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Synchronous systems waste a lot of power in the clock tree, and must
be designed based on the worst case scenario in terms of speed. Asyn-
chronous circuits offer relief to these problems, by replacing clock
signals with handshakes which only charge when data is being trans-
ferred, and delay signals which may adapt more easily to variance in
speed compared to the clock period. Desynchronization is the process
of turning a synchronous circuit into an asynchronous one. Scheduled
circuits are a common way to provide a good compromise between
conserving area of a circuit and increasing its speed. Desynchroniz-
ing such a system is made difficult because every functional unit in
the circuit must respond to controls from the central state machine,
which cannot easily handshake with all of them. This report demon-
strates two related methods designed specifically for the conversion of
a synchronous, scheduled circuit into an asynchronous, delay insen-
sitive circuit. Decomposition of the central state machine into local,
smaller ones is used to combat the problem of skew in the control
signals, as well as to speed up the performance of the asynchronous
circuit. The slack in the clock period can also be used for possible
speedup. Conditions which threaten deadlock of the circuit are iden-
tified and rescheduling solutions are proposed. A tradeoff between
the two methods of area conservation and hardware reusability versus
speed is also explained.
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Abstract

Synchronous systems waste a lot of power in the clock tree, and must be designed
based on the worst case scenario in terms of speed. Asynchronous circuits offer relief
to these problems, by replacing clock signals with handshakes which only charge when
data is being transferred, and delay signals which may adapt more easily to variance
in speed compared to the clock period. Desynchronization is the process of turning a
synchronous circuit into an asynchronous one. Scheduled circuits are a common way
to provide a good compromise between conserving area of a circuit and increasing its
speed. Desynchronizing such a system is made difficult because every functional unit in
the circuit must respond to controls from the central state machine, which cannot easily
handshake with all of them. This report demonstrates two related methods designed
specifically for the conversion of a synchronous, scheduled circuit into an asynchronous,
delay insensitive circuit. Decomposition of the central state machine into local, smaller
ones is used to combat the problem of skew in the control signals, as well as to speed
up the performance of the asynchronous circuit. The slack in the clock period can also
be used for possible speedup. Conditions which threaten deadlock of the circuit are
identified and rescheduling solutions are proposed. A tradeoff between the two methods
of area conservation and hardware reusability versus speed is also explained.
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Introduction 1
1.1 Motivation

Transistor sizes continue to shrink, and engineers continue to search for new ways in
which these exponential gains can be effectively used to increase computing power and
decrease strain on the world’s resources. Processing power is also so inexpensive that
its use is being considered in all aspects of technology, society, and life. Engineers must
look for new and better embedded solutions to meet the demands of the modern age,
and sometimes must look outside of widely used and accepted digital hardware design
methods.

Traditionally processor and digital electronic design is done in a synchronous fashion,
using a clock signal which ideally rises and falls identically to every component and gives
the circuit a sense of time. In general, this makes the design easier, but it has several
drawbacks. Since a large portion of the circuit is occupied by wires carrying this falling
and rising clock signal, and in most cycles most components are not changing, there is a
lot of power used to drive these lines which is constantly wasted, often over 50 percent
of the total power used in the circuit. In addition, the clock can only be as fast as
the slowest register-to-register path in the circuit, which is a design constraint forcing
engineers to make the gate delay of each component as similar in delay as possible,
and limiting design possibilities. This also restricts the circuit from taking advantage
of delay variability, that is, the phenomenon of the circuit’s speed being dependent on
operating conditions such as temperature. Circuits are also affected by clock skew, as
in increasingly denser circuits it can take different amounts of time for the signal to
propagate in different directions in a non-symmetrical circuit. In synchronous design
processes, a great deal of effort is expended in ensuring the longest path is shorter than
the clock period.

In traditional asynchronous design however, the entire synchronous circuit must be
designed in a much more complicated process, which slows down time to market and
makes new circuits incompatible with and unable to use most of the digital components
designed up until now, since they employ clock signals. In this way we have to redesign
all components that we want to use in an asynchronous circuit, and therefore lose
backwards compatibility, as well as the ability to use experience in current design
methods on future designs. Even so, its advantages are numerous and compelling
enough that it has been used to create several processors [13].

Various efforts are being made to make asynchronous design more feasible for digital
component design in both the academic and commercial sectors. There are increasingly
more tools to aid in the design of asynchronous circuits[6, 3], but this pales in compar-
ison to the amount of tools there are available for the design of synchronous systems.
If there was an algorithm to systematically convert current and future synchronous
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designs to asynchronous designs, it could be a very attractive compromise with many
benefits of both synchronous and asynchronous systems. The only real synchronous
part of the synchronous circuit is the clock signal, so this means somehow the clock
must be removed and communication between registers must be instead done in an
asynchronous manner.

There are several methods for turning a synchronous circuit into an asynchronous
one, using handshaking to replace the functions that originally are handled by the
clock signal. For a pipelined circuit, these implementations are fairly straightforward,
because all of the components have the same connections and perform the same tasks
at any given step in the circuit.

If these methods are extended to circuits controlled with a central FSM, however,
things are somewhat more difficult. There is one centralized control register which all
the components read at every state. This means that if we are to guarantee the absence
of skew in the control signals, all of the components must handshake with the state
register or signals derived from it at each step. In a scheduled circuit, which uses an
FSM as its control path, the structure is also much more complicated than a simple
pipeline, and differs for each implementation. There should be a faster and more struc-
tured way to pass data between components than simply implementing handshaking
for transfering data.

1.2 Goals

• To find a method to convert a synchronous scheduled circuit to an asynchronous
one with equivalent functionality and producing the same results

• This method should be systematic, repeatable, and suitable for future automation

• Determine if there are scheduling conditions which prevent this method from
working, what they are, and how to get around them

• Execute this method on a simple scheduled filter, and demonstrate its results are
equivalent to those in the original implementation using simulations

• Keep the circuit speed high, increase it if possible

• Circuit should be delay invariant to insure stability

• Determine the conditions for which this method is best suited and worst suited

Although part of the motivation for this project is minimizing power and taking
advantage or delay variability, these are not the goals of this project. The project
focuses on the development of a method to first desynchronize the system instead.

The method should be systematic and repeatable so that it can be used in further
research and automation of the production of similar asynchronous circuits.

If there are conditions in the schedule which cause this method to produce incorrect
results, they must be identified, as well as the reasons for their happening. If possible,
solutions to fix these problems should be found and described in detail. In the same
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manner, conditions which adversely affect the performance of the circuit should be
outlined and discussed.

1.3 Results

• Two related methods which desynchronize such a circuit by decomposing the
central FSM into local, smaller FSMs which communicate with each other to
advance state and send data

• Clock and clock enable signals are replaced by a network of handshaking con-
trollers

• Three separate scheduling hazards have been identified which cause deadlock in
the system

• Rescheduling solutions to fix these hazards have also been identified

• Sample implementations have been performed using each method, with successful
simulations

• Asynchronous circuits found to be faster than the synchronous implementation in
certain cases

• Scheduling is a big factor in determining circuit speed in the desynchronized cir-
cuits, corrections meant to avoid hazards are especially slow

• Speed is also affected by the difference in the length of operations, frequency of
operations, number of inputs and outputs, and size of the circuit

The first of the two methods uses less area, has more logic that is used without
custom design, and takes less work to implement, but is much slower and more suscep-
tible to hazards than the second method. The first was conceived more directly from
Cortadella’s desynchronization method, and the second created in order to deal with
some weaknesses in the first design method.

Scheduling based on synchronous circuits prevents the desynchronization methods
from reaching their full potential. This scheduling creates hazards, and can limit the
concurrency obtained from an asynchronous implementation.

1.4 Thesis Outline

The the following chapter will give a thorough background on all of the concepts used
in this report which derive from the work of others, and explain how they relate to the
project. If the reader is unfamiliar with any of the terms discussed in the introduction,
they will all be thoroughly explained.

The third chapter is about two short experiments which were done on previously
developed methods for desynchronization, the first manual, and the second method
automated.
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The fourth chapter focuses on the theory behind the solutions for desynchronization
and the concepts developed in during this project.

The fifth chapter goes into detail about the implementations of the two different
methods on the same synchronous circuit, how these implementations are different from
each other and the synchronous circuit, and deviations from the theory in the fourth
chapter.

The sixth and final chapter explains the results of the simulations and the conclu-
sions derived thereof.
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Background 2
The previous chapter provided a reasoning for the undertaking of this thesis, the goals
set and results obtained, as well as an overview of the entire report.

The chapter will explain the following concepts:

• Synchronous circuits, clock signals, latches, registers, clock skew, and timing clo-
sure

• Asynchronous circuits, handshaking, Muller elements, Muller pipelines, and delay
sensitivity

• Finite state machines and state variables

• Asynchronous finite state machines, bundled inputs, and the Aghdasi style state
machine

• Scheduled circuits, scheduling, scheduling algorithms with and without constraints

• Scheduling for asynchronous circuits

2.1 Synchronous Circuits

The following section will explain some background about synchronous circuits, con-
cepts, and design methodology. Synchronous circuits are the industry standard in
digital circuit design. They use a special signal global to all components called the
clock signal, which is used to synchronize all components in the circuit. This ensures
that the data in the system is valid and that the different parts of the circuit receive
the correct control signals at the same time. The clock signal has a cycle in which it
charges and discharges and usually the components in the circuit are activated on the
rising edge, which the clock signal charges from a logical 0 to a logical 1 although some-
times this happens on the falling edge instead, when the signal discharges, changing its
logical value from 1 to 0.

A latch is a hardware component used to be sometimes transparent, having the
output match the input, sometimes opaque, where output stays at its previous value.
When the input cannot affect the output, the value stored in the latch is said to be
latched or clocked. D-Latches have two inputs, a clock signal and a data signal. These
latches are designed so that the output is held when the clock signal is low, and changed
to match the data signal when the clock is high.

In order to store data temporarily, until the following clock cycle, synchronous
circuits use a hardware component known as a register or flipflop. A flipflop is composed
of two D-latches back to back with the second clock signal inverted, a fact which is
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used to an advantage later in this project. This ensures that the two latches will be
transparent and opaque at complementary times. If the clock cycle is first high and
then low, the input will be first transmitted to the output of the first latch when the
first output has a high clock. Then the clocked output of the first latch will be will
then become transparent through the second latch, and by the next rising edge will be
clocked in.

This means that the flipflop is made to only allow the input which is to be stored in
for a very short time, ideally as short as possible. This time is simultaneous with the
rising or falling edge of the clock signal. While the electrical signals are propagating
through the circuit, the input should be kept constant. When it has finished propagat-
ing and the circuit is stable, the next input can be clocked in and the process begun
anew. This is how all of the circuit’s parts can keep their data synchronized and valid.
If not for using registers and a clock signal, design becomes much harder, because the
designer must ensure the data is valid at any point in the system.

There are however, some resulting disadvantages to the synchronous approach to
circuit design. These are mostly due to speed, power, and distribution.

The clock is calibrated for the longest possible delay path between any two latches
in the system. All of the other paths in the system are not being traversed as quickly
as is possible, and parts of the circuit are held up for extra amounts of time. Compared
to the ideal solution, they are being used for some amount of extra time during which
they could be used for another operation, or finished early. Any operations which are
dependent on the output of a previous operation must stall until the end of the clock
cycle, if all of their data is ready.

Having a universally distributed clock signal means that there is a lot of activity in
the circuit. The clock must be charged and discharged at every component at every
cycle. This requires a lot of unneeded power because some of the components are not
actually in use at any given time.

A global clock can also cause skew in the circuit, which is the difference between
arrival times of the clock signal to different components. This can affect the timing,
and make it very difficult to ensure circuit data is valid in every situation.

Setup time is the name for the amount of time a value must stay at the desired value
before a clock edge, and hold time is the amount of time it must stay at the required
value after the edge. Timing closure is the term given to the state of a synchronous
circuit where the delay in all paths added to the setup and hold times is less than the
clock period. This takes a great deal of design effort, and is absolutely critical for the
circuit to work correctly.

2.2 Asynchronous Circuits

This section will go over some of the basics of asynchronous circuits. Asynchronous
circuits are those which do not use a clock signal to synchronize their components. This
means that the delay between a change in the input and the subsequent delay of the
change in the output of the system is dependent only on the intrinsic logic delay of
the circuit. This means that in general, an asynchronous system will be faster than a
synchronous system because fast components are not waiting for the end of the clock
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period to continue with their execution. Since a clock signal which runs through the
entire circuit is not being charged and discharged at every cycle, there is also usually a
large reduction in power. The downside of asynchronous circuits is that stability can
arise in asynchronous circuits that are not designed properly and this can be simply
solved with a clock signal. This makes the design more difficult and tedious. Also,
designers are more used to the problems and design process of synchronous systems
because they are the standard. Problems and design of asynchronous systems are less
well explored.

Asynchronous circuits can be divided into different classes based on their sensitivity
to delay. Speed independent circuits are those which will always function correctly
regardless of timing. These are therefore the most robust and ideal, but their design
is often very difficult, because for any input or bit that can change, the entire circuit
must always be valid. Delay insensitive circuits are those which operate correctly
due to delays that are bounded and greater than zero. These circuits are likewise
extremely robust, because the delays keep data in the circuit from becoming invalid.
Delay sensitive circuits are those which do not fall under either of these two categories.
They must receive the correct inputs at the right times, or their data will become
invalid. For this reason, they are not very robust, but they are usually the easiest to
design and implement [14].

Handshaking is a method by which components with different timings, whether syn-
chronous or asynchronous, can communicate with each other. The component sending
data is known as the master and the one receiving data is the slave. The data which is
communicated in this way is called bundled-data because it is sent and received in all
data wires simultaneously. Two lines in addition to the data lines are used for the hand-
shaking protocol, one controlled by the master called the request showing that it wants
to send data. The other line is controlled by the slave and called the acknowledgement,
showing that it has received data. There are two major methods of handshaking: two
phase and four phase.

Two phased handshaking consists, as is implied of two phases. The first is the
transmission of the request and the second is the transmission of the acknowledgement.
Because there are only two phases, the lines alternate between going from 0 to 1 and
from 1 to 0 in every other handshake. This method is faster, but since the master does
not wait for the slave to receive data, problems can arise in the circuit if timings are
not handled carefully.

Four phased handshaking is more commonly used, and likewise composed of four
phases. The request and acknowledgement lines are both initialized to 0. When data
is ready to be passed the first component sets the request line high, which is the first
phase. Then when data is received, the acknowledgement line goes high, which is the
second phase. When the first component sees this, it discontinues its request, that is
the third phase. When the second component sees that, it likewise discontinues its
acknowledgement in the fourth and final phase. This is illustrated in Figure 2.1[14].

