

Delft University of Technology

Learning optimal classification trees using a binary linear program formulation

Verwer, Sicco; Zhang, Yingqian

DOI
10.1609/aaai.v33i01.33011624
Publication date
2019
Document Version
Accepted author manuscript
Published in
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence

Citation (APA)
Verwer, S., & Zhang, Y. (2019). Learning optimal classification trees using a binary linear program
formulation. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (Vol. 33, pp. 1625-
1632). Association for the Advancement of Artificial Intelligence (AAAI).
https://doi.org/10.1609/aaai.v33i01.33011624
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1609/aaai.v33i01.33011624
https://doi.org/10.1609/aaai.v33i01.33011624

Learning Optimal Classification Trees Using a Binary Linear Program
Formulation

Sicco Verwer
Delft University of Technology

The Netherlands
s.e.verwer@tudelft.nl

Yingqian Zhang
Eindhoven University of Technology

The Netherlands
yqzhang@tue.nl

Abstract
We provide a new formulation for the problem of learning
the optimal classification tree of a given depth as a binary
linear program. A limitation of previously proposed Math-
ematical Optimization formulations is that they create con-
straints and variables for every row in the training data. As
a result, the running time of the existing Integer Linear pro-
gramming (ILP) formulations increases dramatically with the
size of data. In our new binary formulation, we aim to cir-
cumvent this problem by making the formulation size largely
independent from the training data size. We show experimen-
tally that our formulation achieves better performance than
existing formulations on both small and large problem in-
stances within shorter running time.

Introduction
Decision trees (Breiman et al. 1984) have gained increasing
popularity these years due to their effectiveness in solving
classification and regression problems and their capability to
explain prediction results. Learning an optimal decision tree
with a predefined depth is NP-hard (Hyafil and Rivest 1976).
Hence, greedy based heuristics such as CART (Breiman et
al. 1984) and ID3 (Quinlan 1986) have been widely used
to construct sub-optimal trees. Recent years have seen an
increasing number of work that employ various Mathe-
matical Optimization methods to build better quality deci-
sion trees, e.g., (Bennett and Blue 1996; Bessiere, Hebrard,
and OSullivan 2009; Verwer and Zhang 2017; Bertsimas
and Dunn 2017; Silva 2017; Dash, Günlük, and Wei 2018;
Blanquero et al. 2018a; 2018b; Firat et al. 2018).

An advantage of these Mathematical Optimization based
approaches is that they are able to employ the powerful
optimization solvers to find decision trees. This power has
led to interesting new approaches for learning models and
rules, see e.g., (Bessiere, Hebrard, and OSullivan 2009;
De Raedt, Guns, and Nijssen 2010; Narodytska et al. 2018;
Verwer, Zhang, and Ye 2017). In addition, the mathemati-
cal optimization models allow flexibility on modeling dif-
ferent learning objectives. For instance, (Verwer and Zhang
2017) incorporate constraints in the proposed Integer Lin-
ear Programming (ILP) model to learn discrimination-aware
classification trees. In this paper, we focus on the problem

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of learning optimal classification trees of given depths such
that the total classification error is minimized on the training
data.

A limitation of the state-of-the-art Mathematical Opti-
mization formulations for this problem is that they cre-
ate constraints and variables for every row in the training
data (Verwer and Zhang 2017; Bertsimas and Dunn 2017).
Consequently, the solving time of finding decision trees in-
creases dramatically with the problem size.

We formulate the problem of constructing the optimal de-
cision tree of a given depth as an binary linear program. We
call our method BinOCT, a Binary encoding for constructing
Optimal Classification Trees. Our novel formulation models
the selection of decision threshold via a binary search pro-
cedure encoded using a type of big-M constraints. This re-
quires a very small number of binary decision variables and
is therefore able to find good quality solutions within limited
time. Noteworthy is that the number of decision variables
is largely independent of the number of training data rows:
it only depends logarithmically on the number of unique
feature values. Furthermore, our formulation requires fewer
constraints than existing approaches. Although this number
still depends linearly on the number of data rows. We show
using experiments that BinOCT outperforms existing MO
based approaches on a variety of data sets in terms of accu-
racy and computation time.

Related work
Many studies have investigated the interplay of data min-
ing and machine learning with mathematical modeling
techniques, see overview in e.g. (Bennett and Parrado-
Hernández 2006). In this paper, we are interested in us-
ing mathematical optimization methods in order to increase
learning performance. For instance, (Bennett and Mangasar-
ian 1993) use linear programming for determining linear
combination splits within two-class decision trees. (Chang,
Ratinov, and Roth 2012) propose a Constrained Conditional
Model (CCM) framework to incorporate domain knowledge
into a conditional model for structured learning, in the form
of declarative constraints. CCMs solves prediction prob-
lems. (Uney and Turkay 2006) build a mixed integer pro-
gram for multi-class data classification.

