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Participants of the 3rd Conference on Isogeometric Analysis and Applications (IGAA 2018) held
April 23rd–26th, 2018 in Delft, The Netherlands



Foreword

This book contains a selection of papers emanating from the third workshop in
the IGAA series, Isogeometric Analysis and Applications—IGAA 2018, held
at the Science Centre Delft, on the campus of the Delft University of Technology
(TU Delft), Monday, April 23rd through Thursday, April 26th, 2018 in the historic
and picturesque city of Delft, home of the father of microbiology, Antonie van
Leeuwenhoek, 1632–1723, the peerless painter Johannes Vermeer, 1632–1675, and
the beautiful blue and white Delft ceramic pottery. The program consisted of five
plenary lectures and 45 contributed presentations and a poster session and reception
at the conclusion of the first day’s presentations. The third day of the conference
was designated Industry Day and concluded with a lively panel session entitled The
Future of IGA in Industry. This was the first session of its kind at an IGA conference
but certainly will not be the last. We expect each subsequent conference devoted to
Isogeometric Analysis to adopt similar themes for sessions and panel discussions
due to the increased interest in the use of IGA in industry and concomitantly among
the providers of commercial software tools. The social highlight of the conference
was the excellent banquet held at the Michelin-starred restaurant Aan de Zweth.

The plenary lectures were given by Josef Kiendl of the Norwegian University of
Science and Technology, Kenji Takada of the Honda Motor Company, Jessica Zhang
of Carnegie Mellon University, Carlotta Giannelli of the University of Florence, and
the writer. After opening remarks, the technical sessions began with my plenary
lecture in which I presented an overview of the analytical attributes of IGA vis-á-vis
classical finite element analysis (FEA) and some illustrations of the applicability
to problems whose features are not amenable to solution by classical FEA. Josef
Kiendl presented a summary of his research in thin shell structural analysis, an area
that he pioneered and one in which IGA has created a renaissance. Kenji Takada
described the uses of IGA at Honda Motor Company and showed the efficiency
and accuracy benefits of IGA in real-world automotive engineering applications.
Kenji amused the audience with the story of how he serendipitously began his
study of IGA. Jessica Zhang described her extensive work on isogeometric model
development and many recent industrial applications. Carlotta Giannelli presented
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viii Foreword

her mathematical research in adaptive IGA schemes utilizing hierarchical splines,
an important technology for the efficient solution of practical problems.

The contributed presentations likewise spanned the very mathematical through
the very applied, and everything in between, a hallmark of IGA. It seems there
is something for everyone. However, what occurred at IGAA 2018 was a much
greater focus on the industrial sector. This definitely appears to be a new thrust in
IGA and we can look forward toward much greater interaction with industry in the
future. It seems too that many industrial users are calling for the development of
IGA modeling tools so that they can use IGA solution capabilities that now exist in
commercially available FEA codes, such as LS-DYNA, and several companies in
the mesh and model generation area have begun to respond to this opportunity.

At the same time, IGA research is still a growing and vibrant area. The subject
is rich with possibilities of new developments, even breakthroughs. I am personally
always amazed when classical areas of analysis are addressed anew by IGA and
fundamentally new technologies emerge that offer unique combinations of accuracy,
ease of use, and efficiency. IGA also has the potential to open entirely new
application areas, especially ones where smooth basis functions are desirable or
even necessary. The unique connections embodied in the IGA theme between design
and analysis provide a strong platform for future widespread adoption in industry
and commercialization.

The papers in this volume could only sample some of the broad spectrum of
topics presented at the meeting. Nevertheless, they give an indication of the breadth
of the subject and provide important technical advancements in several areas. Like
its predecessors in the IGAA workshop series, this proceedings volume is an
important contribution to the growing scientific literature on Isogeometric Analysis.

Many thanks are due to the organizers of the workshop for their very hard work
which produced a meeting of the highest scientific quality and one that was truly a
great pleasure to attend.

Austin, TX, USA Thomas J. R. Hughes
June 2019



Preface

With 66 participants from 14 countries, the 3rd Conference on Isogeometric
Analysis and Applications 2018 was a successful continuation of the IGAA
conference series that was started in 2012 in Linz, Austria and had its second edition
in 2014 in Annweiler am Trifels, Germany. IGAA 2018 has brought together senior
experts from academia and industry as well as young scientists standing at the
beginning of their career to discuss the current state of the art in IGA and its potential
for commercial application in industry. This book contains a selection of 12 papers
addressing various aspects of IGA ranging from the mathematical analysis of
approximation properties over the generation of analysis-suitable parametrizations
and the efficient solution of linear systems of equations, to its use in practical
applications.

A conference like IGAA cannot be organized without external support. The
organizers would like to thank the 4TU Applied Mathematics Institute (4TU.AMI),
the TU Delft Institute for Computational Science and Engineering (DCSE), the J.M.
Burgerscentrum, and the NWO Cluster Nonlinear Dynamics of Natural Systems
(NDNS+) for generous financial support. Financial support from the European
Commission through project MOTOR (GA no. 678727) is also greatly acknowl-
edged. We finally would like to express our gratitude to Mrs. Deborah Dongor and
her colleagues for taking care of the local organization of this event.

Eindhoven, The Netherlands Harald van Brummelen
Linz, Austria Bert Jüttler
Delft, The Netherlands Matthias Möller
Kaiserslautern, Germany Bernd Simeon
Eindhoven, The Netherlands Clemens Verhoosel
Delft, The Netherlands Cornelis Vuik
January 2020
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Generating Star-Shaped Blocks
for Scaled Boundary Multipatch IGA

Benjamin Bauer, Clarissa Arioli, and Bernd Simeon

Abstract This paper deals with the decomposition of a domain into star-shaped
blocks, which is motivated by the idea of solving PDEs by means of the scaled
boundary isogeometric analysis (SB-IGA). In the first part of the paper an intro-
duction to the SB-IGA is given and we show the necessity for the domain to be
star-shaped. Of course not every domain has this property, and for this reason the
main focus of the paper is the generation of star-shaped blocks. The approaches
that we take into account are the quadtree decomposition and the art gallery
decomposition. We highlight the steps of those algorithms and we provide a
computable sufficient criterion for the identification of the star-shapedness of a
block. Moreover, for the art gallery decomposition an extension of Fisk’s method
and the Voronoi diagram are employed. Finally we solve the Poisson equation
on different geometries, among them the Yeti footprint domain, and compare the
approaches.

1 Introduction

Despite the significant progress in Isogeometric Analysis (IGA) over the last
decade, the development of analysis-suitable parametrizations of the computational
domain is still a major issue. In this paper, we investigate a special class of such
parametrizations that are based on the decomposition of a general two-dimensional
domain into star-shaped blocks in combination with the scaled boundary approach
[1]. The latter can be viewed as a generalization of classical polar coordinates and is

B. Bauer (�)
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2 B. Bauer et al.

easy to construct as long as the domain is star-shaped. If not, a multipatch approach
is required that decomposes the domain into appropriate blocks.

For this purpose, we make use of two alternative ideas: the quadtree decomposi-
tion and methods that stem from the classical art gallery problem. The quadtree
decomposition is a standard in computer science and provides a fast search for
neighbouring quadtree cells, which in our context means that each interface of
the resulting multipatch structure lies on an edge between two cells in the tree.
Furthermore, the concept is easily generalizable to higher dimensions, see [6, Chap.
14] for a comprehensive exposition. On the other hand, the art gallery problem
[21] leads to a different approach where typically only polygonal boundaries
are considered. In both cases, it is essential to guarantee the star-shapedness of
the resulting blocks in a computationally feasible way, and we provide criteria
and corresponding tools that can be implemented in the standard framework of
splines, i.e., using the data given by the control polygons and knot vectors. The
computational examples demonstrate that both approaches can be employed in a
rather automatic fashion. Nevertheless, there are some pitfalls and worst cases that
we also discuss.

In order to give a short overview on the state-of-the-art in the field, we refer
to the original work by Hughes et al. [11, 5] that set the ball rolling in IGA and
to Xu et al. [27] and Gravesen et al. [9] for results on the design and analysis
of parametrizations in IGA. The Scaled-Boundary IGA (SB-IGA) is inspired by
the Scaled Boundary Finite Element Method (SB-FEM) [3, 24, 25] and has been
introduced in [2, 4, 15, 20]. The SB-FEM has been recently combined with quadtree-
type decompositions in [8, 16]. Multipatch parametrizations and their treatment in
IGA are addressed, e.g., in [10, 13, 18]. Last but not least, the visibility of continuous
curves, which is related to the concept of star-shaped, has recently been studied in
[12].

The paper is organized as follows. In Sect. 2, we summarize the scaled boundary
approach. Section 3 concentrates on the quadtree algorithm and its application to
our framework. This includes results that show how star-shapedness with respect
to the control polygon and with respect to the boundary curve are related to each
other. Moreover, a fast algorithm for the intersection of the boundary curve with
a vertical or horizontal ray is given. The methods for the art gallery problem are
adopted in Sect. 4. We concentrate on a generalized version of Fisk’s algorithm,
illustrate the corresponding framework of optimization in graphs and transfer the
polygon tessellation to the domain by an approach related to Voronoi diagrams.
Finally, Sect. 5 presents computational examples, among them the well-known Yeti
footprint [14].

2 Scaled Boundary Isogeometric Analysis

In Computed-Aided Geometric Design (CAGD), objects are typically modelled in
terms of their inner and outer hull, i.e., only a surface description is generated. On
the other hand, for the purpose of applying IGA, one needs a computational mesh
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also in the interior that serves as discretization. The standard tool in IGA for this
goal are tensor product B-splines.

2.1 Tensor Product B-Splines

Given a polynomial degree q, we introduce the knot vector

Ξ = {
ξ1 ≤ ξ2 ≤ . . . ≤ ξn+q+1

}
,

which contains non-decreasing parametric real values so that 0 ≤ μ(Ξ, ξ) ≤ q + 1
is the multiplicity of the parameter value in the knot vector (the multiplicity μ(X, x)
is zero if the given value x is not a knot in X). Denoting the univariate B-splines
of degree q by Nj,q(ξ), j = 1, . . . , n (we refer to [7] for their construction), we
define a B-spline curve ϑ : [ξ1, ξn+q+1] → R

2 via

ϑ(ξ) :=
n∑

j=1

Nj,q(ξ)Pj ,

where Pj ∈ R
2 are the control points. The polygonal chain constructed with

the control points is called the control polygon P . We recall now two important
properties of B-spline curves:

• Strong convex hull property: the B-spline curve is contained in the convex hull
of its control polygon.

• Variation diminishing property: each hyperplane in R
n has at most as many

intersections with the B-spline curve as with the control polygon.

Furthermore, our algorithms will take advantage of the very easy splitting and
merging process of B-spline curves. By knot insertion (cf. [22, Chap. 5]) the
multiplicity of a knot ξ̂ can be incremented until μ(ξ̂) = q + 1. Then there
occurs a discontinuity in ξ̂ in which the curve is split. Merging works the same
way backwards.

Considering another univariate B-splines Mi,p(η), i = 1, . . . , m, with knot
vector

� = {
η1 ≤ η2 ≤ . . . ≤ ηm+p+1

}
,

and multiplicity

0 ≤ μ(�, η) ≤ p + 1,
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a function f (ξ, η) : [ξ1, ξn+q+1] × [η1, ηm+p+1] → R
2 is called a bivariate tensor

product B-spline function if it has the form

f (ξ, η) =
m∑

i=1

n∑

j=1

Mi,p(η)Nj,q(ξ)Qi,j (1)

with control pointsQi,j ∈ R
2 forming the control mesh (or control net).

2.2 Scaled Boundary (SB) Parametrization

Consider a domain � ⊂ R
2 and its parametrization by a global geometry function

F : �0 → �, F(ξ, η) = x ∈ R
2, (2)

see Fig. 1. F is an invertible C1-mapping from the parameter domain �0 ⊂ R
2 to

the physical domain � and, in our framework, �0 = [0, 1]2 is the unit square.
Integrals over � can be transformed into integrals over �0 via the integration

rule
∫

�

g(x) dx =
∫

�0

g(F (ξ, η)) |det DF(ξ, η)| d(ξ, η)

with 2 × 2 Jacobian matrix DF(ξ, η). Next, we assume that � is a star-shaped
domain whose boundary is described by a spline curve

γ (η) =
m∑

i=1

Mi,p(η)Pi (3)

with univariate B-splines Mi,p of a certain degree p and control points Pi ∈ R
2.

We require η ∈ [0, 1] and consider a closed curve with γ (0) = γ (1). This can be
achieved by an open knot vector and control points P1 = Pm.

Fig. 1 Basic idea of an SB-parametrization
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Choosing a point x0 ∈ �, the scaling center, the geometry function F for a
scaled boundary parametrization (SB-parametrization) is defined as follows

F(ξ, η) = x0 + ξ(C ·M(η)− x0), (4)

where the matrix C := (P1, . . . , Pm) ∈ R
2×m contains the control points on the

boundary and for all η the vector M(η) := (M1,p(η), . . . ,Mm,p(η))
T ∈ R

m the
B-splines.

Another equivalent representation to (4) is given by the tensor product structure
(1) with only n = 2 linear B-splines in ξ -direction and m B-splines inherited from
the boundary curve in η-direction. Therefore we have

F(ξ, η) =
m∑

i=1

2∑

j=1

Mi,p(η)Nj,1(ξ)Qi,j ,

with linear B-splines N1,1(ξ) = 1 − ξ, N2,1(ξ) = ξ and control points Qij given
by Qi,1 := x0, Qi,2 := Pi, i = 1, . . . , m. Finally, it is possible to refine the mesh
structure in radial direction ξ by applying knot insertion and degree elevation, which
leads to a representation of F in the general bivariate form (1).

2.3 SB-Parametrizations in Isogeometric Analysis

We now outline the use of SB-parametrizations in IGA. For simplicity, we consider
Poisson’s equation

−Δu = f in � (5)

as a model problem. Here, � ⊂ R
2 is a domain with boundary ∂�, the function

f : � → R is a given source term, and the unknown function u : � → R shall
satisfy the Dirichlet boundary condition

u = 0 on ∂�. (6)

The weak form of the PDE (5) is obtained by multiplication with test functions w
and integration over �. More precisely, one defines the function space W := {w ∈
H 1(�), w = 0 on ∂�}, which consists of all functions w ∈ L2(�) that possess
weak and square-integrable first derivatives and that vanish on the boundary. For
functions u,w ∈ W , the bilinear form

a(u,w) :=
∫

�

∇u · ∇w dx
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is well-defined, and even more, it is symmetric and coercive. Setting

〈l, w〉 :=
∫

�

fw dx

as linear form for the integration of the right hand side, the solution u ∈ W ⊂
H 1(�) is then characterized by the weak form

a(u,w) = 〈l, w〉 for all w ∈ W (7)

and the boundary condition u = 0 (in the sense of traces).
Next assume that we have a parametrization of � available as in (2). For the

differentiation, the chain rule applied to u(x) = u(F (ξ, η)) =: û(ξ, η) yields, using
a row vector notation for the gradient ∇u,

∇x u(x) = ∇ξ,η û(ξ, η) ·DF(ξ, η)−1.

The integrals in the weak form (7) are then transformed to parametric coordinates,
which yields

∫

�0

(∇û DF−1) · (∇ŵ DF−1) |det DF | d(ξ, η) =
∫

�0

f̂ ŵ |det DF | d(ξ, η) .

Note that for the discretization via the usual Galerkin projection, the two-
dimensional integration on the left-hand side can be carried out as the product
of two one-dimensional integrations, which is a great computational advantage of
the scaled boundary parametrization when the stiffness matrix is assembled, see [1]
for the details.

2.4 Multipatch Geometries

For the usage of the scaled boundary IGA one needs a star-shaped domain and,
clearly, not every domain has this property, which we define properly in Sect. 3.1.
For this reason, we decompose first the initial domain into subdomains or patches
such that each of them is star-shaped. The notation for such a decomposition is
highlighted in Fig. 2. We denote by �(k) the k-th sub-domain and by �(k,l) the
boundary or interface between �(k) and �(l).

The problem (5)–(6) can then be rewritten in the following way:

−Δu(k) = f (k) in �(k) ∀ k, (8a)

u(k) = 0 on ∂�(k) ∀ k, (8b)

u(k) = u(l) on �(k,l) ∀ k, l. (8c)
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Fig. 2 Multipatch domain decomposition

The conditions (8c) are required to obtain C 0 continuity between each pair of
connected sub-domains. To achieve higher global continuity of the solution, one
needs further conditions on the gradients along the interface, but the focus of our
work is not an enhancement of this global continuity. Hence, in our examples in
Sect. 5 we concentrate on C 0 continuity. For G 1 continuity the reader is referred to,
e.g., [13], and for multipatch discontinuous Galerkin IGA see [18].

3 Quadtree Decomposition

Basically, a quadtree is a tree data-structure, where every node has either exactly
four children or none. The latter ones are called leaves. It can be utilized to store
planar data, for example images or point sets, or for mesh generation. In this process,
each node of the tree represents a square region, where child nodes correspond to
the four quadrants of the square of their parents. These quadrants are often referred
to by the celestial directions NW, SW, SE and NE. Figure 3 illustrates an example
of a decomposed geometry and the corresponding tree data structure.

Root

NW SW SE NE

NW SW SE NE

Fig. 3 Cell decomposition and tree data structure
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The uniform structure ensures a fast search for neighbouring quadtree cells, i.e.,
such cells that share an edge. It is obvious that each interface of the resulting multi-
patch lies on such an edge. Furthermore, the concept is easily generalizable to higher
dimensions. For example, an octree stores spatial data and is characterized by each
inner node having eight children. A far more detailed description of quadtrees can
be found in [6, Chap. 14].

In the upcoming sections we will introduce the crucial steps for decomposing a
domain by a recursive quadtree algorithm.

3.1 Star-Shapedness

Let the domain � be defined by a boundary B-spline-parametrization γ as in (3),
based on a knot vector �, a polygonal degree p and the (weighted) control polygon
P . These three elements are stored in arrays in case the domain has multiple
boundaries, where for each index it is specified whether the entries belong to a
hole (void) or an outer boundary. This can either be done explicitly by a boolean
flag or implicitly by conventions asking the user for example to parametrize outer
boundaries counter-clockwise and holes clockwise, or simply restricting the input
to one outer boundary such that connected components are handled separately.

The concept of visibility is elementary for the theory of star domains. Therefore,
consider two points x, y ∈ �. Now y is said to be visible from x within � if the
direct line segment xy lies completely in �. In this case x is said to see (or cover)
y. The set of all visible points from x in � is denoted by vis�(x). The set of all
points x0 overseeing the whole domain, i.e. with vis�(x0) = �, is called kernel
and denoted as ker�. Elements from the kernel are referred to as star-centers. A
domain is called star-shaped (or star-convex or simply a star domain) if it possesses
a non-empty kernel.

Apparently, visibility is based on straight lines L and their property of entering
and leaving the domain. Therefore, we distinguish between regular intersections
(denoted by ∂� ∩ L) and proper intersections (denoted by � ∩̂ L) and define

� ∩̂ L := {y ∈ ∂� ∩ L | ∀ε > 0 ∃ x ∈ L\� : ∥∥y − x∥∥ < ε}.

Hence, proper intersections are exactly the points where L enters and leaves �.
Figure 4 displays an example setting with proper intersection points yi and in
contrast x which is only a regular intersection point.

Lemma 1 Let � be a bounded and closed domain and x0 ∈ �. Then x0 is a star-
center of � if and only if each line through x0 has exactly two proper intersections
with �.
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Fig. 4 Proper intersections
y1, y2, y3 of line and domain
and regular intersection
point x

Proof “⇒” Let x0 ∈ ker� ⊆ �. The boundary ∂� is trivially contained in the
visible space of x0. Furthermore, let L be a straight line going through x0. Since
x0 ∈ � and � is bounded, there must be at least two proper intersection points of L
and �.

Assume that there were at least three proper intersection points y1, y2, y3,
labelled such that y2 lies on the line segment y1y3. Now, the goal is to force y2
to be equal to one of the other intersection points. Since x0 covers the boundary and
hence all three intersection points, both line segments x0y1 ⊂ L and x0y3 ⊂ L are
contained in �. This directly yields that the segment y1y3 ⊂ L lies completely in
�. Thus, y2 ∈ {y1, y3}.

“⇐” Let x0 ∈ � such that each line through x0 has exactly two proper
intersections with �. Choose z ∈ �\{x0} arbitrarily and let Lz be the unique line
through x0 and z. By assumption it holds that

x0, z ∈ � ∩ Lz = y1y2

with {y1, y2} = Lz ∩̂ �. Therefore, the line segment x0z lies completely in �. By
arbitrary choice of z, x0 is a star-center. ��

Note that the kernel of a polygon is a polygon again and given as the intersection
of halfspaces induced by the polygon edges as depicted in Fig. 5a. However, it is
quite hard to compute the kernel of a continuous domain. The following theorem
describes the connection of control polygon and boundary curve with respect to
star-shapedness. This will be exploited by the recursion criterion.

Theorem 1 Star-centers of the (unweighted) control polygon P are inherited by
the domain. More precisely it holds

kerP ∩� ⊆ ker�. (9)

Proof Without loss of generality assume there is x0 ∈ kerP ∩ � �= ∅. Then by
the characteristics for kernels (Lemma 1) each line through x0 properly intersects
∂P exactly twice. By the variation diminishing property, the image of the B-spline
curve ∂� is intersected at most twice, as well. Since x0 ∈ � there are at least two
intersection points ofL and ∂�. All together each line through x0 properly intersects
the boundary exactly twice and x0 ∈ ker� again by Lemma 1. ��
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(a) (b)

Fig. 5 V-shaped example domain. (a) Kernel computation for polygons. (b) No star-shaped
domain

Figure 5a illustrates the process of kernel computation. The kernel of the V-shaped
domain is depicted as the blue area. Note that a star-shaped control polygon does
not guarantee star-shapedness of the corresponding B-spline domain. In Fig. 5b a
cubic uniform rational B-spline curve based on the V-shaped polygon is painted in
blue. Two tangents at the steepest positions show that the domain bounded by this
curve is not a star domain.

3.2 Recursion Scheme

Since the quadtree creation is based on recursive refinement, there is need for a
termination criterion that notices when a square region is star-shaped. For this
purpose first search for the presence of holes, as these prevent star-convexity.
Afterwards compute the kernel of the control polygon.

In case the control polygon is star-shaped, the intersection of the kernel of the
polygon and the actual domain is constructed. For efficiency, it suffices to check if
any edge of the kernel intersects with the boundary of the domain and if one of the
vertices lies inside. If an element of kerP ∩� is found, the algorithm can propose
this as a star-center and return. Otherwise, further refinement is initiated.
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3.3 Intersection of Rays and Splines

The core mechanic behind continuous quadtree refinement of B-spline curves is
intersecting such with rays—especially with horizontal or vertical lines. For this we
interpret a line G as a one-dimensional hyperplane given by its normal vector gn
and a translation go. Then the task of intersecting the line with a B-spline curve γ
is equivalent to finding η ∈ [0, 1] such that the non-linear equation

〈γ (η)− go, gn〉 = 0 (10)

holds. A solution can be computed by numerical root finding techniques as, e.g.,
Newton’s method. Based on the local modification scheme of B-spline curves,
intersecting the ray with the control polygon in advance yields a good initial guess
for iterative solvers.

3.4 Quadtree-Based Refinement Algorithm

Altogether these pieces form the final refinement algorithm: Given a series of
boundary curves, start by checking for star-convexity as described in Sect. 3.2. Each
boundary curve describing a star-shaped patch is added to the tree data structure
at the current node. All other boundaries are kept for recursion, which is applied
by computing the centroid of the quadtree cell and intersecting the curves with the
horizontal and vertical lines through the centroid.

The resulting curve segments are concatenated with line segments following the
interfaces (Fig. 6). This yields a list of closed boundary curves for each quadrant
again. Then, the quadtree algorithm is called recursively on each quadrant yielding
the child nodes for the currently handled node.

(a) (b)

Fig. 6 Illustration of the merging step in north-eastern quadrant. (a) Pairing of intersection points.
(b) Pairing of curve segments
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Note that it is meaningful not to merge the interfaces with the spline-curves yet,
but to keep them as line segments instead. This not only increases performance
of the intersection process in coming recursion steps, but also marks them as an
interface.

3.5 Setup of Interfaces for Numerical Treatment

The computation of suitable interfaces is crucial for the application of a numerical
method on the resulting multi-patch geometry. The first step is to set up conformal
interface parametrizations such that condition (8b) can be ensured easily by the
numerical solver. Hence, for each boundary curve γ resulting from the decomposi-
tion find all the curves (partly) sharing an interface with γ . By construction those
curves lie in the neighbouring quadtree cells which can be found very quickly.

Let �(k),�(l) be patches resulting from the quadtree refinement (partly) sharing
an edge z1z2. If both are located at the same depth within the quadtree, they
completely share the edge which can be parametrized trivially as p-th degree B-
spline curves with

�edge = {0, . . . , 0︸ ︷︷ ︸
p+1 times

, 1, . . . , 1︸ ︷︷ ︸
p+1 times

}, Pedge = { r
p
z2 + p − r

p
z1|r = 0, . . . , p}

where p is the maximum degree of the boundary curves of �(k) and �(l). The
setting is depicted in Fig. 7. Note that the order of control points may be reversed for
�(l). With this setup we can merge the spline curve of the edge with the associated
boundary parts.

In case �(l) belongs to a descendant of the cell B neighbouring �(k), basically
the same procedure can be applied—but only for the shared part of the interface.
However, the remaining sections are handled regarding other descendants of B.

In order to describe the interface �(k,l) the indices of matching control points
from Pedge within the total boundary curves of �(k) and �(l) are stored. Addition-
ally, for each patch all indices of control points belonging to an interface are stored
in a list, where the points belonging to both an interface and the boundary ∂�(k) are
marked individually.

Fig. 7 Example of the interface parametrization
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3.6 Benefits, Termination and Difficulties

Our quadtree approach comes up with several very nice properties. As already
described at the start of this section, we end up with a tree data structure which
implicitly contains the interface description. The further effort to set up the
multipatch description is very low. Moreover, the regular and rectangular refinement
might pose advantages for some problems.

The recursion scheme derived in Sect. 3.2 provides robustness with respect to
star-shapedness, as the algorithm only terminates when the currently regarded
subdomain is star-shaped. However, the scheme might refine although the domain
is already star-shaped, as the criterion is only sufficient, but not necessary.

Termination of the algorithm is given by the variation diminishing property of
B-splines. They follow their control polygon smoothly and knot insertion will make
the polygon adapt to the curve. Therefore, the variation within the boundary is
predefined at the start of the algorithm and we terminate as soon as the diameter
of the present quadtree cell falls below αΔP with

ΔP := min
Pi �=Pj

∥∥Pi − Pj
∥∥

and α ∈ R is a constant independent of the B-spline curve.
A disadvantage of the quadtree is that its strategy does not adapt to the domain.

We are always splitting along horizontal and vertical lines through the center points
of the cells. Figure 8 displays an example domain for which the quadtree needs
unnecessarily many refinement steps. Thus, the result is composed of a huge amount
of patches with C 0 interfaces whereas only three such borders are necessary. This
can be avoided by mimicking the pivoting of kD-trees (cf. [6, Chap. 5]). These
possess analogous capabilities of data storage as the quadtree, however, the kD-
tree-refinement is based on event points computed either beforehand or at runtime.

(a) (b)

Fig. 8 Degenerated example for the quadtree algorithm. (a) Domain. (b) Quadtree decomposition
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When equipped with a suiting event searching strategy the kD-tree approach will
certainly come up with a decomposition consisting of fewer patches than the
quadtree algorithm. However, we then loose the possibility of fast interface setup
due to complicated neighbour search.

The biggest drawback of the quadtree algorithm is the intersection and splitting
process in higher dimensions. For example, in 3D the analytical solution to (10)
is a NURBS curve itself. Furthermore, the boundary surface must be split along a
curve which in most cases is not an isoparametric curve. Hence, the need for such a
splitting process arises.

4 Art Gallery Decomposition

The second approach for refinement into star-shaped pieces is based on the local
modification scheme of B-splines, after which the curve follows the control polygon
smoothly. Hence, the polygon is broken down first and the decomposition is
transferred to the domain afterwards.

The task of dividing a polygon into star-convex pieces is formally known as “Art
Gallery Problem” and well-understood [21]. For illustration purposes we apply the
very simple method of Fisk, equipped with some graph-theoretical background in
the covering step. The notation is adopted from [17], and the concepts linear duality
and complementary slackness stem from [23, Chap. 7].

4.1 Fisk’s Algorithm

The main idea of Fisk’s method is to triangulate the underlying polygon and
to merge suitable adjacent triangles together afterwards. The single steps of the
algorithm are illustrated in Fig. 9. The result of the triangulation is a decomposition
of the polygon into pieces consisting of three vertices and edges, respectively. The
construct can be interpreted as an undirected graph with vertices and edges being
defined analogously. It is obvious that each vertex can oversee all incident triangles.

The main task when merging the triangles is to find a set of vertices such that all
triangles—i.e. cliques of size three—are covered. Therefore, we call this problem
minimum three-cliques cover (M3CC). The corresponding integer program for the
binary variable sv that marks the vertices reads

minimize
∑

v∈V
sv

s.t.
∑

v∈Δ
sv ≥ 1 ∀Δ ∈ T3,

sv ∈ {0, 1} ∀v ∈ V,
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(a) (b)

(c) (d)

Fig. 9 Fisk’s method applied on a rotor-shaped polygon. (a) Rotor polygon. (b) Triangulation. (c)
Triangle cover. (d) Decomposed polygon

where T3 is the set of triangles and V is the set of vertices within the triangulation.
In the original form Fisk approximates M3CC by a vertex colouring. However, this
fails if the polygon contains a hole or if we are working in higher dimensions. Thus,
we employ general solution methods to this problem.

Though several approaches as branch and bound or cutting planes [23, Chaps.
23–24] have been developed, solving general integer programs optimally is NP-
complete. However, simulations on test domains do not show exponential scaling of
the runtime with respect to the number of control points indicating some beneficial
structure of our specific problem. Nevertheless, discrete optimisation has some
standard heuristics at hand as for example Greedy-type algorithms which run in
polynomial time and approximate the optimal solution very well. The interested
reader is referred to [19, Chap. 12] for a detailed overview of approximative
approaches for integer problems. After having solved the M3CC, vertices are taken
iteratively from the solution cover and all unhandled adjacent triangles are merged
together, which yields a decomposition of the polygon.
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(a) (b)

Fig. 10 Extension of tessellation to bounding box. (a) Polygon tesselation. (b) Voronoi diagram

4.2 Voronoi Diagrams for Exterior Visibility

Now that we have a decomposition of the control polygon, we want to transfer
this refinement to the actual domain. Our approach to this problem is motivated by
Voronoi diagrams (cf. [6, Chap. 7]) as a tessellation of the axis aligned bounding
box (Fig. 10).

Algorithmically, the main task of the algorithm is to compute the multipatch-
interfaces based on the interfaces of the polygon decomposition. The final set of
interfaces consists of three different types of interfaces:

• interfaces of the polygon decomposition fully contained by �
• segments of the interfaces of the decomposition of the polygon intersecting ∂�
• additional interfaces for exterior visibility where patches meet

The first two classes arise directly from the polygon tessellation and can be
distinguished by intersecting interfaces with the boundary curve as described in
Sect. 3.3 and asserting that the intersection point lies on the interface segment. The
setup of the third class is more involved, though.

First, all control points belonging to more than one patch and lying inside of �
must be found. The first criterion is met exactly by the end points of interfaces.
Therefore, the list of those vertices can be created as a by-product of handling the
first two interface classes. According to the Voronoi diagram, a new interface arises
starting at those points, moving in the direction of the bisector of the polygon edges
and ending where it intersects the boundary curve γ .

As there might arise cases where this strategy induces non-convex vertices—
i.e. vertices with greater inner than outer angle between incident edges—in the
concerned patches, we consider the incident interfaces first. In case there are such
on both sides of the bisector of the edge, any choice will yield convex vertices for
the adjacent patches. Otherwise we check whether an interface can be elongated
such that it intersects the boundary curve before meeting with the control polygon
again. If this is not possible, we choose the bisector nevertheless.
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(a) (b)

Fig. 11 Final decomposition via art gallery method. (a) Interface graph diagram. (b) Domain
tessellation

The three types of interfaces equipped with their end points form a (not
necessarily connected) undirected graph. We add edges between those points lying
on and directly connected via the boundary curve and mark them as such. The
resulting “interface graph diagram” directly yields the domain decomposition as
it is depicted in Fig. 11. The three interface classes are coloured in blue, green and
red, respectively.