The muller C element is a piece of hardware used extensively in asynchronous cir-
cuits. A Muller C element holds the value of its output, until all inputs are the same
value, at which point the output becomes that value, as seen in Table 2.1. Using a
Muller C element, handshakes with more than one input or output can be performed,
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Figure 2.1: Four Phase Handshaking

because the element will wait until all handshaking components are ready for the next
phase of the handshake. It can also be used in another way, to create dual rail asyn-
chronous circuits. Since the output will wait until both inputs have changed to make
a change, the system can be made stable until all data is valid[14].

A B Y y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 2.1: Muller C Element Truth Table

A Muller pipeline is a way to create an asynchronous pipeline of data using Muller
C elements as a memory component. Data is passed to the next element of the pipeline
using handshaking. The request of the previous element is put into a C element with
the inverse of the acknowledgement from the next component, which means that the
previous component has data ready and the next component is free. The output of
the Muller C is then used as the request to the next component and acknowledgement
back to the previous component. This frees the previous element and prepares the next
element to accept the handshake, and in this way, the control signals are passed along
the pipeline.

An asynchronous circuit’s sensitivity to delay, handshaking, and Muller C elements
and pipelines are concepts that are all used extensively in this project.
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2.3 A Method for Desynchronization

This section will discuss methods of conversion from a synchronous circuit to an asyn-
chronus one, and discuss in detail the method that is the inspiration for this project.

Desynchronization is the process of eliminating the clock of a synchronous circuit,
and in so doing making it asynchronous. In order to make this conversion there are
two principle implementations: dual rail, bundled data.

Dual rail systems use a dual rail Muller pipeline. Throughout the design, all of the
signals in the design are implemented using two lines where there would be only one
in an equivalent synchronous system. One of these lines signifies true, and the other
signifies false. If both lines are zero, the data is invalid. If the true line is 1, then this
is the equivalent of a logical one, and if the false line is 1, this is equivalent of a logical
0. Both lines being set to true is an error that should not occur. Every operation is
performed on both signals, and is equivalent to something in the synchronous imple-
mentation. For instance, an OR gate will produce a 1 in the false line if the false signals
of both two rail inputs are 1, and does this with a Muller C element. An or gate is used
to test if the signal is valid, in order to send an acknowledgement, which similar to in
a Muller pipeline, allows the transmission of new data into the pipeline stage. There
is no request line but valid data in the two rails is the equivalent of having an active
request and invalid data is the equivalent of having an inactive request. Effectively,
this combines the control and data of the implementation. It takes a lot of time to
redesign all of the components and it takes up a lot of area since the wires and logic
have effectively doubled, but to its credit it is speed independent and does not require
delay elements.

Bundled data implementations separate the data from the control lines. The data is
passed through the pipeline through latches, which are controlled by a Muller pipeline.
This is the basic version of the Muller pipeline, with two small additions. The output
of the C element in every pipeline stage is also used as the clock input to a latch, which
means that when a pipeline stage is ”active”, the latch is transparent. This allows
data to be transmitted as the handshake moves through the pipeline. Also, a delay
element must be used to match the combinational logic delay in the datapath between
two latches [8]. This ensures the data is valid when it reaches the latch and classifies
this circuit as delay insensitive. This delay element is difficult to implement, but this
type of circuit is much more easily converted from a synchronous implementation and
takes less area than the dual rail implementation.

The method used in this paper to desynchronize the circuit was devised by Cor-
tadella et al.[5, 4, 2], and its results can be seen from comparing Figure 2.2 and Fig-
ure 2.3. One goal of this method is to minimise the amount of design effort in the
desynchronization process. It is similar to the bundled data method, but it does not
use C elements in the pipeline stages. The main advantage over the Muller pipeline
is that the circuit has an asynchronous reset signal. Since the datapath logic is left
intact, the simplicity of the synchronous design process can be retained, and since it is
unrestrained by the clock, the speed and power advantages of an asynchronous circuit
can also be acquired, all in the same circuit.

Starting with the synchronous implementation, which typically uses D flip-flops as
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Figure 2.2: A Simple Pipeline Prior to Desynchronization. From [5]

Figure 2.3: A Simple Pipeline Following Desynchronization. From [5]

registers which store information in a circuit, all of the flip flops in the design are split
into two latches (a master and a slave), and the clock signals of all of these latches are
replaced by control signals. Using this method, an asynchronous, open-source, high
end processor known as ASPIDA was generated from the open source DLX processor.

Each latch has a controller as can be seen in Figure 2.4, to determine when this
control signal should be high or low, which is analogous to the clock signal in the
original circuit. The inputs and outputs to the controller are dual handshaking lines
in and out and a reset signal. The controllers are slightly different between master and
slave latches, so that the control signals into these latches are the complement of each
other, ensuring that the latches are not both transparent at any one time. They are
also designed such that only the master controllers need a reset signal. The circuits of
both the master and slave controllers are shown in Figure 2.4.

The pairs of controllers are arranged so that every latch pair is handshaking with
the latches to and from which it receives data. This creates a sort of handshaking
network which mirrors the flow of data in the system.

When information is multiplexed from two or more registers into one, a Muller C
element is used to group together all of the preceding adjacent request signals, because
the system must wait for all of them to be ready to change the input to the next
controller. The acknowledge signal can simply fan back out to all preceding acknowledge
out ports. If we have a register that sends input to multiple adjacent registers, we do
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Figure 2.4: Cortadella Style Latch Controllers. From [5]

the opposite, fanning out the request signal and using a C element for the acknowledge
signals.

It is critical to ensure that the control signal for a request does not arrive at the next
latch faster than the data from the corresponding combinational logic, because then the
next register could be clocking invalid data. A delay is inserted between the request out
and request in of the next controller, equal to or longer than the slowest path through
the combinational logic between the two latches. This is the delay seen in Figure 2.4
and Figure 2.3. The major perceived disadvantage to this method is the difficulty of
calculation of the delay, the complications of realising that delay accurately in real
hardware, and an inability to port the logic for the delay between various hardware
mappings, routings, and technologies.

The handshaking protocol is of the four phased variety, very standard, simple, and
straightforward. When a controller receives a request in, it sends a request out to
controllers after itself, and an acknowledge in signal back to preceding controllers.
When the request in goes low, acknowledge in can go low, and when acknowledge out
goes high, request out goes low. The system then only has to wait for acknowledge out
to be low before it can respond to another request in.

The logic of the latch controllers are often described using Petri Nets, which are
a graph used to verify the correctness of asynchronous systems. These are diagrams
which demonstrate the impact on the current values of a circuit of the change in one
or more of the inputs, and the flow of data, by way of showing which handshakes
need to be be completed in order to start a given handshake in the diagram. They
are different from a state diagram in that branching indicates not a choice, but two
separate dataflows. An arrow indicates a transition between these states, and a ”+” in
the transition variable indicates a rising edge, and a ”-” indicates a falling edge. Dots
are also sometimes used to indicate the starting position of data in the circuit [16].
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2.4 Finite State Machines

This section will explain some basic concepts about finite state machines. Finite state
machines are a method of controlling a circuit which performs different tasks at different
points in time. A machine is split up into various states, which along with the inputs
determine what the values of outputs are, and which state to move to at the end of the
current one. When one state is over, the system moves to a new state, and in this way
all of the states are connected in a network. The state machine moves to the next state
with a trigger, which in a synchronous FSM is the clock signal, and in an asynchronous
one more complicated and discussed in the next section. The machine uses a bitwise
encoding, called a state variable from which it can identify which state it is currently
in. A combinational logic network uses these and the system inputs to calculate an
output, as well as the encoding for the next state, which becomes the new value of the
memory element containing the current state at the trigger.

2.5 Asynchronous State Machines

Finite state machines are most commonly implemented synchronously, but it is possible
to implement them asynchronously. Memories are used instead of flipflops to hold the
current state. The relative security of the clock is not present, and thus there can
possibly be critical races, oscillations, and static hazards. If these things are allowed
to happen they can cause the state machine to function incorrectly [14, 10, 15].

There are however, several methods of transforming the circuit to work around these
timing errors. One of these is to make a speed independent circuit. With this method,
one must make sure all state transitions only change one bit in the state encoding. This
ensures that there are only two possibilities for state while the transition is happening.
The inputs also cannot change during the transition between states. Therefore inputs
are only changed in bursts [14].

There have been several ideas which attempt to retain as many advantages as possi-
ble from both synchronous and asynchronous finite state machines. Some of these ideas
include using delays in the clock path(similar to what is done in the desynchronization
method described above), and using inertial delay elements, in which the output is only
changed if it is held for a certain amount of time. These can make the state encoding
problem less difficult and desensitize the state machine against changing inputs, but
they suffer from other problems, notably increased risk of metastability, slower circuits
(when the delays are unnecessary), and the difficulty in calculating accurate delays [1].

There is another way to implement state machines however, which is not sensitive
to changing inputs and does not use delay elements, the structure of which is shown
in Figure 2.6. Clock signals are generated for the memory elements using a sum of
products equation of which input and current state combinations cause a 0 → 1 and
1 → 0 transition for outputs and the state variable. Each output and state variable bit
has a latch pair. When a change has been made to the input or state, the change is
clocked in the first latch. When the information is safely inside, the first latch becomes
opaque, and the second latch transparent. The system then waits until the input has
settled. The second latch is again made opaque and the first latch transparent, waiting
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Figure 2.5: Output Latching in Aghdasi Style AFSM. From [1]

Figure 2.6: Next State Latching in Aghdasi Style AFSM. From [1]

for a change to state or input. When a state variable is wider than one bit, the system
will wait until all bits are clocked into the second latch to reset the latch pair, by way
of a common and gate. This will ensure that the machine does not move to a state to
which it did not intend to go [1].

2.6 Scheduled Synchronous Filters

The circuit of focus in this project is a scheduled filter. A digital filter is a circuit which
applies a mathematical calculation on a sampled signal and previous outputs, which
amplify or attenuate the different frequency components in the signal. They are used
in any kind of circuits that do signal processing and can be found in devices such as
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radios, DVD players, and cellular phones.

Scheduling is a process by which resources are allocated in a circuit to be used
efficiently. A scheduled circuit is one which has been created in this way.

Every digital circuit takes some set of inputs, performs a function on them, and pro-
duces outputs. This function can be split into a set of smaller operations which when
executed in a defined order, produce the same outputs. An common example of this
is a mathematical function which can be split into additions, subtractions, multiplica-
tions, and divisions, but the method can be applied for any types of operations. The
arrangement of inputs, operations, connections, orderings and outputs of the circuit is
known as a dataflow [9].

If the same operations can be performed multiple times on different data within the
dataflow, the hardware performing the operation can be shared, and ideally not much
hardware needs to be added to multiplex between them and there will not be much
contention and extra delay. If the dataflow is scheduled correctly, a circuit can be very
quick and save a lot of area.

These shared, scheduled, hardware units which perform a defined operation are
known as computational units (CUs) or functional units. Commonly they are ALU units
which perform additions or subtractions, MUL units which perform multiplications,
DIV units which perform divisions, shift registers, or simple registers.

Timesteps are used to separate each use of the computational units. A clock is
used to set the length of a timestep in the circuit, and the cycle time is the length of
the delay of slowest computational unit. A central finite state machine is used to send
control signals enabling the different functional units in the circuit and multiplexing
between the various data at the different states. The result is that at each state some
of the computational units will be working, some will be off, and inputs and outputs
will be routed in order to produce the correct data.

Calculating the optimal schedule is an NP problem, so heuristics must be used to
find a circuit which has a low overall delay and/or a small die area, with a reason-
able compilation time, depending on the priorities of the designer. Scheduling every
operation to finish as early or as late as possible are two simple alternatives, and these
are relatively easy to compute so they are sometimes used as bounds for the heuristic
algorithm [9].

Some more complicated algorithms include list based scheduling and path based
scheduling. List based scheduling assigns different operations different priority based
on how many other operations are dependent on them, and how precious the resources
they use are. Path based scheduling seeks to find the critical path in the circuit by
determining what the longest string of operations is, and minimize the path in the
circuit, by giving its operations first priority, and then scheduling the other operations
[9].

There are other algorithms which work using constraints which limit the amount
of each computational unit which can be used, such as integer linear programming,
and force directed scheduling. Integer linear programming creates bounds using ASAP
and ALAP times and the hardware constraints of the system. Then it uses algebraic
substitution to satisfy all of these conditions and find an optimal schedule. Force
directed scheduling seeks to balance the concurrency in the circuit to make all steps as
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Figure 2.7: Sample Scheduled Dataflow with 2 ALU, 1 MUL, and 1 DIV units

concurrent as possible. First ASAP and ALAP are calculated to establish bounds, and
then earliest and latest times are calculated for each component. Distribution graphs
are taken to see how many of the different operations could used at different timesteps,
and probabilities are established based on how many other options for scheduling that
operation has. Every operation has a ”force” calculated at every step within its bounds,
calculated by the probability multiplied by the distribution. If all the forces in the
circuit are added, the lowest total will be a circuit with the most concurrency. This is
the solution that will be selected by the algorithm [9].

Scheduling is an important process for generating a large synchronous circuit that
is run efficiently in terms of both time and hardware. There are many algorithms for
scheduling, including as soon as possible, as late as possible, list based scheduling, path
based scheduling, integer linear programming, and force directed scheduling.
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2.7 Scheduled Asynchronous Circuits

There are also a few published papers about asynchronous circuits and how to schedule
them effectively to reduce total time and chip area. This is somewhat more difficult
to do since the timing intervals are completely continuous, compared to the discrete
intervals in synchronous scheduling.

In a method published by researchers at the University of Aizu, two algorithms are
used that are based on force directed scheduling and force directed list scheduling in
synchronous scheduling. The starting times of the different operation instances are es-
timated, and this is used at every iteration of these algorithms to scheduling operations
which communicate asynchronously. States are also separated into the periods of time
in between the start times of all operations in the system [7, 12]. This approach is
different than the one used in this project, and they could possibly be combined in the
future to great effect.

The reader should now be familiar with all of the background information required
to understand the methods of desynchonization and decentralization explained and
implemented in the following chapters.

The next chapter will discuss two experiments which show the functionality of the
desynchronization method explained in this chapter and its automation using a lan-
guage constructed specifically for that purpose.
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Experiments 3
In order to verify the feasibility of the desynchronization method, first some preliminary
experiments were conducted. The first of these is a simple pipeline which is refitted
with the latch controllers described in the desynchronization method above, in order to
test the effectiveness of the method. The second test was using a tool, called Pipefitter,
which can be used to describe asynchronous logic in a subset of Verilog.

