. Inl[44],
it was shown that neither compression performance nor ggaged to be negatively
impacted under some reasonable conditions.

Eavesdropper

Reconstructed
Source

Message Source . Joint decompression
— " Encryption Compressi . and decryption
Public channel

Secure channel

Key

Figure 2.2: Compression of an encrypted signal, from [44].

In source coding with side information, the sigdals coded under the assumption
that the decoder—but not the encoder—has statistically dipeerinformationy,
called the side information, available. In conventionaliog scenarios, the encoder
would code the difference signXl — Y in some efficient way, but in source coding
with side information this is impossible since we assumé Mas only known at
the decoder. In the Slepian-Wolf coding thedryl [74], thec@lLiobservation is that
the side informatiorl is regarded as a degraded versioXofThe degradations are
modeled as “noise” on the “virtual channel” betweBnandY. The signalX can
then be recovered frofii by the decoder if sufficient error correcting information is
transmitted over the channel. The required bit rate and atr@d@entropy are related as
R > H(X]|Y). This shows that, at least theoretically, there is no logmpression
efficiency since the lower bounH (X|Y) is identical to the scenario in whic¥ is
available at the encoder. Extension of the Slepian-Wolbthexists for lossy source
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coding @]. In all practical cases of interests, the infation bits that are transmitted
over the channel are parity bits or syndromes of channelngodiethods such as
Hamming, Turbo or LDPC codes.

In the scheme depicted in Figure12.2 we have a similar saeiaarin the above
source coding with side information case. If we consideraherypted signaky, (X)
at the input of the encoder, then we see that the decoder baseth: available,
representing the “statistically dependent side infororéti Hence, according to the
Slepian-Wolf viewpoint, the encrypted signaj (X) can be compressed to a rate that
is the same as if the keywould be available during the source encoding process, that
is, R > H(E,(X)|k) = H(X). This clearly says that the (lossless) coding of the
encrypted signakEy, (X) should be possible with the same efficiency as the (lossless)
coding of X. Hence, using the side information k&ythe decoder can recover first
E(X) from the compressed channel bit stream and subsequentigel&g (X) into
X.

A simple implementation of the above concept for a binarmai&X uses a pseudo
randomly generated key. The keyis in this case a binary sign& of the same
dimensionM as the signaK. The encrypted signal is computed as follows:

Ey(X) = XeK,

The encrypted signdl, (X) is now input to a channel coding strategy, for instance a
Hamming coding. The strength of the Hamming code is depérutetne dependency
betweenF) (X) and the side informatiolK at the decoder. This strength obviously
depends solely on the properties of the original sigialhis does, however, require
the message source to inform the source encoder about traped (X), which
represents a small leak of information. The encoder caiesilparity check bits over
binary vectors of some length created by concatenating bits of the encrypted
signal E (X), and sendsnly these parity check bite the receiver.

The decoder recovers the encrypted signal by first appemdikghe parity check
bits, and then error correcting the resulting bit pattettme $uccess of this error correc-
tion step depends on the strength of the Hamming code, buéasoned, this strength
has been chosen sufficiently with regards to the “errorKion the decoding side.
Notice that in this particular setup the “errors” repregeetbits of the original signal
X. If the error correction step is successful, the decodeiobf), (X), from which
the decryption can straightforwardly take place:

X = E((X) oK,
xr; = Ek(fliz)@k‘l 1=1,2,..., M. (2.17)

The above example is too simple for any practical scenaria foumber of rea-
sons. In the first place, it uses only binary data, for instdritplanes. More efficient
coding can be obtained if the dependencies between bit plameconsidered. This
effectively requires an extension of the bit plane coding ancryption approach to
coding and encryption of symbol values. Secondly, the dectzdtks a model of the
dependencies iX. Soft decoders for Turbo or LDPC codes can exploit such ngessa



2.3. Analysis and Retrieval of Content 29

source models, yielding improved performance. Finallg ¢bding strategy is loss-
less. For most continuous or multi-level message souroehb, as audio, images, and
video, lossy compression is desirable.

2.3 Analysis and Retrieval of Content

In the today’s society, huge quantities of personal datagatieered from people and
stored in databases for various purposes ranging from mlegisearches to online
personalized applications. Sometimes providers of theséces may want to com-
bine their data for research purposes. A classical exarapleione where two med-
ical institutions wish to perform joint research on the umif their patients data.
Privacy issues are important in this scenario because #ieuitions need to preserve
their private data during their cooperation. Lindell andkgis EIZ], and Agrawal and
Srikant E$] proposed the notion of privacy preserving dataimng, meaning the pos-
sibility to perform data analysis from distributed datahasnder some privacy con-
straints. Privacy preserving data mini@[@, 46,19, 7@ Islevith mutual untrusted
parties that on the one hand wish to cooperate to achieve moargoal but, on the
other hand, are not willing to disclose their knowledge toheather.

There are several solutions that cope with exact matchinigiafin a secure way.
However, it is more common in signal processing to perforex@ct matching, i.e.
learning the distance between two signal values, ratherékact matching. Consider
two signal values:;; andz.. Computing the distance between them or checking if the
distance is within a threshold is important:

|LL‘1 — LB2| < €. (218)

This comparison ofuzzy matchingan be used in a variety of ways in signal process-
ing. One example is quantizing data which is of crucial inb@oce for multimedia
compression schemes. However, considering that thesal siglues are encrypted
—thus the ordering between them is totally destroyed, ttermi any efficient way
known tofuzzycompare two values.

In the following sections, we give a summary of techniques thcus on extract-
ing some information from protected datasets. Selectatiestunostly use homomor-
phic encryption, zero-knowledge proofs and sometimesipautly computations. As
we will see, most solutions still require substantial imgnments in communication
and computation efficiency in order to make them applicablpractice. Therefore,
the last section addresses a different approach that usesméans of preserving pri-
vacy to show that further research on combining signal siog and cryptography
may result in new approaches rather than using encryptioenses and protocols.

2.3.1 Clustering

Clustering is a well-studied combinatorial problem in daiaing @]. It deals with
finding a structure in a collection of unlabeled data. Onehefliasic algorithms of
clustering is thel{-means algorithm that partitions a data set iAtalusters with a
minimum error. We review thé{-means algorithm and its necessary computations
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such as distance computation and finding the cluster centamid show that cryp-
tographic protocols can be used to provide user’s privacglustering for certain
scenarios.

K-means Clustering Algorithm

The K-means clustering algorithm partitions a datdsét of “objects” such as signal
values or features thereof, int@ disjoint subsets, called clusters. Each cluster is
represented by its center which is the centroid of all oljectthat subset.

Algorithm 1 The K-means clustering algorithm
1: SelectK random objects representing theinitial centroid of the clusters.
2: Assign each object to the cluster with the nearest centroid.
3: Recalculate the centroids for each cluster.
4. Repeat step 2 and 3 until centroids do not change or a centa@sitold achieved.

@ Cluster centers

[ ] Objects

Figure 2.3: Clustered dataset. Each object is a point in tden2nsional space.
K-means clustering algorithm assigns each object to theeclugith the smallest
distance.

As shown in Algorithn{ll, thek-means algorithm is an iterative procedure that
refines the cluster centroids until a predefined conditioreé&hed. The algorithm
first choosed< random points as the cluster centroids in the datBdetand assigns
the objects to the closest cluster centroid. Then, the elwsntroid is re-computed
with recently assigned objects. When the iterative proaedegiches the termination
condition, each data object is assigned to the closesecl(Fgurd 2.8). Thus to carry
out the K -means algorithm, the following quantities needs to be adeth

« the cluster centroid, or the mean of the data objects indloater,
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« the distance between an object and the cluster centroid,

* the termination condition which is a distance measuremmemipared to a thresh-
old.

In the following section we describe a secure protocol thaties out secur&’-means
algorithm on protected data objects.

SecureK-means Clustering Algorithm

Consider the scenario in which Alice and Bob want to applyheneans algorithm
on their joint datasets as shown in Figlirel 2.4, but at the saneethey want to keep
their own dataset private. Jagannatledml. proposed a solution for this scenario in

[42].

RN

m Attribute names

|:| Data owned by Alice

Data owned by Bob

Figure 2.4: Shared dataset on whighmeans algorithm is run.

In the proposed method, both Alice and Bob get the final oubptithe values
computed in the intermediate steps are unknown to the batlepa Therefore, the
intermediate values such as cluster centroids are unijoshdred between Alice and
Bob in such a way that for a valug Alice gets a random shaseand Bob gets another
random sharé where(a + b) mod N = x and N is the size of the field in which all
operations take place. Alice and Bob keep their privateeshaf the dataset secret.

The securei\-means clustering algorithm is separated into subpratoatiere
Alice and Bob computes the followings (AlgoritHrh 2):

1. Distance measurement and finding the closest clustemhe distance between
each object and cluster centroid is computed by running@eecalar product
protocol by Goethalst al. [@]. The closest cluster centroid is determined by
running Yao’s circuit evaluation protocdl [78] with the skel data of Alice and
Bob.
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2. New cluster centroid: The new cluster centroid requires to determine an aver-
age computation over shared values of Alice and Bob. Thistiom of the form
atb can be computed by applying Yao’s protocol where Alice knavasidm

m—+n

and Bob know$ andn.

3. Termination condition: The termination condition of the algorithm is com-
puted by running the Yao’s circuit evaluation proto [78]

The squared distance between an ob}éct= (x; 1, ..., x; ) and a cluster centroid
15 is given by the following equation:

(dist(X;, 1)) = (w31 — pj1)* + (@i2 — pj2)” + oo + (winr — pym)?. (2.19)

Considering that the clusters centroids are shared betadkemand Bob, Eq.[(Z.19)
can be written as,

(dist(X, 115))* = (w1 — (,Uﬁl + Uf1))2 +oo (T — (Mﬁ]\/l + NEM)Va (2.20)

Whereuj‘ is Alice’s share anth is Bob’s share such that thjgh-cluster centroid is
Wi = uj‘ + 1. Then, the Eq[{Z.20) can be written as,

M M M M
; A A
(dist(Xy, 11))* = > afp+ Y (i )>+ > (i) +2>  nihnd
k=1 k=1 k=1 k=1

M M
- 2 ufhain =2 Tkl (2.21)
k=1 k=1

Equation [[Z.211) can be computed by Alice and Bob jointly. Ae first term of the
equation is shared between them, Alice computes the sutmgd@oents of her share
while Bob computes the rest of the components. The secondaed third term can
be computed by Alice and Bob individually, and the rest oftdrens are computed by
running a secure scalar product protocol between Alice aotg Biuch similar to the
evaluation of Eq.[(Z2]3) via the secure form of Hg. (2.10) cAlfirst encrypts her data
Eprs (115) = (Epry (151), - - - Epiea (u2))) @and sends it to Bob who computes the
scalar product of this data with his own by using the additigenomorphic property
of the encryption scheme as follows:

B B B
Eppes (1) = (Bppea (50" -, Ephe (185,0)5). (2.22)

Then, multiplying the encrypted components gives the gutery scalar product of
Alice’s and Bob’s data,

M M
B
Epka <Z “ﬁk“fk) =TT Eora(ui) . (2.23)
k=1

k=1
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The computed distances between the objects and the clesioids can later be the
input to the Yao’s circuit evaluation protoc@?S] in white closest cluster centroid
is determined. We refer readers|tol[36] and [78] for furthetads on this part.

Once the distances and the closest clusters to the objeattearmined, each ob-
jectis labeled with the nearest cluster index. At the endhohéteration it is necessary
to compute the new cluster centroids. Alice computes the alutine corresponding
coordinates of all objeat; and the number of objects; within each of thei clusters
for j,1 < j < M. As shown in Figur&2]4, Alice has only some of the attributes
the objects, thus she treats these missing values as zelal8w applies the same
procedure and determines the sum of coordinagtesid the number of objects; in
the clusters. Given;, t;, n; andm;, the jth component of théth cluster is,

Sj +tj

—_— 2.24
e (2.24)

pij =

Since there are only four values, this equation can be caedpefficiently by using
Yao's circuit evaluation protocol [78] with Alice’s sharegandn; and Bob’s shares
tj andmj.

In the last step of thé&(-means algorithm, the iteration is terminated if there is no
further improvement between the previous and currentetusgintroids. In order to do
that, a distance is computed between the previous and tatuster centroids. This is
done in the same way as computing distances between an abgkatcluster centroid
but in addition, this distance is compared to a thresholdesal Considering that the
cluster centroids are shared between Alice and Bob, thét ifsiihe computation of
the squared distance of cluster centroids for ttleandk + 1th iterations is again
random shares for Alice and Bob.

(dist(p M 4 p 2R i) = o 4 5, (2.25)

where« and § are the shares of Alice and Bob. Alice and Bob then apply Yao's
protocol on theirK-length vectorgas, ..., ax) and (34, ..., Bx) to check ifa; +
B; <eforl <j<K.

Algorithm 2 Privacy preservind<-means clustering algorithm.
Randomly seleck objects from the datasél B as initial cluster centroids
Randomly share the cluster centroid between Alice and Bob
repeat
for all objectd;, in datasetD B do
Run the secure closest cluster protocol
Assign tody, to the closest cluster
end for
Alice and Bob computes the random shares for the new centoditie clusters.
until cluster centroids are close to each other with an errer of
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2.3.2 Recommender Systems

Recommender services play an important role in applicatlie e-commerce and
direct recommendations for multimedia contents. TheseaEs attempt to predict
items that a user may be interested in by implementing a kynaessing algorithm
known ascollaborative filteringon user preferences to find similar users that share
the same taste (likes or dislikes). Once similar users amediothis information can

be used in variety ways such as recommending restauranéds hioooks, audio and
video etc.

Recommender systems store user data, also known as preefgré@nservers, and
the collaborative filtering algorithms work on these stopgdferences to generate
recommendations. The amount of data collected from eaahdirgetly affects the
accuracy of the predictions. There are two concerns incttig information from the
users in such systems. First, in an ordinary system theria #éne order of thousands
items, so that it is not realistic for the users to rate alhefh. Second, users would not
like to reveal too much privacy sensitive information thabh de used to track them.

The first problem, also known as the sparseness problemasetst is addressed
for collaborative filtering algorithms iIJ[]__[$ E?O]. Thec®nd problem on user pri-
vacy is of interest to this survey paper since users tend tgisie more information
about themselves for privacy concerns and yet they expe aczurate recommen-
dations that fit their taste. This tradeoff between privagg accuracy leads us to an
entirely new perspective on recommender systems. Namaly,can privacy of the
users be protected in recommender systems without loostngtich accuracy?

We describe two solutions that address the problem of prieggprivacy of users
in recommender systems. In the first approach, user priveapyatected by means
of encryption and the recommendations are still generayegroicessing these en-
crypted preference values. In the second approach, prajebe privacy of the users
is possible without encryption but by means of perturbatibuser preference data.

Recommendations by Partial SVD on Encrypted Preferences

Canny Eh] addresses the user privacy problem in recommagdtems and proposes
to encrypt user preferences. Assume that the recommenstensyapplies a collabo-
rative filtering algorithm on a matri® of users versus item ratings. Each row of this
matrix represents the corresponding user’s taste for thregmonding items. Canny
proposes to use a collaborative filtering algorithm basedimension reduction dP.

In this way, an approximation matrix of the original prefece matrix is obtained in a
lower dimension that best represents the user taste fovdralbsystem. When a new
user enters the system, the recommendations are geneyatieadby re-projecting the
user preference vector, which has many unrated items, lbg@pproximation matrix.
As a result, a new vector will be obtained which contains apipnated values for the
unrated itedeDA].

The ratings in recommender systems are usually integer etswhithin a small
range and items that are not rated are usually assigneddo eprotect the privacy
of the users, the user preferences ve®oe [z1, zs,. .., x| IS encrypted individ-
ually asE,;(X). To reduce the dimension of the preference ma®igingular value
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decomposition (SVD) is an option. The SVD allolsto be written as:
P = UDVT, (2.26)

where the columns dfJ are the left singular vectorE) is a diagonal matrix containing
the singular values, and” has rows that are the right singular vectors.

Once the SVD of the preference matiis computed, an approximation matrix
in a lower dimension subspace can be computed easily. Camyptlie SVD onP
that contains encrypted user preferences is, however, coonglicated.

Computing the decomposition of the users’ preference madquires sums of
products of vectors. If the preference vector of each usenypted, there is no
efficient way of computing sums of products of vectors simigwould require an al-
gebraic homomaorphic cryptosystem. Using secure multiygarmputation protocols
on this complex function is costly considering the size @f ¢tircuit necessary for the
complex operation.

Instead of straightforward computation of SVD, Can@ [1Adpgosed to use an
iterative approximation algorithm to obtain a partial deposition of the user pref-
erence matrix. The conjugate gradient algorithm is antitergrocedure consisting
merely ofadditionsof vectors whichcanbe done under homomorphically encrypted
user preference vectors. Each iteration in the protocohlmasteps: Users compute
1) their contribution to the current gradient and 2) scalaargities for the optimiza-
tion of the gradient. Both steps require only additions aftees thus we only explain
the first step.

For the first step of the iterations each user computes hisibotion G, to the
current gradienG by the following equation:

Gr = AX]X,(I-ATA), (2.27)

where matrixA is the approximation of the preference mafftxand it is initialized

as a random matrix before the protocol starts. Each useygischis own gradient
vectorGy, with the public key of the user group by following the Pedais¢hreshold

schemelEZ] that uses El Gamal cryptosystem which is modifide additively ho-
momorphic. All contributions from the users are then addetbuform the encrypted
gradientE,; (G) by using the additive homomorphic property of the crypttesys

Epi(G) = Epi < > Gk.) = [ Ewr(G). (2.28)
keusers keusers

This resulting vectoE,; (G) is then jointly decrypted and used to update the approx-

imated matrixA which is publicly known and used to compute the new gradient f

the next iteration.

Although the protocol is based on addition of vectors, derowledge proof pro-
tocols play an important role. The validity of the user irgute. the encrypted pref-
erence vector elements lie in a certain range, are verifiezebhy-knowledge proofs.
Moreover, the partial encryption results from the usersadse proved valid by run-
ning a zero-knowledge proof protocol. Both group of zerowkledge proofs are
checked by a subgroup of users of whose majority is necefsattye validation.
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Canny HB] also applies this approach to a different coltatiee filtering method,
namely expectation maximization (EM) based factor analysigain this algorithm
involves simple iterative operations that can be implemenity vector additions. In
both recommender system solutions, multiple iteratiomsreacessary for the algo-
rithm to converge and in each iteration users need to paatieiin the cryptographic
computations as in joint decryption and zero-knowledgefsrdor input validation.
These computations are interactive and thus, it is imper#bir the users to be online
and synchronized.

Randomized Perturbation to Protect Preferences

Previous section showed that homomorphic cryptosysteeng;knowledge proof pro-
tocols and secure multi-party computations play an impantale in providing solu-
tions for processing encrypted data. However, there aer vthys to preserve privacy.
In the following, we discuss preserving privacy in recoma@rsystems by perturba-
tion of user data.

Randomized perturbation technique was first introducedivagy preserved data-
mining by Agrawal and Srikan[][S]. Polat and EE][@ 66] prepd to use this ran-
domization based technique in collaborative filtering. Tker privacy is protected by
simply randomizing user data while certain computationgggregate data can still
be done. Then, the server generates recommendations haseel ldinded data but
can not derive the user’s private information (Figuré 2.5).

Collaborative Filtering

}

[ Disguised Data
[ ] original Data

Central Database

D B —
f ﬁ Data Disguising ﬁ
| | | e 1
USER, USER, USERx

Figure 2.5: Privacy preserving collaborative filtering twitser preference perturba-
tion.

Consider the scalar product of two vectdsandY. These vectors are blinded
byR = [ri,...,ry]andS = [sq,...,sy]suchthaX = X + RandY =Y + S.
Herer;'s ands;’s are uniformly distributed random values with zero mealne $calar
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product ofX andY can be estimated froX andY:
M M
XY = Z(:ckyk + xRSk + TRYE + TRSE) R Zxkyk- (2.29)
k=1 k=1

SinceR andS are independent and independenXoandY, we havez,y:1 TS ~

0, Zkle reyr =~ 0, andzgil resk ~ 0. Similarly, the sum of the elements of any

vectorA can be estimated from its randomized foAh Polat and Du used these two

%proximations to develop a privacy-preserving collabesafiltering method |E5,
].

This method works if the number of users in the system is Bagmitly large. Only
then the computations based on aggregated data can stohiyeuted with sufficient
accuracy. Moreover, it is also pointed outlinl[41, 47] thatittea of preserving privacy
by adding random noise might not preserve privacy as muchtelibeen believed
originally. The user data can be reconstructed from theaauylperturbed user data
matrix. The main limitation in the original work of Polat a2l is shown to be
the item-invariant perturbatioﬂbl]. Therefore, Zhagial. [@] propose a two-way
communication perturbation scheme for collaborativerfiigin which the server and
the user communicates to determine perturbation guiddratas used to blind user
data before sending to the server. Notwithstanding thegeaphes, the security of
such schemes based on perturbation of data is not well unddrs

2.4 Content Protection

2.4.1 Watermarking of Content

In the past decade, content protection measures have beeospd based on digital
watermarking technology. Digital watermarkirig [21, 9Josis hiding into a digital
content information that can be detected or extracted atea taoment in time by
means of signal processing operations such as correldtighis way, digital water-
marking provides a communication channel multiplexed original content through
which it is possible to transmit information. The type ofanhation transmitted from
sender to receiver depends on the application at hand. Azaanpe, in a forensic
tracing application, a watermark is used to embed a unigde o each copy of the
content to be distributed, where the code links a copy ettharparticular user or to a
specific device. When unauthorized published content isdptire watermark allows
to trace the user who has redistributed the content.

Secure signal processing needs to be performed in casemeatedetection or
embedding is done in untrusted devices; watermarking sekesually rely on a sym-
metric key for both embedding and detection, which is aitio both the robustness
and security of the watermark and thus needs to be protected.

For the application of secure signal processing in contesteption, three cate-
gories can be identified, namely distribution models, austorights protection, and
secure watermark detection. The first two categories aewast to forensic tracing
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(fingerprinting) applications. In classical distributiorodels, the watermark embed-
ding process is carried out by a trusted server before liagése content to the user.
However this approach is not scalable and in large scaletitibn systems the server
may become overloaded. In addition, since point-to-poamhimunication channels
are required, bandwidth requirements become prohibitveroposed solution is to
use client-side watermark embedding. Since the client teusted the watermark
needs to be embedded without the client having access toritji@a content and
watermark.

The customer’s rights problem relates to the intrinsic frobof ambiguity when
watermarks are embedded at the distribution server: amestowhose watermark has
been found on unauthorized copies can claim that he has bemed by a malicious
seller who inserted his identity as watermark in an arbjtodmject. The mere existence
of this problem may discredit the accuracy of the forensicitrg architecture. Buyer-
seller protocols have been designed to embed a watermaekl lmasthe encrypted
identity of the buyer, making sure that the watermarked demvailable only to the
buyer and not to the seller.

In the watermark detection process, a system has to proveddfeer that a wa-
termark is present in certain content. Proving the presehceich a watermark is
usually done by revealing the required detection infororato the verifying party.
All current applications assume that the verifier is a trdig@rty. However, this is not
always true, for instance if the prover is a consumer devAceheating verifier could
exploit the knowledge acquired during watermark detectmhreak the security of
the watermarking system. Cryptographic protocols, tiizzero-knowledge proofs,
have been constructed in order to mitigate this problem.

We will first introduce a general digital watermarking mottetiefine the notation
that will be useful in the remainder of the section. An exaanpl a watermarking
scheme is proposed, namely the one proposed bye@ab([@], since this scheme is
adopted in many of the content protection applications.

Watermarking Model

FigurelZ.6 shows a common model for a digital watermarkirsesy |[_$]. The inputs
of the system are the original host sigi@land some application dependent to-be-
hidden information, here represented as a binary sBing [b1, b2, ..., bz], with b;
taking values in{0,1}. The embedder inserts the watermark c&l&to the host
signal to produce a watermarked siga),, usually making use of a secret key

to control some parameters of the embedding process and tilborecovery of the
watermark only to authorized users.

The watermark channel takes into account all processingatipes and (inten-
tional or non-intentional) manipulations the watermarkedtent may undergo dur-
ing distribution and use. As a result, the watermarked curie, is modified into
the “received” versiorX’. Based onX’, either a detector verifies the presence of a
specific message given to it as input, thus only answem@sgr no, or a decoder reads
the (binary) information conveyed by the watermark. Detesiand decoders may
need to know the original conteitin order to retrieve the hidden information (non-
blind detector/decoder), or they do not require the origioatent (blind or oblivious
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detector/decoder).
b
X 1

Xy X' b
Embedder W Channel L~ o Detector/Decoder|——»
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Figure 2.6: A digital watermarking model

Watermarking Algorithm

Watermark information is embedded into host signals by nknperceptual modifi-
cations to the host signal. The modifications are such tlegtd¢bnvey the to-be-hidden
informationB. The hidden information can be retrieved afterwards froenntodified
content by detecting the presence of these modificationdeHding is achieved by
modifying the set of feature¥ = [x1,z2...x)]. In the most simple case, the fea-
tures are simple signal amplitudes. In more complicatedaies, the features can
be DCT or wavelet coefficients. Several watermarking sclsemmke use of a spread-
spectrum approach to code the to-be-hidden informdiomio W = [wy, ws ... was].
Typically, W is a realization of a normally distributed random signahwiero mean
and unit variance.

The most well-known spread-spectrum techniques was pegpbyg Coxet al.
[@]. The host signal is first transformed into a Discrete i@@dransform (DCT)
representation. Next the largest magnitude DCT coeffisian¢ selected, obtaining
the set of featureX. The multiplicative watermark embedding rule is defined as
follows:

Twi = X+ cwix; =x;(1+ cw;), (2.30)

wherez,, ; is thei-th component of the watermarked feature vector aisoa scaling
factor controlling the watermark strength. Finally, andérse DCT transform yields
the watermarked signl,,.

To determine if a given signa contains the watermai, the decoder computes
the DCT ofY, extracts the seX’ of largest DCT coefficients, and then computes the
correlationpyw between the feature$’ and the watermarkV. If the correlation is
larger than a threshold i.e.,

< X' \W >
<X' X'> T 7
the watermark is considered presenin

PX'W (2.31)

2.4.2 Client-side Watermark Embedding

Client-side watermark embedding systems transmit the sarorypted version of the
original content to all the clients but a client-specific ggtion key allows to decrypt
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the content and at the same time implicitly embed a waterm&iken the client
uses his key to decrypt the content, he obtains a uniquelgrmatked version of
the content. The security properties of the embedding sehesmally guarantees that
obtaining either the watermark or the original content ie ghear is of comparable
hardness as removing the watermark from the personalizad co

In literature, several approaches for secure embeddindedound. In Ell] a
pseudorandom mask is blended over each frame of a video. ¢hact is given a
different mask, which, when subtracted from the maskeddwast video, leaves an
additive watermark in the content. The scheme is not veryrgelsecause since the
same mask is used for all frames of a video, it can be estintgtesteraging attacks.

In broadcast environments, stream switchi@ [ﬂ 59] capdadormed. Two
differently watermarked signals are chopped up into snialinks. Each chunk is
encrypted by a different key. Clients are given a differesttaf decryption keys that
allow them to selectively decrypt chunks of the two broatisa®ams such that each
client obtains the full stream decrypted. The way the fuéan is composed out of the
two broadcast versions encodes the watermark. This snlotinsumes considerable
bandwidth, since the data to be broadcast to the clientsée s large as the content
itself.