All the interface parametrization, the splitting and merging of boundary parts
and data stored for the interfaces is analogous to the quadtree decomposition from
Sect. 3.5. However, this time each edge describing an interface is completely shared
by two patches.

4.3 Robustness and Higher Dimensions

In contrast to the quadtree algorithm our art gallery approach tries to minimize
the number of patches adaptively with respect to the control polygon. Yet again,
knot insertion before applying the decomposition algorithm does not change the
geometry at all, but will impact the refinement and the number of patches.

Moreover, the art gallery approach has several problems with star-convex and
“nearly” star-convex domains. Considering the rotor example domain, our plain
standard art gallery approach with Voronoi extension yields two patches which
are not star-shaped (coloured in yellow and red). This can be easily remedied by
using polygon edges instead of bisectors for the third class of interfaces (Fig. 12).
However, an automatic recognition scheme for these cases at runtime is still missing.
Another example in which our approach fails is the V-shaped domain from Fig. 5.
Here, the control polygon is already star-shaped and thus does not require a
decomposition by the art gallery method, but the domain itself does not need to
be star-shaped. Furthermore, Fig. 13a shows the epitome of star domains. Still the
art gallery approach decomposes it into smaller blocks.



18 B. Bauer et al.

(a) (b)

Fig. 12 Art gallery decomposition of rotor domain. (a) Adapted interface choice. (b) Adapted
decomposition

(a) (b)

Fig. 13 Failure of the art gallery approach on a star domain. The decomposition process starts
despite there is no need for it. (a) Star polygon and domain boundary. (b) Art gallery decomposition

Whereas the splitting process in higher dimensions is analogously difficult as
in the quadtree case, the rest of the algorithm is perfectly suitable for higher
dimensions. In 3D for example, a tetrahedralisation replaces the triangulation. The
cover problem generalizes trivially to higher dimensions as MdCC with d being the
dimension plus one. Another benefit is that the elements of the approach—namely
triangulation/tetrahedralization, integer programming and Voronoi diagrams—are
already well-studied and there are very fast solution algorithms. Moreover, the
ingredients, as for example the list of triangles or the first two interface classes
in the transfer step, are computed as by-product.
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5 Numerical Simulations

In this section we apply the decomposition algorithms from Sects. 3 and 4 to several
benchmark domains. First we decompose the rotor which we already used for
illustration purposes and the Yeti footprint from [14] in order to solve the Poisson
equation (5). Afterwards we illustrate the convergence of our numerical method on
an annulus-shaped domain. The patches resulting from refinement, originally given
in boundary description, are then parametrized as described in Sect. 2.2 by means of
the scaled-boundary technique. For the computation of star-centers we approximate
the boundary curve by a polygonal chain and choose the centroid of its kernel.

All methods have been implemented in Matlab. We solve the partial differential
equation by an extension of the ISOGAT package [26] which handles multipatch
geometries with matching interfaces �(k,l). The continuity across interfaces is
enforced by means of corresponding constraints that are used to eliminate the
superfluous control points or degrees of freedom, respectively, along the interface.
The same elimination process is applied to the multiple control point in the scaling
center of each block, see [1] for the details. In the same reference [1], it is also
shown that the combination of a scaled boundary parametrization and a standard
Galerkin-bases IGA code, as we apply it here, is computationally equivalent to the
SB-IGA approach of [15] for linear elliptic problems.

5.1 The Rotor with Five Wings

First we consider the rotor geometry with five wings (Fig. 14). On this domain
we solve the Poisson equation (5) with constant right hand side f = 1 and zero
Dirichlet boundary conditions.

(a) (b)

Fig. 14 Decompositions of the rotor with marked star-centers [number of patches]. (a) Quadtree
decomposition [10]. (b) Art gallery decomposition [5]
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Fig. 15 Convergence of the solution of the rotor geometry in energy norm

(a) (b)

Fig. 16 Simulation results for the benchmark geometries. (a) Solution on rotor. (b) Solution on
yeti footprint

Figure 15 illustrates the convergence in energy norm with respect to h-
refinement. The black and blue lines stand for the quadtree and art gallery approach,
respectively. The red line indicates the reference value stemming from the standard
Galerkin approach with cubic B-splines in radial direction after three h-refinements.
As bottom line, we observe that both decomposition approaches yield comparable
results. The three-dimensional surface plot Fig. 16a displays the numerical solution
based on the art gallery decomposition and the scaled boundary approach from
Sect. 2.3 after one h-refinement, with quadratic B-splines for each patch.

5.2 The Yeti Footprint

The geometrically more interesting example is the Yeti footprint [14]. Figure 17
displays the decompositions that our methods have constructed for this geometry
with four holes and multiple boundaries. Again we solve (5) with constant right hand
side f = 1 and zero Dirichlet boundary conditions and consider the convergence in
energy norm.

The surface plot Fig. 16b displays the numerical solution based on the quadtree
decomposition and the scaled boundary approach from Sect. 2.3 after one h-
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(a) (b)

Fig. 17 Decompositions of the Yeti footprint [number of patches]. (a) Quadtree decomposition
[39]. (b) Art gallery decomposition [38]
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Fig. 18 Convergence of Yeti’s solution in energy norm

refinement. Figure 18 illustrates the convergence in energy norm. Note that for this
example, the decomposition by the art gallery approach yields faster convergence.
This can be explained by several tiny patches that are generated in the quadtree
algorithm and that lead to a non-balanced multipatch structure.

5.3 Convergence on an Annulus

In order to better assess the convergence behavior of the resulting discretizations,
we add another rather simple example. Let the domain � be given by two circular
boundaries with radius 1 and 2, i.e.

� = {(x, y) ∈ R
2|1 ≤ x2 + y2 ≤ 4},

where the two boundaries are given by quadratic NURBS curves starting and ending
at the positive part of the x-axis.
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(a) (b)

Fig. 19 Decompositions of the annulus domain with marked star-centers [number of patches].
(a) Quadtree decomposition [4]. (b) Art gallery decomposition [4]
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Fig. 20 Convergence of the numerical solution in L2-norm

The results of our decomposition methods are displayed in Fig. 19. Note that
both approaches yield basically the same decomposition of the real domain with
differences only in parametrization.

The benchmark problem is the Poisson equation with zero Dirichlet boundary
conditions and right-hand side

f = 4β2R sin(β(R − 1))− 4β cos(β(R − 1)),

where R = x2 +y2 and β = π
3 for enhanced readability. It is easily verified that the

analytic solution is a radial symmetric sine wave given by

ua(x, y) = sin

(
π

3
(x2 + y2 − 1)

)
.

Figure 20 displays the convergence of our approaches compared to a reference

line representing O(#DOF− 3
2 ) = O(h3). Since quadratic B-splines are used as basic

discretization for each patch, the convergence behavior of the multipatch simulation
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is as expected, with the quadtree approach performing somewhat better. Note that
the art gallery decomposition introduces new control points around the interfaces
by knot insertion, whereas the quadtree algorithm draws interfaces exactly at the
images of knots with multiplicity equal to 2, which results in less degrees of freedom
and thus is a possible explanation for the slightly better performance.

6 Conclusions

We have discussed the decomposition of a planar domain into star-shaped blocks,
motivated by the idea of solving PDEs by means of the scaled boundary isogeomet-
ric analysis. Both approaches considered, the quadtree decomposition and the art
gallery decomposition, turned out to be suitable for this purpose, with each having
its merits and its drawbacks.

The quadtree algorithm is fast and provides a tree data structure which implicitly
contains the interface description, which means that the further effort to set up
the multipatch description is very low. Moreover, the recursion scheme derived in
Sect. 3.2 provides robustness with respect to star-shapedness, but the scheme might
refine although the domain is already star-shaped. The biggest drawback of the
quadtree algorithm is the intersection and splitting process if one tries to tackle
3D geometries.

In contrast to the quadtree algorithm the art gallery approach tries to minimize
the number of patches. The elements of the approach—namely triangulation, integer
programming and Voronoi diagram—are already well-studied and there exist very
fast algorithms for these steps. Nevertheless, if we want to extend this approach to
3D, the splitting process is analogously difficult as in the quadtree case.

Computationally, the performance depends strongly on the chosen example
geometry, and we cannot give a general recommendation which approach should
be preferred.
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Approximation Power of C1-Smooth
Isogeometric Splines on Volumetric
Two-Patch Domains

Katharina Birner, Bert Jüttler, and Angelos Mantzaflaris

Abstract Bases and dimensions of trivariate spline functions possessing first order
geometric continuity on two-patch domains were studied in Birner et al. (Graph
Mod 99:46–56, 2018). It was shown that the properties of the spline space depend
strongly on the type of the gluing data that is used to specify the relation between
the partial derivatives along the interface between the patches. Locally supported
bases were shown to exist for trilinear geometric gluing data (that corresponds
to piecewise trilinear domain parameterizations) and sufficiently high degree. The
present paper is devoted to the approximation properties of these spline functions.

We recall the construction of the basis functions and show how to compute them
efficiently. In contrast to the results in Birner et al. (Graph Mod 99:46–56, 2018),
which relied on exact arithmetic operations in the field of rational numbers, we
evaluate the coefficients by computations with standard floating point numbers.
We then perform numerical experiments with L2-projection in order to explore
the approximation power of the resulting spline functions. Despite the existence
of locally supported bases, we observe a reduction of the approximation order for
low degrees, and we provide a theoretical explanation for this locking.

1 Introduction

The framework of Isogeometric Analysis [7] facilitates numerical simulation with
high-order partial differential equations, since it supports Cr -smooth discretizations
with r > 0. For r = 1, these are especially useful when considering PDEs of
order four, such as the Cahn-Hilliard equation [8], shells [2], and the biharmonic
equation [1].
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While the construction of C1-smooth spline functions on single patches is
straightforward, the extension to multi-patch domains, which are needed to describe
more complex domains, requires the notion of geometric continuity [16]. More
precisely, Cr -smoothness (r ≥ 0) of an isogeometric spline function is implied by
Gr -smoothness (geometric continuity of order r) of the associated graph surface [9].
This result has widely been used to construct C1-smooth spline spaces on planar
domains.

Smooth approximations over unstructured quadrilateral meshes were considered
in [3]. The construction of geometrically continuous splines on arbitrary topologies
was studied in [14]. Bases and dimensions of the space of C1-smooth isogeometric
functions for bilinearly parameterized domains were explored in [10]. Some of these
results have been extended to C2-smooth splines [12].

The numerical examples presented in these publications indicate optimal approx-
imation power for combinations of sufficiently high degrees with certain classes
of gluing data. In particular, the generalization of parameterizations with bilinear
gluing data to the more general class of analysis-suitable parameterizations, which
appears to preserve the optimal approximation properties, was presented in [6, 11].

The extension to trivariate domains was studied in [4, 5, 15]. The domains con-
sidered in [15] are obtained via sweeping, which restricts the available topologies.
In [4], we studied the space of globally C1-smooth splines on a two-patch domain,
which is topologically equivalent to two cuboids. We considered different types of
gluing data and presented the associated dimension formulas. Moreover, we showed
how to construct a basis and identified those types of gluing that yield locally
supported basis functions indicating good approximation properties.

The space of C1-smooth isogeometric functions for trilinearly parameterized
two-patch domains was further studied in [5]. Explicit representations of the locally
supported basis functions were presented and the numerically obtained dimension
formula from [4] was theoretically verified.

The present paper extends these existing results. In Sect. 2, we recall the
notion of the glued spline space GD , which characterizes the space of C1-smooth
isogeometric functions VF . Based on these preparations, Sect. 3 considers the
coefficient patterns of trilinear geometric gluing data, which was found to be
promising for good approximation power in [4], in further detail. These patterns
allow us to efficiently compute a basis of the space VF for this type of gluing data.
Finally, in Sect. 4 we numerically analyze the approximation power of the basis via
L2-fitting. We conclude the paper in Sect. 5.

2 Preliminaries

We consider two subdomainsΩ(1) andΩ(2), both topologically equivalent to a cube,
which form the two-patch geometry Ω = Ω(1) ∪ Ω(2). Let S p

k denote the space
of spline functions on

[
0, 1

]
of degree p with k uniformly distributed inner knots of



Smooth Isogeometric Splines on Volumetric Domains 29

Fig. 1 Parameterizations of two volumetric subdomains Ω(1) and Ω(2) joined at the interface Γ

multiplicity p − 1. We use it to define the tensor-product space

P = S
p
k ⊗S

p
k ⊗S

p
k ,

which consists of C1-smooth trivariate spline functions.
The two subdomains are described by parametric representations F (i) : Ω̂ =

[0, 1]3 → Ω(i), i = 1, 2 with coordinate functions from P , see Fig. 1. These define
the two-patch geometry mapping

F = (F (1), F (2)) ∈ P3 ×P3.

We assume that the two patches meet with C0-smoothness

F (1)(u, v, 0) = F (2)(u, v, 0), u, v ∈ [0, 1]

at the common interface Γ = [0, 1]2 × {0}. In this paper, we explore the space

VF = [(P ×P) ◦ F−1] ∩ C1(Ω(1) ∪Ω(2))

of C1-smooth isogeometric functions on Ω .
The elements of the pairs f = (f (1), f (2)) ∈ P ×P possess representations

f (i) =
n∑

k=0

b
(i)
k Nk(u, v,w), i = 1, 2,

with real coefficients b(i)k , where the symbolsNk denote the tensor-product B-splines
that span the space P . The glued spline space GD is a subspace of P × P ,
which was introduced in [4]. For given gluing data D = (β, γ, α(1), α(2)), which
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is a quadruple of four bivariate polynomials, it consists of all functions whose
coefficients satisfy

0 =
n∑

k=0

b
(1)
k Nk(u, v, 0)− b(2)k Nk(u, v, 0) and

0 =
n∑

k=0

b
(1)
k

(
β(u, v) (∂uNk)(u, v, 0)− γ (u, v) (∂vNk)(u, v, 0)

+α(1)(u, v) (∂wNk)(u, v, 0)
)
− b(2)k α(2)(u, v) (∂wNk)(u, v, 0).

(1)

Bases and dimensions of the glued spline space GD for different types of gluing
data were studied in [4]. Furthermore it was observed that

VF = GD ◦ F−1,

for regular geometry mappings F ∈ GD . This means that any C1-smooth
isogeometric function is the push-forward of a glued spline function. This result
is closely related to [9], which establishes the fact that matched Gk-constructions
always yield Ck-continuous isogeometric elements in a more general setting.

Following the approach in [4], we construct a basis of the space VF —and
consequently of the space GD—by splitting the space into a direct sum of two
subspaces, i.e.

VF = V Γ
F ⊕ V S

F .

The first subspace V Γ
F denotes the space of interface functions. It contains the

functions with non-zero coefficients on the shared face Γ and the two neighboring
layers, see blue points in Fig. 2. These functions are affected by the specific choice of
gluing data concerned. The second subspace V S

F , referred to as the space of standard
functions, contains functions with zero coefficients on these three layers, see the
green bullets in Fig. 2. It is spanned by the “usual” isogeometric basis functions and
therefore does not depend on the choice of gluing data.

In order to keep the presentation concise, we restrict ourselves to spaces satisfy-
ing first order homogeneous boundary conditions along ∂Ω , which is indicated by
the subscript 0, and we obtain the decomposition

VF ,0 = V Γ
F ,0 ⊕ V S

F ,0.
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Fig. 2 Coefficients used by the interface functions (blue bullets) and coefficients contributing to
inner functions (green bullets). The figure shows the control cages of both patches

3 Basis Construction

As noted in [4], trilinear geometric gluing data is particularly promising for
applications. We describe the construction of a basis for V Γ

F ,0 in this case.
This type of gluing data is derived from a trilinear geometry mapping F =

(F (1),F (2)), which is assumed to be regular. More precisely, it consists of the four
polynomials

β(u, v) = det
(
∂2F

(1)(u, v, 0), ∂3F
(1)(u, v, 0), ∂3F

(2)(u, v, 0)
)
,

γ (u, v) = det
(
∂1F

(1)(u, v, 0), ∂3F
(1)(u, v, 0), ∂3F

(2)(u, v, 0)
)
,

α(1)(u, v) = det∇F (2)(u, v, 0),

α(2)(u, v) = det∇F (1)(u, v, 0), (2)

which have bi-degrees [(3, 2), (2, 3), (2, 2), (2, 2)]. For p ≥ 3, the dimension of the
space V Γ

F ,0 is equal to

dimV Γ
F ,0 = 10 + k (2 − 11 k)− p (2 + 2 k − 4 k2).

Locally supported basis functions for trilinear geometric gluing data were presented
in [4]. For the sake of completeness, we recall the obtained coefficient patterns in
Fig. 3. The basis for degree p = 3 is obtained by performing index shifts in (2Z)2

for Type 3, while the basis for p = 4 consists of seven different types:

• 2k − 1 functions of Type 4.1, with shifts in 2 · 3Z,
• k − 1 functions of Type 4.2.1, with shifts in 3Z,
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(a)
(b) (c) (d)

(e)
(f) (g) (h)

Fig. 3 Coefficient patterns of basis functions for trilinear geometric gluing data. (a) Type 3. (b)
Type 4.1. (c) Type 4.2.1. (d) Type 4.2.2. (e) Type 4.3. (f) Type 4.4. (g) Type 4.5. (h) Type 4.6

• k(k − 1) functions of Type 4.2.2, with shifts in (3Z)2, and
• (k − 1)2 functions of Types 4.3–4.6, with shifts in (3Z)2.

The coefficient patterns of the basis functions described above were found by
studying the kernel of the matrix formed by collocating the Eq. (1) at suitable
Greville abscissa. The first order homogeneous boundary conditions are incorpo-
rated by imposing additional constraints. The corank of the resulting matrix reveals
the dimension of the spline space VF ,0, and consequently also of the subspace
V Γ

F ,0. Repeated patterns were observed in suitably constructed kernel vectors of
that matrix, which allowed us to derive local subproblems that yield a single basis
function.

To point out the importance of these local patterns, note that the computation of
the sparsest kernel vectors (that is, the functions with the smallest possible support)
is NP-hard. Therefore, even for small numbers of inner knots k, the computations
can be rather inefficient. Another issue is that computing the rank and the corank
of a matrix with floating point numbers can only be done up to certain precision.
This can create some ambiguity or uncertainty on the actual dimension of the spline
space.

In [4], the first problem was addressed by manually designing suitable orderings
of the coefficients that lead to sparse coefficient patterns when performing RREF1

computations. We dealt with the second issue by using rational arithmetic. In
particular, the matrix obtained from (1) has rational elements, since they are

1Reduced Row Echelon Form.
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Table 1 Time needed for
constructing the basis using
floating point and rational
computations

k = 3 k = 7 k = 15 k = 31

Floating point 0.01 s 0.07 s 1.03 s 25.82 s

Rational 5.73 s 1037.56 s >24 h >72 h

Table 2 Memory needed for constructing the bases using floating point and rational computations

k = 3 k = 7 k = 15 k = 31

Floating point 9.9 MBytes 11.4 MBytes 17.6 MBytes 42.4 MBytes

Rational 20.8 MBytes 426.8 MBytes >17.7 GBytes >32 GBytes2

evaluations of piecewise polynomial functions with rational coefficients at rational
Greville points. However, as the dimension of the problem increases, working with
rational arithmetic becomes prohibitive.

In the present work, we exploit the fact that the local subproblems, which are
defined by the shifted coefficient patterns, are known to have a kernel dimension
equal to one. Consequently, it is no longer necessary to use rational arithmetic.
Instead, since we know that we are looking for a single kernel vector, we use floating
point computations and perform singular value decompositions. We then keep the
vector associated to the singular value closest to zero.

The savings in time and memory needed for the basis computation when using
floating point operations instead of exact arithmetic are presented in Tables 1 and 2.
The entries of the tables refer to the construction of the basis of the space V Γ

F ,0
for spline degree p = 3 and different numbers of inner knots k. We compare
the approach used in [4], where we had to set up the complete matrix obtained
from (1) using rational arithmetic, with the more efficient construction using local
subproblems and SVD based on floating point operations.

The entries in Table 1 show the time spent on the computations, whereas the
values in Table 2 depict the maximal resident set size (RSS), which is the amount
of memory occupied by the computation that is held in main memory (RAM).
The expected massive advantage of the localized computation using floating point
operations is clearly visible.

4 Approximation Properties

We explore the approximation power of the basis obtained for trilinear geometric
gluing data in case of spline degree p = 3, 4. To determine the rates of convergence
we use L2-fitting of suitable target functions that are defined on the two-patch

2Aborted because of too high memory requirements.
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Fig. 4 Two-patch geometry used for L2-fitting

geometry shown in Fig. 4. Besides the usual norms, which are defined on the entire
domain, we analyze the residuals via the following norms on the interface:

Type H 1(Γ ) L2(Γ ) L∞(Γ )

Norm ‖∇(f (1) − f (2))|Γ ‖2

√∫
Γ
|f |2ds maxΓ |f |

For bivariate C1-smooth spline spaces, optimal convergence rates were obtained for
degree p = 3 and higher, see [13]. However, this does not extend to the trivariate
case of trilinearly parameterized two-patch domains, as shown in Fig. 5. In the left
picture, the global error is shown, where a small reduction in the approximation
power can be recognized. This loss in the convergence rate is solely introduced by
the error on the interface, which is depicted in the right plot.

The reduction can be explained by taking a closer look on the involved spline
functions. Consider two spline functions f, f̂ ∈ GD , with f |Γ = f̂ |Γ . Since both
functions are elements of the glued spline space GD , they satisfy the following
equation

β ∂ug
(1) − γ ∂vg(1) + α(1) ∂wg(1) − α(2) ∂wg(2) = 0,

with g ∈ GD, g
(1) = g|Ω(1) , g(2) = g|Ω(2) , see (1).
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Fig. 5 L2-approximation errors for trilinear geometric gluing data of degree p = 3

Therefore, their difference, which is again a function in the glued spline space,
satisfies

β ∂u(f
(1) − f̂ (1))|Γ︸ ︷︷ ︸

=0

−γ ∂v(f (1) − f̂ (1))|Γ︸ ︷︷ ︸
=0

+

α(1) ∂w(f
(1) − f̂ (1))|Γ − α(2) ∂w(f (2) − f̂ (2))|Γ = 0,

hence

α(1) ∂w(f
(1) − f̂ (1))|Γ = α(2) ∂w(f (2) − f̂ (2))|Γ .

It has been observed that gcd(α(1), α(2)) = 1, see [5]. This implies that α(1),
which is a bivariate polynomial of degree (2,2), is a factor of each of the polynomial
segments of

d(2) = ∂w(f (2) − f̂ (2))|Γ .



36 K. Birner et al.

Similarly, α(2) is a factor of each of the polynomial segments of

d(1) = ∂w(f (1) − f̂ (1))|Γ .

We obtain two C1-smooth piecewise polynomial functions d(1)/α(2) and d(2)/α(1).
Since the degree of these functions does not exceed (3, 3) − (2, 2) = (1, 1), we
conclude that the spline functions

d(i) = ∂w(f (i) − f̂ (i))|Γ , i = 1, 2

are indeed single polynomials of degree (3, 3) and therefore C∞-smooth.
Consequently, the cross-boundary derivatives of any two functions f and f̂ ,

which take the same values on the interface Γ , differ only by a bi-cubic polynomial
with only four degrees of freedom, and this does not change as h is decreased. This
observation, which is in agreement with the results (that were obtained by a slightly
different approach) in [5], explains the loss of approximation power, as follows.

We consider two smooth functions ϕ, ϕ̂ ∈ C∞(Ω). There exist two sequences
(fh)h and (f̂h)h of trivariate tensor-product spline functions with uniform knots,
whose elements are taken from the glued spline spaces obtained for element size

h = 1

k + 1
→ 0,

such that (fh ◦ F−1)h and (f̂h ◦ F−1)h converge to ϕ and ϕ̂, respectively. If
these sequences converged with the full approximation power, the derivatives would
converge as well, hence

d
(i)
h = ∂w

(
f
(i)
h − f̂ (i)h

)|Γ →
(
∂w
(
(ϕ − ϕ̂) ◦ F (i)

))|Γ , i = 1, 2,

as h → 0. However, this is impossible for almost all pairs of given functions ϕ, ϕ̂,
since the functions d(i)h are single bicubic polynomials for any h.

If we consider spline degrees p > 3, this argument no longer applies and we
observe full approximation power, as shown in Fig. 6 for p = 4.
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Fig. 6 L2-approximation errors for trilinear geometric gluing data of degree p = 4

5 Conclusion

Based on earlier results about locally supported bases on trivariate two-patch
domains, which were shown to exist for trilinear geometric gluing data (that
corresponds to piecewise trilinear domain parameterizations) and sufficiently high
degree, we investigated the approximation properties of these functions. In addition
we also showed how to efficiently compute the basis functions using standard
arithmetic (i.e., floating point numbers). We observed that the existence of locally
supported interface basis functions for spline degree p = 3 does not suffice to
provide optimal approximation power, even though these functions take non-zero
values along the interface. In addition to the experimental results we also derived a
theoretical justification for this surprising fact. We also confirmed that these effects
are no longer present for higher polynomial degrees. Future work will be devoted to
multi-patch domains with more than two patches and to applications in numerical
simulation.
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A Novel Approach to Fluid-Structure
Interaction Simulations Involving Large
Translation and Contact

Daniel Hilger, Norbert Hosters, Fabian Key, Stefanie Elgeti, and Marek Behr

Abstract In this work, we present a novel method for the mesh update in flow
problems with moving boundaries, the phantom domain deformation mesh update
method (PD-DMUM). The PD-DMUM is designed to avoid remeshing; even in the
event of large, unidirectional displacements of boundaries. The method combines
the concept of two mesh adaptation approaches: (1) The virtual ring shear-slip mesh
update method (VR-SSMUM); and (2) the elastic mesh update method (EMUM).
As in the VR-SSMUM, the PD-DMUM extends the fluid domain by a phantom
domain; the PD-DMUM can thus locally adapt the element density. Combined
with the EMUM, the PD-DMUM allows the consideration of arbitrary boundary
movements. In this work, we apply the PD-DMUM in two test cases. Within the
first test case, we validate the PD-DMUM in a 2D Poiseuille flow on a moving
background mesh. Subsequently the fluid-structure interaction (FSI) problem serves
as a proof of concept. Within the FSI problem, isogeometric analysis and NURBS-
enhanced finite elements are employed to ensure an accurate description of the
moving boundaries and a consistent coupling along the FSI boundary. Moreover,
we stress the advantages of the novel method as compared to conventional mesh
update approaches.

1 Introduction

Many flow phenomena in technical processes, e.g., flows in liquid storage tanks,
valve and piston flows, and in general all fluid-structure interaction problems involve
moving boundaries. The moving boundaries can cause topological changes of the
fluid domain which are important to consider when solving the flow problem.
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The changes of the fluid domain can be described either implicitly or explicitly
[4]. In the implicit description–also called interface capturing–the boundary defor-
mations are recorded on a fixed background mesh. This strategy has the advantage
that complex topology changes, e.g., breaking waves, can be resolved easily. Yet, the
treatment of discontinuities, conservation of mass, and the imposition of boundary
conditions are still challenging. Examples of interface-capturing methods are the
volume-of-fluid method [7] or the level-set method [13]. In the explicit description–
called interface tracking–the domain deformations are described directly through
the movements of its boundaries. The mesh is restricted to the fluid domain and
conforms with its boundaries. This ensures an accurate approximation of the fluid
interface and allows the imposition of boundary conditions along the moving
boundary. However, every time the topology of the domain is changed, the mesh
must be adapted accordingly.

The straightforward approach to incorporate the domain deformation is remesh-
ing, but since remeshing is always connected to a projection of the solution between
the old and the new mesh configurations, it should be avoided if possible [11]. As
an alternative to remeshing, mesh update methods can be used, where the current
mesh is adapted to the changes of the domain.

Mesh update methods can be categorized into two groups: (1) Methods in which
the position of the mesh nodes are updated according to a predefined deformation
rule, and (2) those where the mesh update is described by an additional set of
equations [20]. In order to implement mesh update methods based on a predefined
deformation rule, the changes of the fluid must be known in advance. One examples
is the shear-slip mesh update method [3], where large relative rotational motions are
considered by means of a connectivity update inside a small layer of the mesh.

In case that the motions of the boundaries are a priori unknown, the positions
of the internal mesh nodes need to be computed according to the displacements
of the moving boundaries. There exist different strategies to compute the updated
positions of the internal mesh nodes, for example PDE based methods as the
elastic mesh update method (EMUM) [11], the concept of radial basis functions
[5], or spring based methods [2]. Furthermore, these methods have been enhanced
by edge swapping and vertex smoothing operations to retain an adequate mesh
quality even in the event of large displacements [21, 1]. Nevertheless, all of the
above mentioned methods do not provide a satisfactory solution when it comes to
boundary movements that result in strongly constricted or expanded parts of the
initial mesh, as it happens for example in valve flows. This is because the existing
mesh cells are either heavily squeezed or stretched. In this case, remeshing of the
fluid domain becomes inevitable.

In order to avoid the need for remeshing, we propose a new mesh deformation
method for large unidirectional mesh movements on boundary conforming meshes.
Therefore, we combine the EMUM and the recently introduced virtual ring shear-
slip mesh update method (VR-SSMUM) [12]. The basic idea is here to perform
the mesh update by means of the EMUM, but allow additional mesh cells to enter
or exit the fluid domain. Thus, the squeezing and the stretching of mesh cells
is prevented by the possibility to increase or decrease the local number of finite
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elements (FE). The new method is employed in conjunction with the deforming-
spatial-domain/stabilized space-time (DSD/SST) approach [18], which is used to
solve the flow problem on the changing domain.

We conclude the introduction of the novel mesh update method by presenting
the PD-DMUM in a test case that serves as a proof of concept. The test case
describes a fluid-structure interaction (FSI) problem where isogeometric analysis
[9] and NURBS-enhanced finite elements [16] are employed to obtain an accurate
description of the deforming boundaries and a consistent coupling [8] across the FSI
interface.

The structure of this paper is as follows: In Sect. 2, we provide the governing
equations of the flow problems we want to consider in the scope of this work.
Further, we briefly summarize the DSD/SST method and the EMUM. The concept
and the implementation of the new mesh update method are explained in Sect. 3. In
Sect. 4, the validation and testing of the mesh update method is discussed by means
of two test cases.

2 Governing Equations of Fluid Dynamics

The proposed mesh update method is developed specifically for flow problems with
boundary conforming meshes involving large unidirectional boundary movements.
In this section, we present the governing equations of the flow problems examined
within this work and further, we give a brief summary on the numerical methods
employed to solve them.

2.1 Governing Equations of Fluid Dynamics

Consider an incompressible fluid covering the deformable fluid domain�ft ⊂ Rnsd ,
with nsd indicating the number of spatial dimensions. At every time instant t ∈
[0, T ], the fluid’s unknown velocity u(x, t) and pressure p(x, t) are governed by the
Navier-Stokes equations for incompressible fluids:

ρf

(
∂uf

∂t
+ uf · ∇uf − ff

)

− ∇ · σ f = 0 on �ft ,∀t ∈ (0, T ) , (1a)

∇ · uf = 0 on �ft ,∀t ∈ (0, T ) , (1b)

with ρf denoting the fluid density and ff representing all external body forces per
unit mass. For Newtonian fluids, the stress tensor σ f is defined as

σ f = −pf I + 2ρf νf εf (uf ), (2)



42 D. Hilger et al.

with

εf (uf ) = 1

2

(
∇uf +

(
∇uf

)T)
, (3)

where νf denotes the dynamic viscosity. A well-posed system is obtained when
boundary conditions are imposed on the external boundary �ft . Here, we distinguish
between Dirichlet and Neumann boundary conditions given by:

uf = gf on �ft,g, (4a)

nf · σ f = hf on �ft,h, (4b)

where gf and hf prescribe the velocity and stress values on complementary subsets
of �ft . With regard to deformation of the fluid domain �ft in time, the DSD/SST
method is applied to solve the Navier-Stokes equations.

2.2 Deforming-Spatial-Domain/Stabilized Space-Time Method

The DSD/SST method is a space-time-based finite-element (FE) method, i.e., a FE
discretization is applied to space and time. It was first applied to flow problems with
moving boundaries in [18, 19].