3.1 Desynchronization Tests

The even and odd latches specified in [5] were coded in VHDL and simulated function-
ally using ModelSim, a tool to simulate the functionality of a circuit with user specified
test inputs. An ’after’ statement was inserted in place of the delay element. Even
though there is no delay in the corresponding combinational logic, the circuit needs
at least some delay to function, because there are circular dependencies. In a physical
circuit, there is some propogatation delay so this is taken care of, but in a virtual circuit
without a sense of timing, there will be a logical loop which ModelSim cannot resolve.

The pipelined circuit was coded with a simple (A+B)*C operation. In the first
stage taking three input values A, B, and C, in the second stage adding A and B and
carrying C, and in the last stage multiplying the values (A+B) and C and writing to
an output register. The circuit is used to demonstrate that the asynchronous circuit
will produce the same results as the synchronous circuit even with pipeline stages of
varying lengths, as well as to allow easy verification of the correctness of the results in
both implementations since the operations are arithmetic.

The pipeline was first tested in its synchronous implementation for correctness with
a variety of inputs based on corner cases. Then it was desynchronized in the manner
described earlier, replacing each flip-flop with two latches and implementing the odd and
even controllers for each latch pair, which handshake with the controllers of the adjacent
latch pairs, the last pair also handshaking with the first. Diagrams of the synchronous
and asynchronous implementations can be found in Figure 3.1 and Figure 3.2.

After being desynchronized, the circuit was tested again. The output results of the
synchronous and desynchronized circuits were observed to be equivalent (as well as
correct arithmetically), indicating a successful application of desynchronization in this
experiment. The results of the simulations can be seen in the figures Figure 3.3 and
Figure 3.4.

3.2 Pipefitter Tests

In addition, the Pipefitter tool[3], which was developed at the University of Torino
for use in the ASPIDA project, was tested with some examples to determine whether
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Figure 3.1: Design of the Pipeline Circuit Before Desynchronization

Figure 3.2: Design of the Pipeline Circuit After Desynchronization

Figure 3.3: Results from the Pipeline Circuit Before Desynchronization

Figure 3.4: Results from the Pipeline Circuit After Desynchronization

it was suitable for generating asynchronous control blocks for use in desynchronized
systems. Pipefitter has the ability to add timing information to the models which
allows the designer to check the timing of the handshaking protocol in addition to the
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Figure 3.5: Pipefitter Circuit

Figure 3.6: Pipefitter Circuit Results

functionality.

First the examples provided with the source code of a sequential register, an adder/-
subtractor, and a concurrent register (which corresponds to the one we coded earlier in
VHDL) were verified for correctness. Next a simple circuit was designed using instances
of the concurrent registers connected in series, to test interactivity and interconnection
of different registers. Lastly, an example with two registers which add their values was
tested, to show the ability of the system to merge different asynchronous signals, but
with the addition done functionally, without delay necessitating the calculated delay
elements shown in Figure 3.5. All of these tests were successful, as seen in Figure 3.6,
but logic for intercommunication between components had to be coded by hand.
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3.3 Summary

• Verification that the desynchronization method works as described

• Verification that Pipefitter works as described

• Better to perform manual desynchronizations than to use an automated desyn-
chronization process for the task ahead

Having performed these experiments, we can see that the desynchronization method
does what it is supposed to and is powerful and straightforward for making asyn-
chronous implementations of of existing circuits. Now we are ready to explore how
to apply this technique in real, complicated circuits, and produce observable changes
and results. As for the pipefitter tool, it proved to be not useful for applications in
this project, since similar results can be achieved without the tool, and all of the base
circuits in this project are currently implemented in vhdl, while the tool uses verilog,
which requires rewriting. Since there is more freedom in devising a method by hand
and something must be written by hand in any event, the decision was made to use
manual conversion to realise the methods.

The next chapter will delve into the ways in which the synchronous circuit can
be improved by desynchronization, ways in which to perform that desynchronization,
adjustments to the Cortadella style desynchronization process, and the inner workings
of the control network and state machines used in these methods.
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Desynchronization Concepts
and Solutions 4
The previous chapter discussed experiments and the validation of the desynchronization
method presented in the background chapter.

This chapter will focus on:

• The ways in which desynchronization can benefit scheduled circuits

• Control skew from a central state machine, and how localization can solve this
and further improve the circuit

• Required modifications to the latch controller to deal with logical changes, and to
the delay element in order to keep the circuit fast

• Hazards that result in deadlock caused by conversion of a synchronous circuit to
an asynchronous circuit, and how to avoid them

• Greater handshakes and how they create delays in the system

• The first solution, its approach to states, state templates, and handshaking, and
connections between computational units

• The second solution, state clusters, and the way it removes dependencies between
computational units

4.1 Inefficiencies in a Scheduled Synchronous Circuit

There are several ways in which a scheduled synchronous circuit is inefficient in using
time and hardware resources. These are mainly due to the fact that it is synchronous.

Firstly, the clock is calibrated for the longest possible delay path between any two
latches in the system. Faster parts of the circuit must operate at the speed of the
slowest parts, due to the global clock signal. If all operations and all paths in the
circuit are similar, the amount of wasted time can be negligible, but if there are large
differences, the amount of wasted time can be a large percentage of the total time.
In a standard ripple carry addition operation, there are N propagations through full
adders, where N is the number of bits in the addition, and in an array multiplier, there
are 2N propagations [11], meaning that the approximate delay difference of these two
operations is the size of the addition. There are also many other common ways to
implement the operations, so these differences can be more or less but are usually quite
large. The delay for a division is even larger, and for bitwise operations smaller, and
these are some of the most common operations in scheduled circuits.

The circuit, as all synchronous circuits also suffers from clock skew and excessive
power dissipation by universal charging and discharging of the clock.
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An optimal solution to the scheduling problem is not solvable, to our knowledge, in
a polynomial amount of time. Therefore we must use heuristics, and while they usually
find an efficient solution, it is also usually suboptimal, and can even be quite inefficient
in some cases.

Also, all of the control signals must travel to all of the computational units in the
circuit. If there are enough of them, they could be located far away from the central
controller, and this can cause some skew.

4.2 Desyncronization and Decentralization of a Finite State
Machine

The goal is to apply the desyncronization method to a generic scheduled digital filter
which has a central state machine that is linear in nature, and can be run in iterations
from start to finish. There are some static inputs which can are constant throughout
an iteration of the circuit. There is also some number of reusable computational units
suitable for scheduling which perform different or similar operations on inputs and gen-
erating outputs for use as inputs in other functional components. Every computational
unit has in it a register which stores the result of the function’s combinatorial logic.

In a centralized, synchronous finite state machine, each functional unit in the design
is communicating at every step with the state register. Making the FSM asynchronous,
using method described in [5] to change all registers into a network of handshaking
latches, can only serve to make the system the same speed or slower than the opti-
mized synchronous system, because the entire system is waiting for the state register
to handshake with the computational unit with the slowest path as well as for all of
the other units. Also, at every state these lines must be charged and discharged, which
will dissipate a lot of power and counteract the benefits of using the method. These
observations provide motivation to change this desynchronization method in such a way
that there is less of a negative impact on circuit speed and power usage.

In order to have the chance of speedup in the circuit, one option is to separate
the state machine into multiple independently clocked state machines which send re-
quests and acknowledgements to each other and the functional units. The requests
and acknowledgements will advance the states in this interdependent ”state machine
network”. By separating the state machine into these smaller state machines, we do
not have to wait for the entire clock period in the faster components, which corresponds
to the combinational delay of the slowest functional units. Thus we can theoretically
trim the difference in time between the longest path for the current component, and
the longest path of the slowest component, each time an operation is performed.

In a software design, this is somewhat analogous to the procedure of separating a
program into different parallel pieces which depend on information from each other, and
will run simultaneously on different CPUs, interacting with each other using message
passing. This is a common practice in embedded systems in order to effectively use
multiple and often heterogeneous processors for separate tasks, in order to gain some
speed up the entire system.

These smaller state machines do not have any knowledge about the execution of the
others, and their only communication with the other FSMs is through handshaking.
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Figure 4.1: A Sample Scheduled Synchronous System

This is not a problem, because the global execution of the system is designed and
determined at compile time, and there are no variations on execution. If the system
is run once without error, it should run in the same way, without error, for every
execution.

When splitting the state machines into smaller ones, how many is too much, and how
many are too few? Which state machines will control which of the computational units
in the circuit, and at which times? The most immediately obvious way to determine
the number of state machines and allocate them responsibility for different functional
units, is to create a separate state machine for every functional unit. Since they are
asynchronous states, there is no clock to determine when one state is finished and the
next state begins. Thus state transitions must happen asynchronously, as well. There
is a method of doing this, mentioned in [1] which circumvents two major problems,
namely, instability in the state machine due to input during a transition, and timed
or significant delay. This method does, however, provide a sort of buffer for the input.
That means that all possible combinations of inputs must be handled by the state
machine, similar to a synchronous solution.

A diagram which shows the simplified structure of a scheduled circuit with three
functional units can be seen in Figure 4.1. There is a central FSM, and this FSM
controls the clock enable signals and selects which data to input to each CU at any
given state. There is also a global clock signal which is seen by all components in the
system.

4.3 Modifications to the Latch Controller

Both of the solutions presented in the following chapters make use of latch controllers, In
the first solution, each functional unit in the circuit has an independent instruction state
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Figure 4.2: Petri Nets for Original Desynchronized Even and Odd Latch Controllers. From
[5]

machine and a separate latch-pair controller based on the latch controller introduced in
the background chapter. In the second solution, this latch-pair controller is embedded
in the logic of the instruction state machine, but the functionality is the same.

The controller is slightly modified from the [5] design. The Petri nets for the original
latch controllers are given in Figure 4.2. The controllers for both latches are combined
into a single unit called a latch pair controller for ease of use, since they are always used
together throughout the circuit. In Figure 4.3a is the combined and simplified Petri
nets from Figure 4.2, and in Figure 4.3b is the version used in this project. E stands
for the control signal of the even latch or master latch, and O stands for the control of
the odd or slave latch. The handshaking outputs consist of: Ai, the acknowledgement
in signal which confirms the capture of data from the sender latch pair controller, and
Ro, the request out of the controller to the receiving controller. The inputs are: Ri,
which is the request into the controller, and Ao, the acknowledgement to the CU when
its request is seen by another. A ”+” in the diagram represents a rising edge, and a
”-” represents a falling edge.

The modifications are mostly to allow the latch pair controller to signal an FSM
that is keeping track of an overall state when it should advance its state. In the original
latch controller, the state of the input and output is only loosely connected because both
handshakes are happening as soon as the other is finished, which there is no common
point for the Petri nets to pass through where the state of the controlling FSM can be
changed. Therefore in the modified latch pair controller there is a common entry and
exit point in the Petri net in the E+ stage where the controlling state machine ends
and begins states. The rest of the latch controller logic is adapted to account for this
change.

A perhaps easier way to see the logic for the latch pair controller is displayed in
Figure 4.4. If the latch pair controller is used as a separate entity, this acts as a state
machine diagram for the controller. If it is not explicitly separate from other hardware,
the logic controlling the latches still follows this scheme. The edges of the graph, which
represent the transitions between phases in the handshaking, are influenced by the
positive or negative changes in the two handshaking inputs to the CU and its pair of
latches. The final state is necessary if there is a another controlling state machine. It
must be visited because its controlling state machine must see both handshakes are
completed to advance to the next state, and as soon as it advances, the latch pair
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(a) Original Petri Net (b) Redesigned Petri Net

Figure 4.3: Petri Nets for Original and Redesigned Latch Pair Controllers

Figure 4.4: Modified Latch Controller Logic

controller will also be told to advance.

4.4 Delay Elements and Bypassing

In the original desynchronization method, the delay elements in the circuit are placed
in the request in line of all latch pair controllers which in turn serve all of the com-
putational units. This ensures that the request is delayed and unseen, to allow the
combinatorial logic of the receiving CU to saturate before the result is saved in the
latch.

The delay while the circuit is waiting for its input request to go through the delay
element is given the term input delay by this report, and the delay of a sending CU
while this request is going through the receiver’s delay is known as the output delay.
The output delay can usually be alleviated, because the logic can begin to saturate
with its new inputs and request as soon as the input handshake is complete (see the
section on input multiplexing options). The input delay on the other hand is necessary
for the logic to saturate and data validity.
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Figure 4.5: Behaviour of Delay Element

When the acknowledgement is sent by the receiver back to the sender, and the CU
waits for the request to end, since the lowering of the request also travels through the
delay element. This delay, prior to the falling edge of the request in, is no longer needed,
because the logic has already saturated and the result is secure in the latch pair, and
the sender can safely finish the handshake as quickly as is possible.

If this extra time is added, the circuit can be up to two times slower, since every
handshake has twice the input delay and output delay. Thus in order to save time,
we should use a delay element which has delay only until the threshold voltage on the
rising edge. When the request is rising past the threshold voltage or falling, ideally
there should be zero delay in the element. This ideal behaviour can be seen in the
curve in Figure 4.5. The further from this ideal the delay element is, the slower the
circuit will be.

4.5 Input Multiplexing Options

There are two separate ways to multiplex the inputs to each FSM in the circuit. The
first way is simpler and takes less area, the second way is faster and takes more area.

The simpler option is to change the inputs which are being passed into the functional
unit at each state transition. This solution is more stable, but it wastes more time than
the alternative. This is due do the logic only propagating through the computational
unit’s logic after the state has started. The unit will have to wait for the delay of itself
between the start of every state and the input handshake. On the other hand the logic
for multiplexing the inputs into the computational unit is simpler.

The more sophisticated option is to feed the input for the next state into the func-
tional unit as soon as the input handshake is finished, locking the computed data into
the first latch, so that we can cut down on the time it takes between the start of the
next state and sending acknowledgements to the input units. If all of the inputs have
propagated through the logic by the time the next state starts, this unit can save time
equal to its own delay. In general it will save the difference in time from when it has
finished the input handshake and inputs are ready until when the output handshake is
finished and the next state starts. This is the method used for this project because the

26



increase in speed is quite significant over the simple method.

4.6 Hazards, Deadlock, and Redesigning the Circuit to Avoid
Them

Depending on the synchronous design, situations can arise after the simple desynchro-
nization which cause deadlock. This is due to the fact that in the synchronous imple-
mentation, these situations do not cause deadlock, and are not known to be avoided.
Therefore, the asynchronous system must be slightly altered to avoid these situations
and the ensuing deadlock. A properly designed system will never deadlock if as long as
the components function correctly, since its execution path is predetermined, and the
same every time. The fundamental cause of this deadlock is that there are one or more
state machines which are involved in the same greater handshake in two different states.
Since the transition from one state to the other is dependent on the handshake being
completed, and every handshake in the greater handshake must complete before it will
finish, there is a paradox. This happens in three different ways in a desynchronized
circuit. In this report they are refered to as crossover hazards, self-handshake hazards,
and triangle hazards.

