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Preface

The research for this thesis was conducted within the SignalProcessing in the En-
crypted Domain (SPEED) project which was funded by the European Union within
the Sixth Programme Framework. It started in December 2006 and finished in De-
cember 2009. The goal of the project was to foster the advancement of the mar-
riage between Signal Processing and Cryptographic techniques, both at theoretical
and practical level. The objective was the initiation and development of a totally new
and unexplored interdisciplinary framework and technologies for signal processing in
the encrypted domain that address the problem of security inmultimedia communica-
tion/consumption, and digital signal manipulation.

In this European project, the following parties were involved: Universit̀a degli Studi
di Siena, Universit̀a degli Studi di Firenze, Katholieke Universiteit Leuven, Ruhr-
Universitaet Bochum, Philips Electronics Nederland B.V. and Delft University of
Technology.

During the SPEED project, security and privacy problems in several multimedia ap-
plications were addressed and a set of solutions that mergescryptography and signal
processing was proposed. In this thesis, we present the results of the research con-
ducted in Delft University of Technology.

Z. Erkin, Delft, December 2009.
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One

Introduction

“. . . the right to be let alone.”
Warren and Brandeis

Today, we are witnessing one of the most important breakthroughs in history. Started
in the form of electronic mails, text messaging and World Wide Web, we have created
a virtual world that has the advantage of accessibility fromany place at any time and
offers almost unlimited variety of services unlike any of its physical counterparts.
In this virtual world, people can access information and knowledge instantly, create
groups to share and discuss ideas, do shopping, entertain themselves and much more.
As the advantages of the virtual world are undisputed, more functions from the real
world are brought to the virtual one, resulting in an increasingly connected world.

A close look at the services today shows that most of the services rely on data
processing. Typical data for an online shopping site would be the identifiers, properties
and the quantities of the products on sale. For a social network site personal data such
as likes and dislikes would be considered. Regardless of theapplication type, most of
the services rely highly on data collected from the users to design better applications in
terms of service experience. As an example, for a shopping site, it can be very helpful
to show the most popular products on the first page of the web site. Of course, to add
such a functionality, the service provider needs to record and process the shopping
patterns of the users. To make the system even more attractive, these sites can offer
personalization. Depending on demographic properties, preferences and past actions,
the service provider can generate specific recommendationsthat specific users may
like.

Despite the fact that a more connected world simplifies people’s lives by providing
several services, the available information on the users ofonline applications creates
a serious privacy risk for the users. Every piece of data collected contains sensitive
information about the users that can be abused by other parties including the service
provider [14]. In addition to the privacy consideration of the users, the service provider
may have his own concerns for securing his service against malicious users who may
try to abuse the service for their own benefit. In either case,we face a challenging
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problem in the virtual world in which involved parties do notfully trust each other
with their sensitive data.

1.1 Case Scenario: Automated Medical System

To illustrate the problem of lack of trust, consider the example of patient-doctor rela-
tion. During a medical examination, the patienttrustshis doctor on the confidentiality
of the examination result. The patient-doctor relation is built on the strong assump-
tion that the doctor will keep his Hippocratic Oath. Now, imagine that due to the
lack of doctors and increasing number of patients in society, an automated system
for medical diagnosis is to be deployed. This system consists of an expert system
with a large database of recordings on diseases and their symptoms. Regularly or on
demand, a device given to the patient makes some measurements on the patient and
sends its data to the central system where the expert system tries to make a diagno-
sis. Depending on the analysis, the expert system may suggest different things such
as conducting another set of analysis, making an appointment at a hospital or even
prescribing medicine.

In this scenario, both sides, the patient and the service provider, have several ad-
vantages. The patient can have medical check-ups at any timeand at any place, elimi-
nating a tedious procedure of making appointments with the doctor. At the same time,
the service provider can keep the expert system online without difficulty and serve a
lot more people concurrently. In general, the whole medicalsystem can benefit from
reducing the expenses, saving time and valuable resources.The question fundamen-
tal to this thesis is whether we can move the trust model between the doctor and the
patient to the virtual world.

A straightforward approach to secure this medical system usually considers the
confidentiality of the communication channel and the storeddata. These precautions
may prevent attackers from obtaining highly privacy-sensitive data. However, the real
privacy threat in this scenario arises from the fact that it is not a valid assumption for
the patient to fully trust the service provider with his medical records. The service
provider may have an interest in collecting information on the patients since this type
of data can be particularly interesting for insurance companies or employers. In the
case of misuse, the consequences will be severe for the privacy of the patient.

In summary, in online applications where the service provider and the user interact
virtually, the involved parties may have sensitive data that they would like to keep
secret from the other parties. For instance in dating sites as a social network, the
service provider finds similar other users based on user’s preferences. In the case
of online shopping sites, the service provider tries to increase his profit by providing
targeted advertisements by observing user’s shopping behavior and/or profile. In either
case, the service provider needs to access the privacy-sensitive data of the users. As
this constitutes a serious privacy risk for the users, some users may not prefer to use
the service at all [15, 17]. And for those who choose to get theservice, which has no
proper privacy protection, are open to privacy breaches. The situation can get worse
as in the case of surveillance systems in which the users are being monitored without
their consent [24].



1.2. Preserving Privacy 3

1.2 Preserving Privacy

In order to protect the privacy of the patient, we consider two different solutions:
using a trusted third party (TTP) and secure signal processing. Using the medical
system scenario as an example, we illustrate how a TTP can be coupled to a privacy-
preserving solution. In such a setting, the TTP, who is trusted by all parties, receives
the privacy-sensitive data from the patient and the algorithm from the service provider.
The TTP can either run the algorithm by using the private dataof the patient and report
the outcome himself or he can anonymize the patient’s data and give them to the server
to be processed. In either case, the security and the privacyconcerns are eliminated as
the patient’s privacy sensitive data and the algorithm are safe in the hands of the TTP.
The problem with this approach is that in real life it is not easy, if not impossible, to
find TTPs that do not have motives of business, politics, etc.In business, it is strongly
believed that TTPs are vulnerable, costly and risky [22]. Thus, instead of giving away
the privacy-sensitive data and the algorithm to a TTP, we canexplore cryptographic
techniques.

A solution based on cryptographic techniques would be as follows. The device
provided to the patient makes the measurements, encrypts the data and sends it to the
automated system. Upon receiving the data, the automated medical system runs its
algorithm on the encrypted data and obtains the diagnosis result, again in encrypted
form. The encrypted diagnosis is then sent to the patient; hedecrypts the encrypted
message and obtains the diagnosis (Fig. 1.1). As a consequence, the patient does not
reveal his medical data to the automated system but obtains the diagnosis which is in
turn unknown to the automated system.

In the medical scenario we assume that each party plays his own role properly.
That is, the steps defined by the protocol are followed and no manipulation either
on the data or in the algorithm is made. This type of model, known assemi-honest
model, also expects the parties to record the previous messages in order to deduce
more information than they are supposed to have. In the case of manipulating the data
or the steps of the protocol, extra precautions should be taken to ensure the correctness
of the protocol. These precautions usually consist of cryptographic protocols such as
zero-knowledge proofs in which one party tries to prove to another that a statement is
true without revealing the statement itself [12]. This security model is often referred to
asmalicious caseor active adversarymodel [12]. Throughout this thesis, we assume
that all parties act according to the semi-honest model.

1.3 Signal Processing and Cryptographic Tools

The proposed system based on cryptographic techniques in automated medical system
scenario provides the necessary privacy protection for thepatient. However, realizing
the system described in Fig. 1.1 presents a number of challenges. The goal of encryp-
tion is to make the original message unreadable in such a way that only the recipient
of the message with the right key can read it. After the encryption, the structure of
the original message is destroyed and the resulting cipher text looks totally random.
As a result, once the message is encrypted, operations on them such as sorting and
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Key

Key

Figure 1.1: Privacy-preserving medical diagnosis system.

averaging a set of encrypted values become non-trivial. Therefore, we need to deploy
cryptographic protocols to process data in the encrypted domain.

Before describing existing cryptographic tools for processing encrypted data, we
need to identify what kind of processing is required in online multimedia applications
in general. A wide variety of services available on the Internet today possess similar
features. The data in question is usually a set, or more precisely a vector, of values that
might be preferences of users (social network sites), likesor dislikes (recommender
systems) and media files (audio, image and video). The service provider processes
the data depending on the service demanded. As an example, inthe case of social
networks, the focus is on finding the most similar users basedon their preferences.
In the case of recommender systems, the service provider first needs to find the most
similar users and then generate recommendations by applying some statistical meth-
ods like averaging similar users’ ratings. Many other examples can be given here such
as finding other copies of a picture or matching the face picture of a user to a celebrity.

In all of the applications mentioned above and considered inthis thesis, we see
that the data possess the structure of signals, that is they are correlated values from
a small range, and the applications consist of common operations from the field of
signal processing such as averaging and quantization. Eventhough the classification
of signal processing operations is out of the scope of this thesis [3], the operations we
observe in multimedia applications can be grouped in two primary categories:

• Linear operations: This group consists of operations such as linear transforms,
correlation, linear filtering, computation of difference and error signals.

• Non-linear operations: Distance computation, comparison, thresholding and
quantization can be named here as examples.

Considering that the data in multimedia applications are privacy-sensitive and we
propose to ensure the confidentiality of the data by means of encryption, we need
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to realize the linear and non-linear parts of a signal processing application under en-
cryption. In order to process encrypted data, we can exploithomomorphic encryption
schemesandsecure multi-party computation(MPC) techniques.

1.3.1 Linear Operations and Homomorphism

In cryptography, a number of public key cryptosystems possess a property calledho-
momorphismsuch that after encrypting a message, there is some structure preserved
that can be exploited to process it in the encrypted domain [1]. In particular, this
means that an operation on the encrypted data corresponds toanother operation on the
plain text. For instance, the multiplication of two encryptions with amultiplicatively
homomorphic cryptosystem like RSA [21] gives us the encrypted product of these
messages:

Dsk(Epk(m1) × Epk(m2)) = m1 × m2, (1.1)

wherem1,m2 are messages and,Epk andDsk correspond to encryption and decryp-
tion functions with the public and the secret key, respectively. A second type of ho-
momorphism allows us to have the encrypted sum of messages when multiplied in the
encrypted domain. This property is calledadditivehomomorphism:

Dsk(Epk(m1) × Epk(m2)) = m1 + m2, (1.2)

whereEpk andDsk are defined as before but for an additively homomorphic cryp-
tosystem like Paillier [18]. As a consequence of additive homomorphism, a message
can be multiplied with a public constantc by raising the encryption of the message to
the power of that constant:

Dsk(Epk(m)c) = m · c. (1.3)

Depending on the particular cryptosystem used, addition ormultiplication1 can
be carried out on encrypted values. This allows us to realizelinear operations in the
encrypted domain. As an example, consider that the similarity of two users,A andB,
is to be calculated in a recommender system. Assume that eachuser is represented
by his preference vectorVA andVB , respectively. In order to obtain the similarity
value, the inner product ofVA andVB is needed. This inner product computation can
be realized in a secure way as follows: userA encrypts his vectorVA and sends it to
userB. Upon receivingVA, userB computes the inner product by using the additive
homomorphism property of the cryptosystem as shown below:

1Recently, fully algebraic cryptosystems were proposed in [2] and [11] based on polynomials and lat-
tices, respectively. However they are highly inefficient tobe used in practice but very important to prove
the existence of such cryptosystems.
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EpkA
(< VA, VB >) = EpkA

(

N∑

i=1

VA,i · VB,i)

= EpkA
(VA,1 · VB,1 + . . . + VA,N · VB,N )

= EpkA
(VA,1)

VB,1 · . . . · EpkA
(VA,N )VB,N

=

N∏

i=1

EpkA
(VA,i)

VB,i , (1.4)

where< VA, VB > represents the inner product of user vectorsVA andVB . In other
words, the inner product of one encrypted and one plain vector can be calculated with
multiplications and exponentiations in the encrypted domain.

1.3.2 Non-linear Operations and MPC

In the case of non-linear operations, homomorphic propertyis not sufficient. In such
cases,secure multiparty computation(MPC) techniques known from cryptography
must be used [25]. These techniques allows to evaluate a function with secret inputs
from a number of parties such that each party will only know its own contribution and
the intended result of the function.

The field of MPC and its sibling secure function evaluation isold and many pos-
itive results have been published [4, 13, 26]. In literature, we see that MPC can be
based on different techniques ranging from circuit scrambling to secret sharing and
public-key cryptosystems. In all of these techniques, the idea is the evaluation of a
circuit either Boolean or arithmetic over some field or ring.In the case of circuit ap-
proach with two playersA andB, a functionf with secret inputs from both parties is
constructed as a Boolean circuit by userA. Each wire of every gate is associated with
two keys, one key for bit value 1 and another key for bit value 0. The keys are used to
construct the truth tables. Then, the shuffled truth tables are sent to userB. In order
to evaluate the functionf , userB also needs to know the input of userA. To obtain
his inputs, userB initiated an Oblivious Transfer (OT) protocol [12]. OT protocols
allowsB to acquire the correct input for each wire without revealinghis input to user
A. Together with his input bits and the oblivious transfer of userA’s bits, userB can
evaluate the Boolean circuit and obtain the result.

While Boolean circuits for any functionf can be constructed easily, the size of
the circuit plays an important role for the efficiency. In thecase of complex functions
and operations like multiplication, the size of the circuitgrows dramatically. As size
grows, the construction and the evaluation of the function become more cumbersome.
As most real-world applications are infeasible to rephrasewith a Boolean circuit due
to the required size of the circuit, we do not consider this approach in this thesis.
Instead, we focus on evaluation of circuits over integers and use the term MPC in that
context.

To illustrate the role of MPC in realizing non-linear operations in the encrypted
domain, assume that partyA would like to compute the minimum squared Euclidean
distance of his his vectorVA to one of theK vectors in anR dimensional space. User
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A andB want to keep their vectors secret. The squared Euclidean distance for the two
vectorsVA andV j

B , for j = 1 to K is:

D2(VA, V j
B) =

R−1∑

i=0

(vA,i − vj
B,i)

2

=

R−1∑

i=0

v2
A,i − 2 · vA,i · vj

B,i + (vj
B,i)

2. (1.5)

Imagine that userB provides the encrypted inputsEpkB
(vj

B,i) andEpkB
((vj

B,i)
2).

Then, the squared Euclidean distances can be computed by user A as follows:

EpkB
(D2(VA, V j

B)) = EpkB
(

R−1∑

i=0

(vA,i − vj
B,i)

2)

=

R−1∏

i=0

EpkB
(v2

A,i) · EpkB
(vj

B,i)
−2·vA,i · EpkB

((vj
B,i)

2). (1.6)

Notice that the first and the second terms can be computed by user A, while the third
term is provided directly by userB. After having computedK squared distances, user
A has to find out the minimum of these values. As he does not possess the decryption
key, he cannot observe the contents of the encryptions and decide himself. Since find-
ing the minimum requires comparison and it is not a linear operation, userA andB
need to run a cryptographic protocol based on MPC techniques[26] to compare the en-
crypted squared distances. Unlike the straightforward application of homomorphism
property, MPC techniques are interactive and involve usually complicated protocols.
Depending on the function to be implemented, time, computation power, bandwidth
and storage space requirements can be demanding.

1.4 Problem Statement

As illustrated by the medical system scenario, severe privacy threats in online multi-
media applications exist. This problem cannot be solved by deploying secure channels
or keeping privacy-sensitive data of the users encrypted onthe server side. While these
security measures eliminate a number of security threats from outside attackers, they
are not sufficient to protect the sensitive data against misuse by the service provider
which creates the biggest potential risk.

In this thesis, we focus on principled solutions to protect the privacy of users in
multimedia applications. For this purpose we propose to keep the privacy-sensitive
data safe by means of encryption during processing. This approach eliminates the risk
of possible privacy abuses as the sensitive data is only available to the owner but not
to the other parties. However, once encrypted, the structure in data is destroyed as
a consequence of the encryption procedure. In order to process encrypted data, we
investigate cryptographic tools such as homomorphism and MPC techniques.
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The homomorphism is typically used for implementing linearoperations but it is
not sufficient for developing non-linear operations. MPC techniques, being inefficient
for realizing linear operations, provide a basis to implement the non-linear parts of
an application. However, these techniques are mostly generic and do not consider the
signal aspects of the application and thus, if they are applied directly, the result will be
costly in terms of time, computation power, bandwidth requirement or storage capac-
ity. Therefore, this thesis focuses on solutions for preserving privacy in multimedia
applications by introducing a new idea, to the best of our knowledge, which proposes
using cryptographic tools that exploit the signal processing aspects of the application.

In order to illustrate the idea of the integration of signal processing and cryptogra-
phy, we have selected prototypical applications. In particular, we focus on face detec-
tion, clustering, recommender systems and digital contentfingerprinting. These ap-
plications are selected as they consist of common signal processing operations such as
scaling, correlation, distance computation, thresholding and finding minimums which
can be seen in other multimedia applications too. In order torealize privacy pre-
serving version of multimedia applications, such operations should be realized in the
encrypted domain efficiently. To achieve this goal, we have addressed the following
challenges:

• data representation,

• realizing linear and non-linear operations in the encrypted domain,

• data expansion due to encryption,

• communication and computation costs of using cryptographic protocols.

After presenting cryptographic tools that are related to our purpose and signal aspects
of multimedia applications in Chapter 2, a more formal problem statement will be
given in Section 2.5.

1.5 Thesis Outline

This thesis is organized to cover all aspects of the selectedprototypical applications.
In order to have a clear view on the available cryptographic tools and existing solu-
tions that address similar problems, we start with an overview chapter. The overview
is followed by a number of chapters each of which concentrates on one particular
multimedia application and presents a complete solution. We finalize the thesis with
a discussion that summarizes what has been achieved and which challenges require
further research.

Chapter 2
Protection and retrieval of encrypted multimedia content: When
cryptography meets signal processing

A new approach to design privacy preserving multimedia applications that merges
cryptography and signal processing requires an understanding of both disciplines. As
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cryptography is not a familiar subject in signal processingcommunity, we start Chap-
ter 2 with a brief introduction to cryptographic tools that can be used in designing
cryptographic protocols and discuss the security requirements in privacy-preserving
signal processing applications. In order to illustrate theuse of the cryptographic tools,
we summarize related work in the field for a number of selectedapplications. Chap-
ter 2, which has been published as “Protection and retrievalof encrypted multimedia
content: When cryptography meets signal processing” by Z. Erkin, A. Piva, S. Katzen-
beisser, R. L. Lagendijk, J. Shokrollahi, G. Neven, and M. Barni in Eurasip Journal
on Information Security, 20 pages, 2007, ends with the formal problem statement of
this thesis.

Chapter 3
Privacy-Preserving Face Recognition

Identification systems based on biometric data have become increasingly important
for commercial use. In this chapter we consider surveillance systems as an example
and investigate its privacy aspects. Such systems play a crucial role in providing se-
curity as they enable authorities to monitor physical locations in real time and thus,
they are deployed in vast numbers. It is also possible to misuse surveillance systems
for tracking and locating purposes as they cover almost every major highway, street
and square. Therefore, we propose a solution based on cryptographic techniques that
can be used to hide the face image of a person captured by the camera but still permits
to check if that person has a record in a remote database. The protocol we propose is
based on Eigenface algorithm [23] that finds the most similarperson in the database.
However, instead of an image in the clear, our protocol accepts an encrypted image.
This significant change in the setting introduces challenges in the detection algorithm
which requires to realize signal processing operations such as projection, distance
computation, minimum distance computation and thresholding in the encrypted do-
main. The proposed solution for the surveillance system, inparticular face detection,
can be generalized to many other signal processing applications. This chapter is an
integral copy of “Privacy-preserving face recognition” byZ. Erkin, M. Franz, J. Gua-
jardo, S. Katzenbeisser, R. L. Lagendijk, and T. Toft in the9th Symposium on Privacy
Enhanced Technologies (PETs), pages 235–253, 2009.

Chapter 4
Privacy-Preserving User Clustering in a Social Network

A very common application on the Internet is finding similar people in social net-
works. As the purpose of the social networks may change from dating to finding
people with the same disease, users of such social networks may not want to reveal
their highly privacy-sensitive data to others and to the service provider. In Chapter 4,
we address this problem and propose a way to find similar usersin a social network
without revealing user preferences. The solution is based on widely used K-means
clustering algorithm [10] where people are assigned to the most similar group. Here,
we propose a method based on secure multiparty computation techniques to realize the
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steps of K-means algorithm such as computing distances to the existing cluster cen-
troids, finding the closest cluster and updating the centroids when the user’s data are
encrypted. This chapter is an integral copy of “Privacy-preserving user clustering in a
social network” by Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk in theFirst IEEE
Workshop on Information Forensics and Security (WIFS09), pages 96–100, 2009.

Chapter 5
Privacy-Preserving Recommender System

Getting recommendations has become very common for online services such as shop-
ping, traveling, dating, etc. Such services generate recommendations based on user
information which can be obtained from user’s demographic information, preferences
and past actions. As the information collected by the systemcan be abused by the
service provider, the protection of the data is necessary. In Chapter 5, we propose
a solution for recommender systems that can generate the required recommendation
by using encrypted ratings of users. In this system, the service provider does not get
information on its users whereas the users can get accurate recommendations. This
chapter is an integral copy of “Privacy-preserving centralized recommender system”
by Z. Erkin, T. Veugen, T. Toft and R. L. Lagendijk in theIEEE Transactions on
Information Forensics and Security, (in preparation) 2010.

Chapter 6
Anonymous Fingerprinting

Similar to the trust problem between the service provider and the users in the applica-
tions presented in the previous chapters, a digital contentbuyer may have problems in
trusting the seller. In general, the seller of a digital content protects himself by embed-
ding a watermark in the content. In this way, he can prove his ownership of the content
during a dispute. In order to identify the source of illegal distribution, he can also em-
bed the identity of the buyer. This approach, also known as fingerprinting, has the
disadvantage that the seller possesses the fingerprint of the buyer in clear. Having the
fingerprint of the buyer in clear, the seller can embed it intoany digital content without
the buyer knowing it and accuse him for illegal distributionlater on. To eliminate this
threat, anonymous fingerprinting protocols were developedbased on cryptographic
tools such as homomorphic cryptosystems and zero-knowledge proof protocols [16].
However, despite the security and correctness of the proposed protocols, the underly-
ing watermarking system is vulnerable even to the simplest attacks. In Chapter 6, we
propose to adapt state-of-the-art watermarking schemes robust against several types
of attacks and address the problems of working in the encrypted domain. This chap-
ter is an integral copy of “Anonymous fingerprinting with robust QIM watermarking
techniques” by J. P. Prins, Z. Erkin, and R. L. Lagendijk in the Eurasip Journal on
Information Security, 2007:1–7, 2007.
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Chapter 7
Conclusion and Discussions

Considering the multimedia applications and solutions presented in previous chapters,
in Chapter 7 we summarize proposed solutions that combine cryptography and signal
processing to develop privacy-preserving multimedia applications. Since we are in-
terested in principled solutions for preserving privacy inmultimedia applications, this
chapter discusses the common approaches in our proposed solutions and connects the
pieces from each chapter to form an understanding on the general problem of working
in the encrypted domain. We analyze what has been achieved regarding the problems
stated in Chapter 2 and we conclude discussing which problems still require further
research.

1.6 Contributions

This thesis focuses on principled solutions to protect the privacy in multimedia appli-
cations and thus, a number of prototypical applications were selected to identify the
challenges for processing encrypted signals. Several contributions have been made:

• For the first time, to the best our knowledge, the idea of processing encrypted
data within the context of signal processing is addressed that aims for better
efficiency in terms of computational complexity and bandwidth requirements
such that the proposed solutions can be considered to be deployed in real life
[6, 7]. To achieve this goal, the following major challengesare addressed:

– Data representation.The applications we consider are from the field of
signal processing and thus, they operate on signal values. These signal
values can be integer values in the beginning like pixel values of an image
but they mostly become real values after processing. The bitlength of the
values can also change depending on the operation. Unfortunately, cur-
rently most of the existing homomorphic cryptosystems workon integer
values. Thus, we propose a strategy for data representationfor working in
the encrypted domain that copes with real values and possible expansion
in bit length of signals throughout the processing.

– Linear Operations and Homomorphism. The homomorphism property
of the public key cryptosystems is exploited for designing the linear parts
of privacy-preserving multimedia applications [5, 8, 9, 19, 20]. In particu-
lar, scaling, projection and correlation computations arerealized by using
homomorphism property given that one of the inputs of the computation
such as scaling factor is known in plain. In such a case, the required output
can be computed by one party by carrying out multiplicationsand expo-
nentiations on the encrypted data. We address several linear operations
for different settings and propose methods to realize the operations with
minimum overhead.

– Non-linear operations and MPC.Realizing non-linear operations with
encrypted data is a challenging task as it requires to designcryptographic
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protocols based on MPC techniques. In [5, 8, 9], we propose a number
of cryptographic protocols for several non-linear operations including dis-
tance computation, thresholding and comparison. The proposed solutions
differ significantly depending on the setting. In distance computation of
two user vectors, for instance, the homomorphism property is sufficient
for the computations of the linear parts. For the squared term, there is no
interaction needed as it can be computed and sent in the beginning of the
protocol [8]. However, if the vectors are both encrypted andshould be
kept secret from the owner of the decryption key, homomorphism prop-
erty is not sufficient alone and running a cryptographic protocol is neces-
sary [5]. The proposed cryptographic protocols for such cases, which are
based on homomorphism and MPC techniques, are particularlydeveloped
for the signal processing applications to achieve better efficiency in terms
of computational and communication costs compared to existing solutions
that use generic cryptographic tools.

– Data expansion. Since we use semantically secure cryptosystems, the
data expansion after encrypting a signal value, which is much smaller
compared to the key size of the encryption scheme, constitutes a major
drawback for the storage and transmission of the encrypted data. In ad-
dition, we deploy interactive cryptographic protocols to realize non-linear
operations which increase the bandwidth requirement further. This prob-
lem is addressed in [9] and an effective solution, namely data packing, is
proposed to be used. Instead of encrypting individual signal samples, we
pack a number of them in one encryption and process the packeddata later
on. As a consequence, the cryptographic protocols for processing the en-
crypted data are modified to reflect the change in the construction. Data
packing considerably reduces the communication and computational costs
since less number of encryptions are transmitted and processed.

– Computational costs. The realization of signal processing operation in
the encrypted domain introduces overhead in terms of computation power
and bandwidth requirements compared to the original systems in plain.
For instance finding the minimum of a thousand values can be done in
a few microseconds but a similar operation with a thousand encrypted
values takes time in the order of minutes. The challenge of minimizing
the computation power is addressed in [5, 8, 9] which focus ondesigning
the cryptographic protocols that minimize the number of operations on the
encrypted data.
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[4] D. Chaum, C. Cŕepeau, and I. Damgard. Multiparty unconditionally secure pro-
tocols. InSTOC ’88: Proceedings of the twentieth annual ACM symposiumon
Theory of computing, pages 11–19, New York, NY, USA, 1988. ACM.

[5] Z. Erkin, M. Franz, S. Katzenbeisser, J. Guajardo, R. Lagendijk, and T. Toft.
Privacy-preserving face recognition. In9th Symposium on Privacy Enhanced
Technologies (PETs), pages 235–253, Seattle, USA, August 2009.

[6] Z. Erkin and R. L. Lagendijk. On processing encrypted data. In 13th annual
conference of the Advanced School for Computing and Imaging, pages 322–329,
June 13-15 2007.

[7] Z. Erkin, A. Piva, S. Katzenbeisser, R. L. Lagendijk, J. Shokrollahi, G. Neven,
and M. Barni. Protection and retrieval of encrypted multimedia content: When
cryptography meets signal processing.Eurasip Journal on Information Security,
2007, Article ID 78943, 20 pages, 2007.

[8] Z. Erkin, T. Veugen, T. Toft, and R. Lagendijk. Privacy-preserving user clus-
tering in a social network. In1st IEEE Workshop on Information Forensics and
Security (WIFS09), pages 96–100, 2009.

[9] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk. Privacy-preserving central-
ized recommender system.IEEE Transactions on Information Forensics and
Security, (in preparation), 2010.

[10] K. Fukunaga.Introduction to Statistical Pattern Recognition. Academic Press,
1990.

[11] C. Gentry. Fully homomorphic encryption using ideal lattices. InSTOC: Pro-
ceedings of the 41st annual ACM Symposium on Theory of Computing, pages
169–178, 2009.

[12] O. Goldreich. Foundations of Cryptography I. Cambridge University Press,
2001.

[13] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
STOC ’87: Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 218–229, New York, NY, USA, 1987. ACM.

http://eprint.iacr.org/
http://eprint.iacr.org/


14 Chapter 1. Introduction

[14] A. Gregory. Data abuse is a rapidly growing problem, November 2008.
http://www.securitypark.co.uk/security_article262328.
html.

[15] R. Jennings. European social technographics revealed, February 2008.

[16] M. Kuribayashi and H. Tanaka. Fingerprinting protocolfor images based
on additive homomorphic property.IEEE Transactions on Image Processing,
14(12):2129–2139, December 2005.

[17] Ofcom. Social networking: A quantitative and qualitative research report into
attitudes, behaviours and use, April 2008.

[18] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. InAdvances in Cryptology—EUROCRYPT’99, volume 1592 ofLecture
Notes in Computer Science, pages 223–238. Springer, 1999.

[19] J. P. Prins, Z. Erkin, and R. L. Lagendijk. Anonymous fingerprinting with ro-
bust QIM watermarking techniques.Eurasip Journal on Information Security,
2007:1–7, 2007.

[20] J. P. Prins, Z. Erkin, and R. L. Lagendijk. Robust anonymous fingerprinting. In
28th Symposium on Information Theory in the Benelux, pages 59–66, May 24-25
2007.

[21] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems.Communications of the ACM, 21(2):120–126,
1978.

[22] N. Szabo. Trusted third parties are security holes, 2005. http://szabo.
best.vwh.net/ttps.html.

[23] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. InComputer
Vision and Pattern Recognition, IEEE Computer Society Conference on, pages
586–591, 1991.

[24] R. Walden. Surveillance and super databases: New privacy threats in the
information and technology age, September 2007.http://humanrights.
suite101.com/article.cfm/under_the_eye_and_on_the_
list.

[25] A. C.-C. Yao. Protocols for secure computations (extended abstract). InProceed-
ings of the 23rd Annual IEEE Symposium on Foundations of Computer Science,
pages 160–164, 1982.

[26] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In
Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer
Science, pages 162–167, 1986.

http://www.securitypark.co.uk/security_article262328.html
http://www.securitypark.co.uk/security_article262328.html
http://szabo.best.vwh.net/ttps.html
http://szabo.best.vwh.net/ttps.html
http://humanrights.suite101.com/article.cfm/under_the_eye_and_on_the_list
http://humanrights.suite101.com/article.cfm/under_the_eye_and_on_the_list
http://humanrights.suite101.com/article.cfm/under_the_eye_and_on_the_list


Two
Protection and Retrieval of Encrypted
Multimedia Content: When Cryptog-
raphy Meets Signal Processing

This chapter, excluding the last section, has been published as “Protection and Re-
trieval of Encrypted Multimedia Content: When CryptographyMeets Signal Process-
ing”, by Z. Erkin, A. Piva, S. Katzenbeisser, R. L. Lagendijk, J. Shokrollahi, G. Neven
and M. Barni in theEurasip Journal on Information Security, 2007.
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Abstract

The processing and encryption of multimedia content are generally considered se-
quential and independent operations. In certain multimedia content processing sce-
narios, it is however, desirable to carry out processing directly on encrypted signals.
The field of secure signal processing poses significant challenges for both signal pro-
cessing and cryptography research; only few ready to go fully integrated solutions are
available. This paper first concisely summarizes cryptographic primitives used in ex-
isting solutions to processing of encrypted signals, and discusses implications of the
security requirements on these solutions. The paper then continues to describe two
domains in which secure signal processing has been taken up as a challenge, namely
analysis and retrieval of multimedia content, and multimedia content protection. In
each domain, state-of-the-art algorithms are described. Finally, the paper discusses
the challenges and open issues in the field of secure signal processing.

2.1 Introduction

In the past few years, the processing of encrypted signals has emerged as a new and
challenging research field. The combination of cryptographic techniques and signal
processing is not new. So far, encryption was always considered as an add-on after
signal manipulations had taken place (see Figure 2.1). For instance, when encrypting
compressed multimedia signals such as audio, images, and video, first the multime-
dia signals were compressed using state-of-the-art compression techniques, and next
encryption of the compressed bit stream using a symmetric cryptosystem took place.
Consequently, the bit stream must be decrypted before the multimedia signal can be
decompressed. An example of this approach is JPSEC, the extension of the JPEG2000
image compression standard. This standard adds selective encryption to JPEG2000 bit
streams in order to provide secure scalable streaming and secure transcoding [45].

In several application scenarios, however, it is desirableto carry out signal pro-
cessing operations directly on encrypted signals. Such an approach is calledsecure
signal processing, encrypted signal processing, or signal processing in the encrypted
domain. For instance, given an encrypted image, can we calculate the mean value of
the encrypted image pixels? On the one hand, the relevance ofcarrying out such signal
manipulations – i.e. the algorithm – directly on encrypted signals is entirely dependent
on the security requirements of the application scenario under consideration. On the
other hand, the particular implementation of the signal processing algorithm will be
determined strongly by the possibilities and impossibilities of the cryptosystem em-
ployed. Finally, it is very likely that new requirements forcryptosystems will emerge

Process

(Compress)
Encrypt Decrypt

Process
(Decompress)

x̂(n)x(n) Channel

Figure 2.1: Separate processing and encryption of signals.
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from secure signal processing operations and applications. Hence, secure signal pro-
cessing poses a joint challenge for both the signal processing and the cryptographic
community.

The security requirements of signal processing in encrypted domains depends
strongly on the considered application. In this survey paper we take an application-
oriented view on secure signal processing and give an overview of published appli-
cations in which the secure processing of signal amplitudesplays an important role.
In each application, we show how signal processing algorithms and cryptosystems
are brought together. It is not the purpose of the paper to describe either the signal
processing algorithms or the cryptosystems in great detail, but rather focus on pos-
sibilities, impossibilities, and open issues in combiningthe two. The paper includes
many references to literature that contains more elaboratesignal processing algorithms
and cryptosystem solutions for the given application scenario. It is also crucial to state
that the scenarios in this survey can be implemented more efficiently by using trusted
third entities. However, it is not always easy to find trustedentities —with high com-
putational power, and even if one is found, it is not certain that it can be applicable in
these scenarios. Therefore, the trusted entities either donot exist or have little role in
discussed scenarios in this paper.

In this paper we will survey applications that directly manipulate encrypted sig-
nals. When scanning the literature on secure signal processing, it becomes imme-
diately clear that there are currently two categories underwhich the secure signal
processing applications and research can be roughly classified, namely content re-
trieval and content protection. Although the security objectives of these application
categories differ quite strongly, similar signal processing considerations and crypto-
graphic approaches show up. The common cryptographic primitives are addressed
in Section 2.2. This section also discusses the need for clearly identifying the secu-
rity requirements of the signal processing operations in a given scenario. As we will
see, many of the approaches for secure signal processing arebased on homomorphic
encryption, zero-knowledge proof protocols, commitment schemes, and multiparty
computation. We will also show that there is ample room for alternative approaches
to secure signal processing towards the end of Section 2.2. Section 2.3 surveys secure
signal processing approaches that can be classified as “content retrieval”, among them
secure clustering and recommendation problems. Section 2.4 discusses problems of
content protection, such as secure watermark embedding anddetection. Finally, Sec-
tion 2.5 concludes this chapter with the formal problem definition of this thesis.