A second solution involves partial encryption, for instarencrypting the signs
of DCT coefficients of a sign 8]. Since the sign bits of DEJefficients are per-
ceptually significant, the partially encrypted versionlwé signal is heavily distorted.
During decryption each user has a different keys that désmyply a subset of these
coefficients, so that some signs are left unchanged. Thissemdetectable fingerprint
in the signal. A similar approach was usedlinl [51] to obtairtipbencryption-based
secure embedding solutions for audio-visual content.

A third approach is represented by methods using a strepheicthat allows the
use of multiple decryption keys, which decrypt the same aighxt to slightly dif-
ferent plain-texts. Again, the difference between theinaband the decrypted con-
tent represents the embedded watermark. The first schetowifay this approach
was proposed by Andersaat al. [Iﬂ] who designed a special stream cipher, called
Chameleon, which allows to decrypt Chameleon-encryptedeca in slightly differ-
entways. During encryption, a key and a secure index gesreaseg used to generate a
sequence of indices, which are used to select four entoes drlook-up-table (LUT).
These entries are XORed with the plaintext to form a word ef ¢tphertext. The
decryption process is identical to encryption except feruke of a decryption LUT,
which is obtained by properly inserting bit errors in soméries of the encryption
LUT. Decryption superimposes these errors onto the conteas leaving a unique
watermark. Recently, Adelsbaeh al. [Iﬂ] and Celiket al. [@] proposed generaliza-
tions of Chameleon, suitable for embedding robust spreactspn watermarks. The
schemes operate on lookup-tables composed of integersZfyand replace the XOR
operation by a (modular) addition.

In more detail, the secure embedding solution works asviglloThe distribu-
tion server generates a long-term master encryption Igotable (LUT)E of size L,
whose entries are properly generated random samiplesll be used to encrypt the
content to be distributed to the clients. Next, for fhéh client, the server generates
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a personalized watermark LUW, according to a desired probability distribution,
and builds a personalized decryption LD}, by combining the master LUT and the
watermark LUT:

Dili] = —E[i] +Wy[i]. (2.32)

The personalized LUTs are then transmitted once to eaaft chieer a secure channel.
Let us note that the generation of the LUTs is carried out guste at the setup of
the application. A conterX is encrypted by adding to it a pseudo-random sequence
obtained by selecting some entries of the LUT with a secueags-random sequence
generator driven by a session kely. Each client receives the encrypted contght
along with the session keyk and decrypts it using some entries of his/her personal-
ized decryption LUTD,, (again chosen according &), with the final effect that a
spread-spectrum watermark sequence is embedded into ¢chgtiel content. This
process is summarized in Figurel2.7. In detail, driven bystsion keyk, a set of

Wi
Enc LUT 4:—> Dec LUT
I
I
' ; l
. 1 _ Xy
L, Encryption L;, Decryption ——:—»W
I i
| |
| i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2.7: Encryption and following joint decryption andtermarking procedure
proposed in[16].

indicest;; is generated, whelte < i < M —1,0< ;< S5-1,0<¢t; <L -1
Each feature of the content is encrypted by adding entries of the encryption LUT,
obtaining the encrypted featur¢ as follows:

S—1
wp = @+ Y Eltiyl. (2.33)

Joint decryption and watermarking is accomplished by retanting with the session
key sk the same set of indices; and by addingS entries of the decryption LUT to
each encrypted featuré:

To,i = J‘; + Z D[tij] =x; + Z W[tij] = T; + w;. (2.34)
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2.4.3 Buyer Seller Protocols

Forensic tracing architectures which perform watermarkeahding at the distribution
server are vulnerable against a dishonest seller. The metréhkt a seller may fool a
buyer may have an impact on the credibility of the whole tigdystem. (Note that a
seller may in fact have an incentive to fool a buyer: a selleoacts as an authorized
re-selling agent may be interested in distributing manyeopf a work containing the
fingerprint of a single buyer to avoid paying the royaltieghte author, by claiming
that such copies were illegally distributed or sold by thgd

A possible solution consists in resorting to a trusted tipiadty, responsible for
both embedding and detection of watermarks; however, sn@pproach is not fea-
sible in practical applications, because the TTP couldybsicome a bottleneck for
the whole system. The Buyer-Seller Protocol relies on agyzphic primitives to
perform watermark embeddi@SS]; the protocol assuretsthigeseller does not have
access to the watermarked copy carrying the identity of theel) hence he cannot
distribute or sell these copies. In spite of this, the seder identify the buyer from
whom unauthorized copies originated, and prove it by usipgoaer dispute resolu-
tion protocol.

We describe the protocol by Memon and Wo@] [55] in more dethdt Alice
be the seller, Bob the buyer, and WCA a trusted watermarkfication authority in
charge of generating legal watermarks and sending themytbwayer upon request.
The protocol uses a public key cryptosystem which is hompimowith respect to the
operation used in the watermark embedding equation (he.ctyptosystem will be
multiplicatively homomorphic if watermark embedding is ltfplicative, like in Cox’s
scheme); moreover, Alice and Bob possess a pair of puliliaterkeys denoted by
pka, pkp (public keys) andk 4, skp (private keys).

In the first part of the protocol, on request of Bob, the WCA gates a valid
watermark signaW and sends it back to Bob, encrypted with Bob’s public key
E,r; (W), along with its digital signaturéyyca(E,x,(W)), to prove that the wa-
termark is valid.

Next, Bob sends to Alic&,;,, (W) andSwca(Epk, (W)), so that Alice can ver-
ify that the encrypted watermark has been generated by the \K{i% performs two
watermark embedding operations. First, she embeds (wjtlvatermarking scheme)
into the original contenX a watermark/, which just conveys a distinct ID univocally
identifying the transaction, obtaining the watermarkedtentX,,. Next, a second
watermark is built by using®,x,, (W): Alice permutes the watermark components
through a secret permutatian

7T(‘EPk‘B (W)> = EPkB (W<W))7 (2.35)

and insertsE,, (7(W)) in X,, directly in the encrypted domain, obtaining the fi-
nal watermarked conteiX” in encrypted formX” is thus unknown to her. This is
possible due to the homomaorphic property of the cipher:

EpkB(XH) = Epks(xw)'EpkB(ﬂ'(W))' (2.36)

When Bob receive®,., (X”), he decrypts it by using his private key 5, thus ob-
tainingX”, where the watermark¢ and~(W) are embedded. Note that Bob cannot
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read the watermark (W), since he does not know the permutatianThe scheme is
represented in Figuie 2.8.

j
m
3
=3
@
aQ
=3
5
@

Figure 2.8: The scheme of the Buyer Seller protocol propas¢sE].

In order to recover the identity of potential copyright \atirs, Alice first looks for
the presence df . Upon detection of an unauthorized copyXafsayY, she can use
the second watermark to effectively prove that the copyioaigd from Bob. To do
so, Alice must reveal to a judge the permutatigthe encrypted watermatg,, , (W)
andSwca(Epk, (W)). After verifying Swea (Epk (W)), the judge asks Bob to use
his private keyskp to compute and reve&l/. Now it is possible to check for the
presence ofr(W): if such a presence is verified, then Bob is judged guiltyenilise
Bob’s innocence has been proven. Note that(iV) is found inY, Bob can not state
thatY originated from Alice, since to do so Alice should have knogither W to
insert it within the plain asseX, or skp to decryptE,., (X") after the watermark
was embedded in the encrypted domain.

As a particular implementation of the protocm[55] propdgo use Cox’s water-
marking scheme and a multiplicatively homomorphic cipliespite its deterministic
nature, authors use RSA). More secure and less complexiimepi@tions of the Buyer
Seller protocol have been proposed]E [@@Dﬂfg 6].

2.4.4 Secure Watermark Detection

To tackle the problem of watermark detection in the presafamn untrusted veri-
fier (to whom the watermark secrets cannot be disclosed)apypooaches have been
proposed: one approach callasymmetric watermarkin@,@] uses different keys
for watermark embedding and detection. Whereas a watermankbedded using a
private key, its presence can be detected by a public keyidin schemes, the knowl-
edge of the public detection key must not enable an adversagynove the embedded
watermark; unfortunately, none of the proposed schemasfisiently robust against
malicious attacks]ﬂ9]. Another approach is representeddrg-knowledge water-
mark detection
Zero-knowledge watermark detection (ZKWD) uses a cryptolgi@protocol to

wrap a standard symmetric watermark detection proces®rlergl, a zero-knowledge
watermark detection algorithm is an interactive proof egstvhere a prover tries to
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convince a verifier that a digital conteXt is watermarked with a given watermark
B without disclosingB. In contrast to the standard watermark detector, in ZKWD
the verifier is given only properly encoded (or encryptedsigns of security-critical
watermark parameters. Depending on the particular protdewatermark code, the
watermarked object, a watermark key or even the originalarked object is available

in an encrypted form to the verifier. The prover runs the Zeronledge watermark
detector to demonstrate to the verifier that the encodedrmat& is present in the
object in question, without removing the encoding. A protacin will not leak any
information except for the unencoded inputs and the watéempeesence detection
result.

Early approaches for zero-knowledge watermark detectsau ypermutations to
conceal both the watermark and the objéct [23]; the protassbres that the per-
muted watermark is detected in the permuted content antdtlathe watermark and
the object are permuted in the same manner. Craver [22] penbto use ambigu-
ity attacks as a central tool to construct zero-knowleddedlers; such attacks allow
to compute a watermark that is detectable in a content bugries been embedded
there. To use ambiguity attacks in a secure detector, thevetarmark is concealed
within a number of fake marks. The prover has to show thaktler valid water-
mark in this list without revealing its position. Now, thevadsary (equipped solely
with a watermark detector) cannot decide which of the wateksiis not counterfeit.
Removal of the watermark is thus sufficiently more difficult.

Another proposal is to compute the watermark detectiomssiain the encrypted
domain (e.g., by using additive homomorphic public-keyrgption schemes or com-
mitments) and then use zero-knowledge proofs to convireedhfier that the detec-
tion statistic exceeds a fixed threshold. This approach wstpfioposed by Adelsbach
and Sadeghl [3], who use a homomorphic commitment schemenmpuate the detec-
tion statistic; the approach was later refined In [2].

Adelsbach and SadegE| [3] propose a zero-knowledge pridtased on the Cox’s
watermarking scheme. In contrast to the original algorijtiins assumed that the wa-
termark and DCT-coefficients are integers and not real nusnltieis can be achieved
by appropriate quantization). Moreover, for efficiencys@aas the correlation compu-
tation in Eq.[(Z.31) is replaced by the detection criterion:

C = (<X ,W>)?— <X X >.5?
(A =B >0; (2.37)

the latter detection criterion is equivalent to the oridjioae, provided that the factor
A is positive.

The following Zero-Knowledge Detection Protocol has beesighed to allow
the prover to prove to a verifier that the watermark committenh the commitment
com(W) is present in the received context, without revealing any information
aboutW. In the protocol, the authors employ an additively homorhargommit-
ment scheme (such as the one proposed by Badrand FujisakilES]). Lebpus, X',
com(W), 6 be the common inputs of prover and verifier andggt. be the private
input of the prover. First, both prover and verifier seleet Watermarked feature¢
and compute the valuB of Eq. [Z.3T); the prover sends a commitment:( B) to the
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verifier and opens it immediately, allowing him to verify tiihe opened commitment
contains the same valug he computed himself. Now both compute the commitment

M /
com(4) = Hcom(wi)mi, (2.38)

=1

by taking advantage of the homomorphic property of the camemt scheme. Sub-
sequently the prover proves in zero-knowledge that 0. Next, the prover computes
the valueA?, sends a commitmentm(A?) to the verifier and gives him a zero-
knowledge proof that it really contains the square of thei@alontained irom(A).
Being convinced thatom(A?) really contains the correctly computed valdé, the
two parties compute the commitmentn(C) := com(A?)/com(B) on the valueC.
Finally the prover proves to the verifier, with a proper zknmwledge protocol, that
com(C) > 0. If this proof is accepted then the detection algorithm enik true,
otherwise with false.

While early protocols addressed only correlation-base@nvark detectors, the
approach has recently be extended to Generalized Gausaamim Likelihood
detectors|[75] and Dither Modulation watermarlks [64, 54].

2.5 Problem Statement

This chapter’'s comprehensive study on privacy enhancedisos$ for different prob-
lem domains has shown important insights about preservivgqy in multimedia
applications. First, the applications that we encounteffimm the field of signal pro-
cessing and thus, they often consist of similar operati@econd, the data in these
applications have signal properties, meaning that theyales in a small range.
Third, processing encrypted data by using techniques amld foom cryptography
seems to be feasible if the signal aspects of the data arédeoed. However, cur-
rently available cryptographic tools and protocols aretiy@gneric and not designed
by considering the features of the data. If applied direfctynultimedia applications,
the resulting systems will be inefficient. This observatieads us into a new direc-
tion in which we exploit the application requirements anel structure of the data to
develop privacy enhanced solutions.

The goal of this thesis is to present a methodology for pvésgiprivacy in mul-
timedia applications. For this purpose, we focus on crygaphic tools, in particular
homomorphism and MPC techniques. The designed systemssatisfy three major
requirements, namely:

« Correctness.The privacy enhanced system must have identical or similar o
puts compared to the original system that works on plaingigttals such that
the users of the service cannot see a difference.

* Privacy. No party should gain information on the input of the othertigar
This requirement involves the intermediate values of tigerthms which can
leak information on the input of parties.
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« Efficiency. The overhead introduced by using cryptographic tools toige
privacy must be minimum in terms of communication and corapom costs
and, if applicable, storage capacity.

Correctness and privacy can be verified once the protoocelscemposed, however
achieving efficiency presents the main challenge in thisishén order to obtain min-
imum overhead, we propose to exploit the signal properti¢éiseodata in multimedia
applications. For this purpose, we have selected a numlpgotitypical applications
that possess commonalities with respect to signal pratgsgierations and propose
privacy-preserving solutions for each application baseti@momorphism and MPC
techniques over integer arithmetic in a semi-honest mddsd. following challenges,
which are vital to obtain a complete privacy-preservingsi@r of the applications,
are addressed and efficient solutions are proposed.

Data Representation

The data we consider in this thesis are signal samples suotagss, preferences and
feature vectors which often consist of small and integemesl However, throughout
the signal processing, the size and the type of the data @geh For instance, the
DCT of an image block usually consists of real values whosgesa are larger than
the 8-bit pixel value. Similarly, the distance and corfielatcomputations change the
bit length and the type of the data, respectively. As we pseo protect the privacy-
sensitive data by means of encryption and we use semantsedlure homomorphic
cryptosystems which operate only on integers, it is manmgaim come up with a
strategy that copes with the increase in data bit size arglijeshanges in data type.

Linear and Non-linear Operations

The homomorphic encryption allows us to implement certaiedr operations on en-
crypted data. However, minimizing the number of operationghe encrypted data
plays a crucial role in designing privacy enhanced multimegbplications with less
computational power requirement.

While homomorphic encryption schemes allow us to realizediroperations in
the encrypted domain, cryptographic protocols based on k#ekhiques are neces-
sary for the non-linear operations. Currently availablet@cols are mostly generic
and they do not consider the structure of the data or the@gijuh. Thus, crypto-
graphic protocols for realizing non-linear operationsdignal processing applications
are needed.

Data Expansion

With homomorphic cryptosystems, we encrypt individuahsigsamples and process
them in the encrypted domain later on. As discussed in thepten, we also need
semantic security as the bit size of signal samples coreidier signal processing
applications are rather small. Encrypting small signalgasby using semantically
secure encryption schemes results in data expansion. Xpansion for an 8-bit
signal sample is by a factor of 256 after the encryption wittn@dest key size of
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1024 bits in the Paillier cryptosystem. As we have data indider of megabytes
and gigabytes, this data expansion will introduce a sulistdoad in communication
and storage. Thus, an effective approach to minimize tlecefff data expansion is
required.

Computation and Communication Costs

A final challenge of working in the encrypted domain is mirding the computation
power and bandwidth requirements. As we operate on enctyati&, which are in the
order of thousand bits, each operation will consume timble[Z5 shows the average
run time for several operations under Paillier encryptionesne with a key size of
1024 bits (the cipher text space is 2048 bits). The messapthampublic value are 100
bits each. As the key length is increased for security reggbe time consumption of
operations also increases (Figlre 2.9). Considering hlesetoperations are repeated
for many times, the overall time consumption of the propogemtocols will be a
major problem. For example, encrypting an 8-bit gray saalage of size340 x 600
pixels will take roughly 55 minutes.

In addition to computational costs, increase in the comuoation cost due to data
expansion after encryption presents a major challengellusirate the affect of en-
cryption on data size, consider that an 8-bit gray scale éwdgize840 x 600 pixels
becomes 123 MB after encrypting each pixel value in Paidieryption scheme with
a key size of 1024 bits. Thus, strategies to minimize the rerroboperations and the
cost of communication are imperative.

Table 2.2: Average time consumption for various operatfon®aillier cryptosystem
on a Pentium Xeon, 2.33 GHz machine.

Operation | Time
Encryption: (¢ = E,(m)) 66908
Decryption:(m = Dg(c)) 66505
Multiplying two encrypted values.E,,(m1) - Epi(m2)) 7.1us

Raising an encrypted value to the power of a public vaigy, (m)°) | 710us
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Abstract

Face recognition is increasingly deployed as a means totwrsikely verify the iden-
tity of people. The widespread use of biometrics raises iapb privacy concerns,
in particular if the biometric matching process is perfodna a central or untrusted
server, and calls for the implementation of Privacy-Enlrandechnologies. In this
paper we propose for the first time a strongly privacy-enbdrface recognition sys-
tem, which allows to efficiently hide both the biometrics dine result from the server
that performs the matching operation, by using techniquas fsecure multiparty
computation. We consider a scenario where one party prexadace image, while
another party has access to a database of facial templatespr@tocol allows to
jointly run the standard Eigenfaces recognition algorithrsuch a way that the first
party cannot learn from the execution of the protocol moemtbasic parameters of
the database, while the second party does not learn theimpge or the result of the
recognition process. At the core of our protocol lies an igfficprotocol for securely
comparing two Pailler-encrypted numbers. We show througbénsive experiments
that the system can be run efficiently on conventional harewa

3.1 Introduction

Biometric techniques have advanced over the past yearstmble means of authen-
tication, which are increasingly deployed in various aggtion domains. In particular,
face recognition has been a focus of the research commumétytalits unobtrusive-
ness and ease of use: no special sensors are necessary dilydangalable images
of good quality can be used for biometric authenticatione @evelopment of new
biometric face-recognition systems was mainly driven by application scenarios:

 To reduce the risk of counterfeiting, modern electronisgports and identifi-
cation cards contain a chip that stores information abaibthner, as well as
biometric data in the form of a fingerprint and a photo. While tiometric data
is not widely used at the moment, it is anticipated that thygtided photo will
allow to automatize identity checks at border crossingsvengerform cross-
matching against lists of terrorism suspects (for a recetatrjpol initiative to
use face recognition to mass-screen passenger@ see [5]).

e The increasing deployment of surveillance cameras inipyiihces (e.g.lﬂB]
estimates that 4.2 million surveillance cameras moniterghblic in the UK)
sparked interest in the use of face recognition technatotpeautomatically
match faces of people shown on surveillance images agailasabase of known
suspects. Despite massive technical problems that rehidesiplication cur-
rently infeasible, automatic biometric face recognitigetems are still high on
the agenda of policy makets [25] 19].

The ubiquitous use of face biometrics raises importanigggivconcerns; particu-
larly problematic are scenarios where a face image is autoatiyg matched against a
database without the explicit consent of a person (for examghe above-mentioned
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surveillance scenario), as this allows to trace peoplenagtieir will. The widespread
use of biometrics calls for a careful policy, specifying thieh party biometric data
is revealed, in particular if biometric matching is perfaunat a central server or in
partly untrusted environments.

In this paper we propose for the first time strong cryptogi@phivacy-Enhancing
Technologies for biometric face recognition; the techeigjallow to hide the biomet-
ric data as well as the authentication result from the sehatmperforms the matching.
The proposed scheme can thus assure the privacy of indisiduacenarios where
face recognition is beneficial for society but too privadyusive.

In particular, we provide a solution to the following twofpaproblem. Alice
and Bob want to privately execute a standard biometric facegnition algorithm.
Alice owns a face image, whereas Bob owns a database cargancollection of
face images (or corresponding feature vectors) from iddis. Alice and Bob want
to jointly run a face recognition algorithm in order to detéme whether the picture
owned by Alice shows a person whose biometric data is in Biditabase. While Bob
accepts that Alice might learn basic parameters of the fsoagnition system (includ-
ing the size of the database), he considers the content dfatabase as private data
that he is not willing to reveal. In contrast, Alice trustsiBim execute the algorithm
correctly, but is neither willing to share the image nor tle¢edtion result with Bob.
After termination, Alice will only learn if a match occurrgdlternatively, an ID of the
identified person may be returned.

In a real world scenario Bob might be a police organizationergas Alice could
be some private organization running an airport or a traatist. While it may be
common interest to use face recognition to identify cenpeaple, it is generally con-
sidered too privacy intrusive to use Bob's central servezadly for identification, as
this allows him to create profiles of travelers. Thus, the pagties may decide for
a privacy-friendly version where the detection result i$ aeailable to the central
party. As the reputation of both parties is high and becaosie farties are interested
in computing a correct result, it is reasonable to assumiettiey will behave in a
semi-honest manner.

We provide a complete implementation of the above-mentidwe-party problem
using the standard Eigenface [34] recognition system, imgr&n encrypted images.
At the heart of our privacy-enhanced face recognition sydies a highly optimized
cryptographic protocol for comparing two Pailler-encegbtvalues. The system is
very efficient and allows matching of an encrypted face imzfgeze92 x 112 pixels
against a database of 320 facial templates in approximéfekeconds on a conven-
tional workstation. This is achieved despite the huge cdatfmnal complexity of the
underlying cryptographic primitives. Using pre-compigas for intermediate values
which do not depend on the input image, recognition only ¢ak& seconds. While
there is a small constant overhead when performing a famsgrition, the time to
perform the recognition is linear in the size of the databaSer a large database
containingM facial templates, time for one recognition increases olayly and re-
quieres approximatel9.054M seconds for the conventional approach arag1 M
seconds when using pre-computations.
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3.2 Cryptographic Tools

As a central cryptographic tool, we use two semanticallyiseadditively homomor-
phic public-key encryption schemes, namely the Pailliet tie DGK cryptosystem.
In an additively homomorphic cryptosystem, given enciypsia] and[b], an encryp-
tion [a + b] can be computed bl + b] = [a][b], where all operations are performed
in the algebra of the message or ciphertext space. Furtheymessages can be mul-
tiplied with constants under encryption, i.e., given anrgpted messag&:] and a
constand in the clear, it is possible to compuje] by [ab] = [a]®.

Paillier cryptosystem. Introduced by Palillier in|E9], its security is based on the
decisional composite residuosity problem. ket= pq of sizet, with p, g prime
numbers and from the range 1000-2048. Also lgt=n + 1 [IE]. To encrypt a mes-
sagem € Z,, the user selects a random value Z,, and computes the ciphertext
¢ = ¢™r" mod n?. Note that due to our choice gf encryption requires only one
modular exponentiation and two modular multiplicatiorss; & (mn+1)r"™ mod n?.
We will write the encryption of a messagein the Paillier cryptosystem asu|. Since

all encryptions in the proposed protocol will be computeitig®ne fixed public key,
we do not specify the key explicitly. It is easy to see thatlieais additively homo-
morphic and that for an encryptidm| we can compute a new probabilistic encryption
of m without knowing the private key (this will be referred to msrandomizatioi
We refer the reader t(ﬁbQ] for a description of the decryptiperation and further
details on the cryptosystem.

Damgard, Geisler and Krgigaard cryptosystem (DGK). For efficiency reasons we
use at a key point in our protocol another homomorphic cigygtem, which was pro-
posed by Damard, Geisler and Krﬂigaar [E 9]. As in Paillier, tet= pq be at-bit
integer (witht chosen from the range 1000-2048), with; primes. The ciphertext
corresponding to a messagee Z, is computed ag = ¢"™h"” mod n, whereu is a
prime number and is a randomly chosen integer. In practice (and more imptytan
in our application)u is from a very small range, sa&bit values, which results in a
very small plaintext spacg,. Similarly to Paillier, DGK is also additively homomor-
phic and it is possible to re-randomize existing ciphegeompared to Paillier, the
scheme has substantially smaller ciphertexts and the enpddlintext space results in
a large performance gain. To note the difference betwedliePand DGK ciphertexts
we will denote the encryption ofi in the DGK cryptosystem &gn].

3.3 Face Recognition

In 1991, Matthew Turk and Alex Pentland proposed an efficigmiroach to identify
human faceéEDS]. This approach transforms face imagesharacteristic feature
vectors of a low-dimensional vector space (the face spad®)se basis is composed
of eigenfacesThe eigenfaces are determined through Principal Compa¥ealysis
(PCA) from a set of training images; every face image is swathi represented as a
vector in the face space by projecting the face image ontsihspace spanned by
the eigenfaces. Recognition of a face is done by first priojgdhe face image to
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the face space and subsequently locating the closestdeatator. A more detailed
description of the enrollment and recognition processgs/en below.

During enrollment, a set o/ training images9,,0-,...,0,;, which can be
represented as vectors of length is used to determine the optimal low-dimensional
face space, in which face images will be represented asydiatdo this, the average
of the training images is first computed @s= % Zf\il ©;. Then, this average is
subtracted from each face vector to form difference vecbgrs ©; — ¥. Next, PCA
is applied to the covariance matrix of these vectrs: - > M @,67 = L AAT to
obtain orthonormal eigenvectors and corresponding eajeas whered is the matrix
where each column corresponds to the imégdor i = 1 to M. (As the size oiC
makes it computationally infeasible to directly run PCAg #igenvectors are usually
obtained by applying PCA to the much smaller matdiX A and appropriate post-
processing). At mosb/ of the eigenvalues will be nonzero. To determine the face
space, we seledd < M eigenvectors.y, ..., ur that correspond to thé' largest
eigenvalues. Subsequently, images O, ..., 0 , showing faces to be recognized
(not necessarily the training images) are projected ordastibspace spanned by the
basisui, ..., ur to obtain their feature vector representation . .., Q,,.

During recognition, a new face imadeis projected onto the face space by cal-
culating weightso; = u?(I' — W) for i = 1,...,T. These weights form a fea-
ture vectorQ) = (@1, ws, ..., w7)T that represents the new image in the face space.
Subsequently, the distances between the obtained vBctd all feature vectors
Q1,...,Q present in the database are computed,

D; = [|(2 — )]l

A match is reported if the smallest distanbg,;,, = min{D,..., Dy} is smaller
than a given threshold value Note that this basic recognition algorithm can be aug-
mented with additional checks that reduce the number of fadsitives and negatives
during recognition; for the sake of simplicity, we stick teetbasic Eigenface recogni-
tion algorithm presented above.