If two or more functional units are in the synchronous design sending each other
output over the same time boundary, it will create an interdependency between the
output handshakes, and thus deadlock in the circuit. This phenomenon is referred to
in this report as a crossover hazard and shown in Figure 4.6. The CUs are represented
by squares, states and time are represented by the horizontal lines, and handshakes are
represented by arrows between CUs. The handshakes causing a crossover hazard are
coloured in red.

The simplest two CU problem lies in the fact that both of the units are at the
end of their respective states, where they are trying to send their output, and need to
finish before they can start a new state and accept new input. In a crossover deadlock
involving more than two CUs, they will be connected in a circle, all of them trying to
send requests to each other. A will be sending a request to B, B will be sending one to
C, and C sending one to A.

One of the CUs will have to somehow finish first and accept input from the other
CU in order to break the deadlock. One solution is to somehow reroute the output
from the first unit to another computational unit. In the case of this implementation,
there are CUs which are simple latch pairs with no other logic. We can use a latch pair
which is not in use, or add one to the design in order to prevent the crossover deadlock.
We can also potentially switch the operation in one of the computational units causing
the deadlock to another which performs the same task and does not create a deadlock
hazard with the other component.

Rerouting is however often a very unfavourable solution in terms of speed. The
element through which the data is rerouted is often a simple latch pair, and fast, but
the process destroys the concurrency of the scheduled circuit. The circuits which are
rerouted all execute at the same time in the synchronous implementation, but in a
rerouted implementation, they execute in a chain; first the one which has its output
rerouted begins to execute and its sender is freed and begins to execute and so on.
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Figure 4.6: Deadlock due to Crossover Hazards

This is very costly in a hardware system designed to be concurrent. Therefore if it’s
possible, it is much better to switch the operation with that in another functional unit
with no dependency.

Another problem arises when in the synchronous solution a functional unit sends
output to itself. This is impossible in the asynchronous solution because the output
handshake is at the end of one state, and the input handshake is at the beginning of
the next, these two need to handshake with each other, and the machine cannot be in
two states at once. This is called a self-handshake hazard in the scope of this thesis.
As with a crossover hazard the data has to either be rerouted or another equivalent
functional unit that eliminates this problem must be used.

A third potential deadlock problem happens when there are two or more components
receiving an output handshake, and one of those is also receiving an input handshake
dependent on the other. This is called a triangle hazard by this report and illustrated
in Figure 4.7, with the handshakes between CUs represented by arrows, and those
causing the hazard represented by red arrows. This will cause deadlock because the
first handshake can never complete. One or more of the signals in the greater handshake
is dependent on the completion of the same greater handshake. This means that one of
the computational units is part of the greater handshake in more than one state, which
is impossible. This problem can be solved by separating the output handshakes in the
first state. This is performed by adding a resend data state in the first computational
unit. This splits the greater handshake into two parts, and the CU which previously had
two states in the greater handshake will now have one state in each, and the deadlock
is avoided.

All of these hazards can be intertwined and combined with each other, and their
manual correction and elimination can be very complicated and time consuming. The
resulting fixes are often more linear in execution than the synchronous implementation,
and this may lead to slow down the circuit. This is akin to fixing mistakes in a factory
made circuit board by soldering it by hand. It is somewhat less elegant than a circuit
which has been scheduled to be executed asynchronously in this manner.
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Figure 4.7: Deadlock due to Triangle Hazards

4.7 Separated Latch Pair Controller FSM Solution

In this solution, each computational unit has a latch pair controller, a separated asyn-
chronous FSM which controls the handshake cycle at every state, and a likewise asyn-
chronous instruction state machine, which has states corresponding with the states that
the functional unit is active in the synchronous implementation. This instruction state
machine must interface with the latch pair controller at every state, and multiplex the
correct inputs and outputs.

Every state in the instruction FSM is a complete handshaking cycle of a pair of latch
controllers. They each have one input handshake and one output handshake with all of
the functional units’ inputs and outputs at the state in question, although handshakes
to outputs can potentially be separated (refer to the section on state templates). The
FSM will move to a subsequent state when both the input and output handshakes in
the current state are completed.

As for the latch pair controller, each cycle of states corresponds to one state in the
instruction FSM. Each state in the latch controller corresponds with a possible phase
in the input and output handshakes, and the state diagram is equivalent to the Petri
Net in Figure 4.4. All of the inputs and outputs are multiplexed into and out of the
latch controller with controls coming from the instruction FSM.

The results of the process on the system in Figure 4.1 can be seen in the picture
in Figure 4.8. The central FSM is gone, along with the clock signal, and there are
local instruction state machines and latch pair controllers. The units communicate
with handshakes, and the FSMs determine which inputs and handshakes to accept and
which units to send an output handshake at each state.

4.7.1 State Encodings

The latch pair controller, when separated, can use a simple and efficient encoding, as
there are only 5 states, as seen in Figure 4.4. The first state will have the encoding
of 000, the second, 001. When it branches, the two states will be 101 and 011. Then
for the final state, it can be duplicated, with an encoding of either 100 or 010. These
states both return to 000, for efficient coding and transition logic.

The encoding for the instruction state machine, which moves in a linear fashion, is
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Figure 4.8: A Sample Desynchronized Scheduled System with Separated Latch Pair Con-
trollers

even easier. To make things simple in the transition logic, each state will be one bit
apart from its predecessor and successor. This is analogous to an algorithm visiting all
the nodes in a hypercube without revisiting any of them. This ensures a similarly small
amount of logic, which also means lower delay times. An example with three bits is:

000 → 001 → 011 → 010 → 110 → 111 → 101 → 100
000 is the encoding of the reset state, and 100 is the encoding of the done state.

If the number of states is not a power of two, the state machine will just end at the
largest encoding in this sequence. Because of the nature of the state machine we are
using, it is not necessary to have a one bit transition, so when the system is reset to
000 it will be safe.

4.7.2 States and State Templates

The states that each functional unit is active in the synchronous circuit translate into
states for that functional unit’s state machine in this asynchronous version. In order
to convert what happens in the synchronous state to states in the decentralized asyn-
chronous machines there is a simple procedure. First, for every functional unit that is
active (clock enabled) in the synchronous state, we make one state in the functional
unit’s state machine and find the inputs and the outputs. All of the states should
stay in the same order they occur in the synchronous implementation. If they are
time-dependent inputs or outputs, the unit must handshake with all of the units which
provide the inputs or receive the outputs. Every state is one of four types, depending
on the inputs and outputs: a standard state which uses both input and output hand-
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Figure 4.9: Standard State Template

Figure 4.10: Resend Data State Template

shakes, a data resend state which only sends its data to another CU, a fake request
state which only handshakes in its output, a fake acknowledgement state which only
handshakes in its input.

The most common is a standard state which is used for a normal input-to-output
dataflow through a functional unit. A diagram demonstrating the functionality can
be seen in Figure 4.9. There is one input handshake with all required inputs, and
an output handshake with some or all of the required outputs. The latch controller
regulates the timing of the input due to the longest path delay through the functional
unit, and stores the result in the second latch by the time the handshakes are finished.

The next most important type is a state to resend data, which is useful in cases
where two CUs need to access the same data at different points in time, or when there
is a dependency between outputs. Its picture is in Figure 4.10. In this template, the
latch controllers are not changed at all, but the instruction state machine sends a fake
request and reads the forthcoming acknowledgement. This state is used in cases where
the output is sent at different times, and the input and result are thus unchanged. This
is achieved by completely circumventing the latch controls, so the input is not stored
by the latch pair.
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Figure 4.11: Fake Request State Template

Figure 4.12: Fake Acknowledgement State Template

The third state type is used when none of the inputs are time-reliant, likely because
they are predetermined before an iteration of the circuit. This template is shown in
the diagram in Figure 4.11. The output is relayed by handshake as normal, and a
fake request is sent into the latch controller and the acknowledgement is read by the
state machine to set the request inactive. Like all requests in, the fake request must be
delayed by the combinatorial logic time, because when a new state is reached, the new
inputs still need to saturate the logic before the data is valid.

The last type of state is comparable to the third state type but used to store a result
in the latch that does not have an output, usually in the case of a finishing state that
calculates a final output. It can be seen in Figure 4.12. The input handshake is the
same as a standard state. The request out is read by the state machine, and a fake
acknowledgement is sent in to set the control of the second latch active. When the
request goes low, the fake acknowledgement also goes low.

There are three types of fake latches that can be present in the finite state machine,
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Figure 4.13: Connections Using Muller C Elements and OR Gates

corresponding to the three states other than the standard one. The first is a fake request
out latch, which is used in the resend data state, and sends a request to the specified
computational unit immediately at the start of the state. When that unit sends a
corresponding acknowledgement back, the request goes low and the state ends. The
next is a fake request in latch, which is used in the fake request state and sends a request
into the current functional unit after its combinational delay in order to guarantee valid
data. When the acknowledge is received the signal can go low, but the output handshake
must finish before the state ends. The last is a fake acknowledgement out latch, which
waits for the request out from its own computational unit to go high then sends a high
acknowledgement signal. When the request goes low, the fake acknowledgement goes
low again too, and waits for the input handshake to end to change state.

4.7.3 Connections and Communication Between Computational Units

For every dynamic output and input used by a functional unit, there are request and
acknowledgement signals being multiplexed into every computational unit’s latch pair
controller, with the signals controlling the multiplexers coming from the instruction
FSM. The latch controller can thus perform the same operations on different signals
at different states, and handshake with only the functional units that are inputs or
outputs at the current state. Each computational unit needs to know where to send its
requests and acknowledgements, and also where to find them at any given state.

Different states for different components have differing amounts of inputs. For a
computational unit state that has all static inputs, no request in is needed, for a state
with one time-dependent input or output, a simple request and ack are needed. For
those with more dynamic inputs or outputs, these signals must be somehow merged
when going into the latch pair controller, and forked when going out of it, because
there is only one input to and one output from the latch pair controller. For this task,
a Muller C element can be used, because its output will only change to high when both
inputs are high, and to low when both inputs are low.

The acknowledgements back to all of these components should be forked, which
is done with a simple fanout. For multiple outputs, it is the opposite way: requests
are forked, and acknowledgements are merged. A state that sends output to mul-
tiple functional units must send the same request signal to all of them, and merge
the acknowledgements by receiving them through a Muller C element. This logic is
demonstrated in Figure 4.13.
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In order to guarantee no timing issues, each Muller C element should have its input
signals separate from simple signals and other C elements. If this is not the case, then
the output can potentially be the incorrect value. The problem arises in a very specific
situation. One or more input signals to the C element are active, and waiting for a
long time. The remaining signal or signals are active, but they are meant to be for
another input into the receiving CU. This will occur at a state where the other signal is
expected, and not the signal which gives us the problem. Since all of the inputs to the
C element are active, the output will go high, even though the data is not completely
ready. The output of the Muller C element will stay high, and as soon as the state
expecting its output starts, the request will be seen as active, and the data entered into
the receiving computational unit could be invalid. This happens rather infrequently,
but there is a chance of it happening depending on the schedule of the circuit, and
separation is the best means of guaranteeing valid data. Since the problem only arises
with signals detected by the wrong C element, the signals entering a Muller C element
should be separate outputs of their CUs, and there is no need to change the simple
signals.

Detail First Solution +/-
Area Smaller than second solution +
Speed Slower than second solution -

Greater handshakes Susceptible, causing delay -
Deadlock inducing Hazards All 3 - Crossover, self-handshake, and triangle -

Reusable hardware Latch pair controller and outer multiplexing +
State count Much less than second solution, similar to synchronous circuit +

Multiple handshakes Handled using C elements NA

Table 4.1: Details of the Separated Latch Controller Solution

4.8 Greater Handshakes and Dependency Between Computa-
tional Units

In the context of the separated latch controller desynchronization method, can say that
one computational unit is directly dependent on another unit if it is either part of an
input or an output handshake. To advance to further states, the CU must complete
this handshake, and thus it is dependent on the functionality of the other CU.

If there are two or more CUs which are involved in the same handshake to a com-
putational unit, Muller C elements are used to merge either the acks or the reqs, since
there is only one request input to the latch pair controller, and they become indirectly
dependent on one another. Since these CUs can themselves be handshaking with other
CUs, this creates a network of handshakes where all data must be ready before any of
the handshakes can begin. All of the input handshakes and output handshakes must
also be in the same phase of the handshake at the same time, and the network will wait
for the slowest handshake. This network of coincidal and interdependent handshakes
is called a greater handshake by this report. A diagram illustrating what constitutes
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Figure 4.14: 4 Different Greater Handshakes

a greater handshake can be seen in Figure 4.14. Arrows in the diagram represent a
handshake between two different CUs, with arrows of a similar colour representing a
greater handshake.

Greater handshakes can make the circuit very slow. All of the functional units
involved in the greater handshake must stall until the others are ready, even though
they may be ready much earlier than the other units. If there are more signals and
CUs involved in the same handshake, it will make the system much slower, because
more and more of the circuit will be stalled, which can even affect CUs not in the
handshake because they have to wait for its completion. The frequency and size of
the greater handshakes in the system depend on the way that the synchronous circuit
has been scheduled, which could potentially cause problems because the asynchronous
implementations are not considered during the scheduling process. Greater handshakes
can also cause the system to be even slower if there are larger differences between the
logical delays of the components involved. The larger these differences, the longer the
faster components will have to stall, and the longer this will tend to delay the execution
time of the entire system.

This has major consequences on the timing of the system, and therefore is an impor-
tant phenomenon to understand in the evaluation of these decentralized asynchronous
circuits.

4.9 Combined FSM Solution

The second method is similar to the first method in that it uses handshaking and
control signals to direct the flow of data in the system, and that each computational
unit has its own local FSM controlling it. The difference is that the latch pair controller
and instruction FSM are merged into one state machine which controls everything that
happens to its computational unit. This merging is done with the goal of avoiding
greater handshakes, and the resulting delays. In general, the resulting circuit is faster,
but takes more area than the separated latch pair control circuit.

If this method is used on the system in Figure 4.1, the resulting system can be
seen in the picture in Figure 4.15. Similarly to the first solution, the central FSM
and clock signal are gone, and is replaced by single FSMs at each computational unit,
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Figure 4.15: A Sample Desynchronized Scheduled System with Combined FSMs

which control the now present handshakes, although this is done inside the FSM, since
different types of handshakes are done at different states, depending on the number of
inputs and outputs. More of the logic controlling the inputs and outputs is also inside
the FSM.