(Bennett and Blue 1996) construct binary classification
trees with fixed structure and labels. The paths of the tree are

encoded as disjunctive linear inequalities, and non-linear ob-
jective functions are introduced to minimize errors. (Norouzi
et al. 2015) link the decision tree optimization problem
with the problem of structured prediction with latent vari-
ables, and use stochastic gradient descent to optimize an
upper bound on the empirical loss of the tree’s predic-
tions. (Dash, Günlük, and Wei 2018) propose a mathemat-
ical optimization model for learning boolean decision rules
in disjunctive form or conjunctive normal form. The pro-
posed model takes into account the trade-off between ac-
curacy and the simplicity of the chosen rules and is solved
via a column generation method. (Blanquero et al. 2018a;
2018b) use a continuous optimization formulation to learn
classification trees, where random decisions are made at
internal nodes of the tree. Their approach is essentially a
randomized optimal version of CART. (Rhuggenaath et al.
2018) build a mixed integer linear program to learn fuzzy
decision trees, where split decisions on the internal nodes of
a tree are not crisp. (Firat et al. 2018) apply column gener-
ation techniques in constructing univariate binary classifica-
tion trees. By using threshold sampling on decision nodes
of the tree, the proposed approach trades its optimality for
speed, i.e., it is capable of handling big data sets with tens
of thousands of data rows.

The most relevant work to ours are (Bertsimas and Sh-
ioda 2007; Bertsimas and Dunn 2017; Verwer and Zhang
2017). In these papers, the authors formulate the problem of
learning classification trees of depth K using Integer Lin-
ear programs (ILP). The model proposed in (Bertsimas and
Shioda 2007) is quadratic in the data set size and therefore
requires a lot of preprocessing in order to reduce the number
of generated constraints. The number of decision variables
in the ILP model of (Bertsimas and Dunn 2017) is O(R·2K),
where R is the number of data rows. In (Verwer and Zhang
2017), a more efficient encoding is proposed for construct-
ing both classification and regression trees, where the num-
ber of decision variables is reduced to O(R · K). (Bertsi-
mas and Dunn 2017) show their model is in general better
than CART in terms of testing accuracy when the running
time was set to two hours for solving each instance. (Ver-
wer and Zhang 2017) also compare their model with CART.
Their model outperforms CART with trees up to depth 5 on
datasets of size up to 1000.

Learning optimal classification trees as binary
linear programs (BinOCT)

We assume readers to be familiar with classification trees,
see, e.g., (Flach 2012). The optimization problem that we
aim to solve is to find an optimal classification tree of depth
K for a given dataset of R rows and F features, such that
the total classification error is minimized. The Boolean de-
cisions on each internal nodes of the tree and predictions
on the leaves are variables and need to be set such that the
classification accuracy is optimized. We solve this problem
by formulating it as a Binary Linear Program (BLP), which
contains only binary decision variables.

Formulation Intuition
Our formulation for classification trees aims to reduce the
dependence of the problem size with the size of the train-
ing data. In existing formulations this dependence is present
in both the number of constraints and the number of deci-
sion variables, see Table 2. The number of (boolean) deci-
sion variables that our formulation requires is significantly
smaller than that in the previously proposed methods. More-
over, this number is independent of the number of training
data rows. Instead, it depends on the maximum amount of
unique feature values among all features. Similarly, we also
aim to minimize the number of constraints required by our
formulation. Below, we first explain the key ideas required to
understand our formulation using small examples. We may
slightly abuse notations during explanation. At the end of
this section, we provide the complete formulation.

Boolean Decision Thresholds. In contrast to earlier for-
mulations that use continuous or integer decision thresholds
for each internal node, we represent decision thresholds us-
ing only binary variables. When the feature used in the deci-
sion is binary, the formulation is intuitive, as explained be-
low. Assume we are learning a tree consisting of a single
decision node. Let lr,1 and lr,2 be binaries indicating that
data row r reaches leaf 1 in the left and leaf 2 in the right
branch from the root node. A row has to reach a single leaf:

lr,1 + lr,2 = 1.

Let tn be a binary variable for the binary decision threshold
for node n, that is, depending on the value of tn, a data row
goes to the left or right branch of node n. Hence, leaf 1 is
reached by row r when tn is 0. Leaf 2 is reached by row r
when tn is 1. This can be encoded by adding the following
two constraints

lr,1 + tn ≤ 1 and lr,2 − tn ≤ 0.

These constraints force lr,1 to be 0 when tn equals 1 and lr,2
to 0 when tn equals 0. The first constraint then guarantees
that the leaf not forced to 0 is reached by row r. Note that al-
though the leaf variables l are boolean, they can be modeled
as continuous because the above constraints force them to be
either 0 or 1. This makes the problem significantly easier be-
cause when an optimization solver is used to solve the given
BLP model, continuous variables do not have to be consid-
ered as branching nodes during its branch-and-bound search,
i.e., they can be solved using standard linear programming.

Combining Constraints. A naive formulation based on
this intuition would require a large number of constraints,
i.e., at least one for every row in the training data. We sig-
nificantly reduce this number by the observation that we can
simply sum the above constraints of threshold checking for
all data rows r with feature value V f

r equal to 1, i.e.,∑
r:V f

r =1

lr,1 +M · tn ≤M and
∑

r:V f
r =1

lr,2 −M · tn ≤ 0,

where M =
∑

r:V f
r =1 1. Like before, lr,1 = 0 when tn = 1,

and lr,2 = 0 when tn = 0, only now this is forced for all

rows in the training data. Although it is known that integer
programming solvers can experience difficulties with such
big-M formulations, in our experience and as shown in the
experiments it solves much faster than creating additional
constraints for every row in the training data. In the case of
larger trees, we can safely add all leaves under the left and
right branch to the constraints since their sum is at most 1:∑

r:V f
r =1

∑
i∈ll(n)

lr,i +M · tn ≤M

∑
r:V f

r =1

∑
i∈rl(n)

lr,i −M · tn ≤ 0, (1)

where ll(n) and rl(n) are the set of leaves under the left
and right branches of node n, respectively, M =

∑
r:V f

r =1 1
and tn is a binary threshold variable for node n. An impor-
tant observation is that since we force the leaf variables lr,i
to be 0, these constraints can be created for every node in the
tree without influencing each other. Together they represent
row r’s path to the leaf i with lr,i equal to 1, i.e., not forced
to 0 by any of the node constraints.