3.4 Privacy-Preserving Eigenfaces

In this section, we present a privacy preserving realinagfdhe Eigenface recognition
algorithm which operates on encrypted images. We work irleeparty setting in
the semi-honest attacker model. Informally, this assurnasthe parties involved
in the protocol follow it properly but keep a log of all the nsages that have been
exchanged (including their own) and try to learn as muchrimfdion as possible from
them. Alice’s privacy is ensured against a computationatiynded attacker, while
Bob’s is unconditional—even a computationally unboundddedtannot compromise
it. It is also assumed that the parties communicate over tneaticated channel (this
can be achieved by standard mechanisms and is thus outsidedpe of this paper).
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3.4.1 Setup and Key Generation

Two parties Alice and Bob jointly run the recognition algbm. We assume that Bob
has already set up the face recognition system by runningrir@iment process (in
the clear) on all available training images to obtain thdsas, . .., ur of the face
space and feature vectory, ..., Q) of faces to be recognized. Furthermore, we
assume that all coordinates of the eigenfaces and featoterseare represented as
integers; this can always be achieved by appropriate quain: non-integer values
are first scaled by a fixed scale fact®rand rounded to the nearest integer. This is
necessary, as all values need to be integers in order tomribgm with Paillier and
process them using homomorphic operations. The effectisfquantization step
on the detection reliability are experimentally analyzedectio 3.7. Each feature
vector in the database is further accompanied by a sfripthat contains the identity
of the person the feature vector belongs to; we assume thadentity is encoded as
anon-zercelement of the message space of the chosen encryption scheme

During the interactive recognition protocol, Alice progglan encrypted face im-
age[I'] as input. At the end of the protocol, Alice learns whetherfee shown on
her image matches one of the feature vecfoys. . ., ), owned by Bob: Depending
on the application, Alice either receives the identity of the best matching feature
vector or only a binary answer (i.e. whether there was a mateiot). Apart from
this answer (and the numba@fr), Bob keeps the database content secret. Bob learns
nothing from the interaction, i.e. neither the face im&gaor its representation in the
face space, nor the result of the matching process.

Note that the vectors,; are directly computed from the set of training images;
thus, theydo carry information on the faces stored in Bob’s database.nEveugh
it is hard to quantify the exact amount of data leakage thnahg knowledge of the
basisui,...,ur, our solution will treat it as sensitive data that will not dhsclosed
to Alice. In an alternative implementation, the basis. . . , ur can be derived from a
sufficiently large public face database so that they do noy¢eersonal information;
the proposed system can easily be changed to take advaritpgelic basis vectors,
see Sectioh 317 for details. Since Alice is the only party wdaeives an output, we
can construct the protocol using any standard homomorphitigkey encryption al-
gorithm; as stated in Sectibn 8.2 we choose Paillier eniypor the implementation.
In particular, we daot need a threshold homomorphic scheme, as it is widely em-
ployed in the construction of secure multiparty protoc8efore the interaction starts,
Alice generates a pair of public and private keys and sendgui@ic key to Bob over
an authenticated channel. In the first step of the protodateAencrypts all pixels of
the imagd” separately with her public key and sends the result to Bob, i/hinable
to decrypt them. However, Bob can use the homomorphic ptpéthe cipher to
perform linear operations on the ciphertexts; for some atpmrs (such as computing
distances between vectors or finding a minumum), he willirecassistance from Al-
ice in the form of an interactive protocol. At the end of thetprcol, Alice receives
back an encryption containing the result of the biometri¢amiag operation, which
only Alice can decrypt. Append[x 3.6 gives a sketch of theusigg of our system in
the semi-honest attacker model.
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Figure 3.1: Privacy-Preserving Face Recognition.

3.4.2 Private Recognition Algorithm

To match a face image against feature vectors in a databiase, steps need to be
performed. First, the image needs to be projected onto tteedjpace in order to ob-
tain its corresponding feature vector representations&aiently, distances between
the obtained vector and all feature vectors in Bob’s dawlmeed to be computed.
Finally, the one with minimum distance is selected; if thistahce is smaller than a
threshold, a match is reported. In the following, we show lilogse three steps can
be realized in a privacy preserving manner. Fiduré 3.1 skowautline of the private
face recognition protocol; the gray area denotes opersitiwat need to be performed
on encrypted values.

Projection

As a first step, the input imagé has to be projected onto the low dimensional face
space spanned by the eigenfages . . , ur. This can be performed by computing the
scalar product of

r—v,

d=T-V= :
'y — ¥y

and each eigenface vectoyto obtain
w0, =P up+ ...+ Py uN

foreachi € {1,...,T}.

These operations have to be performed in the encrypted dobyaBob, who
receives the encrypted face imad@ from Alice. As Bob knows the vecto¥ in
plain, he can easily compute? = (—1)- ¥ and then encrypt each of its components.
These encryptions can be pairwise multiplied with the epiey components di’]
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in order to perform the componentwise subtraction of thearsed* andW¥. Thus Bob
computes
1] - [ W]

@) =1~ v] =

In] - [=¥n]
Subsequently Bob performs the projection

[‘Di] = [‘1’1 s Uil + - —|— CI)N . uiN] = [‘I‘l]u“ LR [(I)N]U”N

foreachi € {1,...,T}. Thisis done as follows. As Bob knows the vectgin plain,
he can perform the required multiplications using the homiqhic property. For
example, in order to multiply the first components of bothteezBob has to compute
[®,]"*. To obtain the sum of all these products he just multiplies éhcryptions
with each other. Doing this for all < ¢ < T, Bob obtains an encrypted feature
vector description of the face image B := ([@i],...,[wr])T. Note that every
computation in the projection operation can be performeBdly without interacting
with Alice.

Calculating Distances

After having obtained the encrypted feature vedf®}, encryptions of the distances
Dy, ..., Dy betweer2 and all feature vector® € {Qy, ..., Q) from the database

have to be computed. Since in the remainder of the protocan@enly concerned

with the relative order of the obtained distances, it suffitecompute the square of
the Euclidean distance,

D(Q,Q) = [Q-Q=(w —@)?+...+ (wr —@r)?
T T T
= ) W) (“2wiw)+ Y @} (3.1)
i=1 i=1 i=1
Sl 82 83

Again, we need to evaluate this equation in the encryptecagtunBob knows the en-
cryption 2] and needs to compute the encrypted distahug?, §2)|, while he knows
the feature vecto in the clear. To computd) (2, Q)] it suffices to compute encryp-
tions of the three sums;, S, andSs, as by the homomaorphic property and Eq.{3.1),

[D(Q, Q)] = [S1] - [S2] - [Ss].

The termS; is the sum over the components{@known in the clear. Thus, Bob can
computesS; directly and encrypt it to obtaifiS;]. S, consists of the products;w;,
where Bob knowsv; in the clear and hako;] in encrypted form. In a first step the
valuesw; can be multiplied with-2. The term[(—2w; )&;] can be computed by raising
[w] to the power of —2w; ), using the homomorphic property. To obtain an encryption
of S, Bob finally computes$sS,| = ]'[Z;l[(—Qw,»)@i]. Thus, the valuéS,] can again
be computed by Bob without interacting with Alice. The te&¥ consists of the
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squares of the encrypted values|. Unfortunately, Bob cannot perform the required
multiplication without help from Alice. Thus, Bob additiyeblinds the valueo; with

an uniformly random elemenmt from the plaintext space to obtalin;| = [w; + 7] =
[@;] - [r;]. Note that for every componeat; of the vector a fresh random value must
be generated. Finally, he sends the elemntdo Alice who decrypts. Alice can now
compute the values? in plain as the square of the plaintextand compute the value

S; = ZJ.T:l z7. She encrypts this value and sen8§ back to Bob, who computes

T
(So] = (851 [T (@] - [=r).

which yields the desired result because

(7] - (@) P - [=rf] = (@ + i) = 2riw; — 7F) = [@F).
Note that this interactive protocol to compute the valsig needs to be run only once.
The value[Ss] depends only on the encrypted feature vef@rand can be used for
computation of all distanceld;],...,[Dys]. Note further that due to the blinding
factors, Alice does not learn the values

Match Finding

In the last step of the recognition algorithm, the featuretmefrom the database that
is closest td) must be found. This distance is finally compared to a threshalue
0; if the distance is smaller, a match is reported and an etiorypf the identity/d
which corresponds to the best matching feature vectorusmet! to Alice.

As aresult of the last step we obtained encrypted distdiegs. . . , [Dys], where
D; denotes the distance betwe@rand thei-th feature vectof; € {Qy,...,Qu}
from the database. To find the minimum we employ a straigivdicd recursive pro-
cedure: in the first step, we compare the- |2 | encrypted distance®s; 1] and
[Da2;40] for 0 < i < k — 1 with each other, by using a cryptographic protocol that
compares two encrypted values; a re-randomized encryepfitthve smaller distance is
retained (re-randomization is necessary to prevent Boh &tetermining the outcome
of the comparison by inspecting the ciphertexts). Aftes sitep, there will be 4]
encryptions left. In a second run we repeat this proceduréhremaining encryp-
tions, and so forth. Afteflog, (M )] iterations there will only be one encryption left,
the minimum.

As we need to return the identity of the best matching feataotor, we also have
to keep track of the IDs during the minimum computation. Tikidone by working
with pairs ([D;], [1d;]) of distances and their corresponding identities, wheredhe
cursive minimum finding algorithm is applied to the distasoaly, but re-randomized
encryptions of both the smaller distance and its identigyratained for the next round.
An efficient implementation of the required comparison pcot is described in Sec-
tion[3.3.

To check if the minimum distance is smaller than a thresliolde can treat the
valued as one additional distance that has the special idehtifpgether with the dis-



64 Chapter 3. Privacy-Preserving Face Recognition

tancesDy, ..., Dy we run the algorithm to find the minimum as described above. Af
ter [log, (M +1)] iterations, Bob receives the minimum distance and the spared-
ing identity ([D], [Id]), whereD € {§,Dy,..., Dy} andId € {0,1dy, ..., Idy}.
Thus, if a face image could be recognized the valdeontains the corresponding
identity. If no match could be found is equal to0. The valug[Zd] is finally sent to
Alice as the result of the private face recognition protocol

Note that there is an easy way to modify the protocol to makerihinate only
with a binary output: rather than using actual IDs, Bob masigasa second special
identity, the integet, to all images. In this case Alice will either receivd ar a0,
with the former indicating that a match was found.

3.5 Comparison Protocol

The only missing block is a protocol for selecting the minimaf two encrypted-bit
valuesa] and [b] along with the encrypted ID of the minimum. (Note that the bit
length/ can be determined by knowing the bit-length of the input daic the scale
factor S used to quantize eigenfaces).

At the core of our protocol is a comparison protocol due to Dam, Geisler and
Krgigaard [8] 9]. Their setting differs from ours as follavasie input is public while
the other is held (bitwise) in encrypted form by one party;reaver the output is
public. They note several variations, but in order to prewadsolution for the present
setting some tweaking is needed. This section presentsrtitecpl in a top-down
fashion.

3.5.1 A High-level View of the Protocol

Initially Bob, who has access to bof and[b], computes
2] =2 +a—b] =27 [a] - [}] "

As0 < a,b < 2%, 2 is a positive(¢ + 1)-bit value. Moreoverz,, the most significant
bit of z, is exactly the answer we are looking for:

ze=0<a<b.

If Bob had an encryption of mod 2¢, the result would be immediate;, could be
computed as
20 =2"" (2 — (2 mod 2)).

Correctness is easily verified; the subtraction sets th& Egnificant bits to zero,
while the multiplication shifts the interesting bit downsAnly z and z mod 2¢ are
encrypted, this is a linear combination in the encrypted @armwhich can be com-
puted by Bob.

Once Bob has an encryption of the outcopae = [a < b], an encryption of the
minimumm, is easily obtained using arithmetic, as= (a < b) - (a — b) + b. The
multiplication requires assistance of Alice, but is eapé&rformed through a (short)
interactive protocol. Determining an encryption of the Kanalogous(a < b) -
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(Id, — Idy) + Idp. Thus, it remains to describe how Bob obtains the encrypifon
2 mod 2°.

3.5.2 Computing[z mod 2]

The value: is available to Bob only in encrypted form, so the modulo aidun cannot
easily be performed. The solution is to engage in a protodbl Aice, transforming
the problem back to a comparison.

First, Bob generates a uniformly randdm + ¢ + 1)-bit valuer, wherex is a
security parameter, say0, andx + ¢ + 1 < log,(n). This will be used to additively
blind z,

[d =[z+7] =[z] - [r];

[d] is then re-randomized and sent to Alice who decrypts it addeesd modulo2’.
The obtained value is then encrypted, and returned to Bob.

Due to the restriction on the bit-length of Bob can nowalmostcompute the
desired encryptioriz mod 2¢]. The masking can be viewed as occurring over the
integers, thus we havé= z + r mod 2¢ and

(z mod 2€) = ((d mod 24) - (7’ mod 2‘3)) mod 2°.
Alice has just providedd mod 2¢] andr is known to Bob. Thus, he can compute
2] = [(d mod 2°) — (r mod 2°)] = [d mod 2] - [(r mod 2°)] .

Had the secure subtraction occurred modflaz would be the right result; however,
it occurs modulaz. Note, though, that ifl mod 2¢ > r mod 2¢, 7 is the right result.
On the other hand, if mod 2 is larger, an underflow has occurred; addign this
case gives the right result. So, if Bob had an encryptddof a binary value indicating
whetherr mod 2¢ > d mod 2¢, he could simply compute

[z mod 2] = [z + A2¢] = [7] - [\]%,
which add=2‘ exactly when- mod 2¢ is the larger value. This leaves us with a variant
of Yao’s millionaires problem: Bob must obtain an encryptja] of a binary value
containing the result of the comparison of two private ispdt= d mod 2¢ held by
Alice and# = r mod 2¢ held by Bob.

3.5.3 Comparing Private Inputs

The problem of comparing private inputsand# is a fundamental one, which has
been studied intensively (see e@ [@D.El @DlSF&ij).efﬁciency reasons, we
solve this problem using@ifferenthomomorphic encryption scheme, namely the one
proposed by Dantyd et aI.EB[b], which has a very small plaintext spZgeor some
primeu. This allows very efficient multiplicative masking; in coast to the Paillier
scheme, the exponents are small.

Though the basic setting of Daifgl et al. considers one public and one secret
value, they note how to construct a solution for private ispurhey also note how
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to obtain a secret output. However, they obtain this outplgraadditive secret shar-
ing, while in our setting Bob must receivePaillier encryption[)\] at the end of the
protocol. Naturally Alice must not see this encryption as khows the secret key.
We assume that Alice has run the DGK key-generation alguoriiind has sent
the public key to Bob. This key pair can be re-used wheneweictimparison pro-
tocol will be run. Inertially, Alice sends Bob encryption§ the bits of her input,

[de—1], ..., [do]. Bob then choosesey {1, —1} and computes
3
) —1 R —1
leil = [di =i +s+3 > wil=[d]-[-#1-[s1- | J] lwl] , (32
j=it1 j=it1

where[w;] = [d; @ #;], which he can compute as Bob knows For technical
reasons (to avoid the cage= ), we append differing bits to bot#h and, i.e., we
compare the valuexi + 1 and27 instead.

Equation [[3.P) differs from the one proposed by Damaget al. in order to effi-
ciently hide the output, but the core idea remains. Conghiecase of = 1; if d
is larger, then alk; will be non-zero. (The modulus is chosen such that there is no
overflow.) However, if is larger, then exactly one will equal zero, the one at the
most significant differing bit-position. Both claims areséaverified. Fors = —1 we
have exactly the same situation, except that the zero oifcdiis larger. The factor of
3 ensures that the values are non-zero once even a singeset.

Bob now multiplicatively masks thg:;] with a uniformly randomr; € Z,

le:] = [ci - mi] = e ™,

re-randomizes and permutes the encryptifpnb and sends them to Alice. Note that
e; is uniformly random irnZ;, except wher; = 0, in which case:; also equals zero,
i.e. the existence of a zero is preserved.

Alice now decrypts alk; and checks whether one of them is zero. She then en-
crypts a bit), stating if this is the case. At this point she switches bacRaillier
encryptions, i.e. Alice senqé] to Bob. Given the knowledge af Bob can compute
the desired encryptiof\]: while [A] only states whether there was a zero among the
values decrypted by Alice;, explains how to interpret the result, i.e. whether the oc-
currence of a zero means that> d or d > 7. In the former case, Bob negates the

result[A] under encryption, otherwise he directly takigas outpuf\].

3.6 Security (Sketch)

In this appendix we sketch why the face recognition protéegrivacy preserving.

For semi-honest Alice and Bob, neither learns anything endther’s input—the

database and the image—except the database size and what icderied from the

output. As the parties are honest-but-curious, it suffioeteimonstrate that no infor-
mation is leaked by the messages seen.

Comparison protocol. The comparison protocol allows Bob to obtain a new encryp-
tion of the minimum of two encryptions he already possesSesthe intuitive level,
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security towards Bob is simple. All messages received aceypted under Alice’s
public keys, and Bob cannot learn anything from these withoeaking the semantic
security of one of those schemes.

Alice on the other hand has access to the secret key. It mersftre be argued
that no information is learned from tlvententsf the encryptions sent. But this is the
case, as Alice only receives values that Bob has maskedintiisgles the messages
sent for the secure selection of the minimal and ID, as weljas: [z + r], which is
statistically indistinguishable from a uniformly randgm+ ¢ + 1)-bit value.

Treatment of the permutefk;] of Section[3.51 is only slightly more difficult.
Alice either sees a list of uniformly random non-zero vajugsan equivalent list,
where one entry is replaced by a zero. A list of random valvegges no information.
Similarly, the zero does not cause any problems: Its pasisaandom due to the
permutation, and its existence also reveals nothing agitreavith probabilityl /2; s
can be viewed as a one-time-pad for the outcome. Thus, nditloe nor Bob learn
anything from the comparison protocol.

Complete Recognition Protocol.The proof of security of the full protocol is similar
to that of the comparison. In addition to the comparisongraction is only needed
to compute the distanced, ..., Dy;. As above, the values,, ...,z that Alice
receives are masked, in this case they are uniformly rand@mntbe whole plaintext
space. Bob again receives only semantically secure emongptso he also learns
nothing. This is also true when he receives Alice’s input.

Based on the above intuition, a formal simulator proof islgasnstructed. Given
one party’s input and the output, simulation of the othetypireasy: Alice must be
handed encryptions of random values, while Bob can be haaded/ptions of0,
which are indistinguishable due to the semantic security.

3.7 Implementation

The privacy-preserving face recognition system, as dasdrin this paper, has been
implemented in C++ using the GNU GMP library version 4.2ioider to determine
its performance and reliability. Tests were performed oomputer with a 2.4 GHz
AMD Opteron dual-core processor and 4GB of RAM running LinBeth sender and
receiver were modeled as different threads of one programghipass messages to
each other; thus, the reported performance data does had@etwork latency.

For testing purposes, we used the “ORL Database of Faces’ A& T Labora-
tories Cambridge [1], which is widely used for experimentd aontains 10 images
of 40 distinct subjects, thus 400 images in total. All imagethis database have a
dark background with the subject in upright, frontal pasiti The size of each image
is92 x 112 pixels with 256 grey levels per pixel (thié = 92-112 = 10304). We use
5-fold cross validation for the experiments such that folhesubject we us8 images
in the enrollment phase aridimages for testing (thus, the database consist0f
feature vectors). The security parametdor both Paillier- and DGK-cryptosystem
was set t01024 bits (see Sectiof 3.2 for details). Furthermore we/set 50 (see
Sectior 3.5 for details).
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Reliability. During reliability testing, we assured that our privacegerving imple-
mentation of the Eigenface algorithm does not degrade tlabildy when compared
to a standard implementation which achieves approxima@}y correct classifica-
tion rate. Reliability losses may occur due to the use ofestahd quantized feature
vectors and eigenfaces. This scale factor has both an icBuen the accuracy of
the result and the performance of the scheme. Figuie 3.2sstherdetection rates of
the implementation for different scale factors, plottedeologarithmic scale. It can
be seen that scale factors below the val00 significantly degrade detection per-
formance, while scale factors larger thEd00 do not improve the results. Hence, it
suffices to sef = 1000 to achieve the same reliability as a reference implememtati
operating on floating point values. Another parameter thfhiénces both the detec-

Detection rate

. .
10 10° 10° 10
Scaling factor in logarithmic scale to base 10

Figure 3.2: Relation between scale factor and detectien rat

tion rate and the performance is the numberTurk and Pentland__[_$4] advised to set
T = 10; experiments with our implementation demonstrate thategbf7" > 12 do
not yield a significant gain in the detection rate; thus weZset 12 in subsequent
tests.

Computational complexity. We measure the computational complexity of the full
recognition protocol, thus the efforts of both Alice and Bokable[3.1 depicts the
average runtime of a single query (wall clock time) with medpto the size of the
databasé/ (second column) in seconds. Thus, matching an image agaitattbase
of size 320 takes roughly 40 seconds; this time includestafissof the protocol of
Sectior 3.4: computing the encrypted face image by Alicejggting it into the face
space, computing distances and selecting the minimum.

One can note that a major part of the computation efforts sdinoen computing
encryptions, since they require one rather complex moduponentiation. The time
required to run the protocol can be largely reduced if theseputationally expensive
operations, which dmot depend on the input image of Alice, can be computed in
advance, during idle times of a processor or on a separatessor dedicated to this
task. With this optimization in place, computing one entigp requires only two
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modular multiplications. The third column of Taldle 3.1 slsothie execution time
of the recognition algorithm under the assumption #latandomization factors™
(Paillier) andh™ (DGK) can be pre-computed for free during idle times. In ttase,
matching an image against 320 feature vectors takes Ishseconds; furthermore,
the computations performed by Alice become much more lighgtt, as nearly all of
Alice’s efforts is spent in computing encryptions.

In a third test we assume that Alice knows the eigenfagesAs noted in Sec-
tion[3.4.1, this might be the case if a (sufficiently largeblpudatabase of faces can
be used to compute the eigenfaces, or if Bob explicitly dexit reveal these values
to Alice. In this case Alice performs the projection and a@mte computation steps
and sends an encrypted feature vector to Bob. The resultssoéxperiment are de-
picted in the fourth column of Tab[e_3.1. Observe that comgdo a standard query
(second column) only a small constant factor can be saved.

Communication complexity. The communication complexity highly depends on the
size of Paillier and DGK encryptions; in our implementatitre size of a Palillier ci-
phertext is 2048 bits, whereas a DGK encryption requireg ®024 bits. Sending the
encrypted image and performing the distance computatieqsines communication
efforts independent ol; in particular, this part of the protocol requires transmis
sion of N + T + 1 Paillier encrypted values (roughly 2580 kilobytes). Thst ref
the communication is linear in/: more precisely, the minimum searching step re-
quires transmission afM Pailler andM (2¢ + 1) DGK encryptions, which in our
setting amounts to roughly 14.5 kilobytes per feature vdotthe database. Talle 8.2
shows the average amount of data in kilobytes transmitteshérun of the privacy-
preserving face recognition protocol for several datalsimes M (second column)
and the communication complexity in case that a public bakEigenfaces can be
used (third column). The overall communication complekity matching an image
against 320 feature vectors is thus approximaftel MB.

Table 3.1: Computational Complexity (sec.).
M | Query | With pre-computationg Public Eigenfaces

10 24 8.5 1.6

50 26 10 3.4
100 29 115 6
150 | 31.6 13 8.6
200 | 34.2 14.5 114
250 | 36.6 16 14.4
300 | 39.6 175 18
320 | 40 18 18.2

Round complexity. The round complexity of our protocol is very low. Sending the
face image and receiving the result of the protocol takesomed. Another round is
spent for distance computation. As the comparison prot@ems Sectiof 315) runs in
three rounds, finding the minimum @& + 1 values takes at mos8{log, (M + 1)]
rounds. Therefore the round complexity of our protocaDigog, (M)).
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Table 3.2: Communication Complexity(kB).
M | Full Query | Public Eigenfaces

10 2725 149
50 3310 734
100 4038 1461
150 4765 2189
200 5497 2921
250 6228 3652
300 6959 4382
320 7249 4674

3.8 Related Work

The problem considered in this paper is an instance of a sda-party problem;

thus standard methods of Secure Multiparty Computd@aﬁﬁ&an be applied. Basic
concepts for secure computations were introduced byo Bdsequently, various
approaches to securely evaluating a function have beenogedefor different func-

tion representations, namely combinatorial circuits m ordered binary decision
diagrams|([24], branching programs[27] 26], or one-dimemeilook-up tabled [26].
Nevertheless, these solutions tend to be impractical dtleeio high computational
complexity for functions as the biometric matching processsidered in this paper.
Thus, specific protocols must be developed.

Recently there has been an increasing interest in the usd©ff&r data-intensive
problems, like clusterind [16, P1], filteringl [6] or statestl analysis([11] of sensitive
private data. Furthermore, the combination of signal meicey with cryptographic
techniques in order to protect privacy is an active areasﬁaﬂ:h]; among others,
solutions for recognizing speech on encrypted sigs¢88]1age classification and
object recognition on encrypted imag@ 7, 2] have beepgzed. The latter work
describes a solution to a problem that is complementarydmtie discussed in the
present paper (and can be used in conjunction with our salutiocating rectangular
regions on an encrypted image that show human faces.

Some authors proposed different complementary technifuenaking surveil-
lance cameras more privacy friendly, e@ [& 39]. Hmwethey do not consider
face recognition. These approaches use methods from gigmagssing and pattern
recognition to wipe out sensitive regions of a surveillaniceo automatically, based
on access permissions of the surveillance personnel.

There were a few attempts to make other biometric modalfitieacy-preserving,
most notably fingerprints and iris cod[, 130, 23]. Howglleese works consider a
different setting, where the biometric measurement is het@gainst a hashed tem-
plate stored on a server. The server that performs the nmgtgj@ts to know both the
biometric and the detection result (the aim is only to sestweage of templates). In
contrast, our scenario even allows to hide this informatidrere are only a few works
that apply cryptographic secure multiparty computatiothéoproblem of securing iris
codes and fingerprint templates (most nota@ h 31])heotest of our knowledge
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there is no prior solution to the much more data-intensiwbigm of securing face
biometrics.

3.9 Conclusions and Future Work

In this paper we have presented for the first time strong ograiphic privacy enhanc-
ing technologies for biometric face recognition systemspdrticular, we provided an
efficient protocol that allows to match an encrypted imaganshg a face against a
database of facial templates in such a way that the biomi&tgtf and the detection
result is hidden from the server that performs the matchifigough extensive tests,
we showed that our privacy-preserving algorithm is as bédias a reference imple-
mentation in the clear, and that the execution of the prdtcteasible on current
hardware platforms.