4.9.1 Handshaking State Clusters

In this method, the functionality of both the instruction state machine and the latch
pair controller (which is itself also a state machine) is achieved using only one state
machine. Needless to say, this state machine is substantially larger and more complex
than the two state machines in the other decentralization method. One synchronous
state at each computational unit, which one pair of input/output handshakes (or a
single handshake if there is static input or output) corresponds in the first solution to
a complete cycle of the latch controller, and one state in the instruction state machine.

In the combined solution, the input and output handshaking is represented as a
cluster of states which begin with a common entry point of a waiting state, and end
with a transition into the common waiting state of the next state cluster, or in the case
of the last cluster, a done state. This pattern of states and transitions is always the
same for a handshake pair which has the same number of inputs and outputs, and thus
we can have a universal defined handshaking state cluster for a handshaking sequence
with any number of inputs and outputs. With a small number of inputs and outputs,
this cluster is small (with one output two states only), but it grows exponentially with
the amount of inputs and outputs.

The number of possible states can be calculated mathematically, by the number of
combinations. Every input or output in the computational unit can be waiting (low),
active (high), or finished (low again). We have the further constraints that the outputs
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Figure 4.16: A Standard 0-Input 1-Output State Cluster

cannot be active or finished if any input is waiting. So the number of states in a state
cluster corresponding to a synchronous state with n inputs and m outputs is:

3n+m − 3m

If there are 0 inputs, we must also use a fake request in to wait for the amount
of time that it takes for the input data to proliferate through the logic, adding an
additional state to do this.

A diagram of the state cluster with 0 input handshakes and 1 output handshake is
shown in Figure 4.16, and one for the cluster with 2 input handshakes and 1 output
handshake is shown in Figure 4.17. The requests in are represented by Ri, the acknowl-
edgements out are represented by Ao. The state of the input and output handshakes
are also represented by Ri and Ao, followed by a W, A, or F, which stand for waiting,
active, and finished stages in the handshaking. Diagrams for more state clusters can
be seen the the appendix.

Most of these states will never be visited in an iteration, but the cluster is complete
in case of timing variations. It is possible that a designer or program which generates
the circuit could safely cut some of the unused states out and make the state encodings
and logic smaller and simpler, and in so doing speed up the state machine and reduce
the overall design area. This will not guarantee delay insensitivity, however, which is
the real goal of this complicated state cluster design.

4.9.2 State Encoding

Since we are able to calculate the number of states in each cluster, we can get an idea
for how to encode states in the system. If the encoding is done well, it will save a lot
of logic and therefore both area and time. A state encoding to reduce the amount of
logic needed, and still keep the encoding fairly small is proposed.

First, we can use a ”header” on the state encoding, to indicate which cluster the
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Figure 4.17: A Standard 2-Input 1-Output State Cluster

state is a part of. Next, we can use 2 bits for every input and output present in any state
cluster, 2 bits since each of them has three possible values, waiting, active, or finished,
and giving them separate encodings because this will provide parallel encodings between
different state clusters, which should result in less complicated logic in the multiplexors,
which can use the state header and the progress of all the handshakes to decide which
inputs and outputs to use.

The result is that the encoding, where n is maximum inputs, m is maximum outputs,
and c is number of clusters, will have the length of:

log(c) + 2(n + m)

which is rather large, but we do have its bounds. It should be efficient in terms of

38



hardware, although compared to the first solution it will be more complicated.

4.9.3 Separating Greater Handshakes

In the synchronous and two FSM solutions, the functional units all have two latches
to store the output after the operation is completed, but in order to reap the full
benefits of the combined FSM implementation, we should make one latch for each of
the inputs to the computational unit, and leave the other latch for the output. This
increases the amount of latches that we need in the design, but it helps us because we
can store the inputs at separate times, which has the effect that we can deal with them
independently, unlike in the two FSM implementation. There is a drawback to this
however, the output requests and input acknowledgements cannot be sent until all of
the inputs are captured and have been allowed to saturate the logic in between latches.

One of the main advantages to doing things this way is that we can now separate all
of the handshakes from each other. That means that as soon as both state machines
are in the correct state, they can complete their transactions with one another. Thus, a
state machine only has to wait for the state machine to which it is directly handshaking,
and does not have to stall for any of the state machines in the greater handshake. This
can speed up the circuit significantly, because the circuits don’t have to wait for each
other as much. We also do not need to use Muller C elements in between all of the
computational units, and it cuts down on the number of signals going in between them
because now instead of needing A1, A2, and A1A2 in signals, they only need signals
coming from A1 and A2.

Also, since the handshakes are separated, there is also no problem with triangle
hazards, because the handshake which would otherwise cause deadlock can be partially
completed and the FSM can move on and complete the rest of the handshake in future
states. This also eliminates the need for resending data, as each of the dependent FSMs
can acquire the data independently. Again this speeds things up in the circuit, because
no FSM is waiting for another, except for the one with which they are handshaking
directly.

The designer must still watch out for crossover hazards, however, because the FSMs
are still stuck trying to send data and finish their state before they can advance to
another state and receive each other’s data.

4.9.4 Further Expansion

In theory, this state diagram could be expanded even more, and each functional unit
could have more input latches to take even more inputs, to separate these handshakes
from the flow of the machine, but making this many states causes the amount of
possibilities to balloon, which makes the state transfer logic larger and the state machine
slower, although how much slower depends on the case in question. This is a tradeoff
for which the designer can decide what the best design is.

This method also requires more customization. More of the logic is repeated because
the different state clusters are performing similar logic to the others, whereas in the two
FSM implementation, the latch controller performs the core of the handshaking logic
over and over again at every state, and does not have to deal multiplexing and how
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many inputs or outputs there are. The state encoding could also have a very drastic
effect on the speed and area of the circuit. If good state encodings are used, the number
of bits can be lower, and more importantly, making the combinations more consistent
between state clusters, which will result in simpler logic determining outputs and next
state logic for the system. Since the amount of states will already be large, minimizing
this extra logic is essential to the efficiency of this method.

The FSMs will be constructed in the style described in [1]. Since the state variables
will be larger than those in the separated latch pair controller implementation, that
means they will also have a longer state transition. If this difference is enough, it
could potentially be slower than the separated latch pair controller implementation. In
general however, the advantage of the combined FSM solution is speed.

Detail Second Solution +/-
Area Larger than first solution -
Speed Faster than second solution +

Greater handshakes Avoids them, allowing more concurrency +
Deadlock inducing Hazards 2 kinds - Crossover, self-handshake +

Reusable hardware Inner multiplexing logic, state encoding from compiler -
State count Many more than first solution, synchronous circuit -

Multiple handshakes Handled using state logic NA

Table 4.2: Details of the Merged FSM Solution

The next chapter will discuss the original synchronous implementation and the
two asynchronous implementations, what changes have been made, where the imple-
mentations depart from the theory, why, the state schedules of the FSMs in all three
implementations.
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Implementation of the
Desynchronized Circuits 5
In the previous chapter the reasoning behind the decentralization of the finite state
machine, the workings of the latch pair controller and delay elements, and the theory
behind the two desynchronization methods was explained.

This chapter will explain the workings of the synchronous implementation, and
explain the asynchronous implementations based on the theory presented in the last
chapter. It will also give the schedules for all three implementations and thorough steps
for performing the two methods on a synchronous circuit.

5.1 Filter Specifics of Original Synchronous Implementation

The implementation of this method was performed on a filter with three ALU units,
two MUL units, and five free registers. By default, registers/latch pairs have a 2 ns
delay, for ALUs it’s 6 ns, and for MULs 10 ns, which includes the latch pair embedded
in these components. The width used for the internal data path of the circuit is 10
bits. The synchronous state machine is 8 states long. The first two ALUs are the units
which are the most busy, the first to start and the last to finish, and are only unused
in a single state. One of the MUL units is also fairly busy, and the rest are relatively
unused, only enabled in one or two states. The scheduling information is displayed in
Table 5.1, Table 5.2, and Table 5.3.

State I/O REG1 REG2 REG3 REG4 REG5
1 Input - - - - -

Output - - - - -
2 Input - - - - -

Output - - - - -
3 Input - - - - -

Output - - - - -
4 Input ALU2 ALU3 ALU1 - -

Output ALU1 ALU2 - - -
5 Input - - - ALU2 -

Output - - - - -
6 Input ALU2 ALU3 - - -

Output - - - - -
7 Input - ALU1 - - ALU2

Output - - - - ALU1, ALU2
8 Input - - - - ALU2

Output - - - - -

Table 5.1: Register States in the Synchronous Filter
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State I/O ALU1 ALU2 ALU3
1 Input input, I2A I3B, I2B I3C, I2C

Output MUL1 MUL2 MUL1
2 Input - - -

Output - - -
3 Input input, MUL1 I2A, MUL1 I3B, MUL2

Output REG3 REG1, ALU1 ALU1, REG2
4 Input ALU3, ALU2 I2B, MUL2 I3C, MUL1

Output MUL1 REG4 ALU1
5 Input ALU3, input I2C, MUL1 -

Output MUL1 REG1 REG2
6 Input REG1, MUL1 REG2, MUL1 -

Output REG2 REG5 ALU2
7 Input input, MUL1 ALU3, MUL1 -

Output - ALU1, ALU2, REG5 -
8 Input ALU2, REG5 ALU2, REG5 -

Output - - -

Table 5.2: ALU States in the Synchronous Filter

State I/O MUL1 MUL2
1 Input - -

Output - -
2 Input A1A, ALU1 A2B, ALU2

Output ALU1, ALU2 ALU3
3 Input A2C, ALU3 -

Output ALU3 ALU2
4 Input - -

Output - -
5 Input A1B, ALU1 -

Output ALU1, ALU2 -
6 Input A1C, ALU1 -

Output ALU1, ALU2 -
7 Input - -

Output - -
8 Input - -

Output - -

Table 5.3: MUL States in the Synchronous Filter

The file which contains the datapath and the different computational units is inside
of a separate wrapper file which clocks inputs and outputs, and tells the circuit when to
start and finish. The filter is reset with a reset signal before the first iteration begins.
Then a start signal is sent to the controller to begin the filter’s operation. A done
signal is sent to the circuit wrapper when the circuit has finished all working states and
moved into it’s done state. A last state signal is also sent when in the final state before
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Figure 5.1: Circuit Diagram of the Synchronous Filter

the done state, and the outputs are all clocked in this state except for one which is
clocked in the previous state. The filter has a set of set of static inputs, some of which
are set to the values of static outputs after every iteration of the filter, some of which
stay constant. There is also an input value. Outputs are divided into the true output
of the system, and those that are used to determine the result of the next iteration in
the filter. The circuit is described in Figure 5.1.

The asynchronous circuits use the same delay estimates for the different functional
units, although several other combinations were experimented with and simulated to
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ensure robustness and timing invariability. The synchronous circuit uses clock enable
signals, whereas in the asynchronous versions the schedules are already determined by
the local state machines and current handshake partners, so there is no need for these
signals, and they do not have them.

5.2 Two State Machine Implementation

In the asynchronous implementation, many of the units are more active, including
ALU3 and the MUL units, due to resend data states.

Several changes were made to original the synchronous dataflow due to deadlock,
the first to avoid crossover between ALU1 and MUL1, rerouting through REG5. Using
a register that had not been written to is a simple change, and due to the register’s low
latency, one which does not slow down the circuit too much. The second was to avoid
a triangle with MUL1, ALU1 and ALU2, and the third was to avoid ALU2 sending
data to itself. The method was performed such that the asynchronous decentralized
implementation is faster than the synchronous implementation. The synchronous cir-
cuit takes 262 ns, and the asynchronous implementation is 240 ns. Any given unit
is at most 7 states in the asynchronous implementation and some of the registers are
only one state long. The states and scheduling are shown in Table 5.4, Table 5.5, and
Table 5.6.

State I/O REG1 REG2 REG3 REG4 REG5
1 Input ALU2 ALU3 ALU1 ALU2 ALU1

Output ALU1 ALU2 - - MUL1
2 Input ALU2 ALU3 - - ALU2

Output - - - - ALU1, ALU3
3 Input - ALU1 - - -

Output - - - - -

Table 5.4: Register States in the Two State Machine Asynchronous Filter

The biggest way in which this implementation differs from the theory is the connec-
tions between units. Not all of the signals are separated for each computational unit,
only in the case that they conflict with other signals. There was only one of these in
the entire circuit, one signal and Muller C element between MUL1, REG2, and ALU2.
ALU2 was receiving a separate signal from MUL1, but since REG2 was requesting to
the ALU at the same time, the Muller C output went high, and it appeared as though
both were ready when the ALU went into its’ next state, when MUL1 was still starting
its new state and did not have the correct output latched.

In all of the other signals in this implementation, which do not conflict with each
other, another configuration can be used. This other configuration uses OR gates and
C elements to connect the acknowledgements and requests for all signals going between
two functional units. The functional unit with an input in the C element does not know
about it, and does not distinguish between this signal and those to other C elements
or simply connected signals. The functional unit which receives the output of the C
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State I/O ALU1 ALU2 ALU3
1 Input input, I2A I3B, I2B I3C, I2C

Output MUL1 MUL2 MUL1
2 Input input, MUL1 I2A, MUL1 I3B, MUL2

Output REG3 REG1, ALU1 ALU1, REG2
3 Input ALU3, ALU2 I2B, MUL2 I3C, MUL1

Output MUL1 REG4 ALU1
4 Input ALU3, input I2C, MUL1 -

Output REG5 REG1 REG2
5 Input REG1, MUL1 REG2, MUL1 -

Output REG2 REG5 ALU2
6 Input input, MUL1 ALU3, MUL1 A2, R5

Output - ALU1, ALU3, REG5 -
7 Input ALU2, REG5 - -

Output - - -

Table 5.5: ALU States in the Two State Machine Asynchronous Filter

State I/O MUL1 MUL2
1 Input A1A, ALU1 A2B, ALU2

Output ALU1, ALU2 ALU3
2 Input A2C, ALU3 -

Output ALU3 ALU2
3 Input - -

Output ALU2 -
4 Input A1B, ALU1 -

Output ALU1 -
5 Input - -

Output ALU2 -
6 Input A1C, REG5 -

Output ALU1, ALU2 -

Table 5.6: MUL States in the Two State Machine Asynchronous Filter

element as input has separate input signals for the outputs of the Muller C elements
and the simple signal.

5.3 Process Overview for Desynchronizing and Decentralizing
a Filter Using the Dual State Machine Method

In order to execute the two state machine desynchronization method on the synchronous
circuit, perform the following steps:

1. Find all states for each functional unit where that unit is active, and the functional
units to which it inputs and outputs. Gather all states for every functional unit
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and make state machines using a linear progression for all of the states that the
CU is active in. If the machine is in the done state and there is a start signal,
it should move to the very first state in the diagram. If there are crossover or
triangle hazards, correct them by rerouting or splitting output states.