The advantage of the DSD/SST method is, that the variational form of the
governing equations implicitly incorporates the deformations of the domain. In
order to construct the interpolation and weighting function spaces used in the
variational formulation of the problem, the time interval (0, T ) is split into N
subintervals In = [

tn, tn+1
]
, where tn and tn+1 belong to an ordered series of time

levels. Thus, the space-time continuum is divided into N space-time slabs Qn as

x

y

t

Qtn+1

Qtn

Pn Pn

Fig. 1 Space-time slab
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depicted in Fig. 1, bounded by the spatial configurations �t at time tn and tn+1,
and Pn describing the course of the spatial boundary �ft as t traverses In. The
boundary Pn can be decomposed into two complementary subsets (Pn)g and (Pn)h,

representing the Dirichlet and Neumann boundary conditions of �ft ∀t ∈ In. The
space-time slabs are weakly coupled along their interfaces using jump terms. For
the spatial approximation �ft,h of the domain �ft , the following finite element trial
and weighting function spaces are constructed:

H1h(Qn) :=
{

wh ∈ H1 (Qn)

∣∣∣whT
∣∣∣ is a first-order polynomial ∀T ∈ T h

}
,

(5a)

Shu :=
{

uh|uh ∈
[
H1h (Qn)

]nsd
,uh = g on (Pn)g

}
, (5b)

Vh :=
{

wh|wh ∈
[
H1h (Qn)

]nsd
,wh = 0 on (Pn)g

}
, (5c)

Shp = Vh
p :=

{
qh|qh ∈ H1h (Qn)

}
. (5d)

Therein, the space H1(Qn) is approximated by the interpolation function space
H1h(Qn) with first-order polynomial functions in space and time. Using the
following notational convention,

(
uh
)±
n

= lim
ε→0

u (tn ± ε) (6a)

∫

Qn

· · · dQ =
∫

In

∫

�t

· · · d�dt, (6b)

∫

(Pn)

· · · dP =
∫

In

∫

�t

· · · d�dt, (6c)

and following references [18, 10, 14], the stabilized variational formulation of the

Navier Stokes equations is obtained: Given
(

uh
)−
n

with
(

uh
)−

0
= u0, find uh ∈ Shu

and ph ∈ Shp such that ∀wh ∈ Vh
u, ∀q ∈ Vh

P :

∫

Qn

wh · ρf
(
∂uh

∂t
+ u · ∇ · uh − f

)

dQ+
∫

Qn

∇wh : σ (ph,uh)dQ

+
∫

Qn

qh∇ · uhdQ+
∫

�n

(
wh
)+
n
· ρf

((
uh
)+
n
−
(

uh
)−
n

)
d�

+
nel∑

e=1

∫

Qen

1

ρf
τMOM

[
ρf uh · ∇wh + ∇qh

]
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·
⎡

⎣ρf
(
∂uh

∂t
+ u · ∇ · uh − f

)

− ∇ · σ (ph,uh)
⎤

⎦ d�

+
nel∑

e=1

∫

Qen

∇ · whρf τCONT∇ · uhd�

=
∫

(Pn)h

wh · hhdP. (7)

In Eq. (7), the first three terms and the last term directly result from the variational
formulation of Eq. (1), whereas the fourth term denotes the jump terms between the
space-time slabs. Terms five and six result from a Galerkin-Least Squares (GLS)
stabilization applied to the Navier-Stokes equations. The stabilization approach used
within this work and the choice of the stabilization parameters τCONT and τMOM
are described in detail in [14].

Though the DSD/SST method implicitly accounts for the domain deformations
in one time slab, a deformation rule is needed to deform the FE mesh according to
the boundary movements.

2.3 Elastic Mesh Update Method

One approach for the automatic mesh update in boundary conforming meshes is the
elastic mesh update method (EMUM) introduced by Johnson and Tezduyar [11],
where the mesh is understood as an elastic body occupying the bounded region
�# ⊂ Rnsd with boundary �#. Thus, the deformation of the mesh is expressed
in terms of the nodal displacements d# governed by the equilibrium equation of
elasticity:

∇ · σ # = 0, (8)

where σ # corresponds to the Cauchy stress tensor,

σ # = λ
(
trε#

)
I + 2με# , ε# = 1

2

(
∇d# +

(
∇d#

)T)
. (9)

The imposition of Dirichlet and Neumann boundary conditions yields a well-posed
problem for the mesh deformation:

d# = g# on (�)#g , (10)

n · σ # = h# on (�)#h , (11)
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where g# and h# prescribe the displacements and normal stresses on the mesh
boundaries.

The elasticity problem is solved with the Galerkin FE method and the resulting
displacements are applied to the mesh nodes representing the upper mesh configu-
ration of the current space-time slab.

3 The Phantom Domain Mesh Deformation Method

The aim of the newly proposed method is to extend the usability of boundary-
conforming meshes for deforming domains with large, unidirectional deformations.
The specific target are applications with large, unidirectional deformations (imagine
an object sinking within a fluid or the flow through a valve). So far, the fluid
domain is enclosed within two types of boundaries: (1) deforming, and (2) fixed. The
deforming boundaries are handled in a standard interface tracking way, meaning that
the boundary deforms according to its relevant deformation rule—e.g., determined
by the structure in an FSI context or a free-surface motion—while the inner
nodes adapt to this motion. As depicted in Fig. 2, a predominantly unidirectional
deformation, however, soon results in a situation where one side of the mesh
contains very compressed elements, whereas the other side is comprised of very
stretched elements.

In our proposed method, this is counteracted via the implementation of a new
boundary condition that allows mesh cells to exit and enter the fluid domain as
needed. The implementation of this boundary condition is based on the concept of
the VR-SSMUM presented in [12]. As with the VR-SSMUM, the mesh is extended

Fig. 2 Mesh deformation with PD-DMUM vs. EMUM
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Fig. 3 Activity pattern on mesh with initial and corrected course of interface �I

by additional mesh cells. The VR-SSMUM, however, is restricted to uniform mesh
movements on a subset of the mesh and does not consider arbitrary boundary
movements as needed for example in FSI computations. As sketched in Fig. 2, the
additional cells are positioned in a phantom domain which is located outside of the
fluid domain. In the following we will therefore refer to this method as the phantom
domain deformation mesh update method (PD-DMUM).

Since not all mesh cells are positioned within the fluid domain, an activity
pattern, as illustrated in Fig. 3, is used to determine which elements are used
in the computation of the flow problem. Here, elements that intersect with the
fluid domain are considered as activated elements whereas the remaining elements
are deactivated. Activated and deactivated elements have a common interface �I .
The interface is a boundary of the fluid domain, which requires the definition
of boundary values. The boundary value prescribed at the element nodes of the
interface is of a new boundary type. The element nodes associated with the new
boundary type have the special characteristic that they prescribe boundary values
to the flow problem, but function as internal nodes in the mesh update method.
Consequently, the mesh of the phantom domain and the fluid domain are considered
as one coherent mesh in the mesh deformation process.

Now that the mesh is deformed according to the underlying deformation rule,
elements from the phantom domain can slide across the prescribed fluid boundary
�PF into the fluid domain or vice versa. This changes the composition of elements
that intersect with the fluid domain, so that the activity pattern of the elements
must be re-determined. In the space-time approach used here, one space-time slab is
bounded by two different mesh configurations. This can lead to the situation shown
in Fig. 4a, where an element is located inside the fluid domain on the upper time
level, yet positioned outside at the lower time level. Therefore, we define here that
the mesh configuration at the upper time level always determines which elements
represent the fluid domain. Based on the updated activity pattern, the new location
of the interface �I is determined within the mesh. The position of �I usually does
not correspond to the position of the predefined fluid boundary �PF .

The boundary conformity of the mesh for �PF is now obtained by a closest point
projection of all mesh nodes on �I to the prescribed contour of the fluid boundary.
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Fig. 4 Shifting of �I for boundary conformity in space-time slab. (a) Uncorrected boundary �I .
(b) Corrected boundary �I

Since the projection of mesh nodes can result in arbitrarily small elements, a
tolerance which depends on the element size is considered in the determination
process of the nodal activity. Further, it is important to note the special case of
those elements which were not yet part of the fluid discretization in the previous
time step, because these elements require a projection of the old solution onto the
new boundary nodes. This is necessary to calculate the jump terms in Eq. (1). This
means that the new method does not require remeshing, yet the projection between
two mesh configurations cannot be completely avoided. However, the projection is
limited to single elements when they enter the fluid domain.

The sequence of the individual steps within the PD-DMUM can be summarized
as follows:

1. Update mesh according to moving boundaries.
2. Identify activated and deactivated elements.
3. Adapt the boundaries to the prescribed position of the fluid domain.
4. Set boundary values for the nodes on the redefined interface �I .
5. Project the solution of the previous time step for all newly activated

elements.
6. Solve flow problem on active elements.

In direct comparison with a conventional update strategy for boundary conforming
meshes, such as the EMUM, steps (2)–(5) are those which are additionally required.

Depending on the boundary movements, the PD-DMUM can be complemented
with additional mesh update strategies. In case of large unidirectional boundary
movements, we can employ the concept of the virtual ring presented in [12]. The
objective of the virtual ring is to reduce the size of the phantom domain in the
mesh update. For this purpose, we connect the mesh along the outward facing
boundaries of two oppositely positioned phantom domains. This connection results
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shift

PF PF

T

element transfer

deactivated virtual region

F

Fig. 5 Illustration of the virtual ring concept

in a coherent mesh, forming a virtual ring as illustrated in Fig. 5. The mesh update
can now transfer elements between the connected phantom domains, while moving
them along the virtual ring. Consequentially, elements can exit the fluid domain on
one side and re-enter the domain on the other side. Therefore, the phantom domains
can be reduced to a thin layer of elements. The reduction of the phantom domains
results in a significant decrease of computational cost for the mesh deformation
problem.

4 Computational Results

The implementation of the PD-DMUM is applied to two test cases. In a first step,
we validate the mesh update method by examining its influence on the solution of
a two dimensional Poiseuille flow. In the second test case we show, by means of an
example from the field of FSI, the advantages of the PD-DMUM.

4.1 2D Poiseuille Flow on Moving Background Mesh

In the first test case we examine the influence of the PD-DMUM on a flow problem
with a well-known solution. For this purpose, we consider a two-dimensional
Poiseuille flow in a tube. The topology of the fluid domain remains unchanged,
yet a predefined motion is applied to the underlying mesh. The PD-DMUM is used
to perform the mesh update, but should not affect the flow field within the tube.

The geometric dimensions of the tube are chosen according to Fig. 6. In the
middle of the domain, we position a mesh section �T by means of which the
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deactivated elements

active domain

ΓPF

ΓPF

ΓT

1.2 m0.5 m 0.5 m

0.20 m

0.40 m

0.20 m

1.0 m 0.2 m

(0,0)

Fig. 6 Tube geometry for Poiseuille flow

Table 1 Properties of fluid in 2D Poiseuille flow

Parameter Identifier Value

Density ρ 1.0 [kg/m3]

Viscosity ν 0.001 [kg/m·s]

Mean velocity U 2.5 [m/s]

predefined mesh motion is imposed as a Dirichlet boundary condition. The boundary
�T has no physical impact with respect to the flow problem. The additional phantom
domains required within the PD-DMUM are positioned along the upper and lower
boundary of the tube. The material properties of the fluid are chosen according to
Table 1. Regarding boundary conditions of the flow, we impose no-slip condition
along the walls of the tube. This also applies to the boundary section �PF at the
interface between the phantom domain and the fluid domain. A parabolic inflow
profile for the velocity is given at the inlet of the tube:

u(y) =
(

4Uy(H − y)
H 2

, 0

)
. (12)

At the outflow the tangential velocity components are set to zero and the pressure
is assumed to be p = 0. With respect to the mesh update, the position of the nodes
at the inlet, the outlet, and the tube walls are fixed. However, this does not apply to
�PF and the remaining boundaries of the phantom domain, as these nodes should
be able to move freely. For the boundary �T we prescribe the following sinusoidal
movement:

d(t) =
(

0 , 0.1 · sin

(
2π t

T

))

. (13)

The mesh deformation is examined for a period of T = 8 [s]. The time step size is
�t = 0.02 [s]. Initially, a fully developed flow profile is already present in the pipe.
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The Poiseuille flow is computed on four mesh configurations with the PD-
DMUM and for the purpose of comparison for one configuration by the EMUM. For
the comparison of the solutions we use the flow velocity. The velocity is measured
at a probe positioned at point (1.1, 0.2) inside the tube. Together with the given
analytical solution of the Poiseille flow, the relative error can be computed for the
different mesh configurations.

In a first step, the relative error of the computed velocity is evaluated for the probe
position. In Fig. 7 it can be observed that the relative error decreases as the mesh is
refined. The comparison between the solution of the EMUM and the PD-DMUM
on similar grids shows that the relative error for the calculated velocity is of the
same order of magnitude. The fluctuations that can be observed for all computations
can be explained by the linear interpolation of the parabolic velocity profile at the
probe position. In Fig. 8, we can observe that the numerical solution converges
for the PD-DMUM towards the analytic solution of the Poiseuille problem. Both,
the convergence of the PD-DMUM and the comparable results to the EMUM for
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The Phantom Domain Deformation Mesh Update Method 51

moderate mesh deformations indicate that the PD-DMUM provides a valid mesh
update.

4.2 Falling Ring in a Fluid-Filled Container

The second test case is used to illustrate possible applications of the PD-DMUM.
For this purpose, we consider a fluid-structure interaction with large translational
boundary movement. More precisely, we simulate an elastic ring that falls inside
a fluid-filled container until it hits the ground and rebounds. Concerning the mesh
deformation, this is a demanding process, since the number of mesh cells, which
are initially positioned between the ring and the bottom, must be reduced to zero
by the time of contact. Using previous mesh update methods it is not possible to
simulate this process on boundary conforming meshes without frequent remeshing
of the fluid domain.

The geometric dimensions of the container and the ring are chosen according to
Fig. 9. The ring is represented by a non-uniform rational B-spline (NURBS) [15]
with 721 elements and second-order basis functions. In total 13,448 elements are
used to discretize the fluid domain and the additional phantom domains. In the
flow problem no-slip conditions are prescribed along the walls and the bottom
of the container, whereas the top of the container is assumed to be open. The
fluid velocity at the ring surface corresponds to the structural velocity. In terms
of the mesh deformation problem the mesh nodes on the container and walls of the

1.0 m

0.4 m

0.4 m

1.0 m

0.5m

0.16 m

0.08 m

0.75 m

phantom domain

phantom domain

Fig. 9 Geometry of container with ring
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phantom domains are restricted to a vertical movement. The structural deformation
is prescribed as a Dirichlet value for the ring boundary.

The FSI problem is solved in a staggered solution approach with an implicit
coupling scheme [6]: The fluid loads and the structural displacements are exchanged
iteratively until both field problems are fully converged. On the structural side, the
deformation of the ring are represented by a linear elastic problem solved with
isogeometric analysis (IGA) [9]. The contact interaction between the ring and the
bottom of the container is considered via the penalty method [17]. The flow field
induced by the motion of the ring is described by the Navier-Stokes equations
which are solved by the DSD/SST approach in combination with the presented PD-
DMUM. The two field problems are strongly coupled in time [20], and for the spatial
coupling we apply a NURBS-based coupling following [8].

In Figs. 10, 11, 12, 13, and 14, we present snapshots of the simulation at different
points in time, starting from the initial position of the ring, via the moment when
the ring is in contact with the bottom of the container, up to the point of maximal
altitude after the first contact interaction. As it can be guessed from the snapshot
in Fig. 12, one element remains between the bottom of the container and the falling
ring. This element will not be removed because we cannot exactly comply with
the contact conditions using the penalty method. Nevertheless, it can be observed
in every snapshot, that mesh cells experience large displacements but only little
deformations. Due to the application of the PD-DMUM, the entire FSI problem was
solved without remeshing.

Fig. 10 Velocity at t = 0 s
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Fig. 11 Velocity at t = 0.55 s

Fig. 12 Velocity at t = 0.75 s



54 D. Hilger et al.

Fig. 13 Velocity at t = 1.0 s

Fig. 14 Velocity at t = 1.45 s
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5 Discussion

In this paper, we presented a novel approach for the mesh update of boundary
conforming meshes, particularly developed for problems with large unidirectional
boundary movements, the PD-DMUM. Subsequent to the description, we evaluated
the PD-DMUM in two test cases. In the first test case we showed by means of a
Poiseuille flow the general agreement of the PD-DMUM with results of consisting
methods. In the fluid-structure interaction problem presented in the second test
case we emphasised the applicability of the PD-DMUM in complex processes with
moving boundaries.
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Planar Parameterization on Convex
Multipatch Domains
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Abstract The first step towards applying isogeometric analysis techniques to
solve PDE problems on a given domain consists in generating an analysis-suitable
mapping operator between parametric and physical domains with one or several
patches from no more than a description of the boundary contours of the physical
domain. A subclass of the multitude of the available parameterization algorithms are
those based on the principles of Elliptic Grid Generation (EGG) which, in their most
basic form, attempt to approximate a mapping operator whose inverse is composed
of harmonic functions. The main challenge lies in finding a formulation of the
problem that is suitable for a computational approach and a common strategy is to
approximate the mapping operator by means of solving a PDE-problem. PDE-based
EGG is well-established in classical meshing and first generalization attempts to
spline-based descriptions (as is mandatory in IgA) have been made. Unfortunately,
all of the practically viable PDE-based approaches impose certain requirements on
the employed spline-basis, in particular global C≥1-continuity.

This paper discusses an EGG-algorithm for the generation of planar param-
eterizations with locally reduced smoothness (i.e., with support for locally only
C0-continuous bases). A major use case of the proposed algorithm is that of
multipatch parameterizations, made possible by the support of C0-continuities.
This paper proposes a specially-taylored solution algorithm that exploits many
characteristics of the PDE-problem and is suitable for large-scale applications. It
is discussed for the single-patch case before generalizing its concepts to multipatch
settings. This paper is concluded with three numerical experiments and a discussion
of the results.
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1 Introduction

The automatic generation of analysis-suitable planar parameterizations for IgA-
based numerical simulations is a difficult, yet important problem in the field of
isogeometric analysis, since generally no more than a description of the boundary
contours is available. The main challenge lies in the generation of a folding-free (i.e.,
bijective) parameterization with numerically favorable properties such as orthogonal
isolines and a large degree of parametric smoothness. Furthermore, a practical
algorithm should be computationally inexpensive, and, if possible, exhibit little
sensitivity to small perturbations in the boundary contour description.

Let � denote the target geometry and �̂ the parametric domain. Furthermore, let
x : �̂ → � denote the mapping operator that we attempt to build from the linear
span of the B-Spline basis � = {w1, w2, . . . , wN }, where x|

∂�̂
= ∂� is known.

Note that x is of the form:

x(ξ, η) =
∑

i∈Iboundary

ciwi(ξ, η)+
∑

j∈Iinner

cjwj (ξ, η), (1)

where Iinner and Iboundary denote the index set of the vanishing and nonvanishing
basis functions on ∂�̂, respectively. Formally, Iboundary∩Iinner = ∅ and Iboundary∪
Iinner = {1, . . . , N}. With this, the objective of all parameterization algorithms is to
properly select the inner control points cj , while the boundary control points ci are
known from the boundary contours and typically held fixed.

In [8], Gravesen et al. study planar parameterization techniques based on the
constrained minimization of a quality functional over the inner control points.
To avoid self-intersections, a nonlinear and nonconvex sufficient condition for
det J > 0, where J denotes the Jacobian of the mapping, is added as a constraint.
The numerical quality of the resulting parameterization depends on the choice of
the employed cost functional and the characteristic properties of �. While this
approach is not guaranteed to yield acceptable results for all types of geometries
(see Sect. 4), it is known to yield good results in a wide range of applications with
proper parameter tuning. A drawback is the relatively large number of required
iterations (typically ∼ 30) and the need to find an initial guess that satisfies the
constraints (for which another optimization problem has to be solved first). The
proposed minimization is tackled with a black-box nonlinear optimizer (IPOPT [2])
that comes with all the drawbacks of nonlinear optimization such as the danger of
getting stuck in local minima.

Another class of parameterization methods suitable for nontrivial geometries are
PDE-based, most notably, the class of methods based on the principles of elliptic
grid generation (EGG). Methods based on EGG attempt to generate a mapping
x : �̂ → � such that the components of x−1 : � → �̂ are harmonic functions
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on �. For this, a nonlinear partial differential equation is imposed on x, which takes
the form

L(x) = g22xξξ − 2g12xξη + g11xηη = 0, s.t. x|
∂�̂

= ∂�, (2)

with

g11(x) = xξ · xξ ,

g12(x) = xξ · xη,

g22(x) = xη · xη (3)

being the entries of the metric tensor of the mapping (which are nonlinear functions
of x). Under certain assumptions of the boundary contour regularity and assuming
that �̂ is convex, it can be shown that the exact solution of (2) is bijective, justifying
a numerical approximation for the purpose of generating a geometry description [1].

EGG has been an established approach in classical meshing for decades and
first attempts to apply it to spline-based geometry descriptions were made in [13],
where the equations are approximately solved by a collocation at the abscissae of a
Gaussian quadrature scheme with cubic Hermite-splines. In [12], the collocation
takes place at the Greville-abscissae and the resulting nonlinear equations are
solved using a Picard-based iterative scheme, allowing for a wider range of spline-
bases. However, as a downside, the consistency order of Greville-based collocation
is not optimal. In [9], the equations are discretized with a Galerkin approach
and a Newton-based iterative approach is employed for the resulting root-finding
problem, allowing for C≥1-continuous bases. Numerical convergence is accelerated
by generating good initial guesses utilizing multigrid-techniques and convergence
is typically achieved within 4 (unconstrained) nonlinear iterations.

Unfortunately, none of the aforementioned approaches allow for spline-bases
with locally reduced smoothness, limiting their usefullness in practice, since
in certain applications C0-continuities are desirable or unavoidable, notably in
multipatch parameterizations or when ∂� is build from a spline-basis with (one
or more) p-fold internal knot repetitions (where p refers to the polynomial order of
the spline-basis used). To allow for C0-continuities, one may instead minimize the
Winslow-functional [16] (whose global minimizer is equal to the exact solution of
(2)). Unfortunately, this leads to a formulation in which the Jacobian determinant
appears in the denominator, which is why an iterative solution scheme has to be
initialized with a bijective initial guess in order to avoid division by zero, restricting
it to use cases in which a bijective initial guess is available.

Motivated by our striving for a computationally inexpensive parameterization
algorithm that does not have to be initialized by a bijective initial guess and allows
for spline-bases with arbitrary continuity properties, in this paper, we augment the
discretization proposed in [9] with auxilliary variables, leading to a mixed-FEM
type problem. To allow for its application to large-scale problems, we present a
solution strategy that tackles the resulting nonlinear root-finding problem with a
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Newton-Krylov-based [11] Jacobian-free iterative approach that only operates on
the nonlinear part (corresponding to the primary, not auxilliary variables) of the
equation. Besides single-patch problems, we will address potential use cases of the
algorithm in multipatch settings (in particular with extraordinary vertices), made
possible by the support of C0-continuous spline bases. We conclude this paper with
a number of example-parameterizations and a discussion of the results.

2 Problem Formulation

In [9], the following discretization of the governing equations (see Eq. (2)) is
proposed:

find x ∈ [span�]2 s.t.
{
∀σ i ∈ [�0]2 : ∫

�̂
σ i ·L(x)dξ = 0

x|
∂�̂

= ∂� , (4)

where �0 ≡ {wi ∈ � | wi |∂�̂ = 0}.
Similarly, [10] introduces a scaled version of (4), namely:

find x ∈ [span�]2 s.t.
{
∀σ i ∈ [�0]2 : ∫

�̂
σ i · L̃(x)dξ = 0

x|
∂�̂

= ∂� , (5)

where

L̃(x) = L(x)
g11 + g22︸ ︷︷ ︸

≥0

+ μ
︸︷︷︸
>0

. (6)

Here, μ > 0 is a small positive parameter that is usually taken to be μ = 10−4.
The motivation to solve (5) rather than (4) is based on the observation that

numerical root-finding algorithms typically converge faster in this case and that a
suitable convergence criterion is less geometry-dependent. Note that the scaling
is allowed because the exact solution is unchanged. Therefore, we base our
reformulation of the problem on (5).

In order to reduce the highest-order derivatives from two to one, we introduce
a new operator in which we replace second order derivatives in x by the first order
derivatives of u and v, respectively:

U(u, v, x) = g22uξ − g12uη − g12vξ + g11vη
g11 + g22 + μ . (7)
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Where U satisfies

L̃(x) = U(xξ , xη, x). (8)

A possible reformulation of (5) with auxilliary variables now reads:

find (u, v, x)T ∈ [span �̄]4 × [span�]2 s.t.
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀σ i ∈ [�̄]4 × [�0]2 : ∫
�̂

σ i ·
⎛

⎜
⎝

u − xξ
v − xη

U(u, v, x)

⎞

⎟
⎠ dξ = 0

x|
∂�̂

= ∂�
, (9)

where �̄ = {w̄1, . . . , w̄N̄ } denotes the basis that is used for the auxilliary variables.
Note that the choice of (7) is not unique. Here, we have chosen to divide xξη

equally among uη and vξ . In general, any combination

xξη → χuη + (1 − χ)vξ , (10)

is valid. Note that since the gij are functions of xξ and xη, further possible variants
are acquired by substituting u, v in the gij .

System (9) now constitutes a discretization of (2) that allows for only C0-
continuous bases at the expense of increasing the problem size from 2|Iinner| to
2|Iinner| + 4|�̄|, where, as before, Iinner refers to the index set of inner control
points.

Let us remark that in certain settings, it suffices to invoke auxilliary variables in
one coordinate-direction only. A possible problem formulation for the ξ -direction
reads:

find (u, x)T ∈ [span �̄]2 × [span�]2 s.t.
⎧
⎪⎪⎨

⎪⎪⎩

∀σ i ∈ [�̄]2 × [�0]2 : ∫
�̂

σ i ·
(

u − xξ
Uξ (u, x)

)

dξ = 0

x|
∂�̂

= ∂�
, (11)

with (for instance)

Uξ (u, x) = g22uξ − g12uη − g12xξη + g11xηη
g11 + g22 + μ . (12)

And similarly for the η-direction.
The above approach is useful if C0-continuities are only required in a single

coordinate-direction so that the total number of degrees of freedom (DOFs) can be
reduced.
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3 Solution Strategy

Systems (9) and (11) are nonlinear and have to be solved with an iterative algorithm.
We will discuss a solution algorithm that is loosely based on the Newton-approach
proposed in [9]. However, we tweak it in order to reduce computational costs and
memory requirements by exploiting many characteristics of the problem at hand.
First, we discuss the case in which �̂ is given by a single patch, after which we
generalize our solution strategy to multipatch-settings (in particular with topologies
that contain extraordinary vertices).

3.1 Single Patch Parameterizations

With x = x[c], where c is a vector containing the cj in (1) (while freezing the ci
that follow from the boundary condition) and (u, v)T = (u, v)T [d], where d =
(du,dv)T is a vector containing dui and dvi in

u[du] =
∑

i

dui w̄i ,

v[dv] =
∑

i

dvi w̄i , (13)

we can reinterpret (9) as a problem in c and d. It has a residual vector of the form

R(d, c) =
(
RL(d, c)
RN(d, c)

)

, (14)

where RL refers to the linear part in (9) (the projection of the auxilliary variables
onto xξ and xη) and RN to the nonlinear (the part involving the operator U(u, v, x)).

The Newton-approach from [9] requires the assembly of the Jacobian

JR =
⎛

⎜
⎝
∂RL
∂d

∂RL
∂c

∂RN
∂d

∂RN
∂c

⎞

⎟
⎠ ≡

(
A B

C D

)

(15)

of (9) at every Newton-iteration. The matrices A and B, corresponding to the linear
part in (9), are not a function of c and d and thus have to be assembled only once. In
fact, A is block-diagonal with blocks given by the parametric mass matrix M̄ over
the auxilliary basis �̄ = {w̄1, . . . , w̄N̄ } with entries

M̄ij =
∫

�̂

w̄iw̄jdξ , (16)
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while B is block-diagonal with blocks whose columns are given by a subset of the
columns of the matrices M̄ξ and M̄η with entries

M̄
ξ
ij =

∫

�̂

w̄iwjξdξ (17)

and

M̄
η
ij =

∫

�̂

w̄iwjηdξ . (18)

For given c and d, the Newton search-direction is computed from a system of the
form

(
A B

C D

)(
�d
�c

)

=
(

a
b

)

, (19)

where C = C(d, c) and D = D(d, c) are, unlike A and B, not constant and have to
be reassembled in each iteration. We form the Schur-complement of A, in order to
yield an equation for �c only, namely:

(D − CA−1B︸ ︷︷ ︸
D̃

)�c = b − CA−1a. (20)

In order to avoid the computationally expensive assembly of C andD, we solve (20)
with a Newton-Krylov [11] algorithm which only requires the evaluation of vector
products D̃s, which can be approximated with finite differences rather than explicit
assembly of C and D. Since

Cs1 +Ds2 = RN
(
d + εs1, c + εs2

)− RN(d, c)
ε

+ O(ε), (21)

we have

D̃s � RN(d − εA−1Bs, c + εs)− RN(d, c)
ε

, (22)

and

CA−1a � RN(d + εA−1a, c)− RN(d, c)
ε

, (23)

for ε small. The optimal choice of ε is discussed in [11].
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We compute products of the form q = A−1t from the solution of the system
Aq = t, which has for t = Bs (see Eq. (22)) and t = a (see Eq. (23)) the form of a
(separable) L2-projection. Let

x0[c] =
∑

j∈Iinner

cjwj . (24)

Product q = A−1Bs satisfies

q = (qu,qv)T = argmin
(q̃u,q̃v)

1

2

∫

�̂

∥∥∥∥∥∥

[
u[q̃u]
v[q̃v]

]

−
[

x0
ξ [s]

x0
η[s]

]∥∥∥∥∥∥

2

dξ , (25)

and similarly for q = A−1a.
As such, A is block-diagonal and composed of separable mass matrices M̄ =

m̄ξ ⊗ m̄η

A =

⎛

⎜⎜
⎝

m̄ξ ⊗ m̄η
. . .

m̄ξ ⊗ m̄η

⎞

⎟⎟
⎠ , (26)

where m̄ξ and m̄η refer to the univariate mass matrices resulting from the tensor-
product structure of �. Therefore, we have

A−1 =

⎛

⎜⎜
⎝

(m̄−1
ξ )⊗ (m̄−1

η )

. . .

(m̄−1
ξ )⊗ (m̄−1

η )

⎞

⎟⎟
⎠ . (27)

We follow the methodology from [6], where a computationally inexpensive inver-
sion of this 2D mass matrix is achieved by repeated inversion with the 1D mass
matrices m̄ξ and m̄η. Here, we do direct inversion of the 1D mass matrices by
computing their Cholesky-decompositions [15]. An inversion can be done in only
O(N̄) arithmetic operations and Cholesky-decompositions have to be formed only
once, thanks to the fact that A is constant.

After solving (20), �d is found by solving

A�d = a − B�c. (28)

Upon completion, the vector n ≡ (�d,�c)T constitutes the Newton search-
direction. We update the current iterate (d, c)T by adding νn, where the optimal
value of ν ∈ (0, 1] is estimated through a line-search routine. Above steps are
repeated until the norm of n is negligibly small. Upon completion, we extract the
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c-component from the resulting solution vector which contains the inner control
points of the mapping operator x, while the d-component serves no further purpose
and can be discarded.

It should be noted that a single matrix-vector product D̃s is slightly more
expensive than, for instance, Ds, due to the requirement to invert A. However,
thanks to the separable nature of A, the costs in (22) are dominated by function
evaluations in RL, which implies that a performance quite similar to that of an
approach without auxilliary variables can be achieved.

There exist many possible choices of constructing an initial guess for the c-
component of the iterative scheme. Common choices are algebraic methods, most
notably transfinite interpolation [7]. Once the c-component has been computed with
one of the available methods, a reasonable way to compute the corresponding d-part
is through a (separable) projection of xξ and xη onto �̄.

Slightly superior initial guesses can be generated using multigrid techniques
as demonstrated in [9]. The problem is first solved using a coarser basis and an
algebraic initial guess, after which the coarse solution vector is prolonged and
subsequently used as an initial guess. This is compatible with the techniques
discussed in this section. However, instead of prolonging the full coarse solution
vector, we only prolong the c-component and compute the corresponding d-
component using an L2(�̂)-projection.

