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Abstract

Studies revolving around data-driven methods have been on a rise in recent years to improve highly
modelled methods such as the two-equation turbulence models of Reynolds-averaged Navier-Stokes
(RANS). Similarly, such data-driven methods are implemented into partially-averaged Navier-Stokes
(PANS). PANS is a young bridging method that fulfils the requirements of bridging methods set by
Speziale [1]. It can be adjusted according to the fraction of a flow field that is desired by the user to
be resolved and modelled by changing the value of fk, a parameter that takes a value between 0 and
1. In this thesis, PANS is extended via a combination of two data-driven methods: k−corrective frozen
RANS [2] and data-driven stochastic closure simulation (DSCS) [3]. The k−corrective frozen RANS
method aims to correct for the model errors in the k−equation and the anisotropy of the Reynolds
stress tensor derived from the Boussinesq approximation. While DSCS also aims to correct for the
anisotropy of theReynolds stress tensor, it considers that PANS solves for the unresolvedpart of the flow
field and thus corrects for the unresolved anisotropy. While PANS and the two data-driven methods
have independently been proved to work as they were theoretically desired, combining these ideas
has not yet been attempted. As any turbulence kinetic energy solving RANS turbulence model can be
developed into PANS form, the k − ω SST model was chosen for the best initial prediction. This SST
model for PANS is extensively derived and then reformulated to produce the target correction terms.
The correction terms are analysed at various values of fk and they show good agreements with fk.
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1
Introduction

1.1. Background
The Navier-Stokes equation, a partial differential equation that describes the motion of viscous fluid,
has constantly been attempted to be numerically solved with and without turbulence models. Even
with the rapid advancement of central and graphical processing unit (more commonly known as CPU
and GPU) industries, implementation of direct numerical simulation (DNS) involving no turbulence
models on a practical fluid domain at a high Reynolds number Re is still far from feasible. Therefore,
methods with turbulence models have remained prevalent despite their shortcomings. To strike a bal-
ance between achieving a reasonably accurate solution and requiring moderate computational power,
many bridging models have been developed. Such a motivation arose due to large eddy simulation
(LES) costing toomuch computationally and Reynolds-averagedNavier-Stokes (RANS) equations hav-
ing insufficient accuracy. Bridging methods bridge between highly modelled methods such as RANS
and highly resolving methods such as DNS and LES.

A young bridging method called partially-averaged Navier-Stokes (PANS) is studied. PANS is a flexi-
ble bridging method which allows for any fraction of the flow to be resolved and modelled, provided
a supporting mesh is present. The fraction is controlled via fk, a variable that stays between 0 and 1.
This flexibility is an advantageous characteristic as it is able to be adjusted to maximise the use of a
given amount of computational power. The method is made theoretically possible by making use of
the averaging invariance property of the Navier-Stokes equation wherein the form of the equation is
not altered regardless of the extent of the averaging.

Addition of a data-driven approach that combines k−corrective frozen RANS method of [2] and data-
driven stochastic closure simulation (DSCS)method of [3] to PANS is experimented in the project. The
k−corrective method, as its name suggests, corrects for the model error in the k−equation while DSCS
defines a closure for the purely stochastic part of the flow using triple decomposition. Data-driven
studies for computational fluid dynamics have lately gained popularity due to several reasons. Firstly,
it allows for making use of existing high-fidelity (HiFi) data that cost an immense amount to produce,
reusing them for further studies. Using these data, the turbulence models are trained to give an im-
proved prediction of a given fluid domain. However, it is impossible to have a HiFi dataset for every
possible fluid domain in various flow conditions. Thus, data-driven methods, more importantly, aid
in unearthing new relations to overcome the limitations that various involved assumptions possess, ul-
timately figuring out undiscovered physics.

The data-driven study conducted in this project involves correcting for the model errors in the tur-
bulence kinetic energy equation of k − ω SST turbulence model that is adjusted for PANS and the
anisotropy component of the Reynolds stress tensor. The goal is to determine if PANS, with various
values of fk, is capable of producing corrections that well-represents the flaws in the model.

1



1.2. Research objective and research questions
The main research objective for this thesis project is

"To combine twodata-drivenmethods: k−corrective frozenRANSandDSCS to implement
into the ku−ωu SST PANS turbulence model in improving its prediction of turbulent flows
around triangular prism."

Successfully carrying out the above objective would prove that the two data-driven methods can work
together in augmenting the PANS turbulence model as this particular combination of methods has yet
to be attempted. Thus, the research would provide a crucial platform for future studies to be built on
regardless of the results. Among the broad spectrum of typical data-driven studies, the primary focus
of this project is to extract the aforementioned model errors from the turbulence model. The follow-up
to this step is the injection of the model errors back into the SST PANSmodel and the machine learning
approach which will remain as recommendations for future work.

To approach the research objective, the main research question is first established:

"How can k−corrective frozen RANS and DSCS be combined to be implemented into the
ku − ωu SST PANS turbulence model for improvement in the prediction of turbulent flows
around triangular prism?"

In answering the main question in a gradual and systematic manner sub-questions are established as
well:

• Does PANSwork as advertised, resolving a bigger portion of the flowwith smaller fk? How does
it work when the mesh resolution is kept fixed? Does it perform better than its baseline model?

• How is k− ω SST turbulence model re-defined in PANS form? Are there additional assumptions
that arise with the derivation? Are these assumptions valid?

• What shortcomings do the two data-driven methods possess? Are there solutions and can they
be overcome?

• Can k−corrective frozen RANS approach be applied onto PANS with theoretically valid correc-
tion terms? What limitations of PANS do these corrections represent?

• Is the combination of DSCS and k−corrective frozen RANS valid in theory?
• Does the HiFi large eddy simulation (LES) dataset well represent the flow case? Has it been

validated? Is it sufficient to achieve the research objective?
• What are the characteristics of a triangular prism that makes it a viable bluff body to be studied

on? Is there a sufficient number of studies conducted for triangular prism at similar Re to use as
a reference?

• Is there a clear relationship between fk and the correction terms? Can a statistical relationship be
found?

• Do the obtained correction terms well represent the limitations of PANS? Which correction term
is the most influential? In other words, which part of the PANS turbulence model is the furthest
from reality?

1.3. Thesis outline
The report begins with a set of literature reviews for the various involved subjects of the thesis before
moving on to methodologies of the combination of the data-driven methods and the results obtained.

Chapter 2 briefly covers the basics of turbulence and the reason for requiring turbulence modelling
including its state of the art with the k − ω SST RANS model, the turbulence model under interest in
this project, explicitly stated. Next, PANS is studied in Chapter 3 wherein the motivation for its de-
velopment and some of its characteristics as well as technical features are presented. The Chapter is
concluded with an extensive derivation of ku − ωu SST model, a re-defined k− ω SST model for PANS.

2



For the last part of the literature review, data-driven methods for turbulence modelling are explored
in Chapter 4. Machine learning algorithms are briefly covered in this Chapter to present the common
algorithms used in the computational fluid dynamics (CFD) field. However, they are not dwelt into
as machine learning is not the focus of this thesis. More importantly, the closure for the turbulence
models is provided where different data-driven methods use varying correction terms to “close” the
baseline turbulence model that gives a poor prediction of turbulent flows.

Themethodology of the project is kicked offwith Chapter 5which gives an overview of theHiFi dataset
that is used in this thesis project. Its fluid domain and themesh that is used for the domain are featured.
Additionally, the important flow conditions are extracted and recorded. Chapter 6 walks through how
PANS is implemented into OpenFOAM, an open-source CFD software, alongside the mesh that is pro-
duced to support the turbulence model. Boundary and initial conditions are set with reference to those
used in the HiFi dataset. A pseudo-code is given for an overall idea of how the turbulence model is
implemented and the implementation is validated together with other relevant results. Finally, the
combination of the two data-driven methods for PANS is covered in Chapter 7. The Chapter begins
with pre-processing of the HiFi dataset and the altered PANS for data injection is stated afterwards
together with a flow-chart giving an overview of the entire process. Another pseudo-code is given for
an explanation of the code implemented into OpenFOAM and the Chapter is concluded with a set of
obtained results. The thesis is then wrapped up with a conclusion and recommendations for future
work in Chapter 8.
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2
Turbulence modelling

Turbulence modelling is built from the fundamental understanding and theories of turbulence and
these are covered in Section 2.1. This is followed by Section 2.2 in which a few of the commonly used
turbulence models in the community which are relevant for the project are introduced.

2.1. Fundamentals of turbulence
For a holistic understanding of turbulence modelling, it is crucial to have the basic theory of turbu-
lence and its characteristics laid out. Only then can one have an idea of the roles various theories and
techniques play in forming the pillars of CFD. Thus, some of these ground theories of turbulence are
covered in this section before moving on to the diverse methods that have been developed so far from
these concepts.

2.1.1. Characteristics of turbulence
Turbulence by definition is a random and chaotic behaviour. Although the former is a debatable def-
inition and will be covered why so in the latter part of the report, turbulence is inarguably a chaotic
behaviour. This unstable reaction generally occurs in a fluid body with a sufficiently high speed as it is
sheared by a solid boundary like a wall. Such a behaviour results in redistribution and disintegration
of velocity into 3D correlated eddies that are rotational and they evolve continuously, existing in a spec-
trum of sizes as it was first discovered by Leonardo da Vinci around the year 1510. As such, vortices
and eddies make up turbulence and this process demonstrates the non-linear behaviour of the widely
known incompressible N-S equations of (2.2) and (2.3) which are presented in Section 2.1.3.

Beneath such chaotic nature of turbulence lives structural order and organisation due to the coexistence
of turbulence scales in various sizes whichwill be furthered in Section 2.1.2. Hence, the unsteadiness in
turbulent flows exists in a large spectrum of frequencies and those with lower frequencies are deemed
to represent clearly observable coherence or patterns in turbulent flows. This allows for the concept of
decomposing fluid velocity and it will be furthered in Section 2.2.1.

2.1.2. Eddies
As aforementioned, a spectrum of eddies in various sizes make up turbulence. These sizes can be
categorised into three ranges as shown in Figure 2.1 inwhich η represents the smallest andΛ represents
the largest eddy size in a specific turbulent flow field and each range has its own characteristics and
part to play in a turbulent field. Additionally, κ represents the wave number defined as

κ :=
2π

ℓ
(2.1)
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where ℓ is an arbitrary eddy size and this wave number is linearly correlated to the frequency in a uni-
form velocity flow.

(a) Turbulence kinetic energy E(κ) spectrum (b) Turbulence dissipation D(κ) spectrum

Figure 2.1: Distribution of E(κ) and D(κ) throughout spectrum of eddies in a turbulent flow with sufficiently
high Re[4]

For the turbulence kinetic energy spectrum shown in Figure 2.1a, range A represents the large eddies
and the largest length scale Λ which contains the most amount of energy due to the production of tur-
bulence energy occurring in this range from external forces such as fluid shear. Range B represents
the inertial subrange in which energy cascade − the transfer of energy from the largest eddies to the
smallest eddies− occurs due to vortex stretching that incurs instability and eventually breaks the large
eddies down into smaller sizes. Lastly, range C represents the smallest eddies and the smallest length
scale η which are heavily influenced by viscosity. As for the turbulence dissipation energy shown in
Figure 2.1b, dissipation is not taken up by the largest eddies Λ and is gradually taken up with the in-
crease in wave number κ and is mostly taken up by the smallest eddies η through dissipation of energy
into other forms of energy such as heat.

2.1.3. Governing equations
The equations that form the backbone of fluid mechanics are the conservation equations for mass, mo-
mentum and energy for a fluid body and these are called as the Navier-Stokes (N-S) equations as a
whole. The equations that represent conservation of mass and energy are presented in (2.2) and (2.3)
respectively as follows:

∇ · u = 0 (2.2)
∂u

∂t
+ u∇ · u = −1

ρ
∇p+ ν∆u, (2.3)

where u is velocity, ρ is density, p is pressure and ν is kinematic viscosity which can be expressed as

ν =
µ

ρ

where µ is dynamic viscosity that is a constant property. Furthermore, these equations assume flow
incompressibility and constant fluid density which is a valid assumption at a reasonably low Reynolds
number Re. These assumptions allow for the absence of the energy conservation equation as the mo-
mentum equation also implies conservation of energy. The N-S equations have a problem that there
are only four equations which includes the continuity equation of 2.2 and the three components of the
momentum equation stated in (2.3) in 3D domain while there are five unknown variables: the three ve-
locity componentsu, pressure p and density ρ. Hence, this poses a closure problem inwhich turbulence
modelling finds its purpose.
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2.2. Turbulence modelling
Turbulence modelling arose from the realisation that turbulent flows can be statistically analysed and
the basis of this approach is the Reynolds-averaging on which many other theories and models were
developed.

2.2.1. Statistical turbulence
The first record of statistical turbulence modelling dates back to 1894 whereby Obsborne Reynolds
suggested in [5] the decomposition of velocity field into its mean u and the relative mean u′ which is
more referred to as ‘fluctuation’ in more recent literatures. This Reynolds decomposition is presented
as

ui = ui + u′
i (2.4)

where ui represents the i-th velocity component.

Additionally, the velocity mean u can be interpreted as Favre-averaged velocity which is equivalent to
the ensemble-averaged velocity at any location in turbulent flow that is weighted by density as defined
in [6]:

ui :=
1

Nρ

N∑
n=1

ρui , (2.5)

whereN represents a sufficiently large number of samples over a longperiod and ρ ismeanfluiddensity.
For constant density assumption that has already been made in the N-S equations, (2.5) is simplified
into

ui =
1

N

N∑
n=1

ui. (2.6)

The mean velocity u can also be represented using time average over an infinitely long time interval, T :

ui =
1

T

∫ t+T/2

t−T/2

ui (t
′) dt′. (2.7)

Just like it has been done for velocity in (2.4), pressure is also decomposed into its mean and fluctuating
parts:

p = p+ p′. (2.8)

2.2.2. Reynolds-averaged Navier-Stokes
Prior to setting up Reynolds-averaged Navier-Stokes (RANS) equations, a few Reynolds-averaging
rules are stated which are utilised in the derivation and they are:

u′ = 0,

cu = cu,

u+ v = u+ v,

uv = u v and
∂u

∂t
=

∂u

∂t

(2.9)

where c represents a constant while u and v represent variables. These rules are strictly valid for vari-
ables decomposed in terms of Reynolds decomposition stated in (2.4). Using the Reynolds-averaging
rules presented, theRANSequations for steadyflowcanbederived by substitutingReynolds-decomposed
velocity and pressure in (2.4) and (2.8) respectively into N-S equations (2.2) and (2.3). For steady
flows, the time interval T that is used to time average the flow velocity as demonstrated in (2.7) is a
large value that is much larger than the largest time scale of turbulent motion thus averaging out every
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characteristic of a turbulent flow. The resulting RANS equations are:

∂ρuj

∂xj
= 0 (2.10)

∂ρuiuj

∂xj
= − ∂p

∂xj
+

∂

∂xi
µ

(
∂ui

∂xj
+

∂uj

∂xi

)
− ∂

∂xj
ρu′

iu
′
j , (2.11)

where u′
iu

′
j are the Reynolds stresses, often presented as τij in literature, with six independent compo-

nents that need to be closed and defined using turbulence models which are covered in Section 2.2.5.
However in this report, RSij is used to represent the Reynolds stresses term instead of τij which is in-
troduced in Section 3.1.2 as generalised central second moment. The difference comes from the extent
of averaging wherein RSij implies a full averaging while τij implies averaging of any extent. RSij is
hence defined as

RSij := u′
iu

′
j . (2.12)

2.2.3. Unsteady RANS
Turbulent flows, although defined to be random and chaotic, still reflect coherent structures that are
periodic with each of their characteristic time scales which are of a similar order to low-frequency
turbulent motions [7]. This feature is mathematically presented using triple decomposition as first
introduced in [8] that is furthered from Reynolds decomposition of (2.4) and it is expressed as:

ui = ui + ũi + u′′
i (2.13)

where ũi represents the periodic unsteadiness that is deterministic while u′′
i is the stochastic unsteadi-

ness. The triple decomposition is visualised in Figure 2.2.

Figure 2.2: Triple decomposition

The distinction is most apparent in flows around bluff bodies such as a square cylinder in which peri-
odic shedding of vortices, also known as von Kármán vortex street, can be observed behind the body
due to flow separation as shown in Figure 2.3 taken from [9]. This von Kármán vortex street features
the periodic unsteadiness of low frequencies in the wake of the flow behind the circular cylinder in
which stochastic unsteadiness of much higher frequencies lives as it can be seen within the large vor-
tices in the figure.

To accommodate for this feature and to resolve the unsteady mean-motion of the flow field which
includes the periodic unsteadiness to an arbitrary extent, a finite time averaging should be applied in-
stead of an infinitely long time interval that was demonstrated in (2.4). With û representing this finite
time averaging of the flow velocitywhich is the sum of themean velocity and the periodic unsteadiness:

û := u+ ũ, (2.14)
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Figure 2.3: Vortex street behind a square cylinder at Re = 22 000 [9]

(2.11) is rewritten as

ρ
∂ûi

∂t
+ ρ

∂ûiûj

∂xj
= − ∂p̂

∂xi
+

∂

∂xj
µ

(
∂ûi

∂xj
+

∂ûj

∂xi

)
− ρ

∂

∂xj
u′
iu

′
ĵ , (2.15)

which now includes a time derivative term and this represents the URANS equation.

2.2.4. Eddy viscosity
As previously mentioned, implementation of Reynolds-decomposition into the N-S equations brings
about six Reynolds stress components and because the fluctuating components u′

i are not calculated
directly in RANS, initial modelling is introduced whereby they are related to the mean flow variables
ui. Thereafter, the role of turbulence models is to relate these stresses to other known flow variables.

Eddy viscosity is a concept proposed by Boussinesq [10] to explicitly express the Reynolds stresses
of the RANS equations in terms of the mean velocity gradient. It was suggested by Boussinesq that the
behaviour of turbulence can be seen as an analogy to the Brownian motion. This is ultimately a flawed
analogy as it omits the spatial coherence of turbulence structures such as two-point correlations and
vortical motions [4]. Despite such a flaw, it can be a useful model as it incurs low computational costs
and gives a high convergence rate while providing practical results for studies.