2.2 Encryption Meets Signal Processing

2.2.1 Introduction

The capability to manipulate signals in their encrypted form is largely thanks to two
assumptions on the encryption strategies used in all applications discussed. In the
first place, encryption is carried out independently on individual signal samples. As a
consequence, individual signal samples can be identified inthe encrypted version of
the signal, allowing for processing of encrypted signals ona sample-by-sample basis.
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If we represent a one-dimensional (e.g. audio) signalX that consists ofM samples as

X = [x1, x2, x3, . . . , xM−1, xM ]T , (2.1)

wherexi is the amplitude of theith signal sample, then the encrypted version ofX

using keyk is given as

Ek(X) = [Ek(x1), Ek(x2), Ek(x3), . . . , Ek(xM−1), Ek(xM )]T . (2.2)

Here the superscript “T” refers to vector transposition. Note that no explicit measures
are taken to hide the temporal or spatial structure of the signal—however, the use
of sophisticated encryption schemes that aresemantically secure(as the one in [58])
achieves this property automatically.

Secondly, onlypublic key cryptosystems are used that have particularhomomor-
phic properties. The homomorphic property that these public keycryptographic sys-
tem provide, will be concisely discussed in Section 2.2.2. In simple terms, the homo-
morphic property allows for carrying out additions or multiplications on signal ampli-
tudes in the encrypted domain. Public key systems are based on the intractability of
some computationally complex problems, such as

• the discrete logarithm in finite field with a large (prime) number of elements
(e.g., ElGamal cryptosystem [35]),

• factoring large composite numbers (e.g., RSA cryptosystem [69]),

• deciding if a number is annth power inZn2 for large enough compositen (e.g.,
Paillier cryptosystem [58]).

It is important to realize that public key cryptographic systems operate on very large
algebraic structures. This means that signal amplitudesxi that were originally repre-
sented in 8 to 16 bits, will require at least 512 or 1024 bits per signal sample in their
encrypted formEk(xi). This data expansion is usually not emphasized in literature
but this may be an important hurdle for practical applicability of secure signal pro-
cessing solutions. In some cases however, several signal samples can be packed into
one encrypted value in order to reduce the size of the whole encrypted signal by a
linear factor [60].

A characteristic of signal amplitudesxi is that they are usually within a limited
range of values, due to the 8 to 16 bits amplitude representation format of sampled
signals. If a deterministic encryption scheme would be used, each signal amplitude
would always give rise to the same encrypted value, making iteasy for an adversary
to infer information about the signal. Consequently, probabilistic encryption has to
be used, where each encryption uses a randomization or blinding factor such that
even if two signal samplesxi andxj have the same amplitude, their encrypted values
Epk[xi] andEpk[xj ] will be different. Herepk refers to the public key used upon
encrypting the signal amplitudes. Public key cryptosystems are constructed such that
the decryption uses only the private keysk, and that decryption does not need the value
of the randomization factor used in the encryption phase. All encryption schemes that
achieve the desired strong notion ofsemantic securityare necessarily probabilistic.
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Cryptosystems operate on (positive) integer values on finite algebraic structures.
Although sampled signal amplitudes are normally represented in 8 to 16 bit (integer)
values when they are stored, played, or displayed, intermediate signal processing op-
erations often involve non-integer signal amplitudes. Work-arounds for non-integer
signal amplitudes may involve scaling signal amplitudes with constant factors (say
factors of 10 to 1000), but the unavoidable successive operations of rounding (quanti-
zation) and normalization by division pose significant challenges for being carried out
on encrypted signal amplitudes.

In Section 2.2.2 we first discuss four important cryptographic primitives that are
used in many secure signal processing applications, namelyhomomorphic encryption,
zero knowledge proof protocols, commitment schemes, and secure multiparty compu-
tation. In Section 2.2.3 we then consider the importance of scrutinizing the security
requirements of the signal processing application. It is meaningless to speak about
secure signal processing in a particular application if thesecurity requirements are
not specified. The security requirements as such will also determine the possibility
or impossibility of applying the cryptographic primitives. As we will illustrate by
examples—and also in more detail in the following sections—some application sce-
narios simply cannot be made secure because of the inherent information leakage by
the signal processing operation, because of the limitations of the cryptographic prim-
itives to be used, or because of constraints on the number of interactions between
parties involved. Finally, in Section 2.2.4 we briefly discuss the combination of signal
encryption and compression using an approach quite different from the ones discussed
in Sections 3 and 4, namely by exploiting the concept of coding with side informa-
tion. We discuss this approach here to emphasize that although many of the currently
existing application scenarios are built on the four cryptographic primitives discussed
in Section 2.2.2, there is ample room for entirely differentapproaches to secure signal
processing.

2.2.2 Cryptographic Primitives

Homomorphic Cryptosystems

Many signal processing operations are linear in nature. Linearity implies that multi-
plying and adding signal amplitudes are important operations. At the heart of many
signal processing operations, such as linear filters and correlation evaluations, is the
calculation of the inner product between two signalsX andY. If both signals (or
segments of the signals) containM samples, then the inner product is defined as:

< X,Y >= X
T
Y = [x1, x2, . . . , xM ] ·








y1

y2

...
yM








=

M∑

i=1

xiyi. (2.3)

This operation can be carried out directly on an encrypted signal X and plain text
signalY if the encryption system used has the additive homomorphic property, as we
will discuss next.
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Formally, a (public key) encryption systemEpk(·) and its decryptionDsk(·) are
homomorphic if those two functions are maps between the message group with an
operationf1(·) and the encrypted group with an operationf2(·), such that ifx andy
are taken from the message space of the encryption scheme, wehave:

f1(x, y) = Dsk(f2(Epk(x), Epk(y))). (2.4)

For secure signal processing, multiplicative and additivehomomorphisms are impor-
tant. Table 2.1 gives an overview of encryption systems withadditive or multiplicative
homomorphism. Note that those homomorphic operations are applied to a modular
domain (i.e., either in a finite field or in a ringZn)—thus, both addition and multipli-
cation are taken modulo some fixed value. For signal processing applications, which
usually require integer addition and multiplication, it isthus essential to choose the
message space of the encryption scheme large enough so that overflows due to modu-
lar arithmetic are avoided when operations on encrypted data are performed.

Another important consideration is the representation of the individual signal sam-
ples. As encryption schemes usually operate in finite modular domains (and all mes-
sages to be encrypted must be represented in this domain), a mapping is required
which quantizes real-valued signal amplitudes and translates the signal samples ofX

into a vector of modular numbers. In addition to the requirement that the computa-
tions must not overflow, special care must be taken to represent negative samples in a
way which is compatible with the homomorphic operation offered by the cryptosys-
tem. For the latter problem, depending on the algebraic structure of the cipher, one
may either encode the negative value−x by the modular inversex−1 in the underly-
ing algebra of the message space or by avoiding negative numbers entirely by using a
constant additive shift.

In the context of the above inner product example, we requirean additively homo-
morphic scheme (see Table 2.1). Hence,f1 is the addition, andf2 is a multiplication:

x + y = Dsk(Epk(x) · Epk(y)), (2.5)

or equivalently:

Epk(x + y) = Epk(x) · Epk(y). (2.6)

Note that the latter equation also implies that

Epk(c · x) = (Epk(x))c (2.7)

for every integer constantc. Thus, every additively homomorphic cryptosystem also
allows to multiply an encrypted value with a constant available or known as clear text.

The Paillier cryptosystem [58] provides the required homomorphism, if both ad-
dition and multiplication are considered as modular. The encryption of a messagem
under a Paillier cryptosystem is defined as

Epk(m) = gmrn mod n2, (2.8)

wheren = pq, p andq are large prime number,g ∈ Z
∗
n2 is a generator whose order is

a multiple ofn, andr ∈ Z
∗
n is a random number (blinding factor). We then easily see
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that

Epk(x)Epk(y) = (gxrn
x )(gyrn

y ) mod n2

= gx+y(rxry)n mod n2

= Epk(x + y). (2.9)

Applying the additive homomorphic property of the Paillierencryption system, we
can evaluate Eq. (2.3) under the assumption thatX is an encrypted signal andY is a
plain text signal:

Epk < X,Y > = Epk

(
M∑

i=1

xiyi

)

=

M∏

i=1

Epk(xiyi) =

M∏

i=1

Epk(xi)
yi .(2.10)

Here we implicitly assume thatxi, yi are represented as integers in the message space
of the Paillier cryptosystem, i.e.xi, yi ∈ Zn. Equation (2.10) essentially shows that
it is possible to compute an inner product directly in case one of the two vectors
is encrypted. One takes the encrypted samplesEpk(xi), raises them to the power
of yi and multiplies all obtained values. Obviously, the resulting number itself is
also in encrypted form. To carry out further useful signal processing operations on
the encrypted result, for instance to compare it to a threshold, another cryptographic
primitive is needed, namely zero knowledge proof protocols, which is discussed in the
next section.

In the paper we focus mainly on public-key encryption schemes, as almost all
homomorphic encryption schemes belong to this family. The notable exception is
the one-time pad (and derived stream ciphers), where messages taken from a finite
group are blinded by a sequence of uniformly random group elements. Despite its
computationally efficient encryption and decryption processes, the application of a
one-time pad usually raises serious problems with regard tokey distribution and man-
agement. Nevertheless, it may be used to temporarily blind intermediate values in
larger communication protocols. Finally, it should be noted that some recent work
in cryptography (like searchable encryption [11] and orderpreserving encryption [4])
may also yield alternative ways for the encryption of signalsamples. However, these
approaches have not yet been studied in the context of media encryption.

To conclude this section, we observe that directly computing the inner product of
two encrypted signals is not possible since this would require acryptographic sys-
tem that has both multiplicative and additive (i.e., algebraic) homomorphism. Recent
proposals in that direction like [27, 28] were later proven to be insecure [77, 17].
Therefore, noprovably securecryptographic system with these properties is known
to date. The construction of an algebraic privacy homomorphism remains an open
problem. Readers can refer to [32] for more details on homomorphic cryptosystems.

Zero-Knowledge Proof Protocols

Zero-knowledge protocols are used to prove a certain statement or condition to a veri-
fier, without revealing any “knowledge” to the verifier except the fact that the assertion
is valid [38]. As a simple example, consider the case where the prover Peggy claims
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Table 2.1: Some (probabilistic) encryption systems and their homomorphisms.
Encryption system f1(., .) f2(., .)
Multiplicatively Homomorphic El-Gamal [35] multiplication multiplication
Additively Homomorphic El-Gamal [72] addition multiplication
Goldwasser-Micali [40] XOR multiplication
Benaloh [10] addition multiplication
Naccache-Stern [56] addition multiplication
Okamoto-Uchiyama [57] addition multiplication
Paillier [58] addition multiplication
Damg̊ard-Jurik [26] addition multiplication

to have a way of factorizing large numbers. The verifier Victor will send her a large
number and Peggy will send back the factors. Successful factorization of several large
integers will decrease Victor’s doubt in the truth of Peggy’s claim. At the same time
Victor will learn “no knowledge of the actual factorizationmethod”.

Although simple, the example shows an important property ofzero-knowledge
protocol proofs, namely that they are interactive in nature. The interaction should
be such that with increasing number of “rounds”, the probability of an adversary to
successfully prove an invalid claim decreases significantly. On the other hand, non-
interactive protocols (based on the random oracle model) also do exist. A formal
definition of interactive and non-interactive proof systems, such as zero-knowledge
protocols, falls outside the scope of this paper, but can be found for instance in [38].

As an example for a commonly used zero-knowledge proof, consider the proof of
knowing the discrete logarithmx of an elementy to the baseg in a finite field [71].
Having knowledge of discrete logarithmx is of interest in some applications since if

y = gx mod p, (2.11)

then givenp (a large prime number),g andy the calculation of the logarithmx is com-
putationally infeasible. If Peggy (the prover) claims she knows the answer (i.e., the
value ofx), she can convince Victor (the verifier) of this knowledge without reveal-
ing the value ofx by the following zero-knowledge protocol. Peggy picks a random
numberr ∈ Zp, and computest = gr mod p. She then sendst to Victor. He picks a
random challengec ∈ Zp and sends this to Peggy. She computess = r − cx mod p
and sends this to Victor. He accepts Peggy’s knowledge ofx if gsyc = t, since if
Peggy indeed used the correct logarithmx in calculating the value ofs, we have

gsyc mod p = gr−cx(gx)c mod p = gr = t mod p. (2.12)

In literature, many different zero-knowledge proofs exist. We mention a number
of them that are frequently used in secure signal processing:

• proof that an encrypted number is non-negative [53];

• proof that shows that an encrypted number lies in a certain interval [12];
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• proof that the prover knows the plaintextx corresponding to the encryption
E(x) [33];

• proofs that committed values (see Section 2.2.2) satisfy certain algebraic rela-
tions [13].

In zero-knowledge protocols, it is sometimes necessary forthe prover to commit to a
particular integer or bit value. Commitment schemes are discussed in the next section.

Commitment Schemes

An integer or bit commitment scheme is a method that allows Alice to commit to a
value while keeping it hidden from Bob, and while also preserving Alice’s ability to
reveal the committed value later to Bob. A useful way to visualize a commitment
scheme is to think of Alice as putting the value in a locked box, and giving the box
to Bob. The value in the box is hidden from Bob, who cannot openthe lock (without
the help of Alice), but since Bob has the box, the value insidecannot be changed by
Alice; hence, Alice is “committed” to this value. At a later stage, Alice can “open”
the box and reveal its content to Bob.

Commitment schemes can be built in a variety of ways. As an example, we review
a well-known commitment scheme due to Pedersen [61]. We fix two large primes
p and q such thatq|(p − 1) and a generatorg of the subgroup of orderq of Z

∗
p.

Furthermore, we seth = ga mod p for some random secreta. The valuesp, q,
g andh are the public parameters of the commitment scheme. To commit to a value
m, Alice chooses a random valuer ∈ Zq and computes the commitmentc = gmhr

mod p. To open the commitment, Alice sendsm andr to Bob, who verifies that the
commitmentc received previously indeed satisfiesc = gmhr mod p. The scheme is
hiding due to the random blinding factorr; furthermore, it is binding unless Alice is
able to compute discrete logarithms.

For use in signal processing applications, commitment schemes that are addi-
tively homomorphic are of specific importance. As with homomorphic public key
encryption schemes, knowledge of two commitments allows one to compute—without
opening—a commitment of the sum of the two committed values. For example, the
above mentioned Pedersen commitment satisfies this property: given two commit-
mentsc1 = gm1hr1 mod p andc2 = gm2hr2 mod p of the numbersm1 andm2, a
commitmentc = gm1+m2hr1+r2 mod p of m1 + m2 can be computed by multiply-
ing the commitments:c = c1c2 mod p. Note that the commitmentc can be opened
by providing the valuesm1 +m2 andr1 + r2. Again, the homomorphic property only
supports additions. However, there are situations where itis not possible to prove the
relation by mere additive homomorphism as in proving that a committed value is the
square of the value of another commitment. In such circumstances, zero-knowledge
proofs can be used. In this case, the party which possesses the opening information of
the commitments computes a commitment of the desired result, hands it to the other
party and proves in zero-knowledge that the commitment was actually computed in the
correct manner. Among others, such zero-knowledge proofs exist for all polynomial
relations between committed values [13].
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Secure Multiparty Computation

The goal of SMC is to evaluate a public functionf(x(1), x(2), . . . , x(m)) based on the
secret inputsx(i), i = 1, 2, . . . ,m of m users, such that the users learn nothing except
their own input and the final result. A simple example, calledYao’s Millionaire’s
Problem, is the comparison of two (secret) numbers in order to determine ifx(1) >
x(2). In this case the parties involved will only learn if their number is the largest, but
nothing more than that.

There is a large body of literature on secure multiparty computation; for exam-
ple, it is known [79] that any (computable) function can be evaluated securely in the
multiparty setting by using a general circuit-based construction. However, the general
constructions usually require a large number of interactive rounds and a huge com-
munication complexity. For practical applications in the field of distributed voting,
private bidding and auctions, and private information retrieval, dedicated lightweight
multiparty protocols have been developed. An example relevant to signal processing
application is the multiparty computation known as Bitrep which finds the encryption
of each bit in the binary representation of a number whose encryption under an ad-
ditive homomorphic cryptosystem is given [73]. We refer thereader to [39] for an
extensive summary of secure multiparty computations and [18] for a brief introduc-
tion.

2.2.3 Importance of Security Requirements

Although the cryptographic primitives that we discussed inthe previous section are
useful for building secure signal processing solutions, itis important to realize that in
each application the security requirements have to be made explicit right from the start.
Without wishing to turn to formal definition, we choose to motivate the importance of
what to expect from secure signal processing with three simple yet illustrative two-
party computation examples.

The first simple example is the encryption of a (say audio) signalX that contains
M samples. Due to the sample-by-sample encryption strategy as shown in Eq. (2.2),
the encrypted signalEpk(X) will also containM encrypted values. Hence, thesizeM
of the plain text signal cannot be hidden by the approaches followed in secure signal
processing surveyed in this paper.

In the second example, we consider the linear filtering of thesignalX. In a (FIR)
linear filter, the relation between the input signal amplitudesX and output signal am-
plitudesY is entirely determined by the impulse response(h0, h1, . . . , hr) through
the following convolution equation:

yi = h0xi + h1xi−1 + . . . + hrxi−r =

r∑

k=0

hkxi−k. (2.13)

Let us assume that we wish to compute this convolution in a secure way. The first
party, Alice, has the signalX and the second party, Bob, has the impulse response
(h0, h1, . . . , hr). Alice wishes to carry out the convolution (2.13) using Bob’s linear
filter. However, both Bob and Alice wish to keep secret their data, i.e., the impulse
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response and the input signal, respectively. Three different setups can now be envi-
sioned.

• Alice encrypts the signalX under an additive homomorphic cryptosystem and
sends the encrypted signal to Bob. Bob then evaluates the convolution (2.13) on
the encrypted signal as follows:

EpkA
(yi) = EpkA

(
r∑

k=0

hkxi−k

)

=

r∏

k=0

EpkA
(hkxi−k) =

r∏

k=0

EpkA
(xi−k)hk . (2.14)

Notice that the additive homomorphic property is used in theabove equation
and that indeed individually encrypted signal samples should be available to
Bob. Also notice that the above evaluation is only possible if both X and
(h0, h1, . . . , hr) are integer-valued, which is actually quite unlikely in practice.
After computing Eq. (2.14), Bob sends the result back to Alice who decrypts
the signal using her private key to obtain the resultY. In this setup Bob does
not learn the output signalY.

• Bob encrypts his impulse response(h0, h1, . . . , hr) under a homomorphic cryp-
tosystem and sends the result to Alice. Alice then evaluatesthe convolution
(2.13) using the encrypted impulse response as follows:

EpkB
(yi) = EpkB

(
r∑

k=0

hkxi−k

)

=
r∏

k=0

EpkB
(hkxi−k) =

r∏

k=0

EpkB
(hk)xi−k . (2.15)

Alice then sends the result to Bob, who decrypts to obtain theoutput signalY.
In this solution Bob learns the output signalY.

• Alice and Bob engage in a formal multiparty protocol, wherethe function to be
evaluatedf(x1, x2, . . . , xM , h0, h1, . . . , hr) is the convolution equation, Alice
holds the signal valuesxi and Bob the impulse responsehi as secret inputs.
Both parties will learn the resulting output signalY.

Unfortunately, none of the above three solutions really provides a solution to the se-
cure computation of a convolution due to inherent algorithmproperties. For instance,
in the first setup, Alice could send Bob a signal that consistsof all-zero values and a
single “one” value (a so-called “impulse signal”). After decrypting the resultEpkA

(yi)
that she obtains from Bob, it is easy to see thatY is equal to(h0, h1, . . . , hr), hence
Bob’s impulse response is subsequently known to Alice. Similar attacks can be for-
mulated for the other two cases. In fact, even for an arbitrary input both parties can
learn the other’s input by a well-known signal processing procedure known as “decon-
volution”. In conclusion, although in some cases there may be a need for the secure
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evaluation of convolutions, the inherent properties of thealgorithm make secure com-
puting in a two-party scenario meaningless. (Nevertheless, the protocols have value if
used as building blocks in a large application where the output signalY is not revealed
to the attacker.)

The third and final example is to threshold a signal’s (weighted) mean value in a
secure way. The (secure) mean value computation is equivalent to the (secure) com-
putation of the inner product Eq. (2.3), withX the input signal andY the weights that
define how the mean value is calculated. In the most simple case, we haveyi = 1
for all i, but other definitions are quite common. Let use assume that Alice wishes
Bob to determine if the signal’s mean value is “critical”, for instance above a certain
threshold valueTc, without revealingX to Bob. Bob on the other hand does not want
to reveal his expert knowledge, namely the weightsY and the thresholdTc. Two
possible solutions to this secure decision problem are the following.

• Use secure multiparty computation, where the functionf(·) is a combination of
the inner product and threshold comparison. Both parties will only learn if the
mean value is critical or not.

• Alice sends Bob the signalX under additively homomorphic encryption. Bob
securely evaluates the inner product using Eq. (2.10). After encryptingTc us-
ing Alice’s public key, Bob computes the (encrypted versionof the) difference
between the computed mean and thresholdTc. Bob sends the result to Alice,
who decrypts the result using her secret key and checks if thevalue is larger or
smaller than zero.

Although the operations performed are similar to the secondexample, in this exam-
ple the processing is secure since Bob learns little about Alice’s signal and Alice will
learn little about the Bob’s expert knowledge. In fact, in the first implementation
the entire signal processing operation is ultimately condensed into a single bit of in-
formation; the second implementation leaks more information, namely the distance
between the correlation value from the threshold. In both cases, the result represents
a high information abstraction level, which is insufficientfor launching successful
signal processing-based attacks. In contrast, in the example based on Eq. (2.13)
the signal processing operation led to an enormous amount ofinformation—the en-
tire output signal—to be available to either parties, makingsignal processing-based
attacks quite easy.

As we will see in Sections 2.3 and 2.4, many of the two-party secure signal pro-
cessing problems eventually include an information condensation step, such as (in the
most extreme case) a binary decision. We postulate that for two-party linear signal
processing operations in which the amount of plain text information after process-
ing is in the same order of magnitude as before processing, nosecure solutions exist
purely based on the cryptographic primitives discussed in the previous section, due to
inherent properties of the signal processing problems and the related application sce-
nario. For that reason, entirely other approaches to securesignal processing are also
of interest. Although few results can be found in literatureon approaches not using
homomorphic encryption, zero-knowledge proofs, and multiparty computation proto-
cols, the approach discussed in the next section may well show a possible direction
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for future developments.

2.2.4 Compression of Encrypted Signals

When transmitting signals that contain redundancy over an insecure and bandwidth
constrained channel, it is customary to first compress and then encrypt the signal. Us-
ing the principles of coding with side information, it is however also possible to inter-
change the order of (lossless) compression and encryption,i.e. to compressencrypted
signals [44]. The concept of swapping the order of compression and encryption is
illustrated in Figure 2.2. A signal from the message source is first encrypted and then
compressed. The compressor doesnot have access to the secret key used in the en-
cryption. At the decoder, decompression and decryption areperformed jointly. From
classical information theory, it would seem that only minimal gain could be obtained
as the encrypted signal has maximal entropy, i.e. no redundancy is left after encryp-
tion. However, the decoder can use the cryptographic key todecode and decryptthe
compressed and encrypted bit stream. This brings opportunities for efficient compres-
sion of encrypted signals based on principle of coding with side information. In [44],
it was shown that neither compression performance nor security need to be negatively
impacted under some reasonable conditions.

Key

Encryption

SourceJoint decompression

and decryption

Reconstructed

Message Source

Eavesdropper

Compression
Public channel

Secure channel

Figure 2.2: Compression of an encrypted signal, from [44].

In source coding with side information, the signalX is coded under the assumption
that the decoder—but not the encoder—has statistically dependent informationY,
called the side information, available. In conventional coding scenarios, the encoder
would code the difference signalX − Y in some efficient way, but in source coding
with side information this is impossible since we assume that Y is only known at
the decoder. In the Slepian-Wolf coding theory [74], the crucial observation is that
the side informationY is regarded as a degraded version ofX. The degradations are
modeled as “noise” on the “virtual channel” betweenX andY. The signalX can
then be recovered fromY by the decoder if sufficient error correcting information is
transmitted over the channel. The required bit rate and amount of entropy are related as
R ≥ H(X|Y). This shows that, at least theoretically, there is no loss incompression
efficiency since the lower boundH(X|Y) is identical to the scenario in whichY is
available at the encoder. Extension of the Slepian-Wolf theory exists for lossy source
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coding [67]. In all practical cases of interests, the information bits that are transmitted
over the channel are parity bits or syndromes of channel coding methods such as
Hamming, Turbo or LDPC codes.

In the scheme depicted in Figure 2.2 we have a similar scenario as in the above
source coding with side information case. If we consider theencrypted signalEk(X)
at the input of the encoder, then we see that the decoder has the key k available,
representing the “statistically dependent side information”. Hence, according to the
Slepian-Wolf viewpoint, the encrypted signalEk(X) can be compressed to a rate that
is the same as if the keyk would be available during the source encoding process, that
is, R ≥ H(Ek(X)|k) = H(X). This clearly says that the (lossless) coding of the
encrypted signalEk(X) should be possible with the same efficiency as the (lossless)
coding ofX. Hence, using the side information keyk, the decoder can recover first
Ek(X) from the compressed channel bit stream and subsequently decodeEk(X) into
X.

A simple implementation of the above concept for a binary signalX uses a pseudo
randomly generated key. The keyk is in this case a binary signalK of the same
dimensionM as the signalX. The encrypted signal is computed as follows:

Ek(X) = X ⊕ K,

Ek(xi) = xi ⊕ ki i = 1, 2, . . . ,M. (2.16)

The encrypted signalEk(X) is now input to a channel coding strategy, for instance a
Hamming coding. The strength of the Hamming code is dependent on the dependency
betweenEk(X) and the side informationK at the decoder. This strength obviously
depends solely on the properties of the original signalX. This does, however, require
the message source to inform the source encoder about the entropy H(X), which
represents a small leak of information. The encoder calculates parity check bits over
binary vectors of some lengthL created by concatenatingL bits of the encrypted
signalEk(X), and sendsonly these parity check bitsto the receiver.

The decoder recovers the encrypted signal by first appendingtoK the parity check
bits, and then error correcting the resulting bit pattern. The success of this error correc-
tion step depends on the strength of the Hamming code, but as mentioned, this strength
has been chosen sufficiently with regards to the “errors” inK on the decoding side.
Notice that in this particular setup the “errors” representthe bits of the original signal
X. If the error correction step is successful, the decoder obtainsEk(X), from which
the decryption can straightforwardly take place:

X = Ek(X) ⊕ K,

xi = Ek(xi) ⊕ ki i = 1, 2, . . . ,M. (2.17)

The above example is too simple for any practical scenario for a number of rea-
sons. In the first place, it uses only binary data, for instance bit planes. More efficient
coding can be obtained if the dependencies between bit planes are considered. This
effectively requires an extension of the bit plane coding and encryption approach to
coding and encryption of symbol values. Secondly, the decoder lacks a model of the
dependencies inX. Soft decoders for Turbo or LDPC codes can exploit such message
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source models, yielding improved performance. Finally, the coding strategy is loss-
less. For most continuous or multi-level message sources, such as audio, images, and
video, lossy compression is desirable.

2.3 Analysis and Retrieval of Content

In the today’s society, huge quantities of personal data aregathered from people and
stored in databases for various purposes ranging from medical researches to online
personalized applications. Sometimes providers of these services may want to com-
bine their data for research purposes. A classical example is the one where two med-
ical institutions wish to perform joint research on the union of their patients data.
Privacy issues are important in this scenario because the institutions need to preserve
their private data during their cooperation. Lindell and Pinkas [52], and Agrawal and
Srikant [5] proposed the notion of privacy preserving data mining, meaning the pos-
sibility to perform data analysis from distributed database, under some privacy con-
straints. Privacy preserving data mining [63, 46, 19, 76] deals with mutual untrusted
parties that on the one hand wish to cooperate to achieve a common goal but, on the
other hand, are not willing to disclose their knowledge to each other.

There are several solutions that cope with exact matching ofdata in a secure way.
However, it is more common in signal processing to perform inexact matching, i.e.
learning the distance between two signal values, rather than exact matching. Consider
two signal valuesx1 andx2. Computing the distance between them or checking if the
distance is within a threshold is important:

|x1 − x2| < ǫ. (2.18)

This comparison orfuzzy matchingcan be used in a variety of ways in signal process-
ing. One example is quantizing data which is of crucial importance for multimedia
compression schemes. However, considering that these signal values are encrypted
—thus the ordering between them is totally destroyed, there is not any efficient way
known tofuzzycompare two values.

In the following sections, we give a summary of techniques that focus on extract-
ing some information from protected datasets. Selected studies mostly use homomor-
phic encryption, zero-knowledge proofs and sometimes multiparty computations. As
we will see, most solutions still require substantial improvements in communication
and computation efficiency in order to make them applicable in practice. Therefore,
the last section addresses a different approach that uses other means of preserving pri-
vacy to show that further research on combining signal processing and cryptography
may result in new approaches rather than using encryption schemes and protocols.

2.3.1 Clustering

Clustering is a well-studied combinatorial problem in datamining [43]. It deals with
finding a structure in a collection of unlabeled data. One of the basic algorithms of
clustering is theK-means algorithm that partitions a data set intoK clusters with a
minimum error. We review theK-means algorithm and its necessary computations
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such as distance computation and finding the cluster centroid, and show that cryp-
tographic protocols can be used to provide user’s privacy inclustering for certain
scenarios.

K-means Clustering Algorithm

TheK-means clustering algorithm partitions a datasetDB of “objects” such as signal
values or features thereof, intoK disjoint subsets, called clusters. Each cluster is
represented by its center which is the centroid of all objects in that subset.

Algorithm 1 TheK-means clustering algorithm
1: SelectK random objects representing theK initial centroid of the clusters.
2: Assign each object to the cluster with the nearest centroid.
3: Recalculate the centroids for each cluster.
4: Repeat step 2 and 3 until centroids do not change or a certain threshold achieved.

Cluster centers

Objects

Y

X

Figure 2.3: Clustered dataset. Each object is a point in the 2-dimensional space.
K-means clustering algorithm assigns each object to the cluster with the smallest
distance.

As shown in Algorithm 1, theK-means algorithm is an iterative procedure that
refines the cluster centroids until a predefined condition isreached. The algorithm
first choosesK random points as the cluster centroids in the datasetDB and assigns
the objects to the closest cluster centroid. Then, the cluster centroid is re-computed
with recently assigned objects. When the iterative procedure reaches the termination
condition, each data object is assigned to the closest cluster (Figure 2.3). Thus to carry
out theK-means algorithm, the following quantities needs to be computed:

• the cluster centroid, or the mean of the data objects in thatcluster,
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• the distance between an object and the cluster centroid,

• the termination condition which is a distance measurementcompared to a thresh-
old.

In the following section we describe a secure protocol that carries out secureK-means
algorithm on protected data objects.

SecureK-means Clustering Algorithm

Consider the scenario in which Alice and Bob want to apply theK-means algorithm
on their joint datasets as shown in Figure 2.4, but at the sametime they want to keep
their own dataset private. Jagannathanet al. proposed a solution for this scenario in
[42].

Attribute names

Data owned by Alice

Data owned by Bob

Figure 2.4: Shared dataset on whichK-means algorithm is run.

In the proposed method, both Alice and Bob get the final outputbut the values
computed in the intermediate steps are unknown to the both parties. Therefore, the
intermediate values such as cluster centroids are uniformly shared between Alice and
Bob in such a way that for a valuex, Alice gets a random sharea and Bob gets another
random shareb where(a + b) modN = x andN is the size of the field in which all
operations take place. Alice and Bob keep their private shares of the dataset secret.

The secureK-means clustering algorithm is separated into subprotocols where
Alice and Bob computes the followings (Algorithm 2):

1. Distance measurement and finding the closest cluster:The distance between
each object and cluster centroid is computed by running a secure scalar product
protocol by Goethalset al. [36]. The closest cluster centroid is determined by
running Yao’s circuit evaluation protocol [78] with the shared data of Alice and
Bob.
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2. New cluster centroid: The new cluster centroid requires to determine an aver-
age computation over shared values of Alice and Bob. This function of the form
a+b
m+n can be computed by applying Yao’s protocol where Alice knowsa andm
and Bob knowsb andn.

3. Termination condition: The termination condition of the algorithm is com-
puted by running the Yao’s circuit evaluation protocol [78].

The squared distance between an objectXi = (xi,1, . . . , xi,M ) and a cluster centroid
µj is given by the following equation:

(dist(Xi, µj))
2 = (xi,1 − µj,1)

2 + (xi,2 − µj,2)
2 + . . . + (xi,M − µj,M )2. (2.19)

Considering that the clusters centroids are shared betweenAlice and Bob, Eq. (2.19)
can be written as,

(dist(Xi, µj))
2 = (xi,1 − (µA

j,1 + µB
j,1))

2 + . . . + (xi,M − (µA
j,M + µB

j,M ))2, (2.20)

whereµA
j is Alice’s share andµB

j is Bob’s share such that thejth-cluster centroid is
µj = µA

j + µB
j . Then, the Eq. (2.20) can be written as,

(dist(Xi, µj))
2 =

M∑

k=1

x2
i,k +

M∑

k=1

(µA
j,k)2 +

M∑

k=1

(µB
j,k)2 + 2

M∑

k=1

µA
j,kµB

j,k

− 2

M∑

k=1

µA
j,kxi,k − 2

M∑

k=1

xi,kµB
j,k. (2.21)

Equation (2.21) can be computed by Alice and Bob jointly. As the first term of the
equation is shared between them, Alice computes the sum of components of her share
while Bob computes the rest of the components. The second term and third term can
be computed by Alice and Bob individually, and the rest of theterms are computed by
running a secure scalar product protocol between Alice and Bob, much similar to the
evaluation of Eq. (2.3) via the secure form of Eq. (2.10). Alice first encrypts her data
EpkA

(µA
j ) = (EpkA

(µA
j,1), . . . , EpkA

(µA
j,M )) and sends it to Bob who computes the

scalar product of this data with his own by using the additivehomomorphic property
of the encryption scheme as follows:

EpkA
(µA

j )µB
j = (EpkA

(µA
j,1)

µB
j,1 , . . . , EpkA

(µA
j,M )µB

j,M ). (2.22)

Then, multiplying the encrypted components gives the encrypted scalar product of
Alice’s and Bob’s data,

EpkA

(
M∑

k=1

µA
j,kµB

j,k

)

=
M∏

k=1

EpkA
(µA

j,k)µB
j,k . (2.23)
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The computed distances between the objects and the cluster centroids can later be the
input to the Yao’s circuit evaluation protocol [78] in whichthe closest cluster centroid
is determined. We refer readers to [36] and [78] for further details on this part.