3.2 Multipatch

The reformulation with auxilliary variables has a particularly interesting application
in multipatch-settings, especially when extraordinary patch vertices are present.
Most of the techniques from Sect. 3.1 are readily applicable but there exist subtle
differences that shall be outlined in the following.

Let �̂ be a multipatch domain, i.e.,

�̂ =
n⋃

i=1

�̂i . (29)

For convenience, let us assume that each �̂i is an affine transformation of the
reference unit square �̃ = [0, 1]2 with corresponding mapping mi : �̃ → �̂i ,
where

mi (s) = Ais + bi . (30)

Here, Ai is an invertible matrix, bi ∈ R
2 some translation and the vector s = (s, t)T

contains the free variables in �̃. The automated generation of a multipatch structure
is a nontrivial task, which is not discussed in this paper. For an overview of possible
segmentation techniques, we refer to [3, 17, 5].
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Let x̃ : �̂ → � be such that x̃−1 : � → �̂ is a harmonic mapping. Assuming
that the �̂i are arranged such that �̂ is convex, Rado’s theorem [14] applies and a
harmonic x̃−1 is bijective.

In the case of a multipatch domain, pairs of faces (γ αi , γ
β
j ) ⊂ ∂�̂i×∂�̂j and sets

of vertices {pi , . . . ,pl} ⊂ ∂�̂i × . . .× ∂�̂l may coincide on �̂. As such, the bases
� and �̄, whose elements constitute single-valued functions on �̂ are constructed
from the patchwise discontinuous local bases �i and �̄i with appropriate degree of
freedom (DOF) coupling that canonically follows from the connectivity properties
of the �̂i . In the multipatch case, we solve (9) by evaluating the associated integrals
through a set of pull backs of the �̂i ⊂ �̂ into the reference domain �̃. Thanks to
the affine nature of the pull back, replacement of ξ -derivatives by local s-derivatives
is straightforward.

As such, the solution of (9) yields a collection of mappings {xi}i , with xi : �̃→
�i ⊂ �, where each xi satisfies

xi � x̃|
�̂i

◦ mi . (31)

As the right hand side of (31) is a composition of bijective mappings, the bijectivity
of xi depends on the quality of the approximation. If the xi are bijective, they jointly
form a parameterization of �.

Unlike in the single-patch setting, theL2(�̂)-projection associated with the linear
part of the residual vector is not separable. As such, the evaluation of vector products
A−1Bs (see Eq. (22)) becomes more involved. A possible workaround is explicit
assembly and inversion of the Jacobian of the system (see Eq. (19)), leading to
increased computational times and memory requirements.

A possible alternative is the approximation of products of the form A−1Bs by a
sequence of patchwise separable operations. In the following, we sketch a plausible
approach.

Similar to the single-patch case, products of the form (qu,qv)T = A−1Bs satisfy

(qu,qv)T = argmin
(q̃u,q̃v)T

n∑

i=1

1

2

∫

�̂i

∥∥∥∥∥∥

[
u[q̃u]
v[q̃v]

]

−
[

x0
ξ [s]

x0
η[s]

]∥∥∥∥∥∥

2

dξ . (32)

Let

�̃ =
n⋃

i=1

�̄i ≡ {w̃i}i (33)
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be the patchwise discontinuous union of local (auxilliary variable) bases and let

ũ[g] =
∑

i

gi w̃i ,

ṽ[h] =
∑

i

hi w̃i . (34)

In order to approximate (qu,qv)T , we first find

(g,h)T = argmin
(g̃,h̃)T

n∑

i=1

1

2

∫

�̂i

∥∥∥∥∥∥

[
ũ[g̃]
ṽ[h̃]

]

−
[

x0
ξ [s]

x0
η[s]

]∥∥∥∥∥∥

2

dξ . (35)

We perform a patchwise pullback of the L2-projections into the reference domain
where they are solved with the techniques from Sect. 3.1. Thanks to the affine nature
of the pullback, the geometric factor associated with �̂i is constant and given by

det Ji = detAi. (36)

Therefore, separability is not lost and the same efficiency as in the single-patch case
is achieved. We restrict the solution of (35) to �̄ by performing a weighted sum
of components that coincide under coupling. Let w̄i ∈ �̄ result from a coupling
of {w̃α, . . . , w̃γ } ⊂ �̃ and let {det Jα, . . . , det Jγ } denote the set of corresponding
local geometric factors. If the {w̃α, . . . , w̃γ } receive control points gα, . . . , gγ under
the projection, we set

qui =
det Jαgα + . . .+ det Jγ gγ

det Jα + . . .+ det Jγ
, (37)

and similarly for qv . Relation (37) induces a canonical restriction operator from
span �̃ to span �̄ that is used to compute (qu,qv)T from (g,h)T .

4 Numerical Experiments

In the following, we present several numerical experiments, demonstrating the
functioning of the proposed algorithm. First, we present two single-patch problems
after which we present a more involved multipatch parameterization.

In all cases, the auxiliary basis �̄ results from one global h-refinement of the
primal basis �.
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4.1 L-Bend

As a proof of concept, we present results for the well-known single-patch L-bend
problem. Wherever possible, we shall compare the results to a direct minimization
of the Winslow-functional

W(x) =
∫

�̂

g11 + g22

det J
dξ , (38)

whose global minimizer (over [span�]2) coincides with a numerical approximation
of the solution of (2) in the limit where N → ∞ [1]. For the L-bend problem,
we employ uniform cubic (p = 3) knot-vectors in both directions with a p-fold
knot-repetition at ξ = 0.5 in order to properly resolve the C0-continuity. As such
we solve (11) rather than (9). Figure 1 shows the resulting parameterization along
with the element boundaries under the mapping. The Schur-complement solver
converges after 3 iterations which amounts to 106 evaluations of RN . As can be
seen in the figure, the parameterization is symmetric across the line connecting
the upper and lower C0-continuities which is expected behaviour from the shape
of the geometry. We regard this as a positive sanity check for the functioning of

Fig. 1 Solution of the L-bend problem with the mixed-FEM algorithm
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the algorithm. Another observation is that despite the presence of knot-repetitions
at ξ = 0.5, the parameterization shows a large degree of smoothness along the
corresponding isoline. Again, this is a positive result since the solution is expected
to be an approximation of the global minimizer of (38) (over x ∈ [span�]2), which,
in turn, approximates a smooth function. A substitution of the solution vector cmf of
the system of Eqs. (11) in (38) gives

W(cmf) � 3.01518, (39)

whereas the global minimizer cW of (38) over the same basis yields

W(cW) � 3.01425. (40)

This constitutes another positive sanity check as the results are very close, while a
substitution of the PDE-solution is slightly above the global minimum. As such, the
PDE-solution comes with all the undesired characteristics of EGG-schemes such as
the tendency to yield bundled/spread isolines near concave/convex corners. This
does not occur in parameterizations based on the techniques of [8] (see Fig. 2).

Fig. 2 Solution of the L-bend problem with constrained minimization of the Area Orthogonality
functional (see [8])
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However, the L-bend example is rather contrived since a good parameterization is
easily constructed with algebraic techniques. Here, the results only serve as a proof
of concept.

4.2 Tube-Like Shaped Geometry

In many cases, segmentation along knots with p-fold repetition and continuation
with, for instance, techniques from [9] on the smaller pieces is a viable choice.
However, in some cases, a segmentation curve along which to split the geometry
into smaller parts may be hard to find. One such example is depicted in Fig. 3
(left), which is a geometry taken from the practical application of numerically
simulating a twin-screw machine. For convenience, the ξ = 0.5 isoline, across
which the mapping is C0-continuous, has been plotted in red. The usefullness of
the proposed algorithm becomes apparent in this case: instead of having to generate
a valid ξ = 0.5 isoline, the isoline establishes itself from the solution of the PDE-
problem.

As in the L-bend problem, we observe that the resulting parameterization
exhibits a great degree of smoothness across the ξ = 0.5 isoline, despite the
continuity properties of � and the spiked upper and lower boundaries.

Fig. 3 PDE-based parameterization (left) and area-orthogonality minimized parameterization
(right) of a tube-like shaped geometry



Planar Parameterization on Convex Multipatch Domains 71

The proposed algorithm produces superior results to the constrained optimization
approach from [8] (see Fig. 3, right). In fact, here we initialized the optimization by
the PDE-solution, as the solver struggles to find a feasible initial guess through
optimization. This confirms the finding from [9] that EGG-based approaches may
be a viable alternative to finding feasible initial guesses for approaches based on
optimization. Furthermore, we note the striking difference in the required number
of iterations, which amount to over 100 (constrained) in the optimization, while the
PDE-solver converges in only 7 iterations.

The poor performance of the optimization-approach can be explained by tiny
gaps contained in the geometry, leading to natural jumps in the magnitude of the
Jacobian determinant. As most cost functions are functions of the gij , they are very
sensitive to jumps in det J . This is further evidenced by the poor grid quality in the
narrow part of the geometry (see Fig. 4 right). In our experience, this is not the case
for the PDE-solution (see Fig. 4 left) and we successfully employed the approach
for the automatic generation of a large number of similar geometries.

Finally, it should be noted that a comparison to the global minimizer of the
Winslow-energy is not possible since the gradient-based optimizer we employed
failed to further reduce the cost function from the evaluation of the PDE-solution.

4.3 Multipatch Problem: The Bat Geometry

Another interesting application of the proposed algorithm is that of a multipatch
parameterization. In Sect. 4.2, we have successfully employed the algorithm to a
geometry with a C0-continuity along the ξ = 0.5 isoline, which might as well
be regarded as a two-patch parameterization with coupling along aforementioned
isoline. A much more interesting multipatch application would be that of an uneven
number of patches with extraordinary vertices. We are considering the diamond-
shaped triple-patch domain depicted in Fig. 5, left. The target boundaries form the

Fig. 4 Zoom-in on the PDE-based parameterization and area-orthogonality minimization param-
eterization



72 J. Hinz et al.

3.0

2.5 n 1

n
2

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

0.0 0.5 1.0 1.5 2.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

0.0 0.5 1.0 1.5 2.0

n3

n 1
n
2

t

t

t s

s

s

Fig. 5 Diamond shaped multipatch domain (left) and the target boundaries (right). Here, n1 = 10,
n2 = 11 and n3 = 12 denote the number of (uniformly-spaced) elements in each coordinate
direction. There are no internal knot repetitions

bat-shaped contour depicted in Fig. 5, right. Note that, as required in Sect. 3.2, the
domain forms a convex subset of R

2. For convenience we have highlighted the
positions of the various boundaries under the mapping in different colors. Of course,
of major interest shall be how the dotted red curve(s) in Fig. 5 (left) are deformed
under the mapping. Figure 6 (left) shows the mapping we utilize to initialize the
Newton-Krylov solver while Fig. 6 (right) shows the resulting geometry. Even
though better initial guesses are easily constructed, here we have chosen to initialize
the solver with a folded initial guess in order to demonstrate that bijectivity is
not a necessary condition for convergence. The Newton-Krylov solver converges
after 6 nonlinear iterations. The dotted red curves in Fig. 6 (right) show the internal
interfaces of �̂ under the mapping. We see that the patch interfaces are mapped into
the interior of �. The resulting geometry is bijective. However, the isolines make
steep angles by the internal patch interfaces. This results from the additional pull
back of x̃|

�̂i
into �̃ via the operator mi (see Eq. (31)), which generally introduces

a C0-continuity in the composite mapping. Higher-order smoothness across patch
interfaces is generally difficult to achieve and usually done by constructing bases
whose elements possess higher-order continuity sufficiently far away from the
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Fig. 6 The mapping that is passed on to the solver (left) and the resulting parameterization (right)

extraordinary vertices. However, note that such bases may not allow for patchwise-
affine transformations such that L2(�̂i)-projections lose their separability property.
For a more rigorous definition of smoothness on multipatch topologies and strategies
to build bases with local C≥1 smoothness on patch interfaces, we refer to [4].

5 Conclusion

We have formulated an IgA-suitable EGG-algorithm that is compatible with spline
bases � possessing arbitrary continuity properties (whereby arbitrary stands for
global C≥0-continuity) by introducing a set of auxiliary variables. We proposed
an iterative Newton-Krylov approach operating on the Schur-complement of the
linear part of the resulting nonlinear system of equations, which operates efficiently
and reduces memory requirements. As such, it is suitable for large problems.
Unlike similar C0-compatible EGG-based approaches, the iterative solution method
does not have to be initialized with a bijective mapping, significantly improving
its usability in practice. However, this major advantage comes at the expense of
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increasing the problem size from N to � cN , where c = 2 or c = 3, depending
on the context. The impact is partially mitigated by the specially-taylored iterative
solution algorithm.

We have presented three numerical experiments, two with a single patch and one
resulting from a triple-patch configuration. In the single-patch case, we concluded
that a substitution of the PDE-solution into the Winslow functional (Eq. (38)) yields
an outcome that is close to that of the global function-minimizer (which is generally
hard to find through direct minimization, due to the presence of det J in the
denominator of Eq. (38)). As such, we concluded that the algorithm operates as
expected and offers a viable alternative to direct minimization of (38). However, it
also comes with all the known drawbacks of EGG-based approaches and the two
single-patch test cases demonstrate that it can yield inferior and superior results to
other techniques, depending on the characteristics of the geometry.

As convergence is typically reached within only a few iterations, we conclude
that the algorithm can serve as a computationally inexpensive method to initialize
other methods that require a bijective initial guess. The required number of iterations
can be further reduced by employing multigrid techniques (see [9]) but this has not
been implemented yet.

A major use case of the proposed algorithm is that of multipatch applications. In
Sect. 4.3, we presented results of the application to a triple-patch topology, where we
successfully generated a patchwise bijective parameterization by approximating the
composition of an inverse-harmonic mapping and patchwise affine transformations.
The position of internal patch-interfaces under the mapping do not have to be
imposed manually but follow naturally from the composite PDE-solution.

Finally, we observed that the composition with affine transformations results in
nonsmooth transitions at patch interfaces. Higher-order smoothness can be achieved
by a clever coupling of inter-patch DOFs sufficiently far away from extraordinary
vertices.
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Preconditioning for Linear Systems
Arising from IgA Discretized
Incompressible Navier–Stokes Equations

Hana Horníková and Cornelis Vuik

Abstract We deal with efficient techniques for numerical simulation of the incom-
pressible fluid flow based on the Navier–Stokes equations discretized using the
isogeometric analysis approach. Typically, the most time-consuming part of the
simulation is solving the large saddle-point type linear systems arising from the
discretization. These systems can be efficiently solved by Krylov subspace methods,
but the choice of the preconditioner is crucial.

In our study we test several preconditioners developed for the incompressible
Navier–Stokes equations discretized by a finite element method, which can be found
in the literature. We study their efficiency for the linear systems arising from the IgA
discretization, where the matrix is usually less sparse compared to those from finite
elements.

Our aim is to develop a fast solver for a specific problem of flow in a
water turbine. It brings several complications like periodic boundary conditions at
nonparallel boundaries and computation in a rotating frame of reference. This makes
the system matrix even less sparse with a more complicated sparsity pattern.

1 Introduction

This work is motivated by numerical simulation of the incompressible fluid flow
modeled by the Navier–Stokes/RANS equations with the aim of automatic shape
optimization of runner blades of a water turbine. The governing equations are
discretized using the isogeometric analysis (IgA) approach. The IgA approach has
many common features with the finite element analysis (FEA). The main difference
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is higher smoothness of the solution yielding higher accuracy per degree of freedom
than standard finite elements with basis functions of the same order. Another
advantage, which is important in the context of incompressible flows, is that it
is possible to construct divergence conforming discretization spaces for complex
domains using the isogeometric generalization of Raviart-Thomas elements [7, 8].
IgA is also suitable for the purpose of shape optimization, because it allows us to
represent the domain boundaries exactly. Similarly to FEA, the IgA discretization of
the linearized Navier–Stokes/RANS equations using an LBB stable pair of solution
spaces leads to a sequence of sparse saddle-point type linear systems.

The solution of these linear systems represents the main bottleneck of the
simulation process. The exact solution is unrealizable for large real world problems,
because of very high time and memory requirements of the direct solvers. A
promising approach to the iterative solution of these systems is the combination
of Krylov subspace methods for nonsymmetric matrices with so-called block
triangular preconditioners or SIMPLE-type preconditioners, both based on splitting
the system into a velocity and a pressure part. As examples of block triangular
preconditioners, we name the pressure convection-diffusion preconditioner (PCD)
proposed by Kay, Loghin, Wathen in [12], the least-squares commutator (LSC)
preconditioner by Elman et al. [4, 6] or the augmented Lagrangian preconditioner
by Benzi and Olshanskii [1]. For an overview of the SIMPLE-type preconditioners,
see e.g. [18].

In this paper, we present results of some numerical experiments for GMRES
with these preconditioners applied to several linear systems arising from IgA
discretization of the incompressible Navier–Stokes equations. We observe some of
their properties like dependence of the convergence on the mesh refinement or the
Reynolds number for a classical benchmark problem of flow in a 2D backward
facing step domain. We also test their performance for a simple 2D problem with
periodic boundary conditions on nonparallel sides and a mesh refined locally along
these sides, which mimics some of the typical aspects of computations in the water
turbine, since the turbine domain is radially symmetric and we usually need to refine
the mesh near the blades. Although these 2D domains are very simple, they are
intentionally described using higher degree B-splines which is also typical for the
turbine geometries.

The structure of this paper is as follows. In Sect. 2 the discretization of
the unsteady incompressible Navier–Stokes equations is given and the structure
of the matrices obtained from the discretization of the problem in the water
turbine is described in more detail. Section 3 gives a brief overview of selected
preconditioners. In Sect. 4 we present the results of the numerical experiments and
we conclude with Sect. 5.
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2 Problem Formulation

The mathematical simulation of incompressible viscous Newtonian flow is based
on the incompressible Navier–Stokes equations (NSE). Let � ⊂ R

d be a bounded
domain, d being the number of spatial dimensions, with the boundary ∂� consisting
of two complementary parts, Dirichlet ∂�D and Neumann ∂�N , and T > 0 is
an upper bound of the time interval of interest [0, T ]. The initial boundary value
incompressible Navier–Stokes problem is given as a system of d + 1 equations
together with initial conditions and mixed boundary conditions

∂u
∂t

+ (u · ∇)u − ν�u +∇p = 0 in �× [0, T ],
∇ · u = 0 in �× [0, T ],

u(x, 0) = u0(x) in �,
u = gD on ∂�D,

ν ∂u
∂n − np = 0 on ∂�N,

(1)

where u is the flow velocity, p is the kinematic pressure, ν is the kinematic viscosity
and u0, gD are given functions. Note that the condition ν ∂u

∂n − np = 0 represents
the classical “do-nothing” boundary condition resulting from the weak formulation
of the momentum equations in (1). It does not have a physical meaning, but it is
suitable at artificial outflow boundaries when modeling flows through a truncated
domain, assuming that the physical domain continues further (see e.g. [9, 11] where
different outflow boundary conditions for such problems are discussed).

2.1 Discretization and Linearization

The isogeometric analysis approach is based on the Galerkin method. One of the
approaches to the discretization of time-dependent problems is to discretize the time
derivative using finite differences first, arriving to a set of spatial problems that can
be discretized using the Galerkin method. Using a backward finite difference with
time step �t , we obtain the following set of equations

un+1 − un

�t
+ (un+1 · ∇)un+1 − ν�un+1 +∇pn+1 = 0 in �,

∇ · un+1 = 0 in �.
(2)
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The weak formulation is as follows: find un+1 ∈ V and pn+1 ∈ L2(�) such that

1

�t

∫

�

un+1 · v + ν
∫

�

∇un+1 : ∇v +
∫

�

(un+1 · ∇un+1) · v

−
∫

�

pn+1∇ · v = 1

�t

∫

�

un · v,

∫

�

q∇ · un+1 = 0,

(3)

for all v ∈ V0 and q ∈ L2(�), where

V = {u ∈ H 1(�)d |u = gD on ∂�D},
V0 = {v ∈ H 1(�)d | v = 0 on ∂�D}. (4)

After discretization using a stable pair of discrete solution spaces (e.g. the isoge-
ometric generalization of Taylor–Hood, Nédélec or Raviart-Thomas elements [3])
and linearization of the convective term, we get a sequence of saddle-point type
linear systems of the form

[
F BT

B 0

][
u

p

]

=
[
f

g

]

, (5)

where F ∈ R
d·nu×d·nu is block diagonal (in case of Picard linearization, which

is used in this paper) with the diagonal blocks containing the discretization of
the convection-diffusion operator and the term coming from the discretized time
derivative on the left-hand side of (3). The matrices BT ∈ R

d·nu×np and B ∈
R
np×d·nu are discrete gradient and negative divergence operators, respectively, and
nu, np denote the number of velocity and pressure unknowns. The right-hand side of
(5) contains the remaining part of the discretized time derivative and the eliminated
Dirichlet boundary conditions.

2.2 Motivational Problem

As mentioned above, this work is motivated by flow simulation in water turbines. It
involves two phenomena, which influence the matrix structure of the resulting linear
system: periodic boundary conditions and a rotating frame of reference in the runner
wheel.

In Fig. 1 we show an example of a Kaplan turbine geometry (left picture)
with the computational domains for the stationary and rotating part (right top and
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Fig. 1 The Kaplan turbine geometry (left) and particular computational domains for stationary
part (right top) and rotating part (right bottom)

Fig. 2 Velocity field in a cross-section of a periodic 3D domain

bottom picture). Since both stationary and rotating part are radially periodic, we can
define each computational domain as a strip between two vanes/blades with periodic
conditions.

Since the periodic sides are not parallel and velocity is a vector quantity, we
cannot simply identify the degrees of freedom on both sides. In Fig. 2 we display
a cross-section of the stationary domain with velocity direction vectors along the
periodic sides. It can be seen that instead of just copying the vector from side 1 to
side 2, we have to rotate it first.

Without loss of generality, assume that the axis of the turbine is identified with
the x-axis. Then the relation between corresponding velocity vectors is

⎡

⎢
⎣
u1

1
u1

2
u1

3

⎤

⎥
⎦ =

⎡

⎢
⎣

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

⎤

⎥
⎦

⎡

⎢
⎣
u2

1
u2

2
u2

3

⎤

⎥
⎦ , (6)

where u1
i , i = 1, 2, 3, are velocity components on side 1 and u2

i , i = 1, 2, 3, are
velocity components on side 2, ϕ = 2π/nb and nb is the number of blades/vanes.
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The application of the periodic conditions can be done by discretization of the
given problem with no boundary conditions at the periodic sides, arriving to a linear
system with the structure

⎡

⎢⎢⎢⎢
⎣

A 0 0 BT1

0 A 0 BT2

0 0 A BT3
B1 B2 B3 0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

u1

u2

u3

p

⎤

⎥⎥⎥
⎦
=

⎡

⎢⎢⎢
⎣

f1

f2

f3

g

⎤

⎥⎥⎥
⎦
, (7)

and adding multiples of the rows and columns corresponding to the periodic side 2 to
the rows and columns corresponding to the periodic side 1 using the transformation
(6) and deleting them from the system. This leads to the modified system

⎡

⎢⎢⎢⎢
⎣

Ã 0 0 B̃T1

0 Â −C B̃T2
0 C Â B̃T3
B̃1 B̃2 B̃3 0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

ũ1

ũ2

ũ3

p̃

⎤

⎥⎥⎥
⎦
=

⎡

⎢⎢⎢
⎣

f̃1

f̃2

f̃3

g̃

⎤

⎥⎥⎥
⎦
, (8)

which is smaller than the original system by the number of degrees of freedom
(DOFs) on side 2. After solving the system, the solution coefficients corresponding
to side 2 can be obtained by rotating the coefficients corresponding to side 1 back
by angle −ϕ.

Another nonzero off-diagonal blocks are added to the system matrix in the runner
wheel domain, i.e. considering the rotating frame of reference. However, since this
paper only presents results of some of the first numerical experiments on simpler
domains which do not involve rotation, we do not go into details here.

3 Solution Methods

The linear systems resulting from the discretization can be solved either directly or
iteratively. Direct solvers are applicable only for relatively small systems because
of their very high time and memory requirements. In practice, we usually deal with
very large systems, therefore an efficient iterative method is needed. Among iterative
methods, Krylov subspace methods are the most commonly used in applications
and can be very efficient if combined with a good preconditioning technique. Since
our matrices are nonsymmetric, we have to use a Krylov subspace method for
nonsymmetric matrices. The most popular ones are GMRES (generalized minimum
residual) and BiCGSTAB (biconjugate gradient stabilized).

A good preconditioner for a Krylov subspace method should be such that the
preconditioned matrix has a low degree minimal polynomial, which implies a
low maximal dimension of the generated Krylov subspace. In other words, it is



Preconditioning for IgA Discretized NSE 83

desirable that the preconditioned matrix has only a few distinct eigenvalues and is
diagonalizable or at least its Jordan canonical form has only small Jordan blocks.

3.1 Block Triangular Preconditioners

A popular class of preconditioners for the saddle-point type problems are the
block triangular preconditioners based on splitting the system into a velocity and
a pressure part, developed for finite element discretizations of the Navier–Stokes
equations. An overview of these preconditioners can be found e.g. in [17]. Their
construction is based on the block LDU decomposition of the system matrix in (5)

[
F BT

B 0

]

=
[

I 0
BF−1 I

][
F 0
0 S

][
I F−1BT

0 I

]

, (9)

where S = −BF−1BT is the Schur complement matrix. This suggests the following
choice of the preconditioner matrix

P =
[
F BT

0 S

]

. (10)

Then the right preconditioned matrix has obviously all eigenvalues equal to one,
since it is a lower triangular matrix with all ones on its main diagonal. As shown
in [15], the minimal polynomial of the preconditioned matrix is of degree 2 and
therefore GMRES converges in at most 2 iterations. The same holds for left
preconditioning.

The computation of P−1r is performed by solving the linear system

[
F BT

0 S

][
zu

zp

]

=
[
ru

rp

]

(11)

in the steps summarized in Algorithm 1.

Algorithm 1 Application of P−1

1: Solve Szp = rp
2: Update ru = ru − BT zp
3: Solve Fzu = ru
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In practice, the system with F is usually solved approximately, e.g. by a small
number of iterations of some iterative method or one or more V-cycles of a multigrid
solver for convection-diffusion equations. The solution of the system with the
Schur complement is not that straightforward. We do not construct S explicitly,
because it would require the explicit construction of F−1, since it is multiplied with
rectangular matrices from both sides. Furthermore, it is a dense matrix. Therefore
we have to find some inexpensive approximation Ŝ ≈ S first. The choice of the
approximation yields different preconditioners.

3.1.1 Least-Squares Commutator Preconditioner

The least-squares commutator (LSC) preconditioner proposed by Elman [4, 5] is
based on the idea of approximate commutators similar to the pressure convection-
diffusion (PCD) preconditioner [12]. The general algebraic idea of these methods is
to find a matrix X for which

BTX ≈ FBT (12)

and consequently

S = −BF−1BT ≈ −BBTX−1, (13)

i.e., the inverse is moved so that it is no longer between the two rectangular matrices.
The construction of these preconditioners is based on the fact that F is a

discretization of the operator

L = 1

�t
− ν�+ (w · ∇) (14)

defined on the discrete velocity space, where w is the approximation of the velocity
computed in the previous Picard iteration. Suppose that an analogous operator is
well defined also on the discrete pressure space and denote it by Lp. It can be
expected that the commutator with the gradient operator

E = L∇ − ∇Lp (15)

is small for smooth w [5]. The discrete version of the commutator in terms of finite
element matrices takes the form

E = (M−1
u F )(M−1

u BT )− (M−1
u BT )(M−1

p Fp), (16)
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where Mu and Mp are the velocity and pressure mass matrix, respectively, and Fp
is a discrete version of Lp. Assume that E is also small, which means that

(M−1
u F )(M−1

u BT ) ≈ (M−1
u BT )(M−1

p Fp). (17)

After several algebraic manipulations, this leads to the following approximation to
the Schur complement

S = −BF−1BT ≈ −BM−1
u BT F−1

p Mp. (18)

The LSC preconditioner avoids the explicit construction of Fp (unlike PCD) and
defines the j -th column of Fp as a solution of the following weighted least-squares
problem

min || [M−1
u FM−1

u BT ]j −M−1
u BTM−1

p [Fp]j ||Mu, (19)

where ||x||Mu =
√
xTMux is a discrete analogue of the continuous L2 norm on the

velocity space. The vector [Fp]j is obtained by solving the normal equations

M−1
p BM−1

u BTM−1
p [Fp]j = [M−1

p BM−1
u FM−1

u BT ]j , (20)

which leads to the following definition of Fp:

Fp = Mp(BM−1
u BT )−1(BM−1

u FM−1
u BT ). (21)

Substituting this into (18) we get the following approximation of the Schur
complement

ŜLSC = −(BM−1
u BT )(BM−1

u FM−1
u BT )−1(BM−1

u BT ). (22)

Since the inverse of the velocity mass matrix M−1
u is dense, we replace Mu by its

diagonal M̂u.
In Algorithm 2 we can see the individual steps of the LSC preconditioner

application. It involves solving two subsystems with the matrix AL = BM̂−1
u BT ,

which is essentially a discrete Laplace operator. Thus, two Poisson-type solves for
pressure and one velocity solve are needed.

Algorithm 2 LSC preconditioner

1: Solve ALzp = rp , where AL = BM̂−1
u BT

2: Update rp = (BM̂−1
u FM̂−1

u BT )zp
3: Solve ALzp = −rp
4: Update ru = ru − BT zp
5: Solve Fzu = ru
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3.1.2 Augmented Lagrangian Preconditioner

A different approach has been proposed by Benzi and Olshanskii [1]. The original
system (5) is replaced with the equivalent system

[
Fγ B

T

B 0

][
u

p

]

=
[
fγ

g

]

, (23)

where Fγ = F + γBTW−1B, fγ = f + γBTW−1g, γ > 0 is a parameter and W
is a positive definite matrix. The system (23) is then preconditioned with the block
triangular preconditioner

PAL =
[
Fγ B

T

0 ŜAL

]

, (24)

where the inverse of the Schur complement approximation is given by

Ŝ−1
AL

:= −νM̃−1
p − γW−1 (25)

and M̃p is a pressure mass matrix approximation, usually a diagonal matrix. The
matrixW is often chosen to be equal to M̃p.

Of course, the choice of the parameter γ is important. A large value would lead
to small number of iterations of the preconditioned Krylov method, but for large
γ the block Fγ becomes increasingly ill-conditioned and makes the solution of the
subsystems expensive [17]. Hence, it is often set γ ≈ 1.

The main difficulty of this approach is the choice of the approximate solver for
the subsystems with Fγ . The additional term γBTW−1B makes the matrix less
sparse compared to F and introduces a coupling between the velocity components
which is not present in the discretization of the Picard linearized Navier–Stokes
equations (without rotation or the periodic conditions mentioned in Sect. 2.2). The
authors in [1] develop a multigrid method suitable for these subsystems.

Modified Version
One way to simplify the solution of the systems with Fγ is the modified version of
AL preconditioner introduced in [2]. Let us denote the particular blocks of Fγ in
two dimensions as follows

Fγ =
[
A11 A12

A21 A22

]

. (26)



Preconditioning for IgA Discretized NSE 87

The modified approach suggests to replace this block by its upper block triangle

F̃γ =:
[
A11 A12

0 A22

]

, (27)

such that instead of solving the whole system at once, we solve two smaller systems
with the blocks A11 and A22. These blocks can be interpreted as discrete anisotropic
convection-diffusion operators, thus, applying F̃−1

γ requires solving two anisotropic
convection-diffusion problems. The situation is similar in three dimensions, where
we have to solve three subsystems.

3.2 SIMPLE-Type Preconditioners

SIMPLE (Semi-Implicit Method for Pressure Linked Equations) is an algorithm
for numerical solution of the Navier–Stokes equations developed for finite volume
and finite difference discretizations by Patankar and Spalding [16]. It is based on
decoupling the system of equations and solving the velocity and pressure part
separately. First, the velocity is solved from the momentum equations assuming that
the pressure is known from the previous iteration. Then, the pressure and velocity
are corrected in order to satisfy the discrete continuity equation.