This concept is based on the addition of a turbulent viscosity µt, also referred to as the eddy viscos-
ity, that is dependent on some properties of the flow to represent the effect of turbulence mixing and
diffusion with which shear stress in a simple shear layer is expressed as:

− ρu′v′ ≃ µt
∂u

∂y
. (2.16)

µt is an unknown artificial constant of proportionality that controls the strength of diffusion (transport
of momentum between fluid particles) [11] and it thus requires modelling. Taking into account that
the order of multiplication does not matter (u′v′ = v′u′) and implementing Einstein notation, a general
form of (2.16) can be written as:

− ρu′
iu

′
j = µt

(
∂ui

∂xj
+

∂uj

∂xi

)
. (2.17)

When compared to the RANS equation of (2.11), it can be observed that the eddy viscosity plays a
similar role as the viscous stresses. However it is not possible to achieve a single function for scalar µt

that can satisfy all components of the Reynolds stress. Therefore, a correction is required to make up
for this inadequacy.

Moreover, since turbulence kinetic energy k is expressed in terms of u′
i as

k =
1

2
(u′

i)
2 (2.18)
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and it is possible for k to be present even in uniform (strain-free) and incompressible flow, k needs to
be accounted for in the representation of Reynolds stress. With the addition of k, (2.17) is extended to

−ρu′
iu

′
j ≈ µt

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δij

)
− 2

3
ρkδij

which can be rewritten as

RSij ≈ −νt
(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δij

)
+

2

3
kδij (2.19)

and this is the complete form of the Boussinesq hypothesis wherein kinematic eddy viscosity νt is

νt =
µt

ρ
(2.20)

and it will be referred to as eddy viscosity henceforth. To compress and simplify this expression, the
mean strain rate tensor Sij is introduced:

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(2.21)

with which (2.19) can be re-expressed as

RSij ≈ −2νt
(
Sij −

1

3

∂uk

∂xk

)
+

2

3
kδij .

With the aforementioned incompressibility assumption that implies zero velocity divergence, the above
equation is further simplified into

RSij ≈ −2νtSij +
2

3
kδij . (2.22)

Additionally, 2/3 k is the average normal stress which thus implies that the term with eddy viscos-
ity accounts for the deviations from this average value. It should be noted that due to the constant
density assumption, the RSij is expressed without the product of density ρ thus not having the same
dimensions as stress. (2.22) can also be expressed as

RSij ≈ aij +
2

3
kδij

where aij is the anisotropy tensor:
aij = −2νtSij (2.23)

bridging the stress and the strain rate tensor, akin to viscous stress tensor in the linear constitutive
equation of Newtonian fluids [12]. Normalising aij by k results in bij :

bij = −
νt
k
Sij (2.24)

resulting in zero trace, a set of eigenvalues that sum up to zero and eigenvectors that form optimal basis
which describes vector space of bij [13]. Hence, (2.22) is often presented as

RSij ≈ 2k

(
bij +

1

3
δij

)
. (2.25)

2.2.5. Eddy viscosity models
In this section, some of the more commonly used eddy viscosity models are presented. There exist
several models that have been developed over the years and some have been proven to produce com-
mendable results, some not so. This has led to users of RANS only making use of a handful number
of them. These frequently used models can be subdivided into two categories: one- and two-equation
models. As their names suggest, one-equation models use just a single equation to solve the turbulent
eddy viscosity term whereby two-equation models handle an extra equation.
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One-equation model
Starting with the one-equation model, the Spalart-Allmaras model (1994) developed by Spalart and
Allmaras [14] is currently the most extensively used model in this category and it will be briefly intro-
duced as this model will not be furthered in this report. Due to the absence of the turbulent kinetic
energy in this model, the Reynolds stresses are represented by (2.22) is reduced to (2.17). It intro-
duces a new variable called the modified eddy viscosity ν̃t that is closely related to the kinematic eddy
viscosity νt and their behaviour close to the wall is shown in Figure 2.4 taken from [15].

Figure 2.4: (Kinematic) eddy viscosity νt and modified eddy viscosity ν̃ for S-A model adapted from [15]

Themodified eddyviscosity termhas a linear relationshipwith y+ which overcomes the problemof con-
ventional eddy viscosity having a fourth order relationship with y+ in the viscous sub-layer (y+ < 5)
that requires a large number of cells close to the wall to resolve the flows in the region. The single
equation involved is the differential transport equation of this modified eddy viscosity.

Ever since this first version of the S-A model was introduced, many tweaks have been made by var-
ious researchers to suit the needs of flow fields under their studies and they have released their own
variants such as the S-A model without ft2 term (one of the many terms in S-A model) [16] and S-A
model for rotating and curved channels [17]. The S-A model and its other variants will not be covered
in greater depth in this report due to the absence of turbulent kinetic energy k term that makes them
unsuitable models for the main study of PANS which is based on k and it is covered in Chapter 3.

Two-equation models
The two-equation models are the more common types of eddy viscosity models and they are the indus-
try standard. They differ from one-equation counterparts in the consideration of how turbulent length
scale evolves throughout the flow field domain using flow properties such as the turbulence kinetic
energy which relates to the eddy sizes as described in Section 2.1.2 via a transport equation.

One of the oldest two-equationmodels is the Jones-Launder k−εmodel from 1972 [18]. Today, Chien’s
version of the k−εmodel (1982) [19], which is primarily based on Launder-Sharmamodel (1974) [20],
is the most commonly used version. As the name suggests, the two equations that are involved in this
model are the turbulence kinetic energy k and dissipation rate ε differential transport equations. εwas
introduced to replace the explicitly and algebraically defined mixing length lm in the mixing length
model developed by Prandtl in 1926 and the improved Van Driest mixing model [21]. The transporta-
tion equation for ε is solved instead in which the empirically defined model coefficients vary between
the model versions. These coefficients are damped instead of the mixing length, each with its damping
function, to allow for wall-resolving calculation.
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Using these two parameters the eddy viscosity νt can be expressed:

νt = β∗ k
2

ε
, (2.26)

where β∗ = 0.09. This k − ε model is only valid for fully turbulent flows. Although it is a relatively
easy model to implement and is computationally inexpensive, a major flaw that it possesses is its use
of only a single turbulent length scale for dissipation calculation [22] which contradicts Figure 2.1b
from which it was previously observed that the inertial subrange also participates in the dissipation.
It also performs poorly for flow fields with adverse pressure gradients, separation and highly curved
streamlines, resulting in the wrong separation point at the wrong angle for the boundary layers [22,
4]. Despite its shortcomings, the k− ε model is still heavily used due to its commendable results away
from the walls and its simple implementation.

Another heavily used model in the community is the k − ω model (2008) by Wilcox [23], first pro-
posed in 1942 by Kolmogorov. In this model, specific dissipation rate ω, also known as the turbulence
frequency, is utilised and it is defined as

ω :=
1

β∗
ε

k
, (2.27)

resulting in
νt =

k

ω
. (2.28)

Instead of the ε transport equation, ω transport equation is used inwhich different empirical coefficients
are used as compared to the ε−equation. Another difference is that there is no longer any damping func-
tion which performs poorly in the presence of adverse pressure gradients. Thus, the model is said to
perform significantly better near walls and also for lowRe flows. Additionally, this model is a lot more
numerically stable than the k− ε model [22, 24]. However, it is not all sunshine and rainbows, and the
model features some flaws as well. Excessive and early flow separation is typically simulated, and to
achieve better near-wall results, the model requires a high mesh resolution near the walls which makes
it a much more computationally expensive model. Furthermore, it is highly sensitive to free-stream
flow away from the walls, whereby a tiny change results in a large difference in eddy viscosity [25]
which ultimately affects forces on the body and the flow separation point.

The advantages of these two models are taken and made into another model which goes by the name
of k − ω SST, developed by Menter in [24] and further fine-tuned in [26, 27, 28]. It is a hybrid model
that utilises Wilcox’s k−ω model near the wall where its advantage is at and the standard k− εmodel
away from the wall to avoid being sensitive in the free-stream areas using a blending function F1.

k − ω SST
The classical model from [24] is given by the following two equations:

ρ
∂k

∂t
+ ρuj

∂k

∂xj
= Pk − β∗ρωk + Tk and (2.29)

ρ
∂ω

∂t
+ ρuj

∂ω

∂xj
=

γ

νt
Pk − βρω2 + Tω + ρ(1− F1)CDkω, (2.30)
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where

Tk =
∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
, (2.31)

Tω =
∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
(2.32)

CDkω = 2
σω2

ω

∂k

∂xj

∂ω

∂xj
, (2.33)

Pk = ρRSij
∂ui

∂xj
and

β∗ = 0.09.

Since isotropic component has no effect in momentum transport [29], Pk can be simplified into

Pk = ρνtSij
∂ui

∂xj
.

Additionally F1 is the blending function that blends the model between k − ϵ and k − ω models and it
is expressed as

F1 = tanh
(
arg4

1

)
∈ [0, 1], (2.34)

arg1 = min
[
max

( √
k

β∗ωd
,
500ν

d2ω

)
,
4ρσω2k

CDkω d2

]
, (2.35)

where d is the distance from the point in the flow field to the nearest wall. It can be observed that the
value of F1 thus varies for every cell in the fluid domain, varying the extent of blending at every avail-
able mesh point. Away from the wall, when F1 = 0, the transport equation is equivalent to that of k− ϵ
model and near the wall, when F1 = 1, it converts into k − ω model.

The blending function also blends the constants and it requires two values: inner−1 and outer−2 values.
For an arbitrary constant ϕ, the two values are blended by

ϕ = F1ϕ1 + (1− F1)ϕ2.

The inner and outer values of the remaining constants are:

γ1, γ2 = (5/9, 0.44),

σk1, σk2 = (0.85, 1.0),

σω1 , σω2 = (0.5, 0.856) and
β1, β2 = (0.075, 0.0828).

The inclusion of blending function F1 alone gives the Menter baseline stress transport (BST) model of
[24] which was found to still over-predict wall shear stress. Hence in [26], adjustment was made to
µt to improve the wall shear stress prediction by introducing another blending function F2 into eddy
viscosity term with which the k − ω SST model was formulated. The newly proposed eddy viscosity
term is

µ+
t = ρ

a1k

max (a1ω,WF2)
(2.36)

wherein the blending function F2 is

F2 = tanh
(
arg2

2

)
and (2.37)

arg2 = max
(
2

√
k

β∗ωd
,
500ν

d2ω

)
. (2.38)
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Furthermore, Pk and CDkω are adjusted to improve convergence behaviour in computational calcula-
tions in CFD programs using limiters and they were updated to

P+
k = min (Pk, 10β

∗ρkω) and (2.39)

CD+
kω = max

(
2
σω2

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
, (2.40)

where a1 = 0.31,

W =
√
2ΩijΩij and (2.41)

Ωij =
1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
.

With the advantages of two parent models, the k−ω SSTmodel is the most commonly used turbulence
model for RANS and gives improved predictions of flow separations above other RANS models. How-
ever, since it uses k − ω model near the walls, it still requires high mesh resolution in those regions
just like its parent model. Although much improvement is made from standard k − ε model, it is still
not suitable for flows with large normal strain and for regions with significant level of acceleration or
deceleration. The model is however still a very useful model for domains with separating flows.
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3
PANS

PANS is an acronym for partially-averaged Navier-Stokes equations. It is a relatively new modelling
theory introduced in the year 2006 by Girimaji in [30] and it is actively being researched with a lot of
room for improvements and discoveries. In this chapter, the basic idea of PANS is introduced together
with commonly used methods of application.

3.1. Introduction to PANS
In this section, the fundamental principles of PANS are given. These are the basic theories that help
build PANS into a new set of turbulence models without deviating from the fundamental laws of
physics that are prerequisites for any model.

3.1.1. Motivation
Today, the wall-modelled LES, one of the many bridging methods, has emerged as the workhorse of
the fluid dynamics industry due to its ability to mitigate the severe disadvantages of RANS and LES.
RANS is computationally inexpensive on the bright side but more importantly, the results it gives are
highly inadequate while LES gives sufficiently satisfactory results but is computationally too demand-
ing. WMLES, as its name suggests, models the near-wall regions as resolving these regions requires
a substantial increase in computational power due to the small-sized eddies that live in these regions
that impose the need for using highly refined mesh while resolving the regions away from the walls.
Many other bridging methods such as DES and VLES are given attention for the same reasons that
there is a need for methods that only resolve the largest turbulent scales that are important for learning
the precise physical interpretation of the flow field while modelling the smaller scales in the inertial
subrange just to account for their effects using modelling methods such as RANS.

This idea of bridging methods is not new and the need for them was first realised and suggested by
Speziale in [1]. Such a method utilises explicitly sized variable filter width to selectively resolve and
model different turbulent length scales. Speziale mentioned three qualities in [1] that such a bridging
method must possess:

1. The method should function as DNS when the entire spectrum of turbulent scales is resolved.
2. The method should also then function as RANS when the cutoff wave number is in the largest of

the turbulent scales.
3. When this cutoff is in the turbulent scales of inertial sub-range, the method should function as an

implicit LES subgrid scale model.
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3.1.2. Characteristics of PANS
The development of PANS follows from the motivations of Section 3.1.1 and was introduced in [30]
to offer an alternative bridging model that unlike many the other models, follows from and abides by
the first principles of physics. Its two main parameters are the ratios of unresolved-to-total turbulence
dissipation rate fε and kinetic energy fk which control the filter width of PANS and they can take up
any value between 0 (entirely resolved) and 1 (entirely modelled).

PANS aims to make use of existing RANS models and convert them to PANS form. This way, the phys-
ical effect of PANS when chosen to be fully modelled, matches its RANS counterpart, fulfilling one of
the aforementioned properties that Speziale has pointed out to be required by the bridging methods.
Thus, for values of the ratios less than 1, more turbulent scales are resolved just like other bridging
methods. However, what sets PANS apart from the other bridging methods is the use of turbulence
kinetic energy to decompose the turbulent flow field instead of the cutoff wave number as highlighted
by [30]. Another characteristic of PANS is that the filtering is implemented implicitly without the need
for an explicit filtering operation like top-hat filter in LES for example. Additionally, the physical reso-
lution which is the filter width imposed by the ratios and the numerical resolution in the case of PANS
are not dependent on each other.

3.1.3. The filtering approach
The fundamental idea of PANS is the partial-averaging and thus angular brackets are introduced to
represent the partially averaged flow variables, such as ⟨ui⟩ and ⟨p⟩ for partially averaged velocity and
pressure respectively. Analogous to (2.7), The partial averaging operator can be defined as

⟨ui(t)⟩ :=
1

T

∫ t+T /2

t−T /2

ui (t
′) dt′ (3.1)

where 0 < T < T for T is an infinitely long time interval. Applying this operator to (2.3),

ρ
∂ ⟨ui⟩ ⟨uj⟩

∂xj
= − ⟨p⟩

∂xj
+

∂

∂xj
µ

(
∂ ⟨ui⟩
∂xj

+
∂ ⟨uj⟩
∂xi

)
− ρ

∂

∂xj
τ (ui, uj) (3.2)

is achieved where τ (ui, uj) is not the Reynolds stress but is the generalised central second moment.
Since Reynolds decomposition shown in (2.4) that applied full averaging is not applied anymore, the
field is split into filtered and sub-filtered instead ofmean andfluctuation. From[31], τ (ui, uj) is defined
as

τ (ui, uj) := ⟨uiuj⟩ − ⟨ui⟩ ⟨uj⟩
:=
〈
u′
iu

′
j

〉
,

(3.3)

which when the partial averaging is extended to full averaging, Reynolds stress of (2.12) is recov-
ered. Despite their differences, this generalised central second moment shares similar properties with
Reynolds stress as claimed in [30] and thus the sub-filter unresolved turbulence kinetic energy ku and
dissipation rate εu (with the subscript u representing unresolved field) can be defined as

ku :=
1

2
τ (ui, ui) and (3.4)

εu := ντ

(
∂ui

∂xj
,
∂uj

∂xi

)
. (3.5)

When the values of PANS ratios are 1, replicating RANS, the filtered scales become the average field
while the sub-filter scales (SFS) become the fluctuations. Thus, it can be said that the filtration acts as
averaging in this case and when substituted into (3.2), it gives back the RANS equation of (2.11). This
feature of the N-S equations is called the averaging-invariance property [31].

Using the set of guidelines set by Speziale in [1], Girimaji has also defined three constraints and ob-
jectives for PANS [30]:
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1. Smooth transition from RANS to DNS controlled by the ratios.
2. These ratios that act as filter-width controllers must be explicitly identified.
3. The structure of the PANS closure model should not change with the values of the ratios.

When these constraints are taken into account many bridging models such as URANS which has an
unclear filter-width controller become invalid and PANS aims to replace such a drawback.

3.1.4. Choices of fk
Unlike the dissipation rate wherein the assumption that the majority of the dissipation occurs in the
smallest of the turbulence scales is a highly valid and an acceptable one, it is not as simple of a choice for
the turbulence kinetic energy. Hence, most if not all PANS study including [32, 33] set the value of fε
to 1 while the values of fk are based on numerous definitions and interpretations. In this section, these
different versions of the definitions of fk are presented together with their performances. There are
three categories that the value of fk can be based on: (i) spatially and temporally varying; (ii) spatially
varying and temporally constant; (iii) spatially and temporally constant.

(i) Spatially and temporally varying
Since turbulent eddies of various scales move throughout the field domain, this variant makes themost
sense to be implemented as it was done in [34, 35]. In this literature, the field values of fk are calculated
using their respective authors’ interpretations of the parameter and how much of the turbulent scales
they wish to resolve whilst also considering the grid resolutions their computational resources can han-
dle. Thus, many of these interpretations involve characteristic turbulent length scales and relate them
to cell sizes as well as temporal resolution.

Although this category makes good theoretical sense to be an easy choice for implementation, the var-
ious definitions of fk are based on the authors’ own judgements and interpretations. For example, cell
dimension − often labelled as ∆ − is a common parameter that appears in the variety of definitions of
fk and a large number of studies including [36] does not specify whether it is the average, maximum
or minimum length of the cell leaving a significant amount of ambiguity. Even when ∆ is explicitly
defined as done in [35], the reasoning behind the choice is lacking clarity. Thus, such unvalidated
definitions introduce model errors as demonstrated in [37].

(ii) Spatially varying and temporally constant
To save computing time and to simplify the model implementation, other studies such as [38, 39] have
been done with just spatially varying but temporally constant values of fk. Similarly to the flaws of
the spatially and temporally varying counterparts, the field values of fk were chosen not based on
fully concrete and validated definitions but the authors’ individual comprehensions as shown in [37],
suffering from similar deficiencies to specially and temporally varying fk definitions counterparts. This
resulted inmany studies even defying physics by letting the value go beyond 1which implies that there
is more unresolved turbulence kinetic energy than total.