Once the distances and the closest clusters to the objects are determined, each ob-
ject is labeled with the nearest cluster index. At the end of each iteration it is necessary
to compute the new cluster centroids. Alice computes the sumof the corresponding
coordinates of all objectsj and the number of objectsnj within each of theK clusters
for j, 1 ≤ j ≤ M . As shown in Figure 2.4, Alice has only some of the attributesof
the objects, thus she treats these missing values as zero. Bob also applies the same
procedure and determines the sum of coordinatestj and the number of objectsmj in
the clusters. Givensj , tj , nj andmj , thejth component of theith cluster is,

µi,j =
sj + tj
nj + mj

. (2.24)

Since there are only four values, this equation can be computed efficiently by using
Yao’s circuit evaluation protocol [78] with Alice’s sharessj andnj and Bob’s shares
tj andmj .

In the last step of theK-means algorithm, the iteration is terminated if there is no
further improvement between the previous and current cluster centroids. In order to do
that, a distance is computed between the previous and current cluster centroids. This is
done in the same way as computing distances between an objectand a cluster centroid
but in addition, this distance is compared to a threshold valueǫ. Considering that the
cluster centroids are shared between Alice and Bob, the result of the computation of
the squared distance of cluster centroids for thekth andk + 1th iterations is again
random shares for Alice and Bob.

(dist(µA,k+1
j + µB,k+1

j , µA,k
j + µB,k

j ))2 = αj + βj , (2.25)

whereα andβ are the shares of Alice and Bob. Alice and Bob then apply Yao’s
protocol on theirK-length vectors(α1, . . . , αK) and(β1, . . . , βK) to check ifαj +
βj < ǫ for 1 ≤ j ≤ K.

Algorithm 2 Privacy preservingK-means clustering algorithm.
Randomly selectK objects from the datasetDB as initial cluster centroids
Randomly share the cluster centroid between Alice and Bob
repeat

for all objectdk in datasetDB do
Run the secure closest cluster protocol
Assign todk to the closest cluster

end for
Alice and Bob computes the random shares for the new centroids of the clusters.

until cluster centroids are close to each other with an error ofǫ.
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2.3.2 Recommender Systems

Recommender services play an important role in applications like e-commerce and
direct recommendations for multimedia contents. These services attempt to predict
items that a user may be interested in by implementing a signal processing algorithm
known ascollaborative filteringon user preferences to find similar users that share
the same taste (likes or dislikes). Once similar users are found, this information can
be used in variety ways such as recommending restaurants, hotels, books, audio and
video etc.

Recommender systems store user data, also known as preferences, in servers, and
the collaborative filtering algorithms work on these storedpreferences to generate
recommendations. The amount of data collected from each user directly affects the
accuracy of the predictions. There are two concerns in collecting information from the
users in such systems. First, in an ordinary system there arein the order of thousands
items, so that it is not realistic for the users to rate all of them. Second, users would not
like to reveal too much privacy sensitive information that can be used to track them.

The first problem, also known as the sparseness problem in datasets, is addressed
for collaborative filtering algorithms in [37, 68, 70]. The second problem on user pri-
vacy is of interest to this survey paper since users tend to not give more information
about themselves for privacy concerns and yet they expect more accurate recommen-
dations that fit their taste. This tradeoff between privacy and accuracy leads us to an
entirely new perspective on recommender systems. Namely, how can privacy of the
users be protected in recommender systems without loosing too much accuracy?

We describe two solutions that address the problem of preserving privacy of users
in recommender systems. In the first approach, user privacy is protected by means
of encryption and the recommendations are still generated by processing these en-
crypted preference values. In the second approach, protecting the privacy of the users
is possible without encryption but by means of perturbationof user preference data.

Recommendations by Partial SVD on Encrypted Preferences

Canny [14] addresses the user privacy problem in recommender systems and proposes
to encrypt user preferences. Assume that the recommender system applies a collabo-
rative filtering algorithm on a matrixP of users versus item ratings. Each row of this
matrix represents the corresponding user’s taste for the corresponding items. Canny
proposes to use a collaborative filtering algorithm based ondimension reduction ofP.
In this way, an approximation matrix of the original preference matrix is obtained in a
lower dimension that best represents the user taste for the overall system. When a new
user enters the system, the recommendations are generated by simply re-projecting the
user preference vector, which has many unrated items, over the approximation matrix.
As a result, a new vector will be obtained which contains approximated values for the
unrated items [37, 14].

The ratings in recommender systems are usually integer numbers within a small
range and items that are not rated are usually assigned to zero. To protect the privacy
of the users, the user preferences vectorX = [x1, x2, . . . , xM ] is encrypted individ-
ually asEpk(X). To reduce the dimension of the preference matrixP singular value
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decomposition (SVD) is an option. The SVD allowsP to be written as:

P = UDV
T , (2.26)

where the columns ofU are the left singular vectors,D is a diagonal matrix containing
the singular values, andVT has rows that are the right singular vectors.

Once the SVD of the preference matrixP is computed, an approximation matrix
in a lower dimension subspace can be computed easily. Computing the SVD onP
that contains encrypted user preferences is, however, morecomplicated.

Computing the decomposition of the users’ preference matrix requires sums of
products of vectors. If the preference vector of each user isencrypted, there is no
efficient way of computing sums of products of vectors since this would require an al-
gebraic homomorphic cryptosystem. Using secure multi-party computation protocols
on this complex function is costly considering the size of the circuit necessary for the
complex operation.

Instead of straightforward computation of SVD, Canny [14] proposed to use an
iterative approximation algorithm to obtain a partial decomposition of the user pref-
erence matrix. The conjugate gradient algorithm is an iterative procedure consisting
merely ofadditionsof vectors whichcanbe done under homomorphically encrypted
user preference vectors. Each iteration in the protocol hastwo steps: Users compute
1) their contribution to the current gradient and 2) scalar quantities for the optimiza-
tion of the gradient. Both steps require only additions of vectors thus we only explain
the first step.

For the first step of the iterations each user computes his contribution Gk to the
current gradientG by the following equation:

Gk = AX
T
k Xk(I − A

T
A), (2.27)

where matrixA is the approximation of the preference matrixP and it is initialized
as a random matrix before the protocol starts. Each user encrypts his own gradient
vectorGk with the public key of the user group by following the Pedersen’s threshold
scheme [62] that uses El Gamal cryptosystem which is modifiedto be additively ho-
momorphic. All contributions from the users are then added up to form the encrypted
gradientEpk(G) by using the additive homomorphic property of the cryptosystem,

Epk(G) = Epk

(
∑

k∈users

Gk

)

=
∏

k∈users

Epk(Gk). (2.28)

This resulting vectorEpk(G) is then jointly decrypted and used to update the approx-
imated matrixA which is publicly known and used to compute the new gradient for
the next iteration.

Although the protocol is based on addition of vectors, zero-knowledge proof pro-
tocols play an important role. The validity of the user inputs, i.e. the encrypted pref-
erence vector elements lie in a certain range, are verified byzero-knowledge proofs.
Moreover, the partial encryption results from the users arealso proved valid by run-
ning a zero-knowledge proof protocol. Both group of zero-knowledge proofs are
checked by a subgroup of users of whose majority is necessaryfor the validation.
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Canny [15] also applies this approach to a different collaborative filtering method,
namely expectation maximization (EM) based factor analysis. Again this algorithm
involves simple iterative operations that can be implemented by vector additions. In
both recommender system solutions, multiple iterations are necessary for the algo-
rithm to converge and in each iteration users need to participate in the cryptographic
computations as in joint decryption and zero-knowledge proofs for input validation.
These computations are interactive and thus, it is imperative for the users to be online
and synchronized.

Randomized Perturbation to Protect Preferences

Previous section showed that homomorphic cryptosystems, zero-knowledge proof pro-
tocols and secure multi-party computations play an important role in providing solu-
tions for processing encrypted data. However, there are other ways to preserve privacy.
In the following, we discuss preserving privacy in recommender systems by perturba-
tion of user data.

Randomized perturbation technique was first introduced in privacy preserved data-
mining by Agrawal and Srikant [5]. Polat and Du [65, 66] proposed to use this ran-
domization based technique in collaborative filtering. Theuser privacy is protected by
simply randomizing user data while certain computations onaggregate data can still
be done. Then, the server generates recommendations based on the blinded data but
can not derive the user’s private information (Figure 2.5).

Central Database

Disguised Data

Original Data

Collaborative Filtering

Data Disguising

USERN
USER1 USER2

Figure 2.5: Privacy preserving collaborative filtering with user preference perturba-
tion.

Consider the scalar product of two vectorsX andY. These vectors are blinded
by R = [r1, . . . , rM ] andS = [s1, . . . , sM ] such thatX̌ = X + R andY̌ = Y + S.
Hereri’s andsi’s are uniformly distributed random values with zero mean. The scalar
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product ofX andY can be estimated from̌X andY̌:

X̌ · Y̌ =

M∑

k=1

(xkyk + xksk + rkyk + rksk) ≈
M∑

k=1

xkyk. (2.29)

SinceR andS are independent and independent ofX andY, we have
∑M

k=1 xksk ≈
0,
∑M

k=1 rkyk ≈ 0, and
∑M

k=1 rksk ≈ 0. Similarly, the sum of the elements of any
vectorA can be estimated from its randomized formA′. Polat and Du used these two
approximations to develop a privacy-preserving collaborative filtering method [65,
66].

This method works if the number of users in the system is significantly large. Only
then the computations based on aggregated data can still be computed with sufficient
accuracy. Moreover, it is also pointed out in [41, 47] that the idea of preserving privacy
by adding random noise might not preserve privacy as much as it had been believed
originally. The user data can be reconstructed from the randomly perturbed user data
matrix. The main limitation in the original work of Polat andDu is shown to be
the item-invariant perturbation [81]. Therefore, Zhanget al. [81] propose a two-way
communication perturbation scheme for collaborative filtering in which the server and
the user communicates to determine perturbation guidance that is used to blind user
data before sending to the server. Notwithstanding these approaches, the security of
such schemes based on perturbation of data is not well understood.

2.4 Content Protection

2.4.1 Watermarking of Content

In the past decade, content protection measures have been proposed based on digital
watermarking technology. Digital watermarking [21, 9] allows hiding into a digital
content information that can be detected or extracted at a later moment in time by
means of signal processing operations such as correlation.In this way, digital water-
marking provides a communication channel multiplexed intooriginal content through
which it is possible to transmit information. The type of information transmitted from
sender to receiver depends on the application at hand. As an example, in a forensic
tracing application, a watermark is used to embed a unique code into each copy of the
content to be distributed, where the code links a copy eitherto a particular user or to a
specific device. When unauthorized published content is found, the watermark allows
to trace the user who has redistributed the content.

Secure signal processing needs to be performed in case watermark detection or
embedding is done in untrusted devices; watermarking schemes usually rely on a sym-
metric key for both embedding and detection, which is critical to both the robustness
and security of the watermark and thus needs to be protected.

For the application of secure signal processing in content protection, three cate-
gories can be identified, namely distribution models, customer rights protection, and
secure watermark detection. The first two categories are relevant to forensic tracing
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(fingerprinting) applications. In classical distributionmodels, the watermark embed-
ding process is carried out by a trusted server before releasing the content to the user.
However this approach is not scalable and in large scale distribution systems the server
may become overloaded. In addition, since point-to-point communication channels
are required, bandwidth requirements become prohibitive.A proposed solution is to
use client-side watermark embedding. Since the client is untrusted the watermark
needs to be embedded without the client having access to the original content and
watermark.

The customer’s rights problem relates to the intrinsic problem of ambiguity when
watermarks are embedded at the distribution server: a customer whose watermark has
been found on unauthorized copies can claim that he has been framed by a malicious
seller who inserted his identity as watermark in an arbitrary object. The mere existence
of this problem may discredit the accuracy of the forensic tracing architecture. Buyer-
seller protocols have been designed to embed a watermark based on the encrypted
identity of the buyer, making sure that the watermarked copyis available only to the
buyer and not to the seller.

In the watermark detection process, a system has to prove to averifier that a wa-
termark is present in certain content. Proving the presenceof such a watermark is
usually done by revealing the required detection information to the verifying party.
All current applications assume that the verifier is a trusted party. However, this is not
always true, for instance if the prover is a consumer device.A cheating verifier could
exploit the knowledge acquired during watermark detectionto break the security of
the watermarking system. Cryptographic protocols, utilizing zero-knowledge proofs,
have been constructed in order to mitigate this problem.

We will first introduce a general digital watermarking modelto define the notation
that will be useful in the remainder of the section. An example of a watermarking
scheme is proposed, namely the one proposed by Coxet al. [20], since this scheme is
adopted in many of the content protection applications.

Watermarking Model

Figure 2.6 shows a common model for a digital watermarking system [8]. The inputs
of the system are the original host signalX and some application dependent to-be-
hidden information, here represented as a binary stringB = [b1, b2, . . . , bL], with bi

taking values in{0, 1}. The embedder inserts the watermark codeB into the host
signal to produce a watermarked signalXw, usually making use of a secret keysk
to control some parameters of the embedding process and allow the recovery of the
watermark only to authorized users.

The watermark channel takes into account all processing operations and (inten-
tional or non-intentional) manipulations the watermarkedcontent may undergo dur-
ing distribution and use. As a result, the watermarked content Xw is modified into
the “received” versionX′. Based onX′, either a detector verifies the presence of a
specific message given to it as input, thus only answeringyesor no, or a decoder reads
the (binary) information conveyed by the watermark. Detectors and decoders may
need to know the original contentX in order to retrieve the hidden information (non-
blind detector/decoder), or they do not require the original content (blind or oblivious
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detector/decoder).
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Figure 2.6: A digital watermarking model

Watermarking Algorithm

Watermark information is embedded into host signals by making imperceptual modifi-
cations to the host signal. The modifications are such that they convey the to-be-hidden
informationB. The hidden information can be retrieved afterwards from the modified
content by detecting the presence of these modifications. Embedding is achieved by
modifying the set of featuresX = [x1, x2 . . . xM ]. In the most simple case, the fea-
tures are simple signal amplitudes. In more complicated scenarios, the features can
be DCT or wavelet coefficients. Several watermarking schemes make use of a spread-
spectrum approach to code the to-be-hidden informationB into W = [w1, w2 . . . wM ].
Typically, W is a realization of a normally distributed random signal with zero mean
and unit variance.

The most well-known spread-spectrum techniques was proposed by Coxet al.
[20]. The host signal is first transformed into a Discrete Cosine Transform (DCT)
representation. Next the largest magnitude DCT coefficients are selected, obtaining
the set of featuresX. The multiplicative watermark embedding rule is defined as
follows:

xw,i = xi + cwixi = xi(1 + cwi), (2.30)

wherexw,i is thei-th component of the watermarked feature vector andc is a scaling
factor controlling the watermark strength. Finally, an inverse DCT transform yields
the watermarked signalXw.

To determine if a given signalY contains the watermarkW, the decoder computes
the DCT ofY, extracts the setX′ of largest DCT coefficients, and then computes the
correlationρX′W between the featuresX′ and the watermarkW. If the correlation is
larger than a thresholdδ, i.e.,

ρX′W =
< X′, W >

< X′, X′ >
≥ δ, (2.31)

the watermark is considered present inY.

2.4.2 Client-side Watermark Embedding

Client-side watermark embedding systems transmit the sameencrypted version of the
original content to all the clients but a client-specific decryption key allows to decrypt
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the content and at the same time implicitly embed a watermark. When the client
uses his key to decrypt the content, he obtains a uniquely watermarked version of
the content. The security properties of the embedding scheme usually guarantees that
obtaining either the watermark or the original content in the clear is of comparable
hardness as removing the watermark from the personalized copy.

In literature, several approaches for secure embedding canbe found. In [31] a
pseudorandom mask is blended over each frame of a video. Eachclient is given a
different mask, which, when subtracted from the masked broadcast video, leaves an
additive watermark in the content. The scheme is not very secure because since the
same mask is used for all frames of a video, it can be estimatedby averaging attacks.

In broadcast environments, stream switching [24, 59] can beperformed. Two
differently watermarked signals are chopped up into small chunks. Each chunk is
encrypted by a different key. Clients are given a different set of decryption keys that
allow them to selectively decrypt chunks of the two broadcast streams such that each
client obtains the full stream decrypted. The way the full stream is composed out of the
two broadcast versions encodes the watermark. This solution consumes considerable
bandwidth, since the data to be broadcast to the clients is twice as large as the content
itself.

A second solution involves partial encryption, for instance encrypting the signs
of DCT coefficients of a signal [48]. Since the sign bits of DCTcoefficients are per-
ceptually significant, the partially encrypted version of the signal is heavily distorted.
During decryption each user has a different keys that decrypts only a subset of these
coefficients, so that some signs are left unchanged. This leaves a detectable fingerprint
in the signal. A similar approach was used in [51] to obtain partial encryption-based
secure embedding solutions for audio-visual content.

A third approach is represented by methods using a stream-cipher that allows the
use of multiple decryption keys, which decrypt the same cipher-text to slightly dif-
ferent plain-texts. Again, the difference between the original and the decrypted con-
tent represents the embedded watermark. The first scheme following this approach
was proposed by Andersonet al. [7] who designed a special stream cipher, called
Chameleon, which allows to decrypt Chameleon-encrypted content in slightly differ-
ent ways. During encryption, a key and a secure index generator are used to generate a
sequence of indices, which are used to select four entries from a look-up-table (LUT).
These entries are XORed with the plaintext to form a word of the ciphertext. The
decryption process is identical to encryption except for the use of a decryption LUT,
which is obtained by properly inserting bit errors in some entries of the encryption
LUT. Decryption superimposes these errors onto the content, thus leaving a unique
watermark. Recently, Adelsbachet al. [1] and Celiket al. [16] proposed generaliza-
tions of Chameleon, suitable for embedding robust spread spectrum watermarks. The
schemes operate on lookup-tables composed of integers fromZp and replace the XOR
operation by a (modular) addition.

In more detail, the secure embedding solution works as follows. The distribu-
tion server generates a long-term master encryption look-up table (LUT)E of sizeL,
whose entries are properly generated random samples;E will be used to encrypt the
content to be distributed to the clients. Next, for thek-th client, the server generates
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a personalized watermark LUTWk according to a desired probability distribution,
and builds a personalized decryption LUTDk by combining the master LUT and the
watermark LUT:

Dk[i] = −E[i] + Wk[i]. (2.32)

The personalized LUTs are then transmitted once to each client over a secure channel.
Let us note that the generation of the LUTs is carried out justonce at the setup of
the application. A contentX is encrypted by adding to it a pseudo-random sequence
obtained by selecting some entries of the LUT with a secure pseudo-random sequence
generator driven by a session keysk. Each client receives the encrypted contentX′

along with the session keysk and decrypts it using some entries of his/her personal-
ized decryption LUTDk (again chosen according tosk), with the final effect that a
spread-spectrum watermark sequence is embedded into the decrypted content. This
process is summarized in Figure 2.7. In detail, driven by thesession keysk, a set of

server

Dec LUTEnc LUT

Encryption DecryptionX X
′ XW

sksk

Wk

clientk

Figure 2.7: Encryption and following joint decryption and watermarking procedure
proposed in [16].

indicestij is generated, where0 ≤ i ≤ M − 1, 0 ≤ j ≤ S − 1, 0 ≤ tij ≤ L − 1.
Each feature of the contentxi is encrypted by addingS entries of the encryption LUT,
obtaining the encrypted featurex′

i as follows:

x′
i = xi +

S−1∑

j=0

E[tij ]. (2.33)

Joint decryption and watermarking is accomplished by reconstructing with the session
key sk the same set of indicestij and by addingS entries of the decryption LUT to
each encrypted featurex′

i:

xw,i = x′
i +

S−1∑

j=0

D[tij ] = xi +

S−1∑

j=0

W[tij ] = xi + wi. (2.34)
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2.4.3 Buyer Seller Protocols

Forensic tracing architectures which perform watermark embedding at the distribution
server are vulnerable against a dishonest seller. The mere fact that a seller may fool a
buyer may have an impact on the credibility of the whole tracing system. (Note that a
seller may in fact have an incentive to fool a buyer: a seller who acts as an authorized
re-selling agent may be interested in distributing many copies of a work containing the
fingerprint of a single buyer to avoid paying the royalties tothe author, by claiming
that such copies were illegally distributed or sold by the buyer).

A possible solution consists in resorting to a trusted thirdparty, responsible for
both embedding and detection of watermarks; however, such an approach is not fea-
sible in practical applications, because the TTP could easily become a bottleneck for
the whole system. The Buyer-Seller Protocol relies on cryptographic primitives to
perform watermark embedding [55]; the protocol assures that the seller does not have
access to the watermarked copy carrying the identity of the buyer, hence he cannot
distribute or sell these copies. In spite of this, the sellercan identify the buyer from
whom unauthorized copies originated, and prove it by using aproper dispute resolu-
tion protocol.

We describe the protocol by Memon and Wong [55] in more detail. Let Alice
be the seller, Bob the buyer, and WCA a trusted watermark certification authority in
charge of generating legal watermarks and sending them to any buyer upon request.
The protocol uses a public key cryptosystem which is homomorphic with respect to the
operation used in the watermark embedding equation (i.e., the cryptosystem will be
multiplicatively homomorphic if watermark embedding is multiplicative, like in Cox’s
scheme); moreover, Alice and Bob possess a pair of public/private keys denoted by
pkA, pkB (public keys) andskA, skB (private keys).

In the first part of the protocol, on request of Bob, the WCA generates a valid
watermark signalW and sends it back to Bob, encrypted with Bob’s public key
EpkB

(W), along with its digital signatureSWCA(EpkB
(W)), to prove that the wa-

termark is valid.
Next, Bob sends to AliceEpkB

(W) andSWCA(EpkB
(W)), so that Alice can ver-

ify that the encrypted watermark has been generated by the WCA. Alice performs two
watermark embedding operations. First, she embeds (with any watermarking scheme)
into the original contentX a watermarkV, which just conveys a distinct ID univocally
identifying the transaction, obtaining the watermarked contentXw. Next, a second
watermark is built by usingEpkB

(W): Alice permutes the watermark components
through a secret permutationπ

π(EpkB
(W)) = EpkB

(π(W)), (2.35)

and insertsEpkB
(π(W)) in Xw directly in the encrypted domain, obtaining the fi-

nal watermarked contentX′′ in encrypted form;X′′ is thus unknown to her. This is
possible due to the homomorphic property of the cipher:

EpkB
(X′′) = EpkB

(Xw) · EpkB
(π(W)). (2.36)

When Bob receivesEpkB
(X′′), he decrypts it by using his private keyskB , thus ob-

tainingX′′, where the watermarksV andπ(W) are embedded. Note that Bob cannot
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read the watermarkπ(W), since he does not know the permutationπ. The scheme is
represented in Figure 2.8.

V

X
′

seller

skB

X

Decryption
X

′′

buyer

EpkB
(W)

WCA

πEmbedding

EpkB
(Xw) · π · EpkB

(W)
EpkB

(X ′′)

Figure 2.8: The scheme of the Buyer Seller protocol proposedin [55].

In order to recover the identity of potential copyright violators, Alice first looks for
the presence ofV. Upon detection of an unauthorized copy ofX, sayY, she can use
the second watermark to effectively prove that the copy originated from Bob. To do
so, Alice must reveal to a judge the permutationπ, the encrypted watermarkEpkB

(W)
andSWCA(EpkB

(W)). After verifyingSWCA(EpkB
(W)), the judge asks Bob to use

his private keyskB to compute and revealW. Now it is possible to checkY for the
presence ofπ(W): if such a presence is verified, then Bob is judged guilty, otherwise
Bob’s innocence has been proven. Note that ifπ(W) is found inY, Bob can not state
that Y originated from Alice, since to do so Alice should have knowneitherW to
insert it within the plain assetX, or skB to decryptEpkB

(X′′) after the watermark
was embedded in the encrypted domain.

As a particular implementation of the protocol, [55] proposed to use Cox’s water-
marking scheme and a multiplicatively homomorphic cipher (despite its deterministic
nature, authors use RSA). More secure and less complex implementations of the Buyer
Seller protocol have been proposed in [50, 80, 49, 6].

2.4.4 Secure Watermark Detection

To tackle the problem of watermark detection in the presenceof an untrusted veri-
fier (to whom the watermark secrets cannot be disclosed), twoapproaches have been
proposed: one approach calledasymmetric watermarking[34, 30] uses different keys
for watermark embedding and detection. Whereas a watermark is embedded using a
private key, its presence can be detected by a public key. In such schemes, the knowl-
edge of the public detection key must not enable an adversaryto remove the embedded
watermark; unfortunately, none of the proposed schemes is sufficiently robust against
malicious attacks [29]. Another approach is represented byzero-knowledge water-
mark detection.

Zero-knowledge watermark detection (ZKWD) uses a cryptographic protocol to
wrap a standard symmetric watermark detection process. In general, a zero-knowledge
watermark detection algorithm is an interactive proof system where a prover tries to
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convince a verifier that a digital contentX′ is watermarked with a given watermark
B without disclosingB. In contrast to the standard watermark detector, in ZKWD
the verifier is given only properly encoded (or encrypted) versions of security-critical
watermark parameters. Depending on the particular protocol, the watermark code, the
watermarked object, a watermark key or even the original unmarked object is available
in an encrypted form to the verifier. The prover runs the zero-knowledge watermark
detector to demonstrate to the verifier that the encoded watermark is present in the
object in question, without removing the encoding. A protocol run will not leak any
information except for the unencoded inputs and the watermark presence detection
result.

Early approaches for zero-knowledge watermark detection used permutations to
conceal both the watermark and the object [23]; the protocolassures that the per-
muted watermark is detected in the permuted content and thatboth the watermark and
the object are permuted in the same manner. Craver [22] proposed to use ambigu-
ity attacks as a central tool to construct zero-knowledge detectors; such attacks allow
to compute a watermark that is detectable in a content but never has been embedded
there. To use ambiguity attacks in a secure detector, the real watermark is concealed
within a number of fake marks. The prover has to show that there is a valid water-
mark in this list without revealing its position. Now, the adversary (equipped solely
with a watermark detector) cannot decide which of the watermarks is not counterfeit.
Removal of the watermark is thus sufficiently more difficult.

Another proposal is to compute the watermark detection statistic in the encrypted
domain (e.g., by using additive homomorphic public-key encryption schemes or com-
mitments) and then use zero-knowledge proofs to convince the verifier that the detec-
tion statistic exceeds a fixed threshold. This approach was first proposed by Adelsbach
and Sadeghi [3], who use a homomorphic commitment scheme to compute the detec-
tion statistic; the approach was later refined in [2].

Adelsbach and Sadeghi [3] propose a zero-knowledge protocol based on the Cox’s
watermarking scheme. In contrast to the original algorithm, it is assumed that the wa-
termark and DCT-coefficients are integers and not real numbers (this can be achieved
by appropriate quantization). Moreover, for efficiency reasons the correlation compu-
tation in Eq. (2.31) is replaced by the detection criterion:

C := (< X′, W >)2− < X′, X′ > · δ2

:= (A)2 − B ≥ 0; (2.37)

the latter detection criterion is equivalent to the original one, provided that the factor
A is positive.

The following Zero-Knowledge Detection Protocol has been designed to allow
the prover to prove to a verifier that the watermark committedto in the commitment
com(W) is present in the received contentX′, without revealing any information
aboutW. In the protocol, the authors employ an additively homomorphic commit-
ment scheme (such as the one proposed by Damgård and Fujisaki [25]). Letppub, X′,
com(W), δ be the common inputs of prover and verifier and letpsec be the private
input of the prover. First, both prover and verifier select the watermarked featuresX′

and compute the valueB of Eq. (2.37); the prover sends a commitmentcom(B) to the
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verifier and opens it immediately, allowing him to verify that the opened commitment
contains the same valueB he computed himself. Now both compute the commitment

com(A) =

M∏

i=1

com(wi)
x′

i , (2.38)

by taking advantage of the homomorphic property of the commitment scheme. Sub-
sequently the prover proves in zero-knowledge thatA ≥ 0. Next, the prover computes
the valueA2, sends a commitmentcom(A2) to the verifier and gives him a zero-
knowledge proof that it really contains the square of the value contained incom(A).
Being convinced thatcom(A2) really contains the correctly computed valueA2, the
two parties compute the commitmentcom(C) := com(A2)/com(B) on the valueC.
Finally the prover proves to the verifier, with a proper zero-knowledge protocol, that
com(C) ≥ 0. If this proof is accepted then the detection algorithm endswith true,
otherwise with false.

While early protocols addressed only correlation-based watermark detectors, the
approach has recently be extended to Generalized Gaussian Maximum Likelihood
detectors [75] and Dither Modulation watermarks [64, 54].

2.5 Problem Statement

This chapter’s comprehensive study on privacy enhanced solutions for different prob-
lem domains has shown important insights about preserving privacy in multimedia
applications. First, the applications that we encounter are from the field of signal pro-
cessing and thus, they often consist of similar operations.Second, the data in these
applications have signal properties, meaning that they arevalues in a small range.
Third, processing encrypted data by using techniques and tools from cryptography
seems to be feasible if the signal aspects of the data are considered. However, cur-
rently available cryptographic tools and protocols are mostly generic and not designed
by considering the features of the data. If applied directlyfor multimedia applications,
the resulting systems will be inefficient. This observationleads us into a new direc-
tion in which we exploit the application requirements and the structure of the data to
develop privacy enhanced solutions.

The goal of this thesis is to present a methodology for preserving privacy in mul-
timedia applications. For this purpose, we focus on cryptographic tools, in particular
homomorphism and MPC techniques. The designed systems mustsatisfy three major
requirements, namely:

• Correctness.The privacy enhanced system must have identical or similar out-
puts compared to the original system that works on plain textsignals such that
the users of the service cannot see a difference.

• Privacy. No party should gain information on the input of the other parties.
This requirement involves the intermediate values of the algorithms which can
leak information on the input of parties.
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• Efficiency. The overhead introduced by using cryptographic tools to provide
privacy must be minimum in terms of communication and computation costs
and, if applicable, storage capacity.

Correctness and privacy can be verified once the protocols are composed, however
achieving efficiency presents the main challenge in this thesis. In order to obtain min-
imum overhead, we propose to exploit the signal properties of the data in multimedia
applications. For this purpose, we have selected a number ofprototypical applications
that possess commonalities with respect to signal processing operations and propose
privacy-preserving solutions for each application based on homomorphism and MPC
techniques over integer arithmetic in a semi-honest model.The following challenges,
which are vital to obtain a complete privacy-preserving version of the applications,
are addressed and efficient solutions are proposed.

Data Representation

The data we consider in this thesis are signal samples such asimages, preferences and
feature vectors which often consist of small and integer values. However, throughout
the signal processing, the size and the type of the data can change. For instance, the
DCT of an image block usually consists of real values whose ranges are larger than
the 8-bit pixel value. Similarly, the distance and correlation computations change the
bit length and the type of the data, respectively. As we propose to protect the privacy-
sensitive data by means of encryption and we use semantically secure homomorphic
cryptosystems which operate only on integers, it is mandatory to come up with a
strategy that copes with the increase in data bit size and possible changes in data type.

Linear and Non-linear Operations

The homomorphic encryption allows us to implement certain linear operations on en-
crypted data. However, minimizing the number of operationson the encrypted data
plays a crucial role in designing privacy enhanced multimedia applications with less
computational power requirement.

While homomorphic encryption schemes allow us to realize linear operations in
the encrypted domain, cryptographic protocols based on MPCtechniques are neces-
sary for the non-linear operations. Currently available protocols are mostly generic
and they do not consider the structure of the data or the application. Thus, crypto-
graphic protocols for realizing non-linear operations forsignal processing applications
are needed.

Data Expansion

With homomorphic cryptosystems, we encrypt individual signal samples and process
them in the encrypted domain later on. As discussed in this chapter, we also need
semantic security as the bit size of signal samples considered in signal processing
applications are rather small. Encrypting small signal samples by using semantically
secure encryption schemes results in data expansion. This expansion for an 8-bit
signal sample is by a factor of 256 after the encryption with amodest key size of
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1024 bits in the Paillier cryptosystem. As we have data in theorder of megabytes
and gigabytes, this data expansion will introduce a substantial load in communication
and storage. Thus, an effective approach to minimize the effect of data expansion is
required.

Computation and Communication Costs

A final challenge of working in the encrypted domain is minimizing the computation
power and bandwidth requirements. As we operate on encrypted data, which are in the
order of thousand bits, each operation will consume time. Table 2.5 shows the average
run time for several operations under Paillier encryption scheme with a key size of
1024 bits (the cipher text space is 2048 bits). The message and the public value are 100
bits each. As the key length is increased for security reasons, the time consumption of
operations also increases (Figure 2.9). Considering that these operations are repeated
for many times, the overall time consumption of the proposedprotocols will be a
major problem. For example, encrypting an 8-bit gray scale image of size840 × 600
pixels will take roughly 55 minutes.

In addition to computational costs, increase in the communication cost due to data
expansion after encryption presents a major challenge. To illustrate the affect of en-
cryption on data size, consider that an 8-bit gray scale image of size840 × 600 pixels
becomes 123 MB after encrypting each pixel value in Paillierencryption scheme with
a key size of 1024 bits. Thus, strategies to minimize the number of operations and the
cost of communication are imperative.

Table 2.2: Average time consumption for various operationsfor Paillier cryptosystem
on a Pentium Xeon, 2.33 GHz machine.

Operation Time

Encryption:(c = Epk(m)) 6690µs
Decryption:(m = Dsk(c)) 6650µs
Multiplying two encrypted values:(Epk(m1) · Epk(m2)) 7.1µs
Raising an encrypted value to the power of a public value:(Epk(m)c) 710µs
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Figure 2.9: Run time of operations for the Paillier scheme with different key lengths.
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Abstract

Face recognition is increasingly deployed as a means to unobtrusively verify the iden-
tity of people. The widespread use of biometrics raises important privacy concerns,
in particular if the biometric matching process is performed at a central or untrusted
server, and calls for the implementation of Privacy-Enhancing Technologies. In this
paper we propose for the first time a strongly privacy-enhanced face recognition sys-
tem, which allows to efficiently hide both the biometrics andthe result from the server
that performs the matching operation, by using techniques from secure multiparty
computation. We consider a scenario where one party provides a face image, while
another party has access to a database of facial templates. Our protocol allows to
jointly run the standard Eigenfaces recognition algorithmin such a way that the first
party cannot learn from the execution of the protocol more than basic parameters of
the database, while the second party does not learn the inputimage or the result of the
recognition process. At the core of our protocol lies an efficient protocol for securely
comparing two Pailler-encrypted numbers. We show through extensive experiments
that the system can be run efficiently on conventional hardware.

3.1 Introduction

Biometric techniques have advanced over the past years to a reliable means of authen-
tication, which are increasingly deployed in various application domains. In particular,
face recognition has been a focus of the research community due to its unobtrusive-
ness and ease of use: no special sensors are necessary and readily available images
of good quality can be used for biometric authentication. The development of new
biometric face-recognition systems was mainly driven by two application scenarios:

• To reduce the risk of counterfeiting, modern electronic passports and identifi-
cation cards contain a chip that stores information about the owner, as well as
biometric data in the form of a fingerprint and a photo. While this biometric data
is not widely used at the moment, it is anticipated that the digitized photo will
allow to automatize identity checks at border crossings or even perform cross-
matching against lists of terrorism suspects (for a recent Interpol initiative to
use face recognition to mass-screen passengers see [5]).