This algorithm can be written in the form of block matrices and preconditioners
for the systems arising from finite element discretizations can be derived. An
overview of these preconditioners is given in [18]. The derivation is based on the
block LU decomposition of the coefficient matrix in (5) and rewriting the system as

[
F BT

B 0

][
u

p

]

=
[
F 0
B S

][
I F−1BT

0 I

][
u

p

]

=
[
f

g

]

. (28)

The SIMPLE algorithm is obtained by using the approximation F−1 ≈ D−1 =
diag(F )−1, introducing intermediate values u∗, p∗ and corrections δu, δp such that

u = u∗ + δu, p = p∗ + δp, (29)

and solving the system in the following two steps:

[
F 0
B ŜS

][
u∗
δp

]

=
[
f

g

]

(30)
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and
[
I D−1BT

0 I

][
u

p

]

=
[
u∗
δp

]

, (31)

where ŜS = −BD−1BT . These steps are performed recursively, leading to the
Algorithm 3, where the intermediate pressure p∗ is estimated from the prior
iterations. One iteration of the SIMPLE algorithm is used as preconditioner with
p∗ = 0.

Algorithm 3 SIMPLE algorithm

1: Solve Fu∗ = f − BT p∗
2: Solve ŜSδp = g − Bu∗
3: Update u = u∗ + δu, where δu = −D−1BT δp

4: Update p = p∗ + δp

There are several modifications of the algorithm. One of them is called SIM-
PLER, where p∗ is obtained as a solution of the system

ŜSp
∗ = g − BD−1((D − F)uk + f ), (32)

where uk is the velocity from the previous iteration in the original algorithm, but in
case of preconditioner it is taken equal to zero.

Another variant is MSIMPLER algorithm, which is obtained from SIMPLER by
replacing all occurrences ofD by an approximation of the velocity mass matrix M̂u.
The choice of M̂u depends on the particular type of elements. For more details on
this preconditioner, see [18].

4 Numerical Experiments

In this section we present results of some numerical experiments. The linear systems
used in the experiments are obtained from an in-house isogeometric incompressible
flow solver implemented in C++ within a framework of the G+Smo1 library. G+Smo
is an open-source object-oriented template C++ library, that implements the concept
of IgA, based on abstract classes for geometry, discretization basis, assemblers,
solvers etc. For more information about the library, see the documentation [14].
The linear algebra tools available in G+Smo are mostly inherited from the Eigen
library [10].

1http://github.com/gismo, http://gismo.github.io.

http://github.com/gismo
http://gismo.github.io
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For the discretization we use the isogeometric Taylor–Hood element, which
means that the pressure basis is taken from the geometry and the velocity basis
is obtained by p-refinement (degree elevation) of the pressure basis.

We implemented the selected preconditioners, namely LSC, AL, modified AL
(MAL), SIMPLE, SIMPLER and MSIMPLER, also in the framework of the G+Smo
library. For now, a direct solver (sparse LU decomposition from Eigen) is used for
solving all subsystems in the preconditioners.

The numerical experiments were performed using a machine with the following
parameters: Windows Server 2012, 2× Intel Xeon CP E5-2690 v2 @ 3.00GHz,
256 GB RAM.

In the experiments, we use full GMRES with various preconditioners to solve one
linear system obtained after performing several Picard iterations in the steady case
or several time steps in the unsteady case and we track the relative residual norm
||r||2/||b||2, where b denotes the right-hand side, and the solution time in seconds.

4.1 Backward Step 2D

As a simple test example, we consider a 2D backward facing step domain consisting
of three B-spline patches with conforming mesh, where the degrees of freedom on
the interfaces are identified. The individual patches are described as B-splines of
degree 3.

For comparison, we consider three meshes with different level of uniform
refinement with 11,229, 42,005 and 162,309 degrees of freedom (DOFs). The
coarsest mesh is shown in Fig. 3. The step height h as well as the inlet height is
equal to 1. We prescribe a parabolic velocity profile with the maximum of 1 at the
inlet boundary, zero velocity on the walls (upper and lower boundaries) and the “do-
nothing” boundary condition at the outlet. For unsteady computations, the initial
conditions are taken as the solution of the corresponding steady Stokes problem.
The Reynolds number Re = 1

ν
, where ν is the kinematic viscosity.

In Table 1 we present the number of iterations and the computational time in
seconds (in parentheses) needed to reach the relative residual norm smaller than
10−10 for the individual preconditioners in the steady (top) and unsteady (bottom)
case. The computational time is reported in two separate parts, the time of the
preconditioner setup involving the factorization of the subsystem matrices and the

Fig. 3 The computational mesh with 11,229 DOFs
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Table 1 Number of iterations and computational time in seconds (in parentheses) needed to fulfill
||r||2/||b||2 < 10−10, backward step steady (top) and unsteady (bottom) case for Re = 100

Steady Mesh 1 Mesh 2 Mesh 3

LSC 32 (0.60 + 0.55) 40 (4.34 + 3.55) 55 (32.8 + 22.5)

SIMPLE 171 (0.47 + 3.19) > 200 > 200

SIMPLER 28 (0.49 + 0.51) 28 (3.87 + 2.59) 37 (30.4 + 15.02)

MSIMPLER 32 (0.48 + 0.58) 40 (3.87 + 3.70) 54 (30.4 + 22.2)

AL 15 (10.8 + 1.01) 10 (232 + 5.70) 8 (4592 + 33.8)

MAL > 200 > 200 > 200

Unsteady Mesh 1 Mesh 2 Mesh 3

LSC 11 (0.70 + 0.22) 11 (4.95 + 1.12) 11 (33.1 + 4.71)

SIMPLE 34 (0.57 + 0.62) 29 (4.42 + 2.53) 22 (31.0 + 7.67)

SIMPLER 12 (0.59 + 0.26) 11 (4.47 + 1.16) 11 (31.5 + 4.91)

MSIMPLER 12 (0.59 + 0.26) 11 (4.46 + 1.16) 12 (31.6 + 5.33)

AL 47 (10.6 + 3.02) 47 (215 + 22.2) 47 (4063 + 168)

MAL 49 (3.46 + 2.07) 51 (80.4 + 14.6) 62 (1482 + 130)

time of the subsequent GMRES iterations. The lowest total time for a given problem
is displayed in bold. The value γ = 1 was used for the AL and MAL preconditioners
in these experiments and 200 was the maximum number of iterations. In the steady
case, the number of iterations for LSC and SIMPLE-type preconditioners increases
for finer meshes. On the contrary, the number of iterations for AL decreases, but this
preconditioner is obviously very expensive with the direct solver for the subsystems,
hence it is really necessary to use some efficient iterative method to solve them. The
convergence of the modified AL is very slow, probably because γ = 1 is far from
the optimal value of γ for MAL in this case. In the unsteady case, the convergence
is generally faster than in the steady case for most preconditioners and most of them
(except MAL) seem independent of the mesh size.

We note that in real applications, especially three-dimensional problems, the
subsystems cannot be solved by direct solution methods. We refer to [13] and
[18] where comparable problems are solved (using finite volume and finite element
method). It appears that the solution of the subsystems can be approximated by 1 or
2 iterations of a MG V-cycle, or a solution with PCG or preconditioned Bi-CGSTAB
with a moderate accuracy (reduction of the relative residual by a factor 10 or 100).
Since the preconditioner is used to find a suitable search direction for the outer
Krylov method, it appears that it is not very sensitive to the accuracy of the inner
solves. If MG can be used, the total solver becomes scalable.

In the next experiment, we consider a steady flow with ν = 0.01, 0.009, . . . ,
0.003 and an unsteady flow with ν = 10−2, 10−3, 10−4 in the backward step domain
with mesh 2 to study the dependence on the Reynolds number. Here, the value of
γ for MAL was chosen as the “optimal” value from the interval [0.1, 2.5] (found
experimentally with step 0.1). Figure 4 shows the evolution of the relative residual
norm during 100 iterations of GMRES for the individual preconditioners in the
steady case. We can see that the convergence slows down after several first iterations
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Fig. 4 Residual evolution for the individual preconditioners, a linear system from the steady
Navier–Stokes with Reynolds number Re varying between 100 and 333, backward step with
mesh 2

for increasing Reynolds number for all preconditioners except AL. A comparison
of the preconditioners for the lowest and highest Reynolds numbers Re = 100
and Re = 333 is given in the left and right picture of Fig. 5, respectively. The
convergence of AL is significantly faster than of all the other preconditioners.

Figure 6 shows the evolution of the relative residual norm in the unsteady case.
The convergence of all preconditioners is almost independent of the Reynolds
number, except for SIMPLE, for which it is slightly dependent. AL does not show
superior convergence behavior anymore in the unsteady case.



92 H. Horníková and C. Vuik

Fig. 5 Residual evolution for various preconditioners, a linear system from steady Navier–Stokes,
backward step with mesh 2, Re = 100 (left) and Re = 333 (right)

Fig. 6 Residual evolution for the individual preconditioners, a linear system from the unsteady
Navier–Stokes with Reynolds number Re varying between 100 and 10000, backward step with
mesh 2
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Fig. 7 Velocity with streamlines in a trapezoidal domain where the lower and upper boundaries
are solid walls (left) or periodic sides (right)

4.2 Periodic Domain 2D

In order to test the effect of periodic boundary conditions on the convergence of
the iterative solvers, consider a simple (artificial) test example in 2D – a flow in
a trapezoidal domain shown in Fig. 7. The left and right boundary is the inflow
and outflow boundary, respectively, and the lower and upper boundaries are either
solid walls or periodic sides. The pictures display the velocity solution of an
unsteady Navier-Stokes problem with viscosity ν = 10−2 after 20 time steps with
�t = 10−2. The geometry is described as a B-spline of degree 3, hence the degree
of the basis functions is 3 for pressure and 4 for velocity. The experiments were
done for three meshes, a uniformly refined mesh with around 10,000 DOFs and two
meshes with different levels of local refinement near the upper and lower boundary
with around 11,000 and 12,000 DOFs. The maximum aspect ratio of the meshes
is approximately 4, 16 and 64, respectively. Such local refinement is of interest,
because in the real computations in the water turbine we simulate turbulent flow
using the RANS equations with a turbulence model and therefore we need to refine
near the vanes/blades (i.e. the periodic sides).

In the periodic case, where the block F is no longer block diagonal (see (8)), the
subsystems with F cannot be split into several smaller subsystems corresponding to
the velocity components. In the 2D example, the system structure is as in (8) without
the first block row and column. For experimental purposes, we implemented several
ways to solve these subsystems (exactly or approximately):

• Fdiag
We neglect all off-diagonal blocks and split the system into d subsystems with

the diagonal blocks.
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• Fmod
We replace F by its upper block triangle, similarly to the modified AL

approach.
• Fwhole

We solve the whole system Fzu = ru.

We do not apply these variants to the AL preconditioner, since it requires solution
of systems with the matrix Fγ instead of F , which is already not block diagonal and
the whole system has to be solved even without periodic conditions. We remind that
MAL is a modification of AL replacing Fγ with its upper block triangle (in both
periodic and nonperiodic case).

In Tables 2 and 3 we present the number of iterations and the computational time
needed to reach the relative residual norm smaller than 10−10 for the individual
preconditioners in the nonperiodic and periodic case, respectively. Again, γ = 1
was used for the AL and MAL preconditioners in these experiments.

It can be seen from Table 2 that the convergence of most of the preconditioners
(except SIMPLER and AL) is dependent on the local refinement, i.e. the aspect ratio
of the mesh, in the nonperiodic case.

In the periodic case (Table 3), we compare the approaches to the subsystems
with block F described above. For the uniformly refined mesh, there are only
small differences in the number of iterations for different approaches, hence, it
seems to be sufficient to use Fdiag in this case. However, for the locally refined
meshes the differences become more significant. Further, LSC, SIMPLER and
MSIMPLER give similar numbers of iterations for all meshes with Fwhole (i.e.
if the subsystem with F is solved exactly), but the dependence on the aspect ratio
with the approximations of F is more significant for LSC than for SIMPLER
and MSIMPLER. SIMPLER is no longer independent of the aspect ratio even
with Fwhole. The AL preconditioner gives exactly the same number of iterations
as in the nonperiodic case and stays independent of the aspect ratio, but it is
very expensive. The modified version of AL needs approximately twice as many
iterations and half the computational time compared to AL with the same γ in the
case of uniform refinement, but its convergence is dependent on the aspect ratio and
the dependence is much stronger in the periodic case. Note that γ = 1 is not an

Table 2 Number of iterations and computational time in seconds (in parentheses) needed to fulfill
||r||2/||b||2 < 10−10, nonperiodic trapezoidal domain

Precond. Uniform loc1 loc2

LSC 11 (0.47 + 0.14) 13 (0.56 + 0.20) 21 (0.66 + 0.37)

SIMPLE 27 (0.36 + 0.32) 28 (0.43 + 0.39) 34 (0.51 + 0.57)

SIMPLER 11 (0.37 + 0.16) 11 (0.45 + 0.19) 11 (0.53 + 0.22)

MSIMPLER 12 (0.37 + 0.17) 14 (0.45 + 0.23) 22 (0.53 + 0.43)

AL 22 (7.03 + 1.09) 22 (8.83 + 1.29) 22 (9.80 + 1.43)

MAL 41 (3.05 + 1.46) 53 (3.61 + 2.18) 63 (3.96 + 2.89)

Bold values indicate the lowest total computational time
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Table 3 Number of iterations and computational time in seconds (in parentheses) needed to fulfill
||r||2/||b||2 < 10−10, periodic trapezoidal domain

Precond. Uniform loc1 loc2

LSC

Fdiag 18 (0.73 + 0.26) 33 (0.95 + 0.57) 70 (1.20 + 1.48)

Fmod 15 (0.73 + 0.22) 24 (0.95 + 0.42) 50 (1.21 + 1.05)

Fwhole 11 (1.26 + 0.22) 13 (1.64 + 0.30) 17 (1.99 + 0.45)

SIMPLE

Fdiag 31 (0.61 + 0.42) 38 (0.81 + 0.63) 61 (1.05 + 1.21)

Fmod 29 (0.61 + 0.41) 36 (0.81 + 0.61) 54 (1.05 + 1.09)

Fwhole 28 (1.13 + 0.51) 31 (1.50 + 0.67) 42 (1.84 + 1.05)

SIMPLER

Fdiag 13 (0.62 + 0.20) 22 (0.82 + 0.41) 44 (1.06 + 0.97)

Fmod 12 (0.62 + 0.19) 17 (0.83 + 0.32) 34 (1.06 + 0.76)

Fwhole 11 (1.15 + 0.23) 16 (1.52 + 0.38) 26 (1.85 + 0.71)

MSIMPLER

Fdiag 14 (0.62 + 0.22) 22 (0.82 + 0.41) 45 (1.06 + 0.99)

Fmod 13 (0.62 + 0.21) 18 (0.82 + 0.34) 35 (1.06 + 0.78)

Fwhole 12 (1.15 + 0.25) 13 (1.51 + 0.32) 19 (1.85 + 0.53)

AL 22 (6.78 + 1.29) 22 (9.04 + 1.43) 22 (12.0 + 1.68)

MAL 46 (2.16 + 1.70) 92 (2.97 + 4.03) 195 (4.08 + 10.6)

Bold values indicate the lowest total computational time

optimal value for MAL in this case. We can get a bit faster convergence for a better
choice of γ , but the aspect ratio dependence is similar.

5 Conclusions

In this paper we studied convergence behavior of selected block triangular precondi-
tioners (LSC, AL, MAL) and SIMPLE-type preconditioners (SIMPLE, SIMPLER,
MSIMPLER) for linear systems obtained from IgA discretization of steady and
unsteady incompressible Navier–Stokes equations. All subsystems in the precon-
ditioners were solved with a direct solver.

We investigated the dependence on the mesh size and the Reynolds number for
a simple 2D backward facing step example. The experiments show, that most of the
preconditioners are dependent on both, the mesh size and the Reynolds number, in
the steady case, but independent or almost independent in the unsteady case. Further,
it seems that AL outperforms the other preconditioners in terms of number of
iterations in the steady case, but it is much more expensive, at least if the subsystems
are solved directly. The convergence of LSC and SIMPLE-type preconditioners is
generally faster for the unsteady problem than for the steady problem. Such behavior
is expectable due to the nature of the systems. The main block diagonal of the matrix
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F in the linear system arising from the unsteady case contains the velocity mass
matrix multiplied by 1/�t . Thus, the mass matrix becomes a dominant part of the
system matrix, which makes the system easier to solve.

Then we considered a simple 2D domain to simulate some of the typical features
in the water turbines - periodic boundary conditions on nonparallel sides and locally
refined meshes along them. We tested several simplifications of the solution of the
system with block F , which is no longer block diagonal in the periodic case. In
general, all tested preconditioners except AL are dependent on the aspect ratio.
According to the experiments, we can neglect the off-diagonal blocks of F in the
periodic case for low aspect ratio, but it seems necessary to solve the system with
the full block F for higher aspect ratios. This issue is a topic for further research.

Another interesting topic for future research is the dependence of the conver-
gence on the order of continuity of the IgA solution. We also plan to focus on
iterative solution of the subsystems in the preconditioners in the future.
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Solving 2D Heat Transfer Problems
with the Aid of a BEM-Isogeometric
Solver

Konstantinos Kostas, Yeraly Kalel, and Azat Amiralin

Abstract In this chapter, we present a computational framework that performs
design optimization via seamless integration of geometric modeling and compu-
tational analysis on the basis of the isogeometric analysis concept. The framework
comprises a parametric geometric modeler, a Boundary Element Method empow-
ered by the IsoGeometric Analysis approach (IGABEM) and a set of gradient-based
and meta-heuristic, evolutionary optimization algorithms that drive the design
optimization. We demonstrate our approach in the case of a 2D steady-state heat
conduction problem across a periodic interface separating two conducting and
conforming media, where our goal is to either generate the interface that maximizes
heat transfer or identify the geometry able to produce a given heat transfer rate
and/or temperature distribution along the unknown separating geometry. The para-
metric modeler generates instances of the separating interface geometry, accurately
represented via a NURBS representation, which are assessed by our IGABEM
solver that numerically solves the system of Boundary Integral Equations (BIE)
arising in the context of the 2D steady-state heat conduction problem across the
periodic interface of the bilayered structure mentioned above. The efficiency of
our approach and the performance of the developed computational framework is
demonstrated for both design optimization and inverse design problems.

1 Introduction

This chapter describes the development of a robust design optimization framework
that combines the work carried out for the investigation of optimum corrugations,
and optimal design of high conductivity inserts and fins carried out by Leontiou et
al. [18] and Fyrillas et al. [9], and the introduction of an IsoGeometric Boundary
Element Method (IGABEM), by Kostas et al. [17], which efficiently handles the
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numerical solution of the governing partial differential equations for the case of
an arbitrary smooth, periodic interface that separates two infinite-length slabs in
conduct with different conductivity coefficients.

The idea of the seamless integration between Computer-Aided Design (CAD)
and Computer-Aided Analysis (CAA) via the use of IsoGeometric Analysis (IGA),
as described in Hughes et al. [13] and Cottrell et al. [8], forms the basis of our design
optimization framework. The IGA approach directly employs analysis-suitable
geometric models from the CAD representation for the conducted analysis and this
can be efficiently exploited for the case of shape optimization and inverse design,
which are the major objectives in our work. Shape optimization in the context of
IGA has been already presented in various works, as e.g., Wall et al. [39], Nagy
et al. [24], Nguyen et al. [25], Nørtoft and Gravesen [26], Qian and Sigmund [32],
Cho and Ha [6], Lian et al. [20], Qian [31], Li and Qian [19], Sun et al. [38] where
NURBS control points and/or weights have been generally used as design variables
to control the boundary shape. Furthermore, Kostas et al. [15, 16], Kaklis et al.
[14] and Ginnis et al. [10] have already presented higher-level geometric parametric
models that employ high-level parameters that encapsulate meaningful quantities,
from an engineering and/or design point of view, for ship hulls and hydrofoils
optimum designs. Although the parametric models employed in this study do not
exhibit the complexity of a ship-hull surface model, we have tried to incorporate all
the mechanisms that guarantee robustness in the generation of instances (elimination
of invalid shapes) and minimization of design variables to the extent possible.

The design problem in our case involves the case of a 2D steady-state heat
conduction problem across a periodic interface separating two conducting and
conforming media, where our goal is to either generate the interface that maximizes
heat transfer or identify the geometry able to produce a given heat transfer rate
and/or temperature/heat-flux distribution along the unknown separating geometry.
These sets of problems are numerically solved using the IGABEM approach
presented in [17]. The IGA concept was initially introduced in the context of the
Finite Element Method by Hughes et al, as we have already mentioned above. This
concept was later extended to the Boundary Element Method (BEM) by various
authors, see, e.g., Politis et al. [28], Simpson et al. [35], Scott et al. [33], Belibassakis
et al. [4], Peake et al. [27], Simpson et al. [36], Ginnis et al. [11], Kaklis et al.
[14]. Recently, An et al. [2] have also employed the isogeometric-BEM (IGA-BEM)
concept for 2D steady heat transfer analysis with very good results. In our work, the
IGABEM approach is based on a NURBS representation of the interface curve and
employs the very same basis of the geometry for representing the temperature (T )
and its normal derivative ( ∂T

∂n ) on the interface. The Boundary Integral Equations
are numerically solved by collocating at the knotvector’s Greville abscissae for
the interface’s parametric representation. As discussed in [17], this IGABEM
approach exhibits superior convergence rate and achieves the same level of accuracy
with a significantly smaller number of degrees of freedom and considerably less
computational time when compared to a classical low-order BEM implementation.
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1.1 Using the Design Optimization Framework

In this chapter, we present the use of the developed design optimization framework
in providing answers or, more precisely, demonstrating the way of seeking answers,
to a family of questions related to temperature and heat transfer between two infinite,
conducting and conforming media (materials) with different conductivity coeffi-
cients in contact over a periodic separating interface with isothermal conditions on
both, lower and upper, boundaries:

• What is the shape of the interface that maximizes heat transfer under given
media-area and/or interface-length constraints?

• If the heat transfer value is given, which is(are) the shape(s) of the interface(s)
that results in that value?

• If we prescribe a heat transfer value larger than what can be reached, what is the
answer to the problem above?

• If the temperature distribution (or the heat flux) along the separating interface is
prescribed or measured, can we compute the shape of the interface itself?

• and other similar questions.

1.2 Chapter Outline

We begin the presentation of our work by discussing the problem formulation (see
Sect. 2.1) and describing, in detail, the IGABEM approach for solving the heat
transfer problem; see Sect. 2.2.

Section 3 is devoted to the presentation of the parametric models we use
for the representation of a periodic free-form interface employed in our design
framework. The two families of parametric models are discussed in Sects. 3.1 and
3.2, respectively.

The next section (Sect. 4) comprises the major part of this chapter and begins
with a discussion of the optimization algorithms that have been used and tested in
the context of our design framework. This discussion is followed by two different
application cases and a series of examples regarding the forward design case
(Sect. 4.1) and the inverse design case (Sect. 4.2). Both cases are handled using
the same design optimization framework and the examples included range from
the determination of optimum fins to identification of the shape that produces a
given temperature distribution. The last section summarizes the presented results
and refers to some possible future enhancements and extensions.
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2 Heat Transfer Problem Formulation

In all shape optimization and inverse design cases presented in this chapter, we
consider a 2D steady-state heat conduction problem. The heat transfer problem
is investigated across a periodic interface that separates two conducting and
conforming media. The separating interface S is a planar, generally continuous, free-
form curve, which is periodic with a period L. For the boundaries of both media that
are not in conduct, we consider isothermal conditions as it is depicted in Fig. 1.

2.1 Continuous Formulation

As our separating interface exhibits longitudinal periodicity, it suffices to examine
our problem within one period of length L. The temperature fields in both media
will satisfy the Laplace equation, i.e. ΔT1 = 0 and ΔT2 = 0, and additionally will
need to satisfy the isothermal conditions, i.e. T1(0, x) = c1 and T2(H, x) = c2
where H = h1(x)+ h2(x) is the total height of the bilayered structure, the periodic
conditions at the vertical walls x = 0 and x = L and finally, the matching conditions
(temperature and flux continuity) along the common boundary S.

Without loss of generality we may transform both temperature fields by setting
T̃1 = T1 − c1 and T̃2 = T2 − c2. Further to this, we may nondimensionalize lengths
(H,h1, h2, L) with the aid of period’s length L. Finally, for reasons of notational
simplification, let us denote from this point onwards T̃1 as T1 and T̃2 as T2. In view
of these definitions and assumptions, we can state our Boundary Value Problem

period L

medium 2 conductivity κ2

medium 1 conductivity κ1

S

ΔΤ1=0

ΔΤ2=0

Τ1=c1

Τ2=c2

X

Y

h1(x)

h2(x)

H

ΔΤ1=0

Τ1=c1

h1(x)

Ω1

Ω2

n2

n1

Fig. 1 L-periodic interface between two conducting and conforming media
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(BVP) formulation as follows:

ΔT1(p1) = 0, p1 = (x, y) ∈ Ω1 and ΔT2(p2) = 0, p2 = (x, y) ∈ Ω2,

(1)

with the following boundary conditions:

1. Isothermal conditions:

T1(x, 0) = 0, T2(x,H) = 0, x ∈ [0, 1] (2a)

2. Periodic conditions:

T1(0, y) = T1(1, y),
∂T1(0, y)

∂x
= ∂T1(1, y)

∂x
, y ∈ [0, h1(0) = h1(1)] (2b)

T2(0, y) = T2(1, y),
∂T2(0, y)

∂x
= ∂T2(1, y)

∂x
, y ∈ [h1(0) = h1(1),H ] (2c)

3. Interface conditions:

T1(p)+ c1 = T2(p)+ c2, p ∈ S (2d)

κ1
∂T1(p)
∂n1

= −κ2
∂T2(p)
∂n2

, p ∈ S, (2e)

where n1,n2 correspond to interface’s normal vectors as they are depicted in
Fig. 1, respectively. If we further assume, without loss of generality, that c1 = 1
and c2 = 0, Eq. 2d may be written as

T1(p)+ 1 = T2(p), p ∈ S. (2f)

We choose to solve this BVP problem with the Boundary Integral Equation
(BIE) method which requires the use of periodic Green’s function for the Laplace
equations in Eq. 1. As it is described by Pozrikidis in [30], the Green’s functions for
the two domains, which satisfy the isothermal and periodic conditions, are expressed
as follows:

G1(p,p0) = 1

4π
ln
(
cosh(2π(y − y0))− cos(2π(x − x0))

)−
1

4π
ln
(
cosh(2π(y + y0))− cos(2π(x − x0))

)
, (3)

p = (x, y),p0 = (x0, y0) ∈ Ω1
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G2(p,p0) = 1

4π
ln
(
cosh(2π(y − y0))− cos(2π(x − x0))

)−
1

4π
ln
(
cosh(2π(y + y0 − 2H))− cos(2π(x − x0))

)
, (4)

p = (x, y),p0 = (x0, y0) ∈ Ω2

The application of Green’s second identity for the temperature field and corre-
sponding Green’s functions in each of the problem’s domains lead to the following
Fredholm-type equations of the second kind:

T1(p0)

2
=
∫

S

G1(p,p0)
∂T1(p)
∂n1(p)

d�(p)−
∫

S

T1(p)
∂G1(p,p0)

∂n1(p)
d�(p), p,p0 ∈ S, (5a)

T2(p0)

2
=
∫

S

G2(p,p0)
∂T2(p)
∂n2(p)

d�(p)−
∫

S

T2(p)
∂G2(p, p0)

∂n2(p)
d�(p), p,p0 ∈ S ⇒

T1(p0)+ 1

2
= −

∫

S

G2(p,p0)
κ1∂T1(p)
κ2∂n1(p)

d�(p)+
∫

S

(T1(p)+ 1)
∂G2(p, p0)

∂n1(p)
d�(p). (5b)

The second equation can be easily derived with the aid of the interface conditions
(Eqs. 2e, 2f) and the obvious observation that n1 = −n2.

Equations 5a and 5b constitute the system of equations we need to solve with
respect to T1(p) and ∂T1(p

∂n1(p)
, p ∈ S. Obviously, if we know the heat flux along one

period of the separating interface, the corresponding dimensionless heat transfer
across it can be easily computed as:

hT =
∫

S

∂T1(p)
∂n1(p)

d�(p). (6)

2.2 IGABEM Formulation

The essence of the IGA approach boils down to expressing the unknown field
quantities, temperature and normal flux in our case, using the exact same basis that
is employed in the representation of the geometry, i.e., one period of the separating
interface in our problem. In our case, we follow an isogeometric boundary element
method approach (IGABEM) to solve the BIE system derived in Sect. 2.1 and, for all
cases presented in this chapter, we assume that one period of the separating interface
S is accurately represented by a regular parametric NURBS curve:

S(t) = p̂(t) =
n∑

i=0

b̂iNi,k(t), t ∈ [0, 1], in homogeneous coordinates or

S(t) = p(t) = (px(t), py(t)) =
n∑

i=0

biRi,k(t), t ∈ [0, 1], in Cartesian coordinates, (7)
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where {Ni,k}, i = 0, . . . , n are the kth order B-spline basis functions defined

over a knotvector T = {t0, t1, . . . , tn+k}, Ri,k(t) = wiNi,k(t)∑n
i=0 wiNi,k(t)

are the

kth order NURBS basis functions defined over the same knotvector, {b̂i}, i =
0, . . . , n are curve’s control points in homogeneous coordinates and finally {bi =
(
b̂ix
wi
,
b̂iy
wi
)}, i = 0, . . . , n are the control points in Cartesian coordinates with wi

being the corresponding control point weight. Using this representation (Eq. 7) for
the separating interface S, we may obviously rewrite the system of BIE equations
(Eqs. 5a, 5b) as follows:

∫ 1

0
G1(t, τ )

∂T1(t)

∂n1(t)
‖ṗ(t)‖dt −

∫ 1

0
T1(t)

∂G1(t, τ )

∂n1(t)
‖ṗ(t)‖dt − T1(τ )

2
= 0, (8)

−κ1

κ2

∫ 1

0
G2(t, τ )

∂T1(t)

∂n1(t)
‖ṗ(t)‖dt +

∫ 1

0
T1(t)

∂G2(t, τ )

∂n1(t)
‖ṗ(t)‖dt − T1(τ )

2
=

= 1

2
−
∫ 1

0

∂G2(t, τ )

∂n1(t)
‖ṗ(t)‖dt, (9)

where t, τ ∈ [0, 1] and obviously T1(t) = T1(p(t)), G(t, τ ) = G(p(t),p(τ )).
The next step comprises the representation of the unknown quantities, T1(t) and
∂T1(t)
∂n1(t)

using the NURBS basis functions employed in Eq. 7. Additionally, we may

allow for further refinement of this spline space (S k(T )) by knot insertions in
T . Hence, we may generally consider the insertion of m knots that will obviously
preserve the shape of our interface S and at the same produce a refined spline space
S k(T ) ⊂ S k(T (m)). Therefore, assuming that

T1(t) =
n+m∑

i=0

T1,iR
(m)
i,k (t), (10)

F1(t) = ∂T1(t)

∂n1(t)
=
n+m∑

i=0

F1,iR
(m)
i,k (t), (11)

where t ∈ [0, 1] and R(0)i,k (t) = Ri,k(t), we may rewrite our system of BIEs as
follows:

∫ 1

0
G1(t, τ )

n+m∑

i=0

F1,iR
(m)
i,k (t)‖ṗ(t)‖dt −

∫ 1

0

n+m∑

i=0

T1,iR
(m)
i,k (t)

∂G1(t, τ )

∂n1(t)
‖ṗ(t)‖dt −

∑n+m
i=0 T1,iR

(m)
i,k (t)

2
= 0, (12a)
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−κ1

κ2

∫ 1

0
G2(t, τ )

n+m∑

i=0

F1,iR
(m)
i,k (t)‖ṗ(t)‖dt +

∫ 1

0

n+m∑

i=0

T1,iR
(m)
i,k (t)

∂G2(t, τ )

∂n1(t)
‖ṗ(t)‖dt −

∑n+m
i=0 T1,iR

(m)
i,k (t)

2
= 1

2
−
∫ 1

0

∂G2(t, τ )

∂n1(t)
‖ṗ(t)‖dt. (12b)

For the calculation of “control points” (coefficients) in the spline representations
of T1 and F1, we herein employ a collocation scheme using as collocation points
({τj }, j = 0, . . . , n + m) the Greville abscissae associated with the refined
knotvector T (m). Hence, by collocating at τj , we get the following system of linear
equations which we need to solve with respect to the unknown coefficients T1,i and
F1,i , i = 0, . . . , n+m:

n+m∑

i=0

F1,i

(∫ 1

0
G1(t, τj )R

(m)
i,k (t)‖ṗ(t)‖dt

)

−

−
n+m∑

i=0

T1,i

⎛

⎝
∫ 1

0
R
(m)
i,k (t)

∂G1(t, τj )

∂n1(t)
‖ṗ(t)‖dt + R

(m)
i,k (t)

2

⎞

⎠ = 0,

j = 0, . . . , m+ n (13a)

−κ1

κ2

n+m∑

i=0

F1,i

(∫ 1

0
G2(t, τj )R

(m)
i,k (t)‖ṗ(t)‖dt

)

+

+
n+m∑

i=0

T1,i

⎛

⎝
∫ 1

0
R
(m)
i,k (t)

∂G2(t, τj )

∂n1(t)
‖ṗ(t)‖dt − R

(m)
i,k (t)

2

⎞

⎠ =

= 1

2
−
∫ 1

0

∂G2(t, τj )

∂n1(t)
‖ṗ(t)‖dt, j = 0, . . . , m+ n (13b)

Obviously, the solution of the linear system in Eqs. 13a,13b comprises the “control
points” of the temperature {T1,i} and heat flux {F1,i} fields, i = 0, . . . n + m along
the separating interface, respectively. Plugging this heat flux representation in Eq. 6
results in the following relation used for the calculation of heat transfer along S for
one period L:

hT =
∫

S

∂T1(p)
∂n1(p)

d�(p) =
n+m∑

i=0

F1,i

∫ 1

0
R
(m)
i,k (t)‖ṗ(t)‖dt (14)

The Green functions appearing in both first terms of Eqs. 13a,13b exhibit loga-
rithmic singularities when t = τj as can be easily observed in Eqs. 8,9. However,
these singularities are eliminated when t does not belong to the local support
of Rmi,k(t). Hence, logarithmic singularities are only exhibited when t lies in the
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local support of the corresponding basis function. Furthermore, as it can be easily
deduced, the gradient of Green’s functions also exhibits a singularity; however the
integrands of the second terms in Eqs. 13a,13b have no singularities as the normal
derivative is regular under the assumption of S being a sufficiently smooth curve;
see [3] and [1]. We calculate all integrals by firstly eliminating parts where the basis
functions is zero and splitting the remaining parts so that singularities, when they
occur, fall on integration boundaries. Subsequently, applying an adaptive Gauss-
Kronrod quadrature scheme, allows us to successfully compute their values, as this
scheme guarantees integration of up to square root singularities at boundaries; see
[34].