(iii) Spatially and temporally constant
This implementation is the simplest version of all that is featured in a great number ofworks of literature
including [40, 41]. A spatially and temporally fixed value of fk is used depending on the domain-wide
turbulent scales to be resolved and also the amount of computational power available at hand. The
value itself does not impose greater computational power to be used but with more turbulent scales to
be resolved, the mesh of the flow field needs to be refined accordingly which ultimately requires more
computational power. Apart from these factors, the value of fk is arbitrarily chosen without any basis.

Although PANS is a young turbulence closure method, a great number of studies and experiments
have been conducted using this method and many have realised that the fk fixed in space and time is
the most optimal option due to the absence of commutation errors. Commutation error is a common
form of error in bridging models. It arises due to an unphysical buffer layer near the interface of the
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models that are bridged and the mismatch between log-layers of these models, mainly resulting in sig-
nificant under-prediction of skin-friction coefficient [42]. As for PANS, when fk is varying throughout
the fluid domain between every consecutive mesh cell, a different turbulence model is implemented in
each cell, inducing commutation error at a large number of points.

Moreover, with spatially and temporally fixed fk, there is no entanglement of numerical andmodelling
errors as clarified by [43]. In CFD, numerical error, also known as discretisation error, occurs from rep-
resenting the governing equation such as the PANS equation in discrete space and time. Modelling
error is the error from the approximation or assumption that a turbulence model such as the k−ω SST
contains. When fk is chosen based on spatial and temporal properties, the governing equations are
then dependent on the resolutions in space and time resulting in the numerical error being ingrained
into modelling error. This is not a desired property as an error analysis cannot be done independently
for each type of error.

3.2. PANS ku − ωu SST
For this project, a turbulence model for PANS needs to be chosen and worked with for subsequent
stages of the project to be built on and the k − ω SST was chosen. Thus in this section, the motivation
behind this choice is given and its PANS form is derived.

3.2.1. Motivation
Since PANS can utilise existing RANS eddy viscosity models, it makes the most sense to choose the
best performing model that is suitable for being transformed into PANS. Additionally, as mentioned in
Section 3.1.2, PANS utilises the ratios of turbulence kinetic energy and dissipation rate. Thus, it is an
inevitable requirement for the chosen model to cater for these two parameters. With all the advantages
of k − ω SST model above other two-equation models in Section 2.2.5, it is an obvious choice.

3.2.2. Derivation
Derivations of PANS variants of k− ϵ and k−ω models are present in [30] and [44] respectively. How-
ever for k − ω SST that is of interest in the project, final result with k−equation and ω−equation are
often merely stated without the derivation as it was done in [3, 45]. Hence, an extensive derivation of
the k − ω SST equations is done for verification and its procedure is presented in this report.

First, the explicit definitions of PANS parameters are:

fk :=
ku
k
, (3.6)

fε :=
εu
ε

and (3.7)

fω :=
ωu

ω
(3.8)

where (3.8) is a new parameter that has not been introduced and is easily derived from the relationship
between turbulence kinetic energy k, dissipation rate ϵ and specific dissipation rate ω shown in (2.27)
and its unresolved form:

ωu =
1

β∗
εu
ku

(3.9)

where the value of coefficient β∗ was concluded not to require an alternation according to a fixed-point
analysis done in [46] in which it was found that the value of β∗ does not affect the energetics of the
turbulence model.

Unresolved turbulence kinetic energy equation
First, (3.6) is applied onto the LHS of (2.29):

ρ
∂ku
∂t

+ ρuj
∂ku
∂xj

= fk

(
ρ
∂k

∂t
+ ρuj

∂k

∂xj

)
(3.10)
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inwhich ku is following the progression of themean velocity field uj that is part of RANS. Thus, further
modification is required for it to follow the filtered velocity field of PANS and attention is to be paid to
the velocity field parameter.

Following from the form of RANS k−equation of (2.29), evolution equation for ku can be simply ex-
pressed as

ρ
∂ku
∂t

+ ρuj
∂ku
∂xj

= Pku − β∗ρωuku + Tku (3.11)

where the aimof the derivation is to discover an expression for the unresolved turbulence kinetic energy
transport term Tku. Substituting the RHS of (2.29) into the RHS of (3.10) and adding a term with
instantaneous velocity field uj and gradient of ku on both sides,

ρ
∂ku
∂t

+ ρuj
∂ku
∂xj

= fk [Pk − β∗ρωk + Tk] + (uj − uj)
∂ku
∂xj

(3.12)

is obtained where (uj − uj) is the resolved velocity fluctuations as defined in (2.4).

Substituting (3.11) into the LHS of (3.12),

Pku − β∗ρωuku + Tku = fk [Pk − β∗ρωk + Tk] + (uj − uj)
∂ku
∂xj

(3.13)

from which the source/sink terms that represent the local processes are extracted to formulate

Pku − β∗ρωuku = fk [Pk − β∗ρωk]

Pk =
1

fk
(Pku − β∗ρωuku) + β∗ρωk

Pk =
1

fk
(Pku − β∗ρωuku) + β∗ρ

ωuku
fωfk

(3.14)

using the relations in (3.6) and (3.8) where

Pku = ρτij
∂uj

∂xj
. (3.15)

As for the non-local process that is taken up by the transport terms of (3.13):

Tku = fkTk + (uj − uj)
∂ku
∂xj

= fk
∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
+ (uj − uj)

∂ku
∂xj

=
∂

∂xj

[
(µ+ σkµt)

∂ku
∂xj

]
+ (uj − uj)

∂ku
∂xj

Tku = ρ
∂

∂xj

[
(ν + σkνt)

∂ku
∂xj

]
+ (uj − uj)

∂ku
∂xj

(3.16)

is setup with substitution of (2.31). Here, an assumption is made whereby at a sufficiently highRe, the
resolved fluctuations have no contribution to the SFS energy transport [44]. Thus, (3.16) reduces to

Tku = ρ
∂

∂xj

[
(ν + σkνt)

∂ku
∂xj

]
. (3.17)

18



With (2.28), (3.6) and (3.8), an expression for the kinematic eddy viscosity νt in terms of unresolved
fields can be expressed using the ratio of total-to-unresolved kinematic eddy viscosity:

νt
νtu

=
k/ω

ku/ωu

=
k

ku

ωu

ω

=
fω
fk

νt = νtu
fω
fk

. (3.18)

Substituting (3.18) into (3.17), the following is derived:

Tku = ρ
∂

∂xj

[(
ν + σkνtu

fω
fk

)
∂ku
∂xj

]
Tku = ρ

∂

∂xj

[
(ν + σkuνtu)

∂ku
∂xj

]
(3.19)

where
σku = σk

fω
fk

. (3.20)

Substituting (3.19) into (3.11), the unresolved turbulence kinetic energy equation for PANS is derived:

ρ
∂ku
∂t

+ ρuj
∂ku
∂xj

= Pku − β∗ρωuku + ρ
∂

∂xj

[
(ν + σkuνtu)

∂ku
∂xj

]
. (3.21)

It can be observed that the derived equation above is identical in form to the k−equation of (2.29) that is
a part of the conventional k−ω SST model. The sole differences from the magnitude of the coefficients
are altered due to the implementation of fk.

Unresolved turbulence specific dissipation rate equation
Starting with the same steps taken for derivation of ku− equation and starting off with applying (3.8)
onto the LHS of (2.30):

ρ
∂ωu

∂t
+ ρuj

∂ωu

∂xj
= fω

(
ρ
∂ω

∂t
+ ρuj

∂ω

∂xj

)
(3.22)

and substituting (2.30),

ρ
∂ωu

∂t
+ ρuj

∂ωu

∂xj
= fω

[
γ

νt
Pk − βρω2 + Tω + ρ(1− F1)CDkω

]
ρ
∂ωu

∂t
+ ρuj

∂ωu

∂xj
= fω

γ

νt
Pk︸ ︷︷ ︸

A

− fωβρω
2︸ ︷︷ ︸

B

+ fωTω︸ ︷︷ ︸
C

+ fωρ(1− F1)CDkω︸ ︷︷ ︸
D

(3.23)

is obtained in which the terms on the RHS have each been assigned an alphabet to assist in further
derivation. Additionally, the assumption of resolved fluctuations having no contribution to the SFS
energy transport is made again and the term (uj − uj) is neglected. Starting with A, parameter Pk is
defined in (3.14) and νt is newly expressed in (3.18). Hence, A can be expanded into

A = fωγ
fk

νtufω

[
1

fk
(Pku − β∗ρωuku) + β∗ρ

ωuku
fωfk

]
=

γfk
νtu

[
1

fk
(Pku − β∗ρωuku) + β∗ρ

ωuku
fωfk

]
=

γ

νtu
(Pku − β∗ρωuku) + γβ∗ρ

ωuku
fωνtu

A =
γ

νtu
Pku − γβ∗ρω2

u + γβ∗ρ
ω2
u

fω
. (3.24)
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Next for the term B, (3.8) is simply implemented to give

B = βρ
ω2
u

fω
. (3.25)

As for the term C, Tω of (2.32) is substituted and using similar procedure as to deriving Tku of (3.16)
and it is as follows:

C = fω
∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
=

∂

∂xj

[
(µ+ σωµt)

∂ωu

∂xj

]
= ρ

∂

∂xj

[
(ν + σωνt)

∂ωu

∂xj

]
C = ρ

∂

∂xj

[
(ν + σωuνtu)

∂ωu

∂xj

]
, (3.26)

where
σωu = σω

fω
fk

. (3.27)

Moving on to the last term D, the substitution of (2.33) gives:

D = 2(1− F1)fωρ
σω2

ω

∂k

∂xj

∂ω

∂xj

= 2(1− F1)ρ
σω2

ω

∂k

∂xj

∂ωu

∂xj

= 2(1− F1)ρσω2
fω
ωu

1

fk

∂ku
∂xj

∂ωu

∂xj

D = ρ(1− F1)CDkω,u, (3.28)

where
CDkω,u =

2σω2

ωu

fω
fk

∂ku
∂xj

∂ωu

∂xj
. (3.29)

Putting together the four terms in (3.24), (3.25), (3.26) and (3.28) into (3.23), the final ωu−equation
for PANS is presented as:

ρ
∂ωu

∂t
+ ρuj

∂ωu

∂xj
=

γ

νtu
Pku −

(
γβ∗ρ− γβ∗ρ

fω
+

βρ

fω

)
ω2
u

+ ρ
∂

∂xj

[
(ν + σωuνtu)

∂ωu

∂xj

]
+ ρ(1− F1)CDkω,u,

(3.30)

where equation for F1 defined in 2.34 is unchanged but its input variable arg1 of (2.35) is now updated
to arg1,u which is defined as

arg1,u = min
[
max

( √
ku

β∗ωud
,
500ν

d2ωu

)
,

4ρσω2ku
CDkω,u d2

]
.

Similarly to the ku−equation, the ωu−equation is also identical in form when compared to the original
ω−equation of (2.30) just with different coefficient values. The ku− and ωu−equations of (3.21) and
(3.30) ultimately forms the k − ω SST model for PANS.
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4
Data-driven turbulence modelling

In recent years, the number of researches conducted for data-driven turbulence modelling has vastly
increased. Many scientists have realised that the improvements in the accuracy of the results are more
easily achieved as compared to the conventional method of expanding the insights of the flow physics
involved. In this chapter, the background behind the shift in trend and examples of highlighted data-
driven methods are presented.

4.1. Role of data in modern physics
Solving complex physical problems involves a large number of assumptions and these assumptions
bring about inaccuracies in the solution. Thus, with the help of the abundance of data and the various
tools that utilise them, better solutions are achieved instead of having to look for more assumptions
to simply physical relations that cause the solution to deviate more from the true solution. Hence, the
current trend that reflects this statement and the motivation behind the trend are presented in this
section.

4.1.1. Current trend in CFD
Today’s trend in science can be observed by looking at prominent research centres, universities and the
fields of research that are of their focus. Such observation makes it clear that data-driven turbulence
modelling has already gained its place and proved its potential to lead the future of turbulence mod-
elling. The Delft University of Technology has recently opened 24 AI labs one of which is dedicated
to fluid mechanics [47]. The University of Michigan has held a symposium on model-consistent data-
driven turbulence modelling in the year 2021 [48] and together with NASA, they held a symposium
on advances in turbulence modelling in the year 2017 in which data-driven turbulence modelling for
RANS was newly placed under spotlight [49]. They are committing to this trend with an upcoming
symposium that is dedicated to machine learning for turbulence modelling later in the summer of 2022
[50]. Furthermore, the von Karman Institute for Fluid Dynamics has been regularly hosting lecture
series on the topics of data-driven turbulence modelling [51, 52, 53]

4.1.2. Motivation
With multiple large organisations indicated in Section 4.1.1 dwelling in data-driven turbulence mod-
elling, their motivations are of interest. Despite the ever so often mentioned Moore’s law that was
claimed back in the year 1965 in [54] still being prevalent, it is largely insufficient for highly resolving
methods to be applied to a realistically complex model such as a car at a sufficiently high Re. Spalart
mentioned in the year 2000 in [55] when Moore’s law still had a huge relevance that the application of
DNS onto a car on a highwaywould only be feasible around the year 2080. However, it is inevitable that
the consistent improvement in computational power has led to an explosive increase and abundance
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in HiFi datasets making data-driven turbulence modelling to be highly possible.

4.2. Machine learning
So the motivation behind turbulence modelling using data has been laid out in Section 4.1.2. Now,
the role that this data abundance takes up in the fluid mechanics field, especially for CFD, mainly
involvesML.ML is a common term that is heavily used in today’s technical world. It involves amachine,
most often a computer, to learn from a large pool of databases with the goal of attaining the ability to
independently make decisions or relationships.

4.2.1. Types of ML
There are three main categories in ML and they are: supervised learning, unsupervised learning and
semi-supervised learning [56].

In supervised learning, a pair of inputs and outputs known as a tagged or well-labelled dataset is given
to themachine to have one ormore functions that connect themdiscoveredwhile in unsupervised learn-
ing, the machine takes a dataset that is not tagged and finds similarities and patterns between the data
and cluster the dataset into sub-groups. Semi-supervised learning, also known as reinforcement learn-
ing, is about training the machine to make a sequence of decisions. It works on a reward and penalty
systemwhereby the machine is either rewarded or penalised for a decision it makes. The ultimate goal
is to maximise the rewards while minimising the penalties. Through this goal, the machine optimises
a set of rules for such decisions and they are used in the subsequent environment that the machine is
placed.

For the highly complex and high-dimensional nature of flow field problems that are dealt with in CFD,
it would take themachine a huge amount of time and computational power for unsupervised and semi-
supervised learning. Therefore, supervised learning has been the main category in that numerous ML
algorithms for CFD have been developed. In the following sections, some of the more successful super-
vised learning algorithms that are tailored to CFD are introduced.

4.2.2. Artificial neural networks
Artificial NNs are inspired by the biological NNs that live inside our brains and it consists of several lay-
ers with multiple neurons in each layer. Each neuron takes in a certain number of inputs and through
an activation function that accommodates these inputs, it outputs a result. Each input is paired with
a weight coefficient that sets the amount of significance of the input for a specific activation function
and its magnitude is set during the training phase of ML. For typical NNs, there are multiple layers of
neurons, including the input and output layers. Between these layers, one or more hidden layers live
and the activation functions involved in them are usually not explicit. An example of a deep learning
NN with multiple hidden layers is shown in Figure 4.1 taken from [57].

Figure 4.1: Deep neural network [57]

However, for CFD application and especially for prediction of anisotropy tensor that is the very bot-
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tleneck for highly modelled turbulence closures such as RANS, such a simple neural network is insuf-
ficient regardless of the number of hidden layers due to its disregard for Galilean invariance. Galilean
invariance is a fundamental principle which implies that the physics of a flow field is independent of
the orientation of the coordinate frame.

To integrate this Galilean invariance into the NN, a tensor basis NN was proposed in [57]. It accommo-
dates this fundamental principle by ensuring that the anisotropy tensor is formulated with isotropic
tensors as a basis. An overview of TBNN is shown in Figure 4.2 taken from [57] where an extra tensor
input layer, T(n), is present.

Figure 4.2: Tensor basis neural network [57]

This tensor input layer follows from Pope’s finding in [58] which claims that for incompressible flow
cases in which non-dimensionalised strain rate tensor Sij and rotation rate tensor Rij are the only vari-
ables that the selected eddy viscosity model depends on, the model can be defined in terms of ten
isotropic basis tensors:

bij (Sij ,Ωij) =

10∑
n=1

g(n) (λ1, · · · , λ5)T
(n)
ij (4.1)

where bij (presented as b in Figure 4.2) abides by the Galilean invariance, g(n) (λ1, · · · , λ5) are the
ten scalar coefficients that are to be discovered by TBNN in which (λ1, · · · , λ5) are five scalar tensor
invariants which are all traces of some combinations of Sij and Ωij . In addition, T (n)

ij (presented as
T(n) in Figure 4.2) are ten base tensors that are also some combinations of Sij = Sij/ω andRij = Ωij/ω
from [58]. For the 2D flow cases of data-driven RANS/PANS which is of focus in this paper, the first
three base tensors form a linearly independent basis alongwith the first two scalar invariant coefficients
which are the only non-zero coefficients according to [2] and they are given as

T
(1)
ij = Sij , T

(2)
ij = SikRkj −RikSkj ,

T
(3)
ij = SikSkj −

1

3
δijSmnSnm,

λ1 = SmnSnm and λ2 = RmnRnm.

(4.2)

It was then concluded in [57] that TBNN had to be set to eight hidden layers with 30 neurons per
hidden layer through Bayesian optimisation. Additionally, the artificial NNS are deterministic after
they are trained which means that they do not rely on randomness but produce the same results for a
fixed input for every run.
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4.2.3. Gene expression programming
GEP is, as its name suggests, an ML algorithm that attempts to replicate the way human genetics func-
tion to discover an algebraic expression for a specific purpose and it overcomes the deficiencies that
older algorithms such as the genetic algorithm introduced in [59] and genetic programming intro-
duced in [60] possess. The deficiencies are related to either a lack of complexity or the difficulty of
reproducing the complex structure with modification which involves chromosome functions such as
mutation, transposition and gene recombination [61]. GEP on the other hand can reflect phenotype
entirely using its feature where any genome modification always gives correct ETs.