• The increasing deployment of surveillance cameras in public places (e.g. [18]
estimates that 4.2 million surveillance cameras monitor the public in the UK)
sparked interest in the use of face recognition technologies to automatically
match faces of people shown on surveillance images against adatabase of known
suspects. Despite massive technical problems that render this application cur-
rently infeasible, automatic biometric face recognition systems are still high on
the agenda of policy makers [25, 19].

The ubiquitous use of face biometrics raises important privacy concerns; particu-
larly problematic are scenarios where a face image is automatically matched against a
database without the explicit consent of a person (for example in the above-mentioned
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surveillance scenario), as this allows to trace people against their will. The widespread
use of biometrics calls for a careful policy, specifying to which party biometric data
is revealed, in particular if biometric matching is performed at a central server or in
partly untrusted environments.

In this paper we propose for the first time strong cryptographic Privacy-Enhancing
Technologies for biometric face recognition; the techniques allow to hide the biomet-
ric data as well as the authentication result from the serverthat performs the matching.
The proposed scheme can thus assure the privacy of individuals in scenarios where
face recognition is beneficial for society but too privacy intrusive.

In particular, we provide a solution to the following two-party problem. Alice
and Bob want to privately execute a standard biometric face recognition algorithm.
Alice owns a face image, whereas Bob owns a database containing a collection of
face images (or corresponding feature vectors) from individuals. Alice and Bob want
to jointly run a face recognition algorithm in order to determine whether the picture
owned by Alice shows a person whose biometric data is in Bob’sdatabase. While Bob
accepts that Alice might learn basic parameters of the face recognition system (includ-
ing the size of the database), he considers the content of hisdatabase as private data
that he is not willing to reveal. In contrast, Alice trusts Bob to execute the algorithm
correctly, but is neither willing to share the image nor the detection result with Bob.
After termination, Alice will only learn if a match occurred; alternatively, an ID of the
identified person may be returned.

In a real world scenario Bob might be a police organization, whereas Alice could
be some private organization running an airport or a train station. While it may be
common interest to use face recognition to identify certainpeople, it is generally con-
sidered too privacy intrusive to use Bob’s central server directly for identification, as
this allows him to create profiles of travelers. Thus, the twoparties may decide for
a privacy-friendly version where the detection result is not available to the central
party. As the reputation of both parties is high and because both parties are interested
in computing a correct result, it is reasonable to assume that they will behave in a
semi-honest manner.

We provide a complete implementation of the above-mentioned two-party problem
using the standard Eigenface [34] recognition system, working on encrypted images.
At the heart of our privacy-enhanced face recognition system lies a highly optimized
cryptographic protocol for comparing two Pailler-encrypted values. The system is
very efficient and allows matching of an encrypted face imageof size92× 112 pixels
against a database of 320 facial templates in approximately40 seconds on a conven-
tional workstation. This is achieved despite the huge computational complexity of the
underlying cryptographic primitives. Using pre-computations for intermediate values
which do not depend on the input image, recognition only takes 18 seconds. While
there is a small constant overhead when performing a face-recognition, the time to
perform the recognition is linear in the size of the database. For a large database
containingM facial templates, time for one recognition increases only slowly and re-
quieres approximately0.054M seconds for the conventional approach and0.031M
seconds when using pre-computations.
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3.2 Cryptographic Tools

As a central cryptographic tool, we use two semantically secure additively homomor-
phic public-key encryption schemes, namely the Paillier and the DGK cryptosystem.
In an additively homomorphic cryptosystem, given encryptions[a] and[b], an encryp-
tion [a + b] can be computed by[a + b] = [a][b], where all operations are performed
in the algebra of the message or ciphertext space. Furthermore, messages can be mul-
tiplied with constants under encryption, i.e., given an encrypted message[a] and a
constantb in the clear, it is possible to compute[ab] by [ab] = [a]b.

Paillier cryptosystem. Introduced by Paillier in [29], its security is based on the
decisional composite residuosity problem. Letn = pq of size t, with p, q prime
numbers andt from the range 1000-2048. Also letg = n + 1 [10]. To encrypt a mes-
sagem ∈ Zn, the user selects a random valuer ∈ Zn and computes the ciphertext
c = gmrn mod n2. Note that due to our choice ofg, encryption requires only one
modular exponentiation and two modular multiplications, asc = (mn+1)rn mod n2.
We will write the encryption of a messagem in the Paillier cryptosystem as[m]. Since
all encryptions in the proposed protocol will be computed using one fixed public key,
we do not specify the key explicitly. It is easy to see that Paillier is additively homo-
morphic and that for an encryption[m] we can compute a new probabilistic encryption
of m without knowing the private key (this will be referred to asre-randomization).
We refer the reader to [29] for a description of the decryption operation and further
details on the cryptosystem.

Damgård, Geisler and Krøigaard cryptosystem (DGK).For efficiency reasons we
use at a key point in our protocol another homomorphic cryptosystem, which was pro-
posed by Damg̊ard, Geisler and Krøigaard [8, 9]. As in Paillier, letn = pq be at-bit
integer (witht chosen from the range 1000-2048), withp, q primes. The ciphertextc
corresponding to a messagem ∈ Zu is computed asc = gmhr mod n, whereu is a
prime number andr is a randomly chosen integer. In practice (and more importantly
in our application)u is from a very small range, say8-bit values, which results in a
very small plaintext spaceZu. Similarly to Paillier, DGK is also additively homomor-
phic and it is possible to re-randomize existing ciphertexts. Compared to Paillier, the
scheme has substantially smaller ciphertexts and the smaller plaintext space results in
a large performance gain. To note the difference between Paillier and DGK ciphertexts
we will denote the encryption ofm in the DGK cryptosystem as[[m]].

3.3 Face Recognition

In 1991, Matthew Turk and Alex Pentland proposed an efficientapproach to identify
human faces [34, 35]. This approach transforms face images into characteristic feature
vectors of a low-dimensional vector space (the face space),whose basis is composed
of eigenfaces. The eigenfaces are determined through Principal Component Analysis
(PCA) from a set of training images; every face image is succinctly represented as a
vector in the face space by projecting the face image onto thesubspace spanned by
the eigenfaces. Recognition of a face is done by first projecting the face image to



3.4. Privacy-Preserving Eigenfaces 59

the face space and subsequently locating the closest feature vector. A more detailed
description of the enrollment and recognition processes isgiven below.

During enrollment, a set ofM training imagesΘ1,Θ2, . . . ,ΘM , which can be
represented as vectors of lengthN , is used to determine the optimal low-dimensional
face space, in which face images will be represented as points. To do this, the average
of the training images is first computed asΨ = 1

M

∑M
i=1 Θi. Then, this average is

subtracted from each face vector to form difference vectorsΦi = Θi −Ψ. Next, PCA
is applied to the covariance matrix of these vectorsC = 1

M

∑M
i=1 ΦiΦ

T
i = 1

M AAT to
obtain orthonormal eigenvectors and corresponding eigenvalues whereA is the matrix
where each column corresponds to the imageΘi for i = 1 to M . (As the size ofC
makes it computationally infeasible to directly run PCA, the eigenvectors are usually
obtained by applying PCA to the much smaller matrixAT A and appropriate post-
processing). At mostM of the eigenvalues will be nonzero. To determine the face
space, we selectT ≪ M eigenvectorsu1, . . . , uT that correspond to theT largest
eigenvalues. Subsequently, imagesΘ1,Θ2, . . . ,ΘM showing faces to be recognized
(not necessarily the training images) are projected onto the subspace spanned by the
basisu1, . . . , uT to obtain their feature vector representationΩ1, . . . ,ΩM .

During recognition, a new face imageΓ is projected onto the face space by cal-
culating weightsω̄i = uT

i (Γ − Ψ) for i = 1, . . . , T . These weights form a fea-
ture vectorΩ̄ = (ω̄1, ω̄2, . . . , ω̄T )T that represents the new image in the face space.
Subsequently, the distances between the obtained vectorΩ̄ and all feature vectors
Ω1, . . . ,ΩM present in the database are computed,

Di = ‖(Ω̄ − Ωi)‖.

A match is reported if the smallest distanceDmin = min {D1, . . . ,DM} is smaller
than a given threshold valueδ. Note that this basic recognition algorithm can be aug-
mented with additional checks that reduce the number of false positives and negatives
during recognition; for the sake of simplicity, we stick to the basic Eigenface recogni-
tion algorithm presented above.

3.4 Privacy-Preserving Eigenfaces

In this section, we present a privacy preserving realization of the Eigenface recognition
algorithm which operates on encrypted images. We work in thetwo-party setting in
the semi-honest attacker model. Informally, this assumes that the parties involved
in the protocol follow it properly but keep a log of all the messages that have been
exchanged (including their own) and try to learn as much information as possible from
them. Alice’s privacy is ensured against a computationallybounded attacker, while
Bob’s is unconditional—even a computationally unbounded Alice cannot compromise
it. It is also assumed that the parties communicate over an authenticated channel (this
can be achieved by standard mechanisms and is thus outside the scope of this paper).
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3.4.1 Setup and Key Generation

Two parties Alice and Bob jointly run the recognition algorithm. We assume that Bob
has already set up the face recognition system by running theenrollment process (in
the clear) on all available training images to obtain the basis u1, . . . , uT of the face
space and feature vectorsΩ1, . . . ,ΩM of faces to be recognized. Furthermore, we
assume that all coordinates of the eigenfaces and feature vectors are represented as
integers; this can always be achieved by appropriate quantization: non-integer values
are first scaled by a fixed scale factorS and rounded to the nearest integer. This is
necessary, as all values need to be integers in order to encrypt them with Paillier and
process them using homomorphic operations. The effects of this quantization step
on the detection reliability are experimentally analyzed in Section 3.7. Each feature
vector in the database is further accompanied by a stringId i that contains the identity
of the person the feature vector belongs to; we assume that the identity is encoded as
anon-zeroelement of the message space of the chosen encryption scheme.

During the interactive recognition protocol, Alice provides an encrypted face im-
age[Γ] as input. At the end of the protocol, Alice learns whether theface shown on
her image matches one of the feature vectorsΩ1, . . . ,ΩM owned by Bob: Depending
on the application, Alice either receives the identityId i of the best matching feature
vector or only a binary answer (i.e. whether there was a matchor not). Apart from
this answer (and the numberM ), Bob keeps the database content secret. Bob learns
nothing from the interaction, i.e. neither the face imageΓ, nor its representation in the
face space, nor the result of the matching process.

Note that the vectorsui are directly computed from the set of training images;
thus, theydo carry information on the faces stored in Bob’s database. Even though
it is hard to quantify the exact amount of data leakage through the knowledge of the
basisu1, . . . , uT , our solution will treat it as sensitive data that will not bedisclosed
to Alice. In an alternative implementation, the basisu1, . . . , uT can be derived from a
sufficiently large public face database so that they do not carry personal information;
the proposed system can easily be changed to take advantage of public basis vectors,
see Section 3.7 for details. Since Alice is the only party whoreceives an output, we
can construct the protocol using any standard homomorphic public-key encryption al-
gorithm; as stated in Section 3.2 we choose Paillier encryption for the implementation.
In particular, we donot need a threshold homomorphic scheme, as it is widely em-
ployed in the construction of secure multiparty protocols.Before the interaction starts,
Alice generates a pair of public and private keys and sends her public key to Bob over
an authenticated channel. In the first step of the protocol, Alice encrypts all pixels of
the imageΓ separately with her public key and sends the result to Bob, who is unable
to decrypt them. However, Bob can use the homomorphic property of the cipher to
perform linear operations on the ciphertexts; for some operations (such as computing
distances between vectors or finding a minumum), he will require assistance from Al-
ice in the form of an interactive protocol. At the end of the protocol, Alice receives
back an encryption containing the result of the biometric matching operation, which
only Alice can decrypt. Appendix 3.6 gives a sketch of the security of our system in
the semi-honest attacker model.
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Figure 3.1: Privacy-Preserving Face Recognition.

3.4.2 Private Recognition Algorithm

To match a face image against feature vectors in a database, three steps need to be
performed. First, the image needs to be projected onto the face space in order to ob-
tain its corresponding feature vector representation. Subsequently, distances between
the obtained vector and all feature vectors in Bob’s database need to be computed.
Finally, the one with minimum distance is selected; if this distance is smaller than a
threshold, a match is reported. In the following, we show howthese three steps can
be realized in a privacy preserving manner. Figure 3.1 showsan outline of the private
face recognition protocol; the gray area denotes operations that need to be performed
on encrypted values.

Projection

As a first step, the input imageΓ has to be projected onto the low dimensional face
space spanned by the eigenfacesu1, . . . , uT . This can be performed by computing the
scalar product of

Φ = Γ − Ψ =






Γ1 − Ψ1

...
ΓN − ΨN






and each eigenface vectorui to obtain

ω̄i = Φ1 · ui1 + . . . + ΦN · uiN

for eachi ∈ {1, . . . , T}.
These operations have to be performed in the encrypted domain by Bob, who

receives the encrypted face image[Γ] from Alice. As Bob knows the vectorΨ in
plain, he can easily compute−Ψ = (−1) ·Ψ and then encrypt each of its components.
These encryptions can be pairwise multiplied with the encrypted components of[Γ]
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in order to perform the componentwise subtraction of the vectorsΓ andΨ. Thus Bob
computes

[Φ] = [Γ − Ψ] =






[Γ1] · [−Ψ1]
...

[ΓN ] · [−ΨN ]




 .

Subsequently Bob performs the projection

[ω̄i] = [Φ1 · ui1 + . . . + ΦN · uiN ] = [Φ1]
ui1 · . . . · [ΦN ]uiN

for eachi ∈ {1, . . . , T}. This is done as follows. As Bob knows the vectorui in plain,
he can perform the required multiplications using the homomorphic property. For
example, in order to multiply the first components of both vectors Bob has to compute
[Φ1]

ui1 . To obtain the sum of all these products he just multiplies the encryptions
with each other. Doing this for all1 ≤ i ≤ T , Bob obtains an encrypted feature
vector description of the face image as[Ω̄] := ([ω̄1], . . . , [ω̄T ])T . Note that every
computation in the projection operation can be performed byBob without interacting
with Alice.

Calculating Distances

After having obtained the encrypted feature vector[Ω̄], encryptions of the distances
D1, . . . ,DM between̄Ω and all feature vectorsΩ ∈ {Ω1, . . . ,ΩM} from the database
have to be computed. Since in the remainder of the protocol weare only concerned
with the relative order of the obtained distances, it suffices to compute the square of
the Euclidean distance,

D(Ω, Ω̄) = ‖Ω − Ω̄‖2 = (ω1 − ω̄1)
2 + . . . + (ωT − ω̄T )2

=

T∑

i=1

ω2
i

︸ ︷︷ ︸

S1

+

T∑

i=1

(−2ωiω̄i)

︸ ︷︷ ︸

S2

+

T∑

i=1

ω̄2
i

︸ ︷︷ ︸

S3

. (3.1)

Again, we need to evaluate this equation in the encrypted domain: Bob knows the en-
cryption [Ω̄] and needs to compute the encrypted distance[D(Ω, Ω̄)], while he knows
the feature vectorΩ in the clear. To compute[D(Ω, Ω̄)] it suffices to compute encryp-
tions of the three sumsS1, S2 andS3, as by the homomorphic property and Eq. (3.1),

[D(Ω, Ω̄)] = [S1] · [S2] · [S3].

The termS1 is the sum over the components ofΩ known in the clear. Thus, Bob can
computeS1 directly and encrypt it to obtain[S1]. S2 consists of the productsωiω̄i,
where Bob knowsωi in the clear and has[ω̄i] in encrypted form. In a first step the
valuesωi can be multiplied with−2. The term[(−2ωi)ω̄i] can be computed by raising
[ω̄i] to the power of(−2ωi), using the homomorphic property. To obtain an encryption
of S2, Bob finally computes[S2] =

∏T
j=1[(−2ωi)ω̄i]. Thus, the value[S2] can again

be computed by Bob without interacting with Alice. The termS3 consists of the
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squares of the encrypted values[ω̄i]. Unfortunately, Bob cannot perform the required
multiplication without help from Alice. Thus, Bob additively blinds the valuēωi with
an uniformly random elementri from the plaintext space to obtain[xi] = [ω̄i + ri] =
[ω̄i] · [ri]. Note that for every componentω̄i of the vector̄Ω a fresh random value must
be generated. Finally, he sends the elements[xi] to Alice who decrypts. Alice can now
compute the valuesx2

i in plain as the square of the plaintextxi and compute the value
S ′

3 =
∑T

j=1 x2
i . She encrypts this value and sends[S ′

3] back to Bob, who computes

[S3] = [S ′
3] ·

T∏

j=1

([ω̄i]
(−2ri) · [−r2

i ]),

which yields the desired result because

[x2
i ] · [ω̄i]

(−2ri) · [−r2
i ] = [(ω̄i + ri)

2 − 2riω̄i − r2
i ] = [ω̄2

i ].

Note that this interactive protocol to compute the value[S3] needs to be run only once.
The value[S3] depends only on the encrypted feature vector[Ω̄] and can be used for
computation of all distances[D1], . . . , [DM ]. Note further that due to the blinding
factors, Alice does not learn the valuesω̄i.

Match Finding

In the last step of the recognition algorithm, the feature vector from the database that
is closest tōΩ must be found. This distance is finally compared to a threshold value
δ; if the distance is smaller, a match is reported and an encryption of the identityId
which corresponds to the best matching feature vector is returned to Alice.

As a result of the last step we obtained encrypted distances[D1], . . . , [DM ], where
Di denotes the distance betweenΩ̄ and thei-th feature vectorΩi ∈ {Ω1, . . . ,ΩM}
from the database. To find the minimum we employ a straightforward recursive pro-
cedure: in the first step, we compare thek = ⌊M

2 ⌋ encrypted distances[D2i+1] and
[D2i+2] for 0 ≤ i ≤ k − 1 with each other, by using a cryptographic protocol that
compares two encrypted values; a re-randomized encryptionof the smaller distance is
retained (re-randomization is necessary to prevent Bob from determining the outcome
of the comparison by inspecting the ciphertexts). After this step, there will be⌈M

2 ⌉
encryptions left. In a second run we repeat this procedure for the remaining encryp-
tions, and so forth. After⌈log2(M)⌉ iterations there will only be one encryption left,
the minimum.

As we need to return the identity of the best matching featurevector, we also have
to keep track of the IDs during the minimum computation. Thisis done by working
with pairs([Di], [Id i]) of distances and their corresponding identities, where there-
cursive minimum finding algorithm is applied to the distances only, but re-randomized
encryptions of both the smaller distance and its identity are retained for the next round.
An efficient implementation of the required comparison protocol is described in Sec-
tion 3.5.

To check if the minimum distance is smaller than a thresholdδ, we can treat the
valueδ as one additional distance that has the special identity0. Together with the dis-
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tancesD1, . . . ,DM we run the algorithm to find the minimum as described above. Af-
ter⌈log2(M +1)⌉ iterations, Bob receives the minimum distance and the correspond-
ing identity ([D], [Id ]), whereD ∈ {δ,D1, . . . ,DM} andId ∈ {0, Id1, . . . , IdM}.
Thus, if a face image could be recognized the valueId contains the corresponding
identity. If no match could be foundId is equal to0. The value[Id ] is finally sent to
Alice as the result of the private face recognition protocol.

Note that there is an easy way to modify the protocol to make itterminate only
with a binary output: rather than using actual IDs, Bob may assign a second special
identity, the integer1, to all images. In this case Alice will either receive a1 or a0,
with the former indicating that a match was found.

3.5 Comparison Protocol

The only missing block is a protocol for selecting the minimum of two encryptedℓ-bit
values[a] and [b] along with the encrypted ID of the minimum. (Note that the bit-
lengthℓ can be determined by knowing the bit-length of the input dataand the scale
factorS used to quantize eigenfaces).

At the core of our protocol is a comparison protocol due to Damgård, Geisler and
Krøigaard [8, 9]. Their setting differs from ours as follows: one input is public while
the other is held (bitwise) in encrypted form by one party; moreover the output is
public. They note several variations, but in order to provide a solution for the present
setting some tweaking is needed. This section presents the protocol in a top-down
fashion.

3.5.1 A High-level View of the Protocol

Initially Bob, who has access to both[a] and[b], computes

[z] = [2ℓ + a − b] = [2ℓ] · [a] · [b]−1.

As 0 ≤ a, b < 2ℓ, z is a positive(ℓ + 1)-bit value. Moreover,zℓ, the most significant
bit of z, is exactly the answer we are looking for:

zℓ = 0 ⇔ a < b.

If Bob had an encryption ofz mod 2ℓ, the result would be immediate:zℓ could be
computed as

zℓ = 2−ℓ · (z − (z mod 2ℓ)).

Correctness is easily verified; the subtraction sets the least significant bits to zero,
while the multiplication shifts the interesting bit down. As onlyz andz mod 2ℓ are
encrypted, this is a linear combination in the encrypted domain, which can be com-
puted by Bob.

Once Bob has an encryption of the outcome[zℓ] = [a < b], an encryption of the
minimumm, is easily obtained using arithmetic, asm = (a < b) · (a − b) + b. The
multiplication requires assistance of Alice, but is easilyperformed through a (short)
interactive protocol. Determining an encryption of the ID is analogous,(a < b) ·
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(Ida − Idb) + Idb. Thus, it remains to describe how Bob obtains the encryptionof
z mod 2ℓ.

3.5.2 Computing[z mod 2ℓ]

The valuez is available to Bob only in encrypted form, so the modulo reduction cannot
easily be performed. The solution is to engage in a protocol with Alice, transforming
the problem back to a comparison.

First, Bob generates a uniformly random(κ + ℓ + 1)-bit valuer, whereκ is a
security parameter, say100, andκ + ℓ + 1 ≪ log2(n). This will be used to additively
blind z,

[d] = [z + r] = [z] · [r];
[d] is then re-randomized and sent to Alice who decrypts it and reducesd modulo2ℓ.
The obtained value is then encrypted, and returned to Bob.

Due to the restriction on the bit-length ofr, Bob can nowalmostcompute the
desired encryption[z mod 2ℓ]. The masking can be viewed as occurring over the
integers, thus we haved ≡ z + r mod 2ℓ and

(
z mod 2ℓ

)
=
((

d mod 2ℓ
)
−
(
r mod 2ℓ

))
mod 2ℓ.

Alice has just provided[d mod 2ℓ] andr is known to Bob. Thus, he can compute

[z̃] = [(d mod 2ℓ) − (r mod 2ℓ)] = [d mod 2ℓ] · [(r mod 2ℓ)]−1.

Had the secure subtraction occurred modulo2ℓ, z̃ would be the right result; however,
it occurs modulon. Note, though, that ifd mod 2ℓ ≥ r mod 2ℓ, z̃ is the right result.
On the other hand, ifr mod 2ℓ is larger, an underflow has occurred; adding2ℓ in this
case gives the right result. So, if Bob had an encryption[λ] of a binary value indicating
whetherr mod 2ℓ > d mod 2ℓ, he could simply compute

[z mod 2ℓ] = [z̃ + λ2ℓ] = [z̃] · [λ]2
ℓ

,

which adds2ℓ exactly whenr mod 2ℓ is the larger value. This leaves us with a variant
of Yao’s millionaires problem: Bob must obtain an encryption [λ] of a binary value
containing the result of the comparison of two private inputs: d̂ = d mod 2ℓ held by
Alice andr̂ = r mod 2ℓ held by Bob.

3.5.3 Comparing Private Inputs

The problem of comparing private inputŝd and r̂ is a fundamental one, which has
been studied intensively (see e.g. [38, 28, 14, 3, 4, 15, 8]).For efficiency reasons, we
solve this problem using adifferenthomomorphic encryption scheme, namely the one
proposed by Damg̊ard et al. [8, 9], which has a very small plaintext spaceZu for some
primeu. This allows very efficient multiplicative masking; in contrast to the Paillier
scheme, the exponents are small.

Though the basic setting of Damgård et al. considers one public and one secret
value, they note how to construct a solution for private inputs. They also note how
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to obtain a secret output. However, they obtain this output as an additive secret shar-
ing, while in our setting Bob must receive aPaillier encryption[λ] at the end of the
protocol. Naturally Alice must not see this encryption as she knows the secret key.

We assume that Alice has run the DGK key-generation algorithm and has sent
the public key to Bob. This key pair can be re-used whenever the comparison pro-
tocol will be run. Inertially, Alice sends Bob encryptions of the bits of her input,
[[d̂ℓ−1]], . . . , [[d̂0]]. Bob then choosess ∈R {1,−1} and computes

[[ci]] = [[d̂i − r̂i + s + 3
ℓ−1∑

j=i+1

wj ]] = [[d̂i]] · [[ − r̂i]] · [[s]] ·





ℓ−1∏

j=i+1

[[wj ]]





3

, (3.2)

where [[wj ]] = [[d̂j ⊕ r̂j ]], which he can compute as Bob knowsr̂j . For technical
reasons (to avoid the casêd = r̂), we append differing bits to botĥd and r̂, i.e., we
compare the values2d̂ + 1 and2r̂ instead.

Equation (3.2) differs from the one proposed by Damgård et al. in order to effi-
ciently hide the output, but the core idea remains. Considerthe case ofs = 1; if d̂
is larger, then allci will be non-zero. (The modulusu is chosen such that there is no
overflow.) However, if̂r is larger, then exactly oneci will equal zero, the one at the
most significant differing bit-position. Both claims are easily verified. Fors = −1 we
have exactly the same situation, except that the zero occursif d̂ is larger. The factor of
3 ensures that the values are non-zero once even a singlewj is set.

Bob now multiplicatively masks the[[ci]] with a uniformly randomri ∈ Z
∗
u

[[ei]] = [[ci · ri]] = [[ci]]
ri ,

re-randomizes and permutes the encryptions[[ei]] and sends them to Alice. Note that
ei is uniformly random inZ∗

u except whenci = 0, in which caseei also equals zero,
i.e. the existence of a zero is preserved.

Alice now decrypts allei and checks whether one of them is zero. She then en-
crypts a bitλ̃, stating if this is the case. At this point she switches back to Paillier
encryptions, i.e. Alice sends[λ̃] to Bob. Given the knowledge ofs, Bob can compute
the desired encryption[λ]: while [λ̃] only states whether there was a zero among the
values decrypted by Alice,s explains how to interpret the result, i.e. whether the oc-
currence of a zero means thatr̂ > d̂ or d̂ ≥ r̂. In the former case, Bob negates the
result[λ̃] under encryption, otherwise he directly takes[λ̃] as output[λ].

3.6 Security (Sketch)

In this appendix we sketch why the face recognition protocolis privacy preserving.
For semi-honest Alice and Bob, neither learns anything on the other’s input—the
database and the image—except the database size and what can be inferred from the
output. As the parties are honest-but-curious, it suffices to demonstrate that no infor-
mation is leaked by the messages seen.

Comparison protocol. The comparison protocol allows Bob to obtain a new encryp-
tion of the minimum of two encryptions he already possesses.On the intuitive level,
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security towards Bob is simple. All messages received are encrypted under Alice’s
public keys, and Bob cannot learn anything from these without breaking the semantic
security of one of those schemes.

Alice on the other hand has access to the secret key. It must therefore be argued
that no information is learned from thecontentsof the encryptions sent. But this is the
case, as Alice only receives values that Bob has masked: thisincludes the messages
sent for the secure selection of the minimal and ID, as well as[d] = [z + r], which is
statistically indistinguishable from a uniformly random(κ + ℓ + 1)-bit value.

Treatment of the permuted[[ei]] of Section 3.5.3 is only slightly more difficult.
Alice either sees a list of uniformly random non-zero values, or an equivalent list,
where one entry is replaced by a zero. A list of random values provides no information.
Similarly, the zero does not cause any problems: Its position is random due to the
permutation, and its existence also reveals nothing as it occurs with probability1/2; s
can be viewed as a one-time-pad for the outcome. Thus, neither Alice nor Bob learn
anything from the comparison protocol.

Complete Recognition Protocol.The proof of security of the full protocol is similar
to that of the comparison. In addition to the comparisons, interaction is only needed
to compute the distancesD1, . . . ,DM . As above, the valuesx1, . . . , xT that Alice
receives are masked, in this case they are uniformly random over the whole plaintext
space. Bob again receives only semantically secure encryptions, so he also learns
nothing. This is also true when he receives Alice’s input.

Based on the above intuition, a formal simulator proof is easily constructed. Given
one party’s input and the output, simulation of the other party is easy: Alice must be
handed encryptions of random values, while Bob can be handedencryptions of0,
which are indistinguishable due to the semantic security.

3.7 Implementation

The privacy-preserving face recognition system, as described in this paper, has been
implemented in C++ using the GNU GMP library version 4.2.4, in order to determine
its performance and reliability. Tests were performed on a computer with a 2.4 GHz
AMD Opteron dual-core processor and 4GB of RAM running Linux. Both sender and
receiver were modeled as different threads of one program, which pass messages to
each other; thus, the reported performance data does not include network latency.

For testing purposes, we used the “ORL Database of Faces” from AT&T Labora-
tories Cambridge [1], which is widely used for experiments and contains 10 images
of 40 distinct subjects, thus 400 images in total. All imagesin this database have a
dark background with the subject in upright, frontal position. The size of each image
is 92×112 pixels with 256 grey levels per pixel (thusN = 92 ·112 = 10304). We use
5-fold cross validation for the experiments such that for each subject we use8 images
in the enrollment phase and2 images for testing (thus, the database consists of320
feature vectors). The security parameterk for both Paillier- and DGK-cryptosystem
was set to1024 bits (see Section 3.2 for details). Furthermore we setℓ = 50 (see
Section 3.5 for details).



68 Chapter 3. Privacy-Preserving Face Recognition

Reliability. During reliability testing, we assured that our privacy-preserving imple-
mentation of the Eigenface algorithm does not degrade the reliability when compared
to a standard implementation which achieves approximately96% correct classifica-
tion rate. Reliability losses may occur due to the use of scaled and quantized feature
vectors and eigenfaces. This scale factor has both an influence on the accuracy of
the result and the performance of the scheme. Figure 3.2 shows the detection rates of
the implementation for different scale factors, plotted ona logarithmic scale. It can
be seen that scale factors below the value1000 significantly degrade detection per-
formance, while scale factors larger than1000 do not improve the results. Hence, it
suffices to setS = 1000 to achieve the same reliability as a reference implementation
operating on floating point values. Another parameter that influences both the detec-
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Figure 3.2: Relation between scale factor and detection rate.

tion rate and the performance is the numberT . Turk and Pentland [34] advised to set
T = 10; experiments with our implementation demonstrate that values ofT > 12 do
not yield a significant gain in the detection rate; thus we setT = 12 in subsequent
tests.

Computational complexity. We measure the computational complexity of the full
recognition protocol, thus the efforts of both Alice and Bob. Table 3.1 depicts the
average runtime of a single query (wall clock time) with respect to the size of the
databaseM (second column) in seconds. Thus, matching an image againsta database
of size 320 takes roughly 40 seconds; this time includes all steps of the protocol of
Section 3.4: computing the encrypted face image by Alice, projecting it into the face
space, computing distances and selecting the minimum.

One can note that a major part of the computation efforts comes from computing
encryptions, since they require one rather complex modularexponentiation. The time
required to run the protocol can be largely reduced if these computationally expensive
operations, which donot depend on the input image of Alice, can be computed in
advance, during idle times of a processor or on a separate processor dedicated to this
task. With this optimization in place, computing one encryption requires only two
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modular multiplications. The third column of Table 3.1 shows the execution time
of the recognition algorithm under the assumption thatall randomization factorsrn

(Paillier) andhr (DGK) can be pre-computed for free during idle times. In thiscase,
matching an image against 320 feature vectors takes only18 seconds; furthermore,
the computations performed by Alice become much more lightweight, as nearly all of
Alice’s efforts is spent in computing encryptions.

In a third test we assume that Alice knows the eigenfacesui. As noted in Sec-
tion 3.4.1, this might be the case if a (sufficiently large) public database of faces can
be used to compute the eigenfaces, or if Bob explicitly decides to reveal these values
to Alice. In this case Alice performs the projection and distance computation steps
and sends an encrypted feature vector to Bob. The results of this experiment are de-
picted in the fourth column of Table 3.1. Observe that compared to a standard query
(second column) only a small constant factor can be saved.

Communication complexity. The communication complexity highly depends on the
size of Paillier and DGK encryptions; in our implementation, the size of a Paillier ci-
phertext is 2048 bits, whereas a DGK encryption requires only 1024 bits. Sending the
encrypted image and performing the distance computations requires communication
efforts independent ofM ; in particular, this part of the protocol requires transmis-
sion of N + T + 1 Paillier encrypted values (roughly 2580 kilobytes). The rest of
the communication is linear inM : more precisely, the minimum searching step re-
quires transmission of6M Pailler andM(2ℓ + 1) DGK encryptions, which in our
setting amounts to roughly 14.5 kilobytes per feature vector in the database. Table 3.2
shows the average amount of data in kilobytes transmitted inone run of the privacy-
preserving face recognition protocol for several databasesizesM (second column)
and the communication complexity in case that a public basisof Eigenfaces can be
used (third column). The overall communication complexityfor matching an image
against 320 feature vectors is thus approximately7.25 MB.

Table 3.1: Computational Complexity (sec.).
M Query With pre-computations Public Eigenfaces

10 24 8.5 1.6
50 26 10 3.4

100 29 11.5 6
150 31.6 13 8.6
200 34.2 14.5 11.4
250 36.6 16 14.4
300 39.6 17.5 18
320 40 18 18.2

Round complexity. The round complexity of our protocol is very low. Sending the
face image and receiving the result of the protocol takes oneround. Another round is
spent for distance computation. As the comparison protocol(see Section 3.5) runs in
three rounds, finding the minimum ofM + 1 values takes at most3⌈log2(M + 1)⌉
rounds. Therefore the round complexity of our protocol isO(log2(M)).
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Table 3.2: Communication Complexity(kB).
M Full Query Public Eigenfaces

10 2725 149
50 3310 734

100 4038 1461
150 4765 2189
200 5497 2921
250 6228 3652
300 6959 4382
320 7249 4674

3.8 Related Work

The problem considered in this paper is an instance of a secure two-party problem;
thus standard methods of Secure Multiparty Computation [38, 7] can be applied. Basic
concepts for secure computations were introduced by Yao [38]. Subsequently, various
approaches to securely evaluating a function have been developed for different func-
tion representations, namely combinatorial circuits [17,20], ordered binary decision
diagrams [24], branching programs [27, 26], or one-dimensional look-up tables [26].
Nevertheless, these solutions tend to be impractical due totheir high computational
complexity for functions as the biometric matching processconsidered in this paper.
Thus, specific protocols must be developed.

Recently there has been an increasing interest in the use of SMC for data-intensive
problems, like clustering [16, 21], filtering [6] or statistical analysis [11] of sensitive
private data. Furthermore, the combination of signal processing with cryptographic
techniques in order to protect privacy is an active area of research [13]; among others,
solutions for recognizing speech on encrypted signals [33]or image classification and
object recognition on encrypted images [37, 2] have been proposed. The latter work
describes a solution to a problem that is complementary to the one discussed in the
present paper (and can be used in conjunction with our solution): locating rectangular
regions on an encrypted image that show human faces.

Some authors proposed different complementary techniquesfor making surveil-
lance cameras more privacy friendly, e.g. [32, 12, 39]. However, they do not consider
face recognition. These approaches use methods from signalprocessing and pattern
recognition to wipe out sensitive regions of a surveillancevideo automatically, based
on access permissions of the surveillance personnel.