2.3 IGABEM Solver Efficiency

The IGABEM approach described in the previous section (Sect. 2.2) has been
extensively tested in [17] with respect to its efficiency and accuracy in estimating
the values of heat transfer, heat flux and temperature distributions for the problem
presented in Sect. 2. The authors selected several different separating interface
geometries and reference solutions were acquired with the use of the commercial
finite element computational package COMSOL [7] employing extremely fine
meshes of around 6 × 104 elements for each case. It was demonstrated that
48 degrees of freedom, i.e., the number of control points used in interface’s
representation, suffice in achieving an error of less than 10−6 for both heat transfer
values and heat flux distributions in all examined cases. Further to this, convergence
rates have been computed and compared against the convergence rates achieved
by a standard BEM approach described in [9]. Specifically, for the case of the
IGABEM approach, convergence rates were demonstrated to reach O(n−4) in all
cases against linear convergence rates for the low-order standard BEM. In practice,
the low standard BEM approach requires around 103 DoFs against only 48 for
IGABEM to achieve the same level of accuracy in solution’s estimation.

Finally, apart from the obvious advantage in the number of required DoFs, Kostas
et al. in [17] demonstrated that the IGABEM approach is also advantageous with
regards to computing time. Specifically, Kostas et al. presented a plot (Fig. 7 in [17])
of required computing time against achieved accuracy for the two BEM approaches.
Using that graph, one can easily see that a maximum deviation of 10−6 from the
reference solution requires around 150 seconds for the IGABEM approach while
104 secs would be needed for the low-order standard BEM [9].

3 Parametric Model

A series of parametric models have been developed for the generation of separating
interface’s shape instances. These range from simplified versions that directly
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define control points’ coordinates to more elaborate ones that employ a number
of affine transformations for the definition of interface’s geometrical shape. In all
cases, the generation process guarantees a tangent continuous, non self-intersecting
periodic separating interface shape that splits the domain in question in exactly two
separate domains. Depending on the application under consideration, additional
conditions such as linear relationships between domains’ areas and/or interface’s
length constraints may be applied. One parameter that is present in all parametric
models is the number of control points (N,N ≥ 4) used for representing the
interface shape. Hence, in all cases, the parametric model comprises an appropriate
process for defining the required 2 × N control point coordinates1 from a set of
parameters with a cardinality, which ideally is significantly less than 2 × N . For
reasons of simplicity and without loss of generality, we may assume here that the
basic dimensions of our bilayered structure period are H = L = 1.

Finally, in all parametric models discussed in the sequel, we have to satisfy
several side constraints imposed on the design parameters, e.g., vi ∈ [ai, ai+1] and
vi+1 ∈ [ai+1, ai+2] with ai < ai+1 < ai+2. An easy and robust way for satisfying
these side constraints is to employ an affine transformation from [0, 1] to [ai, ai+1]
and therefore define a different set of parameters {v̄i} that are strictly in [0, 1] and
define {vi} as follows:

vi = v̄i (ai+1 − ai)+ ai, if vi ∈ [ai, ai+1].

Obviously, if we want to make vi lie in the corresponding open interval, i.e., vi ∈
(ai, ai+1), we may still define v̄i to lie in [0, 1] and define the transformation as
follows:

vi = v̄i (ai+1 − ai − 2ε)+ ai + ε, if vi ∈ (ai, ai+1), 1 >> ε > 0.

3.1 Uniformly Distributed Control Points

This is the simplest of the developed parametric models and interface shape
generation is accomplished via a design vector of N − 2 components. Specifically,
we assume that the interface is represented as a cubic B-Spline curve withN control
points and a clamped knotvector. The first and last control points should obviously
need to be:

b0 = (b0,x, b0,y) = (0, v0), bN−1 = (bN−1,x, bN−1,y) = (1, v0). (15)

where v0 is our first parameter with 0 + ε ≤ v0 ≤ 1 − ε, 1 >> ε > 0. We further
assume that the remaining control points, with the exception of the second and next

1As we limit our investigation in 2D curves, each control point can be represented by a 2D point.
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to last one, are uniformly distributed in (0, 1) in the horizontal direction. In other
words

bi+1,x = i

N − 3
, i = 1, . . . N − 4.

For the second point, b1 we may assume that b1,x = 1
2(N−3) , or, more generally,

b1,x ∈ (0, i
N−3 ), while the next to last control point will be defined through the

tangential direction2 equality equation:

b1,y − b0,y

b1,x − b0,x
= by,N−1 − by,N−2

bx,N−1 − bx,N−2
. (16)

Therefore, the remaining N − 3 parameters (v1, . . . , vN−3) with vi ∈ (ε, 1 − ε),
correspond to the y-coordinates of the control points {b1, . . . ,bN−3}.

Let us examine a simple case with 8 control points (N = 8). The required param-
eters values are obviously 6. If we further assume that {vi} = {0.2, 0.1668, 0.9606,
0.941, 0.4902, 0.794} we will get a separating interface instance represented by a
cubic B-Spline curve c(u) =∑7

i=0 biNi,4(u) (see Fig. 2) with

b0 = (0, v0),b1 =
(

1

10
, v1

)
,b2 =

(
1

5
, v2

)
,b3 =

(
2

5
, v3

)
,b4 =

(
3

5
, v4

)
,

b5 =
(

4

5
, v5

)
,b6 =

(
9

10
, v0 − (v1 − v0)

)
,b7 = (1, v0)⇒

b0 = (0, 0.2),b1 = (0.1, 0.1668),b2 = (0.2, 0.9606),b3 = (0.4, 0.941),

b4 = (0.6, 0.4902),b5 = (0.8, 0.794),b6 = (0.9, 0.2332),b7 = (1, 0.2).

For the calculation of bN−2 we employ the following approach:

• We first assume that bx,N−2 = 2N−7
2(N−3) and then calculate by,N−2 using Eq. 16.

• If by,N−2 < ε, we set by,N−2 = 0 and solve Eq. 16 with respect to bx,N−2.
• Similarly, if by,N−2 > 1− ε, we set by,N−2 = 1 and solve Eq. 16 with respect to
bx,N−2

It is quite clear that this simplistic approach imposes a restriction on the interface
shapes we may generate since the longitudinal positions of control points are fixed
and their values follow a strict ascending order. The former restriction can be
easily eliminated by allowing longitudinal coordinates to vary while satisfying the

2We do not impose equality of magnitudes and hence we only require 1st-order geometric
continuity, i.e., G1.
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Fig. 2 Example interface shape represented as a cubic B-Spline curve with 8 control points

following rule:

bi+1,x ∈
[

2i − 1

2(N − 3)
,

2i + 1

2(N − 3)

]
, i = 1, . . . , N − 4 (17)

If we extend our model as mentioned above, we will need to introduce additional
parameters in the design vector that will determine the longitudinal position of
these N − 4 control points. Therefore, instead of moving on a vertical line
placed at bi,x , control point bi will assume a position in the rectangular domain[

2i−3
2(N−3) ,

2i−2
2(N−3)

]
× [ε, 1 − ε] . Although this is a very simple extension, the

cardinality of the design parameters’ set, in this case, gets close to 2N and
consequently the design space increases significantly in dimension. This has an
obvious negative effect on the complexity of the optimization problem we will need
to solve and should be generally avoided.

For partially eliminating the latter restriction, i.e., allowing longitudinal coor-
dinates to assume non-ascending order, but still produce a non self-intersecting
separating interface shape, we may follow a procedure as described in the following
section.
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3.2 Protrusions and Interfaces with Fixed Parts

This parametric model may be employed if we want to model a protrusion of one
medium into the other (or, equivalently, a recession of the latter medium with respect
to the first one). Here we may additionally assume that a part of the separating
interface is fixed and only the remaining part is allowed to change. As with the
previous parametric model, two variants are available: one that limits the positioning
of control points along a line segment and a more general one, which allows
positioning within a convex polygon; see dashed lines and shaded areas in Fig. 3,
respectively.

The first variant of this parametric model uses a small number of parameters,
i.e., N − 2, and the two pairs of boundary control points, i.e., b0,b1,bN−2 and
bN−1, are determined by the same parameters, v0 and v1, we have introduced in the
previous section. Obviously, for the calculation of their coordinates, Eqs. 15,16 are
employed once again. The remaining parameters, v2, . . . , vN−3 ∈ [0, 1], are used
to determine the position of each bi = (1 − vi)pi + viqi on the line segment (ray)
defined by pi ,qi ; see Fig. 3. These points, pi and qi , are defined as the midpoints
of pa,ipb,i and qa,iqb,i , respectively. Finally, pa,ipb,i and qa,iqb,i , are defined by
uniformly dividing the line defined by C1, C4 and the polygonal line defined by
C1, C2, C3, C4 in N − 4 segments, respectively; see Fig. 3a.

This model can be extended to allow control points to assume position in shaded
domains depicted in Fig. 3 with the introduction of additional parameters that
will control the position of pi and qi within pa,ipb,i and qa,iqb,i , respectively.
Obviously, as in the case of the parametric model discussed in Sect. 3.1, this
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Fig. 3 Example interface shapes representing protrusions of one medium into the other. (a)
Modeling a protrusion over the whole period. (b) Interface with a fixed part
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extension will explode the number of required parameters and therefore increases
the complexity of the corresponding optimization model.

Finally, we may use the same parametric model to restrict the part of the interface
that is allowed to change. Specifically, using points C1,1 and C2,1 shown in Fig. 3b
we can keep the parts C1, C1,1 and C2,1, C2 fixed, and restrict the emanation of rays
in C1,1, C2,1. This functionality can be used for the generation of protrusions as it
is demonstrated in the heat maximization examples presented in Sect. 4.1.2.

4 Optimization Environment and Examples

The developed optimization framework comprises three components: the optimizer,
the simulator and the parametric modeler. The framework is fully automated and the
optimization procedure initiates by the optimizer component and terminates when
an optimum solution has been found or when user-specified termination criteria
have been met. These three components have been embedded within appropriate
wrappers that guarantee the component interconnectivity and establish standard
interface templates, which allow the replacement of the algorithm and/or tool
employed in each component without any need for adjustments and/or modifications
of the optimization framework and the way it is invoked.

All components have been implemented in MATLAB programming environ-
ment [21] with the aid of the NURBS [37], optimization [23] and global opti-
mization [22] toolboxes. The optimizer component has been successfully tested
with both global and local optimization algorithms and the examples presented in
sequel utilize either the Genetic Algorithm implementation found in [22] or a local,
gradient-based algorithm (Interior Point algorithm; see [34]) included in MATLAB’s
optimization toolbox function fmincon; see [23].

Generally, global optimization algorithms, such as Genetic Algorithms, Simu-
lated Annealing, Particle Swarm Optimization and others, do not rely on a good
starting point for reaching the global optimum. They are very well suited for estimat-
ing, with very high probability, the global optimum in highly non-linear objective
functions (as the ones employed in our examples). Their main drawback is the
requirement of a generally large number of iterations before reaching convergence.
On the other hand, local, gradient- and/or Hessian-based algorithms require a good
initial guess for reaching the global optimum and an appropriate starting point will
allow the method to converge rapidly to the global optimum. However, when we
cannot provide an appropriate starting point, e.g., the optimum shape cannot be
estimated, the method will probably reach a local minimum/maximum and hence,
the use of guided random search algorithms is generally preferred. Details for the
usage of local and global optimization schemes are included in the discussion of the
examples presented later in this section.

The parametric modeler component utilizes the models presented in Sects. 3.1
and 3.2 along with their variants described in the same subsections. The parametric
modeler generates a cubic NURBS representation of the separating interface for a
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given design vector v. The specific details of the required parameters and model
setup are also provided in the discussion of the examples that follow.

Finally, the simulator component comprises the implementation of the IGABEM
approach described in Sect. 2. The simulator interface allows the user to specify
the required temperatures and dimensions, conductivity coefficients along with the
number of additional knots (m) that may be inserted; see the relevant discussion
before Eqs. 10, 11. Knot insertions refine the spline space used for the representation
of the unknown quantities (temperature and heat flux) and therefore, more accurate
solutions can be achieved.

In the remaining part of this section we will present indicative examples for both
forward and inverse design cases that demonstrate the way to acquire answers for
the questions posed in Sect. 1.1. In most cases, we will obviously need to introduce
additional design constraints to avoid getting trivial solutions or having a not well
defined problem. We will begin our presentation with forward design cases where
the complete length or part of the separating interface is determined by a shape
optimization procedure that maximizes the heat transfer between the two conductive
media and continue with inverse design and the determination of the interface shape
that guarantees a given heat transfer value or a specific temperature distribution
along its length.

4.1 Forward Design

When examining the forward design family of problems, it is quite clear that we
need to set some additional design constraints since otherwise, our heat transfer
maximization problem will obviously attain a trivial solution that places the
separating interface as close as possible to the high temperature domain boundary.
The design constraints we have employed are simple geometric constraints that
correspond to practical design restrictions and application requirements.

Specifically, we will demonstrate the results acquired via the shape optimization
framework for three different cases:

1. the separating interface shape that maximizes heat transfer when the volume of
the two media needs to be fixed. Based on our 2D problem setup, this requirement
corresponds to a constraint on the area values of the domainsΩ1,Ω2; see Fig. 1.

2. The separating interface shape that maximizes heat transfer under a given surface
area value for the separating interface. In this case, the design constraint, for
our 2D case setup, corresponds to a restriction on the length of the separating
interface.

3. Finally, we demonstrate solutions for a heat-transfer-maximizing interface when
both media volume and interface surface area are constrained.



114 K. Kostas et al.

4.1.1 Heat Transfer Maximization Subject to Area Constraints

For the first case we will present two different examples demonstrating the use of
our framework for determining the heat-transfer-maximizing interface under given
media volumes. For the first case, we assume that we are given an initial straight-
line separating interface that splits our problem domain (Ω) into two piecesΩ1 and
Ω2 with equal area values; see Fig. 4. Obviously, within within the period L = 1,
each domain has an area of 0.5 square units and our optimization goal is to modify
the shape of the separating interface so that we achieve heat transfer maximization
without affecting the domain area equality. Furthermore, we assume that both the
top and bottom surface of the bilayered construction are isothermal boundaries with
temperatures 1 K (T̃2 = T2 − c2 = 1 − 1) and 0 K (T̃1 = T1 − c1 = 0 − 0),
respectively. Finally, the conductivity coefficients for the top (medium 2) and bottom
medium (medium 1) are κ2 = 0.1 W

mK
and κ1 = 1 W

mK
, respectively.

The parametric model employed in this case is the simple model with uniformly
distributed control points described in Sect. 3.1. Specifically, we have assumed a
cubic B-Spline curve with a uniform, clamped knotvector and 12 control points
(24 coordinate values) for the representation of the separating interface shape.
Therefore, the required number of parameters according to our approach will be
equal to N − 2 = 10. Further to this, we assume here a horizontal tangent direction
at both ends of the periodic interface curve, which simplifies the problem and

L=1

H
=

1

medium 1
κ =11

medium 2
κ =0.12

So

T=1 (c2=1)

T=0 (c1=0)

Ω2
A2=0.5

Ω1
A1=0.5

(a)
1

1

Ω2
A2=0.5

Ω1
A1=0.5

(b)

Fig. 4 Example 1: Interface shape optimization under area constraints. (a) Initial separating
interface. (b) Optimum separating interface; circles and triangles denote free and dependent control
points, respectively
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decreases the number of required parameters as shown below:

b0 = (0, v0) b1 = ( 1
18 , v0) b2 = ( 1

9 , v1) b3 = ( 2
9 , v2)

b4 = ( 3
9 , v3) b5 = ( 4

9 , v4) b6 = ( 5
9 , v5) b7 = ( 6

9 , v6)

b8 = ( 7
9 , v7) b9 = ( 8

9 , v8) b10 = ( 17
18 , v0) b11 = (1, v0),

where vi ∈ (0, 1), i = 0, . . . , 8. Hence, the initial straight line interface obviously
corresponds to the design vector v = {vi}, vi = 0.5, ∀i. We need to note
here that the number of control points obviously affects the parametric model’s
ability to capture the optimum shape. Specifically, if the optimum interface has a
complex shape, we will not be able to generate its shape with a small number of
control points. On the other hand, a large number of control points (and therefore
parameter values) increases the dimensions of the design space and renders the
optimization procedure computationally expensive. A general rule of thumb for the
cases examined is to start with around 10 control points and increase them until no
further enhancement of the optimum shape can be achieved.

Under these assumptions, we can state our heat transfer maximization problem
as follows:

max hT (v) = max
n+m∑

i=0

F1,i (v)
∫ 1

0
R
(m)
i,k (t)‖ṗ(t; v)‖dt

subject to : (18)

A1 =
∫ 1

0
py(t; v)ṗx(t; v)dt = 0.5,

vi ∈ (0, 1), i = 0, . . . , 8,

where the former constraint enforces the area equality for the two media and the
latter guarantees that the interface will touch neither of the isothermal boundaries.
In Fig. 4b we depict the acquired optimum interface. This optimum shape has been
acquired with the help of MATLAB’s Genetic Algorithm implementation. The same
result may be reached with the aid of gradient- and/or Hessian-based optimization
algorithms, assuming a good initial shape guess is provided. The resulting optimum
shape achieves a heat transfer value hT = 0.469, which is considerably larger
than the value for the initial straight-line interface, hT0 ≈ 0.1818. We must note
here that due to the nature of our problem (consideration of a periodic interface
in an infinite bilayered structure) the result of the optimization procedure can be
any horizontal translational transformation (and/or any other affine transformation,
such as horizontal mirroring the will obviously produce the same infinite separating
interface) of the shape depicted in Fig. 4b.

In the second optimization example, we once again begin with a straight line
separating interface but this time, as depicted in Fig. 5a, the two domains have
unequal thicknesses and consequently unequal areas. Assuming once again a height
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Fig. 5 Example 2: Interface shape optimization under area constraints. (a) Initial separating
interface. (b) Optimum separating interface; circles denote free control points, squares and
triangles denote fixed and dependent control points, respectively

of H = 1 for the bilayered structure, the two media will have an area of 1
3 and 2

3
square units within a period of L = 1, respectively. We employ the same parametric
model using a cubic B-Spline curve with uniformly distributed control points for the
representation of the separating interfaces. This time, we assume that the interface’s
endpoints are fixed at a height of 1/3 but tangent directions there may deviate
from the horizontal direction. Experimentation with different numbers of interface’s
control points has indicated that 13 control points suffice for reaching the optimum
and therefore 103 parameter values (v0, . . . , v9) are required:

b0 = (0, 1
3 ) b1 = ( 1

20 , v0) b2 = ( 1
10 , v1) b3 = ( 2

10 , v2)

b4 = ( 3
10 , v3) b5 = ( 4

10 , v4) b6 = ( 5
10 , v5) b7 = ( 6

10 , v6)

b8 = ( 7
10 , v7) b9 = ( 8

10 , v8) b10 = ( 9
10 , v9) b11 = (b11x, b12y) b12 = (1, 1

3 ),

where the coordinates of b11 need to satisfy the tangential continuity as defined
by Eq. 16. The remaining boundary conditions and conductivity coefficients are
identical to the ones used in the previous optimization example. Therefore, we can

3One less than N − 2 since endpoint heights are fixed.
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state our heat transfer maximization problem as follows:

max hT (v) = max
n+m∑

i=0

F1,i (v)
∫ 1

0
R
(m)
i,k (t)‖ṗ(t; v)‖dt

subject to : (19)

A1 =
∫ 1

0
py(t; v)ṗx(t; v)dt = 1

3
,

vi ∈ (0, 1), i = 0, . . . , 9.

Similarly to the first optimization example, deterministic4 and evolutionary algo-
rithms may be employed in the solving process. In Fig. 5b, the result achieved
using MATLAB’s Genetic Algorithm implementation is depicted. The optimum heat
transfer value is hT = 0.3397, which is considerable larger when compared to the
value acquired from the straight line interface hT0 ≈ 0.142857.

4.1.2 Heat Transfer Maximization Subject to Perimeter Constraints

In this second case of optimization examples, we present a series of results that
demonstrate the use of the optimization framework in conjunction with the second
parametric model, described in Sect. 3.2, for handling interfaces with protrusions.
Specifically, we present a series of optimization examples for which a part of the
periodic separating interface is assumed fixed while the remaining part is allowed
to change. We could potentially use the same parametric model we have employed
in the previous section but as it has been already shown that the optimum shapes
will not be x-monotonic [9], the first parametric model will not be able to reach
the optimum. We assume here that we have the same initial separating interface,
i.e., a straight line interface splitting the bilayered structure periodic domain in two
domains Ω1 and Ω2 as depicted in Fig. 5a. The remaining boundary conditions,
conductivity coefficients and temperature values are identical to the 2nd example
of the previous section and, in this case, we seek to generate a centrally-located
protrusion that maximizes heat transfer.

In Fig. 6, we include the results attained when solving the optimum protrusion
problem subject to two major constraints: (a) a restriction on the length (perimeter
P) of the interface and (b) a restriction on the percentage of the initial interface that is
allowed to change. Specifically, we vary the allowable percentage from 20% to 90%
(black to green family of curves in Fig. 6) and the maximum allowable perimeter
from 1.2 to 2 units of length (dotted to solid line curves in the same figure).

4Assuming a good initial estimation of the optimum shape can be made.
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Fig. 6 Example 3: Optimum protrusions

The family of heat transfer maximizing interfaces shown in Fig. 6 are obtained
by solving the following series of problems:

max hT (v) = max
n+m∑

i=0

F1,i (v)
∫ 1

0
R
(m)
i,k (t)‖ṗ(t; v)‖dt

subject to : (20)
∫ 1

0
‖ṗ(t; v)‖dt ≤ P, P ∈ {1.2, 1.5, 1.8, 2.0}

vi ∈ (0, 1), ∀i.

Let us note here that, in this case, we can easily employ MATLAB’s deterministic
algorithms, such as the Interior Point algorithm [5] implemented in MATLAB’s
fmincon function, for seeking the optimum interface, since the estimation of a
good initial shape is rather obvious in this case.
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4.1.3 Heat Transfer Maximization Subject to Area and Perimeter
Constraints

The last set of examples examined for the forward design case comprises a set of
problems employing both area and interface-perimeter constraints. The interface
parametric model used in this case is the same simple parametric model with the
same parameters and assumptions employed for the 2nd example in Sect. 4.1.1 and
the initial separating interface is as depicted in Fig. 5a.

The family of heat transfer maximizing interfaces shown in Fig. 7 is obtained by
solving the following series of problems:

max hT (v) = max
n+m∑

i=0

F1,i (v)
∫ 1

0
R
(m)
i,k (t)‖ṗ(t; v)‖dt

subject to : (21)
∫ 1

0
‖ṗ(t; v)‖dt ≤ P, P ∈ {1.2, 1.5, 1.8, 2.0}

A1 =
∫ 1

0
py(t; v)ṗx(t; v)dt = 1

3
,

vi ∈ (0, 1), ∀i.

Similarly to the examples and the discussion of optimum fins presented
in [18] and [9] a wavy separating interface is formed in all cases, where
longer and shallower valleys, and deeper and narrower protrusions of the high
conductivity material into the lower conductivity material are developed as the
perimeter inequality constraint tends to infinity. Obviously, when P = ∞, the
problem in Eq. 21 becomes essentially the same problem described in Eq. 19
and the interface consequently assumes the shape shown in Fig. 5b. Finally,
the obtained heat transfer values increase following the allowable perimeter
length, i.e., hT = {0.1429, 0.1533, 0.1727, 0.1957, 0.2181, 0.3397} when P ≤
{1, 1.2, 1.5, 1.8, 2,∞}, respectively; see Figs. 5 and 7.

4.2 Inverse Design

In this second family of problems, we employ the same shape optimization frame-
work for addressing inverse design problems. Specifically, the examples presented
in this section refer to design solution for the following cases:

1. What is the shape of the periodic separating interface that achieves a given heat
transfer value between the two media in our bilayered structure?
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Fig. 7 Example 4: Optimum interfaces subject to perimeter and area constraints

2. What is the shape of the periodic separating interface that corresponds to a
given temperature (or heat flux) distribution along an unknown interface of our
bilayered structure?

As we will discuss in more detail in the subsequent examples, the first question will
not assume a unique solution in the general case while the second question will
generally do, assuming obviously that a feasible solution exists.

4.2.1 Interface Shape for a Given Heat Transfer Value

In this first series of inverse design example cases, we assume a given heat transfer
value while the shape of the separating interface constitutes the unknown quantity.
To facilitate the comparison with the examples presented in the previous section, we
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assume, once again, the same boundary value problem and setup as described for
the 2nd example presented in Sect. 4.1.1, including the constraint of fixed interface
endpoints at a height equal to 1/3. The parametric model employed for all cases
in this subsection is the simple model with uniformly distributed control points
described in Sect. 3.1. This time we assume 14 control points for the interface’s
cubic B-Spline representation, which are defined with the aid of 11 parameters
({vi}, i = 0,):

b0 = (0, 1
3 ) b1 = ( 1

22 , v0) b2 = ( 1
11 , v1) b3 = ( 2

11 , v2) b4 = ( 3
11 , v3)

b5 = ( 4
11 , v4) b6 = ( 5

11 , v5) b7 = ( 6
11 , v6) b8 = ( 7

11 , v7)

b9 = ( 8
11 , v8) b10 = ( 9

11 , v9) b11 = ( 10
11 , v10) b12 = (b12x, b12y) b13 = (1, 1

3 ),

where the coordinates of b12 need to satisfy the tangential continuity as defined
by Eq. 16. The optimization problem that we will need to solve in all cases is the
following:

min

∣∣∣∣∣∣

n+m∑

i=0

F1,i (v)
∫ 1

0
R
(m)
i,k (t)‖ṗ(t; v)‖dt − hTj

∣∣∣∣∣∣
, j = 1, 2, 3 (22)

subject to :
vi ∈ (0, 1), i = 0, . . . , 10,

where hT1 = 0.2, hT2 = 0.3397 and hT3 = 0.5. Before we proceed with the
presentation of our results, let us note here that the first given heat transfer value
is less than maximum attainable5 heat transfer value, the second one coincides with
it, while the last once (hT3 ) is larger; see Fig. 5b and the corresponding discussion
in Sect. 4.1.1.

Figure 8 depicts indicative results for the separating interface shape acquired by
the solution of Eq. 22 for hT1 = 0.2. Two different initial estimations have been
used (see dashed lines in Figs. 8a,b) in conjunction with MATLAB’s Interior Point
algorithm implementation. In both cases, we achieve a solution that minimizes
the objective function in Eq. 22 but obviously does not correspond to the same
separating interface shape. As a matter of fact, we can have an infinite number
of shapes that satisfy our objective function and therefore this problem does not
admit a unique solution. This is not an issue related to the optimization algorithm
employed as guided random search optimization algorithms will generally produce a
different solution with each run and therefore this is an issue inherent to the problem
under consideration. Additional constraints and/or problem setup modifications are
required, if we want to achieve uniqueness in the solution.

However, if the given heat transfer value is greater or equal to the maximum
attainable value for the specific bilayered structure setup, the solution becomes

5For the specific bilayered structure layout and problem setup.
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Fig. 8 Interface shape for a given heat transfer value of hT1 = 0.2 using different initial shape
estimates. (a) Objective function value 2.7 × 10−9. (b) Objective function value 6 × 10−12
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unique6 as it is depicted in Figs. 9 and 10. Of course this does not mean that we can
obtain this unique optimum solution without a good initial estimate of interface’s
shape when gradient- and/or Hessian-based optimization algorithms are employed,
as it is clearly depicted in Figs. 9a and 10a. The optimum and unique solution of
Eq. 22 can be achieved with either a good initial shape estimation (see Figs. 9b
and 10b) or by employing a global optimization approach with algorithms such as
simulated annealing, evolutionary algorithms etc.

We can easily see in Fig. 9b that the result (thick solid line) of the inverse problem
for hT2 = 0.3397 practically coincides with the result of the corresponding forward
problem’s solution (included as a thin solid line in Fig. 9b). Although one may
initially think that there is a difference in the narrow protrusion part depicted in
the same figure, it is easy to observe that this deviation corresponds merely to a
horizontal mirroring of the protrusion with respect to a vertical axis passing through
the intersection point of the two curves and therefore has practically no effect on the
heat transfer value.

Finally, Fig. 10b depicts the solution for hT3 = 0.5 which is obviously identical
to the optimum solution obtained for hT2 and depicted in Fig. 9b. Figure 10a
demonstrates the dependence of the gradient-based optimization algorithms from
a good initial guess in reaching the global optimum and we can generally state that
with the exception of cases where the optimum shape can be easily estimated, we
suggest the use of guided random search algorithms, such as Genetic Algorithms,
Simulated Annealing, Particle Swarm Optimization etc., which do not rely on a
good starting point for reaching the global optimum.

4.2.2 Interface Shape for a Given Temperature Distribution

The last two examples, for the inverse design case, demonstrate the use of the
optimization framework in identifying the separating interface shape that exhibits
a given temperature distribution along it. The exact same setup and formulation can
be also used if, instead of a temperature distribution, the heat flux distribution is
given along the unknown interface. We assume here that a set of temperature (or
heat flux) values is given along the unknown separating interface and we want to
employ our optimization framework for identifying the shape of the interface that
produces the given distribution.

For the two examples presented in this section and for simplicity’s sake, we have
further assumed that the unknown interface exhibits x-monotonicity and therefore
we may assume that the distribution can be represented by a set of points where
temperature values are the ordinates and x-coordinates their abscissae. In both
examples we employ the same simple parametric model described in Sect. 3.1 driven
by a design vector with 10 parameter ({vi}, i = 0, . . . , 10). Hence, employing

6In the sense discussed in Sect. 4.1.1 where translational and/or mirroring transformations of the
resulting shape are producing the same infinite periodic interface.
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Fig. 9 Interface shape for a
given heat transfer value of
hT2 = 0.3397 using different
initial shape estimates. (a)
Objective function value
0.0487; optimum solution
missed. (b) Objective
function value 1.8 × 10−9;
optimum solution reached
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Fig. 10 Interface shape for a
given heat transfer value of
hT3 = 0.5 using different
initial shape estimates. (a)
Objective function value
0.179; optimum solution
missed. (b) Objective
function value 0.1578;
optimum solution reached
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our IGABEM solver, we can identify the design vector that produces a similar
temperature distribution and therefore identify the shape of the interface. For doing
so, we need to minimize the distance between the computed and given temperature
distribution and one way to do so is by minimizing the sum of the euclidean
distances between corresponding ‘temperature’ points:

min

⎛

⎝
M∑

i=1

(
T1(t (xi); v)− T0(xi)

)2
⎞

⎠

1
2

, (23)

vi ∈ (0, 1), i = 0, . . . , 9.

where M is a large number of points with a given temperature value {T0(xi)}, i =
1, . . . ,M along the unknown separating interface.