2. Create input and output request and acknowledgement lines connecting the func-
tional units, and multiplexed into a latch controller. Use C-elements to connect
these handshakes when the unit has two or more dynamic inputs or outputs in
the current state. Static inputs and outputs don’t require a separate handshake,
but a fake handshake must be used to store data if no other functional unit is
handshaking at the appropriate time.

3. Divide the states into the different state types and add a fake outward request,
fake inward ack, or fake inward request latch for the state machines which have
data resend, fake acknowledgement, and fake request states respectively. To in-
crease circuit speed, requests in and data in should be multiplexed after the input
handshake is completed and until the next input handshake is completed, but the
input ack and output request and ack should be multiplexed by state only.

4. When input and output handshakes are both completed or in the case of a resend
state, the ack is received, the current state should change to the next one.

5. Split the done and last state signals into separate signals for the different state
machines, namely the ones from which the output is clocked in the wrapper of
the synchronous circuit. If computational units providing final output have been
changed due to hazards in the asynchronous circuit, include the signals from the
corresponding state machine instead.

6. In the wrapper, change from clocking data using the edge of the clock and instead
change when the appropriate last state or done signal is active. Set the start
signal to activate the state machines at the beginning of every iteration. For the
master done signal all done signals can be anded together, or just the ones which
will be the last to finish.

5.4 The Combined State Machine Implementation

In this implementation, there are several differences from the theory. First of all, the
state clusters have been modified to only be sensitive to the last phase of the output
handshake at the very end (waiting for all of the acknowledgements out to go low). This
offers a significant reduction in the amount of states needed in each cluster, especially
when there are a lot of outputs. All of the functional units receiving data during this
time are also not dependent on the state of the sending functional unit. Therefore the
receiving units can also finish their handshakes and are thus not waiting at all, only
the functional unit sending data must wait. See the state diagram in Figure A.6 which
illustrates the simplified two-input one-output state cluster used in this implementation,
and compare with Figure 4.17 in the previous chapter, which illustrates the complete
state cluster.
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Figure 5.2: A Modified 2-Input 1-Output State Cluster

There are some changes to the ALU structure so that each of the inputs can have
its own latch. Giving each input its own latch means that the input handshakes can
be separated. There are therefore three clocking signals into it, one for each of the
input latches, and one for the output latch. The new design is displayed in Figure 5.3b,
in contrast to the original shown in Figure 5.3a. The input to the output latch is
calculated through an adder from the outputs of the two input latches. The MUL
design is unchanged because there are never two simultaneous dynamic inputs into

47



(a) Original ALU (b) Redesigned ALU

Figure 5.3: Latching and Structure in the Original and Redesigned ALUs

either of the MULs, and in likewise in the REGs (which only ever have one input at a
time).

The scheduling is mostly the same as the separated latch pair implementation, since
the combined FSM also has problems with self-handshaking and crossover hazard. The
difference is that the data resend states are all rejoined into the state where their data
is latched. This can only make the circuit faster because the CUs receiving output do
not have to wait for any other CU, they only have to wait for the sending CU. The
schedules are shown in Table 5.7, Table 5.8, and Table 5.9.

State I/O REG1 REG2 REG3 REG4 REG5
1 Input ALU2 ALU3 ALU1 ALU2 ALU1

Output ALU1 ALU2 - - MUL1
2 Input ALU2 ALU3 - - ALU2

Output - - - - ALU1, ALU3
3 Input - ALU1 - - -

Output - - - - -

Table 5.7: Register States in the Combined State Machine Asynchronous Filter

5.5 Process Overview for Desynchronizing and Decentralizing
a Filter Using the Combined State Machine Method

In order to execute the combined state machine desynchronization method on the syn-
chronous circuit, perform the following steps:

1. For every state that a CU is active, take note of the inputs and outputs. Create a
state cluster from the template for the number of inputs and outputs involved in
the original, synchronous state, and replace the generic inputs and outputs with
those involved in this state. Repeat this for all states in the computational unit,
and for all of the functional units in the circuit.

2. Design the state machine to move between the clusters in a simple linear progres-
sion. If there is a reset signal, the machine should move to the done state. If the
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State I/O ALU1 ALU2 ALU3
1 Input input, I2A I3B, I2B I3C, I2C

Output MUL1 MUL2 MUL1
2 Input input, MUL1 I2A, MUL1 I3B, MUL2

Output REG3 REG1, ALU1 ALU1, REG2
3 Input ALU3, ALU2 I2B, MUL2 I3C, MUL1

Output MUL1 REG4 ALU1, REG2, ALU2
4 Input ALU3, input I2C, MUL1 A2, R5

Output REG5 REG1 -
5 Input REG1, MUL1 REG2, MUL1 -

Output REG2 REG5 -
6 Input input, MUL1 ALU3, MUL1 -

Output - ALU1, ALU3, REG5 -
7 Input ALU2, REG5 - -

Output - - -

Table 5.8: ALU States in the Combined State Machine Asynchronous Filter

State I/O MUL1 MUL2
1 Input A1A, ALU1 A2B, ALU2

Output ALU1, ALU2 ALU3, ALU2
2 Input A2C, ALU3 -

Output ALU3, ALU2 -
3 Input A1B, ALU1 -

Output ALU1, ALU2 -
4 Input A1C, REG5 -

Output ALU1, ALU2 -

Table 5.9: MUL States in the Combined State Machine Asynchronous Filter

machine is in the done state and there is a start signal, it should move to the very
first state in the diagram. In the case of crossover or self-handshaking hazards,
correct them by adding new components, rescheduling, or rerouting data.

3. Connect the state machines using simple request and acknowledgement lines be-
tween those that communicate. Add delay elements at the inputs to a state, the
delay should take place after the input signals are multiplexed into the circuit.

4. When input and output handshakes are both completed or in the case of a resend
state, the ack is received, the current state should change to the next one.

5. Split the done and last state signals into separate signals for the different state
machines, namely the ones from which the output is clocked in the wrapper of
the synchronous circuit. If computational units providing final output have been
changed due to hazards in the asynchronous circuit, include the signals from the
corresponding state machine instead.

6. In the wrapper, change from clocking data using the edge of the clock and instead
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change when the appropriate last state or done signal is active. Set the start
signal to activate the state machines at the beginning of every iteration. For the
master done signal all done signals can be anded together, or just the ones which
will be the last to finish.

A myriad of simulations designed to show different properties of the circuits were
performed on both of the implementations, and the next chapter will give details about
the results of these simulations, and discuss the impact of these findings as well as
future work related to this project.
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Conclusions 6
The last chapter discussed the implementations of the two desynchronization methods,
their schedules, and steps to complete them.

This, the final chapter will discuss the simulations done on these implementations
and the results obtained from those simulations. It will then proceed to discuss the
results and how this knowledge can be used to compliment the use of the desynchro-
nization methods in the future, and possible extensions of the research done in this
project.

6.1 Simulations and Results

Simulations of the VHDL code in ModelSim are used to test the circuits for both
correctness and to evaluate their timing.

The original filter has a clock frequency of 20 ns, and takes 80 ns of time to set up
prior to an iteration. Each iteration is finished after 9 states. That means, if there is
no slack, and the circuit’s speed is optimal, every iteration takes 9δ where δ is the delay
of the longest path in the circuit.

We can find the run times of the asynchronous implementations by the time at which
the done signals of all the FSMs in the circuit are active. With the subtraction of the
setup time of the circuit, (80 ns), the real speed of the circuit can be obtained. This
real speed can then be compared against the optimal synchronous circuit execution
time.

Simulations were run for both of the asynchronous implementations using several
different combinations of ALU and MUL timings, and calculated for the synchronous
circuit using the above formula. For each of these tests, the latches each had a delay of
1 ns, so together a latch pair or register has a delay of 2 ns. The stated MUL and ALU
values are not including this time, so the true delay of the entire MUL or ALU CUs is
the MUL or ALU delay added to 2 ns. The simulations can be seen in Table 6.1.

MUL ALU Synchronous Circuit Separated Latch Control Circuit Combined FSM Circuit
8 4 90 127 84
8 30 270 493 340
50 4 468 295 247
50 30 468 481 419
17 17 171 306 219

Table 6.1: Execution Times in the Three Implementations (ns)

Each of the different tests is meant to illustrate a different point about the different
asynchronous versions and the effects of timing, scheduling, and frequency of operations.
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Figure 6.1: Comparison of Speeds in the 3 Implementations

The 8 ns MUL and 4 ns ALU is the default test; these are the values in the generated
synchronous circuit. It shows what happens when the operations are short, and the
latching takes a relatively long time. The 8 ns MUL and 30 ns ALU test and the 50
ns MUL and 4 ns ALU test are to show the result when one of the two operations
takes much longer than the other, and how the frequency of that operation and the
scheduling can affect the timing, in contrast with the length, since the ALU operation
is much more common, but the MLU operation longer since it is set to 50 ns. The 50
ns MUL and 30 ns ALU test is to show what happens when the operations take a long
time, and the latching a short time. Finally, the last test with 17ns in both operations
is intended to showcase the worst case for the asynchronous implementations: when
both of the operations take the same amount of time. This means that there is no slack
in either of the operations, and no way to benefit from asynchronism. The timings of
the five scenarios are shown once again in a histogram in Figure 6.1.

We can see that the first asynchronous implementation is slower than the syn-
chronous implementation. This is due to a combination of two factors: the compromise
of the concurrency in the system, resulting from the corrections in the schedule due
to triangle and crossover hazards, and stalls in the system due to greater handshakes.
However, it can be faster in certain cases, namely where one of the functional units
is much slower than the others, and rarely used. In this case, enough wasted time
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will be cut off when the ALU is being used that it makes up for stalls and schedule
inefficiencies.

The second asynchronous implementation is in general slightly faster than the syn-
chronous implementation, but in worst case scenarios it will be slower. In these scenar-
ios, the amount of time cut off from the end of the fast finishing states will not make
up for the time lost in serializing and rerouting the schedule. It indeed still suffers from
some rescheduling, to avoid the crossover hazards in the circuit, but there is not the
same level of stalling as in the first implementation. If there is no corrective reschedul-
ing, and the functions performed by the CUs do not take the same length of time, this
implementation will most definitely be faster than the synchronous alternative.

6.2 Factors Affecting System Performance

It is therefore important to note that there are many factors which have a considerable
impact on the effectiveness of the two methods on the speedup of the circuit, and which
implementation will be the fastest. These factors include:

• The schedule and number of hazards therein

• The difference in lengths between CU operation times

• The number of inputs and outputs per CU

• The number of outputs of the circuit

• The relative frequencies of these operations

The synchronous implementation will tend to be the fastest in situations where
the operations have similar execution lengths, because there is less slack in each cycle,
and the slack is the area in which the asynchronous implementations can improve the
circuit. It will also tend to be faster if there are relatively many of the operations that
take a long time, because the total amount of slack in the circuit will be less. It will
also tend to be faster in cases where there are many inputs to and outputs from the
operations and a small amount of CUs in the circuit. If there are a small amount of
CUs, there are a small amount of scheduling options, which creates more hazards in the
asynchronous implementation. If each operation has more inputs and outputs, there
will tend to be more hazards and dependencies, which also favours the synchronous
implementation. If there is a larger number of outputs from the circuit, the amount
of CUs which are used to hold values goes up, which means the amount of scheduling
options is smaller, again increasing hazards, and favouring this implementation.

In contrast, the combined FSM implementation will be the fastest in situations
where the CU operations take very different amounts of time, and if the shorter duration
operations are more plentiful than longer ones, because of large amounts of slack. It
will also excel when there are few inputs into and outputs from each operation and
many CUs, because there will be more scheduling options, and greater chances to avoid
crossover, triangle, and self handshake hazards. Lastly, it will tend to be faster if there
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are fewer outputs from the circuit, because final values will take up less of the CUs,
and there will be more scheduling options.

The combined FSM implementation will benefit over its two FSM counterpart more
in the cases where waiting times are long. The CUs are able to finish without waiting
for each other and can thus move on to other work. This may also help to speed up
circuits which are scheduled with this in mind, because units which are waiting in the
synchronous implementation can move on faster and be assigned more operations.

6.3 Impacts on Area Overhead, Power Usage, and Delay Vari-
ability

Since one central state machine is being split up into many, these state machines may
be quite large, and hardware is being added for the latch control network, the area
overhead for these two methods will likely be quite considerable, especially if the width
of the datapath is small. The area for the combined FSM implementation especially
could be very large, since the state variable is very large and many outputs depend on
logic calculated from the state variable.

The clock is entirely removed from the system, and the CUs only communicate
when necessary, therefore there are likely considerable power savings compared to the
original circuit. There are also no skew problems, as all communication is done with
handshaking, senders can be sure their information reached its destination safely.

If the delay of the elements in the system can somehow respond to different operating
conditions which affect the delay of the logic, the system can respond to variations
in delay because the delay elements are the part of the circuit which determines its
speed. In this situation, the circuit could gain further speedup and robustness without
sacrificing either. This capability cannot be realised without a sufficiently sophisticated
delay element technology, however.

6.4 Recommendations for Future Work

This section discusses several ideas which were not explored in the duration of this
project, but could be developed further in the future.

Something that would be of great benefit for creating a synthesized circuit is a com-
piler which can create asynchronous control and datapath logic based on this method.
If a designer was to attempt to compile a VHDL file outlining the logic of the circuit
using a standard VHDL compiler, which is designed for register transfer logic, they will
not get the desired result. Currently, the circuit would be extremely difficult to syn-
thesize. But a synthesized circuit can give estimates for saved power and area, which
would be extremely useful for comparison with synchronous implementations.

The true secret to an efficient schedule in the asynchronous implementations is a
scheduling algorithm made specifically for asynchronous implementations, which elim-
inates the concepts of state and timestep, takes into account different lengths of op-
erations, and avoids the three asynchronous hazards, while maximizing concurrency.
Breakthroughs have already been achieved in this field [7], using a very different scheme,
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and likely a decentralized FSM scheme such as the one described in this report can im-
prove timing or skew of the control signals.

The best results as far as speed is concerned would be obtained if the system could be
scheduled using such an algorithm. A tool which generates this sort of asynchronous
system would be much better than first creating the synchronous system and later
desynchronizing it. Such a tool could be created by modiying a pre-existing tool which
generates a synchronous scheduled circuit.

Another option that was not fully explored during this project due to lack of time,
is to have two separate FSMs controlling the input and output handshakes of each CU
and communicating to each other using some form of handshaking, so that neither one
gets too far ahead of the other. This may prove to be more efficient because the first
latch does not necessarily have to wait until the ack out is low before it can perform a
new handshake, but in the schemas presented in this report that is a necessary condition
for transition to the next state, so it must wait.