There were a few attempts to make other biometric modalitiesprivacy-preserving,
most notably fingerprints and iris codes [36, 30, 23]. However, these works consider a
different setting, where the biometric measurement is matched against a hashed tem-
plate stored on a server. The server that performs the matching gets to know both the
biometric and the detection result (the aim is only to securestorage of templates). In
contrast, our scenario even allows to hide this information. There are only a few works
that apply cryptographic secure multiparty computation tothe problem of securing iris
codes and fingerprint templates (most notably [22, 31]); to the best of our knowledge
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there is no prior solution to the much more data-intensive problem of securing face
biometrics.

3.9 Conclusions and Future Work

In this paper we have presented for the first time strong cryptographic privacy enhanc-
ing technologies for biometric face recognition systems. In particular, we provided an
efficient protocol that allows to match an encrypted image showing a face against a
database of facial templates in such a way that the biometricitself and the detection
result is hidden from the server that performs the matching.Through extensive tests,
we showed that our privacy-preserving algorithm is as reliable as a reference imple-
mentation in the clear, and that the execution of the protocol is feasible on current
hardware platforms.

In this paper we used Eigenfaces, which provides a detectionrate of about96%,
as core face recognition algorithm. Biometric algorithms that achieve better detection
rates are known in the literature; however, these schemes are much more complex and
thus more difficult to implement on encrypted images. We leave this, as well as further
optimizations, as future work.
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Abstract

In a ubiquitously connected world, social networks are playing an important role on
the Internet by allowing users to find groups of people with similar interests. The data
needed to construct such networks may be considered sensitive personal information
by the users, which raises privacy concerns. The problem of building social networks
while user privacy is protected is hence crucial for furtherdevelopment of such net-
works. K-means clustering is widely used for clustering users in a social network. In
this paper, we provide an efficient privacy-preserving variant of K-means clustering.
The scenario we consider involves a server and multiple users where users need to be
grouped into K clusters. In our protocol the server is not allowed to learn the individ-
ual user data and users are not allowed to learn the cluster centers. The experiments on
the MovieLens dataset show that deployment of the system forreal use is reasonable
as its efficiency even on conventional hardware is promising.

4.1 Introduction

Internet applications in which people are grouped based on personal preferences have
become very popular. By grouping users, these applicationsprovide personalized ser-
vices as well as building social networks where people can find the opportunity to
communicate with others who share similar interests. Thereare a vast amount of so-
cial networks now available for dating, traveling, reading, cultural activities and many
more [2]. Most users tend to give privacy sensitive data to benefit from such applica-
tions. As in the case of dating sites, the users provide to thesystem their personality
details along with their preferences for a candidate while in traveling networks, the
users announce a list of dates and locations for their planned travels.

The very success of applications based on finding similar people depends on the
accuracy of grouping users which is directly proportional to the amount of collected
user data. Since the content of the data is mostly privacy sensitive, the protection
of the data is a raising concern among users [10]. Many rely onthe trustworthiness
of the service provider that possesses all the data. Severalincidents have shown that
this assumption is not completely true [1]. Even if the service provider protects its
database against a common security problem of identity theft, there is no guarantee to
prevent information being passed on without consent. A possible solution to protect
the privacy sensitive data is having a trusted third party that is fully trusted by both
the user and the service provider that keeps the data and runsthe algorithm instead
of the service provider. Unfortunately, having a third party that is fully trusted and
willing to do all bulky computations is not realistic. A genuine solution is deploying
cryptographic protocols to protect the privacy sensitive data of the users. Assuming
that the server and the users are semi honest, meaning that they follow the protocol
steps but are curious to extract more information than they allowed to have by storing
all previous messages, it is possible to have a secure systemwhere no information is
revealed except the result of the algorithm run. With such a design, identity theft and
abuse of user data by the service provider will be unlikely without having the secret
key that is used to secure the user preferences.
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A closer look at the problem of grouping users in a social network leads us to a
well-known problem of clustering data. A user can be attached to a group of users
if the user shares a commontasteas of the users in that group. In a social network,
the preference of a user is represented by a vector in the feature space. Thus, finding
similar users with the same taste is basically a problem of clustering these feature
vectors. The goal of the secure system is, then, grouping users with the same taste
while protecting their privacy by hiding their preference data or feature vector. At
the same time, the server should protect sensitive information about the algorithm like
cluster locations. A malicious user can place himself into adesired cluster if this
information is known. At the end of the secure clustering protocol, a user should only
obtain the label information which is in fact a pointer to thecluster he is in, and the
server should not get any information on the feature vector of the users.

As a method of clustering data, the K-means algorithm is widely used because
of its simplicity and ability to converge extremely quicklyin practice. Hence, in [3,
12, 11, 14] the authors addressed cryptographic techniquesfor the privacy-preserving
clustering protocols based on K-means algorithm. In these works, the authors apply
secure multiparty computation techniques [9], which makesany two-party privacy-
preserving data mining problem solvable mostly by using Yao’s secure circuit evalu-
ation method [15]. Even though Yao’s method can be used to implement any func-
tion in a privacy preserving manner, heavy computation costs in such circuits make
these solutions feasible only for small circuit sizes whichis a difficult requirement in
many application scenarios. In [3, 12, 11], the authors attempt to solve the clustering
problem in a two-party setting which is suitable to deploy techniques based on secret
sharing. [12] suffers from a problem during the clustering algorithm where a division
operation is misinterpreted as multiplication by the inverse which is not correct. On
the other hand, [14] has a multi-user setting but requires three non-colluding entities
for the clustering algorithm and the authors overcome the problem of updating cen-
troids by allowing users to perform the division algorithm locally. In order to do that,
the users possess the intermediate centroid assignments, meaning more information
leakage. Therefore, these proposals are either not suitable for the problem of cluster-
ing users in a social network as they have different setting or not secure and efficient
enough to deploy in practice.

In this paper, we provide a solution based on secure multi-party computation tech-
niques in a semi-honest environment. Within this setting, our proposal groups people
in a social network while protecting their privacy-sensitive data against the server and
other users by means of encryption. A user gets a cluster identifier at the end of pro-
tocol but nothing more while the server obtains neither the identity of the users nor
the content of user data. Our proposal provides a solution that is computationally ef-
ficient and scalable to a real life scenario of a centralized social network. We also
show that communication cost of our protocol reaches the same performance of the
most similar work in the field but achieving more privacy. Theoverall protocol was
also implemented and tested exhaustively on the MovieLens dataset. Experimental
results show that the algorithm proposed in this paper is both reliable and efficient for
practical use.
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4.2 Privacy-Preserving Clustering

Data clustering is a common technique for statistical data analysis where data is parti-
tioned into smaller subgroups with its members sharing a common property [8]. Par-
ticularly, each user is represented as a point in anR dimensional space and is clustered
according to minimal Euclidean distance. As a very common clustering technique, K-
means assigns each userPi = (pi,1, . . . , pi,R) to the closest cluster amongK clusters
C = {C1, . . . , CK} whereCj = (cj,1, . . . , cj,R). The algorithm starts with choos-
ing the constant valueK which is the number of clusters in the feature space. Each
cluster is represented by its center (also named centroid) which is initially a random
point in the space. In every iteration, the distanceDi,j betweenith userPi and cluster
centerCj for j = 1 to K are calculated and the user is assigned to the cluster with
the minimal distance. Once every user is assigned to a cluster, centroid locations are
recalculated by taking the arithmetic mean of the user locations within each cluster.
These two steps are repeated until either a certain number ofiterations is reached or
centroid locations are more or less fixed.

In the privacy-preserving version of the K-means clustering algorithm (Algorithm
3), each step is implemented in the encrypted domain. To realize this system, the
server is assumed to have key pairs for himself of the Paillier [13] and Damg̊ard,
Geisler and Krøigaard (DGK) [5, 6] cryptosystems. These cryptosystems are chosen
as they possess a property calledadditive homomorphismthat allows us to process
data in the encrypted domain such that the product of two encrypted values[a] and[b],
corresponds to a new encrypted message whose decryption yields the sum ofa andb
as[a] · [b] = [a + b].

As a consequence of this additive homomorphism any ciphertext [a] can be raised
to the powerb to obtain the encryption[a]b = [ab]. In addition to the homomorphism
property, Paillier and DGK cryptosystems are semanticallysecure implying that each
encryption has a random element that results in different ciphertexts for the same
plaintext. Throughout this paper we denote the Paillier encryption of a messagem
by [m] and DGK encryption by[[m]]. We omit the keys in the notation as all encryp-
tions use the public key of the server. We also assume that thekeys are generated
and certified by a third trusted party (a certification authority) prior to starting of the
protocol, and the public keys of the server are available to all users in the system. In
the following sections, we give the details for each step of the Algorithm 3.

4.2.1 Computing Encrypted Distances

Assigning a user to the closest cluster requires Euclidean distance computations be-
tween a userPi and centroidCj in anR dimensional space as given in Equation 4.1.
Regarding that the distance computations are only used for determining the minimum
distance, taking the square root can be omitted.
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Algorithm 3 The Privacy-preservingK-means clustering algorithm.
Require: The server sets parameterK and selectsK random points as the initial

centroids.
Ensure: A cluster pointer to the user.

1: The user computes encrypted distances to theK current centroids.
2: The server and the user run an interactive protocol to find theminimum distance

of K encrypted distances to each centroid.
3: The server and all users jointly update the centroid locations.
4: Repeat step (1), (2) and (3) until the server finds that one of the termination con-

ditions is reached.
5: The server and the user run a final protocol to reveal the cluster label to the user.

D2
i,j = ||Pi − Cj ||2 =

R∑

n=1

(pi,n − cj,n)2

=

R∑

n=1

p2
i,n +

R∑

n=1

(−2pi,ncj,n) +

R∑

n=1

c2
j,n. (4.1)

The implementation of the distance computation in the encrypted domain has two
steps. First, the server encrypts(−2) times its centroid locations with his public
Paillier key to obtain[−2cj,n] for all j andn, and publishes them. Then, the user
calculates the encrypted Euclidean distance to each centroid as follows: the user com-
putes the sum in first term in Equation 4.1 and encrypts it. In order to compute the
encrypted second term, the additive homomorphism propertyof the Paillier cryptosys-
tem is used. The user simply needs to raise each encrypted centroid value[−2cj,n]
to the power ofpi,n being the user’s location in thenth dimension. These values are
then multiplied. Note that by receiving[−2C] instead of[C], the user spends less time
for the costly exponentiation as he only usespi,n as the power rather than−2(pi,n).
The calculation of the last term requires encryptions of thesquares of the centroids.
As all needed values are known to the server, it simply supplies these encryptions,
[
∑R

n=1 c2
1,n], . . . , [

∑R
n=1 c2

K,n], along with the encryptions of[−2C]. Finally, the user
multiplies these values to obtain the encrypted distance[D2

i,j ] as given in Equation 4.2.

[D2
i,j ] = [

R∑

n=1

p2
i,n] ·

R∏

n=1

[−2cj,n]pi,n · [
R∑

n=1

c2
j,n]. (4.2)

At the end of this step, each user possessesK encrypted distances from his loca-
tion Pi to the currentK centroids.

4.2.2 Preparing user data

After having obtained the encrypted distances to each centroid [Di,1], . . . , [Di,K ],
the ith user needs to find the minimum of theseK encrypted values. This requires
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a cryptographic protocol for comparing two encrypted values. Using the compari-
son protocol as shown in Section 4.3, the user obtains an encrypted vector[Γi] =
([γi,1], . . . , [γi,K ]) whereγi,j is 1 if and only ifDi,j is the minimum distance (so user
i is in cluster j), and 0 otherwise. Then, the user generates an encrypted matrix[Zi] to
be used in updating the cluster centroids. This is simply themultiplication of vector
ΓT

i and user pointPi in the encrypted domain as shown in Equation 4.3.

[Zi] = [ΓT
i Pi] =

∣
∣
∣
∣
∣
∣
∣
∣
∣

[γi,1]
pi,1 . . . [γi,1]

pi,R

[γi,2]
pi,1 . . . [γi,2]

pi,R

...
...

...
[γi,K ]

pi,1 . . . [γi,K ]pi,R

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (4.3)

where thejth row of Zi equalsPi when useri is in clusterj, and0 otherwise.

4.2.3 Updating Centroids

Once all users complete their calculation on forming their encrypted vector[Γi] and
encrypted matrix[Zi], they jointly start a protocol for updating the centroids. For
this step, the server creates a user chain as illustrated in Fig.4.1. We will explain the
procedure for matricesZi, the accumulation of vectorsΓi will be similar, and even
simpler because the elements ofΓi only take single bits.

Useri

(U ′

i , Ui)

UiUseri−1

[X ′

i], [Z
′

i]

Server

Ui−1

(U ′

i+1, Ui+1)
Useri+1(U ′

i−1, Ui−1)

Figure 4.1: User chain created to update the cluster centroids.

Each user generates a random numberr for each value in the matrixZi, to be
used as blinding factors so the server will not learn the value of individual matrices.
Actually for each useri, Ui is aK by R matrix of random values(Ui)j,n. The matrix
Ui is sent to the left neighbour of the user chain. Each user computes(Ui)j,n −
(Ui−1)j,n as a blinding value for(Zi)j,n. Since the server will compute the sum
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Zsum
j,n =

∑M
i=1(Zi)j,n, these random values will eventually cancel out. Note that the

first user computes(U1)j,n − (UM )j,n, M being the number of users.
Suppose that user datapi,n is at mostk bits. Then for each centroidj and user

data indexn, the sumZsum
j,n can maximally takek′ = k + ⌈log M⌉ bits. In order

to sufficiently blind (a subchain of) the matrix elements, the random numbers should
also be of sizek′. In order to keep the blinding factors uniformly distributed, each user
should computeUi − Ui−1 modulo2k′

, before adding these toZi. Since the matrix
Zi is encrypted, the user cannot computeZi + (Ui − Ui−1) modulo2k′

. Therefore,
an extra random numberr′ (or actually an extra matrixU ′ of random numbers) is
needed to mask a possible overflow modulo2k′

. This extra random number should be
κ bits whereκ is a security parameter, to sufficiently mask the overflow to the server.
Equation 4.4 shows the complete value(Z ′

i)j,n that is sent to the server in encrypted
form.

[(Z ′
i)j,n] = [(Zi)j,n] · [2k′

(U ′
i)j,n +

((Ui)j,n − (Ui−1)j,n mod 2k′

)]. (4.4)

The server will compute the matrix[Z ′sum] by adding all matrix elements[(Z ′
i)j,n]

over all usersi. Although the server could first decrypt the matrix elements, it would
be more efficient to use the homomorphic property of Pallier:

[
Z ′sum

j,n

]
=

[
M∑

i=1

(Z ′
i)j,n

]

=

M∏

i=1

[(Z ′
i)j,n].

The server can simply compute the actual sumZsum by decrypting[Z ′sum] and
computingZ ′sum modulo2k′

as shown in Equation 4.5. This is the sum of all user
points per cluster.

Z ′sum
j,n =

M∑

i=1

(Zi)j,n + 2k′

(U ′
i)j,n + ((Ui)j,n − (Ui−1)j,n)

=
M∑

i=1

(Zi)j,n +
M∑

i=1

2k′

(U ′
i)j,n

= Zsum
j,n + 2k′

M∑

i=1

(U ′
i)j,n = Zsum

j,n mod 2k′

. (4.5)

A similar procedure is followed for the server to obtainXsum, which is the number
of users per cluster. The sum simply counts the number of ones, i.e. the number of
users assigned to each cluster The server can then update thecentroids by computing
cj,n = Zsum

j,n /Xsum
j and rounding the result to the nearest integer.

4.2.4 Termination Control and Getting User Labels

At the end of each iteration the server checks whether the predetermined termination
condition is reached. Since centroids locations and the number of iterations are known
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to the server, this control is considered to be costless. Once the termination condition
is reached, the label information of the user which is the index of the non-zero element
in the encrypted vector[Γi] should be revealed to the user. For this purpose, each user
performs the following operation to obtain his cluster label information:

[Id] =





K∑

j=1

(γi,j × j)



 =

K∏

j=1

[γi,j ]
j , (4.6)

where Id represents the cluster number that the user belongsto. Next, the user addi-
tively blinds this encrypted value with an uniformly randomelementr of sizelog(K)+
κ to get[Id + r] and re-randomize it before sending it to the server to be decrypted.
The user can easily obtain his corresponding cluster label by subtractingr from the de-
crypted value sent by the server. This step completes the privacy-preserving K-means
clustering algorithm.

4.3 Comparison Protocol

The most important building block in our protocol for privacy preserving K-means
clustering is a cryptographic protocol that compares two encryptedℓ bit values[a] and
[b] and returns the minimum of these two values encrypted along with the result of the
comparison[λ] whereλ is 1 if a ≥ b and0 otherwise. Instead of using Yao’s garbled
circuit approach [15], which is often used and generally computationally expensive,
in [7] a specialized fine-tuned protocol for this task is developed.

Having the comparison protocol in [7] at the core of our protocol, we build a
binary tree for the values to be compared (see Section 4.2.2)as illustrated in Figure
4.2. We assume thatK is a power of two. If this is not the case, dummy values
can be added to the list of values to be compared. ForK values,K − 1 comparison
results are stored by the user. When the comparisons are complete, each[λi,j ] is
converted to DGK cryptosystem as this minor change improvesthe efficiency of the
consequent computations considerably compared to using Paillier cryptosystem. For
this conversion, the user computes a number[Λi] composed of[λi,j ] as follows:

[Λi] = [

K−1∑

j=1

λ′
i,j2

j ] =

K−1∏

j=1

[λ′
i,j ]

2j

, (4.7)

where[λ′
i,j ] is either[λi,j ] or [1−λi,j ] with probability 0.5 to hide the comparison re-

sults from the server. Upon receiving the value[Λi], the server decrypts it and encrypts
every bit valueλ′

i,j using DGK cryptosystem to obtain[[λ′
i,j ]] and sends them back to

the user. The user then reverses the hiding procedure by computing either[[λ′
i,j ]] or

[[1− λ′
i,j ]] to obtains the correct values. After this conversion between cryptosystems,

the user assigns the values[[λi,j ]] and[[1 − λi,j ]] to the left and right branches of each
node of the tree respectively (Figure 4.2). Next, the user traverses the tree from root
to top to reach each leaf while adding up the branch values which corresponds to the
multiplication of the encrypted values. At the end of this procedure, we obtain an
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encrypted value[[ζi,j ]] for each leaf, thusDi,j . Only for the minimumDi,j the value
ζi,j is zero since all the branch values in the path should be zero.For the others,ζi,j

is a non-zero value.

([λi,1], [mini,1]) ([λi,K/2], [mini,K/2])

([λi,K−3], [mini,K−3])([λi,K−2], [mini,K−2])

([λi,K−1], [mini,K−1])

[[1 − λi,1]] [[λi,K/2]] [[1 − λi,K/2]]

[[1 − λi,K−1]]

[[λi,1]]

[[λi,K−1]]

[Di,1] [Di,2] [Di,K−1] [Di,K ]

Figure 4.2: Binary tree used to form user vectorXi.

This set of values is then re-randomized, and permuted with auniformly random
permutationπ before sending them to the server. The server decrypts the values and
creates a new vector that only has a one value at the same position of zero in the
received vector and zeros everywhere else. This vector is then encrypted item-wise
with Paillier public key and sent back to the user. After repermutation, it is used as the
Xi vector described in Section 4.2.2.

4.4 Security (Sketch)

We show that our clustering algorithm fulfills the privacy claims: 1) The server learns
the number of people per cluster and the accumulated personal data per cluster, but
not the personal data of separate users. 2) The users learn the number of iterations of
the clustering algorithm and the index number of his own cluster, but not the cluster
centroids. We give a short sketch that justifies our privacy claims in a semi-honest
attack model.

Ad 1. The server performs the comparison protocol with each user many times
in order to determine the cluster centroid that is closest toeach user. However, this
comparison protocol is designed in such a way that the serverwill learn no information
about the user data [7] or the actual minimum (index). After the comparison protocol
is executed K-1 times, the K-1 comparison results have to be combined in order to
find the minimum distance to the current K cluster centroids.In order to switch from
Pallier to DGK, the server is given a blinded combination of all comparison results
(see Equation 4.7) that keeps the values of all K-1 comparison results hidden to the
server.

The DGK encrypted comparison results are then used to compute K DGK en-
crypted values, one for each distance, in order to obtain thevectorXi. When sent to
the server, these values are permuted but not blinded. This is sufficient, as the server
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already knows the values it will receive, and their order is kept secret by the permu-
tation. This claim is easily proven by induction in the height of the tree. ForK = 2,
the server will receive encryptions of0 and1. For K = 2α+1, the tree contains two
subtrees of equal size with values known to the server. Theζi,j ’s of the leaves of one
of those subtrees will be increased by one, but the server is still able to predict the
values seen.

When updating the centroids, the server obtains data from each user. Just like
in the Dining Cryptographers problem [4], each user shares his random number with
his neighbour thereby masking the individual data from bothusers. The server will
learn nothing by looking at a sum for some sub-chain of users,he will only obtain the
full accumulated data because only then all random numbers cancel out. Intuitively,
each user masks his input along with the inverse of the mask ofhis neighbour. When
eventually computing the cluster index for each user, each user will blind the index by
a random number to avoid information leakage to the server.

Of course, when the number of users is small, the accumulateddata will reveal
some information about the personal data, but still the server will not know which
personal data came from which user.

Ad 2. Each user learns the values[C] and[C2] of the (intermediate) cluster cen-
troids, and from these encrypted distances[Di,j ] to each cluster centroid can be com-
puted. But since Paillier encryption is semantically secure, this will not leak informa-
tion aboutC, C2, or Di,j . The comparison protocol, whose security is proven in [7],
results in an encrypted comparison bit and the encrypted minimum. Since all further
information that is obtained in the computation of the encrypted user vectorΓi is also
encrypted, this will also not leak information. While updating the centroids, users ob-
tain random numbers from neighbours which are used to blind the user vectors from
the server. Since no personal data is exchanged here, again no information is leaked.

Since each user knows the number of iterations, some information is leaked about
the cluster centroids, especially when the total number of users is small. But in prac-
tice this amount can probably be neglected [12].

4.5 Experiments

The privacy-preserving K-means clustering algorithm presented in the paper has been
implemented in order to determine its performance and reliability. This has been done
in C++ using the GNU GMP library version 4.2.1. The tests wereperformed on a
computer with Intel Xeon 2.33 GHz processor and 32GB of Ram running SuSE 10.3
operating system. Both server and user, modeled as separateclasses, run on the same
machine, thus network latency was not considered in the testresults.

The MovieLens dataset (www.grouplens.org) was used for our experiments.
This contains 100,000 integer ratings in the range of[0, 5] for 1682 movies by 943
users. As the sparseness of the dataset is great (94%), a subset containing the movies
rated by most users was considered. We filled the null entriesof this subset with the
user mean vote rounded to the nearest integer value for the corresponding row. The
number of movies in this subset, represented byR, also determines the parameterℓ
which is the bit length of the values to be compared. The parameterℓ should be big

www.grouplens.org
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enough to hold the largest possible value which is the Euclidean distance squared be-
tween two user rating vectors in our case. Since our aim is to show the equivalent
accuracy between the plain and privacy-preserved K-means clustering algorithm, we
set the number of clustersK to a single value. The parameters used for the experi-
ments are given in Table 4.1.

Table 4.1: Parameters.
Parameter Value

R 12
K 10
ℓ 9 bits
κ 112 bits
Paillier Encryption 2048 bits
DGK Encryption 1024 bits

4.5.1 Reliability

The privacy-preserving K-means clustering protocol is designed for an accuracy equiv-
alent to the plain clustering algorithm. The only possible degradation is due to the
integer arithmetic used for updating centroids. As the cryptosystem used in our proto-
col accepts only integer values, the location of the centroids in the space should also
be represented by integers. This can be achieved by scaling and rounding the values,
however, in our application scenario we experienced that using scaling does not intro-
duce noticeable improvement that can effect the outcome of the clustering protocol.
Therefore, we only round the values to the nearest integer.

4.5.2 Round Complexity

The distance computation and the updating of the centroids both require one round,
while each comparison require four. As the minimum ofK values can be found in
O(log(K)) rounds by using binary tree approach as illustrated in Figure 4.2, the over-
all round complexity of one iteration of the privacy-preserving K-means clustering
protocol is2 + 4 log(K). In addition, one extra round is required at the end of the
clustering protocol to send the final labels to the users. Theround complexity of our
work outperforms the comparable work of Vaidya and Clifton [14] which has a round
complexity ofO(M + K) in their basic algorithm andO(M) in optimized version.

4.5.3 Communication Complexity

Communication complexity is mainly determined by the amount of encrypted mes-
sages exchanged between the server and the users. Therefore, it is related to the size
of the Paillier and DGK encryptions. The communication complexity isO(K(R+ℓ)).
Considering thatℓ = log2(R× c) wherec is the possible maximium distance-squared
between two rating vectors of sizeR, the overall communication cost can be written
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asO(KR) . The amount of data sent by the server and the user is 48 kB eachfor one
iteration using the parameters given in Table 4.1.

As [3, 12, 11] have proposals for a two-party setting based onsecret sharing,
we can compare our result only to [14] which has the same communication cost of
O(KR) bits. In addition to achieveing the same level of communication cost, in our
proposal, we keep intermediate centroid locations hidden from the users and have no
need for particular non-colluding entities, meaning better privacy.

4.5.4 Computational Complexity

The computational complexity of our privacy-preserving K-means clustering proto-
col is mainly dependend on the Paillier and DGK cyptosystems. In one iteration of
the clustering, the total computational complexity isO(KR) Paillier encryptions, ex-
ponentiations and multiplications andO(Kℓ) DGK encryptions andO(Kℓ2) DGK
multiplications for the user. The server needs to computeO(K + R) Paillier encryp-
tions,O(KR) Paillier decryptions andO(MKR) Paillier multiplications. In addition
to that, the server also computesO(Kℓ) DGK encryptions and decryptions.

The running time of our implementation is given in Table 4.2 with a different
number of users for 10 iterations. As given in the complexityanalysis, for constantK
andR the running time is linear in the number of usersM in the system and it only
takes roughly1 hour to cluster943 users.

Table 4.2: Computational Complexity (in minutes).
M Time Time with pre-computation

100 17.9 6.9
250 44.1 17.2
500 88.0 33.8
750 134.5 51.6
943 166.1 64.5

The second column of Table 4.2 reflects the running time of thewhole protocol
without any optimization. The random values used for encryption and blinding and the
exponentiationsrn, hr that are used in Paillier and DGK encryptions respectively can
be generated in idle processor time or prior to the start of the protocol. The running
time of the protocol under these optimizations is given in the third column of Table
4.2. These values will be much smaller in a real system where there are at leastM +1
processors and many operations can be realized asynchronously.

4.6 Variations

The privacy-preserving K-means clustering algorithm introduced in this paper can be
improved further in two main directions. First, the efficiency of the protocol can be
enhanced by employing simple modifications. The amount of data sent among users
can be reduced significantly, resulting less communicationcost. In each iteration,
the users receives several random values from their right neighbour to be used in
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blinding procedure for updating the centroids. Instead of random values, the users can
exchange keys for the pseudo-random generator (PNG) in the first place so that they
can generate the random values themselves. It is also important to note that depending
on the type of user data, a considerable amount of computations can be avoided. Since
random values depends on the bit-length of user datak, for small values ofk, small
random values are needed. This introduces a considerable gain in computations.

Second, the privacy of the users can be protected more by benefiting from the
structure of social networks. If the server would collude with two users, the user chain
is divided and the server effectively splits the user set in two. However, the blinding
for the centroid update procedure does not require a random user chain, merely a
connected graph, where pairs of users blind/unblind. Instead of having a random user
chain, one idea could be to use a “friend-list” from the site.Not only does this make
it more difficult for the server to split the group in two, people may have more trust in
those they know rather than some other arbitrary users of thesystem.

4.7 Conclusion

In this paper we present an efficient, privacy-preserving K-means clustering algorithm
in a social network setting. In particular, we propose a protocol in which privacy
sensitive data of the users is kept hidden from the server andthe cluster locations
in the user space are kept secret from the users. Our protocolmainly uses secure
multiparty computation techniques, but instead of using generic solutions, it benefits
from fine-tuned cryptographic protocols developed for higher efficiency. Our proposal
achieves more privacy by hiding all sensitive user data fromthe server and the centroid
locations from the users with the same level of communication cost of [14] which has
a comparable multi-user setting. The implementation of theprivacy-preserving K-
means clustering algorithm with MovieLens dataset shows that the accuracy of the
system is as reliable as the reference implementation in clear and the running time
of the protocol is promising even on modest hardware platforms. The numbers we
have obtained from the experiments show that the protocol presented in this paper is
efficient enough to be deployed in practice.
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Abstract

Recommender systems have become an important research areaas they enable per-
sonalized recommendations and services to users. These systems which explore user
behavior and user ratings to improve the recommendation process are highly depen-
dent on the amount of information collected from the users. This information is mostly
privacy-sensitive and open to be abused by the service provider himself if not protected
properly. In this paper, we propose a method based on cryptographic techniques to
provide privacy to the users of recommender systems. To achieve this goal, the user
data are kept encrypted on a server and a third actor called Privacy Service Provider
(PSP) participates in a secure protocol to generate recommendations for the users.
The proposed protocol does not leak information to the PSP and the server, providing
privacy to the users. The common problem of data expansion due to the use of public
key cryptosystems for encryption is handled by packing values throughout the proto-
col. This approach reduces both communication and computation costs significantly
as shown in performance analysis.

5.1 Introduction

Recent statistics show that more than 48% people in Europe, 60% in Oceania and 74%
in North America have Internet access by the end of year 2008 [1]. These numbers
are still growing as people start connecting to the Internetnot only by using PCs
but also having portable gadgets like mobile phones and PDAs. A closer look at the
usage of the Internet shows that many people benefit from numerous applications that
enable them to communicate with other people, do online shopping, find locations and
download digital content. The numbers for some social network sites can demonstrate
the wide usage of such applications: Facebook 250 million, MySpace 260 million,
LinkedIn 43 million and Adult FriendFinder 33 million registered users [2].

The business model of such applications aims at increasing the number of its users
by providing high quality services. In order to achieve that, service providers offer
personalization so that the users can customize the serviceaccording to their prefer-
ences. Depending on the previous behavior or likes-dislikes, the application adapts
its algorithm to the user profile. As in the case of online shopping, the user can be
suggested a list of items which is derived from the user’s previous shopping list or
the items that are bought by similar users. In the case of social network sites, user
preference data can be used to find similar people or groups. Because of its impact
on e-business and research challenges, recommender systems have become an impor-
tant research area since mid-1990s both in the industry and academia. In spite of the
diversity of techniques on generating recommendations [3], they all rely on the same
basis: gathering more information about the users.

Depending on the application type, the required data can vary from name, age,
birth date and location, traveling plans, plate number to more privacy-sensitive data
like medical records. It is quite possible that the service provider may try to collect
more information on the users or even if this is not the case, the stored data can be
attacked by intruders. In either case, the consequences aresevere for the privacy of the
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users. Therefore, there is no solid guarantee on the privacyof user data against neither
the service provider nor the adversaries. Even though the law and the regulations in
the direction of protecting user privacy limit the service providers in repurposing the
data to their own benefits, without privacy-sensitive technologies these regulations do
not provide full privacy.

Privacy problems in recommender systems have been raised inseveral works. In
[4], Canny proposes a system where the private user data is encrypted and recom-
mendations are generated by applying an iterative procedure based on conjugate gra-
dient algorithm. The algorithm computes a characterization matrix of the users in
a subspace and generates recommendations by calculating reprojections on it in the
encrypted domain. Since the algorithm is iterative, it takes many rounds for conver-
gence and in each round users need to participate in an expensive decryption proce-
dure which is based on a threshold scheme where a significant portion of the users are
assumed to participate and be honest. The output of each iteration which is the char-
acterization matrix is available in clear. In [5], Canny proposes a method to protect
the privacy of users based on a probabilistic factor analysis model by using a similar
approach as in [4].

While Canny prefers to work with encrypted user data, Polat and Du suggest to
protect the privacy of users by using randomization techniques [13, 14]. In their pa-
per, they blind the users data with a known random distribution assuming that in ag-
gregated data this randomization will cancel out and the data obtained will be a good
estimation of the intended original data. The success of this method highly related
to the number of users participating in the computation and this creates a trade-off
between accuracy/correctness of the recommendations and number of users. The out-
come of the algorithm is also available to the server which aggregates the data. In
addition to this information leakage, the randomization techniques are believed to be
highly insecure [16].

We propose to encrypt the user preference data by using a homomorphic cryp-
tosystem. Once the data is encrypted, it is sent to the service provider that has a busi-
ness interest for generating recommendations to the users.Since the data is encrypted,
processing it requires using cryptographic protocols based on secure multiparty com-
putation techniques which are mostly interactive. In orderto limit the user’s partic-
ipation in such interactive protocols and thus to reduce theworkload of the user, we
propose a new actor in our privacy-preserving recommender system, namelyPrivacy
Service Provider(PSP). The PSP is different from trusted third parties (TTP)in the
sense that the PSP has a business interest in providing recommendations to the users.
Therefore, the proposed system consists of two entities: 1)the server that stores the
encrypted user data and 2) the PSP that participates in generating recommendations
in a privacy-preserving manner in accordance with the server. Here, it is important to
note that the PSP and the server have different business interest such that the PSP is
interested in generating recommendations for the user whereas the server offers safe
storage in vast amounts.

To illustrate this idea, consider the following example. A user rates several restau-
rants; travels to another city and wants to find a good restaurant. For this purpose,
he asks for a recommendation from the PSP based on his rating stored by the server.
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The outcome of the protocol is average ratings from a group ofsimilar other people
for some restaurants. Regardless of the application, in ourprotocol the content of user
data, the intermediate values and the output of the algorithm are unknown to the PSP
and the server. This provides better privacy compared to [4,5]. In addition to that, our
protocol is based on provably secure cryptographic primitives and does not depend on
the number of users which is not the case in [13, 14].

Since our technique to protect the privacy of users involvessemantically secure
asymmetric cryptosystems; an expansion in data size is inevitable which increases
the communication cost. To reduce the cost, we propose packing user data when
it is possible. As a result, the amount of expensive operations on encrypted data
reduces considerably. The dramatic decrease in both computation and communication
costs makes our system particularly promising for real system deployment as shown
in performance analysis.

5.2 Collaborative Filtering

A centralized system for generating recommendations is a common approach in e-
commerce applications. To generate recommendations for a user, the server follows
a two-step procedure. In the first step, the similar users in the system are searched.
Each user in the system is represented by a preference vectorwhich is usually formed
of ratings for each item within a certain range. Finding similar users is based on
computing similarity measures between users’ preferencesvectors. The similarity
measure is a Pearson correlation as defined in (Eq. 5.1) for two users with preference
vectorsVA = (xA,0, . . . , vA,M−1)

T andVB = (vB,0, . . . , vB,M−1)
T respectively

whereM is the number of items and,v̄ represents the average value of the vectorx.

simA,B =

∑M−1
i=0 (vA,i − vA)(vB,i − vB)

√
∑M−1

i=0 (vA,i − vA)2
∑M−1

i=0 (vB,i − vB)2
. (5.1)

Once the similarity measures between users are computed, the server proceeds
with the second step. In this step, the server chooses the first L users with the highest
similarity values and determines therecommendationby averaging their ratings for
the requested item.