In this paper we used Eigenfaces, which provides a deterditenof aboub6%,
as core face recognition algorithm. Biometric algorithimat iachieve better detection
rates are known in the literature; however, these schereamach more complex and
thus more difficult to implement on encrypted images. Weddhis, as well as further
optimizations, as future work.
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Abstract

In a ubiquitously connected world, social networks are ipigyan important role on
the Internet by allowing users to find groups of people withisir interests. The data
needed to construct such networks may be considered sernstisonal information
by the users, which raises privacy concerns. The problernitifibg social networks
while user privacy is protected is hence crucial for furthevelopment of such net-
works. K-means clustering is widely used for clusteringra$e a social network. In
this paper, we provide an efficient privacy-preservingasiriof K-means clustering.
The scenario we consider involves a server and multiplesugkere users need to be
grouped into K clusters. In our protocol the server is naivedld to learn the individ-
ual user data and users are not allowed to learn the clustezrse The experiments on
the MovieLens dataset show that deployment of the systeme&duse is reasonable
as its efficiency even on conventional hardware is promising

4.1 Introduction

Internet applications in which people are grouped basedcosopal preferences have
become very popular. By grouping users, these applicafiomsde personalized ser-
vices as well as building social networks where people ca tfie opportunity to
communicate with others who share similar interests. Thezea vast amount of so-
cial networks now available for dating, traveling, readiagltural activities and many
more &]. Most users tend to give privacy sensitive data teefiefrom such applica-
tions. As in the case of dating sites, the users provide t@yktem their personality
details along with their preferences for a candidate whil&aveling networks, the
users announce a list of dates and locations for their pthtragels.

The very success of applications based on finding similapleedepends on the
accuracy of grouping users which is directly proportiomatite amount of collected
user data. Since the content of the data is mostly privacgithes the protection
of the data is a raising concern among users [10]. Many relthertrustworthiness
of the service provider that possesses all the data. Sewerdénts have shown that
this assumption is not completely trde [1]. Even if the ssevprovider protects its
database against a common security problem of identity, tiefre is no guarantee to
prevent information being passed on without consent. Aiptessolution to protect
the privacy sensitive data is having a trusted third parét th fully trusted by both
the user and the service provider that keeps the data andheragorithm instead
of the service provider. Unfortunately, having a third patat is fully trusted and
willing to do all bulky computations is not realistic. A gdane solution is deploying
cryptographic protocols to protect the privacy sensitisgadf the users. Assuming
that the server and the users are semi honest, meaning éyafoltow the protocol
steps but are curious to extract more information than tHewed to have by storing
all previous messages, it is possible to have a secure sygene no information is
revealed except the result of the algorithm run. With sucksgh, identity theft and
abuse of user data by the service provider will be unlikelthait having the secret
key that is used to secure the user preferences.



4.1. Introduction 77

A closer look at the problem of grouping users in a social oetweads us to a
well-known problem of clustering data. A user can be attddioea group of users
if the user shares a commaasteas of the users in that group. In a social network,
the preference of a user is represented by a vector in theréegpace. Thus, finding
similar users with the same taste is basically a problem wudteting these feature
vectors. The goal of the secure system is, then, grouping ugéh the same taste
while protecting their privacy by hiding their preferencatal or feature vector. At
the same time, the server should protect sensitive infeomabout the algorithm like
cluster locations. A malicious user can place himself intdeaired cluster if this
information is known. At the end of the secure clustering@eol, a user should only
obtain the label information which is in fact a pointer to ttlester he is in, and the
server should not get any information on the feature vedttheousers.

As a method of clustering data, the K-means algorithm is lyidsed because
of its simplicity and ability to converge extremely quickly practice. Hence, ir[[3,
,] the authors addressed cryptographic technfquése privacy-preserving
clustering protocols based on K-means algorithm. In theséksy the authors apply
secure multiparty computation techniquEIs [9], which makeg two-party privacy-
preserving data mining problem solvable mostly by using'¥aecure circuit evalu-
ation methodl_L_l|5]. Even though Yao's method can be used téeimgnt any func-
tion in a privacy preserving manner, heavy computationscssuch circuits make
these solutions feasible only for small circuit sizes whgh difficult requirement in
many application scenarios. i 11], the authorswgitdo solve the clustering
problem in a two-party setting which is suitable to deplaght@ques based on secret
sharing. |El2] suffers from a problem during the clusteritgpathm where a division
operation is misinterpreted as multiplication by the iseéwhich is not correct. On
the other hand]Ii4] has a multi-user setting but requiresethon-colluding entities
for the clustering algorithm and the authors overcome tlodlpm of updating cen-
troids by allowing users to perform the division algorithocélly. In order to do that,
the users possess the intermediate centroid assignmesdsimg more information
leakage. Therefore, these proposals are either not saiiiabthe problem of cluster-
ing users in a social network as they have different settingob secure and efficient
enough to deploy in practice.

In this paper, we provide a solution based on secure multisgamputation tech-
niques in a semi-honest environment. Within this setting,poposal groups people
in a social network while protecting their privacy-senatdata against the server and
other users by means of encryption. A user gets a clustetifigéerat the end of pro-
tocol but nothing more while the server obtains neither treniity of the users nor
the content of user data. Our proposal provides a solutianishcomputationally ef-
ficient and scalable to a real life scenario of a centralizedas network. We also
show that communication cost of our protocol reaches theegaenformance of the
most similar work in the field but achieving more privacy. Therall protocol was
also implemented and tested exhaustively on the MovieLetasdt. Experimental
results show that the algorithm proposed in this paper is t@iable and efficient for
practical use.
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4.2 Privacy-Preserving Clustering

Data clustering is a common technique for statistical datdysis where data is parti-
tioned into smaller subgroups with its members sharing amompropertlelS]. Par-
ticularly, each user is represented as a point iRaimensional space and is clustered
according to minimal Euclidean distance. As a very commastefing technique, K-
means assigns each uggr= (p; 1, ..., p; r) to the closest cluster amotfg clusters

C = {Cy,...,Cx} whereC; = (cj1,...,c;r). The algorithm starts with choos-
ing the constant valu& which is the number of clusters in the feature space. Each
cluster is represented by its center (also named centrdithhws initially a random
point in the space. In every iteration, the distaftg between'®" userP; and cluster
centerC;; for j = 1 to K are calculated and the user is assigned to the cluster with
the minimal distance. Once every user is assigned to a clestetroid locations are
recalculated by taking the arithmetic mean of the user iogatwithin each cluster.
These two steps are repeated until either a certain numbtarafions is reached or
centroid locations are more or less fixed.

In the privacy-preserving version of the K-means clustgatyorithm (Algorithm
[3), each step is implemented in the encrypted domain. Tdzeetllis system, the
server is assumed to have key pairs for himself of the Pa[IE] and Dam@rd,
Geisler and Krgigaard (DGKM[é 6] cryptosystems. Thes@tuyystems are chosen
as they possess a property calktitive homomorphisrthat allows us to process
data in the encrypted domain such that the product of twoypted valuesa| and[b],
corresponds to a new encrypted message whose decryptids thie sum ofi andb
aslal - [b] = [a + 0]

As a consequence of this additive homomorphism any cipktdrtecan be raised
to the poweb to obtain the encryptiofu]® = [ab]. In addition to the homomorphism
property, Paillier and DGK cryptosystems are semanticaglyure implying that each
encryption has a random element that results in differgpitaritexts for the same
plaintext. Throughout this paper we denote the Pailliergstion of a message:
by [m] and DGK encryption byfm]. We omit the keys in the notation as all encryp-
tions use the public key of the server. We also assume thdieye are generated
and certified by a third trusted party (a certification auitlypiprior to starting of the
protocol, and the public keys of the server are availabldltosars in the system. In
the following sections, we give the details for each stegefalgorithm3.

4.2.1 Computing Encrypted Distances

Assigning a user to the closest cluster requires Euclidéstarcce computations be-
tween a useP; and centroid”; in an R dimensional space as given in Equafion 4.1.
Regarding that the distance computations are only usecetermining the minimum
distance, taking the square root can be omitted.
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Algorithm 3 The Privacy-preservingl -means clustering algorithm.
Require: The server sets paramet&r and selectds random points as the initial
centroids.
Ensure: A cluster pointer to the user.
1: The user computes encrypted distances tdfhairrent centroids.
2: The server and the user run an interactive protocol to findrtilmum distance
of K encrypted distances to each centroid.
3: The server and all users jointly update the centroid looatio
4. Repeat step (1), (2) and (3) until the server finds that onkedtérmination con-
ditions is reached.
5. The server and the user run a final protocol to reveal theesilebel to the user.

R
Diz,j = ||PL - CjHQ = Z(pzn - cj,n)Q
n=1
R R R
= Zp?,n + Z(_2pi,ncj,n) + Z C?,n' (41)
n=1 n=1 n=1

The implementation of the distance computation in the grtexydomain has two
steps. First, the server encryfts2) times its centroid locations with his public
Paillier key to obtain—2c¢; ,,] for all j andn, and publishes them. Then, the user
calculates the encrypted Euclidean distance to each egasdollows: the user com-
putes the sum in first term in Equatibn4.1 and encrypts it. rtteoto compute the
encrypted second term, the additive homomorphism propéthe Paillier cryptosys-
tem is used. The user simply needs to raise each encryptémidevelue[—2c; ]
to the power ofy; ,, being the user’s location in the” dimension. These values are
then multiplied. Note that by receivirjg-2C| instead ofC1, the user spends less time
for the costly exponentiation as he only uges as the power rather than2(p; ,,).
The calculation of the last term requires encryptions ofgtyeares of the centroids.
As all needed values are known to the server, it simply sapgliese encryptions,
>E < R E % .n)» @long with the encryptions ¢f-2C]. Finally, the user
multiplies these values to obtain the encrypted dist@ﬂég] as given in Equation4.2.

R R

R
(D71 =1D>_pial- TL1=2¢inlPm - 1D ¢l (4.2)

n=1 n=1 n=1

At the end of this step, each user possegsemncrypted distances from his loca-
tion P; to the current’ centroids.

4.2.2 Preparing user data

After having obtained the encrypted distances to each @entD; 1], ..., [D; k],
the i'” user needs to find the minimum of the&eencrypted values. This requires
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a cryptographic protocol for comparing two encrypted valuéJsing the compari-
son protocol as shown in Sectibn 4.3, the user obtains arygtecd vector[l’;] =
([vi1)s - - -5 [vi,x]) wherey, ; is 1 if and only if D; ; is the minimum distance (so user
iis in cluster j), and O otherwise. Then, the user generatenarypted matrixZ;] to
be used in updating the cluster centroids. This is simplyntlaéiplication of vector
I'7" and user poinP; in the encrypted domain as shown in Equafion 4.3.

[Ml]il O A

i i . PiRr

[Z;] = [TTPR) = [%”2.] [’77,.2.] | ws)
h’i,K]pm [’}/LK]pi,R

where thejt" row of Z; equalsP; when uses is in clusterj, and0 otherwise.

4.2.3 Updating Centroids

Once all users complete their calculation on forming thargpted vectofI’;] and
encrypted matriXZ;], they jointly start a protocol for updating the centroidsor F
this step, the server creates a user chain as illustrateig) & F. We will explain the
procedure for matriceg;, the accumulation of vectods; will be similar, and even
simpler because the elementdgfonly take single bits.

User;

(W0

User;11
!
Ui\, Uis1)

Figure 4.1: User chain created to update the cluster celstroi

Each user generates a random numbéor each value in the matrix;, to be
used as blinding factors so the server will not learn theevalindividual matrices.
Actually for each uset, U; is aK by R matrix of random value§U;); .. The matrix
U, is sent to the left neighbour of the user chain. Each user atesplU;); , —
(Ui—1);» as a blinding value fofZ;),,,. Since the server will compute the sum



4.2. Privacy-Preserving Clustering 81

VAP Zﬁl(Zi)j,n, these random values will eventually cancel out. Note thet t
first user computef/:);,» — (Uar)jn, M being the number of users.

Suppose that user daga,, is at mostk bits. Then for each centroigland user
data indexn, the sumZ;}™ can maximally takes’ = k + [log M bits. In order
to sufficiently blind (a subchain of) the matrix elementg tandom numbers should
also be of sizé’. In order to keep the blinding factors uniformly distribdfeach user
should computé/; — U;_4 modulo2*’, before adding these t8;. Since the matrix
Z; is encrypted, the user cannot compte+ (U; — U;—1) modulo2*’. Therefore,
an extra random numbet (or actually an extra matri¥/’ of random numbers) is
needed to mask a possible overflow modfia This extra random number should be
 bits wherex is a security parameter, to sufficiently mask the overflovhtogerver.
Equatior[ 4.4 shows the complete valu€), ,, that is sent to the server in encrypted
form.

(ZD)jm) = U(Zi)jm] 125 (U])j +
((Ui)j,n - (Ui71)j7n mod 2”)]. (4.4)

The server will compute the matrj%’**"| by adding all matrix element$Z;), ,,]
over all users. Although the server could first decrypt the matrix elemgibtsould
be more efficient to use the homomorphic property of Pallier:

M
Z(Zz()j,n - H[(Z/)]Jl]
i=1 i=1

The server can simply compute the actual stft™ by decrypting[Z’s*™] and
computingZ’s*™ modulo2*" as shown in Equation 4.5. This is the sum of all user
points per cluster.

M
[Z/sum.} —

J.n

M

Zm = N (2 + 25 (U)o + (Ui)jn — (Ui 1))
=1
M
= D (Z)in+ Z 28(U,
=1
= Zgm 2t Z(U{ )jm = Z3%™ mod 2F. (4.5)

A similar procedure is followed for the server to obtairi*"™, which is the number
of users per cluster. The sum simply counts the number of, oreeghe number of
users assigned to each cluster The server can then updatentineids by computing

cjn = 253" /X% and rounding the result to the nearest integer.

4.2.4 Termination Control and Getting User Labels

At the end of each iteration the server checks whether thdepeemined termination
condition is reached. Since centroids locations and thebeuiof iterations are known
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to the server, this control is considered to be costlesse@mtermination condition

is reached, the label information of the user which is thexwaf the non-zero element

in the encrypted vectdt';] should be revealed to the user. For this purpose, each user
performs the following operation to obtain his cluster lab&ormation:

[ld] = [Z(%‘,j X j)] = Hh/i,j]jv (4.6)

Jj=1 Jj=1

where Id represents the cluster number that the user betond$ext, the user addi-
tively blinds this encrypted value with an uniformly randefement- of sizelog(K )+

K to get[ld + r] and re-randomize it before sending it to the server to beygéed.
The user can easily obtain his corresponding cluster labglibtracting- from the de-
crypted value sent by the server. This step completes thaqgyrpreserving K-means
clustering algorithm.

4.3 Comparison Protocol

The most important building block in our protocol for priyapreserving K-means
clustering is a cryptographic protocol that compares twarygsted/ bit values[a] and

[b] and returns the minimum of these two values encrypted alatigtiae result of the
comparisor\] whereX is 1 if « > b and0 otherwise. Instead of using Yao’s garbled
circuit approach@S], which is often used and generally potationally expensive,
in [Iﬂ] a specialized fine-tuned protocol for this task is deped.

Having the comparison protocol inl [7] at the core of our pcotp we build a
binary tree for the values to be compared (see SeCfion] 4a2.Rlustrated in Figure
[42. We assume that is a power of two. If this is not the case, dummy values
can be added to the list of values to be compared. Famalues, K — 1 comparison
results are stored by the user. When the comparisons are emphch\; ;] is
converted to DGK cryptosystem as this minor change imprtivefficiency of the
consequent computations considerably compared to usitigpiPeryptosystem. For
this conversion, the user computes a nunhefr composed of); ;] as follows:

K—1 S K-l _
A=) N2 =T Wy, 4.7)
j=1 j=1

where[\] ;] is either[); ;] or [1 — A; ;] with probability 0.5 to hide the comparison re-
sults from the server. Upon receiving the valiig], the server decrypts it and encrypts
every bit value\; ; using DGK cryptosystem to obtafp\; ;] and sends them back to
the user. The user then reverses the hiding procedure byutorgither[\; ;] or

[1 — X} ;] to obtains the correct values. After this conversion betw@gptosystems,
the user assigns the valups ;] and[1 — \; ;] to the left and right branches of each
node of the tree respectively (Figlirel4.2). Next, the usaenses the tree from root
to top to reach each leaf while adding up the branch valueshwtorresponds to the
multiplication of the encrypted values. At the end of thiesgedure, we obtain an
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encrypted valug(; ;] for each leaf, thu; ;. Only for the minimumbD; ; the value
(i,j is zero since all the branch values in the path should be Fenothe othersg; ;
is a non-zero value.

[Diyl] [Di,Z] oot [D’I:,Kfl] [D’I,K]
[[&,1M1 = Xiil [P‘LK/MI = Xiks2]
([ial, [minga]) ([Ni ol [mim i 2])
(Pix—sl, ming g -s]) (Mg -], [mini x2])

[)\i,K}]\/[1 |

(Pl [ming 1))

Figure 4.2: Binary tree used to form user vecigr

This set of values is then re-randomized, and permuted withifarmly random
permutationr before sending them to the server. The server decrypts thesrand
creates a new vector that only has a one value at the saméopasitzero in the
received vector and zeros everywhere else. This vectoers ¢émcrypted item-wise
with Paillier public key and sent back to the user. After repetation, it is used as the
X, vector described in Section 4.2.2.

4.4  Security (Sketch)

We show that our clustering algorithm fulfills the privacwichs: 1) The server learns
the number of people per cluster and the accumulated pérdataaper cluster, but
not the personal data of separate users. 2) The users leanafber of iterations of
the clustering algorithm and the index number of his owntelysut not the cluster
centroids. We give a short sketch that justifies our privdeyns in a semi-honest
attack model.

Ad 1. The server performs the comparison protocol with each usayrtimes
in order to determine the cluster centroid that is closegtatch user. However, this
comparison protocol is designed in such a way that the saiilldearn no information
about the user datal[7] or the actual minimum (index). Aftertomparison protocol
is executed K-1 times, the K-1 comparison results have toobebied in order to
find the minimum distance to the current K cluster centroidorder to switch from
Pallier to DGK, the server is given a blinded combination lbicamparison results
(see Equatiof417) that keeps the values of all K-1 companigsults hidden to the
server.

The DGK encrypted comparison results are then used to capuDGK en-
crypted values, one for each distance, in order to obtainvebeor X;. When sent to
the server, these values are permuted but not blinded. 3kigfficient, as the server
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already knows the values it will receive, and their orderaptksecret by the permu-
tation. This claim is easily proven by induction in the heighthe tree. Fork = 2,
the server will receive encryptions 6fand1. For K = 2°t!, the tree contains two
subtrees of equal size with values known to the server.(J s of the leaves of one
of those subtrees will be increased by one, but the servéillislge to predict the
values seen.

When updating the centroids, the server obtains data from eser. Just like
in the Dining Cryptographers problelﬁ [4], each user shaiesaimdom number with
his neighbour thereby masking the individual data from hatbrs. The server will
learn nothing by looking at a sum for some sub-chain of usersyill only obtain the
full accumulated data because only then all random numizarset out. Intuitively,
each user masks his input along with the inverse of the maklsafeighbour. When
eventually computing the cluster index for each user, eaehwill blind the index by
a random number to avoid information leakage to the server.

Of course, when the number of users is small, the accumutiedwill reveal
some information about the personal data, but still theesemill not know which
personal data came from which user.

Ad 2. Each user learns the valugs] and[C?] of the (intermediate) cluster cen-
troids, and from these encrypted distan@®s;] to each cluster centroid can be com-
puted. But since Palillier encryption is semantically secthis will not leak informa-
tion aboutC, C?, or D; ;. The comparison protocol, whose security is provenlin [7],
results in an encrypted comparison bit and the encryptedthmim. Since all further
information that is obtained in the computation of the epteg user vectar’; is also
encrypted, this will also not leak information. While updaftithe centroids, users ob-
tain random numbers from neighbours which are used to bfiaduser vectors from
the server. Since no personal data is exchanged here, agaiformation is leaked.

Since each user knows the number of iterations, some infaymiz leaked about
the cluster centroids, especially when the total numbeisefalis small. But in prac-
tice this amount can probably be neglec@ [12].

4.5 Experiments

The privacy-preserving K-means clustering algorithm enésd in the paper has been
implemented in order to determine its performance andbiditia This has been done
in C++ using the GNU GMP library version 4.2.1. The tests waeeformed on a
computer with Intel Xeon 2.33 GHz processor and 32GB of Raming SuSE 10.3
operating system. Both server and user, modeled as septasges, run on the same
machine, thus network latency was not considered in thedestts.

The MovielLens datasetwv. gr oupl ens. or g) was used for our experiments.
This contains 100,000 integer ratings in the rang¢0o$] for 1682 movies by 943
users. As the sparseness of the dataset is great (94%),e&t soh&ining the movies
rated by most users was considered. We filled the null ertfifsis subset with the
user mean vote rounded to the nearest integer value for tihesponding row. The
number of movies in this subset, representedyalso determines the parameter
which is the bit length of the values to be compared. The patar should be big
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enough to hold the largest possible value which is the Eeahdlistance squared be-
tween two user rating vectors in our case. Since our aim i©idavghe equivalent
accuracy between the plain and privacy-preserved K-mdastedng algorithm, we
set the number of clusteis to a single value. The parameters used for the experi-
ments are given in Table4.1.

Table 4.1: Parameters.

Parameter | Value
R 12
K 10
V4 9 bits
K 112 bits

Paillier Encryption | 2048 bits
DGK Encryption 1024 bits

4.5.1 Reliability

The privacy-preserving K-means clustering protocol isgtesd for an accuracy equiv-
alent to the plain clustering algorithm. The only possibégrdation is due to the
integer arithmetic used for updating centroids. As the wgystem used in our proto-
col accepts only integer values, the location of the ceds$rai the space should also
be represented by integers. This can be achieved by scalthgpanding the values,
however, in our application scenario we experienced thaguscaling does not intro-
duce noticeable improvement that can effect the outcombeotiustering protocol.
Therefore, we only round the values to the nearest integer.

4.5.2 Round Complexity

The distance computation and the updating of the centratis fequire one round,
while each comparison require four. As the minimum/ofvalues can be found in
O(log(K)) rounds by using binary tree approach as illustrated in E[d2, the over-

all round complexity of one iteration of the privacy-preseg K-means clustering
protocol is2 + 4log(K). In addition, one extra round is required at the end of the
clustering protocol to send the final labels to the users. robad complexity of our
work outperforms the comparable work of Vaidya and Cliﬁl@][which has a round
complexity ofO(M + K) in their basic algorithm an@ (M) in optimized version.

4.5.3 Communication Complexity

Communication complexity is mainly determined by the amafrencrypted mes-
sages exchanged between the server and the users. Theitaforelated to the size
of the Paillier and DGK encryptions. The communication c@rity is O(K (R+Y)).
Considering that = log, (R x ¢) wherec is the possible maximium distance-squared
between two rating vectors of siZe, the overall communication cost can be written
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asO(KR) . The amount of data sent by the server and the user is 48 kBfetache
iteration using the parameters given in Tdbld 4.1.

As E @,Ell] have proposals for a two-party setting basedenret sharing,
we can compare our result only ial4] which has the same cariwation cost of
O(KR) bits. In addition to achieveing the same level of commuitecatost, in our
proposal, we keep intermediate centroid locations hiddem the users and have no
need for particular non-colluding entities, meaning bgtté/acy.

4.5.4 Computational Complexity

The computational complexity of our privacy-preservingrt€ans clustering proto-
col is mainly dependend on the Paillier and DGK cyptosystemsone iteration of
the clustering, the total computational complexityI6K R) Paillier encryptions, ex-
ponentiations and multiplications afd( K ¢) DGK encryptions and)(K ¢?) DGK
multiplications for the user. The server needs to comgUt& + R) Paillier encryp-
tions, O(K R) Paillier decryptions an@ (M K R) Paillier multiplications. In addition
to that, the server also comput@$K ¢) DGK encryptions and decryptions.

The running time of our implementation is given in Tablel 4.2hva different
number of users for 10 iterations. As given in the compleaitglysis, for constamt’
and R the running time is linear in the number of us@isin the system and it only
takes roughlyl hour to clustep43 users.

Table 4.2: Computational Complexity (in minutes).
M | Time | Time with pre-computation

100 | 17.9 6.9
250 | 441 17.2
500 | 88.0 33.8
750 | 1345 51.6
943 | 166.1 64.5

The second column of Table 4.2 reflects the running time ofathele protocol
without any optimization. The random values used for enttoyand blinding and the
exponentiations™, h” that are used in Paillier and DGK encryptions respectivaly ¢
be generated in idle processor time or prior to the start®fpttotocol. The running
time of the protocol under these optimizations is given i tihird column of Table
[4.2. These values will be much smaller in a real system wiheretare at least/ + 1
processors and many operations can be realized asyncistgnou

4.6 Variations

The privacy-preserving K-means clustering algorithmddtrced in this paper can be
improved further in two main directions. First, the effiadgrof the protocol can be
enhanced by employing simple modifications. The amount & gant among users
can be reduced significantly, resulting less communicatiost. In each iteration,
the users receives several random values from their rigighbeur to be used in
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blinding procedure for updating the centroids. Insteacoflom values, the users can
exchange keys for the pseudo-random generator (PNG) inrgtglace so that they
can generate the random values themselves. Itis also iamidotnote that depending
on the type of user data, a considerable amount of compnsati@an be avoided. Since
random values depends on the bit-length of user Hatar small values of;, small
random values are needed. This introduces a considerahlengaomputations.

Second, the privacy of the users can be protected more byfitiegpdrom the
structure of social networks. If the server would colludéwtivo users, the user chain
is divided and the server effectively splits the user sewio. tHowever, the blinding
for the centroid update procedure does not require a rands@n ahain, merely a
connected graph, where pairs of users blind/unblind. &usté# having a random user
chain, one idea could be to use a “friend-list” from the ski®t only does this make
it more difficult for the server to split the group in two, pé®may have more trust in
those they know rather than some other arbitrary users ytsiem.

4.7 Conclusion

In this paper we present an efficient, privacy-preservingé&ans clustering algorithm
in a social network setting. In particular, we propose aqmotin which privacy
sensitive data of the users is kept hidden from the serverttandluster locations
in the user space are kept secret from the users. Our prato@ioly uses secure
multiparty computation techniques, but instead of usingegie solutions, it benefits
from fine-tuned cryptographic protocols developed for kigfficiency. Our proposal
achieves more privacy by hiding all sensitive user data fiteerserver and the centroid
locations from the users with the same level of communicatist of [14] which has
a comparable multi-user setting. The implementation ofgitieacy-preserving K-
means clustering algorithm with MovieLens dataset shows tiie accuracy of the
system is as reliable as the reference implementation ar eled the running time
of the protocol is promising even on modest hardware platfor The numbers we
have obtained from the experiments show that the protoasgnted in this paper is
efficient enough to be deployed in practice.
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Abstract

Recommender systems have become an important researcasattesy enable per-
sonalized recommendations and services to users. Thesensyahich explore user
behavior and user ratings to improve the recommendatiocegsoare highly depen-
dent on the amount of information collected from the usehss ihformation is mostly

privacy-sensitive and open to be abused by the servicegepkimself if not protected
properly. In this paper, we propose a method based on cmaytb@ techniques to
provide privacy to the users of recommender systems. Teeeelihis goal, the user
data are kept encrypted on a server and a third actor calleaclrService Provider

(PSP) participates in a secure protocol to generate recowfetiens for the users.
The proposed protocol does not leak information to the PSRtenserver, providing

privacy to the users. The common problem of data expansienalthe use of public

key cryptosystems for encryption is handled by packingeslinroughout the proto-
col. This approach reduces both communication and conipaotabsts significantly

as shown in performance analysis.

5.1 Introduction

Recent statistics show that more than 48% people in Eur@8é,i Oceania and 74%
in North America have Internet access by the end of year Z@DS'IIhese numbers
are still growing as people start connecting to the Intematonly by using PCs
but also having portable gadgets like mobile phones and PBAdoser look at the
usage of the Internet shows that many people benefit from rausepplications that
enable them to communicate with other people, do onlinehgpfind locations and
download digital content. The numbers for some social ntwibes can demonstrate
the wide usage of such applications: Facebook 250 milliopSpace 260 million,
LinkedIn 43 million and Adult FriendFinder 33 million regésed usersﬂZ].