In the case that it does not prove advantageous to make everything asynchronous,
the decentralization strategy could also work in a GALS (Globally Asynchronous, Lo-
cally Synchronous) scheme, where the local FSM and CUs are synchronous but com-
municate to each other in an asynchronous fashion. This is unlikely to provide system
speedup, but may be able to alleviate problems due to clock and control skew.

6.5 Closing Remarks

Two thorough methods for efficiently desynchronizing a scheduled circuit have been
introduced in this thesis. They use a network of latch controllers to communicate with
each other, and create localized state machines for each computational unit to eliminate
clock and control signal skew. There is a tradeoff of area and speed in choosing one
method over the other. The separated latch pair controller method conserves more area
but the combined FSM method runs faster.

The scheduling conditions which endanger these methods, namely crossover, trian-
gle, and self-handshaking hazards, were identified, and rescheduling solutions to correct
them through rerouting or using similar components were suggested.

Sample implementations of both these methods using a converted scheduled filter
have been realised in VHDL code and simulated with several tests. The results of these
tests have been compared with the originals and found to be faster in certain cases.

Scheduling was found to have a drastic effect of which implementation is the fastest.
Other influences on the speed include frequency of operations, lengths of different op-
erations, size of the circuit, and numbers of inputs and outputs.

These desynchronization methods provide a potential way to decrease power, in-
crease speed, deal with delay variability, and a way to solve clock skew and alleviate
the pressures of timing closure based design. At the same time, they provide as direct
a conversion from the synchronous version as possible. In this way, the ideas and find-
ings presented in this paper provide an attractive combination of advantages from both
synchronous and asynchronous design.
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More State Cluster Diagrams A
This appendix shows additional state cluster diagrams not displayed in the previous
chapters for various combinations of inputs and outputs for both the standard and
modified schemes.

Figure A.1: A Standard 1-Input 1-Output State Cluster
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Figure A.2: A Standard 1-Input 0-Output State Cluster

Figure A.3: A Modified 1-Input 1-Output State Cluster
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Figure A.4: A Modified 0-Input 2-Output State Cluster
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Figure A.5: A Modified 2-Input 0-Output State Cluster
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Figure A.6: A Modified 1-Input 2-Output State Cluster
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Code Samples B
This appendix features some of the code used in the two implementations, to give the
reader an idea of how the correct logic was produced.

B.1 Separated Latch Controller Implementation Code

This section provides the instruction state machine for the second MUL unit, and the
code for the latch pair controller.

B.1.1 The Latch Pair Controller State Machine

1 entity cortlatchctrl is

generic ( REG_delay_g : Time := 2 ns );

port (rst : in std_logic;

--inputs

Ri : in std_logic;

6 Ao : in std_logic;

--outputs

inputdone : out std_logic;

outputdone : out std_logic;

E : out std_logic;

11 O : out std_logic;

Ai : out std_logic;

Ro : out std_logic

);

end cortlatchctrl;

16
architecture cortlatchctrl_behavioral of cortlatchctrl is

type STATE_TYPE is ( STATE_START , STATE_REQIN , STATE_INDONE , STATE_OUTDONE , STATE_FINISHING);

attribute ENUM_ENCODING of STATE_TYPE:type is "000 001 011 101 111";

signal CURRENT_STATE , NEXT_STATE : STATE_TYPE;

21 begin

--next state and output logic

STATES:

process ( CURRENT_STATE , Ri, Ao , rst)

begin

26 if rst = ’1’ then

NEXT_STATE <= STATE_START;

inputDone <= ’0’;

outputDone <= ’0’;

E <= ’1’;

31 O <= ’0’;

Ai <= ’0’;

Ro <= ’0’;

else

case CURRENT_STATE is

36 when STATE_START =>

inputDone <= ’0’;

outputDone <= ’0’;

E <= ’1’;

O <= ’0’;

41 Ai <= ’0’;

Ro <= ’0’;

if Ri = ’1’ then

NEXT_STATE <= STATE_REQIN;

else

46 NEXT_STATE <= STATE_START;

end if;

when STATE_REQIN =>

inputDone <= ’0’;

outputDone <= ’0’;

51 E <= ’0’;

O <= ’1’;

Ai <= ’1’;

Ro <= ’1’;

if Ri = ’0’ and Ao = ’1’ then

56 NEXT_STATE <= STATE_FINISHING;
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elsif Ri = ’0’ then

NEXT_STATE <= STATE_INDONE;

elsif Ao = ’1’ then

NEXT_STATE <= STATE_OUTDONE;

61 else

NEXT_STATE <= STATE_REQIN;

end if;

when STATE_INDONE =>

inputDone <= ’1’;

66 outputDone <= ’0’;

E <= ’0’;

O <= ’1’;

Ai <= ’0’;

Ro <= ’1’;

71 if Ao = ’1’ then

NEXT_STATE <= STATE_FINISHING;

else

NEXT_STATE <= STATE_INDONE;

end if;

76 when STATE_OUTDONE =>

inputDone <= ’0’;

outputDone <= ’1’;

E <= ’0’;

O <= ’0’;

81 Ai <= ’1’;

Ro <= ’0’;

if Ri = ’0’ then

NEXT_STATE <= STATE_FINISHING;

else

86 NEXT_STATE <= STATE_OUTDONE;

end if;

when STATE_FINISHING =>

inputDone <= ’1’;

outputDone <= ’1’;

91 E <= ’0’;

O <= ’0’;

Ai <= ’0’;

Ro <= ’0’;

NEXT_STATE <= STATE_START;

96 when others =>

inputDone <= ’0’;

outputDone <= ’0’;

E <= ’1’;

O <= ’0’;

101 Ai <= ’0’;

Ro <= ’0’;

NEXT_STATE <= STATE_START;

end case;

end if;

106 end process STATES;

CLK_INFO:

process (rst , Ri, Ao, NEXT_STATE)

begin

111 if rst = ’1’ then

CURRENT_STATE <= STATE_START;

else

CURRENT_STATE <= NEXT_STATE;

end if;

116 end process CLK_INFO;

end cortlatchctrl_behavioral;

B.1.2 A Sample Instruction State Machine

entity mul2FSM is

2 generic ( NX_g : positive := 16;

M_g : positive := 15;

MUL_delay_g : Time := 5 ns;

REG_delay_g : Time := 2 ns );

port (rst : in std_logic;

7 start : in std_logic;

--constants

A2B : in std_logic_vector(NX_g -1 downto 0);

--inputs

ALU2toMUL2req : in std_logic;

12 ALU2toMUL2ack : out std_logic;

ALU2out : in std_logic_vector(NX_g -1 downto 0);

--outputs

MUL2toALU3req : out std_logic;

MUL2toALU3ack : in std_logic;

17 MUL2toALU2req : out std_logic;

MUL2toALU2ack : in std_logic;

dataout : out std_logic_vector(NX_g -1 downto 0);

last_state : out std_logic;

done : out std_logic

22 );

end mul2FSM;
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architecture mul2FSM_behavioral of mul2FSM is

type STATE_TYPE is ( STATE_1 , STATE_2 , STATE_3 , STATE_4 , STATE_5 , STATE_FINISHING , STATE_DONE );

27 attribute ENUM_ENCODING of STATE_TYPE:type is "000 001 011 010 110 100 101";

signal CURRENT_STATE , NEXT_STATE : STATE_TYPE;

signal Ai0 , Ri0 , Ai1 , Ri1 , Ai2 , Ri2 , pRi0 , lRi0 , fakeReqOut , Ro0: std_logic;

signal eCtrl , oCtrl : std_logic;

32 signal mulIn1 , mulIn2 , out_s , mulOut : std_logic_vector(NX_g -1 downto 0);

signal inputDone , outputDone , requestSeen : std_logic;

signal id, od : std_logic;

component CRTDLA_ELCTRL is

37 port (RESET , Ao , Rid : in std_ulogic;

Ai, Ro , E: out std_ulogic );

end component;

component CRTDLA_OLCTRL is

42 port (RESET , Ao , Rid : in std_ulogic;

Ai, Ro , O: out std_ulogic );

end component;

component cortlatchctrl is

47 generic ( REG_delay_g : Time := 2 ns );

port (rst : in std_logic;

--inputs

Ri : in std_logic;

Ao : in std_logic;

52 --outputs

inputdone : out std_logic;

outputdone : out std_logic;

E : out std_logic;

O : out std_logic;

57 Ai : out std_logic;

Ro : out std_logic

);

end component;

62 component MUL_L1Cas is

generic (

NX_g : positive := 16; -- databus width

M_g : positive := 15; -- width of fraction part

MUL_delay_g : Time := 5 ns; -- additional delay of mul

67 REG_delay_g : Time := 2 ns -- simulation delay register

);

port (

reset : in std_logic; -- asynchronous , active high

clk : in std_logic;

72 clk2 : in std_logic;

clk_en : in std_logic;

op1 : in std_logic_vector(NX_g -1 downto 0);

op2 : in std_logic_vector(NX_g -1 downto 0);

out_s : out std_logic_vector(NX_g -1 downto 0);

77 out_r : out std_logic_vector(NX_g -1 downto 0)

);

end component;

begin

82 --MUL unit

MUL_1: MUL_L1Cas

generic map ( NX_g , M_g , MUL_delay_g , REG_delay_g )

port map ( reset => rst ,

clk => eCtrl , clk2 => oCtrl , clk_en => ’1’,

87 op1 => mulIn1 , op2 => mulIn2 ,

out_s => out_s , out_r => mulOut);

dataout <= mulOut;

92 --latch pair controller

ctrl: cortlatchctrl

generic map ( REG_delay_g )

port map ( rst => rst ,

--inputs

97 Ri =>Ri0 ,

Ao => Ai2 ,

--outputs

inputdone => id ,

outputdone => od,

102 E => eCtrl ,

O => oCtrl ,

Ai => Ai0 ,

Ro => Ri2);

107 --input delay

Ri0CTRL:

process( CURRENT_STATE , inputDone , pRi0)

begin

if inputDone = ’0’ then

112 if requestSeen = ’0’ then

Ri0 <= pRi0 after (MUL_delay_g + REG_delay_g);
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else

Ri0 <= pRi0;

end if;

117 else

Ri0 <= ’0’;

end if;

end process Ri0CTRL;

122 --multiplexing input data lines and requests

INPUTS:

process ( CURRENT_STATE , rst , inputDone , Ai0 , ALU2toMUL2req , ALU2out , A2B)

begin

if CURRENT_STATE = STATE_1 and inputDone = ’0’ then

127 pRi0 <= ALU2toMUL2req;

elsif (CURRENT_STATE = STATE_1 and inputDone = ’1’) or (CURRENT_STATE = STATE_FINISHING and inputDone =

’0’) then

pRi0 <= ’0’;

mulIn1 <= A2B;

mulIn2 <= ALU2out;

132 elsif (CURRENT_STATE = STATE_FINISHING and inputDone = ’1’) then

pRi0 <= ’0’;

mulIn1 <= "0000000000";

mulIn2 <= "0000000000";

elsif (CURRENT_STATE = STATE_DONE) then

137 pRi0 <= ’0’;

mulIn1 <= "0000000000";

mulIn2 <= "0000000000";

else

pRi0 <= ’0’;

142 mulIn1 <= "0000000000";

mulIn2 <= "0000000000";

end if;

end process INPUTS;

147 --multiplexing input acks

ACKS:

process ( CURRENT_STATE , rst , inputDone , Ai0)

begin

if inputDone = ’1’ then

152 ALU2toMUL2ack <= ’0’;

else

case CURRENT_STATE is

when STATE_1 =>

ALU2toMUL2ack <= Ai0;

157 when STATE_FINISHING =>

ALU2toMUL2ack <= ’0’;

when STATE_DONE =>

ALU2toMUL2ack <= ’0’;

when others =>

162 ALU2toMUL2ack <= ’0’;

end case;

end if;

end process ACKS;

167 --multiplexing outputs

OUTPUTS:

process ( CURRENT_STATE , rst , outputDone , Ri2 , MUL2toALU3ack , MUL2toALU2ack , fakeReqOut)

begin

if outputDone = ’1’ then

172 Ai2 <= ’0’;

MUL2toALU3req <= ’0’;

MUL2toALU2req <= ’0’;

else

case CURRENT_STATE is

177 when STATE_1 =>

Ai2 <= MUL2toALU3ack;

MUL2toALU3req <= Ri2;

MUL2toALU2req <= ’0’;

when STATE_FINISHING =>

182 Ai2 <= ’0’;

MUL2toALU3req <= ’0’;

MUL2toALU2req <= fakeReqOut;

when STATE_DONE =>

Ai2 <= ’0’;

187 MUL2toALU3req <= ’0’;

MUL2toALU2req <= ’0’;

when others =>

Ai2 <= ’0’;

MUL2toALU3req <= ’0’;

192 MUL2toALU2req <= ’0’;

end case;

end if;

end process OUTPUTS;

197 --set to high when request has gone high in this state

REQ_SEEN:

process (Ri0 , CURRENT_STATE , rst)

begin

if CURRENT_STATE ’event or rst = ’1’ then

202 requestSeen <= ’0’;
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elsif rising_edge(Ri0) then

requestSeen <= ’1’;

end if;

end process REQ_SEEN;

207
--set to high when input handshake completed

INPUT_DONE:

process (Ri0 , CURRENT_STATE , rst , fakeReqOut)

begin

212 if CURRENT_STATE ’event or rst = ’1’ then

inputDone <= ’0’;

elsif falling_edge(Ri0) or falling_edge(fakeReqOut) then

inputDone <= ’1’;

end if;

217 end process INPUT_DONE;

--set to high when output handshake completed

OUTPUT_DONE:

process (Ai2 , CURRENT_STATE , rst , fakeReqOut)

222 begin

if CURRENT_STATE ’event or rst = ’1’ then

outputDone <= ’0’;

elsif falling_edge(Ai2) or falling_edge(fakeReqOut) then

outputDone <= ’1’;

227 end if;

end process OUTPUT_DONE;

--next state , last state , and done signal logic

STATES:

232 process ( CURRENT_STATE , A2B , rst , start)

begin

if rst = ’1’ then

NEXT_STATE <= STATE_DONE;

last_state <= ’0’;

237 done <= ’1’;

else

case CURRENT_STATE is

when STATE_1 =>

last_state <= ’0’;

242 done <= ’0’;

NEXT_STATE <= STATE_FINISHING;

when STATE_FINISHING =>

last_state <= ’1’;

done <= ’0’;