In e-commerce applications the number of items offered to users are usually in
the order of hundreds of thousands. Apart from many smart ways of determining
the likes and dislikes of users for the items such as click loganalysis, we assume
the users are asked to rate the items explicitly with integervalues in the range of
[0,K]. Regarding the number of items and user behavior for rating these, the data
that the server can obtain is highly sparse, meaning that most of the items are not
rated. Finding similar users in a sparse dataset can easily lead the server to generate
inaccurate recommendations. To cope with this problem, oneapproach is introducing
a small set of items that is rated by most users. Such a base setcan be explicitly given
to the users or implicitly chosen by the server from mostly rated items. Having a small
set of items that is rated by most users, the server can compute similarities between
users more confidently, resulting in more accurate recommendations. Therefore, we
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assume that the user preference vectorV is split into two parts: the first part consists
of R elements that are fully rated by most of the users and the second part contains
M − R partly rated items that the user would like to get recommendations on [3].

5.3 Preliminaries

We use encryption to protect user data against the recommender system, i.e. the server
and other users. A special class of cryptosystems, namely homomorphic cryptosys-
tems, allow us to process the data in its encrypted form. In this section we briefly
describe the homomorphic cryptosystems and introduce two cryptographic protocols
that we use in our privacy-preserving centralized recommender system. We use the
semi-honest security model, which assumes that all playersfollow the protocol steps
but are curious and thus keep all messages from previous and current steps to extract
more information than they are allowed to have. Our protocolcan be adapted to the
active attacker model by using the ideas in [11] with an additional overhead.

5.3.1 Homomorphic Cryptosystems

We use two cryptosystems: Paillier [12] and Damgård, Geisler and Krøigaard (DGK)
[7, 8]. We use the Paillier cryptosystem to encrypt the privacy-sensitive data whereas
DGK is used in a cryptographic subprotocol that is particularly designed to compare
encrypted values. This protocol makes computations on bit level and the DGK cryp-
tosystem was chosen as it performs better than the Paillier cryptosystem in terms of
encryption and decryption time due to its much smaller message space.

The Paillier and the DGK cryptosystems possess a property called additive homo-
morphismthat allows us to process data in the encrypted domain: the product of two
encrypted values[a] and[b] where[·] denotes the encryption function, corresponds to a
new encrypted message whose decryption yields the sum ofa andb as[a]·[b] = [a+b].

As a consequence of the additive homomorphism any ciphertext [a] raised to the
powerb results in the encryption[a]b = [a · b]. In addition to the homomorphism
property, the Paillier and the DGK cryptosystems are semantically secure implying
that each encryption has a random element that results in different ciphertexts for the
same plaintext. Throughout this paper we denote the Paillier encryption of a message
m by [m] and the DGK encryption by[[m]]. We omit the keys in the notation as all
encryptions use the public key of the PSP.

5.3.2 Secure Multiplication Protocol

The secure multiplication protocol in [6, 9] can be adapted to a two-party protocol in
which one party,A, has two encrypted values[a] and[b], and the other party,B, has the
decryption key. The protocol outputs the encrypted value[a · b] to the partyA without
B learninga or b. Assuming that the encryption scheme is additively homomorphic,

1. A generates two uniformly distributed random numbersr1 andr2, and subtracts
these numbers from the encryptions[a] and[b] respectively:[ã] = [a] · [−r1] =
[a − r1], [b̃] = [b] · [−r2] = [b − r2]. Afterwards, he sends[ã] and[b̃] to B.
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2. B decrypts[ã] and[b̃], multiplies them and sends the encrypted product,[ã · b̃]
to A.

3. A removes the random values and obtains the encryption of the product ofa
andb as follows:[a · b] = [ã · b̃] · [a]r2 · [b]r1 · [−r1 · r2].

5.3.3 Secure Decryption Protocol

Similar to the secure multiplication protocol, a secure decryption protocol can be de-
signed based on [6]. In this protocol, partyA demands for the decryption of an en-
crypted value,[a] without revealing it to the owner of the decryption keyB. Using an
additively homomorphic cryptosystem, this protocol can besummarized as follows:

1. A generates a uniformly random numberr and blinds the encryption with this
number:[ã] = [a] · [r]. Then,A sends[ã] to B.

2. B decrypts[ã] and sends it back toA.

3. A obtains the decryption of[a] by subtractingr from ã: a = ã − r.

5.4 Privacy-Preserving Collaborative Filtering

We propose a cryptographic protocol based on secure multiparty computation (SMC)
techniques to implement the two steps of the recommendationprocedure introduced in
Sect. 5.2 in a privacy-preserving manner. The privacy-sensitive data of users, i.e. pref-
erences, is stored by the server in the encrypted form. During the recommendation
generation, the intermediate outcomes of the protocol, namely similarity values among
users, are privacy sensitive and must be kept secret both from the server and the PSP.
The identity of the most similar users are, of course, unknown to all three players.

Our protocol starts with a request from a user for recommendations. Upon the
request, the PSP and the server initiates a protocol to determine the similarity values
between the user requesting recommendations and the othersin the system. TheL
most similar users are chosen for the second step in which their ratings are accumu-
lated under encryption. In the final step, the server sends the accumulated ratings and
the numberL to the user. The user obtains the desired recommendations after dividing
the accumulated rating byL. This protocol is detailed in the following sections.

5.4.1 Step 1: Initialization

The preference data and similarity measures are protected by means of encryption. For
this purpose, the PSP generates key pairs for the Paillier and the DGK cryptosystems
and publishes the public keys with valid certificates. Giventhe Paillier public key,
all users encrypts their preference data as follows. The first R ratings that are to be
used for computing the similarities are processed and scaled to be used in similarity
computation. Since the Pearson correlation given in (5.1) for userA andB can be
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also written as:

simA,B =
R−1∑

i=0

(vA,i − vA)
√
∑R−1

i=0 (vA,i − vA)2
︸ ︷︷ ︸

C1

· (vB,i − vB)
√
∑R−1

i=0 (vB,i − vB)2
︸ ︷︷ ︸

C2

, (5.2)

the termsC1 andC2 can be easily computed by usersA andB, respectively. Each
user computes a vector from which the mean is subtracted and normalized. Since the
elements of the vector are real numbers and cryptosystems are only defined on integer
values, they are all scaled by a parameterf with enough precision and rounded to the
nearest integer resulting in a new vectorV ′

i = (v′
i,0, . . . , v

′
i,R−1)

T whose elements are
nowk bit positive integers. The remaining elements of the vectorVi are processed to
have a packed representation. We follow a similar construction to [15] to pack values
in one encryption to decrease the number of encryptions to betransferred between the
server and the PSP and the number of operations on the encrypted data. For simplicity,
we assume that packing arbitrary number of values in one encryption is possible. We
clarify this later in this section.

The vector elements ofV ′
i are packed in such a way that it can allow addition of

L values of sizek bits as follows:

αi =

M−R−1∑

j=0

vi,j+R · (2k+log(L))j , (5.3)

wherei is the user index,k is the number of bits used to represent the ratings after
scaling andL is the upper bound of the number of most similar users above a threshold
δ in the system. AllN users in the system encrypt these computed values with the
Paillier public key of the PSP and send([vi,0], [vi,1], . . . , [vi,R−1], [αi]) to the server.
Note that the decryption key is only available to the PSP, meaning the server cannot
decrypt and see the content of the encryptions.

Each user that enters the recommender system is required to upload his encrypted
data to the server. After that, any user is able to request forrecommendations by
notifying the server.

5.4.2 Step 2: Finding Similar Users

Upon the request of recommendations from userA, the PSP and the server initiate a
protocol to find the bestL similar users to the userA. Similar users can be found by
computing similarity measures between the userA and all other users in the system
as described in Sect. 5.2. Note that after processing the first R elements of the user
preference vector as described in the initialization step,the similarity computation
based on Pearson correlation becomes an inner product of twovectors as given below.

[simA,B ] = [(V ′
A)T · V ′

B ] = [

R−1∑

j=0

v′
A,j · v′

B,j ]. (5.4)
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Because only the encrypted forms are available to the server, the similarity com-
putation requires running the secure multiplication protocol as described in Sect. 5.3.
This protocol consists of several encryptions, decryptions, exponentiations and mul-
tiplications. Instead of running the secure multiplication protocol for each similarity
computation between userA and useri, the server creates a packed representationσA

j

of the all[V ′
i ]’s to reduce the costs as follows (Fig. 5.1):

2k + log(R) + 2 bits

k bits

User1

User2

UserN

σA
0

x′

1,0 x′

1,1 x′

1,R−1

x′

2,0 x′

2,1 x′

2,R−1

x′

1,0 x′

2,0 x′

N,0

x′

N,0 x′

N,1 x′

N,R−1

Figure 5.1: Illustration of packing[V ′
i ]’s. The values with the same index are packed

for all users in one encryption with enough space to allow further processing.

[
σA

j

]
= [

N−1∑

i=0,i 6=A

2 · v′
i,j · (22k+log(R)+2)i] =

N−1∏

i=0,i 6=A

[v′
i,j ]

2·(22k+log(R)+2)i

, (5.5)

for j = 0 toR−1 where2k+log(R)+2 is the required number of bits for multiplying
two k-bit numbers and addingR of them. The additional 2 bits are necessary for the
procedure described in Sect. 5.5.

Once the server computes the values([σA
i ], he runsR secure multiplication pro-

tocols to obtain([σA
0 · v′

A,0], . . . , [σ
A
R−1 · v′

A,R−1]). The server then computes the
encrypted sum of these values[ΣA],

[ΣA] = [

R−1∑

j=0

σA
j · v′

A,j ] =

R−1∏

j=0

[σA
j · v′

A,j ] = [simA,0|simA,1| . . . |simA,N−1]. (5.6)

The value[ΣA] is in fact the packing ofN similarity values (Fig. 5.2). After having
computed the similarity values between user A and every other user in a packed form,
the server runs a protocol with the PSP to determine a set of users with high similarity.
This cryptographic protocol, as detailed in Sect. 5.5, hides the content of the encrypted
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Figure 5.2: Illustration of packingσA
j ’s to obtainΣA in clear.

values from both the server and the PSP, and outputs a vector of encrypted values
[ΓA] = ([γA,0], [γA,1] . . . , [γA,N−1]) whereγA,i is 1 if and only if the simA,i exceeds
a valueδ and 0 otherwise.

5.4.3 Step 3: Generating Recommendations

Once the encrypted vector[ΓA] is obtained, the server runs the secure multiplication
protocol with the PSP to multiply eachαi with the correspondingγA,i value. These
multiplications yield the values[Φi] = [αi ·γA,i] for i = 0 to N −1. Note thatΦi will
be equal to the encryption ofαi whenγA,i = 1 and contains an encrypted 0 otherwise.
The server then adds up these values as follows,

[Γsum] = [
N−1∑

i=0

Φi] =
N−1∏

i=0

[Φi] = [
∑

i∈S

αi], (5.7)

whereΓsum is the sum of packed ratings of users inS which is the set ofL most
similar users. The server also computes[L] that corresponds to the number of user
with similarity value higher than thresholdδ by simply multiplying the[γA,i] values,

[L] = [

N−1∑

i=0

γA,i] =

N−1∏

i=0

[γA,i]. (5.8)

Together with[L], the server sends the[Γsum] to userA. To obtain the final rec-
ommendations, the userA runs the secure decryption protocol with the PSP, unpacks
the recommendations and divides each value byL taking into account the scaling pa-
rameterf to obtain the recommendations. These are, in fact, average scores ofL users
for the whole item set. This means that userA gets average ratings of all items. This
step concludes our privacy-preserving protocol for recommender systems.
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5.4.4 Packing Encrypted Values

In the presentation of our protocol, for the sake of simplicity we assumed that packing
all values in one encryption is possible. However, this assumption is not true. For
the computation ofα values, the number ofvi,j values that can be packed in one
encryption isT1 = ⌊ n

2k+log(L)⌋ wheren is the message space of the cryptosystem and
k + log(L) is the number of bits required for each value. As a result, thenumber ofα
values that each user needs to send isS1 = ⌈M−R

T1
⌉. Similarly, the server needs more

than one encryption for the packed representation of[V ′
i ]’s. However, for blinding

of ΣA as described in the following section, we need to reserveκ bits in the most
significant part to prevent an overflow. Thus, the number ofσ values required in total
can be given byS2 = ⌈ N

T2
⌉ whereT2 = ⌊ n−κ

2k+log(R)+2⌋. This also gives us the number
of [ΣA] values.

5.5 Determining the first L users with highest similar-
ity

In Sect. 5.4.2, the server computes an encryption of the packed similarity values of
a userA: [ΣA] = [simA,0|simA,1| . . . |simA,N−1]. We need to determine the simi-
larity values in[ΣA] that exceed a public thresholdδ. In this section we introduce a
cryptographic protocol for performing these comparisons.It is based on [7, 9] which
compares two encrypted values, however, the solution is modified using the packing
idea in order to improve the efficiency of the protocol, both regarding computation
and communication costs.

The desired outcome here is a vector of encrypted bits,[ΓA] = ([γA,0], . . . ,
[γA,N−1]), whereγA,j is 1 if and only if the simA,j is above the public threshold
δ and0 otherwise. Each similarity value simi,j is of sizeℓ = 2k +log(R) bits (and so
is δ). By the construction of the packed representation of 5.4.2, each of them is stored
in the middle of an(ℓ + 2)-bit “compartment,” with the top and bottom bits set to0.

5.5.1 Comparison

Focusing on a single comparison, the idea behind the presentcomparison protocol is
similar to that of many previous ones: compute an encryption[d̃(i)] = [2ℓ+simA,i−δ]

and determine the most significant bit,d̃
(i)
ℓ . This value will be1 exactly when the

similarity value matches or exceeds the threshold; naturally it must also remain secret.
Note that the computation of the encryptedd̃(i) can be performed in parallel on all

similarity values in a single encryption. The server simplycomputes

[D] =

[
N−1∑

i=0

(
2ℓ+2

)i · 2d̃(i)

]

= [ΣA] ·
[

N−1∑

i=0

(
2ℓ+2

)i · 2(2ℓ − δ)

]

, (5.9)

which is a packed list of thẽd(i). Each of them are at mostℓ+1 bits long and therefore
fit in a single compartment, as this was constructed with one bit of headroom, i.e. an
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additional bit set to zero. We denote the(ℓ+2)-bit value of the entirei’th compartment
d(i),

d(i) = 2d̃(i) = 2ℓ+1 + 2simA,i − 2δ,

and specify the desired outcome as thed
(i)
ℓ+1.

The server blinds[D] – and thus thed(i) contained therein – by adding a uniformly
distributed random(κ + (ℓ + 2)N)-bit numberr:

[z] := [D] · [r] = [D + r]. (5.10)

Note that as (5.9) and (5.10) both add a known value, for efficiency they should of
course be implemented as a single multiplication. The server then computesr(i) such
thatr mod 2N(ℓ+2) =

∑N−1
i=0 r(i)(2ℓ+2)i; eachr(i) corresponds to the masking value

for the compartmenti. Notice that similarly to thed(i), the integersr(i) areℓ + 2 bits
long. At this point the server rerandomizes[z] and sends it to the PSP.

The PSP decrypts the received[z] and computes eachz(i) values such thatz mod

2N(ℓ+2) =
∑N−1

i=0 z(i)(2ℓ+2)i, i.e. the unpacking ofz in the plain domain. At this
point each of theN compartments have been separated into values,r(i) and z(i).
Further,z(i) = r(i) + d(i) mod 2ℓ+2 exceptthat carries may propagate from one
compartment to the next.

As z = D + r, it is clear that for every bit-position,j, zj = Dj ⊕ rj ⊕ Cj ,

whereCj is thej’th carry-bit of the addition ofD andr. Hence, we haved(i)
ℓ+1 =

r
(i)
ℓ+1 ⊕ z

(i)
ℓ+1 ⊕ Ci(ℓ+2)+(ℓ+1). If additive sharings of theseN carry-bits modulo 2

were given (i.e. if the PSP knewCPSP
i(ℓ+2)+(ℓ+1) and the server knewCserver

i(ℓ+2)+(ℓ+1),

such thatCi(ℓ+2)+(ℓ+1) = CPSP
i(ℓ+2)+(ℓ+1) ⊕ Cserver

i(ℓ+2)+(ℓ+1)), then for each similarity

value, the PSP could simply encryptd
(i,PSP )
ℓ+1 = z

(i)
ℓ+1 ⊕ CPSP

i(ℓ+2)+(ℓ+1) and send it to
the server.

The server could then compute the encryptions of thed
(i)
ℓ+1 by either retaining

[d
(i,PSP )
ℓ+1 ] or flipping it (computing[1] · [d(i,PSP )

ℓ+1 ]−1 = [1− d
(i,PSP )
ℓ+1 ]) depending on

the value ofr(i)
ℓ+1 ⊕ Cserver

i(ℓ+2)+(ℓ+1).
For eachi, 0 ≤ i < N , the server and the PSP determine the desired carry-bits by

running the protocol summarized in the following section. Assuming that these bits
are correctly computed, the server at this point hasN encryptions,[d(i)

ℓ+1] = [γA,i]. So
after theseN executions, the vector[ΓA] has been obtained.

5.5.2 Obtaining the⊕ Sharing of the Carry-bits

In the previous section, the comparison of similarity values simi,j to the thresholdδ is
reduced to that of obtainingN additive sharings modulo2 of carry-bits of the addition
of the secretD and the randomr generated by the server. Each of these is computed
by running a comparison protocol where the server knows one input and the PSP the
other. This subprotocol is adapted from [7, 9].

The key observation is that if the desired carry-bit of compartmenti is set, then
r(i) mod 2ℓ+1 > z(i) mod 2ℓ+1. Clearly the sum (modulo2ℓ+1) of d(i) mod 2ℓ+1
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andr(i) mod 2ℓ+1 is bigger thanr(i) mod 2ℓ+1 except if an overflow occurred. An
overflow from the compartment below will not change this. Asd(i) = 2d̃(i), it is
guaranteed thatd(i)

0 = 0. Hence, a propagated carry may simply be viewed as “part
of d(i)” in the above intuition.

At this point all that is needed is a comparison of each of ther(i) mod 2ℓ+1 and
z(i) mod 2ℓ+1 where the outcome is⊕ shared. This happens just before termination
in the comparison of [9]. We list the overall steps performed, for a full description see
the original paper.

1. The PSP sends DGK encryptions of the bits of each of thez(i) mod 2ℓ+1; N(ℓ+
1) encryptions in all.

2. Based on the bits of ther(i) mod 2ℓ+1, the server computes encryptions con-
taining only a masking of the desired result; these are then sent to the PSP. The
main idea here is that the server picks uniformly random bits, b(i), and specifies
the goal as eitherr(i) ≥ z(i) or z(i) ≥ r(i) depending on these.

3. The PSP decrypts and determines the comparison results. However, as it does
not know theb(i) – i.e. the direction of the comparisons – no information is
revealed (theb(i)’s can be viewed as onetime pads).

This concludes the computation, as theb(i)’s and the outcomes of the comparisons are
exactly⊕ sharings of the results. The PSP and the server then use the shared results
they have obtained here to provide the server with an encryption of each of the results
the comparisons of the simi,j and δ as described above. Correctness of the entire
protocol follows by the discussion underway.

5.6 Security Analysis

We assume that all participants in the recommender system, including users, server
and PSP, are honest but curious. They all follow the rules of the protocol, but will
collect all their information and try to compute private information from this. We as-
sume that the server and PSP do not collude – procedural, organizational or legal steps
should be taken to ensure this. Both may, however, collaborate with users, potentially
includingA. We only consider static attackers meaning that the set of corrupt parties
must be specified in advance. It does not appear that adaptiveadversaries have any
advantage; the restriction is required for technical reasons during the proof.

Intuitively, the inputs of honest parties andA’s output are hidden from any at-
tacker. The server only sees encryptions of the inputs underthe PSP’s public key,
while the PSP only receives (encryptions of) masked values from which no infor-
mation can be learned. More formally, security is shown by defining an ideal func-
tionality and providing a simulator argument: the view of the corrupt parties (inputs,
randomness, and messages) can be simulated (an indistinguishable view can be gener-
ated in polynomial time), implying that any attack against the protocol also works in
an ideal setting. The reader is referred to Goldreich [10] for the full, formal definition.

The desired ideal functionality,FRS, simply receives the inputs from all parties,
i.e. a preference vectorVi = (vi,0, . . . , vi,M−1) from each useri, and the query of



5.6. Security Analysis 103

A. The server and PSP are merely facilitators “authorizing” the computation but pro-
viding no inputs themselves.FRS then determines the outputfA = (L,Γsum) – the
number of similar users and the sum of their ratings – as specified above. This is sent
to A, while all other parties receive empty outputs.

Users.With the exception ofA, the entire view of any useri, 0 ≤ i < N consists
only of its inputVi and the encryption of that input. They receive no messages, hence
perfectly simulating the entire view is trivial. It is merely the input and its encryption
under the (simulated) public key of the PSP. The case of multiple users is analogous.

Server. The view of the server contains the encrypted inputs of all users0 ≤ i <
N , [V ′

i ] = ([v′
i,0], . . . , [v

′
i,R−1], [Λi]), wherev′

i,j is the scaled version ofvi,j , andΛi

is the packed representation of the remaining preference elements. In addition to this,
it consists of the messages received underway, e.g. during secure multiplications and
comparisons. However, all these intermediate values are simply encryptions under
one of the PSP’s public keys.

As the entire view of the server consists only of encryptions, and both the Paillier
and DGK encryptions schemes are semantically secure, all messages from the PSP
and the honest users can therefore be simulated with encryptions of0 under the rel-
evant key. This is indistinguishable from the real encryptions. For the corrupt users,
the inputs are known, implying that they can be simulated perfectly. It is therefore
impossible for the server to extract any private information, even when colluding with
a subset of the users (other thanA).

PSP.The initial state of the PSP consists of its public and private key pair. Because
of the ability to decrypt, all messages sent to the PSP duringthe protocol are blinded.
Note that the present security argument is independent of any corrupt users.

During the secure multiplication protocol, the server addsrandom values that areκ
(the security parameter) bits longer than the actual ones. These sums are indistinguish-
able (except with probability negligible inκ) from random values of the same length
as the masks. Hence it can be simulated by providing the PSP with fresh encryptions
of such random values. When determining theL users with highest similarity, the PSP
obtains[ΣA +r], which also reveal no information by the same argument. Thisis also
the case when running the secure decryption protocol at the end.

Security of the comparison protocol is analogous. During each invocation, the PSP
obtainsℓ + 1 DGK encrypted values. Each such tuple contains a blinded bitti. The
blinding is more complicated than above, but the outcome is the same: the messages
received can be simulated by providing fresh encryptions ofrandom values from a
specified distribution. See [7, 9] for details.

User A. It remains to argue that the view of userA does not compromise security,
even if the server or PSP are also corrupt. Until the execution of the final secure
decryption protocol with the PSP,A is no different from any other user, except for the
role of the input in the secure computation.A’s view consists only of its input and the
encryption it should generate, which is easily simulated.

In the concluding decryption protocol,A should know its random maskr (selected
from its own randomness) and receive first a fresh encryptionof fA from the server
and then the decryptedr + fA. This is easily simulated, as the simulator knows both
the randomness andfA. If the server andA collude, then the server must receive this
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encryption before passing it on. IfA colludes with the PSP, its view must also be
altered slightly. The simulator must provide an encryptionof the correctly masked
value in the decryption protocol rather than simply a randomone.

If A colludes withmanyother users, then clearly combining their inputs with the
outcome will reveal some information on the inputs of the remaining ones. E.g. if all
but one users are corrupt, leaking whether the final user is similar toA is unavoidable.
This is a property of the protocol, andnot a security issue. The desired goal is forA
to obtain the recommendations, and theseare related to the inputs of other users. In
practice, though, it is unlikely that any significant subsetof the parties will collude in
a large scale setting.

5.7 Performance Analysis

The performance analysis of our protocol is mainly determined by the interaction
between the server and the PSP. The users are only participating in the protocol in
two stages: 1) when they first enter the system and upload their encrypted data and 2)
when they receive the encrypted recommendation. Thus, the whole workload of the
protocol is shared between the server and the PSP.

Round Complexity. The round complexity of our protocol is constant and 6
rounds. The data transfer from users to the server in the initialization stage is 0.5
round. To determine the similar users and generating the recommendation, the server
and the PSP need 4 rounds of interaction. Notice that during the comparison protocol
to obtain[ΓA], all encrypted values are compared to a public valueδ and, all compar-
isons can be done in parallel. In the last stage, the server sends the recommendation to
the user which requires another 0.5 round and the user runs a protocol together with
the PSP for the secure decryption protocol which is 1 round. This givesO(1) rounds.

Communication Complexity. The amount of data transferred during the protocol
is primarily influenced by the size of the encrypted data. Fora single user, the amount
of encrypted data to be transferred isO(R + S1). The server, on the other hand,
has to receive and sendO(N(R + S1 + ℓ) + RS2) encrypted data which is heavily
influenced by the data transmission from allN users during the initialization. The
PSP has a communication complexity ofO(N(S1 + ℓ) + RS2).

Computation Complexity. The computational complexity is dependent on the
cost of operations in the encrypted domain and can be categorized into four classes:
encryptions, decryptions, multiplications and exponentiations. In Tables 5.1 and 5.2,
we provide the average numbers for each operation in the Paillier and the DGK cryp-
tosystem, respectively. One exception is for the decryption operation, which is actu-
ally a zero-checkwhich is a fast and less expensive operation compared to original
decryption in DGK cryptosystem.

Optimizations. The heavy operation of packing user data by the server is repeated
for every user who requests a recommendation. Notice that the content of the packed
data only differs for one user who is the request owner. As an improvement, the
server can pack the entire users data only once and use it whenever needed. In that
case, theΣA will contain the similarity value for userA himself. The problem of
finding himself as the most similar user can be eliminated in the consequent step where
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Table 5.1: Computational Complexity (Paillier).

Server PSP User
Encryption O(NS1 + RS2) O(NS1 + RS2) O(R + S1)
Decryption - O(NS1 + RS2) -
Multiplication O(NS1 + RS2) - O(1)
Exponentiation O(NS1 + RS2) - -

Table 5.2: Computational Complexity (DGK).

Server PSP User
Encryption O(Nℓ) O(Nℓ) -
Decryption - O(Nℓ) -
Multiplication O(Nℓ2) - -
Exponentiation O(Nℓ) - -

similarity values above a threshold is found. As the position of the user is known,
the similarity value at this position can be omitted. In overall, this modification will
introduce substantial improvement in terms of computationcost.

It is also important to note that the complexity analysis of our protocol shows the
numbers assuming that all similarity values forN users are computed each time. In
general, whereN is in the order of millions, this is not the case. A much smaller subset
of N can be selected at random and recommendations can be generated by using this
subset. Finally, assuming that the server and the PSP are separate entities with high
computation power, it is realistic to anticipate a reasonable run time of generating
recommendations for users.

5.8 Conclusion

We proposed a cryptographic method that eliminates threatsagainst the user privacy in
recommendation systems. The service provider in our construction consists of a server
and a PSP. While the PSP possesses the decryption key, the server stores the encrypted
data, meaning neither of them has access to the user data directly. In our protocol the
server and the PSP can generate recommendations for the users without obtaining
any information on the input, the intermediate values or theoutput of the algorithm.
This provides full privacy for the user. The cost of processing encrypted data that
is encrypted with an asymmetric cryptosystem, on the other hand, is also reduced
significantly by packing user data and the intermediate values of the algorithm when
possible. The performance analysis of the entire protocol shows that our protocol is
promising to be deployed in real systems.
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Six

Anonymous Fingerprinting
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Abstract

Fingerprinting is an essential tool to shun legal buyers of digital content from illegal
redistribution. In fingerprinting schemes, the merchant embeds the buyer’s identity
as a watermark into the content, so that the merchant can retrieve the buyer’s identity
when he encounters a redistributed copy. To prevent the merchant from dishonestly
embedding the buyer’s identity multiple times, it is essential for the fingerprinting
scheme to be anonymous. Kuribayashi and Tanaka [8] proposedan anonymous fin-
gerprinting scheme based on a homomorphic additive encryption scheme, which uses
basic quantization index modulation (QIM) for embedding. In order for this scheme
to provide sufficient security to the merchant, the buyer must be unable to remove
the fingerprint without significantly degrading the purchased digital content. Unfor-
tunately, QIM watermarks can be removed by simple attacks like amplitude scaling.
Furthermore the embedding positions can be retrieved by a single buyer, allowing for
a locally targeted attack.

In this paper, we use robust watermarking techniques withinthe anonymous fin-
gerprinting approach proposed by Kuribayashi and Tanaka. We show that the proper-
ties of an additive homomorphic cryptosystem allow for creating anonymous finger-
printing schemes based on distortion compensated QIM (DC-QIM) and rational dither
modulation (RDM), improving the robustness of the embeddedfingerprints. We evalu-
ate the performance of the proposed anonymous fingerprinting schemes under additive
noise and amplitude scaling attacks.

6.1 Introduction

Intellectual property protection is a severe problem in today’s digital world, due to the
ease of illegal redistribution through the Internet. As a countermeasure to deter people
from illegally redistributing digital content such as audio, images and video, a finger-
printing scheme embeds specific information related to the identity of the buyer by
using watermarking techniques. In conventional fingerprinting schemes, this identity
information is embedded into the digital data by the merchant and the fingerprinted
copy is given to the buyer. When the merchant encounters redistributed copies of
this fingerprinted content, he can retrieve the identity information of the buyer who
(illegally) redistributed his copy. From the buyer’s pointof view, however, this sce-
nario is unattractive because during the embedding procedure, the merchant obtains
the identity information of the buyer. This enables a cheating merchant to embed the
identity information of the buyer into any content without the buyer’s consent and
subsequently accuse the buyer of illegal redistribution.

To protect the identity of the buyer,anonymous fingerprintingschemes have been
proposed [9, 15]. In [15], the buyer and the merchant follow an interactive embed-
ding protocol in which the identity information of the buyerremains unknown to the
merchant. When the buyer wishes to purchase, for instance, animage, he registers
himself to a registration centre and receives a proof of his identity with a signature of
the registration centre. Then, the buyer encrypts his identity and sends both encrypted
identity and the proof of identity to the merchant. The merchant checks the validity
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of the signature by using the public key of the registration centre. After the buyer
convinces the merchant – through the provided identity proof – that the encrypted
identity indeed contains the identity information of the buyer, the merchant embeds
the identity information of the buyer into the (encrypted) image data by exploiting the
homomorphic property of the cryptosystem. Then, the encrypted fingerprinted image
is sent to the buyer, for decryption and future use.

In this scheme, the merchant can only retrieve the identity information of the buyer
when it is detected in a copy of the fingerprinted image. This idea, first presented in
[15], was constructed in [13, 14] using digital coins. In order to embed the identity in-
formation of the buyer, a single bit commitment scheme with exclusive-or homomor-
phism is used that allows for computing the encrypted XOR of two bits by multiplying
their cipher-texts. In [8], Kuribayashi and Tanaka observethat this construction is not
efficient because of the low enciphering rate. The single bitcommitment scheme can
only contain one bit of information for alog2 n-bit cipher-text wheren is a product of
two large primes.

In order to increase the enciphering rate, Kuribayashi and Tanaka suggested using
a cryptosystem with a larger message space. They introducedan anonymous finger-
printing algorithm based on an additive homomorphic cryptosystem that allows for the
addition of values in the plain-text domain by multiplying their corresponding cipher-
texts. Consequently, Kuribayashi and Tanaka used a basic amplitude quantization-
based scheme similar to the well-known quantization index modulation (QIM) scheme
as the underlying watermarking scheme. Since QIM essentially modulates (integer-
valued) quantization levels to embed information bits intoa signal, QIM can elegantly
be implemented in an additive homomorphic cryptosystem. However, QIM is a ba-
sic watermarking scheme that has limited robustness compared to other watermarking
schemes. The embedding positions can easily be retrieved from an individual finger-
printed copy and are thus vulnerable to local attacks. Such attacks result in minimal
overall signal degradation, while completely removing thefingerprint. Furthermore,
QIM is vulnerable to simple, either malevolent or unintentional, global attacks such
as randomization of the least significant bits, addition of noise, compression and am-
plitude scaling.

In this paper, we use the ideas in [8] to build anonymous versions of state-of-the-
art watermarking schemes, namelyDistortion Compensated QIM(DC-QIM) [4] and
Rational Dither Modulation(RDM) [12]. By adapting these watermarking schemes
to the anonymous fingerprinting protocol of Kuribayashi andTanaka we improve the
robustness of the embedded fingerprints and as a consequencethe merchant’s secu-
rity. As DC-QIM and RDM are based onSubtractive Dither QIM(SD-QIM), they
both hide the embedding locations from the buyer more effectively, preventing local,
targeted attacks on the fingerprint. With respect to global attacks, like additive noise
and amplitude scaling, RDM is provably equivalent in robustness, while DC-QIM is
provably better in robustness against additive noise attacks. Furthermore, RDM im-
proves the QIM scheme so that the fingerprint becomes robust to amplitude scaling
attacks.

The outline of this paper is as follows. In Section 2 we introduce the basic
QIM watermarking scheme, as well as the additive homomorphic cryptosystem of
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Okamoto-Uchiyama [10] on which the approach in [8] is based.In Section 3, we
review the anonymous fingerprinting scheme by Kuribayashi and Tanaka. In Section
4, we describe the proposed anonymous fingerprinting schemes using the subtractive
dither QIM, DC-QIM and RDM watermarking schemes. Section 5 describes the ex-
periments that evaluate the robustness of the proposed schemes compared to the origi-
nal watermarking schemes. Section 6 discusses the securitybenefits of using specially
constructed buyer id’s. Conclusions are given in Section 7.A table of used symbols
is provided in the Appendix A.

6.2 Watermarking and Encryption Preliminaries

6.2.1 Basic Quantization Index Modulation

Quantization Index Modulation (QIM) is a relatively recentwatermarking technique
[4]. It has become popular because of the high watermarking capacity and the ease of
implementation. The basic quantization index modulation algorithm embeds a water-
mark bitw by quantizing a single signal samplex by choosing between a quantizer
with even or odd values, depending on the binary value ofw. These quantizers with a
step size∆ ∈ N are denoted byQ∆−even(·) andQ∆−odd(·), respectively.

Figure 6.1 shows the input and output characteristic of the quantizer wherew ∈
{0, 1} denotes the message bit that is embedded into the host data. The watermarked
signal sampley then is

y =

{
Q∆−even(x), if w = 0,
Q∆−odd(x), if w = 1.

(6.1)

The quantizersQ∆−even(·) andQ∆−odd(·) are designed such that they avoid biasing
the values ofy, i.e. the expected (average) value ofx andy are identical. The trade-off
between embedding distortion and robustness of QIM againstadditive noise attacks
is controlled by the value of∆. The detection algorithm requantizes the received
signal samplez with bothQ∆−even(·) andQ∆−odd(·). The detected bit̂w = {0, 1}
is determined by the quantized valueQ∆−even(z) or Q∆−odd(z) with the smallest
distance to the received samplez.

This scheme of even and odd quantizers can also be implemented by using a single
quantizer with a step-size of2∆ and subtracting/adding∆ whenw = 1. Implementing
the quantizer in this way allows for the implementation of the scheme in the encrypted
domain as was shown in [8].