Integer Decision Thresholds. The node constraints above
are sufficient for modeling all paths of all training data rows
when the decision thresholds are boolean. A naive method
to transform integer or continuous valued features to binary
ones is using a unary representation that uses one variable
per decision threshold. Instead, we use a binary representa-
tion for the decision thresholds that requires exponentially
fewer variables.

Example 1 For ease of explanation, we assume that we aim
to find a single decision node n for the following training
set, which contains only one feature with 9 distinct feature
values. The rows are ordered using the feature values:

feature value 0 1 2 3 4 5 6 7 8
target class + + + - - + - + +

Because there is no reason to split groups of examples
that have the same label, there are 4 sensible thresholds we
can use to split data. In theory it could occur in multivariate
datasets such a split is needed to find the optimal tree. We
still remove them from consideration to reduce the size of
the learning problem, in this case from 8 to 4 possible thresh-
olds. We model these 4 possible thresholds using log2 4 = 2
binary variables tn,1 and tn,2 as shown in Figure 1.

Thus, if tn,1 is 1, the threshold is one of the first two possi-
ble thresholds th(1) or th(2). In our example, such a setting
implies that any rows with a feature value greater than 4.5
(the 2nd threshold value) cannot reach any of the leaves un-
der the left branch of node n. Similarly, when tn,1 is 0, any
rows with a feature value less then 5.5 (the 3rd threshold
value) cannot reach any of the leaves under the right branch
of node n. This results in the following constraints, updated
from Equation (1):∑

r:th(2)<V f
r <th(4)

∑
i∈ll(n)

lr,i +M · tn,1 ≤M

0-2 + 3-4 - 5 + 6 - 7-8 +

1

1 1 0

0

0

th(1) th(2) th(3) th(4)

Right LeafLeft Leaf

Node n

Figure 1: A decision tree with one internal node. Inside of
this node, a binary search tree is used to represent one of
the 4 possible threshold values th(1)-th(4) for Example 1.
The edges on the arcs denote the value settings of the binary
variables tn,i, with i the depth of the search tree. Thus set-
ting tn,1 to 1 and tn,2 to 0 corresponds to selecting threshold
th(2). The boxes show the feature value ranges and class
values to the left and right of every decision threshold. A
threshold setting of th(2) forces all rows with values from
the first two boxes to reach the left leaf, and all rows with
values from the last three boxes to reach the right leaf.

∑
r:th(1)<V f

r <th(3)

∑
i∈rl(n)

lr,i −M ′ · tn,1 ≤ 0,

where th(i) returns the ith threshold value, and
the constants M and M ′ are

∑
r:th(2)<V f

r <th(4) 1 and∑
r:th(1)<V f

r <th(3) 1, respectively. Notice that these con-
straints force all rows with a feature value of 5 (both greater
than the 2nd and smaller than the 3rd threshold) to either the
left or right branch, depending on the setting of tn,1. Further-
more, notice we do not create these constraints for rows with
feature values below the lowest (th(1)) or above the high-
est (th(4)) threshold. Rows with values below the minimum
threshold can never follow the right branch, no matter which
threshold is chosen. The reverse holds for rows with values
above the largest threshold and we use separate constraints
to model these extreme values, which we discuss later.

The second binary variable tn,2 is then used to force
the direction for the remaining rows with values between
th(1) and th(2), and between th(3) and th(4). Whether tn,2
forces this for the first or last range depends on the value of
tn,1. We first show the first range and include the higher or-
der bit of tn,1 using big-M values:∑
r:th(1)<V f

r <th(2)

∑
i∈ll(n)

lr,i +M · tn,1 +M · tn,2 ≤ 2 ·M

∑
r:th(1)<V f

r <th(2)

∑
i∈rl(n)

lr,i −M · tn,2 ≤ 0,

where M =
∑

r:th(1)<V f
r <th(2) 1. Notice that we have to

add M · tn,1 only for the left leaves. This is due to an effect
of threshold value decisions. If tn,2 = 0, the threshold is
either th(2) or th(4). Independent of the value of tn,1, the

rows with feature values in range [th(1), th(2)] cannot reach
any leaf under the right branch of node n. These rows have
feature values that are smaller than either threshold value. In
the same way, we make the constraints for the upper range:∑

r:th(3)<V f
r <th(4)

∑
i∈ll(n)

lr,i +M · tn,2 ≤M

∑
r:th(3)<V f

r <th(4)

∑
i∈rl(n)

lr,i −M · tn,1 −M · tn,2 ≤ 0,

with M =
∑

r:th(3)<V f
r <th(4) 1.

Example 2 Let us see the effect of the above 6 constraints
on our example data. For simplicity, we use the feature value
also as row number, i.e., lr,i where 0 ≤ r ≤ 8, and we
assume there is only one single left leaf 1 and one single
right leaf 2 for node n. After writing out the above defined
constraints, we obtain in order:

l5,1 + l6,1 + 2 · tn,1 ≤ 2

l3,2 + l4,2 + l5,2 − 3 · tn,1 ≤ 0

l3,1 + l4,1 + 2 · tn,1 + 2 · tn,2 ≤ 4

l3,2 + l4,2 − 2 · tn,2 ≤ 0

l6,1 + 1 · tn,2 ≤ 1

l6,2 − 1 · tn,1 − 1 · tn,2 ≤ 0.