A simple example of an ET is shown in Figure 4.3 taken from [62] which is achieved from a gene
that is composed of {cos,+,−,∗,x,y,4,2} and it represents the following guessed function:

fguess (x, y) = cos(2− y)(x+ 4). (4.3)

Each ET genetically represents a chromosome and it can be expressed as linear string of fixed length
with rules that set GEP apart from the other gene influenced ML algorithms.

Figure 4.3: Simple ET representing an example chromosome of (4.3) [62]

A linear string consists of two parts: head and tail. With h as the fixed length of the head, the length of
the tail t is

t = h(na − 1) + 1, (4.4)
where na is the number of arguments the last math operator that the chromosome takes which in the
case of this particular chromosome represented by (4.3) and Figure 4.3 is the addition operator (+)
thus resulting in

h = 6, na = 2 and t = 7,

giving a total gene length of h+ t = 13 and it gives the following linear string: *c-2y+|4xxyyx2where
c represents the cos (cosine) mathematical operator and | operator separates the head and tail compo-
nents. Although there are only two parameters for the tail that should come after the | operator, {4,
x}, the length of tail is seven which thus introduces a term called “open reading frames” which is the
length of the code (the linear string) that is involved in the mathematical operator and the rest of the
string is called the “non-coding region” [61]. Thus, for this particular case, the open reading frames is
seven as the counting begins from zero and the x in Figure 4.3 is the seventh node.

Another important parameter in GEP is the fitness function, Fit(fguess ) that measures how well of a
fit a chromosome is. There is no definite expression but is instead chosen based on users’ preferences
and criteria made for their various purposes. An outline of the procedure is presented in Figure 4.4
taken from [62].

First, the population P i consisting of several candidate chromosomes that are produced from a given
set of mathematical operators, parameters and constants is created and since this is the first generation,
i = 0. The constants are usually created from RandomNumerical Constants as users cannot specify the
broad spectrumof possible parameters thatGEPneeds. ThismakesGEP a non-deterministic/stochastic
process. Then the selection procedure is done based on the fitness function. The selected group of chro-
mosomes are then reproduced based on the various chromosome functions. This is followed by genetic
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Figure 4.4: GEP algorithm procedure [62]

operators which modify members of each chromosome to determine how well it can represent other
existing solutions. Poorly performing variants are discarded and the population is updated before the
same set of procedures is applied to the new population.

4.3. Various developed data-driven closure methods
Apart from the difference in theML algorithms that were used in different data-driven turbulencemod-
elling literature like [57, 62], another difference is the parameters that were subjected to be learnt and
reproduced by machine from given HiFi data. [57] attempted to optimise for the entire anisotropic
Reynolds stress defined as bij in (2.24) using (4.1) while [62] attempted to optimise for an additional
term that is missing from the already defined base model bij . Thus, in the following sections, the
different data-driven closure terms that close the RSij term given by Boussinesq eddy viscosity ap-
proximation in [10] for RANS turbulence models are introduced.

4.3.1. k-corrective frozen RANS
In [2], a deterministic symbolic regressionmethod called SpaRTAwas introduced in optimising for the
anisotropy term bij of Reynolds stress and the turbulence energy production term. Symbolic regression
is one of the ML algorithms that are in the same family of algorithms as genetics-inspired algorithms
such as genetic programming and GEP. The performance of the symbolic regression used in SpaRTA
was largely improved by the use of the Fast Function Extraction technique from [63] in terms of pro-
cessing speed and the quality of final results.

The data-driven closure model that was used in the literature is the k−corrective frozen RANS ap-
proach that was built from the work of [64] and it is based on the k − ω SST RANS model shown in
(2.29) and (2.30). It aims to optimise for the model-form error using HiFi dataset in the k−equation
and the Boussinesq eddy viscosity approximation which has shown its limitations in representing tur-
bulence [12]. It redefines the anisotropy term of Reynolds stress shown in (2.24) as the baseline model
b0ij and introduces a correction term b∆ij that completes the theoretically true anisotropy term resulting
in

b∗ij = b0ij + b∆ij

= −νt
k
Sij + b∆ij ,

(4.5)

where the superscript−(∗) notation is used to distinguish from the conventional definition of bij .

To obtain b∆ij , the kinematic eddy viscosity term νt of (4.5) is required. This in turn requires ω of (2.28)
to be evaluated which is done by solving the conventional ω−equation of the SST model as shown in
(2.30). However, in this data-driven approach, another correction term, apart from b∆ij , is introduced
to correct for the model error in the turbulence energy production term P labelled as theR termwhich
updates the k − ω SST equations to
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ρ
∂(k)

∂t
+ ρuj

∂ (k)

∂xj
= (P ∗

k +R)− β∗ρωk + Tk and (4.6)

ρ
∂(ω)

∂t
+ ρuj

∂ (ω)

∂xj
=

γ

νt
(P ∗

k +R)− βρω2 + Tω + ρ(1− F1)CDkω. (4.7)

where computation of P ∗ is done using limiter defined byMenter in [26] just like in (2.39) andwith the
addition of newly defined anisotropy term of kinematic eddy viscosity into the Reynolds stress tensors
which is

P ∗
k = min

(
ρRS∗

ij

∂ui

∂xj
, 10β∗ρωk

)
and (4.8)

RS∗
ij = 2k

(
b0ij + b∆ij +

1

3
δij

)
(4.9)

The overall procedure for the retrieval of the correction terms is as follows:

1. The HiFi data such as uj , k and RSij are inserted into the ω−equation of 4.7 in which R is first
assumed to be 0 and all parameters except ω are known. ω is solved for.

2. The obtained ω is inserted into the k−equation solving for k−equation model error term, R.
3. Concurrently, ω is used to update νt of (2.28).
4. Using HiFi data and the updated νt: RSij and k, b∆ij are obtained using (2.25) and (4.5).
5. Using the updated R, (P ∗

k +R) term is updated and ω−equation is solved again.
6. This iterative procedure is continued till the values of R and b∆ij converge to the user’s desired

tolerance margin.

These are then used for the aforementioned symbolic regression to obtain algebraic expressions.

4.3.2. Multidimensional GEP driven anisotropy optimisation
Due to the high dimensional nature of CFD, the standard GEP introduced in Section 4.2.3 gives invalid
results for data-driven turbulencemodelling. In [62], amulti-dimensional GEPwas set up to accommo-
date the tensors of turbulence closures. Using this algorithm, the full anisotropy of the Reynolds stress
bij , shown in (2.24), was selected to be the target variable. An extra term defined in [62] as bxij that is
supposedly set to zero in a classical k − ω SST model was subjected to optimisation. Just like TBNN,
multi-dimensional GEP also utilised the set of tensors defined in [58] as shown in (4.2) to discover an
algebraic expression for the extra term.

4.3.3. Data-driven Stochastic Closure Simulation
In [3], a data-driven PANS approach named DSCSwas presented. Using a more elaborate definition of
the aforementioned periodic unsteadiness of turbulent flows : “large-scale turbulent fluid mass with a
phase-correlated vorticity over its spatial extent” given by [65], [3] furthered this definition by charac-
terising it as an organised component within unsteadiness that is by nature, deterministic whichmeans
that the presence of this organised unsteadiness is inevitable regardless of the unsteady flow. To resolve
these scales that RANS does not, [3] attempts to use data-trained PANS. It follows the data-driven pro-
cedure of [62] whereby GEP, mentioned in Section 4.2.3, is utilised.

Using the triple decomposition, the Reynolds stress tensor, following from (2.12), is partitioned into
two parts:

RSij = u′
iu

′
j

= (ũi + u′′
i )(ũj + u′′

j )

= ũiũj + u′′
i u

′′
j

= R̃Sij +RS′′
ij

(4.10)
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in which the first term R̃Sij is given the name “periodic Reynolds stress” and the second term RS′′
ij ,

“turbulent Reynolds stress”. Using the idea that the periodic Reynolds stress takes up the periodicwave
motion, the segregation of length scales associated to the periodic motion and the stochastic motion is
deemed feasible. Thus, it aims to take on an alternative approach to the conventional Boussinesq clo-
sure of (2.22) wherein all turbulence length scales are modelled. Having defined (2.13) with explicit
velocity components of the periodic unsteadiness, û in URANS equations of (2.15) can now be replaced
with (u + ũ), explicitly representing the N-S equations for unsteady flow that excludes the stochastic
unsteadiness u′′

i .

Contrary to the implementation ofGEP in [62] thatworked onproducing an extra term for the anisotropy
of Reynolds stress ultimately correcting for steady RANS, this method attempts to use GEP in discover-
ing a new closure for the URANSwhich resolves the low-frequency periodic unsteadiness that is made
up of large turbulent scales. Hence, it introduces URANS’ Reynolds stress term following from (2.25)
with an extra anisotropy term bxtij for the new closure given as

RSURANS
ij = 2k(bij + bxtij +

1

3
δij) (4.11)

representingRS′′
ij and it purely accounts for the stochastic unsteadiness. Now, since this new turbulent

closure of (4.11) takes the role of accounting for the stochastic unsteadiness while leaving the resolving
of the periodic unsteadiness to the URANS equations, it introduces PANS to tweak k−ω SST equation.
As it was covered in Section 3.2, the PANS form of k − ω SST solves the unresolved/modelled portion
of the turbulent flow and is thus highly relevant for this purpose to be used alongside (4.11) to pre-
vent accounting for the periodic unsteadiness twice. Hence, the PANS form of the Reynolds stress is
introduced:

RSPANS
ij = 2ku(bij,u + bxtij,u +

1

3
δij), (4.12)

representing RS′′
ij where

bij,u = −νtu
ku

Sij (4.13)

and νtu is given by 3.18.

In k−corrective frozen method of Section 4.3.1, k field is directly fed into the set of equations from
HiFi data. However, in DSCS, the ku is instead obtained by solving the ku−equation of PANS. The
following procedure is taken up by DSCS:

1. Using the full Reynolds Stress tensor RSij and the turbulence kinetic energy k from the HiFi
dataset, the full anisotropy tensor bij is obtained.

2. Via FFT or POD, both tensors: RSij and bij are split into periodic unsteadiness and stochastic
unsteadiness parts. The same is done for the turbulence kinetic energy k to compute the field
values for fk.

3. ωu, ku, νtu are solved for using the PANS ku − ωu SST equations. bij,u is then calculated using
(4.13).

4. Using the stochastic unsteadiness part: b′′ij from HiFi dataset as the reference data and bij,u, GEP
is applied to obtain bxtij,u using the base tensors of (4.2).

4.3.4. Potential shortcomings and improvements
With the two closure methods under the scope: k−corrective frozen RANS from SpaRTA and DSCS,
some of their shortcomings are realised and they are elaborated on in this section.

For the k−corrective frozen RANSmethod that has been presented in Section 4.3.1, one arguable aspect
is the addition of the k−equation’s model error term onto the turbulence kinetic production term P ∗

k

as shown in (4.6) and (4.7). Since P ∗
k is sourced from HiFi dataset, it should not be carried on to the

ω−equation but merely stay as a correction term that accounts for k−equation’s model error. Thus, the
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suggested improvement would be the exclusion of R term from (4.7), giving:

ρ
∂(ω)

∂t
+ ρuj

∂ (ω)

∂xj
=

γ

νt
P ∗
k − βρω2 + Tω + ρ(1− F1)CDkω. (4.14)

Another ambiguous aspect with the same reasoning is the use of Menter’s limiter for correcting Pk

using P ∗
k given by (4.8). This limiter introduces ω into the formulation which is purely a modelled

concept of turbulence alongside a constant, β∗, that is entirely empirically decided on. These modelled
parameters override the HiFi dataset in some settings and make it less of a “HiFi” dataset. As for the
last point, an unsteady case would be an attractive case to further this data-driven method.

Next, for the DSCS method presented in the previous section, the HiFi dataset is not fully utilised.
Given k from the HiFi dataset that is used to calculate fk via FFT or POD, it could have been used to
be injected into the ku − ωu PANS equations, together with HiFi velocity field, like it was done in the
k−corrective frozen RANS method. However, it was only used for obtaining fk and the full Reynolds
stress tensorRSij from which the anisotropy tensor bij was calculated. The the periodic and stochastic
unsteady components of bij were extracted using the previously obtained fk value.
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5
High-fidelity data

Data-driven methods are limited by the availability of dataset, specifically those of high-fidelity as it is
a uncommon for such a dataset to be at hand for a study to be done on a particular fluid domain with
desired flow conditions to be studied. In this chapter, the HiFi data used for the project is explained.

5.1. Dataset selection
The HiFi dataset used for the project is taken from [66] in which LES data with commendable amount
of fidelity was produced. The study involved the investigation of combustion dynamics of a V-flame
whereby the V-flame holder is shaped just like a triangular prism with a cross-section of an equilateral
triangle with one of its vertices facing the inlet as shown in Figure 5.1 taken from [66].

Figure 5.1: Computational V-flame configuration [66]

This V-flame holder is positioned in the middle of the channel, to give enough space and time for
inflow to be developed into a fully turbulent flow. In addition, the vertical centre (along z−axis) of
the equilateral triangle is positioned in the middle of the channel height for a vertically unbiased flow
simulation.

The triangular prism is an optimal structure for fluid flow to be studied on, especially with highly
modelled method like RANS where it is said by [3] that the most notable shortcomings of the RANS
turbulencemodels come from their poor predictions in separating flowswhich ismost apparent behind
a bluff body. Although many bluff bodies such as circular and square cylinders have been researched
on, the number of studies done for triangular prisms is significantly lesser, reflecting its little popularity.
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However, it is an extremely interesting structure to be studied on due to the investigative advantages
it possesses compared to its counterparts.

For example, a CFD simulation around a square cylinder has high instability due to the extreme flow
deceleration at the leading edge of the cylinder and the flow separation that occurs at the corners of
the leading edge. Additionally at sufficiently high Re, due to this early separation, the flow never reat-
taches along the stream-wise lengths thus the influence of the trailing edges on the flow instability at
the wake is unable to be independently studied.

A circular cylinder on the other hand does not feature sharp corners where sharp flow separation usu-
ally occurs at. Therefore, a wake behind such a sharp separation is not studied. Hence, the structural
characteristics that triangular prism has allows for a study of an unstable wake that is purely caused
by sharp corners of the trailing edges of the structure since its inlet-facing vertex allows for a gradual
deceleration of the flow while the flow is still attached.

5.2. Dataset flow field
In this section, the domain of the flow field is introduced alongside the mesh that was used for the LES
study in [66]. Additionally, the various settings and parameters that were defined for the selected HiFi
dataset is presented.

5.2.1. Flow field domain and mesh
Firstly, the dimensions of the fluid domain can be observed from Figure 5.1. The channel has a length
of 1.50m along x−axis, a height of 0.12m along z−axis and a width of 0.24m along y−axis. The equi-
lateral triangle has a side length of 0.82m while the triangular prism’s width spans the width of the
channel. Apart from the inlet and the outlet, the rest of the boundaries in z−axis and y−axis are de-
fined as walls where no-slip condition is implied. The no-slip condition is applied also for the walls of
the triangular prism.

Figure 5.2: Mesh of HiFi dataset

In this domain, an unstructuredmesh is applied around the triangular prism as shown in Figure 5.2. As
it can be seen form the figure, the mesh is much coarser far upstream of the triangular prism whereas
mesh retains a good amount of fineness far downstream since the vortices from the expected flow sep-
arations need to be solved and studied. In the region near the walls of the triangular prism, a greater
refinement is made to the mesh as shown in Figure 5.3. The mesh for the domain is found to have
around 8.1 million points that make up 46.5 million tetrahedral cells.

Such a high level of mesh fineness near the wall is used in order to accurately resolve the eddies in-
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Figure 5.3: Mesh of HiFi dataset near triangular prism

stead of applying wall modelling that induces approximations and thus undesired inaccuracies into
the intended HiFi dataset solution. As even the largest of the eddies in this near-wall region is ex-
tremely small, y+ value of less than 1 must be retained which is done in this study hence making it an
acceptable HiFi dataset to be used for the data-driven study.

Using this fine mesh, a velocity field of high resolution, much higher than that of a typical RANS
solution, was able to be achieved by resolving the smaller turbulence scales as it can be observed in
Figure 5.4.

Figure 5.4: Velocity field of HiFi dataset

Consequently, a large spectrum of various turbulence scale sizes are observed in great details in the
contours of Q-criterion shown in Figure 5.5 in which extremely small eddies can be observed on the
walls of the triangular prism where the extremely high mesh resolution is imposed on.

5.2.2. Flow parameters
Although a combustion dynamics study was conducted in [66], a non-reacting case was evaluated
and validated. The calculated flow viscosity is close to that of the atmosphere thus it is deemed as a
reasonable dataset for free flow study to be based on. This non-reacting flow is made up of 21.85% of
Oxygen (O2) and 78.85% of Nitrogen (N2). Using the viscosity relations given by [67], the kinematic
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Figure 5.5: Contours of Q-criterion

viscosity ν of the flow is found to be

ν = 1.4822× 10−5 m2/s. (5.1)

The study was done for 288K which is equivalent to 14.85 °C. According to [68], atmospheric air at
15 °C has a kinematic viscosity of 1.48 × 10−5 m2/s and therefore the two flows can be considered
almost identical at least in the study of flow dynamics. With the freestream flow velocity value of
u∞ = 16.6ms−1 used in literature and kinematic viscosity of (5.1), the following Reynolds number of
the flow was calculated:

Re =
uL
ν

=
16.6 · 0.034641
1.4822× 10−5

= 38796,

(5.2)

where L = 0.034 641m is the characteristic length which for this fluid domain, is the horizontal length
of the equilateral triangle in the direction of the x−axis.

5.3. Post-processing
To conduct k−corrective study, required flowparameters of theHiFi dataset need to be calculated using
the field values of pressure and the three velocity components that are available.

5.3.1. HiFi parameters
As described in Section 4.3.1, the HiFi parameters that are assimilated into the RANS turbulence model
are the three velocity components ui, turbulence kinetic energy k and Reynolds stress tensorRSij . The
difference for this data-driven study is that the flow case is unsteady. Hence for k, unlike (2.18) where
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infinite averaging is applied as done in Reynolds averaging, a finite averaging is applied. Thus, similarly
to (2.14), k is obtained using the following equation

k =
1

2
u′
iu

′
î, (5.3)

while the the six components of Reynolds stress tensor RSij for the unsteady flow is given by

RSij = u′
iu

′
ĵ . (5.4)

The finite averaging is done via triple decomposition as introduced in Section 2.2.3 and will be further
explained in detail in Section 7.1. It is worth mentioning that although RSij is a tensor with nine
elements in a 3×3 squarematrix− cycling through i = 1, 2, 3 and j = 1, 2, 3− it is a symmetrical matrix.
Thus for example, RS12 is equivalent to RS21, ultimately resulting in just six unique components.