A serious drawback of basic QIM watermarking is its sensitivity to amplitude
scaling attacks [12] in which signal samples are multipliedwith a gain factorρ. If the
gain factorρ is constant for all samples, the attack is called a fixed gain attack (FGA).
In amplitude scaling attacks, the detector does not posses the factorρ, which causes
a mismatch between embedder and decoder’s quantization lattices, affecting the QIM
detector’s performance dramatically.

Another drawback of basic QIM is that the embedding positions can be retrieved
from a single copy. The embedding positions are those signalvaluesxi that have
been (heavily) quantized toQ∆−even(xi) andQ∆−odd(xi), and which have a constant
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w = 0

w = 1

x

Q2∆(x)

∆

∆

Figure 6.1: Quantizer input-output characteristic

difference value equal to∆, i.e. the quantizer coarseness parameter. By constructing
a high-resolution histogram the buyer can easily observe the even-spaced spikes of
signal intensity values and identify and thus attack the embedding positions locally.
This results in the removal of the fingerprint with little degradation to the overall
signal.

6.2.2 Homomorphic Encryption Schemes

The idea of processing encrypted data was first suggested by Ahituv, Lapid and Neu-
mann in [1]. In their paper, the problem of decrypting data before applying arithmetic
operations is addressed and a new approach is described as processing data without
decrypting it first.

Succeeding works showed that some asymmetric cryptosystems preserve structure
which allows for arithmetic operations to be performed on encrypted data. This struc-
ture preserving property, calledhomomorphism, comes in two main types, namely
additive and multiplicative homomorphism. Using additivehomomorphic cryptosys-
tems, performing a particular operation (e.g. multiplication) with encrypted data re-
sults in the addition of the plain-texts. Similarly, using amultiplicatively homomor-
phic cryptosystem, multiplying cipher-texts results in the multiplication of the plain-
texts. Paillier [11], Okamato-Uchiyama [10] and Goldwasser-Micali [7] are additively
homomorphic cryptosystems while RSA [16] and ElGamal [6] are multiplicatively
homomorphic cryptosystems.

The anonymous fingerprinting scheme proposed in [8] is basedon the addition of
the fingerprint to the digital data and hence, an additive cryptosystem is used. Among
the candidates, the Okamoto-Uchiyama cryptosystem is chosen for efficiency consid-
erations [8]. In the next section, the Okamoto-Uchiyama cryptosystem is described.
We observe however, that the anonymous fingerprinting schemes, proposed in this
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paper, can easily be implemented by using other additively homomorphic cryptosys-
tems. It is however required to have a sufficiently large message space to represent the
signal samples. Further the underlying security protocols, such as the proof protocol
for validating buyer’s identity, must be suitable for the chosen cryptosystem.

A requirement for the cryptosystem is that it is probabilistic in order to withstand
chosen plain-text attacks. Such attacks are easily performed in our scheme, because
individual signal samples are usually limited in value (e.g. 8 bit). If we were to use
a non-probabilistic cryptosystem, this would enable the buyer to construct a code-
book of cipher-texts for all possible messages (in total28 = 256) using the public
key and decrypt through this codebook. Fortunately probabilistic cryptosystems were
introduced in [7], which enable the encryption of a single plain-text ton cipher-texts,
wheren is a security parameter related to size of the key. To which cipher-text the
plain-text is encrypted is dependent on a blinding factorr, which is usually taken at
random. Selecting differentr’s does not affect the decrypted plain-text. By having
a multitude of cipher-texts for a single plain-text the sizeof a codebook will become
28 · 2n and thus impractically large, preventing such attacks. Allthe above men-
tioned additive homomorphic encryption schemes (Paillier, Okamoto-Uchiyama and
Goldwasser-Micali) are probabilistic and hence withstandchosen plain-text attacks.

From Section 6.3 onwards we compactly denote the encryptionand the decryp-
tion of a message withE(m) andD(c), respectively, omitting the dependency on the
random factorr. In the scope of this paper, an additive homomorphic cryptosystem
will be used for encrypting signal samples which do not necessarily need to be integer
values. In this case, rounding to the nearest integer value precedes the encryption and
thus, in this paper,E(·) denotes both rounding and encryption.

Okamoto-Uchiyama Cryptosystem

Okamoto and Uchiyama [10] proposed a semantically secure and probabilistic pub-
lic key cryptosystem based on composite numbers. Letn = p2q, wherep and q
are two prime numbers of lengthk bits, andg be a generator such that the order of
gp−1 modp2 is p. Another generator is defined ash = gn. In this scheme, the public
keypk = (n, g, h, k) and the secret keysk = (p, q).
Encryption: A messagem (0 < m < 2k−1) is encrypted as follows:

c = E(m, r) = gmhr modn, (6.2)

wherer is a random number inZ∗
n.

Decryption: Decoding the cipher-text is defined as

m = D(c) =
L(cp−1 modn)

L(gp−1 modn)
modp, (6.3)

where the functionL(·) is

L(u) =
u − 1

p
. (6.4)

The Okamoto-Uchiyama cryptosystem has the additive homomorphic property such
that given two encrypted messagesE(m1, r1) andE(m2, r2), the following equality
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holds:

E(m1, r1) × E(m2, r2) = gm1hr1 × gm2hr2 modn

= gm1+m2hr1+r2 modn

= E(m1 + m2, r1 + r2). (6.5)

Here× denotes integer modulon multiplication.

6.3 Kuribayashi and Tanaka Anonymous Fingerprint-
ing Protocol

The fingerprinting scheme in [8] is carried out between buyerand merchant, and has as
objective to anonymously embed the buyer’s identity information into the merchant’s
data (e.g. audio, image or video signal). The buyer decomposes hisl-bit identity W
into bits asW = (w0, w1, . . . , wl−1). For applications such as embedding identity
information in multimedia data, the value ofl is typically between 32 and 128 (bits),
which is sufficiently large to prevent the merchant from guessing valid buyer id’s.
Where necessary, we assume that the probabilityP [wj = 0] and P [wj = 1] are
equal. After decomposition ofW into individual bits, the buyer encrypts each bit
with his public key using the Okamoto-Uchiyama cryptosystem, so thatE(W ) =
(E(w0), E(w1), . . . , E(wl−1)). These encrypted values are sent to the merchant.

The merchant first quantizes the samples of the (audio, image, video) signal that
the buyer wishes to obtain, using a quantizer with coarseness 2∆, i.e.x′ = Q2∆(x).
Here the quantizer step size∆ is a positive integer to ensure that the quantized value
can be encrypted. He then encrypts all quantized signal samples x′ with the public
key of the buyer, yieldingE(x′). The merchant selects watermark embedding posi-
tions by using a unique secret key that will be used to extractthe watermark from the
redistributed copies. In order to embed a single bit of informationwj into one of the
quantized and encrypted valueE(x′) at a particular watermark embedding position,
the merchant performs the following operation:

E(y) = E(x′) × E(wj)
∆

= E(x′ + wj∆). (6.6)

The result is an encrypted and watermarked signal valuey, as can be readily seen by
the following relation:

D(E(y)) = x′ + wj∆

y =

{
Q2∆(x), if wj = 0,
Q2∆(x) + ∆, if wj = 1.

(6.7)

The encrypted signal – with the buyer’s identity information embedded into it in the
form of a watermark – is finally sent to the buyer. Obviously, only the buyer can
decrypt the watermarked signal values.
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In order for the system to be robust against local attacks, the relation between the
buyer’s identity information bitswj and the signal valuesy (audio samples, image or
video pixels) into which the information bits are embedded,should be kept secret from
the buyer. Note that as a consequenceall signal valuesx will have to be encrypted,
also the ones that do not carry a bitwj of the buyer’s identity information, as so to
hide these embedding positions.

Compared to the QIM scheme in Eq. (6.1), the above watermarking scheme in-
troduces a bias, as the expected (average) value ofy is ∆

2 larger than that ofx. This
bias is introduced, because∆wj is always added to the quantized signal valuex′ and
never subtracted. In order to avoid this undesirable side effect, either the even or odd
quantizer should be selected depending on the watermark bitwj as in Eq. (6.1). How-
ever, the merchant has only the encrypted version of each watermark bitwj , which
prevents him from deciding between the two quantizers. To overcome this problem,
the merchant compares the signal valuesx andx′, and depending on the result, the
encrypted value of∆wj can be added or subtracted [8]. Whenx′ is smaller thanx,
∆wj is added, otherwise it is subtracted. This procedure now is equivalent to Eq.
(6.1) and thus effectively removes the bias. As the decisionis not dependent on the
value ofwj , no information is leaked about the value ofwj . The resulting embedding
procedure for identity information bitwj then becomes:

E(y) =

{

E(x′) × E(wj)
∆, if x ≥ Q2∆(x),

E(x′) × (E(wj)
∆)−1, if x < Q2∆(x),

(6.8)

where()−1 denotes modular inverse in the cyclic group defined by the encryption
scheme. When the buyer decrypts the received encrypted and watermarked signal
values, he obtains the following result for the watermark embedding positions:

y =

{

x′ + wj∆, if x ≥ Q2∆(x),

x′ − wj∆, if x < Q2∆(x).
(6.9)

For all other positions the unwatermarked and unchanged – but encrypted and there-
fore rounded – signal valuesx are transmitted.

In the above embedding protocol, we have assumed that the buyer provides en-
crypted values of a validbinary decomposition(w0, w1, . . . , wl−1) of his identity
informationW to the merchant. Since, however, the decomposed bits of the iden-
tity information of the buyer are encrypted, the merchant can not easily check this
assumption. In the original work by Kuribayashi and Tanaka [8], a registration centre
is used which assures the legitimacy of the buyer. During thepurchase, the merchant
first confirms the identity of the buyer, and then the buyer proves the validity of the
decomposed bits of his identity information by using zero-knowledge proof protocols.
Since this procedure is entirely independent of the watermarking scheme, we refer for
details on the identity and decomposition validation and the security of this procedure
to [8], where it is given for the Okamoto-Uchiyama encryption scheme. The focus of
this paper is on the application of the homomorphic embedding procedure described
above to the more robust watermarking schemes of [4, 12].
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6.4 Anonymous Fingerprinting Using Advanced Wa-
termarking Schemes

From the perspective of the merchant, the embedding of the buyer’s identification
information must be as robust as possible in order to both withstand malicious and
benign signal processing operations on the fingerprinted signal. If the buyer id em-
bedding procedure is not robust, the buyer could remove the fingerprint either inten-
tionally or unintentionally and as a consequence the merchant would lose his ability to
trace illegally redistributed copies. The fingerprints embedded in the Kuribayashi and
Tanaka (KT) anonymous fingerprinting protocol described inSection 6.3, are known
to be sensitive to a number of signal processing operations,and are in fact relatively
easy to remove through attacks mentioned in Section 6.2.1. We propose to increase
the robustness of the Kuribayashi and Tanaka anonymous fingerprinting protocol, as
perceived by the merchant, by applying their approach to twoadvanced quantization-
based watermarking schemes, namely DC-QIM and RDM.

So far we have embedded the bits of the identity information into signal values
without specifying what these signal values actually are. In the rest of this paper
we will use block-DCT transform coefficients of images to embed the identity bits
into. A particular block-DCT coefficient into which we embedan information bitwj

will be abstractly denoted byxi. Of course, in actual images,xi may be a particular
DCT coefficient of a particular DCT block in the image. The relation between the
bits wj and watermark embedding positionsxi is determined by a key known only
to the merchant. In practical cases of interest, the number of candidate embedding
positions is in the same order as the number of signal samples, whereas the number
of information bits is typically between 32 and 128. For instance, for a1024 × 1024
pixels image, the maximum number of possible embedding combinations for 128 bits
of information is

(
10242

128

)
, which provides enough security. In the case of embedding

the bitswj into DCT coefficients, the number of possible embedding combinations
will be smaller depending on the DCT block size and the numberof DCT coefficient in
one block that are (perceptually and qualitatively) suitable for embedding a watermark
bit into.

It is important to note that the goal for each watermarking scheme within the
Kuribayashi-Tanaka protocol is to compute the encryption of watermarked coefficients
yi, while only having available the original signal valuesxi, the encrypted bitsE(wj)
of the buyer’s decomposed identity, and the public keypk of the selected additively
homomorphic encryption scheme. Once the buyer identification information is cor-
rectly embedded in the encrypted domain, the encrypted coefficients (i.e. encrypted
digital content) will be sent to the buyer, who can decrypt these with his private key
to obtain correctly watermarked data. Since the information bits are embedded in the
DCT domain, a trivial inverse DCT on the decrypted data is necessary as the last step
to obtain the purchased digital image. Because this is easiest performed in the plain-
text domain we leave it to the buyer to perform this inverse DCT after decryption,
which is much like JPEG decompression.
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6.4.1 Subtractive Dither Quantization Index Modulation

Fingerprints embedded by the basic QIM watermarking schemeused by Kuribayashi
and Tanaka as described in Section 6.2.1 can be locally attacked, because the buyer can
find the embedding positionsxi without checking all possible (for instance

(
10242

128

)
)

combinations. A common solution to this weakness of the basic QIM watermarking
scheme is to add pseudo random noise, usually called dither,to xi before embedding
an information bitwj , and subtracting the dither after embedding. As a consequence,
the quantization levels and their constant difference∆ can no longer be observed,
making the separation between embedding positionsxi and non-embedding positions
impossible. The resulting watermarking scheme, illustrated in Figure 6.2, is called
subtractive dither QIM (SD-QIM).

In QIM terminology, a small amount of ditherdi is added prior to quantizing the
signal amplitudexi to an odd or even value depending on the information bitwj . After
quantization ofxi + di, the same amount of ditherdi is subtracted. It is desirable that
the dither can be used in cooperation with the QIM’s uniform quantizersQ∆−odd(·)
andQ∆−even(·), which use a quantization step size of2∆, as in the basic QIM. It
has been shown [17] that a suitable choice for the PDF of the random ditherdi is a
uniform distribution on[−∆,∆].

xi

di

Q2∆

±∆wj

di

yi

Figure 6.2: Subtractive Dither QIM

In order to embed the buyer’s identity information bitE(wj) into coefficientxi us-
ing the Kuribayashi-Tanaka protocol in combination with subtractive dither, we carry
out the following protocol.

1. Add random ditherdi to the signal sample or coefficientxi.

2. Quantizexi + di with a quantization coarseness of2∆, and encrypt the result
using the buyer’s public key, yieldingE(Q2∆(xi + di)).

3. Multiply with E(wj)
∆ or its modular inverse depending on the value ofxi +di,

in order to achieve the desired quantization level.

4. Encrypt the ditherdi to obtainE(di). Note that sincedi ∈ R, the encryption
operation includes modulon rounding to an integer. Multiply the result of the
previous step with the modular inverse ofE(di) as so to implement the subtrac-
tion of the ditherdi from Q2∆(xi + di).
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Summarizing the above protocol steps, we obtain:

E(ti) =

{

E(Q2∆(xi + di)) × E(wj)
∆, if xi ≥ Q2∆(xi),

E(Q2∆(xi + di)) × (E(wj)
∆)−1, if xi < Q2∆(xi),

E(yi) = E(ti) × E(di)
−1. (6.10)

After decryption, the buyer obtains the (DCT transformed) image into which his iden-
tity information is embedded in certain DCT coefficientsyi according to the following
subtractive dither QIM scheme:

yi =

{
Q∆−even(xi + di) − di, if wj = 0,
Q∆−odd(xi + di) − di, if wj = 1.

(6.11)

The above embedding procedure demonstrates the usage of theKuribayashi-Tanaka
protocol to subtractive dither QIM. The plain-text subtractive dither QIM and the
above Kuribayashi-Tanaka subtractive dither QIM (KT SD-QIM) are equivalent ex-
cept for the rounding of the ditherdi to integers before encryption. How to limit the
adverse effect of integer rounding will be addressed next.

Two improvements of Eq. (6.10) are desirable. In the first place, we can subtract
di before encryptingQ2∆(xi + di). This effectively removes the last protocol step
and hence eliminates an unnecessary encryption operation.The resulting scheme can
then be rewritten as follows:

E(yi) =

{

E(Q2∆(xi + di) − di) × E(wj)
∆, if xi ≥ Q2∆(xi),

E(Q2∆(xi + di) − di) × (E(wj)
∆)−1, if xi < Q2∆(xi).

(6.12)

The second improvement concerns the quantization operation. The quantizer not only
rounds the signal amplitudes to predetermined (not necessarily integer) quantization
levels, but it must also round signal values or DCT coefficients xi + di to integers
because of the ensuing encryption operation. If the signal values of DCT coefficients
xi are sufficiently large, using integer valued coefficients isnot a restriction at all. For
smaller values ofxi, however, using integer values may be too restrictive or mayyield
too large deviations between the results of Eqs. (6.12) and (6.11).

We propose to circumvent this problem by scaling all coefficientsxi with a con-
stant factorc before embedding. Scaling has little effect on the en-/decryption, as long
as the samples are not scaled beyond the message group size ofthe encryption scheme
used. The message group size is, however, usually very largebecause of encryption
security requirements (typically> 2512). As a consequence of scalingxi, the ditherdi

and all encrypted bitsE(wj) of the decomposed identity of the buyer also have to be
scaled byc. We note that scaling introduces extra computation. However, the dither
can be scaled and subtracted before encryption, resulting in a very small increase in
complexity. The scaling of the encrypted bitsE(wj) of the decomposed identity of
the buyer has to be taken into account in the protocol steps, which is relatively easy
since the scaling can be combined with the multiplication ofwj with ∆. The resulting
embedding equation can be summarized as follows:

E(yi) =

{

E(c · (Q2∆(xi + di) − di)) × E(wj)
∆, if xi ≥ Q2∆(xi),

E(c · (Q2∆(xi + di) − di)) × (E(wj)
∆)−1, if xi < Q2∆(xi).

(6.13)
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The scaling factorc has to be communicated to the buyer, so that the buyer can rescale
the entire image after decryption to the proper (original) intensity range.

6.4.2 Distortion-Compensated QIM

Distortion-Compensated QIM (DC-QIM) [4] is an extension tothe subtractive dither
QIM scheme described in the previous section. Rather than directly adding dither
to and quantizing ofxi, a fractionα · xi is used in the SD-QIM procedure. The
information bits will be embedded only in the fractionα · xi, whereα lies within the
range[0, 1]. The remaining fraction(1 − α) · xi is added back to the watermarked
signal componentα · xi to form the final embedded coefficientyi. The embedder
chooses an appropriate value forα depending on the desired detection performance
and robustness of DC-QIM; an often selected value is as in [5]:

α =
σ2

w

σ2
w + σ2

n

(6.14)

whereσ2
w = ∆2

3 is the variance of the watermark in the watermarked signal, andσ2
n is

the variance of the noise or other degradation that an attacker applies in an attempt to
render the watermark bits undetectable. Obviously, the standard SD-QIM scheme is
optimal only if an attacker inserts little or no noise into the watermarked image since
for σ2

n → 0 we findα → 1. The difference in robustness between SD-QIM and DC-
QIM becomes especially relevant if the variance of the attacker becomes large relative
to σ2

w, i.e. σ2
n → σ2

w.

xi

1 − α

α di

Q2∆

SD-QIM
−di

±∆wj

yi

Figure 6.3: Distortion-Compensated QIM

As the differences between the SD-QIM and DC-QIM watermarking schemes
merely consist of plain-text multiplications and cipher-text additions, DC-QIM can
also be achieved within the limitations of the homomorphic additive encryption scheme
used by the Kuribayashi-Tanaka protocol. The basic embedding operations can now
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be written as follows:

E(ti) =

{

E(Q2∆(α · xi + di) − di) × E(wj)
∆, if C1 holds,

E(Q2∆(α · xi + di) − di) × (E(wj)
∆)−1, if C2 holds.

C1 = α · xi ≥ Q2∆(α · xi),

C2 = α · xi < Q2∆(α · xi),

E(yi) = E(ti) × E((1 − α) · xi). (6.15)

Equation (6.15) results in the following watermarked valuesyi after decryption:

ti =

{

Q2∆(α · xi + di) − di + wj · ∆, if α · xi ≥ Q2∆(α · xi),

Q2∆(α · xi + di) − di − wj · ∆, if α · xi < Q2∆(α · xi),

yi = ti + (1 − α) · xi. (6.16)

The plain-text distortion compensated QIM and the above Kuribayashi-Tanaka distor-
tion compensated QIM (KT DC-QIM) are equivalent, except again for the rounding
of the real valued ditherdi and(1 − α) · xi to integers before encryption.

Similar to the subtractive dither QIM watermark algorithm,KT DC-QIM can be
modified to subtract the dither before encryption, and to scale the signal values before
encryption. Furthermore, the term(1−α) ·xi can be added before encryption, further
reducing the number of encryptions needed. The resulting KTDC-QIM embedding
equations then become:

E(ti) =

{

E(c · (Q2∆(α · xi + di) − di)) × E(wj)
∆, if C1 holds,

E(c · (Q2∆(α · xi + di) − di)) × (E(wj)
∆)−1, if C2 holds.

C1 = α · xi ≥ Q2∆(α · xi),

C2 = α · xi < Q2∆(α · xi),

E(yi) = E(ti) × E(c · (1 − α) · xi). (6.17)

6.4.3 Rational Dither Modulation

DC-QIM provides a significant improvement in robustness compared to the basic QIM
scheme. Nevertheless, the DC-QIM scheme is known to be very sensitive to gain or
volumetric attacks, which is just simply scaling of the image intensities. Because
of the use of the scaling factorc in SD-QIM and DC-QIM in order to reduce the
sensitivity to integer-rounding before encryption, the buyer has an excellent opportu-
nity to perform a gain attack on the watermarked signal. The gain effect causes the
quantization levels used at the detector to be misaligned with those embedded in the
purchased and illegally distributed digital data, effectively making the retrieval of the
watermarked identity bits impossible [2].

Perez-Gonzalezet al. [12], proposed the usage of QIM on ratios between signal
samples as so to make the watermarking system robust againstfixed gain attacks. The
resulting approach, known as Rational Dither Modulation (RDM), is robust against
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both additive noise and fixed gain attacks. The RDM embeddingscheme is illustrated
in Figure 6.4. The robustness against fixed gain attacks is achieved by normalizing the
signal value (or DCT coefficient)xi by v(Yi−1), which is function that combinesL
previous watermarked signal valuesYi−1 = (yi−1, yi−2, . . . , yi−L). An example for
the functionv(Yi−1) is the Ḧolder vector norm, as suggested in [12]:

v(Yi−1) =

(

1

L

i−1∑

m=i−L

|ym|p
)1/p

(6.18)

The SD-QIM watermark embedding will then take place using the normalized signal
values xi

v(Yi−1)
, yielding:

yi =

{

v(Yi−1) · (Q∆−even( xi

v(Yi−1)
+ di) − di), if wj = 0,

v(Yi−1) · (Q∆−odd(
xi

v(Yi−1)
+ di) − di), if wj = 1,

(6.19)

where the multiplication of the quantization results withv(Yi−1) is required to scale
the coefficients to their original value range. Another way of viewing RDM is that it is
equivalent to using SD-QIM with a signal amplitude dependent quantization coarse-
nessv(Yi−1) · ∆.

The normalization ofxi takes place on a function of(yi−1, yi−2, . . . , yi−L) rather
than of(xi−1, xi−2, . . . , xi−L). The usage ofv(Yi−1) is preferable, because only the
watermarked valuesyi are available during watermark detection. In the Kuribayashi-
Tanaka protocol the watermarked signal values or DCT coefficientsyi are only avail-
able to the merchant in an encrypted formE(yi). Unfortunately, the embedder cannot
make use ofv(Yi−1) as a normalization factor, primarily because homomorphic divi-
sion (and multiplication for that matter) is not defined for two encrypted values in a
homomorphic additive encryption scheme. Also the evaluation of the normalization
functionv(Yi−1) (e.g. Eq. (6.18)) may not be computable on encrypted values.

Consequently, we have to use the original signal values(xi−1, xi−2, . . . , xi−L),
which will have the same statistics as(yi−1, yi−2, . . . , yi−L) for sufficiently large
value ofL. Experimental results have shown that an appropriate valueof L is 25. For
this value ofL, the detection results using normalization onv(Xi−1), are sufficiently
close to the results based on normalization usingv(Yi−1).

Since RDM applies QIM on the ratio xi

v(Xi−1)
, attention should be paid to the inte-

ger rounding process. Sincexi

v(Xi−1)
will usually be around (the real number) 1.0, the

rounding to an integer will almost always yield (the integer) 1, introducing unaccept-
ably large watermarking distortions. Therefore, the scaling of the ratio with a factor
c becomes essential in RDM. Furthermore, after quantizationof the ratio xi

v(Xi−1)
, the

result needs to be multiplied withv(Xi−1). Thanks to the homomorphic property,
this can be carried out by an exponentiation in modulo arithmetic with v(Xi−1) in
the encrypted domain. To this end, obviouslyv(Xi−1) has to be an integer, requiring
another rounding step. In case this rounding effect is severe, another scaling can be
carried out onv(Xi−1). Since in our experiments this effect showed to be negligible,
we do not consider scaling ofv(Xi−1) itself. We denote the rounded value ofv(Xi−1)
by vint(Xi−1).
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Figure 6.4: Rational Dither Modulation

Using again the notationdi for the uniformly distributed dither, the RDM embed-
ding equations become:

E(ti) =







E(c ·
(

Q2∆

(
xi

vint(Xi−1
+ di

)

− di

)

) × E(wj)
∆, if C1 holds,

E(c ·
(

Q2∆

(
xi

vint(Xi−1
+ di

)

− di

)

) × (E(wj)
∆)−1, if C2 holds,

C1 =

(
c · xi

vint(Xi−1)

)

≥ Q2∆

(
c · xi

vint(Xi−1)

)

C2 =

(
c · xi

vint(Xi−1)

)

< Q2∆

(
c · xi

vint(Xi−1)

)

E(yi) = E(ti)
vint(Xi−1). (6.20)

With the above scheme we have succeeded in adapting the RDM watermarking
scheme – one of the most recent QIM watermarking approaches –to the constraints
set by the Kuribayashi-Tanaka protocol.

6.5 Experimental Validation

In this section we experimentally compare the plain-text versions of the SD-QIM,
DC-QIM and RDM watermarking schemes with the proposed version based on the
Kuribayashi-Tanaka fingerprinting protocol. The buyer’s identity information will be
embedded into the DC DCT coefficients of 8x8 blocks. Per imagewe embed 64 bits
of identity information into 64 DC DCT coefficients that are pseudo randomly se-
lected based on a secret key only known to the merchant. In allexperiments we use
the256 × 256 pixels gray-valued Lena and Baboon images. Because of runtime effi-
ciency and the availability of the necessary proofs we selected the Okamoto-Uchiyama
cryptosystem for all experiments as in [8]. The Okamoto-Uchiyama cryptosystem has
a smaller encryption rate compared to (generalized versions of) Paillier, because of
a smaller message space for the same security level. Howeveras signal values are
usually sampled with 8 bit precision, a smaller message space is not a problem for
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our application, while the cipher-text size is reduced withthe Okamoto-Uchiyama
cryptosystem, resulting in lower overall computational complexity.

We not only compare the performance of the plain-text and cipher-text versions
of the SD-QIM, DC-QIM and RDM watermarking schemes, but we also evaluate the
effect of integer rounding and the scaling parameterc on the performance. In our
graphs, each point shown is based on 100 measurements, and each measurement is a
complete, new iteration of the Kuribayashi-Tanaka protocol. A table of parameters1

for algorithms can be found in the Appendix B.

6.5.1 Subtractive Dither QIM

An important performance measure of a watermarking scheme is the bit error rate
(BER) of the watermark detector as a function of the strengthof embedding the water-
mark. The BER is a measure that quantifies the probabilityPe of incorrectly detecting
a single bit of information. Usually, the buyer’s identity information contains some
form of channel coding, so that the buyer’s identity can still be retrieved even if a few
bits are incorrectly detected from the fingerprinted image,this is further discussed in
Section 6.6.

In order to measure the distortion that the watermark introduces into the host sig-
nal, we use the document-to-watermark ratio (DWR):

DWR = 10 log10(
σ2

x

σ2
w

) (dB). (6.21)

Hereσ2
x is the variance of the data into which the watermark is embedded, which in

our case are the DC DCT coefficients of 8x8 blocks. Further,σ2
w is the variance of the

distortion caused by the embedded watermark. Following [4], we equateσ2
w = ∆2

3 .
The objective a watermarking scheme is to have a low BER with ahigh DWR. The
proper values for the DWR and thus∆ is application and data dependent. In this
paper we are not concerned with selecting a suitable value of∆. We rather study the
behaviour of the BER as a function of the DWR for the plain-textand Kuribayashi-
Tanaka versions of the SD-QIM watermarking scheme.

Figure 6.5 shows the BER-DWR relation for the two versions of the SD-QIM
algorithm. The performance of the Kuribayashi-Tanaka version of the SD-QIM (KT
SD-QIM) watermarking scheme is shown for several values of the scaling factorc.
Although there is no deliberate attack performed on the watermark, the inverse DCT
transform and consequential rounding to 8 bit pixel values introduces a distortion into
the fingerprinted signal. The robustness of the watermarking scheme is sufficient,
however, to result in no bit errors at a DWR of 31-34 dB. A peculiar effect is the
increased robustness of the heavily rounded (i.e. scaling factorc = 1) KT SD-QIM
compared to the original watermarking scheme. We believe that this behaviour is
caused by the distorting effect of the (inverse) DCT transform. By increasing the
scaling factorc we can approximate the performance of the original SD-QIM. The
performance is already closely approximated with c = 100 in this instance, but in
general the application, the data and the implementation ofthe DCT will determine

1The codes for the implementation can be found in http://ict.ewi.tudelft.nl
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Figure 6.5: SD-QIM bit error rate (BER)Pe as a function of the document-to-
watermark ratio (DWR) for the original SD-QIM scheme and KT SD-QIM with dif-
ferent scaling factorsc 1, 2, 5, 10 and 100 for a) Lena and b) Baboon images.
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which value ofc is required to approximate the performance of the plain-text SD-QIM
scheme.

6.5.2 Distortion-Compensated QIM

Figure 6.5 showed the BER in a scenario without any explicit attacks on the wa-
termark. Distortion-Compensated QIM can be used to provideoptimal robustness
against additive noise attacks. For this reason, we will show the performance of the
Kuribayashi-Tanaka adaptation of DC-QIM and compare it with the original DC-QIM
and the previously discussed SD-QIM. A measure of the amountof noise introduced
relative to the strength of the watermark is the watermark-to-noise ratio (WNR):

WNR = 10 log10(
σ2

w

σ2
n

) (dB). (6.22)

Hereσ2
n is the variance of the additive zero-mean Gaussian noise that the attacker adds

to the fingerprinted content. The value ofα is chosen according to Eq. (6.14), so that
the DC-QIM scheme is tuned for a specific additive noise variance level. In all our
experiments we useσn = 15 and change the value of∆ =

√
3 σw as so to obtain a

varying WNR.
Figure 6.6 shows the BER-WNR relation for SD-QIM and DC-QIM. We choose

to fix the amount of additive noise instead of the DWR, because we are interested in
the effect the scaling factorc has on the required embedding strength (i.e. value of∆
and thus the watermark power) and not a variable amount of additive noise. Therefore
Figure 6.6 can not be easily compared to other literature on watermark robustness. As
in our previous experiment the watermark distortion is calculated using the expression
σ2

w = ∆2

3 [4].
As can be observed the performance of the DC-QIM is better than SD-QIM with

additive noise, which is in accordance with [4]. We are mostly concerned with the
comparison of the original version of the DC-QIM scheme and the Kuribayashi and
Tanaka adaptation of DC-QIM. As expected the performance ofthe original DC-QIM
scheme and the Kuribayashi-Tanaka adaptation of DC-QIM (KTDC-QIM) differ very
little. Also the scaling factorc has little effect on the BER. This can be explained by
the fact that the additive noise dominates the errors causedby the integer rounding.

6.5.3 Rational Dither Modulation

Unlike the previous two watermarking schemes, rational dither modulation (RDM)
depends on a sufficiently large scaling factorc in order to achieve a quantization
coarseness∆ lower than1. The scaling factorc determines the possible resolution
of ∆. We are interested to see which resolution is required, in order to achieve good
performance. Although the results depend on the data and thestrength of the added
noise, the trend of these results will be observed for other cases and data as well,
because the signal coefficientsxi are normalized before embedding.

Figure 6.7 shows the bit error rate (BER) performance of RDM as a function of the
watermark-to-noise ratio (WNR) for the plain text and Kuribayashi-Tanaka versions
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Figure 6.6: SD-QIM and DC-QIM BER as a function of WNR with additive noise
(σn = 15) for the original SD-QIM and DC-QIM schemes and the KT SD-QIMand
DC-QIM schemes with different scaling factorsc for a) Lena and b) Baboon images.
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Figure 6.7: RDM bit error rate (BER) as a function of the watermark-to-noise ratio
(WNR) with additive noise (σn = 15) for the original RDM scheme and KT RDM
scheme with different scaling factorsc for a) Lena and b) Baboon images.
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of RDM. The different curves reflect different values for thescaling factorc. Because
of the complexity of the analytical expression of the watermark distortionσ2

w in [12],
we measured the watermark distortion directly from the data.

Figure 6.7 shows that the value of the scaling factorc determines the points of the
Pe-WNR curve which are attainable by the Kuribayashi-Tanaka RDM scheme. With a
scaling factorc = 10, only WNRs with 12 dB or higher are reachable (see ‘KT RDM,
c = 10’ curve in Figure 6.7, which starts at 12 dB), allowing for very little flexibility in
choosing the optimal embedding strength for a specific application. A scaling factor
of 100 performs much better, but1000 approximates the original RDM closely.

Besides the equivalent robustness to additive noise attacks of RDM compared to
SD-QIM, RDM is robust against amplitude scaling attacks. Figure 6.8 shows the
robustness of SD-QIM, DC-QIM and RDM to a performed amplitude scaling attack.
SD-QIM and DC-QIM show a high vulnerability against amplitude scaling attacks.
At a small gain factorρ of 1.05, approximately50 percent of the buyer’s identifying
information cannot be retrieved correctly, while RDM is robust throughout the whole
range for the gain factor. Although theoretically RDM should not be at all affected
by an amplitude scaling attack some bit errors start to show up at gain factors larger
than1.06. These are inherent to the 8-bit data representation format, which easily
overflows for large gain factors.
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Figure 6.8: KT bit error rate (BER) as a function of the gain factor (ρ) for KT SD-
QIM, KT DC-QIM and KT RDM schemes withc = 1000. The DWR is fixed to 7.1
dB. Datapoints below a BER of10−3 are plotted for visualization, but in reality0.
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6.6 Security Aspects of Buyer Identity

As fingerprint detection is a signal processing operation, detected fingerprints will
usually be distorted even without attacks on the fingerprintby a malicious buyer, as
discussed in Section 6.4. The fingerprint can for instance bedistorted by perfectly
legitimate signal processing operations such as compression, the obligatory inverse
DCT and consequential rounding. In this scenario the merchant would normally not
be able to present a perfectly retrieved buyer id. The registration centre could accept
merchant buyer id submissions, which are similar to a correct buyer id. However, the
security of the buyer depends on the inability of the merchant to guess a correct buyer
id. To allow the merchant to submit similar buyer id’s and forthe registration centre
to accept these would thus harm the buyer’s security.