The effect of setting tn,1, tn,2 to 1,1 is that l5,1 and l6,1 are
forced to 0 by the first constraint. l3,1 and l4,1 are forced to 0
by the third constraint. l6,1 is (again) forced to 0 by the fifth
constraint. Since the feature values of the last two rows are
largest, the last two rows cannot end up in the left leaf, that
is, l7,1 and l8,1 are always 0. Similarly, l0,1, l1,1, and l2,1
are always 1. This results in the following table, which we
extend with all possible settings of tn,1 and tn,2. Note that
since we have two leaves, forcing li,2 to be 0 causes li,1 to
be set to 1:

tn,1 tn,2 l0:2,1 l3,1 l4,1 l5,1 l6,1 l7:8,1
1 1 1 0 0 0 0 0
1 0 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0

This correctly models which rows reach which leaves under
the 4 different threshold settings.

In our formulation, we extend this idea to arbitrary ranges
of threshold values by using a simple recursive routine to
generate the corresponding constraints. We make sure that
every tn,i bit of the binary encoding divides the possible
threshold values in half. The first tn,1 is thus always impor-
tant because it eliminates half of the possible paths of rows
(that reach node n) to leaf nodes. Intuitively, this makes it
easier for the solver to find solutions since it can eliminate
many possible solutions by fixing only a few binary values.
Notice also that the used big-M values change depending on
the number of influenced rows. In this way, We obtain few
constraints with very large M values but few decision vari-
ables, and many constraints with small M values but several
decision variables.

In the following, we use bin(f) to denote the result of
our recursive routine for feature f . For each feature f , we
compute the number of possible threshold values Tf as fol-
lows. We sort all unique feature values and create thresholds
between every two subsequent values, unless all rows with
those values belong to the same class (see the small exam-
ple in Example 1). Pseudocode for the recursive routine for
each feature is given in Algorithm 1. Initially, the algorithm
is called with (1, Tf , 1). The algorithm returns a set (or iter-
ator) b ∈ bin(f) over the lower lr(b) and upper ur(b) value
ranges, and the required tn,t variables (tl(b)) for the left and
right leaf nodes.

Algorithm 1 Obtaining the binary encoding value ranges
1: procedure BIN(min, max, depth)
2: Let b be a binary value range
3: if max−min <= 1 then
4: lr(b) = [th(min), th(max)] lower range of b
5: ur(b) = [th(min), th(max)] upper range of b
6: return [b]
7: end if
8: result = [b]
9: mid = FLOOR((max−min)/2.0)

10: lr(b) = [th(min), th(min+mid+ 1)] lower range
11: ur(b) = [th(min+mid), th(max)] upper range
12: tl(b) = tr(b) = [depth] include current depth tn,t

13: for b′ in BIN(min, min+mid, depth+ 1) do
14: tl(b′) = tl(b′) + [depth] include tn,t for ll(n)
15: result = result + [b′]
16: end for
17: for b′ in BIN(min+mid+ 1, max, depth+ 1) do
18: tr(b′) = tr(b′) + [depth] include tn,t for rl(n)
19: result = result + [b′]
20: end for
21: return result
22: end procedure

Features So far, the formulation of node constraints as-
sumed there is only one single feature we can choose from
when determining thresholds at internal nodes. For a general
case with multiple features, in order to select which feature
to use in a node constraint, we add another big-M multi-
plier, for all features f (1 ≤ f ≤ F) and binary ranges
b ∈ bin(f):

M ·fn,f+
∑

r∈lr(b)

∑
l∈ll(n)

lr,l+
∑

t∈tl(b)

M ·tn,t ≤M+
∑

t∈tl(b)

M

M ′ · fn,f +
∑

r∈ur(b)

∑
l∈rl(n)

lr,l −
∑

t∈tl(b)

M ′ · tn,t ≤M ′,

where M =
∑

r∈lr(b) 1, M ′ =
∑

r∈ur(b) 1, and ll(n)

(rl(n)) is the set of node n’s leaves under the left (right)
branch. The additional big-M ensures that these constraints
only have effect when fn,f is equal to 1. Of course, we re-
quire that exactly one feature is selected for every decision
node n: ∑

1≤f≤F

fn,f = 1.

All that remains for modeling the nodes of the decision tree
is to add constraints for rows with feature values greater than
the largest threshold, or lower than the smallest threshold.
These are forced to 0 using only the node feature variable
fn,f , for all features f :

M ·fn,f+
∑

r:maxt(f)<V
f
r

∑
l∈ll(n)

lr,l+
∑

r:V
f
r <mint(f)

∑
l∈rl(n)

lr,l ≤ M,

where M =
∑

r:maxt(f)<V f
r
1 +

∑
r:V f

r <mint(f)
1, and

maxt(f) and mint(f) are the minimum and maximum de-
cision thresholds for feature f .