The business model of such applications aims at increasengumber of its users
by providing high quality services. In order to achieve tlsarvice providers offer
personalization so that the users can customize the sexwt®ding to their prefer-
ences. Depending on the previous behavior or likes-dislikee application adapts
its algorithm to the user profile. As in the case of online giog, the user can be
suggested a list of items which is derived from the user'viptes shopping list or
the items that are bought by similar users. In the case ofbkaoetwork sites, user
preference data can be used to find similar people or groupsauBe of its impact
on e-business and research challenges, recommender systeenbecome an impor-
tant research area since mid-1990s both in the industry eanteania. In spite of the
diversity of techniques on generating recommendatinstmay all rely on the same
basis: gathering more information about the users.

Depending on the application type, the required data cay fvam name, age,
birth date and location, traveling plans, plate number toenivacy-sensitive data
like medical records. It is quite possible that the servigas/igler may try to collect
more information on the users or even if this is not the cdse stored data can be
attacked by intruders. In either case, the consequences\aeee for the privacy of the
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users. Therefore, there is no solid guarantee on the profacser data against neither
the service provider nor the adversaries. Even though thata the regulations in

the direction of protecting user privacy limit the servigeyiders in repurposing the

data to their own benefits, without privacy-sensitive tegbgies these regulations do
not provide full privacy.

Privacy problems in recommender systems have been raisayénal works. In
[@], Canny proposes a system where the private user datecigmed and recom-
mendations are generated by applying an iterative proedshsed on conjugate gra-
dient algorithm. The algorithm computes a characteripatimtrix of the users in
a subspace and generates recommendations by calculgtimgertions on it in the
encrypted domain. Since the algorithm is iterative, it takeny rounds for conver-
gence and in each round users need to participate in an éxpe&leryption proce-
dure which is based on a threshold scheme where a signifioaitpof the users are
assumed to participate and be honest. The output of eaetidgtiemwhich is the char-
acterization matrix is available in clear. Id [5], Canny poses a method to protect
the privacy of users based on a probabilistic factor anslygdel by using a similar
approach as in [4].

While Canny prefers to work with encrypted user data, Poldt@an suggest to
protect the privacy of users by using randomization teahesd 13/ 14]. In their pa-
per, they blind the users data with a known random distrougissuming that in ag-
gregated data this randomization will cancel out and tha datained will be a good
estimation of the intended original data. The success sfrtiéthod highly related
to the number of users participating in the computation &gl creates a trade-off
between accuracy/correctness of the recommendationsuamlolen of users. The out-
come of the algorithm is also available to the server whicjregates the data. In
addition to this information leakage, the randomizatiarhtéques are believed to be
highly insecurel[16].

We propose to encrypt the user preference data by using arhombic cryp-
tosystem. Once the data is encrypted, it is sent to the sepvavider that has a busi-
ness interest for generating recommendations to the USiexse the data is encrypted,
processing it requires using cryptographic protocols thasesecure multiparty com-
putation techniques which are mostly interactive. In oitdelimit the user’s partic-
ipation in such interactive protocols and thus to reduceatbekload of the user, we
propose a new actor in our privacy-preserving recommendges, namelyPrivacy
Service Provide(PSP). The PSP is different from trusted third parties (TiRhe
sense that the PSP has a business interest in providing mesodations to the users.
Therefore, the proposed system consists of two entitiethel yerver that stores the
encrypted user data and 2) the PSP that participates inaengrecommendations
in a privacy-preserving manner in accordance with the seHere, it is important to
note that the PSP and the server have different businesesh&ich that the PSP is
interested in generating recommendations for the usereglsehe server offers safe
storage in vast amounts.

To illustrate this idea, consider the following example. Feurates several restau-
rants; travels to another city and wants to find a good reataurfor this purpose,
he asks for a recommendation from the PSP based on his ratirggl y the server.
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The outcome of the protocol is average ratings from a grougiroflar other people
for some restaurants. Regardless of the application, ipaiocol the content of user
data, the intermediate values and the output of the algorétte unknown to the PSP
and the server. This provides better privacy comparda B][4n addition to that, our
protocol is based on provably secure cryptographic pmestand does not depend on
the number of users which is not the case.in Eg 14].

Since our technique to protect the privacy of users invokersantically secure
asymmetric cryptosystems; an expansion in data size istaid® which increases
the communication cost. To reduce the cost, we propose m@aalser data when
it is possible. As a result, the amount of expensive opetation encrypted data
reduces considerably. The dramatic decrease in both catmpuand communication
costs makes our system particularly promising for realesysieployment as shown
in performance analysis.

5.2 Collaborative Filtering

A centralized system for generating recommendations isnahntan approach in e-
commerce applications. To generate recommendations feeia the server follows
a two-step procedure. In the first step, the similar userbénsystem are searched.
Each user in the system is represented by a preference veatdr is usually formed
of ratings for each item within a certain range. Finding &musers is based on
computing similarity measures between users’ preferemeetrs. The similarity
measure is a Pearson correlation as defined in[(El. 5.1) tousers with preference
vectorsVay = (z40,...,vanm—1)" andVg = (vgo,...,vpnm—1)T respectively
whereM is the number of items and,represents the average value of the vegtor

Sty (vai — Ua)(vp: — Tp)
VEM ai — T2 T (s — )2

Once the similarity measures between users are computedetier proceeds
with the second step. In this step, the server chooses thé firsers with the highest
similarity values and determines tihecommendatioby averaging their ratings for
the requested item.

In e-commerce applications the number of items offered &yauare usually in
the order of hundreds of thousands. Apart from many smartswedydetermining
the likes and dislikes of users for the items such as clickdoglysis, we assume
the users are asked to rate the items explicitly with integdues in the range of
[0, K]. Regarding the number of items and user behavior for ratiegd, the data
that the server can obtain is highly sparse, meaning that ofake items are not
rated. Finding similar users in a sparse dataset can easitlythe server to generate
inaccurate recommendations. To cope with this problemappeoach is introducing
a small set of items that is rated by most users. Such a basarsbe explicitly given
to the users or implicitly chosen by the server from mosttgdatems. Having a small
set of items that is rated by most users, the server can censpuilarities between
users more confidently, resulting in more accurate recordatemns. Therefore, we

simA7B =

(5.1)
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assume that the user preference vettas split into two parts: the first part consists
of R elements that are fully rated by most of the users and thensggart contains
M — R partly rated items that the user would like to get recommgaodsa on I[__ﬁ].

5.3 Preliminaries

We use encryption to protect user data against the reconmenepstem, i.e. the server
and other users. A special class of cryptosystems, nhamehphmrphic cryptosys-
tems, allow us to process the data in its encrypted form. ig1glction we briefly
describe the homomorphic cryptosystems and introduce twmiagraphic protocols
that we use in our privacy-preserving centralized recontdaesystem. We use the
semi-honest security model, which assumes that all pldpéosv the protocol steps
but are curious and thus keep all messages from previousuasreht steps to extract
more information than they are allowed to have. Our proteewnl be adapted to the
active attacker model by using the ideas i [11] with an aoldéti overhead.

5.3.1 Homomorphic Cryptosystems

We use two cryptosystems: PaiIIi12] and Dardy Geisler and Krgigaard (DGK)
[|f|, ]. We use the Paillier cryptosystem to encrypt the mjvaensitive data whereas
DGK is used in a cryptographic subprotocol that is partiduldesigned to compare
encrypted values. This protocol makes computations orebé land the DGK cryp-
tosystem was chosen as it performs better than the Paitljptasystem in terms of
encryption and decryption time due to its much smaller ngsspace.

The Paillier and the DGK cryptosystems possess a propdtededditive homo-
morphismthat allows us to process data in the encrypted domain: theupt of two
encrypted valuek:] and[b] where[-] denotes the encryption function, corresponds to a
new encrypted message whose decryption yields the surarmdb as[a]-[0] = [a+b].

As a consequence of the additive homomorphism any ciphdrteraised to the
powerb results in the encryptiofu]® = [a - b]. In addition to the homomorphism
property, the Paillier and the DGK cryptosystems are seicelht secure implying
that each encryption has a random element that resultsfaretit ciphertexts for the
same plaintext. Throughout this paper we denote the Raglfieryption of a message
m by [m] and the DGK encryption bfm]. We omit the keys in the notation as all
encryptions use the public key of the PSP.

5.3.2 Secure Multiplication Protocol

The secure multiplication protocol in [@ 9] can be adapted two-party protocol in
which one partyA, has two encrypted valugg and[b], and the other party3, has the
decryption key. The protocol outputs the encrypted vitué)] to the partyA without
B learninga or b. Assuming that the encryption scheme is additively homainiar

1. A generates two uniformly distributed random numbegrandr,, and subtracts
these numbers from the encryptign$and|b] respectivelya] = [a] - [-r1] =

[a —ri], [b] = [b] - [-72] = [b — 72]. Afterwards, he sendg] and[b] to B.
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2. B decryptsja] and[b], multiplies them and sends the encrypted prodjact}]
to A.

3. A removes the random values and obtains the encryption ofrtiaupt ofa
andb as follows:[a - b] = [@- b] - [a]"2 - [b]" - [~71 - 7).

5.3.3 Secure Decryption Protocol

Similar to the secure multiplication protocol, a securerggiion protocol can be de-
signed based orﬂ[G]. In this protocol, partydemands for the decryption of an en-
crypted valueja] without revealing it to the owner of the decryption kBy Using an
additively homomaorphic cryptosystem, this protocol carsbmmarized as follows:

1. A generates a uniformly random numbeand blinds the encryption with this
number:[a] = [a] - [r]. Then,A sendda] to B.

2. B decryptsja] and sends it back td.

3. A obtains the decryption d&] by subtracting: froma: a = a — r.

5.4 Privacy-Preserving Collaborative Filtering

We propose a cryptographic protocol based on secure muijtipamputation (SMC)
techniques to implement the two steps of the recommendatamedure introduced in
Sect[5.2 in a privacy-preserving manner. The privacyitieaslata of users, i.e. pref-
erences, is stored by the server in the encrypted form. Quhia recommendation
generation, the intermediate outcomes of the protocolghasimilarity values among
users, are privacy sensitive and must be kept secret bathtfre server and the PSP.
The identity of the most similar users are, of course, unkntmall three players.

Our protocol starts with a request from a user for recommigoe Upon the
request, the PSP and the server initiates a protocol tordigterthe similarity values
between the user requesting recommendations and the athibres system. The.
most similar users are chosen for the second step in whighrttengs are accumu-
lated under encryption. In the final step, the server serelachumulated ratings and
the numbel to the user. The user obtains the desired recommendatienslafiding
the accumulated rating by. This protocol is detailed in the following sections.

5.4.1 Step 1: Initialization

The preference data and similarity measures are protegteeans of encryption. For
this purpose, the PSP generates key pairs for the PailleetrenDGK cryptosystems
and publishes the public keys with valid certificates. Gitlem Paillier public key,
all users encrypts their preference data as follows. TheAinatings that are to be
used for computing the similarities are processed and d¢albe used in similarity
computation. Since the Pearson correlation giveri i (i ugerA and B can be
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also written as:

R—1 _ _
(va;—Ta) (v, —UR)

% Vo - a2 T om0

Cl C2

SimA’B =

; (5.2)

the termsC; andC> can be easily computed by usetsand B, respectively. Each
user computes a vector from which the mean is subtracted @mdatized. Since the
elements of the vector are real numbers and cryptosystemgr defined on integer
values, they are all scaled by a paramgtevrith enough precision and rounded to the
nearest integer resulting in a new veckr= (v; , ..., v; ;)" whose elements are
now k bit positive integers. The remaining elements of the vetiare processed to
have a packed representation. We follow a similar constmi¢o ] to pack values
in one encryption to decrease the number of encryptions tabsferred between the
server and the PSP and the number of operations on the eedidgita. For simplicity,
we assume that packing arbitrary number of values in oneyptian is possible. We
clarify this later in this section.

The vector elements df; are packed in such a way that it can allow addition of
L values of sizé: bits as follows:

M—-R—-1

o = Z Vi, j+R * (2k+log(L))j7 (53)
7=0

wherei is the user indexk is the number of bits used to represent the ratings after
scaling and. is the upper bound of the number of most similar users abdwesatiold
0 in the system. AIIN users in the system encrypt these computed values with the
Paillier public key of the PSP and sefid; o], [vi 1], . . -, [vi,r—1], [c;]) tO the server.
Note that the decryption key is only available to the PSP,mmggthe server cannot
decrypt and see the content of the encryptions.

Each user that enters the recommender system is requirg@dbtaduhis encrypted
data to the server. After that, any user is able to requesteimmmendations by
notifying the server.

5.4.2 Step 2: Finding Similar Users

Upon the request of recommendations from uéethe PSP and the server initiate a
protocol to find the beskt similar users to the uset. Similar users can be found by
computing similarity measures between the udeand all other users in the system
as described in Se¢f. 5.2. Note that after processing theffidements of the user
preference vector as described in the initialization step,similarity computation
based on Pearson correlation becomes an inner product ekstors as given below.

R—1
[simap] = [(VA)" - V] =D vl - vl ). (5.4)

=0
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Because only the encrypted forms are available to the seheesimilarity com-
putation requires running the secure multiplication pcotas described in Se€f. b.3.
This protocol consists of several encryptions, decrypgti@xponentiations and mul-
tiplications. Instead of running the secure multiplicatjrotocol for each similarity
computation between usdrand uset, the server creates a packed representa;j‘bn
of the all[V/]'s to reduce the costs as follows (Fig.5.1):

k bits
-
/ / /
US@TI’ Z1,0 | T11 | | T1,R-1 ‘
T
! !
Usery ’ Th | Ty, | | Ty p-1 ‘
I
\ 1
| I
| I
| I
| I
/ ! !
vr e L ] | ohn]
A / / /
) ’ 10 | Ta0 | | TNy ‘
-

2k + log(R) + 2 bits

Figure 5.1: lllustration of packing/’/|'s. The values with the same index are packed
for all users in one encryption with enough space to allowhferrprocessing.

N-1 N-1
[0_;4] _ [ Z 9. U;j ) (22k+log(R)+2)1ﬁ] _ [Ug7j]2.(22k+log(R)+2)i, (5.5)
1=0,i#A 1=0,i#A

for j = 0to R—1 where2k+log(R)+2 is the required number of bits for multiplying
two k-bit numbers and adding of them. The additional 2 bits are necessary for the
procedure described in Selct]5.5.

Once the server computes the valdgs'], he runsk secure multiplication pro-
tocols to obtain([og' - v)y o], ..., [0f_1 - V)4 z_1])- The server then computes the
encrypted sum of these valugs,],

R—1 R—1
L4l =1 o v )= [[lo] - via,] = [simaolsima,|...[sima 1] (5.6)
j=0 j=0

The value[X 4] is in fact the packing ofV similarity values (FigCElR). After having
computed the similarity values between user A and everyratber in a packed form,
the server runs a protocol with the PSP to determine a seto$ usth high similarity.
This cryptographic protocol, as detailed in SEC 5.5, $itie content of the encrypted
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Figure 5.2: lllustration of packing;"’s to obtain¥ 4 in clear.

values from both the server and the PSP, and outputs a vefctarcoypted values
T4l = ([va0l, [van]---,[va,n—1]) wherey, ; is 1 if and only if the sim, ; exceeds
a valued and 0 otherwise.

5.4.3 Step 3: Generating Recommendations

Once the encrypted vect@r 4] is obtained, the server runs the secure multiplication
protocol with the PSP to multiply each; with the corresponding,4 ; value. These
multiplications yield the value@p;| = [«; - 4] fori = 0 to N — 1. Note that®; will

be equal to the encryption of wheny,4 ; = 1 and contains an encrypted 0 otherwise.
The server then adds up these values as follows,

[Csum = Zcb H 1= al, (5.7)
=0 €S

whereI'sym is the sum of packed ratings of usersSnwhich is the set ofl. most
similar users. The server also computé$that corresponds to the number of user
with similarity value higher than threshobdby simply multiplying thef 4 ;] values,

N-1
Z Yail = H (Y4l (5.8)
1=0

Together with[L], the server sends tHEsum to userA. To obtain the final rec-
ommendations, the userruns the secure decryption protocol with the PSP, unpacks
the recommendations and divides each valué. bgking into account the scaling pa-
rameterf to obtain the recommendations. These are, in fact, avetagesofL users
for the whole item set. This means that uskegets average ratings of all items. This
step concludes our privacy-preserving protocol for recemader systems.
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5.4.4 Packing Encrypted Values

In the presentation of our protocol, for the sake of simplisie assumed that packing
all values in one encryption is possible. However, this agsion is not true. For
the computation ofx values, the number of; ; values that can be packed in one
encryption isT; = Lﬁog@ﬂ wheren is the message space of the cryptosystem and
k 4+ log(L) is the number of bits required for each value. As a resultntiraber of«
values that each user needs to sent is- [MT—:RW. Similarly, the server needs more
than one encryption for the packed representatiofi’gfs. However, for blinding
of ¥4 as described in the following section, we need to reserbéis in the most
significant part to prevent an overflow. Thus, the number wélues required in total
can be given by, = (%] whereT, = LW_&)HJ' This also gives us the number
of [¥ 4] values.

5.5 Determining the first L users with highest similar-
ity

In Sect[5.4.P, the server computes an encryption of thegohsknilarity values of
a userA: [X4] = [simg4g|sima 1|...|sims y_1]. We need to determine the simi-
larity values in[X 4] that exceed a public threshadd In this section we introduce a
cryptographic protocol for performing these comparisdhis based 0n|]7|:|9] which
compares two encrypted values, however, the solution isfraddising the packing
idea in order to improve the efficiency of the protocol, bathgarding computation
and communication costs.

The desired outcome here is a vector of encrypted fits] = ([va0l,-- -,
[va,n-1]), wherevyy ; is 1 if and only if the simy ; is above the public threshold
d and0 otherwise. Each similarity value sjmis of sizel = 2k +log(R) bits (and so
is §). By the construction of the packed representatidn of beazh of them is stored
in the middle of ar(¢ + 2)-bit “compartment,” with the top and bottom bits seto

5.5.1 Comparison

Focusing on a single comparison, the idea behind the presemparison protocol is
similar to that of many previous ones: compute an encrygtion = [2¢+sim, ;— 4]
and determine the most significant bflgf). This value will bel exactly when the
similarity value matches or exceeds the threshold; ndyitahust also remain secret.

Note that the computation of the encrypt&d can be performed in parallel on all
similarity values in a single encryption. The server simgynputes

D] = [NZ 20| <z | X @y e -a), 69

which is a packed list of thé"). Each of them are at mo&t-1 bits long and therefore
fit in a single compartment, as this was constructed with aneflheadroom, i.e. an
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additional bit set to zero. We denote ftfe-2)-bit value of the entiré'th compartment
d®,
d(7) = QJ(Z) = 2£+1 + QSimAﬂ‘ — 26,

and specify the desired outcome asdlé%l.

The server blind§D] — and thus thé(® contained therein — by adding a uniformly
distributed randontx + (¢ 4 2)NV)-bit numberr:

[z] :=[D]:[r]=[D +r]. (5.10)

Note that as[(5]9) and (5.10) both add a known value, for effimy they should of
course be implemented as a single multiplication. The sénax computes(”) such
thatr mod 2V (+2) = SYV1 .00 (2642): eachr() corresponds to the masking value
for the compartment Notice that similarly to thel(”), the integers(") are/ + 2 bits
long. At this point the server rerandomize$and sends it to the PSP.

The PSP decrypts the receiviedl and computes each?) values such that mod
oN(E+2) — SNV (D)(2642)i e, the unpacking of in the plain domain. At this
point each of theV compartments have been separated into valuésand (%),
Further, 20 = 7 + 4% mod 2¢+2 exceptthat carries may propagate from one
compartment to the next.

As z = D + r, it is clear that for every bit-positiony,, z; = D; @ r; @ Cj,

where(C; is the j'th carry-bit of the addition ofD andr. Hence, we havelEJr1
O

Tolq D z§+1 @ Ci(e42)++1)- If additive sharings of thes&/' carry-bits modulo 2

were given (i.e. if the PSP knewpﬁiﬁﬂeﬂ) and the server knewW;G\3) , ;1)

such thatC; gy o)1 041y = OZ€+2)+(€+1) ® Cf&rg) (¢e+1)): then for each similarity

,PSP ;
value, the PSP could simply encryfit,;*" = 2, @ Ci% 2+ 041y @nd send it to
the server.

The server could then compute the encryptions ofdﬁél by either retaining

[dg'zy ™"} or flipping it (computing1] - [d"*")=" = [1 — d2"*"”]) depending on

(2)
the value ofr, [, ® Cf&f_‘SH(ZH) . . _
For eachi, 0 < i < N, the server and the PSP determine the desired carry-bits by
running the protocol summarized in the following sectiorssAming that these bits
are correctly computed, the server at this pointNamcryptions[dE,JZl] [v4.i]. SO

after theseV executions, the vectdF 4] has been obtained.

5.5.2 Obtaining the& Sharing of the Carry-bits

In the previous section, the comparison of similarity valaen ; to the threshold is
reduced to that of obtaininyy additive sharings modul®of carry-bits of the addition
of the secretD and the random generated by the server. Each of these is computed
by running a comparison protocol where the server knows et iand the PSP the
other. This subprotocol is adapted frdﬂ1|I|7, 9.

The key observation is that if the desired carry-bit of cortipanti is set, then
7 mod 21 > (¥ mod 2¢+1. Clearly the sum (modul@**?') of d) mod 2¢+1
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andr( mod 2t is bigger than- mod 2! except if an overflow occurred. An
overflow from the compartment below will not change this. &8 = 24, it is
guaranteed thatff) = 0. Hence, a propagated carry may simply be viewed as “part
of d” in the above intuition.

At this point all that is needed is a comparison of each ofrffiemod 2¢t! and
2 mod 2+ where the outcome i shared. This happens just before termination
in the comparison oﬂ9]. We list the overall steps perforpfeda full description see
the original paper.

1. The PSP sends DGK encryptions of the bits of each ofthenod 2¢+1; N (¢+
1) encryptions in all.

2. Based on the bits of thé”) mod 2¢*!, the server computes encryptions con-
taining only a masking of the desired result; these are thants the PSP. The
main idea here is that the server picks uniformly random bits and specifies
the goal as either(?) > () or z(*) > (*) depending on these.

3. The PSP decrypts and determines the comparison resutgevdr, as it does
not know theb(® — i.e. the direction of the comparisons — no information is
revealed (thé(?)’s can be viewed as onetime pads).

This concludes the computation, as tfé’s and the outcomes of the comparisons are
exactly® sharings of the results. The PSP and the server then usedtedlgiesults
they have obtained here to provide the server with an eriorypf each of the results
the comparisons of the sim and§ as described above. Correctness of the entire
protocol follows by the discussion underway.

5.6 Security Analysis

We assume that all participants in the recommender systestuding users, server
and PSP, are honest but curious. They all follow the ruledhefprotocol, but will
collect all their information and try to compute privateaniation from this. We as-
sume that the server and PSP do not collude — procedurahinagi@nal or legal steps
should be taken to ensure this. Both may, however, collabaevih users, potentially
including A. We only consider static attackers meaning that the setrofipbparties
must be specified in advance. It does not appear that adatixersaries have any
advantage; the restriction is required for technical reasturing the proof.

Intuitively, the inputs of honest parties antls output are hidden from any at-
tacker. The server only sees encryptions of the inputs utidePSP’s public key,
while the PSP only receives (encryptions of) masked valua® fwhich no infor-
mation can be learned. More formally, security is shown biyniteg an ideal func-
tionality and providing a simulator argument: the view of ttorrupt parties (inputs,
randomness, and messages) can be simulated (an indistiagie view can be gener-
ated in polynomial time), implying that any attack agait& protocol also works in
an ideal setting. The reader is referred to Goldréich [16jHe full, formal definition.

The desired ideal functionalityFrs, simply receives the inputs from all parties,
i.e. a preference vectdr; = (v;0,...,v;, m—1) from each uset, and the query of
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A. The server and PSP are merely facilitators “authorizihg’¢omputation but pro-
viding no inputs themselvesFgs then determines the outpiity = (L, 'sum) — the
number of similar users and the sum of their ratings — as Bpd@bove. This is sent
to A, while all other parties receive empty outputs.

Users.With the exception ofd, the entire view of any usér0 < i < N consists
only of its inputV; and the encryption of that input. They receive no messagegeh
perfectly simulating the entire view is trivial. It is meyehe input and its encryption
under the (simulated) public key of the PSP. The case of pleltisers is analogous.

Server. The view of the server contains the encrypted inputs of @ta% < i <
N, VT = ([viols -, [vi g_1]s [Ai]), wherev; ; is the scaled version of, ;, andA;
is the packed representation of the remaining preferemreegits. In addition to this,
it consists of the messages received underway, e.g. dumge multiplications and
comparisons. However, all these intermediate values amplgiencryptions under
one of the PSP’s public keys.

As the entire view of the server consists only of encrypti@msl both the Paillier
and DGK encryptions schemes are semantically secure, atbages from the PSP
and the honest users can therefore be simulated with emmmgpf0 under the rel-
evant key. This is indistinguishable from the real enciyqudi For the corrupt users,
the inputs are known, implying that they can be simulatedegdy. It is therefore
impossible for the server to extract any private infornmateven when colluding with
a subset of the users (other thah

PSP.The initial state of the PSP consists of its public and peay pair. Because
of the ability to decrypt, all messages sent to the PSP dtni@grotocol are blinded.
Note that the present security argument is independentyot@mupt users.

During the secure multiplication protocol, the server adaglom values that are
(the security parameter) bits longer than the actual onessd sums are indistinguish-
able (except with probability negligible ir) from random values of the same length
as the masks. Hence it can be simulated by providing the PBHnesh encryptions
of such random values. When determining thesers with highest similarity, the PSP
obtainsg[X 4 + 7], which also reveal no information by the same argument. iBlatso
the case when running the secure decryption protocol atrttie e

Security of the comparison protocol is analogous. Durirgheavocation, the PSP
obtains? + 1 DGK encrypted values. Each such tuple contains a blinded .bithe
blinding is more complicated than above, but the outcomkasame: the messages
received can be simulated by providing fresh encryptionsantlom values from a
specified distribution. Sekl [Iﬂ 9] for details.

User A. It remains to argue that the view of uséidoes not compromise security,
even if the server or PSP are also corrupt. Until the executfothe final secure
decryption protocol with the PSH, is no different from any other user, except for the
role of the input in the secure computatiotis view consists only of its input and the
encryption it should generate, which is easily simulated.

In the concluding decryption protocol, should know its random masi(selected
from its own randomness) and receive first a fresh encrypmifofy from the server
and then the decrypted+ f4. This is easily simulated, as the simulator knows both
the randomness ang;. If the server and collude, then the server must receive this
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encryption before passing it on. K colludes with the PSP, its view must also be
altered slightly. The simulator must provide an encryptidrthe correctly masked
value in the decryption protocol rather than simply a random.