5.3.2. Vortex shedding frequency
In order to use this HiFi dataset in improving the prediction of a flow field via injecting the dataset
into PANS, it s crucial for the HiFi dataset to correctly represent the the intended flow field with flow
parameters stated in Section 5.2.2. This way the correction terms obtained would truly give PANS an
improvement in solving the given flow, driving it to a true solution. Thus, the lift force in z−axis on the
triangular prism has been calculated by applying the following relation on the walls of the triangular
prism:

Lz =

N∑
n=0

pnAnk̂ (5.5)

where pn andAn are the pressure and surface area of a single cell, and k̂ is a unit vector in the direction
of z−axis.

Figure 5.6: Lift of HiFi dataset against time

The calculated lift force is plotted against time as shown in Figure 5.6. It is to be noted that the first
point starts at t ≈ 0.17 as the flow has not yet stabilised prior to this point. It can be confirmed from
this plot that the flow field clearly exhibits periodic vortex shedding similar to the von Kármán vortex
street shown in Figure 2.3.

Furthermore using this force analysis, the vortex shedding frequency needs to be extracted for a com-
parison with the experimental value of fvs,exp = 105Hz that is provided by [66]. Using FFT in Scipy1,
a scientific Python library, Figure 5.7 is produced.

1https://scipy.org/
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Figure 5.7: Frequency plot of Lift of HiFi dataset

A clear dominant frequency can be observed and the corresponding frequency is found to be 122Hz
which is contains an error bound of±5Hz due to discrete time signal according to [66]. The difference
in vortex shedding frequencies of the experimental data and the HiFi LES data is concluded to be an
acceptable value. The highlighted parameters of the HiFi dataset are assembled in the Table 5.1.

Parameter Value

Number of points on mesh 8.1× 106

Number of tetrahedral cells on mesh 46.5× 106

Freestream velocity u∞ 16.6ms−1

Kinematic viscosity ν 1.48× 10−5 m2/s
Reynolds number Re 38 796

LES vortex shedding frequency fvs,LES 122Hz
Experimental vortex shedding frequency fvs,exp 105Hz

Table 5.1: HiFi dataset parameters

In all, the HiFi dataset is deemed to be a good enough representation of the flow field for a data-driven
study to be done. However, this imperfection of the HiFi dataset should always be kept in mind.
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6
PANS implementation

In chapter 3, PANS and some of its defining characteristics were introduced, and its ku−ωu SST model
was derived starting from the RANS form. In this chapter, after a brief mention of its exact implementa-
tion, the mesh created for the computation of PANS is introduced, followed by validation of the newly
implemented model and some of the highlighted results.

6.1. Governing equations
The PANS form of the k − ω SST turbulence model has been derived in Section 3.2.2 resulting in (3.21)
and (3.30), the transport differential equations for unresolved k and ω respectively. However, just
like how the RANS form of k − ω SST model that is implemented into various CFD programs such as
OpenFOAM1 and Ansys CFX2 features slightly different form as demonstrated in [26] compared to the
conventional form as in [24], PANS form of ku − ωu SST is also slightly adjusted to better suit compu-
tational calculations. The motivation for this difference is essentially the improvement in convergence.

Similarly to P+ of (2.39), µ+
t of (2.36) and CD+

kω of (2.40), the same set of terms in PANS ku − ωu

SST are adjusted for the CFD softwares and they are:

P+
ku = min (Pku, 10β

∗kuωu) , (6.1)

µ+
tu = ρν+tu =

a1ku
max (a1ωu,WF2)

and (6.2)

CD+
kω,u = max

(
2σω2

ωu

fω
fk

∂ku
∂xj

∂ωu

∂xj
, 10−20

)
. (6.3)

where F2 is defined in (2.37) and just like F1, its expression is unchanged but arg2 of (2.38), the argu-
ment that it takes, is updated to arg2,u and it is

arg2,u = max
(
2

√
ku

β∗ωud
,
500ν

d2ωu

)
.

The ku and ωu equations are then updated to

ρ
∂ku
∂t

+ ρuj
∂ku
∂xj

= P+
ku − β∗ρωuku + ρ

∂

∂xj

[(
ν + σkuν

+
tu

) ∂ku
∂xj

]
and (6.4)

1https://www.openfoam.com/
2https://www.ansys.com/products/fluids/ansys-cfx
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ρ
∂ωu

∂t
+ ρuj

∂ωu

∂xj
=

γ

ν+tu
P+
ku − γβ∗ρω2

u + γβ∗ρ
ω2
u

fω
− βρ

ω2
u

fω

+ ρ
∂

∂xj

[(
ν + σωuν

+
tu

) ∂ωu

∂xj

]
+ ρ(1− F1)CD+

kω,u.,

(6.5)

6.2. Meshing
Like any other turbulence model, PANS require a mesh for the fluid domain for the flow to be solved.
However, since the purpose of PANS in this project is not to produce the HiFI dataset, a structured
mesh that minimises computational effort while still accommodating the various needs such as being
wall-resolving is produced. Furthermore, instead of the 3D mesh that is used for the HiFi dataset, a
2D mesh is produced as it was concluded in [3] that “Mean velocity profiles for the two and three-
dimensional calculations show an insignificant difference” for PANS computation. First, the size of the
domain chosen is divided into some blocks as shown in Figure 6.1.

Figure 6.1: PANS fluid domain blocks

Compared to the mesh for the HiFi dataset shown in Figure 5.2, the length between the inlet and the
triangular prism is cut short. This is because in RANS and PANS calculations, in this case, the turbulent
flow is assumed to be fully developed from the inlet unlike in LES or DNS. The choice for the various
sizes and shapes of the blocks was to accommodate for maximum mesh quality where skewness of
the quadrangle structures is kept to a minimum. Additionally, mesh refinement in such a sub-divided
domain is much more easily controlled allowing for the sponge layer far downstream to avoid flow
reflection. The mesh is shown in Figure 6.2 with a closeup of the near-wall cells in Figure 6.3.

Figure 6.2: PANS mesh

The mesh is generated with attention to three main characteristics and these can be observed from
Figure 6.2 and Figure 6.3:

1. y+ < 1 needs to be achieved around the walls of the triangular prism.
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Figure 6.3: PANS mesh near triangular prism

2. Wall distance at other walls is kept coarse to minimise computational effort. It is also done to not
introduce additional eddies into the flow as they are not to be studied.

3. A sponge layer is added far downstream to prevent reflection.

The number of points and cells of the mesh are gathered in Table 6.1.

Parameter name Value

Number of points on mesh 39 480

Number of hexahedral cells on mesh 19 300

Table 6.1: PANS mesh statistics

6.3. OpenFoam implementation
The lines of code used to create the PANS ku − ωu SST is presented in Appendix A wherein both the C
and H files are presented. It should be noted that the file is incomplete and only the most significant
lines are presented so it does not work independently. The program is developed based on the default
RANS k − ω SST implementation by OpenFOAM v2112 and its structure is followed for consistency’s
sake. In this section, a pseudo-code that outlines the structure of the program alongside a few snippets
of the code that are highlighted are presented.

The case under study is an unsteady case with an incompressible flow assumption and hence for the
solver inOpenFOAM, the incompressible PIMPLE algorithm is chosen to be usedwhich combines PISO
(Pressure Implicit with Splitting of Operator) and SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) algorithms. The algorithm is used to couple velocity field and pressure field at every time
step. The velocity field is then used in the turbulence model, ku−ωu SST in this case, to solve for ku and
ωu fields. First, the boundary conditions and initial conditions used are introduced in Table 6.2 which
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is supported by (6.6) and 6.8 given by [69]:

k =
3

2
(0.16uI)2 (6.6)

I = 0.16Re−1/8 (6.7)

ω = (β∗)−1/4

√
k

ℓt
(6.8)

ℓt = 0.07dh (6.9)

where dh is taken as the height of the inlet for the given domain which has a value of 0.12m shown in
Figure 5.1.

Field
Inlet Outlet Wall Internal field

BC IC BC IC BC IC IC

u fixed 16.6 ∆u = 0 N.A. no slip N.A. 16.6

p ∆p = 0 N.A. fixed value 1 atm ∆p = 0 N.A. 1 atm
k fixed 0.75357 via (6.6) ∆k = 0 N.A. N.A. 10−8 0.75357 via (6.6)
ω fixed 188.68 via (6.8) ∆ω = 0 N.A. N.A. 108 188.6 via (6.8)
νt fixed 0.0040 via (2.28) ∆νt = 0 N.A. N.A. 10−10 0.0040 via (2.28)

Table 6.2: Boundary and initial conditions

Algorithm 1 walks through the summary of the newly implemented turbulence model. The initial
field values at t = 0 are marked with subscript 0 and intermittent time steps are marked with subscript
t.

Algorithm 1 PANS ku − ωu SST
Require: fk ▷ fω is simply an inverse of fk

Read u0, p0, k0, ω0, νt,0 ▷ Read from t = 0 folder
ku,0 ← k0 × fk
ωu,0 ← ω0/fk
νtu,0 ← ku,0/ωu,0

while t ≤ tfinal do
procedure PIMPLE SOLVER(ut−1, pt−1)

ut ← coupling of ut and pt
i, j ← 0, 0 ▷ i, j: Iteration counters
while ωu,i − ωu,i−1 > toleranceω do

ωu,i ← Solve via (6.5)
end while
while ku,j − ku,j−1 > tolerancek do

ku,j ← Solve via (6.4)
end while
ωu,t, ku,t ← ωu,i, ku,j
νtu,t ← ku,t/ωu,t ▷ Update unresolved kinematic eddy viscosity
ωt ← ωu,t × fk
kt ← ku,t/fk

end procedure
t← t+ dt

end while
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6.4. Validation
Before proceeding to utilise the PANS program created, it had to be validated. As claimed in the liter-
ature review done for PANS in chapter 3, PANS should operate as RANS when fk = 1.0. At this value
of fk, all of the flow is modelled by the chosen turbulence closure model which in this project is the
k − ω SST. Thus, some of the flow characteristics, as well as flow parameters are compared between
computation results from PANS at fk and from the conventional RANS SSTmodel. First of all, the dom-
inant frequencies were calculated as it was done in Section 5.3.2 and the result is shown in figure6.4.
Peaks at the same frequencies can be observed with the dominant frequency being fvs = 113.82Hz.

Figure 6.4: Vortex shedding frequency comparison between RANS and PANS SST fk = 1.0

The presence of the small difference is likely to be sourced from the assumption made in Section 3.2.2
whereby it was assumed that at a sufficiently high Re, the resolved fluctuations have no contribution
to the SFS energy transport.

Figure 6.5: Turbulence kinetic energy for PANS at fk = 1.0 marked with various stream-wise positions

Additionally, stream-wise velocity ux, turbulence kinetic energy k and specific dissipation rate ω are
compared and they are presented in Figures 6.6, 6.7 and 6.8 respectively for the stream-wise positions
marked with orange dotted lines in Figure 6.5. These positions are relatively close to the triangular
prism as compared to the entire length of the domain. The intention was to choose points that have
little to no interaction with the top and bottom walls. The mesh is coarse near these walls as shown by
Figure 6.2 to save computation time thus dampening out the wall effects such as the additional amount
of turbulence kinetic energy. Therefore, to analyse data points that make a fair comparison to the HiFi
data in the later part of the project, these stream-wise locations were chosen.
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Figure 6.6: Stream-wise velocity comparison between RANS and PANS SST fk = 1.0 at various stream-wise
locations

Figure 6.7: Turbulence kinetic energy comparison between RANS and PANS SST fk = 1.0 at various stream-wise
locations
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Figure 6.8: Specific dissipation rate comparison between RANS and PANS SST fk = 1.0 at various stream-wise
locations

It can be observed that the field values of RANS SST and PANS SST at fk = 1.0 for various stream-wise
locations match exactly, validating that the developed PANS model works as expected. This validated
PANS model is then be used for further analyses at various values of fk in Section 6.5.

6.5. Results
Similarly to the analysis of the HiFi data in Section 5.3.2 and the validation that was previously done
for the developed PANS model, the vortex shedding frequency fvs was first calculated and the results
are shown in Table 6.3. Apart from fvs, the time taken for the computation until stability for each value
of fk is also reported. Stability is considered to be achieved when the periodic solution stops showing
large visual changes. After the stability was achieved, 20 flow-through periods were further observed
and they were used in computing the vortex shedding frequencies.

fk t until stability fvs

1.0 0.125 s 113.82Hz
0.8 0.102 s 115.57Hz
0.6 0.087 s 118.08Hz

Table 6.3: Time till stability and vortex shedding frequency for PANS at various fk

It can be observed that as fk decreases, the vortex shedding frequency approaches 122Hz, fvs of LES
(HiFi) data as shown in Table 5.1. Additionally, the computation takes lesser time to stabilise which
is suspected to be due to the smaller value of fk being able to resolve smaller turbulent scales, espe-
cially near the wall where the mesh resolution is extremely high, quickly introducing disturbances to
the freestream flow that goes around the triangular prism. It is to be noted that although 0.4 is the
next sensible fk value to be studied, it was not done so as it was claimed in [3] that for a typical RANS
mesh resolution, fk < 0.44 does not produce logical results anymore. Furthermore, due to the time
constraints of the project, a greater mesh resolution was not used for analyses.

Using the same set of fk values, analyses at various stream-wise locations for temporal mean values of
ux/, k and ω were done. These parameters were compared to that of the HiFi values except for ω and
they are shown in Figures 6.9, 6.10 and 6.11.
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Figure 6.9: Stream-wise velocity comparison between fk values at various stream-wise locations

Starting with ux, at lower values of fk, the prediction of ux right behind the prism is improved to a
small but significant extent, especially behind the corners of the triangle which takes advantage of the
high mesh resolution in this area. However, the solution of the lower fk gets worse downstream of the
fluid domainwhichwas also observed in [3] wherein untrained PANS had aworse prediction formean
stream-wise velocity than untrained URANS. The general characteristics of the solution follow that of
typical RANS SST as shown by fk = 1.0.

Figure 6.10: Turbulence kinetic energy comparison between fk values at various stream-wise locations

The prediction for k right behind the prism gets worse for lower fk, over-predicting to a small extent.
However, all the solutions largely under-predict k further downstream with little deviation from one
another. This is due to excessive dissipation as shown in Figure 6.11 in which ω is extremely large
behind the triangular prism, heavily reducing k.
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Figure 6.11: Specific dissipation rate comparison between fk values at various stream-wise locations

Although the results for PANS are unsatisfactory as they deviate from how PANS should perform the-
oretically, the validation alone is sufficient for a data-driven study that is the main focus of this project.
To minimise computational cost and the duration of computation, a mesh of insufficient resolution is
used as every small decrement in the value of fk was found to require a mesh of a much higher reso-
lution in [43]. However, with sufficiently fine mesh, it was proven in [43] that solution of PANS with
fk = 0 did indeed approaches the DNS solution at the expense of a huge amount of computational
costs.
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7
k−corrective frozen PANS

This chapter begins with the pre-processing of the HiFi dataset for use in the k−corrective frozen PANS
method. The implementation of the method into OpenFOAM1 v2112 is presented alongside feasible
verification and validation of the implemented method. The chapter is concluded with an overview of
the method and the results obtained.

7.1. Pre-processing
It can be seen from the lift-time plot in Figure 5.6 that the HiFi dataset has varying values of lift am-
plitudes at every period at different locations in each period. Moreover, although not clearly visible
from the plot, the periods have different time values which means that parameters such as the velocity
components cannot be simply averaged over the number of available periods.

Thus an averaged period is obtained through “phase-averaging”. Here, the lift is used as an exam-
ple instead of other useful parameters since it is a much better parameter to verify the procedure and
validate the results as it clearly shows the sinusoidal behaviour with apparent periods. The following
procedure walks through how phase-averaging is done:

1. Roots are extracted from the sinusoidal lift-time plot of Figure 5.7.
2. For every pair of alternating roots that makes up a single sine curve representing a single period,

a quadratic function L(t) is found. It takes time as an argument and calculates lift within the root
pair.

3. Since the time value of the period is unique for that pair, the function is converted into one for the
spherical coordinate system which now has takes phase, θ ∈ [0, 2π], as its argument giving L(θ)
instead.

4. For a chosen value of resolution r − the number of points in a single period that is much higher
than the number of given data points − a fixed set of points in phase coordinates is decided.

5. The lift values in eachperiod are calculated at these points using the previously obtained quadratic
function. This allows every r point in each period to be in the exact same locations in a sine curve.

6. Since the points in each period are in the same phase coordinates now, averaging can be applied
to get a single phase-averaged period with r number of points. The result is shown in Figure 7.1
in which the horizontal axis is θ ∈ [0, 2π ≈ 6.28].

7. This single phase-averaged period data is converted to the time coordinate. The time value of the
period for this phase-averaged data is the average value of all the available periods and this value
was found to be T = 0.008 256 s.

1https://www.openfoam.com/
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Figure 7.1: Phase averaged lift of HiFi dataset for r = 100 data points (example value)

Due to the availability of only 14 full periodic cycles, the phase-averaged lift plot for a single period
presented in Figure 7.1 is not fully smooth which is also the case for the three velocity components
inevitably. In an optimal setting with a much higher number of cycles, the phase-averaged data should
represent a perfect sinusoidal plot. This phase-averaged data of r number of data points representing
a single period are used in the frozen−k method.

The averaged data is plotted against the actual data throughout all the available periods in Figure 7.2
for visual verification. With the procedure and the results in lift force verified, the same is done for
the three velocity components, turbulence kinetic energy and Reynolds stress tensor as previously pre-
sented in (5.3) and (5.4) that are more useful in the frozen−k method.

Figure 7.2: Lift and the phase-averaged lift of HiFi dataset against time

So what ultimately was achieved is the triple decomposition of (2.13) that is visualised in Figure 2.2.
From the raw data points shown by the blue line in Figure 7.2, the stochastic unsteadiness (the noise)
has been removed by averaging all the periods since the partial average of the fluctuation is zero,
⟨u′′⟩ = 0, whereby the partial averaging represents the averaging the periods in this case. This results
in the red line that only includes the mean value (L = 0) and the periodic unsteadiness, the sinusoidal
fluctuations.