Objective Function The node constraints described above
model the influence of the decision variables tn,t and fn,f on
which leaf node lr,l each of the training data row reaches. We
create our objective function using these leaf node (not de-
cision) variables. Similarly to the node constraints, we com-
bine the objective values of as many rows as possible using
a big-M value. In this case, we combine all that end in the
same leaf with the same target class. For all leaves l and tar-
get classes c: ∑

r:Cr=c

lr,l −M · pl,c ≤ el,c,

where M =
∑

r:Cr=c 1, Cr is the class of row r, pl,c is a
binary decision variable indicating whether leaf l predicts
class c, and el,c is the number of misclassifications for class
c in leaf l. Lastly, every leaf predicts exactly one class value:∑

1≤l≤L

pl,c = 1.

The BinOCT model
We now present the full formulation for learning optimal
classification trees as follows. The objective is to minimize
the total classification error. Table 1 lists the used notation.

min
∑

l,c el,c s.t.

∀n
∑

f fn,f = 1

∀r
∑

l lr,l = 1

∀l
∑

c pl,c = 1

∀n,f,b∈bin(f) M · fn,f +
∑

r∈lr(b)
∑

l∈ll(n) lr,l +∑
t∈tl(b) M · tn,t −

∑
t∈tl(b) M ≤M

∀n,f,b∈bin(f) M ′ · fn,f +
∑

r∈rr(b)
∑

l∈rl(n) lr,l −∑
t∈tl(b) M

′ · tn,t ≤M ′

∀n,f M ′′ · fn,f +
∑

maxt(f)<f(r)

∑
l∈ll(n) lr,l +∑

f(r)<mint(f)

∑
l∈rl(n) lr,l ≤M ′′

∀l,c
∑

r:Cr=c lr,l −M ′′′ · pl ≤ el,c

with 1 ≤ n ≤ N, 1 ≤ f ≤ F, 1 ≤ r ≤ R, 1 ≤ l ≤
L, 1 ≤ c ≤ C unless stated otherwise. How to derive the

Symbol Type Definition
n index internal (non-leaf) node in the tree, 1 ≤ n ≤ N

l index leaf of the tree, 1 ≤ l ≤ L

r index row in the training data, 1 ≤ r ≤ R

f index feature in the training data, 1 ≤ f ≤ F

c index class in the training data,1 ≤ c ≤ C

bin(f) set feature f ’s binary encoding ranges
lr(b) set rows with values in b’s lower range, b ∈ bin(f)

ur(b) set rows with values in b’s upper range
tl(b) set tn,t variables for b’s ranges
ll(n) set node n’s leaves under the left branch
rl(n) set node n’s leaves under the right branch
K constant the tree’s depth
N = 2K − 1 constant the number of internal nodes (not leaves)
L = 2K constant the number of leaf nodes
F constant the number of features
C constant the number of classes
R constant the number of training data rows
T constant the total number of threshold values
Tf constant number of threshold values for feature f

Tmax constant maximum of Tf over all features f
V f
r constant feature f ’s value in training data row r

Cr constant class value in training data row r

mint(f) constant feature f ’s minimum threshold value
maxt(f) constant feature f ’s maximum threshold value
M constant minimized big-M value
fn,f binary node n’s selected feature f

tn,t binary node n’s selected threshold t

pl,c binary leaf l’s selected prediction class c
el,c continuous error for rows with class c in leaf l
lr,l continuous row r reaches leaf l

Table 1: Summary of notation used in the encoding.

smallest M values for different constraints and the details
of equations have been described in the previous subsec-
tions. All decision variables fn,f , tn,t, and pl,c are binary.
The number of fn,f variables is bounded by N · F . The
number of tn,t variables in bounded by N · log(Tmax). Note
Tmax is no more than the number of distinct values for each
feature. The number of pl,c variables is bounded by L · C.
For a depth K tree, the formulation thus requires at most
N ·(F+log(T))+L·C ≤ 2k(F+C+log(T)) decision vari-
ables. This depends linearly on the number of features and
class values, and only logarithmic on the number of possible
decision boundaries. Most importantly, this is independent
from the number of data rows as long as new rows do not
add new features, possible thresholds, or class values.

The number of constraints required by our formulation is
bounded by N+R+L+2·N ·F ·T+L·C. This bound sim-
ply derived from the formulation given above. To see that the
two ∀n,f,bin(f) and ∀n,f results in at most 2 ·N · F · T con-
straints one only has to observe that we create a single such
constraint for every branch of the binary search tree given
in Figure 1, plus one for the minimum and maximum value
ranges. This creates 2 constraints for every possible decision
threshold (actually -1 because we combine the minimum and
maximum ranges). Frequently, the 2 · N · F · T will be the
largest term. This term is however an over estimation and
because the number of constraints is different for every fea-

ture. For example, if a feature only has two possible values
(coming from a one-hot encoding for instance), then there is
only a single decision threshold and we require only a sin-
gle constraint to model the node’s behavior for that feature
(only the minimum and maximum value ranges). Sometimes
R will be the dominating term, i.e., when the training data
set is large and the number of possible thresholds is small.

As table 3 shows, our formulation results in very few bi-
nary decision variables. Even for problems with thousands
of rows, we only require a few hundred binaries.

Method # decision variables # constraints
BinOCT O(2K(F + C + log(Tmax))) O(R + 2K(F · Tall + C))

DTIP O(R ·K) O(R · 2K−1)

OCT O(R · 2K) O(2K−1(R ·K + C))

Table 2: The number of decision variables and constraints
used in three methods: our method BinOCT, DTIP in (Ver-
wer and Zhang 2017), and OCT in (Bertsimas and Dunn
2017). R is the number of data rows, F number of features,
C number of classes, K depth of tree. Tmax is the maximum
number of thresholds for any feature and Tall is the number
of all decision thresholds over all features.

binaries rows columns
Balance-scale 153 839 5161
Car 184 1197 12600
Iris 183 1444 1431
Statlog-sat. 741 65284 36309

Table 3: Sizes of depth 4 training problems (containing 50%
of the data) reported by Cplex.