If A colludes withmanyother users, then clearly combining their inputs with the
outcome will reveal some information on the inputs of the agrimg ones. E.g. if all
but one users are corrupt, leaking whether the final usemi¢agito A is unavoidable.
This is a property of the protocol, amibt a security issue. The desired goal is for
to obtain the recommendations, and theserelated to the inputs of other users. In
practice, though, it is unlikely that any significant subsiethe parties will collude in
a large scale setting.

5.7 Performance Analysis

The performance analysis of our protocol is mainly deteediby the interaction
between the server and the PSP. The users are only paitigipatthe protocol in
two stages: 1) when they first enter the system and uploadeheiypted data and 2)
when they receive the encrypted recommendation. Thus, tindevwvorkload of the
protocol is shared between the server and the PSP.

Round Complexity. The round complexity of our protocol is constant and 6
rounds. The data transfer from users to the server in thialindtion stage is 0.5
round. To determine the similar users and generating tt@meeendation, the server
and the PSP need 4 rounds of interaction. Notice that dun@gdmparison protocol
to obtain[I" 4], all encrypted values are compared to a public valaed, all compar-
isons can be done in parallel. In the last stage, the sermdssbe recommendation to
the user which requires another 0.5 round and the user rurstacpl together with
the PSP for the secure decryption protocol which is 1 rouhis ivesO(1) rounds.

Communication Complexity. The amount of data transferred during the protocol
is primarily influenced by the size of the encrypted data.&single user, the amount
of encrypted data to be transferred@§R + S1). The server, on the other hand,
has to receive and sed@(N (R + S1 + £) + RS») encrypted data which is heavily
influenced by the data transmission from Allusers during the initialization. The
PSP has a communication complexity®@¢N (S, + £) + RS2).

Computation Complexity. The computational complexity is dependent on the
cost of operations in the encrypted domain and can be categonto four classes:
encryptions, decryptions, multiplications and exporaitns. In TableE5bl1 and 5.2,
we provide the average numbers for each operation in thikdPaihd the DGK cryp-
tosystem, respectively. One exception is for the decrppdiperation, which is actu-
ally a zero-checkwhich is a fast and less expensive operation compared tnatig
decryption in DGK cryptosystem.

Optimizations. The heavy operation of packing user data by the server isttege
for every user who requests a recommendation. Notice teatdahtent of the packed
data only differs for one user who is the request owner. Asngorovement, the
server can pack the entire users data only once and use iewdreneeded. In that
case, thex 4 will contain the similarity value for used himself. The problem of
finding himself as the most similar user can be eliminatet@cbnsequent step where
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Table 5.1: Computational Complexity (Paillier).

| Server | PSP | User
Encryption O(NS; + RS5) | O(NS; + RS5) | O(R+ S1)
Decryption - O(NS; + RSs) -
Multiplication | O(NS; + RSs) - O(1)

Exponentiation| O(NS; + RS:) - -

Table 5.2: Computational Complexity (DGK).

| Server | PSP | User
Encryption O(NY) | O(NY) -
Decryption - O(N?) -
Multiplication | O(N(?) - -
Exponentiation| O(NY) - -

similarity values above a threshold is found. As the positid the user is known,
the similarity value at this position can be omitted. In @lkrthis modification will
introduce substantial improvement in terms of computatiost.

It is also important to note that the complexity analysis wif protocol shows the
numbers assuming that all similarity values férusers are computed each time. In
general, wheréV is in the order of millions, this is not the case. A much smaigset
of N can be selected at random and recommendations can be gehlgyaising this
subset. Finally, assuming that the server and the PSP aaeasentities with high
computation power, it is realistic to anticipate a reastmabn time of generating
recommendations for users.

5.8 Conclusion

We proposed a cryptographic method that eliminates theggtisist the user privacy in
recommendation systems. The service provider in our aectstn consists of a server
and a PSP. While the PSP possesses the decryption key, teesteres the encrypted
data, meaning neither of them has access to the user datdydiie our protocol the
server and the PSP can generate recommendations for trewisieout obtaining
any information on the input, the intermediate values ordbgput of the algorithm.
This provides full privacy for the user. The cost of procegséncrypted data that
is encrypted with an asymmetric cryptosystem, on the otledhis also reduced
significantly by packing user data and the intermediateesbf the algorithm when
possible. The performance analysis of the entire protdoolvs that our protocol is
promising to be deployed in real systems.
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Six

Anonymous Fingerprinting

This chapter has been published as “Anonymous Fingerpgntiith Robust QIM
Watermarking Techniques”, by J. P. Prins, Z. Erkin, and R.dgendijk in theEurasip
Journal on Information Securitg007.
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Abstract

Fingerprinting is an essential tool to shun legal buyersigital content from illegal
redistribution. In fingerprinting schemes, the merchanbeas the buyer’s identity
as a watermark into the content, so that the merchant caevethe buyer’s identity
when he encounters a redistributed copy. To prevent thehartdrom dishonestly
embedding the buyer’s identity multiple times, it is essdrbr the fingerprinting
scheme to be anonymous. Kuribayashi and Tandka [8] propsedhonymous fin-
gerprinting scheme based on a homomorphic additive erioryptheme, which uses
basic quantization index modulation (QIM) for embedding.order for this scheme
to provide sufficient security to the merchant, the buyer tnbi@ésunable to remove
the fingerprint without significantly degrading the puratdsligital content. Unfor-
tunately, QIM watermarks can be removed by simple attaéesdmplitude scaling.
Furthermore the embedding positions can be retrieved hygesbuyer, allowing for
a locally targeted attack.

In this paper, we use robust watermarking techniques witiéranonymous fin-
gerprinting approach proposed by Kuribayashi and Tanaleashgw that the proper-
ties of an additive homomorphic cryptosystem allow for Grepanonymous finger-
printing schemes based on distortion compensated QIM (D)} @nd rational dither
modulation (RDM), improving the robustness of the embeduhegbrprints. We evalu-
ate the performance of the proposed anonymous fingerggistinemes under additive
noise and amplitude scaling attacks.

6.1 Introduction

Intellectual property protection is a severe problem iragosldigital world, due to the
ease of illegal redistribution through the Internet. As ardermeasure to deter people
from illegally redistributing digital content such as aodimages and video, a finger-
printing scheme embeds specific information related to deatity of the buyer by
using watermarking techniques. In conventional fingetprinschemes, this identity
information is embedded into the digital data by the mertlaaa the fingerprinted
copy is given to the buyer. When the merchant encounterstrigdied copies of
this fingerprinted content, he can retrieve the identitpinfation of the buyer who
(illegally) redistributed his copy. From the buyer’'s poaftview, however, this sce-
nario is unattractive because during the embedding proeethe merchant obtains
the identity information of the buyer. This enables a cheptherchant to embed the
identity information of the buyer into any content withobetbuyer’s consent and
subsequently accuse the buyer of illegal redistribution.

To protect the identity of the buyeanonymous fingerprintingchemes have been
proposed|[9]_15]. In[15], the buyer and the merchant follewirgeractive embed-
ding protocol in which the identity information of the buyemains unknown to the
merchant. When the buyer wishes to purchase, for instancienage, he registers
himself to a registration centre and receives a proof ofdestity with a signature of
the registration centre. Then, the buyer encrypts his iyesnd sends both encrypted
identity and the proof of identity to the merchant. The mardhchecks the validity
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of the signature by using the public key of the registratientre. After the buyer
convinces the merchant — through the provided identity forothat the encrypted
identity indeed contains the identity information of theyby the merchant embeds
the identity information of the buyer into the (encryptenipige data by exploiting the
homomorphic property of the cryptosystem. Then, the erted/fingerprinted image
is sent to the buyer, for decryption and future use.

In this scheme, the merchant can only retrieve the idemtfyrimation of the buyer
when it is detected in a copy of the fingerprinted image. Tdésj first presented in
[IE], was constructed irE[_iL 4] using digital coins. In@rtb embed the identity in-
formation of the buyer, a single bit commitment scheme wittisive-or homomor-
phism is used that allows for computing the encrypted XORvoflits by multiplying
their cipher-texts. In 8], Kuribayashi and Tanaka obseha this construction is not
efficient because of the low enciphering rate. The singledritmitment scheme can
only contain one bit of information for lag, n-bit cipher-text where: is a product of
two large primes.

In order to increase the enciphering rate, Kuribayashi eamhRa suggested using
a cryptosystem with a larger message space. They introdutatgonymous finger-
printing algorithm based on an additive homomorphic crgpsbem that allows for the
addition of values in the plain-text domain by multiplyirtetr corresponding cipher-
texts. Consequently, Kuribayashi and Tanaka used a bagiitade quantization-
based scheme similar to the well-known quantization indegufation (QIM) scheme
as the underlying watermarking scheme. Since QIM essbniradulates (integer-
valued) quantization levels to embed information bits m8ignal, QIM can elegantly
be implemented in an additive homomorphic cryptosystemwea¥er, QIM is a ba-
sic watermarking scheme that has limited robustness cadpamnther watermarking
schemes. The embedding positions can easily be retriesaddn individual finger-
printed copy and are thus vulnerable to local attacks. Sttelks result in minimal
overall signal degradation, while completely removing fingerprint. Furthermore,
QIM is vulnerable to simple, either malevolent or unintentl, global attacks such
as randomization of the least significant bits, addition@ta, compression and am-
plitude scaling.

In this paper, we use the ideas ih [8] to build anonymous wassof state-of-the-
art watermarking schemes, namélistortion Compensated QINDC-QIM) [EI] and
Rational Dither Modulation(RDM) [12]. By adapting these watermarking schemes
to the anonymous fingerprinting protocol of Kuribayashi dadaka we improve the
robustness of the embedded fingerprints and as a conseqihencerchant’s secu-
rity. As DC-QIM and RDM are based oBubtractive Dither QIM(SD-QIM), they
both hide the embedding locations from the buyer more effegt preventing local,
targeted attacks on the fingerprint. With respect to glotiatks, like additive noise
and amplitude scaling, RDM is provably equivalent in robess, while DC-QIM is
provably better in robustness against additive noise kgtaEurthermore, RDM im-
proves the QIM scheme so that the fingerprint becomes robusinplitude scaling
attacks.

The outline of this paper is as follows. In Section 2 we introel the basic
QIM watermarking scheme, as well as the additive homomarphyptosystem of
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Okamoto-UchiyamaJI’[O] on which the approachﬁh [8] is baskdSection 3, we

review the anonymous fingerprinting scheme by KuribayastliBanaka. In Section
4, we describe the proposed anonymous fingerprinting schesirg the subtractive
dither QIM, DC-QIM and RDM watermarking schemes. SectioreSatibes the ex-
periments that evaluate the robustness of the proposethesteompared to the origi-
nal watermarking schemes. Section 6 discusses the selerigfits of using specially
constructed buyer id’s. Conclusions are given in SectioA Table of used symbols
is provided in the Appendix A.

6.2 Watermarking and Encryption Preliminaries

6.2.1 Basic Quantization Index Modulation

Quantization Index Modulation (QIM) is a relatively recematermarking technique
[IZI]. It has become popular because of the high watermarlapgcity and the ease of
implementation. The basic quantization index modulatigo@hm embeds a water-
mark bitw by quantizing a single signal sampleby choosing between a quantizer
with even or odd values, depending on the binary value.ofhese quantizers with a
step sizeA € N are denoted b A _cven (1) @aNdQ A —oqa(-), respectively.

Figure[6.1 shows the input and output characteristic of thentjizer wherev ¢
{0,1} denotes the message bit that is embedded into the host deavatermarked
signal sampley then is

— Q —even(ﬁC), if w= O’
v { Qi—odd(x), if w=1. (61)

The quantizer§) A —cven(-) aNdQa—,q44(-) are designed such that they avoid biasing
the values of}, i.e. the expected (average) valuecandy are identical. The trade-off
between embedding distortion and robustness of QIM agauiditive noise attacks
is controlled by the value oA. The detection algorithm requantizes the received
signal sample: with both QA —cyen(-) @NdQa —o44(+). The detected bith = {0,1}

is determined by the quantized val@®\ —cyen(2) OF QA —oaa(z) With the smallest
distance to the received sample

This scheme of even and odd quantizers can also be impletientesing a single
guantizer with a step-size 8\ and subtracting/addingg whenw = 1. Implementing
the quantizer in this way allows for the implementation & s#itheme in the encrypted
domain as was shown inl[8].

A serious drawback of basic QIM watermarking is its senijtito amplitude
scaling attacks [12] in which signal samples are multipliéth a gain factor. If the
gain factorp is constant for all samples, the attack is called a fixed gaacha (FGA).

In amplitude scaling attacks, the detector does not pobgefattorp, which causes
a mismatch between embedder and decoder’s quantizatimesataffecting the QIM
detector’s performance dramatically.

Another drawback of basic QIM is that the embedding positioan be retrieved
from a single copy. The embedding positions are those sigalaksx; that have
been (heavily) quantized QA —cyen (2:) @andQ a—oqq(2;), @and which have a constant



6.2. Watermarking and Encryption Preliminaries 113

L Q2a(7)

Figure 6.1: Quantizer input-output characteristic

difference value equal td, i.e. the quantizer coarseness parameter. By constructing
a high-resolution histogram the buyer can easily obsergestien-spaced spikes of
signal intensity values and identify and thus attack the estding positions locally.
This results in the removal of the fingerprint with little dedation to the overall
signal.

6.2.2 Homomorphic Encryption Schemes

The idea of processing encrypted data was first suggestedhipvALapid and Neu-
mann in I[_j.]. In their paper, the problem of decrypting datekeapplying arithmetic
operations is addressed and a new approach is describedasging data without
decrypting it first.

Succeeding works showed that some asymmetric cryptosggiszeerve structure
which allows for arithmetic operations to be performed ocrgpted data. This struc-
ture preserving property, callddbmomorphismncomes in two main types, namely
additive and multiplicative homomorphism. Using addith@momorphic cryptosys-
tems, performing a particular operation (e.g. multiplica) with encrypted data re-
sults in the addition of the plain-texts. Similarly, usingnaltiplicatively homomor-
phic cryptosystem, multiplying cipher-texts results ie thultiplication of the plain-
texts. Paillier|[111], Okamato-Uchiyama [10] and Goldwasgécali [7] are additively
homomorphic cryptosystems while RSA [16] and ElGarhAl [&] anultiplicatively
homomorphic cryptosystems.

The anonymous fingerprinting scheme proposeﬁhn [8] is bareHde addition of
the fingerprint to the digital data and hence, an additivptogystem is used. Among
the candidates, the Okamoto-Uchiyama cryptosystem isechios efficiency consid-
erationslIB]. In the next section, the Okamoto-Uchiyamatyystem is described.
We observe however, that the anonymous fingerprinting sekeproposed in this
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paper, can easily be implemented by using other additivelgdmorphic cryptosys-
tems. Itis however required to have a sufficiently large ragespace to represent the
signal samples. Further the underlying security protqalsh as the proof protocol
for validating buyer’s identity, must be suitable for theosbn cryptosystem.

A requirement for the cryptosystem is that it is probahidigt order to withstand
chosen plain-text attacks. Such attacks are easily peemimour scheme, because
individual signal samples are usually limited in value (e8goit). If we were to use
a non-probabilistic cryptosystem, this would enable thgebuo construct a code-
book of cipher-texts for all possible messages (in tatal= 256) using the public
key and decrypt through this codebook. Fortunately prdiséibicryptosystems were
introduced inl[[7], which enable the encryption of a singlaipitext ton cipher-texts,
wheren is a security parameter related to size of the key. To whiphagi-text the
plain-text is encrypted is dependent on a blinding factarhich is usually taken at
random. Selecting differents does not affect the decrypted plain-text. By having
a multitude of cipher-texts for a single plain-text the sife codebook will become
28 . 2m and thus impractically large, preventing such attacks. t@dl above men-
tioned additive homomorphic encryption schemes (Pailltdamoto-Uchiyama and
Goldwasser-Micali) are probabilistic and hence withstelndsen plain-text attacks.

From Sectioi 6]3 onwards we compactly denote the encrypinahthe decryp-
tion of a message witf’(m) and D(c), respectively, omitting the dependency on the
random factor-. In the scope of this paper, an additive homomorphic crystiesn
will be used for encrypting signal samples which do not nsagly need to be integer
values. In this case, rounding to the nearest integer vakeedes the encryption and
thus, in this papetf(-) denotes both rounding and encryption.

Okamoto-Uchiyama Cryptosystem

Okamoto and UchiyamﬂllO] proposed a semantically secutepesbabilistic pub-
lic key cryptosystem based on composite numbers. et p2q, wherep andgq
are two prime numbers of lengthbits, andg be a generator such that the order of
g”~1 modp? is p. Another generator is defined As= ¢". In this scheme, the public
keypk = (n, g, h, k) and the secret keyk = (p, q).

Encryption A messagen (0 < m < 2F~1) is encrypted as follows:

¢=E(m,r) =¢"™h" modn, (6.2)

wherer is a random number i}, .
Decryption Decoding the cipher-text is defined as

modp, (6.3)

L(u) = . (6.4)

The Okamoto-Uchiyama cryptosystem has the additive homoinio property such
that given two encrypted messagBémn,,r;) and E(mq, r3), the following equality
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holds:

E(my,r1) X E(ma,m2) = ¢g™h"™ x ¢g"h"™ modn
— g771,1+m,2 h7’1+7"2 mOdn

= E(mi+ma,m +1r2). (6.5)

Here x denotes integer modulo multiplication.

6.3 Kuribayashi and Tanaka Anonymous Fingerprint-
ing Protocol

The fingerprinting scheme inl[8] is carried out between bayermerchant, and has as
objective to anonymously embed the buyer’s identity infation into the merchant’s
data (e.g. audio, image or video signal). The buyer decoe®pbisi-bit identity W/
into bits asW = (wg, w1, ...,w;—1). For applications such as embedding identity
information in multimedia data, the value bfs typically between 32 and 128 (bits),
which is sufficiently large to prevent the merchant from gireg valid buyer id’s.
Where necessary, we assume that the probatitity; = 0] and Plw; = 1] are
equal. After decomposition dfl” into individual bits, the buyer encrypts each bit
with his public key using the Okamoto-Uchiyama cryptosgsteso thatE (W) =
(E(wo), E(wy),...,E(w_1)). These encrypted values are sent to the merchant.
The merchant first quantizes the samples of the (audio, imagdeo) signal that
the buyer wishes to obtain, using a quantizer with coarseh&si.e. ' = Qaa ().
Here the quantizer step siZeis a positive integer to ensure that the quantized value
can be encrypted. He then encrypts all quantized signal lssmpwith the public
key of the buyer, yieldingZ(z’). The merchant selects watermark embedding posi-
tions by using a unique secret key that will be used to extrectvatermark from the
redistributed copies. In order to embed a single bit of im@ationw; into one of the
quantized and encrypted vald&(z’) at a particular watermark embedding position,
the merchant performs the following operation:

E(y) = E(a)x E(w;)*
= E(z' 4+ w;A). (6.6)

The result is an encrypted and watermarked signal vgl@es can be readily seen by
the following relation:

_ | Qaa(w), if w; =0,
o { Qii(m)+A, if wj =1. (6.7)

The encrypted signal — with the buyer’s identity informatembedded into it in the
form of a watermark — is finally sent to the buyer. Obviouslgjyothe buyer can
decrypt the watermarked signal values.
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In order for the system to be robust against local attaclestelation between the
buyer’s identity information bitsv; and the signal valueg (audio samples, image or
video pixels) into which the information bits are embedddthuld be kept secret from
the buyer. Note that as a consequealissignal values: will have to be encrypted,
also the ones that do not carry a bif of the buyer’s identity information, as so to
hide these embedding positions.

Compared to the QIM scheme in Ef._(6.1), the above watermguscheme in-
troduces a bias, as the expected (average) vallye'so% larger than that of. This
bias is introduced, becaugew; is always added to the quantized signal vattand
never subtracted. In order to avoid this undesirable sigefeither the even or odd
quantizer should be selected depending on the watermauk lais in Eq.[(E]1). How-
ever, the merchant has only the encrypted version of eactrmatk bitw;, which
prevents him from deciding between the two quantizers. Eyamme this problem,
the merchant compares the signal valeesnd z’, and depending on the result, the
encrypted value ofAw; can be added or subtracted [8]. Whenis smaller than,
Awj is added, otherwise it is subtracted. This procedure novgisvelent to Eq.
(6.J) and thus effectively removes the bias. As the decisiorot dependent on the
value ofw;, no information is leaked about the valuewf. The resulting embedding
procedure for identity information bit; then becomes:

E(2') x (E(wj)A)’l, if 2 < Qan(x), (6.8)

E(2') x E(w;)? if z >
Bly) = { () x B(w))®, it x> Qaalw),
where ()~! denotes modular inverse in the cyclic group defined by theygtion
scheme. When the buyer decrypts the received encrypted atedneaked signal
values, he obtains the following result for the watermarkedding positions:

¥ —wiA,  if 2 < Qaa(z). (6.9)

y— {a:' +w; A, if x> Qon(x),
For all other positions the unwatermarked and unchanged ermypted and there-
fore rounded — signal valuasare transmitted.

In the above embedding protocol, we have assumed that ther Ipugvides en-
crypted values of a validhinary decomposition(wy, w1, ..., w;—1) of his identity
information W to the merchant. Since, however, the decomposed bits ofd#re i
tity information of the buyer are encrypted, the merchamt at easily check this
assumption. In the original work by Kuribayashi and Tan&lad registration centre
is used which assures the legitimacy of the buyer. Duringtirehase, the merchant
first confirms the identity of the buyer, and then the buyewesahe validity of the
decomposed bits of his identity information by using zenmkledge proof protocols.
Since this procedure is entirely independent of the watekimg scheme, we refer for
details on the identity and decomposition validation aredstbcurity of this procedure
to [IE], where it is given for the Okamoto-Uchiyama encryptacheme. The focus of
this paper is on the application of the homomorphic embegdiocedure described
above to the more robust watermarking schem m4, 12].
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6.4 Anonymous Fingerprinting Using Advanced Wa-
termarking Schemes

From the perspective of the merchant, the embedding of tlyerisuidentification
information must be as robust as possible in order to bothstdahd malicious and
benign signal processing operations on the fingerprintgalasi If the buyer id em-
bedding procedure is not robust, the buyer could remove tigerfprint either inten-
tionally or unintentionally and as a consequence the metchauld lose his ability to
trace illegally redistributed copies. The fingerprints eahbed in the Kuribayashi and
Tanaka (KT) anonymous fingerprinting protocol describe8éctior 6.8, are known
to be sensitive to a number of signal processing operatams are in fact relatively
easy to remove through attacks mentioned in Se€fion]6.26 pMpose to increase
the robustness of the Kuribayashi and Tanaka anonymougimging protocol, as
perceived by the merchant, by applying their approach toagk@nced quantization-
based watermarking schemes, namely DC-QIM and RDM.

So far we have embedded the bits of the identity informatido signal values
without specifying what these signal values actually ane.thie rest of this paper
we will use block-DCT transform coefficients of images to eatthe identity bits
into. A particular block-DCT coefficient into which we embad information bitw;
will be abstractly denoted hy;. Of course, in actual images; may be a particular
DCT coefficient of a particular DCT block in the image. Theat&n between the
bits w; and watermark embedding positiongis determined by a key known only
to the merchant. In practical cases of interest, the numbeamdidate embedding
positions is in the same order as the number of signal samplereas the number
of information bits is typically between 32 and 128. For amste, for al024 x 1024
pixels image, the maximum number of possible embedding awatibns for 128 bits

of information is(“l’gf), which provides enough security. In the case of embedding
the bitsw; into DCT coefficients, the number of possible embedding doaitons

will be smaller depending on the DCT block size and the nurobBICT coefficient in

one block that are (perceptually and qualitatively) suédibr embedding a watermark

bit into.

It is important to note that the goal for each watermarkingesee within the
Kuribayashi-Tanaka protocol is to compute the encryptiomaiermarked coefficients
ys, While only having available the original signal valugs the encrypted bit& (w; )
of the buyer’'s decomposed identity, and the public kgyof the selected additively
homomorphic encryption scheme. Once the buyer identifiodtiformation is cor-
rectly embedded in the encrypted domain, the encryptediciesits (i.e. encrypted
digital content) will be sent to the buyer, who can decrygisthwith his private key
to obtain correctly watermarked data. Since the infornmaliibs are embedded in the
DCT domain, a trivial inverse DCT on the decrypted data issary as the last step
to obtain the purchased digital image. Because this is gtgsseformed in the plain-
text domain we leave it to the buyer to perform this inverseTaiter decryption,
which is much like JPEG decompression.
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6.4.1 Subtractive Dither Quantization Index Modulation

Fingerprints embedded by the basic QIM watermarking schesed by Kuribayashi
and Tanaka as described in Secfion ®.2.1 can be locallkattabecause the buyer can
find the embedding positions; without checking all possible (for instamﬁéggz))
combinations. A common solution to this weakness of thedb@$M watermarking
scheme is to add pseudo random noise, usually called dither,before embedding
an information bitw;, and subtracting the dither after embedding. As a conseguen
the quantization levels and their constant differedcean no longer be observed,
making the separation between embedding positigresrd non-embedding positions
impossible. The resulting watermarking scheme, illusttah Figurd 6.P, is called
subtractive dither QIM (SD-QIM).

In QIM terminology, a small amount of dithel; is added prior to quantizing the
signal amplituder; to an odd or even value depending on the informatiomwbitAfter
guantization ofr; + d;, the same amount of dith€yf is subtracted. It is desirable that
the dither can be used in cooperation with the QIM’s uniformnarfizers) A —oqq()
and Qa—even(+), Which use a quantization step size2dk, as in the basic QIM. It
has been showrﬂll?] that a suitable choice for the PDF of theora ditherd; is a
uniform distribution of—A, A].

T

Qaa

Figure 6.2: Subtractive Dither QIM

In order to embed the buyer’s identity information Bitw; ) into coefficientz; us-
ing the Kuribayashi-Tanaka protocol in combination witsactive dither, we carry
out the following protocol.

1. Add random dithed; to the signal sample or coefficient.

2. Quantizer; + d; with a quantization coarseness2k, and encrypt the result
using the buyer’s public key, yielding (Qaa (z; + d;)).

3. Multiply with E(w;)* or its modular inverse depending on the value pf d,
in order to achieve the desired quantization level.

4. Encrypt the dithed; to obtainE(d;). Note that sincel; € R, the encryption
operation includes module rounding to an integer. Multiply the result of the
previous step with the modular inversefofd;) as so to implement the subtrac-
tion of the ditherd; from Qaa (x; + d;).
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Summarizing the above protocol steps, we obtain:

Bt:) = B(Qaa (i + di)) x E(w;)*, if 2 > Qan(z4),
Z E(Qaa(wi + di)) x (E(w;)®) ™", if i < Qaa (),
E(y;) = B(t:) x BE(di)™". (6.10)

After decryption, the buyer obtains the (DCT transformeage into which his iden-
tity information is embedded in certain DCT coefficieptsccording to the following
subtractive dither QIM scheme:

Yi = QAfe'uen(xi + d’L) - dia if W; = 07
e { QA—Odd('ri + dz) - di, if w; = 1. (611)

The above embedding procedure demonstrates the usage Kiitlhhayashi-Tanaka
protocol to subtractive dither QIM. The plain-text subtiae dither QIM and the
above Kuribayashi-Tanaka subtractive dither QIM (KT SIMphre equivalent ex-
cept for the rounding of the dithef; to integers before encryption. How to limit the
adverse effect of integer rounding will be addressed next.