7.2. Frozen−k
In this section, a step-by-step procedure of the k−corrective frozen PANS method is presented. Using
an overview of the method shown in Figure 7.3, each process is elaborated on in detail. This method
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combines the correction terms of k−frozen method of SpaRTA,R and b∆ij described in Section 4.3.1 and
DSCS method of Section 4.3.3 which implements triple decomposition into PANS.

Figure 7.3: Overview of k−corrective frozen PANS method

The procedure begins with the pre-processing of the HiFi dataset as described in Section 7.1 and is
shown in the green box of Figure 7.3. From the phase-averaging, HiFi instantaneous fields that are
required to compute unresolved fields for PANS ku − ωu SST equations are obtained via (5.3) and
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(5.4). Similar to the calculation of unresolved turbulence kinetic energy ku that is done via (3.6), the
unresolved Reynolds stress tensor is also achieved using the following equation:

RSij,u = fk ·RSij (7.1)

since the tensor is made up of products of velocity fluctuations just like k. This unresolved Reynolds
stress tensor RSij,u now represents RS′′

ij following from an assumption that the selected value of fk
coupledwith a givenmesh is able to exactly drain the turbulent Reynolds stress as given in Section 4.3.3.
Using these two parameters, the rest of the required parameters can be calculated:

aij,u = RSij,u −
2

3
kuδij (7.2)

bij,u =
aij,u
2ku

(7.3)

Pku = −RSij,u
∂ui

∂xj
(7.4)

with which the preparation part of Figure 7.3 in the blue box is concluded and the unresolved fields
are passed on to the orange box where the actual frozen−k is conducted.

As a first step, the ωu−equation of (6.5) is solved to obtain ωu − the only unknown in the equation
− using the HiFi unresolved fields that were previously calculated together with the other constants
that are involved. This equation is presented once more, explicitly pointing out the HiFi fields in bold:

ρ
∂ωu

∂t
+ ρuj

∂ωu

∂xj
=

γ

ν+tu
Pku − γβ∗ρω2

u + γβ∗ρ
ω2
u

fω
− βρ

ω2
u

fω

+ ρ
∂

∂xj

[(
ν + σωuν

+
tu

) ∂ωu

∂xj

]
+ ρ(1− F1)CD+

kω,u.,

(7.5)

where

ν+tu =
a1ku

max (a1ωu,WF2)
,

CD+
kω,u = max

(
2σω2

ωu

fω
fk
∇ku

∂ωu

∂xj
, 10−20

)
,
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√
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2

(
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∂xj
−

∂uj

∂xi

)
,
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(
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1,u

)
,
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[
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( √
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β∗ωud
,
500ν

d2ωu

)
,
4ρσω2ku

CD+
kω,u d

2

]
,

F2 = tanh
(
arg2

2,u

)
and

arg2,u = max
(
2

√
ku

β∗ωud
,
500ν

d2ωu

)
,

while ρ, γ, β∗, β, fω , fk, ν, σωu, σω2 and a1 are constants, and d is, as aforementioned, the distance from
the field point to the nearest wall. Additionally, Pku is used instead of P+

ku since the production term
from the HiFi data is considered true value and should not be altered.

The calculated ωu is then passed on to a modified ku−equation that was presented in (6.4). Since
ku is a known parameter, the goal is to solve for ku−equation model error term Ru, similarly to (4.6).
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Again implementing bold font for HiFi unresolved fields, the modified equation is

ρ
∂ku
∂t

+ ρuj
∂ku
∂xj

= Pku − β∗ρωuku + ρ
∂

∂xj

[(
ν + σkuν

+
tu

) ∂ku
∂xj

]
+Ru

Ru = ρ
∂ku
∂t

+ ρuj
∂ku
∂xj
− Pku + β∗ρωuku − ρ

∂

∂xj

[(
ν + σkuν

+
tu

) ∂ku
∂xj

]
(7.6)

from which Ru is explicitly solved. While doing so, the other correction term, b∆ij,u, is calculated from
the following equation:

b∆ij,u = bij,u −
(
−ν+tu

ku
Sij

)
. (7.7)

This term ultimately corrects for the model error in the Boussinesq eddy viscosity assumption in which
the error is driven by the anisotropy term that this frozen−k method tries to correct for.

There are two main features of this method that sets it apart from the DSCS method of Section 4.3.3.
The first is the inclusion of Ru, the ku−equation correction term. The second is directly influenced by
the first feature. It is the assimilation of HiFi ku data into the ku−equation instead of solving the dif-
ferential equation. Thus, the method is hugely driven by the assumption that a specific value of fk can
correctly drain the stochastic unsteadiness to some extent.

7.3. OpenFOAM implementation
Unlike the standard PANS turbulence model that requires just the initial conditions to be given to the
program as described in Section 6.3, for k-corrective frozen PANS, an externally provided HiFi dataset
needs to be used at each time step. However, it is not ideal for storage to have the value of the resolution
r introduced in Section 7.1 to be large enough to heavily minimise the time step ∆t to account for the
CFL condition:

C = u
dt

dx
≤ 1. (7.8)

This is especially since the mesh carries y+ < 1 on the walls in resolving the near wall flows which
drive dx to an extremely small number. Through a trial run of standard RANS/PANS computation on
OpenFOAM, it was realised that dt ≈ 1 × 10−8 s to abide by (7.8) which would require r ≈ 82 000.
Computational storage-wise this is extremely undesirable to have such a large number of folders with
large data files to be read from. Furthermore, OpenFOAM features adjustable time steps which are
hard to track before computation.

Thus, with the value of r = 166 that was chosen based on fitting in a time step of dtHiFi = 5 × 10−5 s
which results in having clean decimal places for folder names of the calculated average period of
T ≈ 0.008 256 2 s (so at t = 0 s, 0.000 05 s, 0.0001 s, 0.000 15 s, · · · , 0.008 25 s). Using this temporal
resolution, linear interpolation was implemented to easily account for the flexible time steps. From
Figure 7.1, linear interpolation was deemed to be sufficient due to the proximity between the adjacent
points. After a computational time of t = 0.008 25 s where the time of the last HiFi data containing
folder has been passed, the remainder of the division between instantaneous time t and the period T is
used to recycle this set of r number of folders. The procedure is elaborated in algorithm 2 and notable
snippets of the lines of code is presented in Appendix B.

Additionally, unlike standard PANS implementation, the PIMPLE solver is adjusted since the usage
of HiFi velocity data makes the velocity-pressure coupling of the PIMPLE algorithm redundant and
this is shown in Appendix C. In algorithm 2, this is given the name “frozen-PIMPLE”.
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Algorithm 2 k-corrective frozen PANS ku − ωu SST
Require: fk ▷ fω is simply an inverse of fk
Require: T ▷ Period of HiFi dataset

Read u0, p0, k0, ω0, νt,0, RSij,0 ▷ Read from t = 0 folder
ku,0 ← k0 × fk
ωu,0 ← ω0/fk
νtu,0 ← ku,0/ωu,0

T ← (0, 0.00005, 0.00010, · · · , 0.00825)
while t ≤ tfinal do

procedure PARENT FOLDERS IDENTIFICATION AND INTERPOLATION
θ ← t%T ▷ Remainder of t/T
if T [−1] < θ < T then ▷ Between the time of last available folder and period

idx+ = 0 ▷ Upper bound index
idx− = −1 ▷ Lower bound index

else
for k ← (0, 1, 2, ..., r − 1) do ▷ r = 83

if T [k] > θ then
idx+ = k
idx− = k − 1
break ▷ Exit for-loop early

end if
end for

end if
t+ ← T [idx+]
t− ← T [idx−]
ϕ = {u, k,RSij}
Read ϕt+, ϕt− ▷ Read from t = t+, t− folder
ϕt ← (ϕt+ − ϕt−)/0.0001× θ + ϕt− ▷ Linear interpolation
ku,t ← kt × fk
RSij,u,t ← RSij,t × fk

end procedure
procedure FROZEN-PIMPLE SOLVER(ut)

i← 0 ▷ i: Iteration counters
while ωu,i − ωu,i−1 > toleranceω do

ωu,i ← Solve ωu−equation of (6.5)
end while
ωu,t ← ωu,i

ωt ← ωu,t × fk
R← Solve via (7.6)
νtu,t ← ku,t/ωu,t ▷ Update unresolved kinematic eddy viscosity
b∆ij,u ← Solve via (7.7)

end procedure
end while

7.4. Results and discussion
In this section, the results obtained for the k-corrective frozen PANSmethod are presented. The correc-
tions, Ru and b∆ij,u obtained are plotted and analysed.

The corrections made for fk = 0.8 are presented in Figures 7.4, 7.5 and 7.6. Ru, the model error for
the ku−equation is compared against the unresolved production term Pku derived from Boussinesq
approximation and HiFi data in Figure 7.4. It is to be noted that asymmetry is present in the HiFi data
to a small extent and although it is not obvious in Figures 6.9, 6.10 and 6.11, this minor asymmetry
blows up when Ru is extracted from (7.6) as it can be observed.
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In the regions of the wake that are right behind the triangular prism and far downstream at x = 0.04
and x = 0.012 respectively, the order of magnitudes of Ru stays in line with that of Pku of Boussi-
nesq approximation and HiFi data. At all stream-wise locations, Ru is not limited to just positive nor
negative values but it fluctuates between them. At x = 0.04, a significant positive value of correction
is required at span-wise central point (z = 0). The correction quickly switches to negative values as
z approaches ±0.02 which are the span-wise coordinates of the trailing edge corners of the triangle.
Right outside these corners, at |z| > 0.02, the correction again switches back to a positive value before
gradually reducing to 0 henceforth.

Figure 7.4: Ru compared with Pk,u for fk = 0.8

At x = 0.067, large magnitudes of Ru are observed. Contrary to Ru at x = 0.04, a large negative
correction is required at z = 0. Once again, the sign of Ru changes as z = ±0.02 is approached. The
positive values ofRu then reduce to 0 towards the ends. The asymmetry is the most visible at x = 0.093
wherein the large negative peak inRu has moved towards the negative value of z. Towards the top side
(positive z), a clear transition to positive value can be noticed. Although to a much smaller extent,
this transition is also observed towards the bottom side. Nonetheless, due to the involvement of many
other terms in the transport equation for ku, little can be said about the relationship between these
parameters. Amere conclusion that can be made is that the ku−equation requires a significant amount
of corrections, especially in the downstream area, in the wake of the triangular prism. Additionally,
since Ru is small at x = 0.12 even when the difference between ku of PANS and HiFi is large as shown
in Figure 6.10, the correction for bij was expected to be more significant and this is indeed observed
in Figures 7.5 and 7.6. In these figures, b∆12,u and b∆12,u are presented. They are the normal and shear
stress components of the second model error, b∆ij,u, and they are plotted alongside bij,u of Boussinesq
approximation and HiFi data, generally expressed as

bBoussij,u = − νtu
2ku

Sij and (7.9)

bHiFi
ij,u =

1

2kHiFi
u

(
RSHiFi

ij,u −
2

3
kHiFi
u δij

)
. (7.10)

It can be observed that the addition of b∆ij,u onto bij,u of Boussinesq approximation results in the HiFi
bij,u as intended. Unlike Ru, this model error is concentrated in certain regions in the fluid domain
but is distributed throughout the domain, in both stream-wise and span-wise directions. For b∆11,u that
represents the streamwise normal stress component, the most noticeable trait is behind the centre of
the triangular prism at x = 0.04where it is largely negative. The sign of b11,u is incorrectly predicted by
Boussinesq approximation resulting in an oppositely shaped plot. Towards the top and bottom walls
of the domain (z = ±0.06), positive values of corrections are observed before converging to a 0 value
at the walls. Similarly for b∆12,u in Figure 7.6, the plots of Boussinesq approximation’s b12,u and that of
HiFi are almost a mirror image of each other at x = 0.04. Hence, it can be concluded that computation
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of bij,u by Boussinesq approximation is the poorest in the near downstream region.

Further downstream, the disparity of the general trend of Boussinesq approximation from the HiFi
counterpart reduces but with significant corrections to be made nonetheless. However, the direction of
the stress prediction large improves as it can be seen by both blue and red lines being on the same side,
except for at the top and bottomwalls. Among the presented stream-wise locations, x = 0.093 is where
prediction by Boussinesq approximation for bij,u is closest to HiFi dataset. In the far downstream re-
gion, represented by x = 0.12 plot, a significant amount of corrections is still required. As highlighted
previously, the disparity in bij,u is largely responsible for the poor prediction of ku for PANS since Ru

at x = 0.12 is relatively minimal.

Summing up, the largest corrections are required at the centre-line along the span-wise z−axis through
all points on x−axis. b∆ij,u seems to have bigger impacts than Ru in the near and far downstream re-
gions, at x = 0.04 and x = 0.12 respectively. Between these two points, both types of corrections work
together to correct for the disparity between PANS and HiFi solutions shown in Figure 6.10.

Figure 7.5: b∆11,u compared with Boussinesq b11,u and HiFi b11,u for fk = 0.8

Figure 7.6: b∆12,u compared with Boussinesq b12,u and HiFi b12,u for fk = 0.8

Similarly, the corrections for fk = 0.6 are shown in Figures 7.7, 7.8 and 7.9 of Ru, b∆11,u and b∆12,u respec-
tively. Although all three variables show the same trends in both stream-wise and span-wise directions
as the corrections computed for fk = 0.8, differences exist. However, these differences are not clear
from these plots.
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Figure 7.7: Ru compared with Pk,u for fk = 0.6

Figure 7.8: b∆11,u compared with Boussinesq b11,u and HiFi b11,u for fk = 0.6

Figure 7.9: b∆12,u compared with Boussinesq’s b12,u and HiFi b12,u for fk = 0.6

The absolute values of the corrections, |Ru|, |b∆11,u| and |b∆12,u|, are thus plotted for three different values
of fk in Figures 7.10, 7.11 and 7.12 respectively for an obvious comparison. Since the general trends
of the corrections in the domain are presented above, the absolute values are presented for clearer
distinctions between the corrections of various fk values.
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Figure 7.10: |Ru| compared between different fk values

In general, significantly less correction for ku-equation, Ru, is required with decreasing fk (meaning
smaller portion of the flow is modelled) as shown by Figure 7.10. Although this is an expected be-
haviour since smaller values of the parameters in the ku−equation are involved in solving the equation,
it proves that even with smaller model errors, PANS can be corrected to achieve the HiFi solution and
that the variation in fk is indeed directly related to outcome of the corrections. This is a crucial result
since solving smaller fraction of the ku−equation does not necessarily result in smaller correction as
seen at x, z = (0.12, 0.01) in which there still is somewhat a linear relationship between fk andRu. Fur-
thermore, smaller corrections, especially the smaller fluctuations through the peaks and troughs, are
beneficial in terms of stability for training themachine learning algorithmwhich is one of the suggested
steps to take next.

Figure 7.11: |b∆11,u| compared between different fk values
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Figure 7.12: |b∆12,u| compared between different fk values

For both the stream-wise normal stress and shear stress components of b∆ij,u shown in Figure 7.11 and
Figure 7.12, no large deviations between the three values of fk is shown. Obvious differences come from
region x, z = (0.067,±0.025) and x, z = (0.093,±0.01), which are the regions behind the two trailing
edge corners of the triangular prism, lower values of fk require slightlymore corrections. These regions
share a similarity where they are high vorticity regions due to interactions with walls. The reason
behind the difference comes from the difference in definitions of the bBoussij,u and bHiFi

ij,u shown in (7.9) and
(7.10) respectively. The former has its numerator, νtu, derived from νt throughproduct of f2

k as deduced
from (3.18)while the latter’s numerator is derived bymultiplying fk as shown in (7.1). Hence, the shear
stress component for the Boussinesq approximation is further reduced by an additional product of fk
compared to the HiFi counterpart, resulting in a larger deviation with decreasing fk.
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8
Conclusion and recommendations

8.1. Conclusion
Data-driven turbulence modelling has shown its effectiveness and has seen success in different applica-
tions involving various methods and flow settings as covered in Chapter 4. PANS has also been proved
in [43] to perform as it is theoretically intended where it approaches DNS solution as fk is reduced. In
this project, data-driven PANS was studied and performed to augment both approaches to CFD. From
the perspective of data-driven studies, it is always preferred to have a more accurate solution to start
with. As for PANS, although it has the potential to give DNS quality results, too much computational
cost is incurred and thus a data-driven approach can bridge PANS to HiFi solution with minimal com-
putational cost. Using this goal and the gaps found in existing literature, a research objective was first
established in Chapter 1 alongside the main research question which was:

"How can k−corrective frozen RANS and DSCS be combined to be implemented into the
ku − ωu SST PANS turbulence model for improvement in the prediction of turbulent flows
around triangular prism?"

In answering this question, the characteristics of the mentioned data-driven methods: k−corrective
frozen RANS method and DSCS were studied in Sections 4.3.1 and 4.3.3 respectively. Additionally,
their drawbacks and potential improvements were discussed in Section 4.3.4.

A revised version of the existing k−corrective frozenRANSmethodwhichwas implemented in SpaRTA
method [2] was attempted to be appended to DSCS. Unlike other data-driven methods, the frozen
RANS approach aims to obtain twomodel error terms, one for the k−equation of a typical two-equation
RANS turbulence model labelled asR and one for the Boussinesq approximation of the anisotropy ten-
sor term labelled as b∆ij . These terms are recovered using the HiFi dataset which is injected into the
RANS turbulence model. However, the frozen RANS was implemented into a steady flow case where
flow variables are fixed in time.

DSCS attempted to extract a model error for the anisotropy term of Boussinesq approximation from
PANS in an unsteady flow case. It takes advantage of the idea behind PANS whereby the turbulence
model handles only the unresolved portion of the flow thus injecting just a fraction of the Reynolds
stress tensor into the chosen turbulence model while the other part of the fraction is taken up by the
PANS equation. However, DSCS does not fully utilise the HiFi dataset nor correct the k−equation’s
model error.

Therefore, combining these two methods’ favourable traits was deemed ideal to make up for each
other’s shortcomings and this was attempted in the project. Triple decomposition was used to extract
the periodic unsteadiness component from the flow velocity of the HiFi dataset and this was injected
into PANS to derive correction terms: Ru and b∆ij,u which are themodel error of unresolved k−equation
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and normalised unresolved anisotropy tensor term of Boussinesq approximation at every time step of
an unsteady flow case.