Dataset R F C Tmax Tall

Balance-scale 625 4 3 4 16
Bank marketing 10% 4521 17 2 799 1690
Banknote-authentification 1372 4 2 624 1855
Car-evaluation 1728 5 4 3 14
Ionosphere 351 34 2 94 2312
Iris 150 4 2 23 56
Monks-problems-1 124 6 2 3 11
Monks-problems-2 169 6 2 3 11
Monks-problems-3 122 6 2 3 11
Pima-Indians-diabetes 768 8 2 309 857
Qsar-biodegradation 1055 41 2 437 4178
Seismic-bumps 2584 18 2 311 1120
Spambase 4601 57 2 1174 8006
Statlog-satellite 4435 36 6 80 2217
Tic-tac-toe-endgame 958 18 2 1 18
Wine 178 13 3 70 710

Table 4: The datasets used in the experiments.

Experiments
To solve classification problems, given a training dataset,
We formulate the learning problem using the proposed for-
mulation. The resulting BinOCT model is passed to the
optimization solver CPLEX 12.8.0, running on an AMD

Ryzen machine with 16GB RAM, which returns the best
solution (i.e., a classification tree with highest accuracy) it
can find within the given time limit. We provide CPLEX
with a priority order such that variables closer to the root
of the tree get solved first. We test our method on bench-
mark datasets from the UCI machine learning repository
(Lichman 2013). We compare the performance of BinOCT
with OCT (Bertsimas and Dunn 2017) and DTIPs (Verwer
and Zhang 2017), two recently proposed ILP-based classi-
fication algorithms. We use the accuracy in the cited pa-
pers for comparison. We also run CART from sciki-learn
with its default parameter setting (i.e., criterion=gini, split-
ter=best, min samples split=2, min samples leaf=1, max
leaf nodes=None), except that the maximum depths of the
trees generated by CART are set to the same depths as
BinOCT. In addition, as in (Bertsimas and Dunn 2017;
Verwer and Zhang 2017), BinOCT is solved by CPLEX with
warm starts learned from CART to investigate whether this
helps find better solutions. We name it BinOCT*.

In order to compare to OCT, we use the same experi-
ment settings as in (Bertsimas and Dunn 2017). For a given
dataset, 50% of the dataset are used for training and 25% for
testing. As we do not have hyperparameters to tune in our
model, the remaining 25% are not used. The split is down
randomly five times. We report the average performance of
five experiments for each dataset. We chose datasets (see Ta-
ble) containing no missing values since it is not clear how
the authors of (Bertsimas and Dunn 2017) pre-processed the
datasets with missing values.

The time limit for BinOCT is set to 10 minutes for each
instance. In comparison, OCT used 30 minutes to 2 hours
to solve each instance in (Bertsimas and Dunn 2017), and
DTIPs was run at most 30 minutes in (Verwer and Zhang
2017). We learn trees with depths ranging from 2 to 4.

Our implemented models, the code, and the used
training and testing data sets are available online at
https://github.com/SiccoVerwer/binoct.

Results
We tested our method on 16 datasets. The number of data
rows in these datasets range from 124 to 4601, and the num-
ber of features from 4 to 57.

In Table 5, we report the accuracy on the training data. As
explained earlier, each dataset was split randomly 5 times.
The accuracy value of BinOCT and CART in the table is the
average accuracy on five training sets. Since DTIPs in (Ver-
wer and Zhang 2017) used the complete dataset for training,
we also include in the table the reported CART results from
(Verwer and Zhang 2017). The training results of OCT are
absent in (Bertsimas and Dunn 2017).

BinOCT and BinOCT* found the optimal trees when
the problem size is small. For learning trees of depth 2,
they returned the optimal trees on 9 out 16 datasets. On
small datasets such as Iris and Wine, the learned trees
from BinOCT and BinOCT* are optimal even with depth
4. Our method nearly always outperforms CART, no mat-
ter whether it is fed with starting solutions from CART. The
depth 3-4 instances of Statlog-sat are too hard to solve within
10 minutes. These problems have many features, classes,

Dataset BinOCT BinOCT* CART/R DTIPs BinOCT BinOCT* CART/R DTIPs BinOCT BinOCT* CART/R DTIPs
k=2 k=3 k=4