Two improvements of Eq[{6.10) are desirable. In the first@lave can subtract
d; before encryptingaa (x; + d;). This effectively removes the last protocol step
and hence eliminates an unnecessary encryption operatienresulting scheme can
then be rewritten as follows:

(y;) = E(Qaa(wi +d;) — d;) x E(wj)A, if z; > Qaa(x;),
! E(QQA((EZ + dl) — di) X (E(’U.)j)A)il, if xr; < QQA(xi).

The second improvement concerns the quantization operaktte quantizer not only
rounds the signal amplitudes to predetermined (not nedbssdeger) quantization
levels, but it must also round signal values or DCT coeffisen + d; to integers
because of the ensuing encryption operation. If the sigalales of DCT coefficients
x; are sufficiently large, using integer valued coefficientsata restriction at all. For
smaller values of;;, however, using integer values may be too restrictive or yielg
too large deviations between the results of Hgs. (6.12)@dd ).

We propose to circumvent this problem by scaling all coedffitsx; with a con-
stant factor before embedding. Scaling has little effect on the en-igsion, as long
as the samples are not scaled beyond the message grouptsieentryption scheme
used. The message group size is, however, usually very tecguse of encryption
security requirements (typically 2°12). As a consequence of scaling the ditherd;
and all encrypted bit&(w,) of the decomposed identity of the buyer also have to be
scaled byc. We note that scaling introduces extra computation. Howehe dither
can be scaled and subtracted before encryption, resuftiagvery small increase in
complexity. The scaling of the encrypted bfi§w,) of the decomposed identity of
the buyer has to be taken into account in the protocol stepghws relatively easy
since the scaling can be combined with the multiplicatiowpfvith A. The resulting
embedding equation can be summarized as follows:

= ) Ble (Qaalw +di) = di)) X B(w))®, if 2; > Qan(wi),
E(y:) = {E(c~ (Qaa (@i + di) — di)) x (B(w))2)™L, if 2; < Qan (). (6.13)

(6.12)
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The scaling factor has to be communicated to the buyer, so that the buyer caaleesc
the entire image after decryption to the proper (originatgsity range.

6.4.2 Distortion-Compensated QIM

Distortion-Compensated QIM (DC-QIMB[4] is an extensiorthe subtractive dither
QIM scheme described in the previous section. Rather theatttli adding dither

to and quantizing ofc;, a fractiona - x; is used in the SD-QIM procedure. The
information bits will be embedded only in the fractian x;, wherea lies within the
rangel0, 1]. The remaining fractiofl — «) - z; is added back to the watermarked
signal component - z; to form the final embedded coefficiept. The embedder
chooses an appropriate value fordepending on the desired detection performance
and robustness of DC-QIM; an often selected value is asin [5]

0.2

- e (6.14)

2 2
Ow + On

whereo? = %2 is the variance of the watermark in the watermarked sigmal¢3 is

the variance of the noise or other degradation that an &ttagplies in an attempt to
render the watermark bits undetectable. Obviously, thedstal SD-QIM scheme is
optimal only if an attacker inserts little or no noise inte tvatermarked image since
for 02 — 0 we finda — 1. The difference in robustness between SD-QIM and DC-
QIM becomes especially relevant if the variance of the &dabecomes large relative

2 i 2 2
too;, ..o, — 05,

Yi

\4

Figure 6.3: Distortion-Compensated QIM

As the differences between the SD-QIM and DC-QIM waternragkschemes
merely consist of plain-text multiplications and ciphexit additions, DC-QIM can
also be achieved within the limitations of the homomorphiditive encryption scheme
used by the Kuribayashi-Tanaka protocol. The basic embgdaperations can now
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be written as follows:

) = {E(Qm(a ci 4 dy) — d;) x E(w)), if C; holds
’ E(Qaa(a-z; +d;) — d;) x (E(w;)?)~Y, if Cy holds
Cr = a- ;> Qanla- 1),
Cy = o z;<Qanla-z;),
E(y) = E(t:)xE((1-a)- ). (6.15)

Equation [[6.1b) results in the following watermarked valygafter decryption:

t, = Qonla-zi+d;) —di +wj - A, ifa-z; > Qanla-x;),
QQA(OK'JUZ‘—FCZ?;)—CLL'—U)J"A, ifa'l‘i<Q2A(Oé'$i),
yi = ti+(1—a)- ;. (6.16)

The plain-text distortion compensated QIM and the aboveliayashi-Tanaka distor-
tion compensated QIM (KT DC-QIM) are equivalent, exceptiadar the rounding
of the real valued dithetf; and(1 — «) - x; to integers before encryption.

Similar to the subtractive dither QIM watermark algorithiKil; DC-QIM can be
modified to subtract the dither before encryption, and ttesttee signal values before
encryption. Furthermore, the terfh— «) - x; can be added before encryption, further
reducing the number of encryptions needed. The resultindKTQIM embedding
equations then become:

E(t;) = {E(C- (Qaa (- @ +d;) — d;)) x E(w;)®, if €' holds,
¢ E(c- (Qaalo- i +d;) — dy)) x (E(w;)*)~", if Cy holds.
C1 = a-z; > Qaala-x;),
Cy = a- ;< Qanla-x;),
Bly) = B(t:)x Ble-(1-a) ). (617)

6.4.3 Rational Dither Modulation

DC-QIM provides a significant improvement in robustnessgarad to the basic QIM
scheme. Nevertheless, the DC-QIM scheme is known to be esisits/e to gain or
volumetric attacks, which is just simply scaling of the ireagtensities. Because
of the use of the scaling facterin SD-QIM and DC-QIM in order to reduce the
sensitivity to integer-rounding before encryption, thgédauhas an excellent opportu-
nity to perform a gain attack on the watermarked signal. Tdie gffect causes the
guantization levels used at the detector to be misalignéld those embedded in the
purchased and illegally distributed digital data, effesly making the retrieval of the
watermarked identity bits impossiblé [2].
Perez-Gonzaleet al. [IE], proposed the usage of QIM on ratios between signal

samples as so to make the watermarking system robust afieftsgain attacks. The
resulting approach, known as Rational Dither ModulatioD¥R, is robust against
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both additive noise and fixed gain attacks. The RDM embedstihgme is illustrated
in Figure6.%. The robustness against fixed gain attacks$iswed by normalizing the
signal value (or DCT coefficient}; by v(Y;_1), which is function that combines
previous watermarked signal valués_; = (y;—1,%i—2,...,¥i—r). An example for
the functionv(Y;_,) is the Hblder vector norm, as suggested!|ini[12]:

| it 1/p
o(Yii1) = (L > ym|p> (6.18)

m=i—L

The SD- QIM watermark embedding will then take place usirgrtbrmalized signal
values 5 yielding:

y,.{ o(Yi1) - (Qa-ecven(yiy +di) = i), 1Ty =0, (6.19)

v(Yio1) - (Qa-oad(siy +di) —di),  ifw; =1,

where the multiplication of the quantization results wittY ;1 ) is required to scale
the coefficients to their original value range. Another wayiewing RDM is that it is
equivalent to using SD-QIM with a signal amplitude dependprantization coarse-
nessv(Y;_1) - A.

The normalization of; takes place on a function ¢§;_1, yi—o, ..., v;—r,) rather
than of(x;_1,2;-2,...,2z;—1). The usage ob(Y,;_1) is preferable, because only the
watermarked valueg; are available during watermark detection. In the Kuribayjas
Tanaka protocol the watermarked signal values or DCT caefiisy; are only avail-
able to the merchant in an encrypted foFf(y; ). Unfortunately, the embedder cannot
make use ob(Y,;_;) as a normalization factor, primarily because homomorplvie d
sion (and multiplication for that matter) is not defined faotencrypted values in a
homomorphic additive encryption scheme. Also the evabmatif the normalization
functionv(Y,_1) (e.g. Eq. [(6.IB)) may not be computable on encrypted values.

Consequently, we have to use the original signal valugs;, z;_s,...,%;—r),
which will have the same statistics é8;,_1,y;—o, ..., y;—1) for sufficiently large
value of L. Experimental results have shown that an appropriate \lids 25. For
this value ofL, the detection results using normalizationdix;_, ), are sufficiently
close to the results based on normalization usifg;_1).

Since RDM applies QIM on the ratle“”j attention should be paid to the inte-
ger rounding process. Smc%(“— will usually be around (the real number) 1.0, the
rounding to an integer will almost always yield (the intégkrintroducing unaccept-
ably large watermarking distortions. Therefore, the sgpbf the ratio with a factor
¢ becomes essential in RDM. Furthermore, after quantizatidhe rat|oU(X , the
result needs to be multiplied with(X;_;). Thanks to the homomorphic property,
this can be carried out by an exponentiation in modulo aréerwith v(X;_1) in
the encrypted domain. To this end, obvious(;_1) has to be an integer, requiring
another rounding step. In case this rounding effect is semrother scaling can be
carried out orv(X;_1). Since in our experiments this effect showed to be neghgibl
we do not consider scaling of X;_) itself. We denote the rounded valueldiX;_;)
by vine (Xiz1).
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Figure 6.4: Rational Dither Modulation

Using again the notatio; for the uniformly distributed dither, the RDM embed-
ding equations become:

E( ) E(C QQA o a(:;( +d; ) —d; ) X E(’wj)A7 if C1 holds,
ti — int i—1
Ble- (Qaa (3= +di) — di)) x (B(w;)®)~", if Gy holds,
C . Z‘ c . ‘r
Ci = -t ) > =
! (’Uint(xi1)> 2 Gza <vint(xi1)>

C-I; C-x;
C — e < el
? (Uint(xi—l)> Q2A (Uint(xi—l))
E(y) = B(t;)Um =), (6.20)

With the above scheme we have succeeded in adapting the RD&fmaaxking
scheme — one of the most recent QIM watermarking approachkeshe constraints
set by the Kuribayashi-Tanaka protocol.

6.5 Experimental Validation

In this section we experimentally compare the plain-texsiems of the SD-QIM,

DC-QIM and RDM watermarking schemes with the proposed varbiased on the
Kuribayashi-Tanaka fingerprinting protocol. The buyedsntity information will be

embedded into the DC DCT coefficients of 8x8 blocks. Per imagembed 64 bits
of identity information into 64 DC DCT coefficients that aregudo randomly se-
lected based on a secret key only known to the merchant. kxp#riments we use
the 256 x 256 pixels gray-valued Lena and Baboon images. Because ofmarsifi-

ciency and the availability of the necessary proofs we seteihe Okamoto-Uchiyama
cryptosystem for all experiments aslih [8]. The Okamoto-yaima cryptosystem has
a smaller encryption rate compared to (generalized vessidnPaillier, because of
a smaller message space for the same security level. Howevgignal values are
usually sampled with 8 bit precision, a smaller messageesjzanot a problem for
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our application, while the cipher-text size is reduced wita Okamoto-Uchiyama
cryptosystem, resulting in lower overall computationahgdexity.

We not only compare the performance of the plain-text antesipext versions
of the SD-QIM, DC-QIM and RDM watermarking schemes, but weoavaluate the
effect of integer rounding and the scaling parameten the performance. In our
graphs, each point shown is based on 100 measurements,@ntheasurement is a
complete, new iteration of the Kuribayashi-Tanaka protoéotable of parametets
for algorithms can be found in the Appendix B.

6.5.1 Subtractive Dither QIM

An important performance measure of a watermarking schentleei bit error rate
(BER) of the watermark detector as a function of the strenf#mbedding the water-
mark. The BER is a measure that quantifies the probaldflityf incorrectly detecting
a single bit of information. Usually, the buyer’s identityformation contains some
form of channel coding, so that the buyer’s identity car Bglretrieved even if a few
bits are incorrectly detected from the fingerprinted imalis, is further discussed in
Sectior 6.b.

In order to measure the distortion that the watermark intces into the host sig-
nal, we use the document-to-watermark ratio (DWR):

|8

DWR = 101og10(g—) (dB). (6.21)

IS

Hereo? is the variance of the data into which the watermark is emeegdhich in
our case are the DC DCT coefficients of 8x8 blocks. Furthgiis the variance of the

distortion caused by the embedded watermark. Followingvj4] equater? = %2.
The objective a watermarking scheme is to have a low BER witigh DWR. The
proper values for the DWR and thus is application and data dependent. In this
paper we are not concerned with selecting a suitable valde df/e rather study the
behaviour of the BER as a function of the DWR for the plain-xt Kuribayashi-
Tanaka versions of the SD-QIM watermarking scheme.

Figure[6.b shows the BER-DWR relation for the two versionshef 8D-QIM
algorithm. The performance of the Kuribayashi-Tanakaiversf the SD-QIM (KT
SD-QIM) watermarking scheme is shown for several valuesefdcaling factor.
Although there is no deliberate attack performed on the mzek, the inverse DCT
transform and consequential rounding to 8 bit pixel valmé®duces a distortion into
the fingerprinted signal. The robustness of the watermgrktheme is sufficient,
however, to result in no bit errors at a DWR of 31-34 dB. A peuuéffect is the
increased robustness of the heavily rounded (i.e. scadicifc = 1) KT SD-QIM
compared to the original watermarking scheme. We belieae tthis behaviour is
caused by the distorting effect of the (inverse) DCT tramafo By increasing the
scaling factorc we can approximate the performance of the original SD-Qle T
performance is already closely approximated with ¢ = 100his instance, but in
general the application, the data and the implementatiaheoDCT will determine

1The codes for the implementation can be found in http://idttadelft.nl
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Figure 6.5: SD-QIM bit error rate (BERP. as a function of the document-to-
watermark ratio (DWR) for the original SD-QIM scheme and KT-QIM with dif-
ferent scaling factorg 1, 2, 5, 10 and 100 for a) Lena and b) Baboon images.
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which value ofc is required to approximate the performance of the plain $&«QIM
scheme.

6.5.2 Distortion-Compensated QIM

Figure[6.5 showed the BER in a scenario without any explitédcks on the wa-
termark. Distortion-Compensated QIM can be used to prowjatemal robustness
against additive noise attacks. For this reason, we willstiee performance of the
Kuribayashi-Tanaka adaptation of DC-QIM and compare ibwlie original DC-QIM
and the previously discussed SD-QIM. A measure of the amafumbise introduced
relative to the strength of the watermark is the watermarksdise ratio (WNR):

2

WNR = 101og10(z—g) (dB). (6.22)
Hereo? is the variance of the additive zero-mean Gaussian noiséhattacker adds
to the fingerprinted content. The value®fs chosen according to Ed.(6]114), so that
the DC-QIM scheme is tuned for a specific additive noise vaealevel. In all our
experiments we use, = 15 and change the value & = /3 ¢,, as so to obtain a
varying WNR.

Figure[6.6 shows the BER-WNR relation for SD-QIM and DC-QIMe \dhoose
to fix the amount of additive noise instead of the DWR, becausam interested in
the effect the scaling facterhas on the required embedding strength (i.e. valu& of
and thus the watermark power) and not a variable amount dfiaeldoise. Therefore
Figure6.6 can not be easily compared to other literatureatenmark robustness. As
in our previous experiment the watermark distortion is gllted using the expression
02 =4 [A].

As can be observed the performance of the DC-QIM is better 12QIM with
additive noise, which is in accordance with [4]. We are mpstincerned with the
comparison of the original version of the DC-QIM scheme dredKuribayashi and
Tanaka adaptation of DC-QIM. As expected the performandeebriginal DC-QIM
scheme and the Kuribayashi-Tanaka adaptation of DC-QIMBICFQIM) differ very
little. Also the scaling factor has little effect on the BER. This can be explained by
the fact that the additive noise dominates the errors cangéue integer rounding.

6.5.3 Rational Dither Modulation

Unlike the previous two watermarking schemes, rationdietitmodulation (RDM)
depends on a sufficiently large scaling factoin order to achieve a quantization
coarsenesa lower thanl. The scaling factor determines the possible resolution
of A. We are interested to see which resolution is required,deroto achieve good
performance. Although the results depend on the data anstrvegth of the added
noise, the trend of these results will be observed for otlses and data as well,
because the signal coefficientsare normalized before embedding.

Figure[6.7 shows the bit error rate (BER) performance of RBM function of the
watermark-to-noise ratio (WNR) for the plain text and Kusibghi-Tanaka versions
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Figure 6.6: SD-QIM and DC-QIM BER as a function of WNR with atildi noise
(o, = 15) for the original SD-QIM and DC-QIM schemes and the KT SD-Qékid
DC-QIM schemes with different scaling factaror a) Lena and b) Baboon images.
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of RDM. The different curves reflect different values for #waling factor. Because
of the complexity of the analytical expression of the watarkndistortions 2, in [IE],
we measured the watermark distortion directly from the data

Figure[6.T shows that the value of the scaling factdetermines the points of the
P.-WNR curve which are attainable by the Kuribayashi-Tanak&/Ridheme. With a
scaling factor = 10, only WNRs with 12 dB or higher are reachable (see ‘KT RDM,
¢ =10’ curve in Figur€®l7, which starts at 12 dB), allowing¥ery little flexibility in
choosing the optimal embedding strength for a specific egidin. A scaling factor
of 100 performs much better, bd00 approximates the original RDM closely.

Besides the equivalent robustness to additive noise att@icRDM compared to
SD-QIM, RDM is robust against amplitude scaling attacksguFe[6.8 shows the
robustness of SD-QIM, DC-QIM and RDM to a performed ampkwsdaling attack.
SD-QIM and DC-QIM show a high vulnerability against amptieuscaling attacks.
At a small gain factop of 1.05, approximatelys0 percent of the buyer’s identifying
information cannot be retrieved correctly, while RDM is ugbthroughout the whole
range for the gain factor. Although theoretically RDM shibuabt be at all affected
by an amplitude scaling attack some bit errors start to shpwatigain factors larger
than1.06. These are inherent to the 8-bit data representation forwigith easily
overflows for large gain factors.
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Figure 6.8: KT bit error rate (BER) as a function of the gaiotde (o) for KT SD-
QIM, KT DC-QIM and KT RDM schemes witls = 1000. The DWR is fixed to 7.1
dB. Datapoints below a BER df)—3 are plotted for visualization, but in reality
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6.6 Security Aspects of Buyer Identity

As fingerprint detection is a signal processing operatiagiected fingerprints will
usually be distorted even without attacks on the fingerfoyna malicious buyer, as
discussed in Sectidn 6.4. The fingerprint can for instancdifterted by perfectly
legitimate signal processing operations such as comprestiie obligatory inverse
DCT and consequential rounding. In this scenario the metclwvauld normally not
be able to present a perfectly retrieved buyer id. The negish centre could accept
merchant buyer id submissions, which are similar to a cotreger id. However, the
security of the buyer depends on the inability of the merthaguess a correct buyer
id. To allow the merchant to submit similar buyer id’s and tioe registration centre
to accept these would thus harm the buyer’s security.

By letting the registration center extend the buyer idgntiith a forward-error-
correcting scheme, the merchant can compensate for a smddikad maximum num-
ber of bit errors in the buyer id. This is of course equivatenincreasing the size of
the buyer id and allowing for a small number of bit errors & tlgistration centre.
This approach has the advantage that it moves the commaatomplexity of the
error correction from the registration centre to the mentha

There is a choice to be made concerning the locations of theeeding posi-
tions for each buyer. The embedding positions can be chaogedch buyer, but this
would not provide any real benefits to the robustness of tlaéfingerprinting scheme,
other than that colluding buyers would have to compare ihdividual fingerprinted
version with a number of other versions in order to detecethbedding locations. If
the embedding locations are identical for each fingerpdintgy, buyers who have lo-
cated these embedding positions could publish these ahdyadts could then remove
the fingerprint from their copy. Using unigue embedding poss for each buyer has,
however, a big disadvantage upon detection. As with any fprgging scheme, the
merchant cannot know the used embedding positions befteetim, as the detection
procedure is the sole method to discriminate between copresunavailability of the
embedding positions prevents the merchant from detedimpuyer id, resulting in a
deadlock. In order to break this deadlock the merchant cestichate the embedding
positions by using a non-blind detection procedure (e.dptraat the original image
from the encountered image and thus find the most likely citediembedding lo-
cations, as they will be show up to have a high difference ¢odtiginal signal) or
by embedding a pilot signal to identify the used embeddingtijpms. However this
would be ineffective for heavily attacked copies, which heavily distorted by at-
tacks. Another way to retrieve the correct buyer id is tohetmerchant detect for all
possible embedding locations and use a (soft) error ciorestheme to determine the
most likely buyer id, based on the distance the detectedfidris a valid codeword in
the used error correction scheme. This, however, makesteettbn procedure linear
in complexity related to the number of buyers as it has to bfopwed for each used
combination of embedding positions.

Although dithering prevents an individual buyer to detbetémbedding positions,
a coalition of buyers can collude to find them. By comparinfedent fingerprinted
copies, the coalition can locate the differing sampledfments and, as the finger-
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print embedding is the predominant cause of these diffesémgples, consequently the
embedding positions. This vulnerability can be elimindig@&onstructing the buyer’s
id’s through the scheme of Boneh and Shaw [3], making them siothusecure. The
collusion-security of the scheme of Boneh and Shaw depemdsiaerating buyer id’s
such that they have a number of identical hitsfor any colluding coalition of: buy-
ers. Because these buyer id bits are identical, the caalgioot able to detect these
embedded bits by comparing their individually fingerpréhtmpies. This does how-
ever require that the embedding positions are identicabfmh fingerprinted copy.
Because the embedding positions for these bits cannot leendeed they are safe
from targeted attacks and can therefore be detected dgrigcthe merchant even
after the attack by the colluding buyer coalition. Condiing:such a collusion-secure
code for a large coalition constitutes a large increasedrbtltyer id length. As shown
in [3] the length is equal t®)(c* log(N/e) log(1/e)), wherec is the number of collud-
ing buyers,N is the total number of buyers amrds the probability that the cheating
buyer cannot be retrieved after a collusion attack. Becafie anonymity of the em-
bedding procedure, the registration centre will have tcegatie the collusion-secure
buyer id’s, as this will be the only person the merchant gtisigenerate a valid buyer
id.

6.7 Conclusion

In conventional fingerprinting schemes, the buyer’s idgsi known to the merchant
during embedding. This knowledge can be easily abused bylieious merchant by
creating fingerprinted copies containing this identityormhation without the buyer’s
consent. After distribution the merchant can claim a lieevislation for this specific
buyer. To deal with this problem, Kuribayashi and Tanakapsed a reasonably ef-
ficient solution in [ES] based on embedding the buyer iderifan information using
additive homomorphic encryption schemes. The problem efpitoposed protocol
in [E] is the vulnerability of the underlying basic QIM watearking scheme, which
is fragile to simple attacks like amplitude scaling andwafidor the detection of the
embedding positions. Therefore, we have proposed to adagp and RDM tech-
niques to the anonymous fingerprinting scheme of Kuribayeasth Tanaka.

We have adapted DC-QIM and RDM techniques which hide the ddibg loca-
tions, unlike basic QIM, because they are based on SD-QIMy Perform provably
equivalent (RDM) or better (DC-QIM) than the watermarkiredpeme in the original
work against additive noise attacks. Furthermore, RDM joles robustness to am-
[%itude scaling attacks which is a major drawback of thed&dM scheme used in

1.

Although rounding errors can be made arbitrarily small tigtothe use of scaling
factors, the practical need, as shown in the experimenssnal. As integer quanti-
zation step sizes have to be used because of the homomongnypgon scheme, the
distortion introduced by the fingerprint embedding is ulsuakger than the distortion
introduced by integer rounding. As a consequence rounditigawscaling factor of
one (i.e. no scaling) already has acceptable performaniee.s@aling factor has its
use however in increasing the effective quantizer resmtutAlthough this is of lim-
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ited use for signals with a relatively large value ranges #ssential for signals with a
small value range, as is the case for RDM after normalization

Due to attacks on the digital content or transmission ertbesidentity informa-
tion of the buyer can be extracted with bit errors. In thakecasing error correction
codes can improve the abilities of the merchant to recoweidintity information. By
letting the registration center select the buyer identifgimation, we can incorporate
these error correction capabilities or even provide a sahtsecure fingerprinting
scheme. This greatly increases the embedded buyer’'sfidatin information and
the complexity of constructing a valid identity at the régison centre. Although
this might not be practical in real applications, it proddetheoretical solution to the
problem of collusion.

By adapting the DC-QIM and RDM watermarking schemes to ttemgmous fin-
gerprinting protocol of Kuribayashi and Tanaka, we incegbthe robustness of the
embedded fingerprints, while preserving the anonymity effthgerprinting proto-
col. Consequently the buyer’s ability to successfully @tambedded fingerprints is
reduced, increasing the deterrence to the illegal redigidn of digital content.
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6.A Table of Parameters

Algorithm | Scaling Factor Quantization Stepsize Noise
SD-QIM | ¢=1,2,5,10,100 | A =kfork,1 <k <20
DC-QIM | ¢=1,10,100 A =5kfork,1<k<20 |o,=15
RDM c=10 A=Fkfork,1<k<20 on, =15
¢ =100 A=Fkfork,1<k<20
¢ = 1000 A=8kfork, 1 <k<20
¢ = 10000 A =T75kfork,1 <k <20
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Discussion

In this thesis, we have addressed the privacy aspects ofomliltimedia applications
which are widely used by a vast number of people. These atjalits, ranging from
shopping to dating, present serious privacy risks sincénfioemation required from
the users are highly privacy sensitive and open to misuskegedrvice provider itself.
As a solution to the privacy threats in multimedia applicas, we propose to use
cryptographic techniques in the design of the multimedigliegtions. In particular,
we promote the idea of keeping the privacy-sensitive ddtalsameans of encryption
and processing them under encryption. The required signaépsing operations can
be realized in the encrypted domain by exploiting homomismiproperty of certain
public key cryptosystems and using MPC techniques.

In order to introduce a methodology to achieve privacy prade in multimedia
applications, we selected a number of prototypical apfitina and presented detailed
cryptographic protocols for each application that areexrprivacy-preserving and
efficient in this thesis. The selected applications, nanfetg detection, clustering,
recommender systems and anonymous fingerprinting, cositaitar signal process-
ing properties regarding the structure of the data and sporeding operations on
them. In this chapter, we investigate the selected appitatdeduce some conclu-
sions and point out directions for future research.

7.1 Variations in the protocols with respect to use sce-
narios

As a result of our observations on the selected prototygipglications presented in
this thesis, we notice that the required solutions have conatities with respect to

the signal processing operations and data structure. Hoywee also observed that
the realization of signal processing operations in the ygrted domain may differ

according to the followings:

 Application setting. The type and the number of parties.
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— Two-party.This setting consists of only two players, user and server as
face detection (ChaptEl 3) and anonymous fingerprintingf@h(6).

— Multi-party. Even though there are two types of players, server and user,

the number of players can vary as in clustering (Chdgter d)ranom-
mender systems (Chapiér 5) where there are vast numberrsf use

The choice on the number of parties plays an important rateimputation load
share. In a two-party setting, the computation load is Ugshlared between
the server and the user. In order to reduce the workload o$uaehird player
can be introduced to participate in the protocol. As in tttonemender system
in Chaptef®, a semi-trusted third party, namely PSP, ppaties in the protocol
and the user is only required to upload his data and receé&veutcome of the
protocol.