There are multiple stages in a typical data-driven turbulence modelling including injection of the ex-
tracted correction terms back into the turbulence model, finding a suitable machine learning algorithm
and training it to discover some properties of the flow physics. However, the project’s focus was on de-
veloping a ku − ωu SST turbulence model for PANS in the OpenFOAM program and incorporating the
model with the frozen RANS and DSCS methods to obtain the aforementioned unresolved correction
terms.

8.2. Recommendations for future work
During and after the project, it was realised that many other studies need to be done to fill the voids
of the project to enhance this data-driven PANS method into a complete and usable one to make it a
reliable mainstream model.

Firstly, a machine learning study of obtaining optimal values for fk is a crucial study to be done.
Whether it is for fixed fk or only spatially varying fk or both spatially and temporally varying fk, it
is important to know the relationship it has with a specific mesh in a fluid domain for a specific flow
case. Although it has been proved that smaller values of fk require finermeshes, a suitablemesh is only
discovered after rounds of trial and error as it was done in [43]. Furthermore, all the equations that
relate fk to cell sizes and characteristic scales of turbulence have insufficient theories to back them up
and they are empirically chosen. A data-driven study that discovers a general equation for fk would
be extremely useful.

A natural follow-up to this thesis project is to test how the correction terms help the PANS turbulence
model in approaching the HiFi solution by injecting the Ru and b∆ij,u terms into ku−equation and ωu

equation. Although it has been proven in [2] that the k−corrective frozen RANS method does indeed
recover the HiFi solution in a steady flow case, the method has not yet been tested in an unsteady flow
case which is a lot trickier with the injection of correction terms.

Lastly, a 3D study for the k−corrective frozen PANS method with sufficient computational budge
would be a useful extension to the project. Although DSCS has proved that 2D analyses are sufficient
for PANS, the combined method of the project deviates from DSCS a fair amount thus the statement
should be reaffirmed for this specific method. Furthermore, in [43] where the solution of PANS has
successfully converged to DNS solution, a 3D fluid domain was used. However, it is expected that a
substantial increase in computational cost will be incurred.
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A
ku − ωu SST PANS OpenFOAM v2112

implementation

A.1. Main .C file
1 #include "PANSkOmegaSST.H"
2

3 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
4

5 namespace Foam{
6 namespace RASModels{
7

8 // * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //
9

10 template<class BasicTurbulenceModel >
11 tmp<volScalarField> PANSkOmegaSST<BasicTurbulenceModel >::PANSkOmegaSST::F1
12 (
13 const volScalarField& CDkOmega
14 ) const
15 {
16 tmp<volScalarField> CDkOmegaPlus = max
17 (
18 CDkOmega,
19 dimensionedScalar("1.0e-10", dimless/sqr(dimTime), 1.0e-10)
20 );
21

22 tmp<volScalarField> arg1 = min
23 (
24 min
25 (
26 max
27 (
28 (scalar(1)/this->betaStar_)*sqrt(kU_)/(omegaU_*this->y_),
29 scalar(500)*(this->mu()/this->rho_)/(sqr(this->y_)*omegaU_)
30 ),
31 (4*this->alphaOmega2_*(fK_/fOmega_))*kU_
32 /(CDkOmegaPlus*sqr(this->y_))
33 ),
34 scalar(10)
35 );
36

37 return tanh(pow4(arg1));
38 }
39

40 template<class BasicTurbulenceModel >
41 tmp<volScalarField>
42 PANSkOmegaSST<BasicTurbulenceModel >::PANSkOmegaSST::F2() const
43 {
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44 tmp<volScalarField> arg2 = min
45 (
46 max
47 (
48 (scalar(2)/this->betaStar_)*sqrt(kU_)/(omegaU_*this->y_),
49 scalar(500)*(this->mu()/this->rho_)/(sqr(this->y_)*omegaU_)
50 ),
51 scalar(100)
52 );
53

54 return tanh(sqr(arg2));
55 }
56

57 template<class BasicTurbulenceModel >
58 tmp<volScalarField>
59 PANSkOmegaSST<BasicTurbulenceModel >::PANSkOmegaSST::F3() const
60 {
61 tmp<volScalarField> arg3 = min
62 (
63 150*(this->mu()/this->rho_)/(omegaU_*sqr(this->y_)),
64 scalar(10)
65 );
66

67 return 1 - tanh(pow4(arg3));
68 }
69

70 template<class BasicTurbulenceModel >
71 void PANSkOmegaSST<BasicTurbulenceModel >::correctNut
72 (
73 const volScalarField& S2
74 // const volScalarField& F2
75 )
76 {
77 this->nut_ = this->a1_*kU_/max(this->a1_*omegaU_, this->b1_*F23()*sqrt(S2));
78

79 }
80

81 // * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
82

83 template<class BasicTurbulenceModel >
84 void PANSkOmegaSST<BasicTurbulenceModel >::correctNut()
85 {
86 // correctNut(2*magSqr(symm(fvc::grad(this->U_))), this->F23());
87 correctNut(2*magSqr(symm(fvc::grad(this->U_))));
88 }
89

90 template<class BasicEddyViscosityModel >
91 tmp<volScalarField::Internal> PANSkOmegaSST<BasicEddyViscosityModel >::GbyNu
92 (
93 const volScalarField::Internal& GbyNu0,
94 const volScalarField::Internal& F2,
95 const volScalarField::Internal& S2
96 ) const
97 {
98 return min
99 (

100 GbyNu0,
101 (this->c1_/this->a1_)*this->betaStar_*omegaU_()
102 *max(this->a1_*omegaU_(), this->b1_*F2*sqrt(S2))
103 );
104 }
105

106 template<class BasicTurbulenceModel >
107 tmp<fvScalarMatrix> PANSkOmegaSST<BasicTurbulenceModel >::Qsas
108 (
109 const volScalarField::Internal& S2,
110 const volScalarField::Internal& gamma,
111 const volScalarField::Internal& beta
112 ) const
113 {
114 return tmp<fvScalarMatrix>
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115 (
116 new fvScalarMatrix
117 (
118 omegaU_,
119 dimVolume*this->rho_.dimensions()*omegaU_.dimensions()/dimTime
120 )
121 );
122 }
123

124 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
125

126 template<class BasicTurbulenceModel >
127 PANSkOmegaSST<BasicTurbulenceModel >::PANSkOmegaSST
128 ():
129

130 fEpsilon_
131 (
132 dimensioned<scalar>::getOrAddToDict
133 (
134 "fEpsilon",
135 this->coeffDict_,
136 1.0
137 )
138 ),
139

140 fK_
141 (
142 IOobject
143 (
144 IOobject::groupName("fK", alphaRhoPhi.group()),
145 this->runTime_.timeName(),
146 this->mesh_,
147 IOobject::MUST_READ,
148 IOobject::AUTO_WRITE
149 ),
150 this->mesh_
151 ),
152

153 fOmega_
154 (
155 IOobject
156 (
157 "fOmega",
158 this->runTime_.timeName(),
159 this->mesh_,
160 IOobject::NO_READ,
161 IOobject::AUTO_WRITE
162 ),
163 fEpsilon_/fK_
164 ),
165

166 kU_
167 (
168 IOobject
169 (
170 IOobject::groupName("kU", alphaRhoPhi.group()),
171 this->runTime_.timeName(),
172 this->mesh_,
173 IOobject::MUST_READ,
174 IOobject::AUTO_WRITE
175 ),
176 this->mesh_
177 ),
178

179 omegaU_
180 (
181 IOobject
182 (
183 IOobject::groupName("omegaU", alphaRhoPhi.group()),
184 this->runTime_.timeName(),
185 this->mesh_,
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186 IOobject::MUST_READ,
187 IOobject::AUTO_WRITE
188 ),
189 this->mesh_
190 )
191

192 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
193

194 template<class BasicTurbulenceModel >
195 void PANSkOmegaSST<BasicTurbulenceModel >::correct()
196 {
197 volScalarField CDkOmega
198 (
199 (2*this->alphaOmega2_*(fOmega_/fK_))*
200 (fvc::grad(kU_) & fvc::grad(omegaU_))/omegaU_
201 );
202

203 {
204 volScalarField::Internal betaL
205 (
206 gamma*this->betaStar_ - (gamma *this->betaStar_/fOmega_)
207 + (beta/fOmega_)
208 );
209

210 // Unresolved turbulent frequency equation
211 tmp<fvScalarMatrix> omegaUEqn
212 (
213 fvm::ddt(alpha, rho, omegaU_)
214 + fvm::div(alphaRhoPhi, omegaU_)
215 - fvm::laplacian(alpha*rho*DomegaUEff(F1), omegaU_)
216 ==
217 alpha()*rho()*gamma*GbyNu0
218 - fvm::SuSp((2.0/3.0)*alpha()*rho()*gamma*divU, omegaU_)
219 - fvm::Sp(alpha()*rho()*betaL*omegaU_(), omegaU_)
220 - fvm::SuSp
221 (
222 alpha()*rho()*(F1() - scalar(1))*CDkOmega()/omegaU_(),
223 omegaU_
224 )
225 + Qsas(S2(), gamma, beta)
226 + fvOptions(alpha, rho, omegaU_)
227 );
228 solve(omegaUEqn);
229 ; }
230

231 // Unresolved turbulent kinetic energy equation
232 tmp<fvScalarMatrix> kUEqn
233 (
234 fvm::ddt(alpha, rho, kU_)
235 + fvm::div(alphaRhoPhi, kU_)
236 - fvm::laplacian(alpha*rho*DkUEff(F1), kU_)
237 ==
238 alpha()*rho()*min(G, (this->c1_*this->betaStar_)*kU_()*omegaU_())
239 - fvm::SuSp((2.0/3.0)*alpha()*rho()*divU, kU_)
240 - fvm::Sp(alpha()*rho()*this->betaStar_*omegaU_, kU_)
241 + fvOptions(alpha, rho, kU_)
242 );
243 solve(kUEqn);
244

245 // Calculation of total Turbulent kinetic energy and Frequency
246 this->k_ = kU_/fK_;
247 this->omega_ = omegaU_/fOmega_;
248 }
249

250 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
251

252 } // End namespace RASModels
253 } // End namespace Foam
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A.2. Header .H file
1 #ifndef PANSkOmegaSST_H
2 #define PANSkOmegaSST_H
3

4 #include "kOmegaSST.H"
5

6 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
7

8 namespace Foam{
9 namespace RASModels{

10

11 /*---------------------------------------------------------------------------*\
12 Class PANSkOmegaSST Declaration
13 \*---------------------------------------------------------------------------*/
14

15 template<class BasicTurbulenceModel >
16 class PANSkOmegaSST
17 :
18

19 // PANS coefficients
20 dimensionedScalar fEpsilon_;
21 volScalarField fK_;
22 volScalarField fOmega_;
23

24 // Fields
25 volScalarField kU_;
26 volScalarField omegaU_;
27

28 //- Destructor
29 virtual ~PANSkOmegaSST() = default;
30

31

32 // Member Functions
33

34 //- Return the effective diffusivity for unresolved k
35 tmp<volScalarField> DkUEff(const volScalarField& F1) const
36 {
37 return tmp<volScalarField>
38 (
39 new volScalarField
40 (
41 "DkUEff",
42 (fOmega_/fK_)*this->alphaK(F1)*this->nut_ + this->nu()
43 )
44 );
45 }
46

47 //- Return the effective diffusivity for unresolved omega
48 tmp<volScalarField> DomegaUEff(const volScalarField& F1) const
49 {
50 return tmp<volScalarField>
51 (
52 new volScalarField
53 (
54 "DomegaUEff",
55 (fOmega_/fK_)*this->alphaOmega(F1)*this->nut_ + this->nu()
56 )
57 );
58 }
59

60 //- Return the unresolved turbulence kinetic energy
61 virtual tmp<volScalarField> kU() const
62 {
63 return kU_;
64 }
65

66 //- Return the turbulence kinetic energy dissipation rate
67 virtual tmp<volScalarField> omegaU() const
68 {
69 return omegaU_;
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70 }
71

72 //- Solve the turbulence equations and correct the turbulence viscosity
73 virtual void correct();
74

75 };
76

77 } // End namespace RASModels
78 } // End namespace Foam
79

80 #ifdef NoRepository
81 #include "PANSkOmegaSST.C"
82

83 #endif
84 #endif
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B
k−corrective frozen PANS

implementation

B.1. Main .C file
1 #include "frozenInterpPANSkOmegaSST.H"
2

3 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
4

5 namespace Foam{
6 namespace RASModels{
7

8 // * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //
9

10 template<class BasicTurbulenceModel >
11 tmp<volScalarField> frozenInterpPANSkOmegaSST <BasicTurbulenceModel >::

frozenInterpPANSkOmegaSST::F1
12 (
13 const volScalarField& CDkOmega
14 ) const
15 {
16 tmp<volScalarField> CDkOmegaPlus = max
17 (
18 CDkOmega,
19 dimensionedScalar("1.0e-10", dimless/sqr(dimTime), 1.0e-10)
20 );
21

22 tmp<volScalarField> arg1 = min
23 (
24 min
25 (
26 max
27 (
28 (scalar(1)/betaStar_)*sqrt(kU_LES_)/(omegaU_*y_),
29 scalar(500)*(this->mu()/this->rho_)/(sqr(y_)*omegaU_)
30 ),
31 (4*alphaOmega2_*(fK_/fOmega_))*kU_LES_
32 /(CDkOmegaPlus*sqr(y_))
33 ),
34 scalar(10)
35 );
36

37 return tanh(pow4(arg1));
38 }
39

40 template<class BasicTurbulenceModel >
41 tmp<volScalarField>
42 frozenInterpPANSkOmegaSST <BasicTurbulenceModel >::frozenInterpPANSkOmegaSST::F2() const
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43 {
44 tmp<volScalarField> arg2 = min
45 (
46 max
47 (
48 (scalar(2)/betaStar_)*sqrt(kU_LES_)/(omegaU_*y_),
49 scalar(500)*(this->mu()/this->rho_)/(sqr(y_)*omegaU_)
50 ),
51 scalar(100)
52 );
53

54 return tanh(sqr(arg2));
55 }
56

57 template<class BasicTurbulenceModel >
58 tmp<volScalarField>
59 frozenInterpPANSkOmegaSST <BasicTurbulenceModel >::frozenInterpPANSkOmegaSST::F3() const
60 {
61 tmp<volScalarField> arg3 = min
62 (
63 150*(this->mu()/this->rho_)/(omegaU_*sqr(y_)),
64 scalar(10)
65 );
66

67 return 1 - tanh(pow4(arg3));
68 }
69

70 template<class BasicTurbulenceModel >
71 void frozenInterpPANSkOmegaSST <BasicTurbulenceModel >::correctNut
72 (
73 const volScalarField& S2
74 // const volScalarField& F2
75 )
76 {
77 this->nut_ = a1_*kU_LES_/max(a1_*omegaU_, b1_*F23()*sqrt(S2));
78 }
79

80 // * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
81

82 template<class BasicEddyViscosityModel >
83 tmp<volScalarField::Internal> frozenInterpPANSkOmegaSST <BasicEddyViscosityModel >::GbyNu
84 (
85 const volScalarField::Internal& GbyNu0,
86 const volScalarField::Internal& F2,
87 const volScalarField::Internal& S2
88 ) const
89 {
90 return min
91 (
92 GbyNu0,
93 (c1_/a1_)*betaStar_*omegaU_()
94 *max(a1_*omegaU_(), b1_*F2*sqrt(S2))
95 );
96 }
97

98 template<class BasicTurbulenceModel >
99 tmp<fvScalarMatrix> frozenInterpPANSkOmegaSST <BasicTurbulenceModel >::Qsas

100 (
101 const volScalarField::Internal& S2,
102 const volScalarField::Internal& gamma,
103 const volScalarField::Internal& beta
104 ) const
105 {
106 return tmp<fvScalarMatrix>
107 (
108 new fvScalarMatrix
109 (
110 omegaU_,
111 dimVolume*this->rho_.dimensions()*omegaU_.dimensions()/dimTime
112 )
113 );
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114 }
115

116 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
117

118 /////////////// Custom function to aid in interpolation ///////////////
119

120 class customClass
121 {
122 public:
123 const float period_;
124 const float timeStep_;
125 std::vector<double> times_hifi_;
126

127 customClass();
128 ~customClass();
129

130 };
131

132 customClass::customClass()
133 :
134 period_(0.00825617),
135 timeStep_(1e-4),
136 times_hifi_(arange<double>(0, round_up(period_,4), round_up(timeStep_ ,4)))
137 {}
138

139 customClass::~customClass(){}
140

141 customClass myClass;
142

143 template<class BasicTurbulenceModel >
144 frozenInterpPANSkOmegaSST <BasicTurbulenceModel >::frozenInterpPANSkOmegaSST
145 ():
146 eddyViscosity<RASModel<BasicTurbulenceModel >>
147 (),
148

149 fEpsilon_
150 (
151 dimensioned<scalar>::getOrAddToDict
152 (
153 "fEpsilon",
154 this->coeffDict_,
155 1.0
156 )
157 ),
158

159 fK_
160 (
161 IOobject
162 (
163 IOobject::groupName("fK", alphaRhoPhi.group()),
164 this->runTime_.timeName(),
165 this->mesh_,
166 IOobject::MUST_READ, //MUST_READ,
167 IOobject::AUTO_WRITE
168 ),
169 this->mesh_
170 ),
171

172 fOmega_
173 (
174 IOobject
175 (
176 "fOmega",
177 this->runTime_.timeName(),
178 this->mesh_,
179 IOobject::NO_READ,
180 IOobject::NO_WRITE
181 ),
182 fEpsilon_/fK_
183 ),
184
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185 //========================== LES fields ==============================
186 k_LES_
187 (
188 IOobject
189 (
190 IOobject::groupName("k_LES", U.group()),
191 this->runTime_.timeName(),
192 this->mesh_,
193 IOobject::MUST_READ,
194 IOobject::NO_WRITE
195 ),
196 this->mesh_
197 ),
198

199 kU_LES_
200 (
201 IOobject
202 (
203 IOobject::groupName("kU_LES", U.group()),
204 this->runTime_.timeName(),
205 this->mesh_,
206 IOobject::NO_READ,
207 IOobject::AUTO_WRITE
208 ),
209 k_LES_ * fK_
210 ),
211