Balance-scale 73.3* 73.3* 71.7 79.2 78.7 76.5 84.8 84.1 82.9
Bank market. 10% 90.3 90.3 89.9/90.1 90.1 90.4 90.9 90.7/90.4 90.6 90.6 91.8 91.6/91.2 91.3
Banknote-auth. 93.4* 93.4* 91.7 97.8 97.7 94.6 99.4 99.7 97.4
Car-evaluation 76.9* 76.9* 76.9* 80.5 80.4 79.0 85.3 85.7 84.2
Ionosphere 91.1 91.2 91.0 94.3 94.9 93.8 96.8 97.1 96.0
Iris 96.8* 96.8* 96.8*/96* 96* 100* 100* 98.1/97.3 99.3* 100* 100* 100*/99.3 100*
Monks-probl-1 83.5* 83.5* 76.8 92.6* 92.6* 81.6 99.4 99.4 86.1
Monks-probl-2 69.8* 69.8* 65.2 79.5 79.5 70.0 86.7 86.9 79.8
Monks-probl-3 93.8* 93.8* 93.8* 95.7* 95.7* 94.8 97.7 98.0 95.7
PI-diabetes 79.3 79.3 77.3/77.2 77.7 81.6 81.3 78.9/77.6 79.4 83.0 84.7 82.9/79.3 82.6
Qsar-biodeg. 80.9 81.2 80.5 83.9 85.8 85.3 84.6 89.1 88.7
Seismic-bumps 93.5 93.4 93.1 93.7 93.7 93.4 93.7 94.2 93.9
Spambase 85.6 86.7 86.0 86.1 90.2 89.6 84.8 91.9 91.6
Statlog-sat. 68.8 66.7 63.2 72.7 80.5 78.7 66.5 81.6 81.6
Tic-tac-toe 72.1* 72.1* 71.2* 79.2 77.6 75.4 85.2 85.3 84.4
Wine 97.3* 97.3* 95.7 100* 100* 99.3 100* 100* 100*

Table 5: Training accuracy of BinOCT, BinOCT* (BinOCT with CART as starting solutions), CART, R (CART in (Verwer and
Zhang 2017), DTIPs. The symbol * next to the values means that the solutions are optimal. The best performing method at
same depths is marked in bold.

Dataset BinOCT BinOCT* CART/R OCT BinOCT BinOCT* CART/R OCT BinOCT BinOCT* CART/R OCT
k=2 k=3 k=4

Balance-scale 69.3 69.3 67.5/64.5 67.1 73.4 71.3 70.6/70.4 68.9 79.6 78.9 77.5/73.4 71.6
Bank market. 10% 90.3 90.3 88.9/ 88.4 88.5 88.8/70.4 88.5 88.5 88.5/
Banknote-auth. 91.7 91.7 90.6/89.0 90.1 96.2 96.6 93.6/89.0 89.6 97.7 98.1 95.8/89.0 90.7
Car-evaluation 77.8 77.8 77.8/73.7 73.7 79.9 80.4 78.9/77.4 77.4 85.2 86.5 84.8/78.8 78.8
Ionosphere 88.6 87.7 87.7/87.8 87.8 87.0 85.5 86.4/87.8 87.6 86.8 88.6 87.5/87.8 87.6
Iris 96.3 95.8 95.8/92.4 92.4 96.3 97.9 95.8/92.4 93.5 96.3 98.4 97.9/92.4 93.5
Monks-prob-1 80.0 80.0 68.4/57.4 67.7 83.2 80.0 76.8/65.8 70.3 85.8 87.1 74.2/68.4 74.2
Monks-prob-2 58.1 54.4 54.0/60.9 60.0 59.5 55.3 56.7/60.9 60.0 61.4 63.3 63.3/62.8 54.0
Monks-prob-3 93.5 93.5 93.5/94.2 94.2 85.2 89.7 92.3/94.2 94.2 87.7 84.5 93.5/94.2 94.2
PI-diabetes 75.4 75.3 74.7/71.9 72.9 73.1 74.4 73.3/70.6 71.1 72.8 73.0 73.9/71.7 72.4
Qsar-biodeg. 78.6 78.1 76.8/76.4 76.1 79.6 81.3 80.2/78.5 78.6 80.0 81.0 81.9/79.6 79.8
Seismic-bumps 93.9 93.8 94.0/93.3 93.3 93.6 92.8 93.1/93.3 93.3 93.6 92.6 92.6/93.3 93.3
Spambase 85.3 85.7 85.4/84.2 84.3 85.8 88.9 88.5/86.0 86.0 84.8 89.5 89.7/86.0 86.1
Statlog-sat. 67.5 65.7 63.4/63.2 63.2 71.6 79.2 77.3/77.7 77.9 65.9 79.9 79.9/78.2 78.0
Tic-ta-toe 67.3 67.3 67.2/68.5 69.6 72.8 70.6 73.8/73.1 74.1 77.7 78.8 80.1/74.2 73.3
Wine 90.7 91.1 88.0/81.3 91.6 88.0 92.0 88.0/80.9 94.2 85.8 89.8 88.9/80.9 94.2

Table 6: Testing accuracy of BinOCT, BinOCT*, CART, R (CART in (Bertsimas and Dunn 2017)) and OCT.

and possible threshold values. The performance of BinOCT
and BinOCT* are comparable when learning tees of depths
2 and 3. When the model becomes large (depth 4), it is more
beneficial to have a starting solution. DTIPs was also able to
return optimal solutions on Iris for trees of different depths.
The performance of our methods on the other two datasets
is consistently higher than DTIPs, although we ran the in-
stances much shorter than theirs (10 instead of 30 minutes).

In Table 6 we report the testing accuracy. For depth 2 and
3, BinOCT outperforms the other methods on many problem
instances. Interestingly, it does not outperform OCT when
it finds 100% accurate models on the training data for the
Wine instances. On depth 4 problems, the solutions found by
BinOCT are frequently outperformed by CART although it’s
training accuracy is always better. This shows the strength
of CART and OCT in making a trade-off between accuracy
and model complexity. By purely maximizing accuracy on

the training data, BinOCT is essentially overtraining. Al-
though necessary, this trade-off makes it hard to compare
the quality of the different formulations. A different trade-
off decision creates a different objective function and thus
a different problem to solve. The different cross-validation
folds and dissimilar CART performance Overall make this
comparison even harder. The best we can do is compare the
improvement over CART. For depth 2 and 3, BinOCT or
BinOCT* clearly outperforms CART, but so does OCT. For
the depth 4 instances, OCT’s performance was very close
or worse than their CART results. BinOCT* gives slightly
better results than CART overall, but sometimes worse due
to overfitting. Overall, the results are impressive as we ran
only 10 minutes to achieve performance often better than
OCT, which was run for 2 hours.