By letting the registration center extend the buyer identity with a forward-error-
correcting scheme, the merchant can compensate for a small and fixed maximum num-
ber of bit errors in the buyer id. This is of course equivalentto increasing the size of
the buyer id and allowing for a small number of bit errors at the registration centre.
This approach has the advantage that it moves the computational complexity of the
error correction from the registration centre to the merchant.

There is a choice to be made concerning the locations of the embedding posi-
tions for each buyer. The embedding positions can be changedfor each buyer, but this
would not provide any real benefits to the robustness of the total fingerprinting scheme,
other than that colluding buyers would have to compare theirindividual fingerprinted
version with a number of other versions in order to detect theembedding locations. If
the embedding locations are identical for each fingerprinted copy, buyers who have lo-
cated these embedding positions could publish these and allbuyers could then remove
the fingerprint from their copy. Using unique embedding positions for each buyer has,
however, a big disadvantage upon detection. As with any fingerprinting scheme, the
merchant cannot know the used embedding positions before detection, as the detection
procedure is the sole method to discriminate between copies. The unavailability of the
embedding positions prevents the merchant from detecting the buyer id, resulting in a
deadlock. In order to break this deadlock the merchant couldestimate the embedding
positions by using a non-blind detection procedure (e.g. subtract the original image
from the encountered image and thus find the most likely candidate embedding lo-
cations, as they will be show up to have a high difference to the original signal) or
by embedding a pilot signal to identify the used embedding positions. However this
would be ineffective for heavily attacked copies, which areheavily distorted by at-
tacks. Another way to retrieve the correct buyer id is to let the merchant detect for all
possible embedding locations and use a (soft) error correction scheme to determine the
most likely buyer id, based on the distance the detected id isfrom a valid codeword in
the used error correction scheme. This, however, makes the detection procedure linear
in complexity related to the number of buyers as it has to be performed for each used
combination of embedding positions.

Although dithering prevents an individual buyer to detect the embedding positions,
a coalition of buyers can collude to find them. By comparing different fingerprinted
copies, the coalition can locate the differing samples/coefficients and, as the finger-
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print embedding is the predominant cause of these differingsamples, consequently the
embedding positions. This vulnerability can be eliminatedby constructing the buyer’s
id’s through the scheme of Boneh and Shaw [3], making them collusion-secure. The
collusion-security of the scheme of Boneh and Shaw depends on generating buyer id’s
such that they have a number of identical bitswj for any colluding coalition ofc buy-
ers. Because these buyer id bits are identical, the coalition is not able to detect these
embedded bits by comparing their individually fingerprinted copies. This does how-
ever require that the embedding positions are identical foreach fingerprinted copy.
Because the embedding positions for these bits cannot be determined they are safe
from targeted attacks and can therefore be detected correctly by the merchant even
after the attack by the colluding buyer coalition. Constructing such a collusion-secure
code for a large coalition constitutes a large increase in the buyer id length. As shown
in [3] the length is equal toO(c4 log(N/e) log(1/e)), wherec is the number of collud-
ing buyers,N is the total number of buyers ande is the probability that the cheating
buyer cannot be retrieved after a collusion attack. Becauseof the anonymity of the em-
bedding procedure, the registration centre will have to generate the collusion-secure
buyer id’s, as this will be the only person the merchant trusts to generate a valid buyer
id.

6.7 Conclusion

In conventional fingerprinting schemes, the buyer’s identity is known to the merchant
during embedding. This knowledge can be easily abused by a malicious merchant by
creating fingerprinted copies containing this identity information without the buyer’s
consent. After distribution the merchant can claim a license violation for this specific
buyer. To deal with this problem, Kuribayashi and Tanaka proposed a reasonably ef-
ficient solution in [8] based on embedding the buyer identification information using
additive homomorphic encryption schemes. The problem of the proposed protocol
in [8] is the vulnerability of the underlying basic QIM watermarking scheme, which
is fragile to simple attacks like amplitude scaling and allows for the detection of the
embedding positions. Therefore, we have proposed to adapt DC-QIM and RDM tech-
niques to the anonymous fingerprinting scheme of Kuribayashi and Tanaka.

We have adapted DC-QIM and RDM techniques which hide the embedding loca-
tions, unlike basic QIM, because they are based on SD-QIM. They perform provably
equivalent (RDM) or better (DC-QIM) than the watermarking scheme in the original
work against additive noise attacks. Furthermore, RDM provides robustness to am-
plitude scaling attacks which is a major drawback of the basic QIM scheme used in
[8].

Although rounding errors can be made arbitrarily small through the use of scaling
factors, the practical need, as shown in the experiments, issmall. As integer quanti-
zation step sizes have to be used because of the homomorphic encryption scheme, the
distortion introduced by the fingerprint embedding is usually larger than the distortion
introduced by integer rounding. As a consequence rounding with a scaling factor of
one (i.e. no scaling) already has acceptable performance. The scaling factor has its
use however in increasing the effective quantizer resolution. Although this is of lim-
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ited use for signals with a relatively large value range, it is essential for signals with a
small value range, as is the case for RDM after normalization.

Due to attacks on the digital content or transmission errors, the identity informa-
tion of the buyer can be extracted with bit errors. In that case, using error correction
codes can improve the abilities of the merchant to recover the identity information. By
letting the registration center select the buyer identity information, we can incorporate
these error correction capabilities or even provide a collusion-secure fingerprinting
scheme. This greatly increases the embedded buyer’s identification information and
the complexity of constructing a valid identity at the registration centre. Although
this might not be practical in real applications, it provides a theoretical solution to the
problem of collusion.

By adapting the DC-QIM and RDM watermarking schemes to the anonymous fin-
gerprinting protocol of Kuribayashi and Tanaka, we increased the robustness of the
embedded fingerprints, while preserving the anonymity of the fingerprinting proto-
col. Consequently the buyer’s ability to successfully attack embedded fingerprints is
reduced, increasing the deterrence to the illegal redistribution of digital content.
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6.A Table of Parameters

Algorithm Scaling Factor Quantization Stepsize Noise
SD-QIM c = 1, 2, 5, 10, 100 ∆ = k for k, 1 ≤ k ≤ 20
DC-QIM c = 1, 10, 100 ∆ = 5k for k, 1 ≤ k ≤ 20 σn = 15
RDM c = 10 ∆ = k for k, 1 ≤ k ≤ 20 σn = 15

c = 100 ∆ = k for k, 1 ≤ k ≤ 20
c = 1000 ∆ = 8k for k, 1 ≤ k ≤ 20
c = 10000 ∆ = 75k for k, 1 ≤ k ≤ 20
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Discussion

In this thesis, we have addressed the privacy aspects of online multimedia applications
which are widely used by a vast number of people. These applications, ranging from
shopping to dating, present serious privacy risks since theinformation required from
the users are highly privacy sensitive and open to misuse by the service provider itself.
As a solution to the privacy threats in multimedia applications, we propose to use
cryptographic techniques in the design of the multimedia applications. In particular,
we promote the idea of keeping the privacy-sensitive data safe by means of encryption
and processing them under encryption. The required signal processing operations can
be realized in the encrypted domain by exploiting homomorphism property of certain
public key cryptosystems and using MPC techniques.

In order to introduce a methodology to achieve privacy protection in multimedia
applications, we selected a number of prototypical applications and presented detailed
cryptographic protocols for each application that are correct, privacy-preserving and
efficient in this thesis. The selected applications, namelyface detection, clustering,
recommender systems and anonymous fingerprinting, containsimilar signal process-
ing properties regarding the structure of the data and corresponding operations on
them. In this chapter, we investigate the selected applications, deduce some conclu-
sions and point out directions for future research.

7.1 Variations in the protocols with respect to use sce-
narios

As a result of our observations on the selected prototypicalapplications presented in
this thesis, we notice that the required solutions have commonalities with respect to
the signal processing operations and data structure. However, we also observed that
the realization of signal processing operations in the encrypted domain may differ
according to the followings:

• Application setting. The type and the number of parties.
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– Two-party.This setting consists of only two players, user and server asin
face detection (Chapter 3) and anonymous fingerprinting (Chapter 6).

– Multi-party. Even though there are two types of players, server and user,
the number of players can vary as in clustering (Chapter 4) and recom-
mender systems (Chapter 5) where there are vast number of users.

The choice on the number of parties plays an important role incomputation load
share. In a two-party setting, the computation load is usually shared between
the server and the user. In order to reduce the workload of users, a third player
can be introduced to participate in the protocol. As in the recommender system
in Chapter 5, a semi-trusted third party, namely PSP, participates in the protocol
and the user is only required to upload his data and receive the outcome of the
protocol.

Remember that in Chapter 1, we argue that having a TTP is not a realistic as-
sumption. However, for the privacy-enhanced recommender system, we pro-
pose to use a PSP who is semi-trusted. One should note that thePSP required
for the recommender systems is not the TTP described in Chapter 1. The TTP is
trusted by all such that he is given the privacy-sensitive data and the algorithm.
However, the PSP is not trusted in that sense. As it can be seenin the security
analysis of the system in Section 5.6, the PSP is not given anyplain data but
only encrypted and blinded. The PSP is trusted in the sense that he performs the
operations on the encrypted data as described.

Another important observation is that our protocol constructions require inter-
action with the secret key owner. This means that the serviceprovider cannot
initiate another protocol with another player without the consent of the secret
key owner. Considering the example of automated medical scenario introduced
in Section 1.1, the expert system cannot ask the opinion of another entity with-
out informing the secret key owner, the patient in this case.However, note that
with the involvement of the patient in the protocol, other players, i.e. other med-
ical players, can initiate other cryptographic protocol. Actually, this is what we
would like to emphasize in this thesis. Given that the privacy-sensitive data is
encrypted and the owner of the secret key is involved, it can be processed un-
der encryption. Involvement of the secret key owner is an requirement because
of the technical challenges such as interactive protocols based on MPC tech-
niques. This can be seen as an advantage since the secret key owner, the patient,
is needed to be involved in the protocols to process the encrypted data. This can
be considered as an effective control mechanism.

• Owner of the decryption key. In all the applications discussed in this thesis,
the users in the applications are to be protected. However, depending on the ap-
plication setting, the owner of the secret key may change. Ina two-party setting,
the owner of the data has the secret key as in face recognitionand anonymous
fingerprinting, Chapters 3 and 6. However, in a multi-party setting as in cluster-
ing and recommender systems, Chapters 4 and 5, we proposed a system where
users have their own private data and the server has the secret key. This approach
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is preferred because if each user possesses his own secret key or a shared key to
protect his private data, the privacy-preserving protocolbecomes more resource
demanding as this approach requires deploying other cryptographic techniques
like threshold schemes which are considerably more costly compared to pro-
posed solutions in this thesis.

7.2 Achievements

Having noted that the cryptographic solutions for preserving privacy in a multimedia
application change depending on the above choices, we can now focus on the pro-
posed solutions for the challenges defined in Section 2.5. Note that the correctness
and the privacy requirements are satisfied and discussed foreach application in the
related chapters separately. In the followings, we providean overall view regarding
the addressed challenges and discuss their efficiency aspects.

7.2.1 Data Representation

In multimedia applications, we usually deal with values that can be classified as sig-
nals. As in the example of clustering, the users are represented in aR-dimensional
space in which the magnitude in each dimension can take integer values from a small
range, usually a few bits. Such a generalization can be made for many other multime-
dia applications since the data in question are usually in the form of signal samples
such as images, preferences and feature vectors. For example, in face recognition and
anonymous fingerprinting, the inputs are 8-bit gray scale images. In clustering and
recommender systems, we represent each user with his preference or rating vector
whose elements are only 4-bits. This observation can be seenas a significant advan-
tage in designing privacy-preserving multimedia applications but it has two important
aspects. Firstly, the assumption on the type of the values isnot true. Even though
the initial data might be integer values, they become real values throughout the pro-
cessing. For instance, the similarity value for two users inthe recommender system
is a real value between−1 and 1. However, existing public key cryptosystems mostly
work on integers. Secondly, the assumption on the size of thevalues is misguiding.
Computations might begin with values in a small range but during processing values
get larger. As an example, consider the Euclidean distance computation between two
vectors. Although the vector elements are small values, theresult of the computation
is larger in bit size. Note that, truncating intermediate values during the run of the
protocol is not practical since it requires interaction andcomputationally expensive
protocols for operations like division.

In this thesis, to cope with the non-integer form of values, we propose to scale
and round values with enough precision before encryption. The required precision
can be easily computed by analyzing the operations. In face recognition, for instance,
we propose to use a scaling factor of 1000 which is sufficient for the correctness
of the application. However, note that the scaling parameter will directly affect the
cryptographic protocols for the consequent steps. As discussed in Sections 3.5, 4.3
and 5.5, the cryptographic protocols work on the actual bit length of the values to
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be compared. With longer bit length, it takes more time to finish the cryptographic
comparison protocol. Thus, the length of the scaling factorplays an important role.

To eliminate the problems that may occur due to the increase in bit length of the
values, we propose to reserve sufficient space for the consequent computation steps.
For instance, in recommender systems, twok-bit user ratings are to be multiplied and
suchR values are to be added. Therefore, we reserve2k + log(R) bits for each value
(Section 5.4.1). Reserving sufficient space is especially important in the case of data
packing. As the signal values are packed one after another inone encryption and
going to be processed together, reserving enough space is necessary to guarantee the
correctness of the operations in the encrypted domain. Eachvalue should be placed in
compartments with a suitable size so that the expansion due to consequent processing
steps does not alter the other compartments. The size of the compartment for each
value can be calculated by analyzing the operations. Similar to scaling, the size of the
compartments effects the cryptographic protocols. Thus, the size of the compartments
should be determined by analyzing the required precision and operations.

7.2.2 Linear Operations and Homomorphism

Additive homomorphism plays a crucial role in processing encrypted data as it allows
adding and scaling values in the encrypted domain. This property is used frequently
in all of the applications covered in this thesis. In order toexplain the limitations of
homomorphism, we can investigate the linear signal processing operations covered in
this thesis.

The homomorphic encryption can be used to calculate distances (squared Eu-
clidean and Hamming) and correlation between two vectors. However, it depends on
application setting whether the whole computation can be done only by using homo-
morphism or not. As in clustering and recommender systems, distance computation
and Pearson correlation can be computed by one of the partiesusing homomorphism
(Sections 4.2.1 and 5.4.2). In both cases, each party has itsown private vector. The
correlation is computed by one of the parties upon receivingthe encrypted vector from
the other. On the other hand, as in the case of face detection,a similar computation,
squared Euclidean distance, requires running a secure multiplication protocol for the
computation of the product terms since the vectors to be processed are both private and
possessed by the same party while the secret key is possessedby the other (Section
3.4.2). These two different solutions for the computation of a similar signal processing
operation show that homomorphism is required but may not be sufficient depending
on the setting.

As another linear operation on encrypted data, it is also important to pay atten-
tion to blinding. While semantic security protects the content of encryption, it is not
sufficient to protect the data when the same party holds the decryption key as seen
in secure clustering (Section 4.2.3). In such cases, blinding, also known as masking,
plays an important role.

In face detection and recommender systems, two secure multiplication protocols
are needed (Sections 3.4.2 and 5.3.2). In face recognition,the server has an encrypted
value that he wants to keep it secret from the user and needs tosquare it. In recom-
mender system, the server has two encrypted values that he wants to keep secret from
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the PSP and needs to multiply them. In both cases, the procedure is the same. The
values are first blinded by adding a random value and sent to the other party who has
the decryption key. The blinded values are then decrypted, multiplied (or squared) and
encrypted. Upon receiving the encryption, the blinding factor is removed to obtain the
actual outcome of the multiplication.

Blinding also works in other key situations. In clustering,for instance, all users
need to send their encrypted data to the server to be accumulated (Section 4.2.3).
However, the server possesses the secret key and hence, he can observe the contents
of the encryptions that are sent by each user. To prevent the server from accessing
the users’ contribution for updating the centroids, each user blinds their contribution
in such a way that only when all contributions are added up, the server can obtain
the accumulated result. Therefore, blinding demonstratesa simple but effective tech-
nique of hiding private data. Similarly, in recommender systems, the user obtains the
recommendations by running a secure decryption protocol with the PSP in which the
content of the encryptions are kept secret by blinding the content (Section 5.3.3).

7.2.3 Non-Linear Operations and MPC

Linear operations are important for signal processing applications; however, they con-
stitute only a part of the processing. For instance, distance computations are often
followed by a decision like selecting the minimum distance.In order to realize such
non-linear operations in the encrypted domain, we need to exploit protocols based on
MPC techniques.

The prototypical applications selected for this thesis show that a crucial operation
for signal processing applications is comparison which takes two encrypted values and
outputs the comparison result encrypted. Having such a block in the encrypted do-
main, we can build a number of protocols for sorting, finding the minimum/maximum
of a set of encrypted values and thresholding (Sections 3.4.2, 4.2.3 and 5.4.2). Even
though the idea behind the comparison block is the same, the application and the set-
ting require subtle changes in the resulting protocol. To explain these differences,
consider the following tasks that involve comparison block:

• Face detection. The comparison block is used in a protocol which finds the
minimum value ofM encrypted distances by using binary-tree approach. The
outcome of this is eitherYesor No.

• Clustering. The same comparison block is used for finding the closest cluster
to a user in anR-dimensional space. As in face recognition,K encrypted dis-
tances are compared in a binary-tree fashion. But in order toobtain the index
of the cluster with the minimum distance, the protocol is modified such that
each comparison outputs not only the minimum distance but also its index. The
pointer to the closest cluster is kept secret both from the server and the user
during the several iterations of the protocol and revealed only to the user in the
end.

• Recommender system.The comparison block is used for obtaining an en-
crypted vector that consists of encrypted ones and zeros. Each element of this
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vector is an encryption of 1 if the corresponding similarityis above a public
threshold and an encryption of 0 otherwise. The comparison block used in this
application is redesigned to reflect two important changes:1) one of the inputs
of the comparison block is a publicly known value, i.e. a threshold and 2) the
encrypted values to be compared with a threshold are packed in one encryption.
These two factors resulted in a new comparison protocol which is less expensive
in terms of computation and communication costs since data packing reduces
the number of expensive randomization operations and the cost of communi-
cation. In addition, publicly known threshold allows us to realize part of the
operations in clear, introducing a considerable gain in computation time.

As it is explained above, different applications and different settings require a dif-
ferent protocol even if the underlying operation is the samesignal processing opera-
tion of comparison. Therefore, it is our conclusion that designing a single comparison
protocol and plugging it to several applications is not always possible. Depending on
which party has the data and the decryption key, what is public and what is private, the
cryptographic protocol changes. We anticipate that other non-linear signal processing
operations such as quantization may have a similar situation.

7.2.4 Data Expansion and Packing

As described previously, the bit length of data in multimedia applications even after
scaling is much smaller than the cipher text space. Once the individual signal samples
are encrypted, data expansion occurs which is usually in theorder of hundreds. This
data expansion introduces additional cost for data transmission and, if required, for
storage.

To overcome this problem, we introduced packing values similar to [2, 11, 3]. If
the application and the setting permit, packing values introduces a gain in the amount
of data transmitted. As an example, in the recommender system scenario, instead of
sendingM encrypted values, the user sends onlyR+1 whereM ≫ R, due to packing
M − R values that are to be used for generating recommendations (Section 5.4.1).

Depending on the application, it may also introduce a reduction in the number of
operations on the encrypted data. Considering the recommender system, the number
of times secure multiplication protocol is run (Section 5.3.2) is reduced fromR to 1
due to data packing. It is, however, notable that the cost of operations with the packed
data may increase for a number of reasons like the need of using larger random values
for blinding. Even in the case of an increase in the computational cost, data packing
may still be useful for a computationally powerful player with limited bandwidth.

A drawback of data packing appears when unpacking is required during the pro-
cessing. Unpacking is a costly, interactive protocol whichconsists of several decryp-
tions [3]. For applications in which unpacking is necessary, the cost of this operation
should be considered. Data should be packed in circumstances in which the gain by
packing is more than the cost of possible unpacking operations.
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7.2.5 Computational and Communication Costs

Data packing seems to be promising considering the communication cost as it in-
troduces a considerable reduction on the amount of transferred data as discussed in
previous sections. Even if the computational cost increases in some settings, data
packing should be considered for applications with a limited bandwidth.

Considering computational costs, working in the encrypteddomain is far more ex-
pensive than its counterpart in the plain domain. As an example, a clustering algorithm
takes a few seconds whereas its privacy-preserving versioncan take an hour (Section
4.5). This is due to time consuming operations such as addition, multiplication and
blinding in the encrypted domain. In addition to the time consuming operations, for
non-linear operations we also need to invoke interactive cryptographic protocols. To
reduce the computation cost, we investigated several options in this thesis:

• Packing. An effective way of reducing the number of operations in the en-
crypted domain is packing values when it is possible. By packing the number
of operations in the encrypted domain reduces since insteadof processing sev-
eral encrypted values, we process less of them.

• Precomputation. A considerable amount of time is consumed for generating
random values and randomizing encryptions. As it can be seenin Sections 3.7
and 4.5, generating random values and randomizing part of the encryptions prior
to start of the program or in the idle time of the processor canreduce the time
consumption significantly (by a factor of 3 in the case of secure clustering).

• Optimizations. Considering signal processing applications, redundant opera-
tions are hardly to be found. However, when we start working in the encrypted
domain, there are several costly operations that can be circumvented. As an ex-
ample, if values are added in the encrypted domain, instead of randomizing each
value separately during the encryption, the sum can be randomized only once
after the addition. An analysis of the implementation in depth can be rewarding.

7.3 Open Issues

In this thesis, we introduced principled solutions for preserving privacy in multimedia
applications based on homomorphism and MPC techniques. As the idea of merging
cryptography and signal processing is new, we investigateda number of challenges.
Further progress can be made if the followings are considered.

Security level and homomorphic encryption schemes.We propose to preserve pri-
vacy by encrypting private data with a homomorphic cryptosystem. As we encrypt sig-
nal samples in multimedia applications, the number of encryptions is in vast amount.
The encryption operations with currently available homomorphic encryption schemes
are time consuming. Considering that the encryption also causes data expansion, us-
ing existing homomorphic cryptosystems is expensive. Cryptographers may find it
interesting to analyze the sufficient level of security for protecting signal samples and



142 Chapter 7. Discussion

develop a cryptosystem particularly for signal processingpurposes.

Non-linear operations and MPC.The selected applications mostly consist of similar
signal processing operations such as computing distances,correlation and threshold-
ing. Other applications can be investigated to identify more operations. For instance,
in order to implement compression techniques, quantization is crucial. Similar other
operations should be considered in the context of secure signal processing.

Data packing. Packing has been used in this thesis and it proved its usefulness in
efficiency regarding communication and computational costs. Yet, it has not been
investigated in its full extent. For instance, scaling is possible if every value in the
packed encryption is to be scaled with the same constant. Thecase of scaling with
different factors is worth considering. In addition, existing unpacking operations can
be studied further to reduce the complexity of the protocol.

Complexity. The run-time of the privacy preserving version of the applications pre-
sented in this thesis is promising yet, further research is necessary to deploy the cryp-
tographic solutions for real use. While packing, precomputation and optimizations
can be useful, a major breakthrough can be achieved if there was a practical fully
homomorphic cryptosystem available. In such a case, expensive protocols that are re-
peated in vast amounts like secure multiplication protocolcould be eliminated. Until
such a cryptosystem is invented, reducing the computation cost of privacy-preserving
multimedia applications depends mostly on better protocoldesign and optimization of
the implementation.

Interaction. The cryptographic protocols for non-linear operations areinteractive and
require several rounds. In order to reduce the interaction,once again, a fully homo-
morphic cryptosystem is required.

Attacker model. Throughout this thesis, we proposed solutions based on semi-honest
model. In this model, each player acts according to the protocol but keeps every ex-
changed message to deduce extra information. However, in real life this might not be
the case. The proposed solutions should be considered foractive attackermodel in
which the protocol should be robust against active attackers who may manipulate the
protocol steps. In such cases, the required techniques for ensuring the correctness of
the protocol are more resource demanding as additional cryptographic protocols like
ZKPs for validating the actions are necessary. Such methodsand their cost in mali-
cious cases should be investigated.

Other cryptographic approaches.This thesis focuses on preserving privacy in mul-
timedia application based on homomorphism and MPC techniques that are built over
integer arithmetic. However, there is a large body of literature on the other MPC
techniques:

• Secret sharing.Cryptographic protocols based on secret sharing [10] are studied
in dept in literature. In a secret sharing scheme, a secret valuev is shared among
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an arbitrary number of parties. Each party who is given ashareof the secret,
can not obtain the secretv from his share. Only if a sufficient number of parties
combines their shares, the secretv can be reconstructed. Here, the sufficient
number of parties depends on the scheme and the application.

As secret sharing schemes are often defined over integers, operations such as
addition and multiplication by constant are significantly faster, even ‘free’ com-
pared to equivalent operations in this thesis. However, other operations like
multiplication of secrets require invoking protocols suchas [4]. Moreover, as
the data are shared between parties, the required storage space for an application
with vast amount of users can be demanding. Secret sharing can be an option
in secure signal processing however, further research is required to construct
protocols for multimedia applications and to identify the limitations.

An alternative realization of secret sharing schemes is by using semantically
secure homomorphic encryption schemes, assuming that we have a threshold
variation such as the Paillier variant [5]. In this case, sharing is equivalent to
distributing the encryptions of the secret and reconstruction to joint decryption.
However, this alternative has the disadvantage of expensive joint decryption
procedure in which sufficient number of users should provideinput to the de-
cryption.

• Garbled circuits (GC).As an MPC technique, garbled circuits focus on secure
evaluation of Boolean functions. Any polynomial size Boolean circuit can be
evaluated but rephrasing the application considered in this thesis as a Boolean
circuit may not be feasible due to the size of the circuit. However, hybrid so-
lutions that couple homomorphism and GC might be a good direction to in-
vestigate. Instead of rephrasing the whole application, a part of the protocol
can be evaluated by GC while the other parts are realized using homomorphism
and MPC techniques over integers. Recently, the hybrid ideahas been used for
preserving privacy for several scenarios [1, 6, 7, 8, 9], proving the effective-
ness of this approach. Further research is necessary to use GC for secure signal
processing.

7.4 Conclusion

Privacy is a severe concern among people who are using onlineapplications. To pre-
vent misuse of personal information and minimize the damage, several approaches are
considered in the community. Firstly, people need to be educated about the possible
threats. Educating people aims to increase theawarenessof the people so that they can
act responsibly when they are online. Secondly,the law and the regulationsneed to
be updated to reflect the recent changes regarding the onlineapplications and prevent
malicious behaviors. Unfortunately, this procedure takestime and not every threat is
foreseeable in the virtual world. Because of this, appropriate actions can only be taken
when the damage is done. Thirdly, we need to havetechnological solutionsto protect
the privacy of the individuals in the application level.
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In this thesis, as a technological solution, we proposed a new idea: secure signal
processing. This approach combines cryptography and signal processing during the
construction of the applications instead of applying cryptographic tools on top of the
application. As the field is very new, it contains many challenges. Only a part of
these problems have been addressed in this thesis. However,the proposed solutions
for secure signal processing have shown that our approach ispromising technological
direction to protect the privacy of the users.

In order to continue further research in this direction, we have the following mo-
tivations. First, privacy concerns are increasing rapidly. This concern is growing as
more ‘technological applications’ such as surveillance systems, taxing systems based
on miles driven, health care systems and smart card applications are integrated to our
lives. Second, regardless of the context of the application, the operations are from the
signal processing field and thus, there are many fundamentaloperations in the design
of such applications. Results obtained from the research onsecure signal processing
can be deployed in several other applications with certain modifications. For instance,
the setting and the proposed solution for secure face detection is not very different
than secure biometric identification or audio fingerprint detection.
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Summary

Recent advances in technology provided a suitable environment for the people in
which they can benefit from online services in their daily lives. Despite several advan-
tages, online services also constitute serious privacy risks for their users as the main
input to algorithms are privacy sensitive such as demographic information, shopping
patterns, medical records, etc. While traditional securitymechanisms can eliminate a
number of attacks from outside, these mechanisms can not protect the privacy of the
users as the service provider itself constitutes the biggest potential risk.

In this thesis, we focus on principled solutions to protect the privacy of users in
multimedia applications. For this purpose we propose to keep the privacy-sensitive
data safe by means of encryption during processing. This approach eliminates the
risk of possible privacy abuse as the sensitive data is only available to the owner but
no other party. However, once encrypted, the structure in data is destroyed as a con-
sequence of the encryption procedure and thus we need appropriate tools to process
encrypted data. Therefore, we focus on a number of cryptographic tools such as homo-
morphic encryption schemes and multiparty computation (MPC) techniques to realize
privacy-preserving multimedia applications. The proposed principled solutions con-
sider the signal processing aspect of the multimedia applications which is a new idea
to the best of our knowledge.

In particular, we focus on a number of prototypical applications namely, face de-
tection, user clustering in a social network, recommendation generation and anony-
mous fingerprinting. Based on these selected applications,we addressed the major
challenges for secure signal processing: data representation, data expansion, realizing
linear and non-linear operations and efficiency of the proposed protocols in terms of
communication and computational costs. We propose to scaleand round the signal
values prior to encryption as these operations are highly inefficient to be realized in
the encrypted domain. Moreover, we reserve sufficient spacein terms of bit length for
each signal sample to accommodate the possible expansion inbit size in the subse-
quent processing steps. However, reserving more bits for signals does not contradict
with the data expansion problem. As the cipher text space is much larger than the size
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of the original – and even scaled – signal samples, data expansion after encryption in-
creases data transmission and storage costs significantly.In order to minimize the cost
we propose to pack a number of signal samples in one encryption and process them
when they are in the packed form. This approach requires cryptographic protocols
particularly designed for the packed data but in the end saves considerable resources
regarding bandwidth and storage capacity, even computational power.

Homomorphism plays a crucial role in our proposed solutions. With the help of
homomorphic encryption, we are able to implement linear operations such as cor-
relation and projection without interaction. However, linear operations are only a
part of the signal processing. For the non-linear operations like distance computation,
thresholding and comparison, we exploit MPC techniques. These techniques are often
interactive and computationally expensive compared to theoriginal systems in plain.
However, by using data packing and designing the protocols with care, the communi-
cation and computational costs were reduced significantly.

In this thesis, we have shown that preserving privacy for multimedia signal pro-
cessing is feasible. We determined the major challenges of secure signal processing
and combined a set of cryptographic tools successfully withsignal processing to real-
ize the applications in the encrypted domain. The proposed solutions demonstrate that
the privacy concerns in multimedia signal processing applications can be coped with
by using cryptographic tools. Moreover, protocols that aredesigned to realize certain
operations in the encrypted domain can be used in other applications and settings with
a number of modifications.



Samenvatting

Recente vooruitgang in de technologie heeft een geschikte omgeving voor de mensen
gecrëeerd waarin zij kunnen profiteren van online diensten in hun dagelijks leven. On-
danks verscheidene voordelen, leveren online-diensten ook ernstige risico’s op voor
de privacy van hun gebruikers omdat de belangrijkste input voor algoritmen privacy-
gevoelig is, zoals demografische gegevens, winkelgedrag, medische dossiers, enz.
Terwijl er traditionele mechanismen bestaan tegen een aantal aanvallen van buitenaf,
kunnen deze mechanismen de privacy van de gebruikers niet beschermen omdat de
dienstverlener zelf het grootste potentiële risico vormt.

In dit proefschrift richten we ons op voorgestelde oplossingen om de privacy van
gebruikers in multimedia-applicaties te beschermen. Voordit doel stellen we voor om
de privacy-gevoelige gegevens te beveiligen door middel van versleuteling tijdens de
verwerking. Deze aanpak elimineert het risico van mogelijke schending van de pri-
vacy doordat de gevoelige gegevens alleen beschikbaar zijnvoor de eigenaar, maar
niet voor andere partijen. Echter, na versleuteling is de structuur in de gegevens
vernietigd als gevolg van de versleuteling procedure en duszijn geschikte instru-
menten nodig om versleutelde gegevens te verwerken. Daaromrichten we ons op
een aantal cryptografische instrumenten zoals homomorphische encryptie schema’s
en multiparty computation (MPC) technieken om privacy te behouden in multimedia-
applicaties. De voorgestelde oplossingen nemen het signaalverwerkingsaspect van de
multimedia-toepassingen in acht, hetgeen een nieuw idee is, voor zover wij weten.

In het bijzonder richten we ons op een aantal prototypische toepassingen, te weten:
gezichtsdetectie, gebruiker clustering in een sociaal netwerk, het genereren van aan-
bevelingen en anoniem fingerprinten. Op basis van deze geselecteerde toepassingen,
snijden we de grootste uitdagingen voor veilige signaalverwerking aan: data repre-
sentatie, gegevens expansie, het realiseren van lineaire en niet-lineaire operaties en de
efficiëntie van de voorgestelde protocollen op het gebied van communicatie en compu-
tationele kosten. Wij stellen voor om de signaalwaarden voorafgaand aan de codering
te schalen en af te ronden, daar deze operaties zeer inefficiënt zijn om te realiseren
in het versleutelde domein. Bovendien reserveren wij voldoende ruimte in termen
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van bit-lengte voor elk signaal sample om de mogelijke expansie in bit grootte in de
verdere verwerking stappen te accommoderen. Echter, het reserveren van meer bits
voor signalen is niet in tegenspraak met het gegevens-expansie probleem. Omdat de
cijfertekst ruimte veel groter is dan het formaat van de originele –en zelfs geschaalde–
signaal samples, verhoogt gegevens-expansie na versleuteling de datatransmissie- en
opslagkosten aanzienlijk. Met het oog op het minimaliserenvan de kosten stellen wij
voor om een aantal samples van het signaal in te pakken in een encryptie en te verw-
erken in de verpakte vorm. Deze aanpak vereist cryptografische protocollen met name
ontworpen voor verpakte gegevens, maar levert uiteindelijk aanzienlijke besparingen
op ten aanzien van bandbreedte, opslagcapaciteit, en zelfsrekenkracht.

Homomorfisme speelt een cruciale rol in onze voorgestelde oplossingen. Met de
hulp van homomorphische versleuteling zijn wij in staat om lineaire operaties uit te
voeren, zoals correlatie en projectie zonder interactie. Echter, lineaire operaties zijn
slechts een deel van de signaalverwerking. Voor de niet-lineaire operaties zoals af-
standsberekening, drempelmethode en vergelijking, benutten we MPC technieken.
Deze technieken zijn vaak interactief en computationeel duur in vergelijking met de
oorspronkelijke systemen in klare tekst. Echter, met behulp van gegevens-verpakking
en het met zorg ontwerpen van de protocollen, worden de communicatie- en compu-
tationele kosten aanzienlijk verminderd.

In dit proefschrift hebben we aangetoond dat het behoud van privacy voor mul-
timedia signaalverwerking haalbaar is. Wij hebben de groteuitdagingen van veilige
signaalverwerking aangewezen en met succes een reeks van cryptografische instru-
menten met signaalverwerking gecombineerd om de toepassingen in het versleutelde
domein te realiseren. De voorgestelde oplossingen tonen aan dat de privacy-aspecten
in multimedia signaalverwerkings toepassingen kunnen worden veiliggesteld door ge-
bruik van cryptografische middelen. Bovendien tonen we aan dat protocollen die zijn
bedoeld om bepaalde operaties te realiseren in het versleutelde domein kunnen worden
gebruikt in andere toepassingen en gebieden, met een aantalwijzigingen.
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