247 NEXT_STATE <= STATE_DONE;

when STATE_DONE =>

last_state <= ’0’;

done <= ’1’;

NEXT_STATE <= STATE_1;

252 when others =>

last_state <= ’0’;

done <= ’0’;

NEXT_STATE <= STATE_DONE;

end case;

257 end if;

end process STATES;

--fake out request latch

FAKE_OUT_LATCH:

262 process ( CURRENT_STATE , MUL2toALU2ack)

begin

if CURRENT_STATE = STATE_FINISHING and MUL2toALU2ack = ’0’ then

fakeReqOut <= ’1’;

else

267 fakeReqOut <= ’0’;

end if;

end process FAKE_OUT_LATCH;

--state transitions

272 CLK_INFO:

process (rst , start , outputDone , inputDone)

begin

if rst = ’1’ then

CURRENT_STATE <= STATE_DONE;

277 elsif (start ’event and start = ’1’) or (outputDone = ’1’ and inputDone = ’1’) then

CURRENT_STATE <= NEXT_STATE;

end if;

end process CLK_INFO;

282 end mul2FSM_behavioral;

B.2 Combined FSM Implementation Code

This section provides a code sample of the combined state machine for the second MUL
unit.
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B.2.1 The Latch Pair Controller State Machine

entity mul2FSM is

generic ( NX_g : positive := 16;

3 M_g : positive := 15;

MUL_delay_g : Time := 5 ns; -- additional delay of mul

REG_delay_g : Time := 2 ns );

port (rst : in std_logic;

start : in std_logic;

8 --constants

A2B : in std_logic_vector(NX_g -1 downto 0);

--inputs

ALU2toMUL2req : in std_logic;

ALU2toMUL2ack : out std_logic;

13 ALU2out : in std_logic_vector(NX_g -1 downto 0);

--outputs

MUL2toALU3req : out std_logic;

MUL2toALU3ack : in std_logic;

MUL2toALU2req : out std_logic;

18 MUL2toALU2ack : in std_logic;

dataout : out std_logic_vector(NX_g -1 downto 0);

last_state : out std_logic;

done : out std_logic

);

23 end mul2FSM;

architecture mul2FSM_behavioral of mul2FSM is

type STATE_TYPE is ( S1_WAIT , S1_RI_HIGH , S1_RI_LOW , S1_AO1_HIGH , S1_AO2_HIGH , S1_RIL_AO1H , S1_RIL_AO2H ,

S1_AO1H_AO2H , S1_FIN , S1_AO1_LOW , S1_AO2_LOW , S_DONE );

28 signal CURRENT_STATE , NEXT_STATE : STATE_TYPE;

signal pRi0 , lRi0 , fakeReqOut , Ro0 , requestSeen: std_logic;

signal eCtrl , oCtrl : std_logic;

signal mulIn1 , mulIn2 , out_s , mulOut : std_logic_vector(NX_g -1 downto 0);

33 component MUL_L1Cas is

generic (

NX_g : positive := 16; -- databus width

M_g : positive := 15; -- width of fraction part

MUL_delay_g : Time := 5 ns; -- additional delay of mul

38 REG_delay_g : Time := 2 ns -- simulation delay register

);

port (

reset : in std_logic; -- asynchronous , active high

clk : in std_logic;

43 clk2 : in std_logic;

clk_en : in std_logic;

op1 : in std_logic_vector(NX_g -1 downto 0);

op2 : in std_logic_vector(NX_g -1 downto 0);

out_s : out std_logic_vector(NX_g -1 downto 0);

48 out_r : out std_logic_vector(NX_g -1 downto 0)

);

end component;

begin

53 --MUL unit

MUL_1: MUL_L1Cas

generic map ( NX_g , M_g , MUL_delay_g , REG_delay_g )

port map ( reset => rst ,

clk => eCtrl , clk2 => oCtrl , clk_en => ’1’,

58 op1 => mulIn1 , op2 => mulIn2 ,

out_s => out_s , out_r => mulOut);

dataout <= mulOut;

63 --input delay

Ri0CTRL:

process( CURRENT_STATE , pRi0)

begin

if requestSeen = ’0’ then

68 lRi0 <= pRi0 after (MUL_delay_g + REG_delay_g);

else

lRi0 <= pRi0;

end if;

end process Ri0CTRL;

73
--set to high when request has gone high in this state

REQ_SEEN:

process( CURRENT_STATE , rst , lRi0)

begin

78 if rst = ’1’ or CURRENT_STATE = S_DONE or falling_edge(lRi0) then

requestSeen <= ’0’;

elsif rising_edge(lRi0) then

requestSeen <= ’1’;

end if;

83 end process REQ_SEEN;

--next state logic , output reqs , input acks

STATES:
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process ( CURRENT_STATE , rst , start , ALU2toMUL2req , ALU2out , MUL2toALU3ack , MUL2toALU2ack , A2B , lRi0)

88 begin

if rst = ’1’ then

NEXT_STATE <= S_DONE;

ALU2toMUL2ack <= ’0’;

MUL2toALU3req <= ’0’;

93 MUL2toALU2req <= ’0’;

last_state <= ’0’;

done <= ’1’;

mulIn1 <= "0000000000";

mulIn2 <= "0000000000";

98 pRi0 <= ’0’;

eCtrl <= ’0’;

oCtrl <= ’0’;

else

case CURRENT_STATE is

103 when S1_WAIT =>

ALU2toMUL2ack <= ’0’;

MUL2toALU3req <= ’0’;

MUL2toALU2req <= ’0’;

last_state <= ’0’;

108 done <= ’0’;

mulIn1 <= A2B;

mulIn2 <= ALU2out;

pRi0 <= ALU2toMUL2req;

eCtrl <= ’1’;

113 oCtrl <= ’0’;

if lRi0 = ’1’ then

NEXT_STATE <= S1_RI_HIGH;

else

NEXT_STATE <= S1_WAIT;

118 end if;

when S1_RI_HIGH =>

ALU2toMUL2ack <= ’1’;

MUL2toALU3req <= ’1’;

MUL2toALU2req <= ’1’;

123 last_state <= ’0’;

done <= ’0’;

mulIn1 <= A2B;

mulIn2 <= ALU2out;

pRi0 <= ALU2toMUL2req;

128 eCtrl <= ’0’;

oCtrl <= ’1’;

if lRi0 = ’0’ then

if MUL2toALU3ack = ’1’ then

if MUL2toALU2ack = ’1’ then

133 NEXT_STATE <= S1_FIN;

else

NEXT_STATE <= S1_RIL_AO1H;

end if;

else

138 if MUL2toALU2ack = ’1’ then

NEXT_STATE <= S1_RIL_AO2H;

else

NEXT_STATE <= S1_RI_LOw;

end if;

143
end if;

else

if MUL2toALU3ack = ’1’ then

if MUL2toALU2ack = ’1’ then

148 NEXT_STATE <= S1_AO1H_AO2H;

else

NEXT_STATE <= S1_AO1_HIGH;

end if;

else

153 if MUL2toALU2ack = ’1’ then

NEXT_STATE <= S1_AO2_HIGH;

else

NEXT_STATE <= S1_RI_HIGH;

end if;

158 end if;

end if;

when S1_RI_LOW =>

ALU2toMUL2ack <= ’0’;

MUL2toALU3req <= ’1’;

163 MUL2toALU2req <= ’1’;

last_state <= ’0’;

done <= ’0’;

mulIn1 <= "0000000000";

mulIn2 <= "0000000000";

168 pRi0 <= ’0’;

eCtrl <= ’0’;

oCtrl <= ’1’;

if MUL2toALU3ack = ’1’ then

if MUL2toALU2ack = ’1’ then

173 NEXT_STATE <= S1_FIN;

else

NEXT_STATE <= S1_RIL_AO1H;

end if;
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else

178 if MUL2toALU2ack = ’1’ then

NEXT_STATE <= S1_RIL_AO2H;

else

NEXT_STATE <= S1_RI_LOW;

end if;

183 end if;

when S1_AO1_HIGH =>

ALU2toMUL2ack <= ’1’;

MUL2toALU3req <= ’0’;

MUL2toALU2req <= ’1’;

188 last_state <= ’1’;

done <= ’0’;

mulIn1 <= A2B;

mulIn2 <= ALU2out;

pRi0 <= ALU2toMUL2req;

193 eCtrl <= ’0’;

oCtrl <= ’0’;

if lRi0 = ’0’ then

if MUL2toALU2ack = ’1’ then

NEXT_STATE <= S1_FIN;

198 else

NEXT_STATE <= S1_RIL_AO1H;

end if;

else

if MUL2toALU2ack = ’1’ then

203 NEXT_STATE <= S1_AO1H_AO2H;

else

NEXT_STATE <= S1_AO1_HIGH;

end if;

end if;

208 when S1_AO2_HIGH =>

ALU2toMUL2ack <= ’1’;

MUL2toALU3req <= ’1’;

MUL2toALU2req <= ’0’;

last_state <= ’1’;

213 done <= ’0’;

mulIn1 <= A2B;

mulIn2 <= ALU2out;

pRi0 <= ALU2toMUL2req;

eCtrl <= ’0’;

218 oCtrl <= ’0’;

if lRi0 = ’0’ then

if MUL2toALU3ack = ’1’ then

NEXT_STATE <= S1_FIN;

else

223 NEXT_STATE <= S1_RIL_AO2H;

end if;

else

if MUL2toALU3ack = ’1’ then

NEXT_STATE <= S1_AO1H_AO2H;

228 else

NEXT_STATE <= S1_AO2_HIGH;

end if;

end if;

when S1_RIL_AO1H =>

233 ALU2toMUL2ack <= ’0’;

MUL2toALU3req <= ’0’;

MUL2toALU2req <= ’1’;

last_state <= ’0’;

done <= ’0’;

238 mulIn1 <= "0000000000";

mulIn2 <= "0000000000";

pRi0 <= ’0’;

eCtrl <= ’0’;

oCtrl <= ’1’;

243 if MUL2toALU2ack = ’1’ then

NEXT_STATE <= S1_FIN;

else

NEXT_STATE <= S1_RIL_AO1H;

end if;

248 when S1_RIL_AO2H =>

ALU2toMUL2ack <= ’0’;

MUL2toALU3req <= ’1’;

MUL2toALU2req <= ’0’;

last_state <= ’0’;

253 done <= ’0’;

mulIn1 <= "0000000000";

mulIn2 <= "0000000000";

pRi0 <= ’0’;

eCtrl <= ’0’;

258 oCtrl <= ’1’;

if MUL2toALU3ack = ’1’ then

NEXT_STATE <= S1_FIN;

else

NEXT_STATE <= S1_RIL_AO2H;

263 end if;

when S1_AO1H_AO2H =>

ALU2toMUL2ack <= ’1’;

MUL2toALU3req <= ’0’;
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MUL2toALU2req <= ’0’;

268 last_state <= ’1’;

done <= ’0’;

mulIn1 <= A2B;

mulIn2 <= ALU2out;

pRi0 <= ALU2toMUL2req;

273 eCtrl <= ’0’;

oCtrl <= ’0’;

if lRi0 = ’0’ then

NEXT_STATE <= S1_FIN;

else

278 NEXT_STATE <= S1_AO1H_AO2H;

end if;

when S1_FIN =>

ALU2toMUL2ack <= ’0’;

MUL2toALU3req <= ’0’;

283 MUL2toALU2req <= ’0’;

last_state <= ’1’;

done <= ’0’;

mulIn1 <= "0000000000";

mulIn2 <= "0000000000";

288 pRi0 <= ’0’;

eCtrl <= ’1’;

oCtrl <= ’0’;

if MUL2toALU3ack = ’0’ then

if MUL2toALU2ack = ’0’ then

293 NEXT_STATE <= S_DONE;

else

NEXT_STATE <= S1_AO1_LOW;

end if;

else

298 if MUL2toALU2ack = ’0’ then

NEXT_STATE <= S1_AO2_LOW;

else

NEXT_STATE <= S1_FIN;

end if;

303 end if;

when S1_AO1_LOW =>

ALU2toMUL2ack <= ’0’;

MUL2toALU3req <= ’0’;

MUL2toALU2req <= ’0’;

308 last_state <= ’1’;

done <= ’0’;

mulIn1 <= "0000000000";

mulIn2 <= "0000000000";

pRi0 <= ’0’;

313 eCtrl <= ’1’;

oCtrl <= ’0’;

if MUL2toALU2ack = ’0’ then

NEXT_STATE <= S_DONE;

else

318 NEXT_STATE <= S1_AO1_LOW;

end if;

when S1_AO2_LOW =>

ALU2toMUL2ack <= ’0’;

MUL2toALU3req <= ’0’;

323 MUL2toALU2req <= ’0’;

last_state <= ’1’;

done <= ’0’;

mulIn1 <= "0000000000";

mulIn2 <= "0000000000";

328 pRi0 <= ’0’;

eCtrl <= ’1’;

oCtrl <= ’0’;

if MUL2toALU3ack = ’0’ then

NEXT_STATE <= S_DONE;

333 else

NEXT_STATE <= S1_AO2_LOW;

end if;

when S_DONE =>

ALU2toMUL2ack <= ’0’;

338 MUL2toALU3req <= ’0’;

MUL2toALU2req <= ’0’;

last_state <= ’0’;

done <= ’1’;

mulIn1 <= "0000000000";

343 mulIn2 <= "0000000000";

pRi0 <= ’0’;

eCtrl <= ’1’;

oCtrl <= ’0’;

NEXT_STATE <= S_DONE;

348 when others =>

ALU2toMUL2ack <= ’0’;

MUL2toALU3req <= ’0’;

MUL2toALU2req <= ’0’;

last_state <= ’0’;

353 done <= ’0’;

mulIn1 <= "0000000000";

mulIn2 <= "0000000000";

pRi0 <= ’0’;
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eCtrl <= ’0’;

358 oCtrl <= ’0’;

NEXT_STATE <= S_DONE;

end case;

end if;

end process STATES;

363
--state transition

CLK_INFO:

process (rst , start , NEXT_STATE)

begin

368 if rst = ’1’ then

CURRENT_STATE <= S_DONE;

elsif (start ’event and start = ’1’) then

CURRENT_STATE <= S1_WAIT;

else

373 CURRENT_STATE <= NEXT_STATE;

end if;

end process CLK_INFO;

end mul2FSM_behavioral;
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Waveforms for Working
Implementations C
This appendix shows the waveforms for the duration of an iteration in all three imple-
mentations. The correctness of the values can all be verified to be equivalent to the
synchronous implementation.

Figure C.1: The Results of Running the Synchronous Implementation

73



Figure C.2: The Results of Running the Separated Latch Pair Controller Implementation
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Figure C.3: The Results of Running the Combined FSM Implementation
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