212 tauij_LES_
213 (
214 IOobject
215 (
216 "tauij_LES",
217 this->runTime_.timeName(),
218 this->mesh_,
219 IOobject::MUST_READ,
220 IOobject::NO_WRITE
221 ),
222 this->mesh_
223 ),
224 tauijU_LES_
225 (
226 IOobject
227 (
228 "tauijU_LES",
229 this->runTime_.timeName(),
230 this->mesh_,
231 IOobject::NO_READ,
232 IOobject::NO_WRITE
233 ),
234 tauij_LES_ * fK_
235 ),
236 aijU_LES_
237 (
238 IOobject
239 (
240 "aijU_LES",
241 this->runTime_.timeName(),
242 this->mesh_,
243 IOobject::NO_READ,
244 IOobject::NO_WRITE
245 ),
246 tauijU_LES_ - ((2.0/3.0)*I)*kU_LES_
247 ),
248 bijU_LES_
249 (
250 IOobject
251 (
252 "bijU_LES",
253 this->runTime_.timeName(),
254 this->mesh_,
255 IOobject::NO_READ,
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256 IOobject::NO_WRITE
257 ),
258 aijU_LES_ / 2.0 / (kU_LES_ + this->kMin_)
259 ),
260 PkULES_
261 (
262 IOobject
263 (
264 "PkULES",
265 this->runTime_.timeName(),
266 this->mesh_,
267 IOobject::NO_READ,
268 IOobject::NO_WRITE
269 ),
270 this->mesh_,
271 dimensionedScalar("PkULES", dimensionSet(0,2,-3,0,0,0,0), 0.0)
272 ),
273

274 //========================== Unknown fields - MUST be written
============================

275 omega_
276 (
277 IOobject
278 (
279 IOobject::groupName("omega", alphaRhoPhi.group()),
280 this->runTime_.timeName(),
281 this->mesh_,
282 IOobject::NO_READ,
283 IOobject::AUTO_WRITE
284 ),
285 this->mesh_
286 ),
287 omegaU_
288 (
289 IOobject
290 (
291 IOobject::groupName("omegaU", alphaRhoPhi.group()),
292 this->runTime_.timeName(),
293 this->mesh_,
294 IOobject::MUST_READ,
295 IOobject::AUTO_WRITE
296 ),
297 this->mesh_
298 ),
299

300 kUDeficit_
301 (
302 IOobject(
303 "kUDeficit",
304 this->runTime_.timeName(),
305 this->mesh_,
306 IOobject::NO_READ,
307 IOobject::AUTO_WRITE
308 ),
309 this->mesh_,
310 dimensionedScalar("kUDeficit", dimensionSet(0,2,-3,0,0,0,0), 0.0)
311 ),
312

313 bijUDelta_
314 (
315 IOobject
316 (
317 "bijDelta",
318 this->runTime_.timeName(),
319 this->mesh_,
320 IOobject::NO_READ,
321 IOobject::AUTO_WRITE
322 ),
323 0.0*symm(fvc::grad(this->U_))/omegaU_
324 ),
325
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326 //========================== Misc ============================
327

328 gradU_
329 (
330 IOobject
331 (
332 "gradU",
333 this->runTime_.timeName(),
334 this->mesh_,
335 IOobject::NO_READ,
336 IOobject::NO_WRITE
337 ),
338 fvc::grad(this->U_)
339 ),
340 gradkU_LES_
341 (
342 IOobject
343 (
344 "gradkU_LES",
345 this->runTime_.timeName(),
346 this->mesh_,
347 IOobject::NO_READ,
348 IOobject::NO_WRITE
349 ),
350 fvc::grad(kU_LES_)
351 ),
352 gradomegaU_
353 (
354 IOobject
355 (
356 "gradomegaU",
357 this->runTime_.timeName(),
358 this->mesh_,
359 IOobject::NO_READ,
360 IOobject::NO_WRITE
361 ),
362 this->mesh_,
363 dimensionedVector("gradomegaU", dimensionSet(0,-1,-1,0,0,0,0), Zero)
364 )
365 {}
366

367 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
368

369 template<class BasicTurbulenceModel >
370 void frozenInterpPANSkOmegaSST <BasicTurbulenceModel >::correct()
371 {
372 volScalarField& omegaU_ = this->omegaU_;
373 volScalarField& k_LES_ = this->k_LES_;
374 volScalarField& kU_LES_ = this->kU_LES_;
375

376 ////////////////// RE-READ FIELDS FOR NEW TIMESTEP ////////////////////
377

378 double currentTime_(this->runTime_.value());
379 int lowerIndex_(std::get<0>(searchBounds(myClass.period_, currentTime_, myClass.

times_hifi_)));
380 int upperIndex_(std::get<1>(searchBounds(myClass.period_, currentTime_, myClass.

times_hifi_)));
381 double preTime_(myClass.times_hifi_[lowerIndex_]);
382 double postTime_(myClass.times_hifi_[upperIndex_]);
383 double remainTime_(fmod(currentTime_,myClass.period_) - preTime_);
384 volScalarField k_LES_pre_
385 (
386 IOobject
387 (
388 IOobject::groupName("k_LES", U.group()),
389 name(preTime_),
390 this->mesh_,
391 IOobject::MUST_READ,
392 IOobject::NO_WRITE
393 ),
394 this->mesh_
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395 );
396

397 volScalarField k_LES_post_
398 (
399 IOobject
400 (
401 IOobject::groupName("k_LES", U.group()),
402 name(postTime_),
403 this->mesh_,
404 IOobject::MUST_READ,
405 IOobject::NO_WRITE
406 ),
407 this->mesh_
408 );
409

410 // k_LES_ = (k_LES_post_ - k_LES_pre_) / (postTime_ - preTime_) * (currentTime_ -
preTime_) + k_LES_pre_;

411 k_LES_ = (k_LES_post_ - k_LES_pre_) / myClass.timeStep_ * remainTime_ + k_LES_pre_;
412 kU_LES_ = k_LES_ * fK_;
413

414 volSymmTensorField tauij_LES_pre_
415 (
416 IOobject
417 (
418 "tauij_LES",
419 name(preTime_),
420 this->mesh_,
421 IOobject::MUST_READ,
422 IOobject::NO_WRITE
423 ),
424 this->mesh_
425 );
426

427 volSymmTensorField tauij_LES_post_
428 (
429 IOobject
430 (
431 "tauij_LES",
432 name(postTime_),
433 this->mesh_,
434 IOobject::MUST_READ,
435 IOobject::NO_WRITE
436 ),
437 this->mesh_
438 );
439

440 tauij_LES_ =(tauij_LES_post_ - tauij_LES_pre_) / myClass.timeStep_ * remainTime_ +
tauij_LES_pre_;

441 tauijU_LES_ = tauij_LES_ * fK_;
442 aijU_LES_ = tauijU_LES_ - ((2.0/3.0)*I)*kU_LES_;
443 bijU_LES_ = aijU_LES_ / 2.0 / (kU_LES_ + this->kMin_);
444 gradkU_LES_ = fvc::grad(kU_LES_);
445

446 ///////////////// END OF RE-READ /////////////////////
447

448 // Production term from HiFi dataset
449 PkULES_ = -tauijU_LES_ && tgradU();
450

451 volScalarField CDkOmega
452 (
453 (2*this->alphaOmega2_*(fOmega_/fK_))*
454 (fvc::grad(kU_LES_) & fvc::grad(omegaU_))/omegaU_
455 );
456

457 {
458 volScalarField::Internal gamma(this->gamma(F1));
459 volScalarField::Internal beta(this->beta(F1));
460 volScalarField::Internal betaL
461 (
462 gamma*betaStar_ - (gamma *betaStar_/fOmega_)
463 + (beta/fOmega_)
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464 );
465

466 // Unresolved Turbulent frequency equation
467 tmp<fvScalarMatrix> omegaUEqn
468 (
469 fvm::ddt(alpha, rho, omegaU_)
470 + fvm::div(alphaRhoPhi, omegaU_)
471 - fvm::laplacian(alpha*rho*DomegaUEff(F1), omegaU_)
472 ==
473 alpha()*rho()*gamma*
474 (
475 PkULES_ *omegaU_()/kU_LES_() // omega/k = 1/nut
476 )
477 - fvm::SuSp((2.0/3.0)*alpha()*rho()*gamma*divU, omegaU_)
478 - fvm::Sp(alpha()*rho()*betaL*omegaU_(), omegaU_)
479 - fvm::SuSp
480 (
481 alpha()*rho()*(F1() - scalar(1))*CDkOmega()/omegaU_(),
482 omegaU_
483 )
484 + Qsas(S2(), gamma, beta)
485 + fvOptions(alpha, rho, omegaU_)
486 );
487 solve(omegaUEqn);
488 ; }
489

490 // kUDeficit_ refers to R_u term
491

492 kUDeficit_ = fvc::ddt(alpha, rho*kU_LES_)
493 + fvc::div(alphaRhoPhi, kU_LES_)
494 - fvc::laplacian(alpha*rho*DkUEff(F1), kU_LES_)
495 - alpha()*rho()*PkULES_
496 + (2.0/3.0)*alpha()*rho()*divU*kU_LES_ // Incompressible fluid divU = 0
497 + alpha()*rho()*this->betaStar_*omegaU_*kU_LES_;
498

499 // Calculation of Turbulent kinetic energy and Frequency
500 omega_ = omegaU_/fOmega_;
501

502 // Calculate bijUDelta, the model correction term for RST equation
503 bijUDelta_ = bijU_LES_ + nut / kU_LES_ * symm(fvc::grad(this->U_));
504

505 }
506 } // End namespace RASModels
507 } // End namespace Foam

B.2. Header .H file
1 #ifndef frozenInterpPANSkOmegaSST_H
2 #define frozenInterpPANSkOmegaSST_H
3

4 #include "kOmegaSST.H"
5

6 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
7

8 namespace Foam{
9 namespace RASModels{

10

11 // * * * * * * * * * * * * Custom Function(s) * * * * * * * * * * * * //
12

13 //// Similar to numpy.arange()
14 template<typename T>
15 std::vector<T> arange(T start, T stop, T step)
16 {
17 std::vector<T> values;
18 for (T value = start; value < stop; value += step)
19 values.push_back(value);
20 return values;
21 }
22
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23 //// Round double to certain decimal places
24 double round_up(double value, int decimal_places)
25 {
26 const double multiplier = std::pow(10.0, decimal_places);
27 return std::ceil(value * multiplier) / multiplier;
28 }
29

30 //// Search for the smallest time in that is larger than the instantaneous time
31 std::tuple<int,int> searchBounds(double per, double val, std::vector<double> vec)
32 {
33 double remain;
34 int lowerBoundIndex = 0;
35 int upperBoundIndex = 0;
36 remain = fmod(val, per);
37 if (remain > vec.back() && remain < per)
38 {
39 Info << "situation B" << endl;
40 lowerBoundIndex = vec.size() - 1;
41 upperBoundIndex = 0;
42 }
43 else
44 {
45 for(std::size_t i = 0; i < vec.size(); ++i)
46 {
47 // remain = remainder(val, per); // not absolute remainder but scaled withrespect to

the divider
48 // Info << "vec.back():" << vec.back() << endl;
49 if (vec[i] > remain)
50 {
51 lowerBoundIndex = i-1;
52 upperBoundIndex = i;
53 break;
54 }
55 }
56 }
57 return {lowerBoundIndex, upperBoundIndex};
58 }
59

60 /*---------------------------------------------------------------------------*\
61 Class PANSkOmegaSST Declaration
62 \*---------------------------------------------------------------------------*/
63

64 template<class BasicTurbulenceModel >
65 class frozenInterpPANSkOmegaSST
66 :
67

68 protected:
69

70 // PANS coefficients
71 dimensionedScalar fEpsilon_;
72 volScalarField fK_;
73 volScalarField fOmega_;
74

75 // LES fields
76 volScalarField k_LES_;
77 volScalarField kU_LES_;
78 volSymmTensorField tauij_LES_;
79 volSymmTensorField tauijU_LES_;
80 volSymmTensorField aijU_LES_;
81 volSymmTensorField bijU_LES_;
82 volScalarField PkULES_;
83

84 // Fields to solve for
85 volScalarField omega_;
86 volScalarField omegaU_;
87 volScalarField kUDeficit_;
88 volSymmTensorField bijUDelta_;
89 volSymmTensorField aijUDelta_;
90

91 // Gradients
92 volTensorField gradU_;
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93 volVectorField gradkU_LES_;
94 volVectorField gradomegaU_;
95

96 // Member Functions
97

98 //- Return the effective diffusivity for unresolved k
99 tmp<volScalarField> DkUEff(const volScalarField& F1) const

100 {
101 return tmp<volScalarField>
102 (
103 new volScalarField
104 (
105 "DkUEff",
106 (fOmega_/fK_)*this->alphaK(F1)*this->nut_ + this->nu()
107 )
108 );
109 }
110

111 //- Return the effective diffusivity for unresolved omega
112 tmp<volScalarField> DomegaUEff(const volScalarField& F1) const
113 {
114 return tmp<volScalarField>
115 (
116 new volScalarField
117 (
118 "DomegaUEff",
119 (fOmega_/fK_)*this->alphaOmega(F1)*this->nut_ + this->nu()
120 )
121 );
122 }
123

124 //- Return the unresolved turbulence kinetic energy
125 virtual tmp<volScalarField> kU_LES() const
126 {
127 return kU_LES_;
128 }
129

130 //- Return the turbulence kinetic energy dissipation rate
131 virtual tmp<volScalarField> omegaU() const
132 {
133 return omegaU_;
134 }
135 };
136 } // End namespace RASModels
137 } // End namespace Foam
138

139 #ifdef NoRepository
140 #include "frozenInterpPANSkOmegaSST.C"
141

142 #endif
143 #endif
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C
Frozen-PIMPLE algorithm

implementation

1 #include "fvCFD.H"
2 #include "dynamicFvMesh.H"
3 #include "singlePhaseTransportModel.H"
4 #include "turbulentTransportModel.H"
5 #include "pimpleControl.H"
6 #include "CorrectPhi.H"
7 #include "fvOptions.H"
8 #include "localEulerDdtScheme.H"
9 #include "fvcSmooth.H"

10

11 // Similar to numpy.arange()
12 template<typename T>
13 std::vector<T> arange(T start, T stop, T step)
14 {
15 std::vector<T> values;
16 for (T value = start; value < stop; value += step)
17 values.push_back(value);
18 return values;
19 }
20

21 // Round double to certain decimal places
22 double round_up(double value, int decimal_places)
23 {
24 const double multiplier = std::pow(10.0, decimal_places);
25 return std::ceil(value * multiplier) / multiplier;
26 }
27

28 // Search for the smallest time in that is larger than the instantaneous time
29 std::tuple<int,int> searchBounds(double per, double val, std::vector<double> vec)
30 {
31 double remain;
32 int lowerBoundIndex = 0;
33 int upperBoundIndex = 0;
34 remain = fmod(val, per);
35 if (remain > vec.back() && remain < per)
36 {
37 Info << "situation B" << endl;
38 lowerBoundIndex = vec.size() - 1;
39 upperBoundIndex = 0;
40 }
41 else
42 {
43 for(std::size_t i = 0; i < vec.size(); ++i)
44 {
45 // remain = remainder(val, per); // not absolute remainder but scaled withrespect to

the divider
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46 // Info << "vec.back():" << vec.back() << endl;
47 if (vec[i] > remain)
48 {
49 lowerBoundIndex = i-1;
50 upperBoundIndex = i;
51 break;
52 }
53 }
54 }
55 return {lowerBoundIndex, upperBoundIndex};
56 }
57

58 class customClass
59 {
60 public:
61 const float period_;
62 const float timeStep_;
63 double currentTime_;
64 int lowerIndex_;
65 int upperIndex_;
66 double preTime_;
67 double postTime_;
68 double remainTime_;
69

70 customClass();
71 ~customClass();
72 };
73

74 customClass::customClass()
75 :
76 period_(0.00825617),
77 timeStep_(5e-5),
78 currentTime_(0.0),
79 lowerIndex_(0),
80 upperIndex_(0),
81 remainTime_(0.0)
82 {}
83 customClass::~customClass()
84 {}
85

86 customClass myClass;
87 auto times_hifi = arange<double>(0, round_up(myClass.period_,5), round_up(myClass.timeStep_

,5));
88

89 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
90

91 int main(int argc, char *argv[])
92 {
93 // Initialise the preTime and postTime
94 myClass.preTime_ = times_hifi[0];
95 myClass.postTime_ = times_hifi[1];
96

97 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
98

99 while (runTime.run())
100 {
101 #include "readDyMControls.H"
102

103 if (LTS)
104 {
105 #include "setRDeltaT.H"
106 }
107 else
108 {
109 #include "CourantNo.H"
110 #include "setDeltaT.H"
111 }
112

113 ++runTime;
114

115 myClass.currentTime_ = runTime.value();
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116 myClass.lowerIndex_ = std::get<0>(searchBounds(myClass.period_, myClass.currentTime_,
times_hifi));

117 myClass.upperIndex_ = std::get<1>(searchBounds(myClass.period_, myClass.currentTime_,
times_hifi));

118 myClass.preTime_ = times_hifi[myClass.lowerIndex_];
119 myClass.postTime_ = times_hifi[myClass.lowerIndex_+1];
120 myClass.remainTime_ = fmod(myClass.currentTime_,myClass.period_) - myClass.preTime_;
121

122 // --- Pressure-velocity PIMPLE corrector loop
123 while (pimple.loop())
124 {
125 if (pimple.firstIter() || moveMeshOuterCorrectors)
126 {
127 mesh.controlledUpdate();
128

129 if (mesh.changing())
130 {
131 MRF.update();
132

133 if (correctPhi)
134 {
135 // Calculate absolute flux
136 // from the mapped surface velocity
137 phi = mesh.Sf() & Uf();
138

139 #include "correctPhi.H"
140

141 // Make the flux relative to the mesh motion
142 fvc::makeRelative(phi, U);
143 }
144

145 if (checkMeshCourantNo)
146 {
147 #include "meshCourantNo.H"
148 }
149 }
150 }
151

152 volVectorField U_LES_pre
153 (
154 IOobject
155 (
156 "U_LES",
157 name(myClass.preTime_),
158 mesh,
159 IOobject::MUST_READ,
160 IOobject::NO_WRITE
161 ),
162 mesh
163 );
164

165 volVectorField U_LES_post
166 (
167 IOobject
168 (
169 "U_LES",
170 name(myClass.postTime_),
171 mesh,
172 IOobject::MUST_READ,
173 IOobject::NO_WRITE
174 ),
175 mesh
176 );
177

178 U_LES = (U_LES_post - U_LES_pre) / myClass.timeStep_ * myClass.remainTime_ +
U_LES_pre;

179 }
180 }
181 }
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