Figure 11a depicts the given temperature distribution (dotted-line curve) for
the optimum separating interface presented in Fig. 5b. The solid-line curve in the
same figure corresponds to the solution of Eq. 23 using a simple gradient-based
optimization algorithm. The actual shape of the interface is included in the same
figure (depicted with thick black circular disks) and no visible difference exists
between the original and the reconstructed separating interface shape; the minimum
achieved objective function value forM = 1000 is equal to 1.05 × 10−6.

Figure 11b depicts the given temperature distribution (dotted-line curve) for a
randomly generated separating interface. The solid-line curve in the same figure cor-
responds to the solution of Eq. 23 using the same simple gradient-based optimization
algorithm as in the previous example. The actual shape of the interface is included in
the same figure (depicted once again with thick black circular disks) with a barely
visible difference between the original and the reconstructed separating interface
shape. This time the minimum achieved objective function value for M = 1000 is
equal to 1.8 × 10−4.

As we have already discussed in Sect. 4.1.1 the number of control points
obviously affect the parametric model’s ability to capture the separating interface’s
shape. If the temperature distribution exhibits a complex shape, we can safely
assume that the interface shape will be equally complex and a sufficient number
of parameters (control points) will be required for successfully reconstructing the
unknown shape.

5 Conclusions and Future Work

In the present work, a robust design optimization framework has been developed
and used for optimizing the shape of the periodic, separating interface between two
infinite slabs in conduct with the aim of heat transfer maximization as described
in Sects. 2.1 and 4.1. The same framework has been also employed for performing
inverse design, i.e., finding the shape of the interface that generates a given heat
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Fig. 11 Interface shape for a
given temperature
distribution. (a) Objective
function value 1.05 × 10−6.
(b) Objective function value
1.8 × 10−4
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transfer and/or temperature distribution along itself; see Sect. 4.2. The design
optimization environment is based on a series of geometric parametric modelers for
generating instances of the separating interface, an IGABEM solver for calculating
temperature and heat flux distributions along the interface, and an optimizer, which
employs a series of local and global optimization algorithms.

The presented isogeometric boundary element method (IGABEM) is a central
component in our design optimization framework and plays a significant role in
permitting the automatic and efficient operation of the framework. This IGABEM
solver is applied for solving the BIE system associated with the 2D steady-state
heat transfer problem across a periodic interface separating two conducting and
conforming media as described in Sect. 2.1. The isogeometric concept, in this
context, is based on the exploitation of the same NURBS basis, used for the exact
representation of interface’s geometry, to approximate, via refinement, the physical
quantities of temperature and normal heat flux along the interface. The enhanced
accuracy and efficiency of this method has considerable benefits in its use for
solving both forward and inverse design problems as has been demonstrated in
Sect. 4.

Future work is planned towards further enrichment of the parametric models’
capabilities and the extension of this framework for handling additional 2D and
3D heat transfer problem formulations. For the 3D case, one possibility includes
the application of the doubly-periodic Green’s function of the Laplace equation as
described in Hautman and Klein [12], and Pozrikidis [29].
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Isogeometric Methods for Free Boundary
Problems

M. Montardini, F. Remonato , and G. Sangalli

Abstract We present in detail three different quasi-Newton isogeometric algo-
rithms for the treatment of free boundary problems. Two algorithms are based
on standard Galerkin formulations, while the third is a fully-collocated scheme.
With respect to standard approaches, isogeometric analysis enables the accurate
description of curved geometries, and is thus particularly suitable for free boundary
numerical simulation. We apply the algorithms and compare their performances
to several benchmark tests, considering both Dirichlet and periodic boundary
conditions. Our results constitute a starting point of an in-depth analysis of the Euler
equations for incompressible fluids.

1 Introduction

This work focuses on the isogeometric analysis (IGA) of free boundary problems.
IGA, first presented in [10], is a recent extension of the standard finite element
method where the unknown solution of the partial differential equation is approx-
imated by the same functions that are adopted in computer-aided design for the
parametrization of the problem domain. These functions are typically splines and
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extensions, such as non-uniform rational B-splines (NURBS). We refer to the
monograph [2] for a detailed description of this approach, as well as to [1] for an
overview of the mathematical theory of IGA.

In this work we present three general free boundary algorithms. The first
algorithm is an extension of the finite elements approach of [12, 13] to IGA.
Since the finite element basis produces meshes with straight edges, the authors
needed a workaround to approximate the curvature of the boundary; in the new
IGA framework this can be avoided thanks to the natural description of curved
geometries through spline functions. IGA of free boundary problems was already
considered in [11, 21]; our second algorithm uses and extends these approaches to
problems with periodic conditions. Our third and most efficient scheme uses instead
an isogeometric variational collocation approach based on the superconvergent
points presented in [8, 14]. The choice of applying an IGA collocation method is
a novelty in this setting and, moreover, allows for a fast computation of the solution.
While speed is marginally important in the benchmarks considered in this work, it
becomes a major concern when one needs to address more complicated problems.

All the algorithms are based on shape calculus techniques, see for example [5,
19]. This results in the three algorithms being of quasi-Newton type.

Our interest in free boundary problems is motivated by a separate analysis, in
progress at the time of writing, of the periodic solutions of the Euler equations
describing the flow of an incompressible fluid over a rigid bottom. The analytical
literature on this problem is quite extensive, with results regarding irrotational flows
[9], the limiting Stokes waves [20], or waves on a rotational current containing one
or multiple critical layers [6, 24]. The numerical experiments so far have used finite
differences methods [3], boundary-integral formulations [18], or finite elements
[16]. Several other examples and numerical experiments, also based on boundary
formulations, can additionally be found in [22].

This paper is organised as follows: In Sect. 2 we describe the details of free
boundary problem, and present two weak formulations that will constitute our
starting point for the algorithms. In Sect. 3 we first introduce the necessary shape
calculus tools, and then proceed to linearise the aforementioned weak forms. This
will produce the correct formulations on which to base our quasi-Newton steps.
Section 4 describes the discrete spaces used in the numerical schemes along with
the structure of the algorithms. Finally, Sect. 5 presents the numerical benchmarks
and the results we obtained. We summarise the results and draw our conclusions in
Sect. 6.

2 Free Boundary Problem

Let �0 be a domain used as reference configuration with ∂�0 = �D ∪ �P ∪ �0;
�D being the (fixed) bottom boundary with Dirichlet data, �P the (fixed) vertical
boundary, and �0 the (free) upper part of the boundary. Moreover, let D be a
rectangle with basis �D of length λ, containing�0 and all its possible deformations.
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Fig. 1 The setting of our problem. The vector field V deforms the reference free boundary �0
(dashed line) into the free boundary �V (thick solid line). The lateral boundary is indicated with
�P, while the thin solid line represents the fixed flat bottom boundary �D. The physical domain
and its deformations are contained in a larger rectangle D

For M a domain and � a curve, we denote with Ck,l(M,R2) the space of (k, l)-
Hölder continuous functions defined on M with values in R

2 and by Ck,l0 (�,R
2)

the subspace of Ck,l(�,R2) with compact support, in particular vanishing at the
two extremes of the curve. Then, the set of admissible vector fields acting on the
reference domain is defined as � = {V ∈ C0,1(D,R2) ∩ C1,1

0 (�0,R
2) |V =

0 on �D and V(·, y) λ-periodic}. We encode the deformation of the upper part of
the boundary, �0, as the action of a vector field V ∈ � such that the deformed
domain is smooth enough, does not have self intersections and does not touch the
bottom �D. For this reason we denote the deformed free boundary with �V = {x ∈
R

2 | x = x0 +V(x0), x0 ∈ �0}. Analogously, �V will denote the physical domain
with boundary ∂�V = �D∪�P∪�V; see Fig. 1 for a representation of this setting.
We remark that �0 is in general not flat.

The Bernoulli-type free boundary problem (FBP) we are interested in can then
be posed as searching for a pair (u,V), both λ-periodic in the x-direction, such that

−�u = f in �V (1a)

u = h on �V ∪ �D (1b)

∂nu = g on �V (1c)

where ∂nu = ∇u · n is the outward normal derivative of u. The functions f , h, and
g are defined in D and are compatible with the periodicity requirement. We will
consider h and g continuous, with g strictly positive and bounded away from zero.1

1The strict positivity is not strictly necessary: If g < 0 one could, for instance, keep track of the
sign of g in the numerical method directly. However, g has to have a definite sign everywhere on
�V.



134 M. Montardini et al.

Remark 1 The analytical treatment of the problem with periodic boundary con-
ditions does not differ much from the case with pure Dirichlet conditions, which
we also consider in our numerical benchmarks. In the Dirichlet problems, the pair
(u,V) is not required to be λ-periodic in the x- direction and the Dirichlet condition
(1b) is imposed on �V ∪ �D ∪ �P.

2.1 Weak Formulation

To obtain a formulation of (1) suitable for a numerical scheme we first follow the
steps presented in [12]. This approach leads to two distinct, coupled weak forms.
Given the space H 1

per (�V) := {u ∈ H 1(�V) | u(·, y) λ-periodic}, for a known
function r periodic in the x-direction we define the space

H 1
r,�D(�V) := {ϕ ∈ H 1

per (�V) |ϕ = r on �D}.
The first weak form is then obtained using (1a), (1c), and the part of (1b)

pertaining to �D. We select test functions ϕ ∈ H 1
0,�D

(�V) and apply Green’s
formula once to obtain

∫

�V
∇u · ∇ϕ d�−

∫

�V
g ϕ d� =

∫

�V

f ϕ d�. (2)

Using the part of (1b) on �V we employ test functions v ∈ H 1
per (�V) and write the

second weak form simply as
∫

�V
uv d� =

∫

�V
hv d�. (3)

We select the trial function space by requiring u ∈ H 1
h,�D

(�V), thereby strongly
imposing the Dirichlet boundary conditions on �D. This leads to the definition of
two linear forms:

M1(u,V;ϕ) :=
∫

�V
∇u · ∇ϕ d�−

∫

�V
g ϕ d� −

∫

�V
f ϕ d�, (4)

M2(u,V; v) :=
∫

�V
uv d� −

∫

�V
hv d�. (5)

Thus, with this approach the problem is defined as:
Search for (u,V) ∈ H 1

h,�D
(�V)×� such that

M1(u,V;ϕ) = 0,

M2(u,V; v) = 0,

for all test functions (ϕ, v) ∈ H 1
0,�D

(�V)×H 1
per (�V).
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2.2 Very-Weak Formulation

We now follow the approach of [21]. The main difference from the previous
formulation is that we write a single very-weak formulation containing information
from all boundary conditions.

Considering the subspace H 2
0,�D

(�V) := {ϕ ∈ H 1
0,�D

(�V) |ϕ ∈ H 2(�V)}, we

multiply (1a) by a test function ϕ ∈ H 2
0,�D

(�V); integrating by parts twice leads to

−
∫

�V
(u− h)�ϕ d�+

∫

�V
∇h · ∇ϕ d� =

∫

�V
f ϕ d�+

∫

�V
ϕ g d�, (6)

which we demand to be satisfied for all ϕ ∈ H 2
0,�D

(�V). In view of the above

formulation we can then select the trial function space simply as H 1
per (�V). The

Dirichlet boundary conditions are therefore all imposed weakly.
From Equation (6) we define the linear form

N(u,V;ϕ) := −
∫

�V
(u− h)�ϕ d� +

∫

�V
∇h · ∇ϕ d�

−
∫

�V
f ϕ d� −

∫

�V
ϕ g d�. (7)

Thus, with this approach the problem is defined as:
Search for (u,V) ∈ H 1

per (�V)×� such that

N(u,V;ϕ) = 0

for all test functions ϕ ∈ H 2
0,�D

(�V).
Note that this very-weak formulation cannot be used directly to implement a

numerical scheme, as the trial and test spaces are unbalanced.

3 Linearising the FBP

We now proceed in deriving a quasi-Newton algorithm to solve the free boundary
problem. The dependence on the geometry of the domain is handled through shape
calculus techniques to express the derivatives with respect to the vector field V.
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3.1 Shape Derivatives

Here we briefly state the shape calculus results we will need for the linearisation.
An in-depth analysis of the assumptions and regularity requirements can be found
in the original work by Delfour, Zolésio, and Sokolowski [5, 19]. An overview of
shape calculus presented with a more modern approach can also be found in [11].

Let O be a family of admissible (smooth enough) domains; a functional J is called
a shape functional if J : O → R. Note therefore that for a fixed function u and test
functions ϕ and v, the maps defined by the linear forms introduced earlier are shape
functionals provided we identify each element V ∈ �with the domain�V in which
�0 is deformed by the action of V.

In the particular cases of a domain functional J(V) = ∫
�V
ψ d� and a boundary

functional F(V) = ∫
�V
φ d�, with ψ and φ smooth functions in R

2 independent
of V, the shape derivatives of J and F are described by the following Hadamard
formulas:

〈 ∂VJ(V), δV 〉 =
∫

�V
ψ δV · n d� (8a)

〈 ∂VF(V), δV 〉 =
∫

�V

(
∂nφ + Hφ

)
δV · n d� (8b)

where δV ∈ � is a perturbation of the vector field, H is the signed (additive)
curvature of �V and n is the normal vector pointing outward. In particular,
considering a parametrization of the free boundary �V defined as γ (t) = (t, η(t)),
then

H := − η′′
[
1 + (η′)2]3/2

.

3.2 Linearisation of the Weak Formulation

Let us first consider the linear forms (4) and (5). We want to linearise M1 and
M2 with respect to u and V at an arbitrary approximated solution (u∗,V∗) ∈
H 1
h,�D

(�V∗)×�.
Since the dependence of M1 and M2 on u is affine, their Gâteaux derivatives with

respect to u in the direction δu ∈ H 1
0,�D

(�V∗) are simply given by:

〈 ∂uM1[u∗,V∗;ϕ], δu 〉 =
∫

�V∗
∇δu · ∇ϕ d� (9a)

〈 ∂uM2[u∗,V∗; v], δu 〉 =
∫

�V∗
δu v d�. (9b)
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The linearisation with respect to the vector field V in the direction δV ∈ � is
performed using the Hadamard formulas; we obtain:

〈 ∂VM1[u∗,V∗;ϕ], δV 〉 =
∫

�V∗
∇u∗ · ∇ϕ δV · n d�

−
∫

�V∗

[
KHϕ + g ∂nϕ

]
δV · n d� (10a)

〈 ∂VM2[u∗,V∗; v], δV 〉 =
∫

�V∗

(
∂nu

∗ − ∂nh+ H(u∗ − h)) v δV · n d�

+
∫

�V∗
(u∗ − h) ∂nv δV · n d� (10b)

where KH := ∂ng + Hg + f , and H is the curvature of �V∗ .
A Newton step at the point (u∗,V∗) has then the following structure: Search for

δu ∈ H 1
0,�D

(�V∗) and δV ∈ � such that

〈 ∂uM1[u∗,V∗;ϕ], δu 〉 + 〈 ∂VM1[u∗,V∗;ϕ], δV 〉 = −M1(u
∗,V∗;ϕ) (11a)

〈 ∂uM2[u∗,V∗; v], δu 〉 + 〈 ∂VM2[u∗,V∗; v], δV 〉 = −M2(u
∗,V∗; v) (11b)

for all (ϕ, v) ∈ H 1
0,�D

(�V∗)×H 1
per (�V∗).

Therefore, summing all the contributions, we search for
ũ = u∗ + δu ∈ H 1

h,�D
(�V∗) and δV ∈ � such that

∫

�V∗
∇ũ · ∇ϕ d� +

∫

�V∗
(∂nu

∗ − g) ∂nϕ δV · n d� +
∫

�V∗
∇�u∗ · ∇ϕ δV · n d�

−
∫

�V∗
KHϕ δV · n d� =

∫

�V∗
f ϕ d�+

∫

�V∗
g ϕ d� (12a)

∫

�V∗̃
u v d� +

∫

�V∗

[(
∂nu

∗ − ∂nh+ H(u∗ − h)) v + (u∗ − h) ∂nv
]
δV · n d�

=
∫

�V∗
h v d� (12b)

for all ϕ ∈ H 1
0,�D

(�V∗) and v ∈ H 1
per (�V∗).

In the above steps we used the tangential gradient splitting, with the tangential
gradient of a real function being defined as ∇�(·) = ∇(·)− ∂n(·)n.

So far we carried out the computations in full generality, and (12) is an exact
Newton scheme. We now proceed to comment on, and apply, some simplifications.
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Simplification 1 Without loss of generality one can consider ∂nh = 0 on �V∗ .
Furthermore, we consider the case of constant data h = h0, so then ∇�h = 0
and ∇h = 0 on �V∗ . ��
Simplification 2 The above formulas can be simplified further by considering, on
�V∗ , u∗ = h0 and ∂nu∗ = g. These conditions are consistent with the exact solution
of the FBP, and lead to a quasi-Newton method as in [12, 21]. ��

Applying the above simplifications produces the following quasi-Newton
scheme: Search for ũ ∈ H 1

h,�D
(�V∗) and δV ∈ � such that

∫

�V∗
∇ũ · ∇ϕ d�−

∫

�V∗
KH ϕ δV · n d� =

∫

�V∗
f ϕ d�+

∫

�V∗
g ϕ d� (13a)

∫

�V∗̃
u v d� +

∫

�V∗
g v δV · n d� =

∫

�V∗
h0 v d� (13b)

for all (ϕ, v) ∈ H 1
0,�D

(�V∗)×H 1
per (�V∗).

Remark 2 The Simplification 2 above is the reason why the scheme (13) is not
an exact Newton scheme, but only quasi-Newton method: The derivatives are not
calculated in the current approximation, but rather they are an approximation of the
derivatives at the exact solution. This has the consequence that (13) does not achieve
quadratic convergence, as we will see in Sect. 5.

3.3 Linearisation of the Very-Weak Formulation

We now want to derive a linearisation for (7) at an arbitrary approximated solution
(u∗,V∗), where as before u∗ ∈ H 1

per (�V∗) and V∗ ∈ �. The Gâteaux derivative
of N at (u∗,V∗) with respect to u in the direction δu is given by

〈 ∂uN[u∗,V∗;ϕ], δu 〉 = −
∫

�V∗
δu�ϕ d�. (14)

The linearisation with respect to the vector field is again performed using the
Hadamard formulas (8):

〈 ∂VN[u∗,V∗;ϕ], δV 〉 =
∫

�V∗
∇h · ∇ϕ δV · n d� −

∫

�V∗
(u∗ − h)�ϕ δV · n d�

−
∫

�V∗

[
KH ϕ + g ∂nϕ

]
δV · n d�. (15)
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A Newton step at the point (u∗,V∗) has then the following form: Search for δu ∈
H 1

0,�D
(�V∗) and δV ∈ � such that

〈 ∂uN[u∗,V∗;ϕ], δu 〉 + 〈 ∂VN[u∗,V∗;ϕ], δV 〉 = −N(u∗,V∗;ϕ) , (16)

for all ϕ ∈ H 2
0,�D

(�V).

Summing the various terms we then search for ũ = u∗ + δu ∈ H 1
h,�D

(�V∗) and
δV ∈ � such that

∫

�V∗
(h− ũ)�ϕ d�−

∫

�V∗

[
KHϕ + g ∂nϕ + (u∗ − h)�ϕ

]
δV · n d�

+
∫

�V∗
∇h · ∇ϕ δV · n d� =

∫

�V∗
gϕ d� +

∫

�V∗
f ϕ d�−

∫

�V∗
∇h · ∇ϕ d�, (17)

for all ϕ ∈ H 2
0,�D

(�V).
Upon application of Simplifications 1 and 2, we obtain the following quasi-

Newton scheme: Search for ũ ∈ H 1
h,�D

(�V∗) and δV ∈ � such that

∫

�V∗
(h− ũ)�ϕ d� −

∫

�V∗

[
KHϕ + g ∂nϕ

]
δV · n d�

=
∫

�V∗
gϕ d� +

∫

�V∗
f ϕ d�−

∫

�V∗
∇h · ∇ϕ d�, (18)

for all ϕ ∈ H 2
0,�D

(�V).
As we pointed out above, we cannot yet employ this formulation to produce a

numerical scheme; we need to extract the strong form implied by (18) and then
write a new weak formulation. Using standard variational arguments one can see
that such strong form is:

−�ũ = f in �V∗ (19a)

∂ũn − KH δV · n = g on �V∗ (19b)

ũ = h on �D (19c)

g δV · n = h0 − ũ on �V∗ . (19d)

Thanks to the initial requirement on g not vanishing, one can solve (19d) for δV ·n,
obtaining the boundary update formula

δV · n = h0 − ũ
g

. (20)
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Substituting in (19b) and using (19a)–(19c) allows to write the new weak formula-
tion: Search for ũ ∈ H 1

h,�D
(�V∗) such that

∫

�V∗
∇ũ · ∇ϕ d�−

∫

�V∗

(
KH

h0 − ũ
g

+ g
)
ϕ d� =

∫

�V∗
f ϕ d�, (21)

for all ϕ ∈ H 1
0,�D

(�V∗).

Remark 3 Solving Equation (13b) for δV · n one obtains exactly Equation (20).
Plugging then into Equation (13b) gives Equation (21). This shows that the two
methods, the coupled system (13) and the formulation (21) with boundary update as
in (20), are variationally equivalent, so we can expect the behaviours of these two
approaches to be very similar. On the other hand, even though they are equivalent in
an infinite-dimensional setting, the difference in the way the vector field is handled
(as a coupled projection in the former case, or a splitting method in the latter case)
may be reflected in the performances at the discretised level. This will indeed be the
case, as our numerical tests illustrate.

The strong form (19) will also be used in the implementation of a collocation
scheme, outlined in the next section. In passing, we comment that in the case of
non-constant Dirichlet data on the free boundary, from Equation (17) one could
split the gradient of h into the third integral in its tangential and normal component,
and apply the tangential Green’s identity [5, p. 367]. See also [21] for details.

4 Numerical Schemes

In our numerical tests we used two Galerkin methods, one arising from (13) and one
from (21). The main difference between them is that from the former one obtains a
coupled method, while the latter yields a decoupled splitting method. Moreover, we
implemented a collocation method to solve the strong form (19).

4.1 B-Splines Based Isogeometric Analysis

This section presents the essentials of B-splines. For more details we refer the
interested reader to any of the specialised books on the subject, for instance [7].

A knot vector is a set of non-decreasing points  = {ξ1 ≤ . . . ≤ ξm+p+1 } with
ξi ∈ R and m the number of basis functions of degree p to be built.

A knot vector is said to be open if its first and last knots have multiplicity p + 1,
and in this case it is customary to take ξ1 = 0 and ξm+p+1 = 1. The maximum
multiplicity of each internal knot can never exceed p. A knot vector is said to be
uniform if the knots are equispaced; in this case it is common to take ξ1 = −pτ and
ξm+p+1 = pτ , with τ the distance between two consecutive knots.
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Univariate B-splines functions can be defined using the Cox-de Boor recursion
formulas [4] as follows, for i = 1, . . . , m:

for p = 0:

ψ̂i,0(ξ) :=
⎧
⎨

⎩
1 ξi ≤ ξ < ξi+1,

0 otherwise,

for p ≥ 1:

ψ̂i,p(ξ) :=

⎧
⎪⎪⎨

⎪⎪⎩

ξ − ξi
ξi+p − ξi ψ̂i,p−1(ξ)+

ξi+p+1 − ξ
ξi+p+1 − ξi+1

ψ̂i+1,p−1(ξ) ξi ≤ ξ < ξi+p+1,

0 otherwise,

where we adopt the convention 0/0 = 0. A B-spline basis function is therefore
a piecewise polynomial in every knot span and at the knots it achieves regularity
Cp−l where l is the multiplicity of the knot. We will always use internal knots of
multiplicity one, in order to have maximal regularity.

We denote with Ŝp := span{ψ̂i,p | i = 1, . . . , m} the space spanned by m
B-splines of degree p. We will often omit to explicitly indicate the polynomial
degree. On a uniform knot vector one can in addition construct a periodic basis
by appropriately identifying together functions laying at the beginning and at the
end of the parametric domain:

Ŝ
p
per := span{ψ̂perk } with

⎧
⎨

⎩
ψ̂
per
k

:= ψ̂k + ψ̂m−p+k, k = 1, . . . , p;
ψ̂
per
k

:= ψ̂k, otherwise
(22)

Note that dim(Ŝpper ) = m−p. Figure 2b shows an example of maximum-regularity
periodic B-splines basis with degree p = 3.

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

(a)

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75

(b)

Fig. 2 Example of open and periodic B-spline basis. (a) Cubic basis on an open knot vector. (b)
A periodic cubic basis on a uniform knot vector
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We can derive bivariate B-splines spaces, which we indicate in boldface, simply
considering the tensor product of univariate ones. Moreover, in our numerical tests
we will use the same degree in each parametric direction.

Now, let F : �̂ → � be a B-spline parametrisation (periodic in the x-direction)
of the physical domain �, and let Ŝp be a space spanned by N bivariate B-splines
φ̂k defined on the parametric domain �̂. Then, the corresponding space on � is
defined as Sp := span{φk | φk = φ̂k ◦ F−1, k = 1, . . . , N}. We moreover need to
introduce a bivariate spline space spanned by functions periodic in x, that we denote
Spper . This space is defined as the push-forward through the geometrical map F of
the cross product between the periodic space Ŝpper , and the space Ŝp built from an
open knot vector. Note that dim(Spper ) = m(m− p).

4.2 Isogeometric Galerkin Methods

In both Galerkin-based schemes we choose as a trial space for ũ

Vph := Spper ∩H 1
h,�D(�V∗), (23)

while as test space

Vp0 := Spper ∩H 1
0,�D(�V∗). (24)

Note that dim(Vph) = dim(Vp0 ) = (m− p)(m− 1).
The structure of the two algorithms is illustrated below.

Algorithm 1 - Coupled Galerkin scheme
1: Choose the initial V0,
2: Given Vk , compute (ũk, δV · nk) solution of (13) in the domain �Vk

,
3: Update the free boundary with Vk+1 = Vk + (δV · nk)μk ,
4: Repeat steps 2–3 until

∥∥(δV · nk)μk
∥∥ ≤ tol.

Algorithm 2 - Decoupled (splitting) Galerkin scheme
1: Choose the initial V0,
2: Given Vk , compute ũk solution of (21) in the domain �Vk

,
3: Compute δV · nk from (20),
4: Update the free boundary with Vk+1 = Vk + (δV · nk)μk ,
5: Repeat steps 2–4 until

∥∥(δV · nk)μk
∥∥ ≤ tol.

The vector field nk : �Vk
→ R

2 represents the outward normal derivative to
�Vk

, while the vector field μk : �Vk
→ R

2 represents the direction in which the
update of the free boundary is performed, and has to satisfy μk · nk = 1. In our
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tests we choose to perform a vertical update, therefore selecting μk =
[
0, 1/(nk)y

]
.

This choice allows to consider as unknown δV · n instead of δV, which permits
to discretise (13b) and (20) directly, using Spper as both the test and trial space. A
choice of μk = nk in the algorithms would instead amount to performing the update
in the direction normal to the boundary.

Remark 4 When performing the update by Equation (20) one has to divide two
spline functions. The resulting function is therefore, in general, not a spline, and
a projection onto the appropriate spline space is required: in our tests we perform
an L2 projection into the space defined by the boundary test functions. After each
boundary update, the internal mesh is then fitted; this operation is trivial in our
setting because of the shape of the computational domain and because of the vertical
update of the free-boundary. Since we only consider moderate deformations, a
simple Coons interpolation is used to construct the geometry parametrization. For
more details about the numerical algorithms to compute Coons interpolations see
e.g. [15].

In Step 4 of Algorithm 1 and Step 5 of Algorithm 2, we use as ‖ · ‖ the Euclidean
norm of the control point vector of the spline projection of (δV · nk)μk .

4.3 Isogeometric Collocation Method

The isogeometric collocation method presented here is built from (19): We solve
(19d) for δV · n and replace its value in (19b), obtaining the following:

−�ũ = f in �, (25a)

∇ũ · n− KH
h0 − ũ
g

= g on �V, (25b)

ũ = h on �D, (25c)

δV · n = h0 − ũ
g

on �V. (25d)

The structure of this algorithm is summarised below.

Algorithm 3 - Collocation scheme
1: Choose the initial V0,
2: Given Vk , compute ũk , collocated solution of (25a)–(25c),
3: Compute δV · nk from (25d),
4: Update the free boundary with V(k+1) = V(k) + (δV · nk)μk ,
5: Repeat steps 2–4 until

∥∥(δV · nk)μk
∥∥ ≤ tol.
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The vector fields nk and μk and the norm present in Step 5 of Algorithm 3 are
defined as in Sect. 4.3.

The solution of (25a)–(25c) and the boundary update (25d) are performed using
a collocation approach.

Let us first focus on (25a)–(25c): given the finite dimensional space Vph in which
we search for a solution ũ the idea is to accurately choose a number of points
τ1, . . . , τ(m−1)(m−p) ∈ �, called collocation points, and enforce the equations to
hold strongly at those points. We recall that (m−1)(m−p) is the dimension of Vph ,
that is, the number of degrees of freedom of the problem. For this formulation, we
need basis functions of continuity at least C2 at each collocation points: we require
p ≥ 3.

The appropriate selection of collocation points is crucial for the rate of con-
vergence. Most of the classical choices of collocation points, for example, return
suboptimal convergence rate even in a Poisson problem, contrary to the Galerkin
approach which is optimal [17]. However, the recent work [14] suggests the
use of a particular subset of Galerkin-superconvergent points, called clustered
superconvergent points (CSP), as collocation points. This choice, that is the one
that we adopt here, succeeds in achieving optimality for at least odd degrees B-
splines discretisations. In particular, the collocation points we use for the periodic
problem (25) are obtained by taking the cross product between them−p univariate
periodic CSP and the m univariate Dirichlet CSP (see [14] for more details). In our
tests we included also problems with only Dirichlet boundary conditions. In that
case the collocation points are selected as the push-forward of the cross-product of
the univariate Dirichlet CSP points in the two parametric directions. Figure 3 shows
an example of CSP points in both the parametric and physical domain. Note that we
do not take any collocation points on the boundary

{
(x, 0) | 0 � x � 1

}
, because

we enforce the Dirichlet boundary conditions in the finite dimensional space that
we consider, cf. (23).

F

Fig. 3 CSP collocation points in the parametric and in the physical domain. The points are the
cross product of the periodic CSP points in the x-direction and the Dirichlet CSP points in the
y-direction
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Similarly, the free boundary update is performed searching for δV · n ∈ Spper
such that equation (25d) is satisfied in the m−p univariate periodic CSP belonging
to �V.

The whole collocation procedure results in a fully-collocated scheme for problem
(25).

5 Numerical Results

This section collects our numerical results. All algorithms have been implemented in
Matlab using the GeoPDEs suite. GeoPDEs is an Octave/Matlab software package
for isogeometric analysis of partial differential equations [23]. We applied the
above Algorithm 1, Algorithm 2, and Algorithm 3 to different types of problems
with either Dirichlet or periodic boundary conditions on the vertical sides. We set
the tolerance “tol” of Step 4 in Algorithm 1 and of Step 5 in Algorithm 2 and
Algorithm 3 equal to 10−13. It is clear that the error quantities in the problems
are driven by the position of the free boundary: If the computed boundary matches
the exact boundary solution, then the error on the internal function u is simply
the standard finite elements (IGA) or collocation approximation error. For this
reason, when evaluating the performance of the algorithms we have chosen the
error quantities of interest to be the Dirichlet error,

∥∥ũ(�V)− h0
∥∥
L2 , the error

the computed function u commits in satisfying the Dirichlet condition on the free
boundary, and the surface position error,

∥∥�V − �ex
∥∥
L2 , the error in the position

of the computed free surface.
In the following tests we focus on splines of degree p = 3 and p = 5. This

is motivated by the fact that, as already mentioned in Sect. 4.3, the CSP-based
collocation method achieves an optimal order of convergence only for odd degrees
of basis functions, see [14].