Conclusion
We propose an efficient encoding of learning classifica-
tion trees using a binary linear program formulation, where
the numbers of decision variables and constraints are much
smaller than those in the state-of-the-art formulations. Im-
portantly, the size of the decision variables used in our model
BinOCT is independent from the size of datasets. The advan-
tage of this independence has been demonstrated through a
set of experiments. BinOCT, with or without starting solu-
tions, gave overall better solutions than the existing formula-
tions OCT and DTIPs, despite the fact that the running time
of BinOCT was much shorter than OCT and DPIPs. In the
future, we plan to extend our model with different learning
objectives, such as adding fairness criteria. In addition, we
will add a trade-off between accuracy and model complexity
to the objective function. Lastly, we will investigate further
improving the formulation by reducing the number of con-
straints, or using approximation strategies such as selecting
a subset of data rows or possible threshold values.

Acknowledgements
The work is partially supported by the NWO funded project
Real-time data-driven maintenance logistics (project num-
ber: 628.009.012).

References
Bennett, K. P., and Blue, J. A. 1996. Optimal decision trees.
Technical report, R.P.I. Math Report No. 214, Rensselaer
Polytechnic Institute.
Bennett, K. P., and Mangasarian, O. L. 1993. Bilinear sep-
aration of two sets inn-space. Computational Optimization
and Applications 2(3):207–227.
Bennett, K. P., and Parrado-Hernández, E. 2006. The inter-
play of optimization and machine learning research. Journal
of Machine Learning Research 7:1265–1281.
Bertsimas, D., and Dunn, J. 2017. Optimal classification
trees. Machine Learning 106(7):1039–1082.
Bertsimas, D., and Shioda, R. 2007. Classification and
regression via integer optimization. Operations Research
55(2):252–271.
Bessiere, C.; Hebrard, E.; and OSullivan, B. 2009. Minimis-
ing decision tree size as combinatorial optimisation. In In-
ternational Conference on Principles and Practice of Con-
straint Programming, 173–187. Springer.
Blanquero, R.; Carrizosa, E.; Molero-Rıo, C.; and Morales,
D. R. 2018a. Optimal randomized classification trees.
Blanquero, R.; Carrizosa, E.; Molero-Rıo, C.; and Morales,
D. R. 2018b. Sparsity in optimal randomized classification
trees.
Breiman, L.; Friedman, J.; Olshen, R.; and Stone, C. 1984.
Classification and regression trees. Wadsworth International
Group.
Chang, M.; Ratinov, L.; and Roth, D. 2012. Structured learn-
ing with constrained conditional models. Machine Learning
88(3):399–431.

Dash, S.; Günlük, O.; and Wei, D. 2018. Boolean
decision rules via column generation. arXiv preprint
arXiv:1805.09901.
De Raedt, L.; Guns, T.; and Nijssen, S. 2010. Constraint
programming for data mining and machine learning. In Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence (AAAI-10), 1671–1675.
Firat, M.; Crognier, G.; Gabor, A. F.; Hurkens, C.; and
Zhang, Y. 2018. Constructing classification trees using col-
umn generation. arXiv preprint arXiv:1810.06684.
Flach, P. 2012. Machine learning: the art and science of
algorithms that make sense of data. Cambridge University
Press.
Hyafil, L., and Rivest, R. L. 1976. Constructing optimal bi-
nary decision trees is np-complete. Information Processing
Letters 5(1):15 – 17.
Lichman, M. 2013. UCI machine learning repository.
Narodytska, N.; Ignatiev, A.; Pereira, F.; Marques-Silva, J.;
and RAS, I. S. 2018. Learning optimal decision trees with
sat. In IJCAI, 1362–1368.
Norouzi, M.; Collins, M. D.; Johnson, M.; Fleet, D. J.; and
Kohli, P. 2015. Efficient non-greedy optimization of deci-
sion trees. In Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems, NIPS’15,
1729–1737. Cambridge, MA, USA: MIT Press.
Quinlan, J. R. 1986. Induction of decision trees. Machine
learning 1(1):81–106.
Rhuggenaath, J.; Zhang, Y.; Akcay, A.; Kaymak, U.; and
Verwer, S. 2018. Learning fuzzy decision trees using integer
programming. In 2018 IEEE International Conference on
Fuzzy Systems.
Silva, A. P. D. 2017. Optimization approaches to supervised
classification. European Journal of Operational Research
261(2):772–788.
Uney, F., and Turkay, M. 2006. A mixed-integer program-
ming approach to multi-class data classification problem.
European Journal of Operational Research 173(3):910–
920.
Verwer, S., and Zhang, Y. 2017. Learning decision trees
with flexible constraints and objectives using integer opti-
mization. In International Conference on AI and OR Tech-
niques in Constraint Programming for Combinatorial Opti-
mization Problems, 94–103. Springer.
Verwer, S.; Zhang, Y.; and Ye, Q. C. 2017. Auction opti-
mization using regression trees and linear models as integer
programs. Artificial Intelligence 244:368–395.