Remember that in Chaptel 1, we argue that having a TTP is redlistic as-
sumption. However, for the privacy-enhanced recommengiges, we pro-
pose to use a PSP who is semi-trusted. One should note thaSteequired
for the recommender systems is not the TTP described in E€ti@pThe TTP is
trusted by all such that he is given the privacy-sensitita dad the algorithm.
However, the PSP is not trusted in that sense. As it can beisdba security
analysis of the system in Sectibn15.6, the PSP is not giverphiy data but
only encrypted and blinded. The PSP is trusted in the seas@dperforms the
operations on the encrypted data as described.

Another important observation is that our protocol corcdtams require inter-
action with the secret key owner. This means that the sepriceider cannot
initiate another protocol with another player without tlesent of the secret
key owner. Considering the example of automated medicalseintroduced
in Sectior 1L, the expert system cannot ask the opinionathan entity with-
out informing the secret key owner, the patient in this caékmvever, note that
with the involvement of the patient in the protocol, otheay@rs, i.e. other med-
ical players, can initiate other cryptographic protocottuelly, this is what we
would like to emphasize in this thesis. Given that the pgvaensitive data is
encrypted and the owner of the secret key is involved, it @processed un-
der encryption. Involvement of the secret key owner is anireqent because
of the technical challenges such as interactive protoca¢etb on MPC tech-
niques. This can be seen as an advantage since the secretri@y the patient,
is needed to be involved in the protocols to process the premydata. This can
be considered as an effective control mechanism.

Owner of the decryption key. In all the applications discussed in this thesis,
the users in the applications are to be protected. Howegpgrtding on the ap-
plication setting, the owner of the secret key may changa.tWo-party setting,
the owner of the data has the secret key as in face recogaitidranonymous
fingerprinting, Chaptefd 3 aindl 6. However, in a multi-padtfing as in cluster-
ing and recommender systems, Chagdiérs 4&nd 5, we propogsttmsvhere
users have their own private data and the server has the kegr&@his approach
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is preferred because if each user possesses his own secoet&kehared key to
protect his private data, the privacy-preserving protbemlomes more resource
demanding as this approach requires deploying other qyyapiic techniques
like threshold schemes which are considerably more costiypared to pro-
posed solutions in this thesis.

7.2 Achievements

Having noted that the cryptographic solutions for pregey\rivacy in a multimedia

application change depending on the above choices, we aarfaous on the pro-

posed solutions for the challenges defined in Sedfioh 2.5e Mat the correctness
and the privacy requirements are satisfied and discusseshéitr application in the
related chapters separately. In the followings, we proeideverall view regarding

the addressed challenges and discuss their efficiencytaspec

7.2.1 Data Representation

In multimedia applications, we usually deal with values tten be classified as sig-
nals. As in the example of clustering, the users are repteden a R-dimensional
space in which the magnitude in each dimension can takeantegues from a small
range, usually a few bits. Such a generalization can be nwadedny other multime-
dia applications since the data in question are usuallyenfahm of signal samples
such as images, preferences and feature vectors. For examface recognition and
anonymous fingerprinting, the inputs are 8-bit gray scalages. In clustering and
recommender systems, we represent each user with his gmeéeor rating vector
whose elements are only 4-bits. This observation can beaearsignificant advan-
tage in designing privacy-preserving multimedia appiara but it has two important
aspects. Firstly, the assumption on the type of the valuestidgrue. Even though
the initial data might be integer values, they become relalegathroughout the pro-
cessing. For instance, the similarity value for two userh@érecommender system
is a real value between1l and 1. However, existing public key cryptosystems mostly
work on integers. Secondly, the assumption on the size ofahess is misguiding.
Computations might begin with values in a small range buinduprocessing values
get larger. As an example, consider the Euclidean distameguatation between two
vectors. Although the vector elements are small valuesigbiglt of the computation
is larger in bit size. Note that, truncating intermediattuga during the run of the
protocol is not practical since it requires interaction aoedhputationally expensive
protocols for operations like division.

In this thesis, to cope with the non-integer form of values, propose to scale
and round values with enough precision before encryptione fequired precision
can be easily computed by analyzing the operations. In fmegnition, for instance,
we propose to use a scaling factor of 1000 which is sufficienttlie correctness
of the application. However, note that the scaling paramsi directly affect the
cryptographic protocols for the consequent steps. As dismliin Sectiorls 3.5, 4.3
and[&.5, the cryptographic protocols work on the actualdsigth of the values to
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be compared. With longer bit length, it takes more time tosfirthe cryptographic
comparison protocol. Thus, the length of the scaling fagtays an important role.

To eliminate the problems that may occur due to the increabé iength of the
values, we propose to reserve sufficient space for the capségomputation steps.
For instance, in recommender systems, kwlait user ratings are to be multiplied and
suchR values are to be added. Therefore, we resgkve log(R) bits for each value
(Sectiof5.4.11). Reserving sufficient space is especialfyortant in the case of data
packing. As the signal values are packed one after anotheneénencryption and
going to be processed together, reserving enough spacedssay to guarantee the
correctness of the operations in the encrypted domain. #ak should be placed in
compartments with a suitable size so that the expansionademnisequent processing
steps does not alter the other compartments. The size ofothpartment for each
value can be calculated by analyzing the operations. Sitailscaling, the size of the
compartments effects the cryptographic protocols. Thessize of the compartments
should be determined by analyzing the required precisionoperations.

7.2.2 Linear Operations and Homomorphism

Additive homomorphism plays a crucial role in processingrgpted data as it allows
adding and scaling values in the encrypted domain. Thisgstgfis used frequently
in all of the applications covered in this thesis. In ordeexplain the limitations of
homomorphism, we can investigate the linear signal pracgsgerations covered in
this thesis.

The homomorphic encryption can be used to calculate dista(gquared Eu-
clidean and Hamming) and correlation between two vectooweyer, it depends on
application setting whether the whole computation can bedmly by using homo-
morphism or not. As in clustering and recommender systeitartce computation
and Pearson correlation can be computed by one of the pasiieg homomorphism
(Section$ 4211 and 5.4.2). In both cases, each party hawitgrivate vector. The
correlation is computed by one of the parties upon receitfiegencrypted vector from
the other. On the other hand, as in the case of face deteatigimilar computation,
squared Euclidean distance, requires running a securétiualtion protocol for the
computation of the product terms since the vectors to beggs®d are both private and
possessed by the same party while the secret key is posdsssieel other (Section
[B:42). These two different solutions for the computatiba similar signal processing
operation show that homomorphism is required but may nouffecient depending
on the setting.

As another linear operation on encrypted data, it is alsomapt to pay atten-
tion to blinding. While semantic security protects the coht encryption, it is not
sufficient to protect the data when the same party holds theypigon key as seen
in secure clustering (Sectibn 4.2.3). In such cases, bigydilso known as masking,
plays an important role.

In face detection and recommender systems, two securepiiagtion protocols
are needed (Sectiohs 34.2 &nd 3.3.2). In face recognitierserver has an encrypted
value that he wants to keep it secret from the user and neestpitive it. In recom-
mender system, the server has two encrypted values thatrite tekeep secret from
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the PSP and needs to multiply them. In both cases, the proeégithe same. The
values are first blinded by adding a random value and senttottier party who has
the decryption key. The blinded values are then decryptedtijptied (or squared) and
encrypted. Upon receiving the encryption, the blindinddats removed to obtain the
actual outcome of the multiplication.

Blinding also works in other key situations. In clusteriffigy, instance, all users
need to send their encrypted data to the server to be acctedy8ectiori 4.2]3).
However, the server possesses the secret key and hence) bbseave the contents
of the encryptions that are sent by each user. To preventettversfrom accessing
the users’ contribution for updating the centroids, eadr bsinds their contribution
in such a way that only when all contributions are added u@,sérver can obtain
the accumulated result. Therefore, blinding demonst@at@mple but effective tech-
nique of hiding private data. Similarly, in recommenderteyss, the user obtains the
recommendations by running a secure decryption protoabl tive PSP in which the
content of the encryptions are kept secret by blinding theert (Sectiof 5.313).

7.2.3 Non-Linear Operations and MPC

Linear operations are important for signal processingieafibns; however, they con-
stitute only a part of the processing. For instance, digammmputations are often
followed by a decision like selecting the minimum distanieorder to realize such
non-linear operations in the encrypted domain, we needto#protocols based on
MPC techniques.

The prototypical applications selected for this thesisistiwat a crucial operation
for signal processing applications is comparison whicksalwo encrypted values and
outputs the comparison result encrypted. Having such &biothe encrypted do-
main, we can build a number of protocols for sorting, findimg tminimum/maximum
of a set of encrypted values and thresholding (Secfion®,#42.3 and5.412). Even
though the idea behind the comparison block is the same piplecation and the set-
ting require subtle changes in the resulting protocol. Tplar these differences,
consider the following tasks that involve comparison block

« Face detection. The comparison block is used in a protocol which finds the
minimum value ofM encrypted distances by using binary-tree approach. The
outcome of this is eitheYesor No.

 Clustering. The same comparison block is used for finding the closesterlus

to a user in amkR-dimensional space. As in face recognitidti,encrypted dis-
tances are compared in a binary-tree fashion. But in ordebtain the index
of the cluster with the minimum distance, the protocol is ified such that
each comparison outputs not only the minimum distance otitd index. The
pointer to the closest cluster is kept secret both from theeseand the user
during the several iterations of the protocol and reveatdy t the user in the
end.

* Recommender system.The comparison block is used for obtaining an en-
crypted vector that consists of encrypted ones and zerash &ament of this
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vector is an encryption of 1 if the corresponding similaigyabove a public
threshold and an encryption of O otherwise. The comparisarklused in this

application is redesigned to reflect two important changgsne of the inputs
of the comparison block is a publicly known value, i.e. a sfi@d and 2) the
encrypted values to be compared with a threshold are pankatki encryption.
These two factors resulted in a new comparison protocollnikiless expensive
in terms of computation and communication costs since dat&ipg reduces
the number of expensive randomization operations and teeafccommuni-

cation. In addition, publicly known threshold allows us &alize part of the
operations in clear, introducing a considerable gain inmatation time.

As it is explained above, different applications and défarsettings require a dif-
ferent protocol even if the underlying operation is the sameal processing opera-
tion of comparison. Therefore, it is our conclusion thatigieisg a single comparison
protocol and plugging it to several applications is not glsvpossible. Depending on
which party has the data and the decryption key, what is palld what is private, the
cryptographic protocol changes. We anticipate that otbarlmear signal processing
operations such as quantization may have a similar situatio

7.2.4 Data Expansion and Packing

As described previously, the bit length of data in multingedpplications even after
scaling is much smaller than the cipher text space. Oncetligdual signal samples
are encrypted, data expansion occurs which is usually ittier of hundreds. This
data expansion introduces additional cost for data tressom and, if required, for
storage.

To overcome this problem, we introduced packing valueslaino [2,[11]8]. If
the application and the setting permit, packing valuesithices a gain in the amount
of data transmitted. As an example, in the recommenderrmsystenario, instead of
sendingM encrypted values, the user sends adily 1 whereM > R, due to packing
M — R values that are to be used for generating recommendatiectd§5.4.1).

Depending on the application, it may also introduce a rédndh the number of
operations on the encrypted data. Considering the recoenaystem, the number
of times secure multiplication protocol is run (Section.8)3s reduced fronRz to 1
due to data packing. Itis, however, notable that the cospefations with the packed
data may increase for a number of reasons like the need af lastper random values
for blinding. Even in the case of an increase in the compurtaticost, data packing
may still be useful for a computationally powerful playethwiimited bandwidth.

A drawback of data packing appears when unpacking is redjdiueing the pro-
cessing. Unpacking is a costly, interactive protocol whiohsists of several decryp-
tions [3]. For applications in which unpacking is necesstmy cost of this operation
should be considered. Data should be packed in circumsanaehich the gain by
packing is more than the cost of possible unpacking operstio
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7.2.5 Computational and Communication Costs

Data packing seems to be promising considering the commatimiic cost as it in-
troduces a considerable reduction on the amount of traesfefata as discussed in
previous sections. Even if the computational cost incre@sesome settings, data
packing should be considered for applications with a lichtb@ndwidth.

Considering computational costs, working in the encrypl@ahain is far more ex-
pensive than its counterpart in the plain domain. As an eXx@maglustering algorithm
takes a few seconds whereas its privacy-preserving vecsiorake an hour (Section
[48). This is due to time consuming operations such as adgdlithultiplication and
blinding in the encrypted domain. In addition to the time @mming operations, for
non-linear operations we also need to invoke interactiyptographic protocols. To
reduce the computation cost, we investigated severalmgptiothis thesis:

» Packing. An effective way of reducing the number of operations in the e
crypted domain is packing values when it is possible. By parkhe number
of operations in the encrypted domain reduces since instepibcessing sev-
eral encrypted values, we process less of them.

* Precomputation. A considerable amount of time is consumed for generating
random values and randomizing encryptions. As it can be ise8actions 3.7
and4.b, generating random values and randomizing pareathryptions prior
to start of the program or in the idle time of the processorregiuce the time
consumption significantly (by a factor of 3 in the case of se@lustering).

« Optimizations. Considering signal processing applications, redundaetasp
tions are hardly to be found. However, when we start workinthe encrypted
domain, there are several costly operations that can bencirented. As an ex-
ample, if values are added in the encrypted domain, inste@hdomizing each
value separately during the encryption, the sum can be raizéd only once
after the addition. An analysis of the implementation inttegan be rewarding.

7.3 Open Issues

In this thesis, we introduced principled solutions for gre@g privacy in multimedia
applications based on homomorphism and MPC techniquesheigleéa of merging
cryptography and signal processing is new, we investigatedmber of challenges.
Further progress can be made if the followings are congidere

Security level and homomorphic encryption schemesie propose to preserve pri-
vacy by encrypting private data with a homomorphic crypsbsm. As we encrypt sig-
nal samples in multimedia applications, the number of gutarps is in vast amount.
The encryption operations with currently available homgoha encryption schemes
are time consuming. Considering that the encryption alsseadata expansion, us-
ing existing homomorphic cryptosystems is expensive. @gaphers may find it
interesting to analyze the sufficient level of security fastpcting signal samples and
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develop a cryptosystem particularly for signal procesgingposes.

Non-linear operations and MPC.The selected applications mostly consist of similar
signal processing operations such as computing distanceg|ation and threshold-
ing. Other applications can be investigated to identify engperations. For instance,
in order to implement compression techniques, quantizasi@rucial. Similar other
operations should be considered in the context of secunalgigocessing.

Data packing. Packing has been used in this thesis and it proved its ussfsilim
efficiency regarding communication and computational costet, it has not been
investigated in its full extent. For instance, scaling isgible if every value in the
packed encryption is to be scaled with the same constant.case of scaling with
different factors is worth considering. In addition, ekigtunpacking operations can
be studied further to reduce the complexity of the protocol.

Complexity. The run-time of the privacy preserving version of the aglans pre-
sented in this thesis is promising yet, further researclecessary to deploy the cryp-
tographic solutions for real use. While packing, precomiportaand optimizations
can be useful, a major breakthrough can be achieved if theseanpractical fully
homomorphic cryptosystem available. In such a case, ekgepsotocols that are re-
peated in vast amounts like secure multiplication protecalld be eliminated. Until
such a cryptosystem is invented, reducing the computatishaf privacy-preserving
multimedia applications depends mostly on better protdesign and optimization of
the implementation.

Interaction. The cryptographic protocols for non-linear operationsiaeractive and
require several rounds. In order to reduce the interactione again, a fully homo-
morphic cryptosystem is required.

Attacker model. Throughout this thesis, we proposed solutions based onisengst
model. In this model, each player acts according to the pobtiout keeps every ex-
changed message to deduce extra information. Howeveraltifeethis might not be
the case. The proposed solutions should be considereatfive attackemodel in
which the protocol should be robust against active attackéio may manipulate the
protocol steps. In such cases, the required techniquesisurrieg the correctness of
the protocol are more resource demanding as additionatagyggphic protocols like
ZKPs for validating the actions are necessary. Such metandgheir cost in mali-
cious cases should be investigated.

Other cryptographic approaches. This thesis focuses on preserving privacy in mul-
timedia application based on homomorphism and MPC teclesitfuat are built over
integer arithmetic. However, there is a large body of liera on the other MPC
techniques:

» Secret sharingCryptographic protocols based on secret sha@g [10] awckext
in deptin literature. In a secret sharing scheme, a secigt vas shared among
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an arbitrary number of parties. Each party who is giveshareof the secret,
can not obtain the secretirom his share. Only if a sufficient number of parties
combines their shares, the secretan be reconstructed. Here, the sufficient
number of parties depends on the scheme and the application.

As secret sharing schemes are often defined over integeestmms such as
addition and multiplication by constant are significantigter, even ‘free’ com-
pared to equivalent operations in this thesis. Howevererotiperations like
multiplication of secrets require invoking protocols suxshﬂl]. Moreover, as
the data are shared between parties, the required storagefgp an application
with vast amount of users can be demanding. Secret shanmgecan option
in secure signal processing however, further researchgisned to construct
protocols for multimedia applications and to identify thmitations.

An alternative realization of secret sharing schemes isdiggusemantically
secure homomorphic encryption schemes, assuming that veeathreshold
variation such as the Paillier variant [5]. In this case risttais equivalent to
distributing the encryptions of the secret and reconstyndb joint decryption.
However, this alternative has the disadvantage of experjeint decryption
procedure in which sufficient number of users should prouiget to the de-
cryption.

« Garbled circuits (GC)As an MPC technique, garbled circuits focus on secure
evaluation of Boolean functions. Any polynomial size B@wiecircuit can be
evaluated but rephrasing the application considered sth@sis as a Boolean
circuit may not be feasible due to the size of the circuit. ldeer, hybrid so-
lutions that couple homomorphism and GC might be a good ftilrec¢o in-
vestigate. Instead of rephrasing the whole applicationara @f the protocol
can be evaluated by GC while the other parts are realized bsimomorphism
and MPC techniques over integers. Recently, the hybridhdszbeen used for
preserving privacy for several scenariElsEllﬁ AvAES 9)vipiw the effective-
ness of this approach. Further research is necessary to@iser Gecure signal
processing.

7.4 Conclusion

Privacy is a severe concern among people who are using apiplecations. To pre-
vent misuse of personal information and minimize the damsgeeral approaches are
considered in the community. Firstly, people need to be a&tacabout the possible
threats. Educating people aims to increaseatharenessf the people so that they can
act responsibly when they are online. Seconthig, law and the regulationseed to
be updated to reflect the recent changes regarding the @gpigations and prevent
malicious behaviors. Unfortunately, this procedure takas and not every threat is
foreseeable in the virtual world. Because of this, appaipractions can only be taken
when the damage is done. Thirdly, we need to laednological solution protect
the privacy of the individuals in the application level.
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In this thesis, as a technological solution, we proposedaaidea: secure signal
processing. This approach combines cryptography andlgigoeessing during the
construction of the applications instead of applying cogpaphic tools on top of the
application. As the field is very new, it contains many chadles. Only a part of
these problems have been addressed in this thesis. Howleegroposed solutions
for secure signal processing have shown that our approghrisising technological
direction to protect the privacy of the users.

In order to continue further research in this direction, vagenhthe following mo-
tivations. First, privacy concerns are increasing rapidliiis concern is growing as
more ‘technological applications’ such as surveillancgtems, taxing systems based
on miles driven, health care systems and smart card agphsadre integrated to our
lives. Second, regardless of the context of the applicatf@operations are from the
signal processing field and thus, there are many fundamepéaitions in the design
of such applications. Results obtained from the researceounre signal processing
can be deployed in several other applications with certaidifitations. For instance,
the setting and the proposed solution for secure face dateist not very different
than secure biometric identification or audio fingerprirtedéon.
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Summary

Recent advances in technology provided a suitable envieonrfor the people in
which they can benefit from online services in their dailg$v Despite several advan-
tages, online services also constitute serious privagg fisr their users as the main
input to algorithms are privacy sensitive such as demoggedpformation, shopping
patterns, medical records, etc. While traditional secumigchanisms can eliminate a
number of attacks from outside, these mechanisms can nicptbe privacy of the
users as the service provider itself constitutes the biggsential risk.

In this thesis, we focus on principled solutions to protéet privacy of users in
multimedia applications. For this purpose we propose t@kbe privacy-sensitive
data safe by means of encryption during processing. Thisoapp eliminates the
risk of possible privacy abuse as the sensitive data is ordifable to the owner but
no other party. However, once encrypted, the structure ta idadestroyed as a con-
sequence of the encryption procedure and thus we need ajgecipols to process
encrypted data. Therefore, we focus on a number of cryppbdggaools such as homo-
morphic encryption schemes and multiparty computation@ytieéchniques to realize
privacy-preserving multimedia applications. The progbpencipled solutions con-
sider the signal processing aspect of the multimedia aggjwics which is a new idea
to the best of our knowledge.

In particular, we focus on a number of prototypical applmas namely, face de-
tection, user clustering in a social network, recommedagieneration and anony-
mous fingerprinting. Based on these selected applicativasaddressed the major
challenges for secure signal processing: data repregentdata expansion, realizing
linear and non-linear operations and efficiency of the psegagprotocols in terms of
communication and computational costs. We propose to scaleround the signal
values prior to encryption as these operations are highdifiaient to be realized in
the encrypted domain. Moreover, we reserve sufficient sipateems of bit length for
each signal sample to accommodate the possible expanshihdgize in the subse-
guent processing steps. However, reserving more bits doafs does not contradict
with the data expansion problem. As the cipher text spaceichrtarger than the size
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of the original — and even scaled — signal samples, data sigraafter encryption in-
creases data transmission and storage costs significemtisgder to minimize the cost
we propose to pack a number of signal samples in one encnyatid process them
when they are in the packed form. This approach requirestayygphic protocols
particularly designed for the packed data but in the endssewasiderable resources
regarding bandwidth and storage capacity, even compuotdtiower.

Homomorphism plays a crucial role in our proposed solutioNgh the help of
homomorphic encryption, we are able to implement linearaipens such as cor-
relation and projection without interaction. However,elém operations are only a
part of the signal processing. For the non-linear operatiide distance computation,
thresholding and comparison, we exploit MPC techniquegseélechniques are often
interactive and computationally expensive compared tatiggnal systems in plain.
However, by using data packing and designing the protocilseare, the communi-
cation and computational costs were reduced significantly.

In this thesis, we have shown that preserving privacy fortimeldia signal pro-
cessing is feasible. We determined the major challengesarire signal processing
and combined a set of cryptographic tools successfully sighal processing to real-
ize the applications in the encrypted domain. The proposkidisns demonstrate that
the privacy concerns in multimedia signal processing apfibns can be coped with
by using cryptographic tools. Moreover, protocols thatdgsigned to realize certain
operations in the encrypted domain can be used in othercapiplns and settings with
a number of modifications.



Samenvatting

Recente vooruitgang in de technologie heeft een geschiktgweing voor de mensen
gecrééerd waarin zij kunnen profiteren van online diensten in hagetijks leven. On-
danks verscheidene voordelen, leveren online-dienstkrentstige risico’s op voor
de privacy van hun gebruikers omdat de belangrijkste inpat @lgoritmen privacy-
gevoelig is, zoals demografische gegevens, winkelgedraglische dossiers, enz.
Terwijl er traditionele mechanismen bestaan tegen eermbaatvallen van buitenaf,
kunnen deze mechanismen de privacy van de gebruikers riehéenen omdat de
dienstverlener zelf het grootste potétgi risico vormt.

In dit proefschrift richten we ons op voorgestelde oplogsinom de privacy van
gebruikers in multimedia-applicaties te beschermen. ditadoel stellen we voor om
de privacy-gevoelige gegevens te beveiligen door middelveasleuteling tijdens de
verwerking. Deze aanpak elimineert het risico van mogel§khending van de pri-
vacy doordat de gevoelige gegevens alleen beschikbaavaijnde eigenaar, maar
niet voor andere partijen. Echter, na versleuteling is decgiur in de gegevens
vernietigd als gevolg van de versleuteling procedure enazijnsgeschikte instru-
menten nodig om versleutelde gegevens te verwerken. Dadcbben we ons op
een aantal cryptografische instrumenten zoals homomaiphiencryptie schema’s
en multiparty computation (MPC) technieken om privacy tedwelen in multimedia-
applicaties. De voorgestelde oplossingen nemen het digmaerkingsaspect van de
multimedia-toepassingen in acht, hetgeen een nieuw iggeas zover wij weten.

In het bijzonder richten we ons op een aantal prototypisobgdssingen, te weten:
gezichtsdetectie, gebruiker clustering in een sociaalewt, het genereren van aan-
bevelingen en anoniem fingerprinten. Op basis van dezeeg¢setde toepassingen,
snijden we de grootste uitdagingen voor veilige signaareeking aan: data repre-
sentatie, gegevens expansie, het realiseren van lineairieklineaire operaties en de
efficientie van de voorgestelde protocollen op het gebied van eonuatie en compu-
tationele kosten. Wij stellen voor om de signaalwaardemafgaand aan de codering
te schalen en af te ronden, daar deze operaties zeer i@effidjn om te realiseren
in het versleutelde domein. Bovendien reserveren wij vahdie ruimte in termen
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van bit-lengte voor elk signaal sample om de mogelijke egjgaim bit grootte in de
verdere verwerking stappen te accommoderen. Echter, etviezen van meer bits
voor signalen is niet in tegenspraak met het gegevens-sigprobleem. Omdat de
cijffertekst ruimte veel groter is dan het formaat van deiodle —en zelfs geschaalde—
signaal samples, verhoogt gegevens-expansie na vetsigude datatransmissie- en
opslagkosten aanzienlijk. Met het oog op het minimaliseande kosten stellen wij
voor om een aantal samples van het signaal in te pakken inmegypdie en te verw-
erken in de verpakte vorm. Deze aanpak vereist cryptoghafismotocollen met name
ontworpen voor verpakte gegevens, maar levert uiteindatipzienlijke besparingen
op ten aanzien van bandbreedte, opslagcapaciteit, errekéfskracht.

Homomorfisme speelt een cruciale rol in onze voorgesteltizsssipgen. Met de
hulp van homomorphische versleuteling zijn wij in staat ameire operaties uit te
voeren, zoals correlatie en projectie zonder interactehtét, lineaire operaties zijn
slechts een deel van de signaalverwerking. Voor de nietlie operaties zoals af-
standsberekening, drempelmethode en vergelijking, bemwe MPC technieken.
Deze technieken zijn vaak interactief en computationeal duvergelijking met de
oorspronkelijke systemen in klare tekst. Echter, met jehah gegevens-verpakking
en het met zorg ontwerpen van de protocollen, worden de comuatie- en compu-
tationele kosten aanzienlijk verminderd.

In dit proefschrift hebben we aangetoond dat het behoud vigagy voor mul-
timedia signaalverwerking haalbaar is. Wij hebben de gudtiagingen van veilige
signaalverwerking aangewezen en met succes een reekswaografische instru-
menten met signaalverwerking gecombineerd om de toepgssin het versleutelde
domein te realiseren. De voorgestelde oplossingen tonedatade privacy-aspecten
in multimedia signaalverwerkings toepassingen kunnememreiliggesteld door ge-
bruik van cryptografische middelen. Bovendien tonen we aapidtocollen die zijn
bedoeld om bepaalde operaties te realiseren in het vezkleldomein kunnen worden
gebruikt in andere toepassingen en gebieden, met een aajzigingen.
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