5.1 Test 1: Parabolic Boundary, Dirichlet b.c.

This problem is constructed from the exact solution

uex(x, y) = y

1 + α(x) + α(x)
y

1 + α(x)
(

1 − y

1 + α(x)
)

(26)

with

α(x) = 1

4
x (1 − x).
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The solution uex attains constant value uex |�V = 1 on the parabolic curve �ex ={(
x, 1 + α(x)) | 0 � x � 1

}
, which is therefore the exact free-boundary solution

of the problem.
The data for problem (1) are then found as follows:

f = −�uex,

g = ∇uex ·
(

1
2 x − 1

4 , 1
)/√

1 +
(

1
2 x − 1

4

)2
.

We cast this problem with complete Dirichlet boundary conditions without requiring
any periodicity in the x-direction, see also Remark 1. This amounts to imposing in
(1b) u = h on �V ∪ �D ∪ �P with h = h0 = 1 on �V and h = y on �D ∪ �P.
We start our algorithms with �0 = {

(x, 1) | 0 � x � 1
}

as an initial guess for
the boundary. Note that this is the same setting as the “Testcase I: Parabolic Free-
Boundary” presented in [21, Section 5.2].

Figure 4 shows the first three iterations of the boundary update, together with the
exact boundary solution, performed with a mesh with only 1 element and cubic basis
functions. Those iterations have in particular been performed with Algorithm 2, but
Algorithms 1 and 3 yielded identical results.

Figure 5 instead shows a comparison of the three different approaches using
cubic basis functions. The error plots show that Algorithm 1 improves the conver-
gence speed once the solution is close enough. The same behaviour is present also
in the collocated scheme, Algorithm 3, albeit to a less degree, while it is not that
apparent in Algorithm 2. However, the performance of all three algorithms is quite
similar on this test problem. Note that, in contrast to [21], we do not see a plateau
in the surface error quantities and machine precision is reached for all the tested
mesh-sizes.

To provide the reader with more details, in Table 1 we write the numerical
values of the Dirichlet errors corresponding to Fig. 5, panel (c), and the order of

0 0.2 0.4 0.6 0.8 1
0.98

1

1.02

1.04

1.06

1.08

Iteration 1 of Alg. 2
Iteration 2 of Alg. 2
Iteration 3 of Alg. 2
Exact solution

Fig. 4 The first three iterations of the boundary update computed with Algorithm 2, for the Test 1
case, using a one element mesh and cubic basis starting from a flat free boundary guess
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Fig. 5 A comparison of the three algorithms on Test 1 for different mesh sizes with cubic basis
functions. In all the subplots, blue circles refer to Algorithm 1, red squares refer to Algorithm 2 and
yellow triangles refer to Algorithm 3. (Left) The Dirichlet error

∥∥ũ(�V)− h
∥∥
L2 as a function of

the iterations. (Right) The surface position error
∥∥�V − �ex

∥∥
L2 . (a) Mesh 8×8. (b) Mesh 16×16.

(c) Mesh 32×32. (d) Mesh 64×64

convergence at each iteration k estimated through the formula

order(k) = log(err(k))− log(err(k + 1))

log(err(k − 1))− log(err(k))
, (27)
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Table 1 Dirichlet errors for the test in Fig. 5 panel (c), i.e. for the mesh with 32 × 32 elements.
In parenthesis is the estimated order of convergence, calculated as in Equation (27)

Algorithm 1 Algorithm 2 Algorithm 3

Iteration Error Order Error Order Error Order

1 0.46 · 10−1 0.46 · 10−1 0.46 · 10−1

2 0.51 · 10−2 1.73 0.51 · 10−2 1.60 0.51 · 10−2 1.74

3 1.09 · 10−4 1.83 1.45 · 10−4 1.35 1.06 · 10−4 1.75

4 9.47 · 10−8 1.47 1.17 · 10−6 1.02 1.21 · 10−7 0.80

5 2.78 · 10−12 0.47 8.46 · 10−9 0.99 5.18 · 10−10 1.10

6 1.99 · 10−14 0.61 6.20 · 10−11 0.99 1.23 · 10−12 0.87

7 9.73 · 10−16 4.60 · 10−13 0.90 6.06 · 10−15

8 – 5.40 · 10−15 –

where err(k) is the error at iteration k. We do not get clear evidence on the order
of convergence. We observe superlinear convergence at the very first iterations and
then a linear behaviour, at least in Algorithm 2 and Algorithm 3.

Algorithm 3 turns out to be more efficient in terms of computational time
vs number of iterations, than the two Galerkin approaches, something which is
expected of a collocation scheme. However, at the moment, we could not quantify
the speedup obtained by using the Algorithm 3 because, for a fair comparison, we
would need optimized versions of the codes.

5.2 Test 2: Sinusoidal Boundary, Dirichlet b.c.

We now give an example where a plateau in the error is to be expected, and is
actually found. The problem data is derived as for Test 1 with an exact solution
given by Equation (26) but with

αex(x) = 1

16
sin(2πx),

so that the exact boundary �ex =
{(
x, 1 + α(x)) | 0 � x � 1

}
is now a sinusoidal

curve. The boundary conditions are maintained of Dirichlet type, imposing in (1b)
u = h on �V ∪ �D ∪ �P with h = h0 = 1 on �V and h = y on �D ∪ �P. Figure 6
shows the first three boundary updates performed by Algorithm 3. The mesh is made
of 8 elements, and the basis is cubic. The initial boundary is again taken as the flat
curve �0 = {

(x, 1)| 0 � x � 1
}

Figures 7 and 8 show the error quantities vs iterations for the three algorithms
obtained by using a cubic and quintic basis, respectively. Even if we do not report
the precise values of the computed orders of convergence, we remark that for all the
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Fig. 6 The first three iterations of the boundary update computed with Algorithm 3, for the Test 2
case, with sinusoidal boundary and Dirichlet conditions, with an 8 elements mesh and cubic basis,
starting from a flat free boundary guess

three algorithms the convergence has the same behaviour as in Test 1 case, before
reaching the plateau of the error.

As the mesh is refined we note that the collocation algorithm, Algorithm 3, has
a slightly higher error than the other two approaches. The surface position error,
moreover, is abated with finer meshes in all approaches but remains always present.
This is due to the fact that a cubic and quintic B-splines cannot exactly represent
a sinusoidal curve, and therefore the exact free boundary solution to this problems
lies outside of the trial function space. For equal mesh-size, as expected, the value
of the plateau of the surface position error is lower when using splines of higher
degree.

Lastly, Figs. 7 and 8 show how closely related Algorithms 1 and 2 are, achieving
almost identical performance on this benchmark test.

5.3 Test 3: Sinusoidal Boundary, Periodic b.c.

In our third benchmark we employ the same problem data as in Test 2, but now
periodic boundary conditions are placed on the lateral sides instead of Dirichlet
ones. In this test case we used the highest-possible regularity for the periodic
conditions, meaning that the boundary functions are “glued” together with Cp−1

continuity.
The introduction of the periodic conditions affects the behaviour of the three

quasi-Newton schemes, but not dramatically. As shown in Fig. 9, the algorithms
require a couple of extra iterations to reach the tolerance in comparison to the
Dirichlet boundary condition case. The convergence of the surface position error is
also a bit rougher than in the previous cases. However, the relative performances
are not at all affected, and all three algorithms are still comparable. As before
Algorithm 1 and Algorithm 2 display essentially equal results. In this test we
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Fig. 7 A comparison of the three algorithms on Test 2 for different mesh sizes with cubic basis
functions. In all the subplots, blue circles refer to Algorithm 1, red squares refer to Algorithm 2 and
yellow triangles refer to Algorithm 3. (Left) The Dirichlet error

∥∥ũ(�V)− h
∥∥
L2 as a function of

the iterations. (Right) The surface position error
∥∥�V − �ex

∥∥
L2 . (a) Mesh 8×8. (b) Mesh 16×16.

(c) Mesh 32×32. (d) Mesh 64×64
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Fig. 8 A comparison of the three algorithms on Test 2 for different mesh sizes with quintic basis
functions. In all the subplots, blue circles refer to Algorithm 1, red squares refer to Algorithm 2 and
yellow triangles refer to Algorithm 3. (Left) The Dirichlet error

∥∥ũ(�V)− h
∥∥
L2 as a function of

the iterations. (Right) The surface position error
∥∥�V − �ex

∥∥
L2 . (a) Mesh 8×8. (b) Mesh 16×16.

(c) Mesh 32×32. (d) Mesh 64×64
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Fig. 9 A comparison of the three algorithms on Test 3 for different mesh sizes with cubic basis
functions. In all the subplots, blue circles refer to Algorithm 1, red squares refer to Algorithm 2 and
yellow triangles refer to Algorithm 3. (Left) The Dirichlet error

∥∥ũ(�V)− h
∥∥
L2 as a function of

the iterations. (Right) The surface position error
∥∥�V − �ex
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L2 . (a) Mesh 8×8. (b) Mesh 16×16.
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kept the same choice for the initial guess for the free boundary: The flat curve
�0 = {

(x, 1)| 0 � x � 1
}
.

Since the position of the exact free boundary does not lie in the trial functions
space formed by the cubic B-splines basis, as in Test 2 a plateau is always reached,
even though the level of the plateau is lowered with finer meshes.

Regarding the order of convergence of the methods, in this test case, after a few
iterations where the initial error is reduced, the methods exhibit behaviours similar
to the one of the other tests.

6 Conclusions

In this work we presented three different isogeometric-based algorithms for free
boundary problems: Two follow a Galerkin approach and are an extension or
modification of previously existing works, while one is a novel fully collocated
scheme. The dependence on the unknown geometry of the domain is handled
through shape calculus, which results in a quasi-Newton method to be underlying
the update strategy of the free boundary position. The resulting three algorithms
yield to a convergence that appears, in general, to be linear and superlinear only in
the first iterative steps. While our interests in such algorithms is motivated by future
applications, in the present paper we focused on giving a clear description of the
implementation and numerical aspects.

We applied and compared the three algorithms to benchmark tests, with either
Dirichlet or periodic boundary conditions on the lateral vertical sides of the domain.
The results show that, while having slight variations, the performances of all three
algorithms are qualitatively comparable, and each of them converged to the correct
solution of the problem.

The treatment of free boundary problems is computationally intense, especially
in more complex problems. For this reason the efficiency and speed of the algorithm
is an important feature that needs to be taken into account. In this respect, even if
the collocated algorithm appeared to have slightly worse accuracy and sometimes
required one or two extra iterations to reach the convergence tolerance, it proved to
significantly outmatch the two Galerkin-based schemes on runtime.

Our future aim is now to apply the algorithms developed here to the resolution
of the bifurcation branches of the Euler equations. That problem presents several
challenges due to the greater complexity of the equations and the intrinsic non-
uniqueness of solutions at the bifurcation points, therefore both efficiency and
precision are expected to play an important role.
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Approximately C1-Smooth Isogeometric
Functions on Two-Patch Domains

Agnes Seiler and Bert Jüttler

Abstract Motivated by the promising recent results concerning the construction of
smooth isogeometric functions on multi-patch domains on bilinearly parameterized
domains [14] or reparameterizations of more general domains [5], which, however,
impose quite restrictive assumptions on the underlying domain, we propose two
approaches to construct spaces G1,ε

h of approximately C1-smooth isogeometric
functions on general two-patch domains. The main idea is to work with C0-
continuous functions and to bound the jump of their gradients across the interface
between neighboring patches. The constructions are based on two suitably chosen
bilinear forms B1 and B2 and their eigenstructures, which lead to different bounds
on the gradient jumps, respectively. We show that while the gradient jumps of the
functions based on B1 fulfill a stricter bound, the functions themselves do not realize
optimal convergence rates. Numerical experiments suggest that the functions based
on B2 reach the optimal approximation order for solving second order problems.
Furthermore, they are smooth enough to solve higher order problems such as the
biharmonic equation. However, the bound on their gradient jump is mesh-size
dependent.

1 Introduction

Isogeometric Analysis, introduced in 2005 by Hughes et al. [6], is an approach to
numerical simulation via partial differential equations (PDEs). The computational
domain is represented by a spline parameterization, which is called the geometry
mapping. The discretization relies on isogeometric functions, which serve as test
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functions in the weak form of the problem. They are obtained by concatenating
the basis functions that contribute to the parameterization of the geometry with the
inverse geometry mapping. Hence, Isogeometric Analysis (IgA) does not need a
triangulation of the domain. Since it directly uses a spline parameterization to define
the discretization, it is said to close the gap between the CAD representation of the
geometry and numerical analysis [6].

Another advantage of IgA consists in the increased smoothness of the dis-
cretization compared to standard finite elements. Within the patches, isogeometric
functions are typically Cp−1 smooth. This facilitates the discretization of higher
order problems. While simple physical domains can be parameterized by a single
geometry map, more complicated ones will be represented as a collection of several
patches, each of which with its own parameterization. In this case, the multi-
patch structure of the domain has to be taken into account, since the isogeometric
functions are not automatically smooth across patch interfaces. Thus, appropriate
coupling methods are required.

Standard coupling methods from the finite element literature carry over to
multi-patch isogeometric discretizations. These methods work with broken Sobolev
spaces, where weak differentiability across patch interfaces is not guaranteed.
Suitable coupling terms are added to the weak form of a partial differential
equation. For instance, the mortar method [2, 3], Nitsche Mortaring [16, 19] or the
discontinuous Galerkin method [15, 17] perform the coupling via average and jump
terms. Those terms need to be adapted to the order of the problem. While it suffices
to consider the jump of function values for second order problems, fourth order
problems require to take the difference of the normal derivatives into account. More
generally, via the relation between a coercive bilinear form of an elliptic problem
and its equivalent quadratic optimization problem, suitable methods from non-linear
optimization can be applied to the coupling problem [8].

This paper explores a different approach, which is based on approximately
smooth isogeometric test functions on the entire domain. Consequently, no mod-
ification of the variational form is required.

The coupling of isogeometric discretization across patch interfaces recently
attracted substantial interest:

• C0-coupling of isogeometric functions can be performed easily by identifying
the coefficients of neighboring basis functions along an interface.

• The construction of C1-smooth test functions, which are useful for higher
order problems, is considerably more complicated. Recent results rely on the
relation between geometric continuity of a graph surface and the smoothness
of the associated functions [7, 14]. However, C1-constructions are based on
certain assumptions about the parameterization of the underlying domain, which
are needed to ensure sufficient flexibility of the resulting discretizations. For
instance, in [9, 14], the authors use bilinear or bilinear-like parameterizations.
A reparameterization is needed for more general domains [5, 10]. A numerical
approach to the computation of C1-smooth discretization is presented in [4].
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• These results have partially been extended to C2-smooth isogeometric discretiza-
tions [11, 12, 13].

In order to avoid the limitation to bilinear-like parameterizations, we relax the
construction by considering approximate C1 smoothness of isogeometric functions
on multi-patch domains. This enables us to generate function spaces on general
(not bilinear-like) domains. Our construction is based on suitably chosen bilinear
forms. More precisely, we explore two different forms and obtain two different
function spaces. Starting from globally C0-smooth functions, we provide bounds
on the gradient jump of the corresponding approximately C1-smooth isogeometric
functions.

The remainder of this paper is organized as follows: Sect. 2 introduces the
notation and the two different bilinear forms B1 and B2. The next section describes
the construction of a space of approximately C1-smooth isogeometric functions
based on B1 and investigates its properties. In particular, we observe that the
resulting space is not guaranteed to contain the trivially smooth functions. In order
to address this deficiency, Sect. 4 describes another construction, which is based
on the simplified bilinear form B2. Section 5 is devoted to numerical experiments
concerning the approximation power and the dimension of the spaces. In particular,
we will provide experiments suggesting that the functions we construct are smooth
enough to solve fourth-order problems. Finally, we conclude the paper.

2 Preliminaries

We consider a planar two-patch domain � = �1 ∪ �2 ⊆ R
2 with interface �

between the individual patches �1 and �2, as depicted in Fig. 1. It is parameterized
by a tensor-product B-spline mapping G via

G : �̂→ � : (ξ1, ξ2) #→
∑

i∈I
Piβi(ξ1, ξ2), (ξ1, ξ2) ∈ �̂ = [−1, 1] × [0, 1],

(1)

where Pi ∈ R
2 are control points and βi are tensor-product B-splines of bidegree

(p1, p2) with index set I, defined by open knot vectors  1,  2 with maximal knot
span sizes h1, h2 in ξ1 and ξ2 direction, respectively. We set h = max{h1, h2}. The
multiplicities of the inner knots do not exceed p − 1, except for the knot 0 in  1,
which appears p times. The simplest instance of the knot configuration is visualized
in Fig. 1. The patch interface is � = G({0} × [0, 1]). The associated isogeometric
basis functions

bi(x) =
(
βi ◦G−1

)
(x), i ∈ I (2)
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Fig. 1 Two patch domain � parameterized by a bicubic geometry map G. The knot vectors are
given by [−1,−1,−1,−1, 0, 0, 0, 1, 1, 1, 1] × [0, 0, 0, 0, 1, 1, 1, 1]

are collected in the vector

b(x) = (
bi(x)

)
i∈I (3)

and span the isogeometric discretization space

Vh = span{bi : i ∈ I} ⊆ C0(�). (4)

Finally we recall the definition of the jump operator

[f ] = f 1|� − f 2|�,

which is defined for any function f ∈ L2(�) with

f 1 = f |�1 ∈ H 1(�1), f 2 = f |�2 ∈ H 1(�2).

We will use two different bilinear forms in order to construct approximately C1-
smooth isogeometric functions on �. The first one is given by

B1 : Vh ×Vh → R : (f, g) #→ ε

∫

�

f (x)g(x)dx −
∫

�

[∇f (x)]T [∇g(x)]dx
(5)

and depends on a positive parameter ε. The second one takes the form

B2 : Vh ×Vh → R : (f, g) #→
∫

�

[∇f (x)]T [∇g(x)]dx. (6)

More precisely, our aim is to construct isogeometric functions with a bounded
gradient jump ‖[∇f ]‖L2(�), and the bilinear forms B1 and B2 are designed with this
objective in mind. For the first one, a suitable value of ε has to be chosen in advance.
It controls the magnitude of the bound. The spaces of approximately smooth
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isogeometric functions obtained by using B1 and B2 have different properties,
although the constructions themselves are quite similar.

3 Results for B1

We show that the bilinear form B1 yields a mesh-size independent bound on the gra-
dient jump. However, we will also see that this space lacks optimal approximation
power.

3.1 Construction of Approximately Smooth Functions

We consider functions f, g ∈ Vh with

f (x) = uT b(x), g(x) = vT b(x), (7)

with coefficient vectors u, v ∈ R
|I|. Consequently, B1(f, g) can be rewritten in

matrix-vector-form as

B1(f, g) = uT (εM −Q)v, (8)

where

M = (mi,j )i,j∈I with mi,j =
∫

�

bi(x)bj (x)dx (9)

and

Q = (qi,j )i,j∈I with qi,j =
∫

�

[∇bi(x)]T [∇bj (x)]dx, (10)

as confirmed by a short computation. The matricesM andQ are symmetric positive
semi-definite, as

uTMu = ‖f ‖2
L2(�)

≥ 0 (11)

and

uTQu = ‖[∇f ]‖2
L2(�)

≥ 0. (12)

Now let 0 ≤ λ1 ≤ . . . ≤ λn be the non-negative eigenvalues of εM − Q in
ascending order and let c1, . . . , cn be the corresponding eigenvectors, n ≤ |I|. The
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eigenvectors satisfy

(ck)T c� = 0 and (ck)T ck = 1 for k �= �, 1 ≤ k, � ≤ n, (13)

possibly after performing the Gram-Schmidt orthonormalization, if multiple eigen-
values are present.

We define

G
1,ε
h

:= span

⎧
⎨

⎩

∑

i∈I
cki bi(x) : k = 1, . . . , n

⎫
⎬

⎭

=
⎧
⎨

⎩

∑

i∈I
dibi(x) : d ∈ span

{
c1, . . . cn

}
⎫
⎬

⎭
.

(14)

as the space of approximately C1-smooth isogeometric functions.

3.2 Properties of the Function Space

By construction, G1,ε
h is a linear space. As an immediate consequence from its

definition, we obtain a mesh-size independent bound on the gradient jump.
We denote by C ∈ R

|I|×n the matrix containing the eigenvectors c1, . . . , cn as
column vectors.

Proposition 1 The gradient jump of any function f = (Cd)T b ∈ G1,ε
h with d ∈ R

n

can be bounded by

‖[∇f ]‖2
L2(�)

≤ ε‖f ‖2
L2(�)

. (15)

Proof We use (11) and (12) and obtain

ε‖f ‖2
L2(�)

− ‖[∇f ]‖2
L2(�)

= (Cd)T (εM −Q)(Cd)
= dTCT (εM −Q)Cd
= dT diag

(
λ1, . . . , λn

)
d

= λ1d2
1 + . . .+ λnd2

n ≥ 0,

where the last inequality holds because we only consider non-negative eigenvalues
λi . ��
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The space G1,ε
h based on B1 does not necessarily contain the trivially smooth

isogeometric functions bki with

∇bki |� = 0.

We will refer to these functions as off-interface basis functions. Since they are
constantly zero across the interface �, their gradient jumps across � are zero as
well. However, their coefficient vectors with respect to the basis b, which are the
canonical unit vectors in R

|I|, are not necessarily eigenvectors of εM −Q. As we
shall see in Sect. 5, the functions in G1,ε

h do not possess the same approximation
power as the full space of isogeometric functions.

4 Results for B2

We study another bilinear form in order to ensure the existence of trivially smooth
functions in the resulting space of approximately smooth isogeometric functions.
However, in this case we cannot expect to obtain an estimate of ‖[∇f ]‖L2(�) that is
independent of the mesh size.

4.1 Construction of Approximately Smooth Functions

The modified space Ĝ1,ε
h is constructed analogously to the procedure described in

Sect. 3.1. Recall that B2(f, f ) can equivalently be written as

B2(f, f ) = uTQu

for

f = uT b ∈ Vh, u ∈ R
|I|.

As explained before, the matrixQ is symmetric positive semi-definite. We choose a
positive value ε. Let λ̂1 ≤ . . . ≤ λ̂n̂ ≤ ε be the eigenvalues of Q that are bounded
by ε and let ĉ1, . . . , ĉn̂ be the corresponding orthonormalized eigenvectors, n̂ ≤ |I|.
We define

Ĝ
1,ε
h

:= span

⎧
⎨

⎩

∑

i∈I
ĉki bi : k = 1, . . . , n̂

⎫
⎬

⎭
. (16)
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4.2 Properties of the Function Space

Again, by construction, Ĝ1,ε
h is a linear space. Moreover, all trivially smooth

isogeometric functions f , i.e., the off-interface basis functions as well as constant
and linear functions (which are contained in the space of isogeometric functions,
due to use of the isoparametric principle), fulfill

B2(f, f ) = 0.

Since the matrix Q is symmetric positive semi-definite, this implies that the
coefficient vector of f is an element of the kernel of Q. Consequently, the
corresponding coefficient vector is an eigenvector to the eigenvalue 0 of Q. Since
we set ε > 0, all elements in the kernel will also be elements of Ĝ1,ε

h . This is
independent of the mesh size h. As we will see, the inclusion of these functions in
Ĝ

1,ε
h is important to achieve optimal convergence.

Subsequently, we bound the gradient jump of functions in Ĝ1,ε
h . We denote by

Ĉ ∈ R
|I|×n̂ the matrix containing the eigenvectors ĉ1, . . . , ĉn̂ of Q as column

vectors. Let f ∈ Ĝ1,ε
h , i.e. we set

f (x) = (Ĉd)T b(x) (17)

with d ∈ R
n.

Theorem 1 Let the knot vectors  1,  2 be quasi-uniform. Then all functions f ∈
Ĝ

1,ε
h satisfy

‖[∇f ]‖2
L2(�)

≤ ε C
h2 ‖f ‖2

L2(�)
(18)

for a constant C that depends on the maximal spline degree p and the geometry
mapping G, but not on the maximal mesh size h.

Proof Let f = (Ĉd)T b ∈ Ĝ1,ε
h as denoted above. Then we have

‖[∇f ]‖2
L2(�)

= (Ĉd)T Q(Ĉd) = dT Ĉ
T
QĈd

= dT diag
(
λ̂1, . . . , λ̂n̂

)
d

= λ̂1d2
1 + . . .+ λ̂n̂d2

n̂

≤ ε
n̂∑

i=1

d2
i = ε‖d‖2

2 = ε‖Ĉd‖2
2,

where the last equality holds because Ĉ is an orthogonal matrix.
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Next, we use the stability of tensor-product B-spline bases {βi}i∈I [18, Theorem
12.5], which describes a relation between the coefficients of a spline function and
the function itself, in the form

‖Ĉd‖2 ≤ D2
p

1

h

∥∥∥∥∥∥

∑

i∈I
(Ĉd)iβi

∥∥∥∥∥∥
L2(�̂)

(19)

with stability constant D2
p, where p = max{p1, p2}. Hence, we get

‖[∇f ]‖2
L2(�)

≤ ε‖Ĉd‖2
2 ≤ εD4

p

1

h2

∥∥∥∥∥∥

∑

i∈I
(Ĉd)iβi

∥∥∥∥∥∥

2

L2(�̂)

. (20)

We rewrite βi in terms of the push-forward bi ◦G and obtain

‖[∇f ]‖2
L2(�)

≤ εD4
p

1

h2

∥∥∥∥∥∥

∑

i∈I
(Ĉd)i (bi ◦G)

∥∥∥∥∥∥

2

L2(�̂)

, (21)

which again can be rewritten and summarized as

‖[∇f ]‖2
L2(�)

≤ εD4
p

1

h2

∥∥∥∥∥∥

⎛

⎝
∑

i∈I
(Ĉd)ibi

⎞

⎠ ◦G
∥∥∥∥∥∥

2

L2(�̂)

= εD4
p

1

h2

∥∥f ◦G∥∥2
L2(�̂)

.

(22)

Now we transform the integral
∫
�̂
(f ◦G)2 on �̂ to an integral on �, which yields

‖[∇f ]‖2
L2(�)

≤ εD4
p

1

h2 ‖ det∇(G)−1‖L∞(�)‖f ‖2
L2(�)

. (23)

Finally we set

C(p,G) = D4
p ·
∥∥∥det∇(G)−1

∥∥∥
L∞(�)

.

This concludes the proof. ��
This result resembles standard inverse inequalities for isogeometric functions,

which can be found in [1], apart from the power of h and the factor ε, which
is chosen in advance. If we chose ε ∈ O(h2), we can eliminate the mesh-size
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dependence in the bound of the gradient jump. However, smaller values of ε lead to
fewer functions in Ĝ1,ε

h , which we will discuss in the following section.

5 Numerical Examples

We consider least squares approximation, the Poisson problem, and the biharmonic
equation on a two-patch domain. In this context we are interested in the approxi-
mation power of G1,ε

h and Ĝ1,ε
h . Furthermore we will study the number of interface

basis functions under uniform h-refinement.

5.1 Approximation Power

Throughout the remainder of this section, all errors are measured patch-wisely and
then summed up, e.g. we refer to

‖fapprox|�1 − fexact|�1‖H 1(�1) + ‖fapprox|�2 − fexact|�2‖H 1(�2)

as the H 1 error and to

‖fapprox|�1 − fexact|�1‖H 2(�1) + ‖fapprox|�2 − fexact|�2‖H 2(�2)

as the H 2 error of fapprox. The patch-wise splitting is not necessary for the L2 error,

as G1,ε
h ⊆ L2(�) and Ĝ1,ε

h ⊆ L2(�).

5.1.1 Least Squares Approximation

We start with an example that identifies the limitations of the space G1,ε
h , which is

based on the bilinear form B1. Figure 2 shows the function

fexact(x, y) = 3xy exp(−x) sin(πy) (24)

which we approximate on a two-patch domain by functions in G1,ε
h . The domain

coincides with the one shown in Fig. 1. We solve the constrained least squares fitting
problem

min
f∈G1,ε

h

‖f − fexact‖2
L2(�)

.
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Fig. 2 Bicubically parameterized domain (see Fig. 1) and transparent plot of the exact solution
3xy exp(−x) sin(πy)
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Fig. 3 Least squares approximation with functions inG1,ε
h with ε = 0.5. Left: relative L2 andH 1

errors for the approximate solution of degree 3. Right: L2 error values at the finest discretization
step (scaled by factor 100)

The parameter ε was set to 0.5. The relative L2 andH 1 errors are depicted in the left
plot of Fig. 3. After some refinement steps, no significant reduction of the error is
achieved. Considering the distribution of the error values in the last refinement step,
shown in Fig. 3, right, we note that the largest errors occur close to the interface and
in the back corners. This is a possible indicator that the corresponding corner basis
functions are not present in G1,ε

h .

Consequently, we consider only the space Ĝ1,ε
h based on the bilinear form B2.

The following experiment shows that - in contrast to the previous approach - the
functions in Ĝ1,ε

h maintain the full approximation power.
Again, we choose ε = 0.5 and approximate the same function (24) on the same

domain as before. We use a uniform h-refinement strategy. The relative L2 and H 1

error values and the respective convergence rates are shown in Fig. 4, top left and
top right. A comparison with the reference slopes shows that the functions in Ĝ1,ε

h

maintain the optimal convergence rates of p + 1 and p for the L2 and the H 1 error,
respectively.
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Fig. 4 Least squares approximation with functions in Ĝ1,ε
h with ε = 0.5. Relative L2 (top left)

and H 1 (top right) errors of the solution to the fitting problem on the bi-cubic domain, see Fig. 1.
Bottom: patch-wise representation of the solution with 8840 basis functions of degree three with
flat shading effects

At the finest level of refinement we used 8840 (9111) basis functions of degree 3
(4) with mesh size 2−6. Note that this number of basis functions is slightly less than
the number of original tensor-product B-splines, which is 8978 (9248) for degree 3
(4).

The bottom plot in Fig. 4 depicts the solution using 8840 basis functions of
degree 3 as a patch-wise plot with added flat shading effects. These effects highlight
the smoothness of the solution across the curved interface.

5.1.2 Poisson Problem

Solving the Poisson equation leads to very similar results. The physical domain �,
on which we study the problem, consists of two patches with a curved interface, see
Fig. 5, left. It is bi-quadratically parameterized. We consider the discretized weak
form:

Find u ∈ Ĝ1,ε
h,0 such that

∫

�

∇u(x)∇v(x)dx =
∫

�

f (x)v(x)dx ∀v ∈ Ĝ1,ε
h,0,

(25)
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Fig. 5 Poisson problem (25). Left: Domain � and its control net. Right: Patch-wise plot of the
solution with 2048 basis functions of degree two in Ĝ1,ε

h for ε = 0.5 with flat shading effects

where Ĝ1,ε
h,0 = {u ∈ Ĝ1,ε

h
: u|∂� = 0}, i.e., the zero Dirichlet boundary conditions

are imposed strongly in the test function space. Again we set the threshold ε to 0.5.
The right hand-side f was chosen as the negative Laplacian of the exact solution is
given by

u(x, y) = 40(0.25x + 0.75 − y)(−0.25x + 1.25 − y)
(−0.25x + 0.25 − y)(0.25x − 0.25 − y) sin(0.5πx).

The solution to (25) is found by means of a Galerkin method. Figure 5, right, shows
its solution for 2048 degrees of freedom with element size 2−5. The patch-wise plot
with the flat shading effect emphasizes that the solution is smooth in the area of the
interface.

The behavior of the relative L2 and H 1 errors is shown in Fig. 6, left and right,
respectively. We see that in both cases and for the tested degrees two, three and four
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Fig. 6 Poisson problem (25). Relative L2 (left) and H 1 (right) errors of the approximate solution
for basis functions of different degrees in Ĝ1,ε

h for ε = 0.5
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of test functions we realize optimal convergence rates. This is consistent with the
L2 approximation results.

5.1.3 Biharmonic Equation

The examples shown previously did not require C1-smooth basis functions. Con-
sequently, the approximately smooth functions we presented did not exhibit any
advantage over standard C0-smooth isogeometric functions (which can be con-
structed by identifying the corresponding degrees of freedom along the interface),
except for the fact that we used slightly less basis functions. We now consider a
fourth-order equation, where the bilinear form governing the weak formulation can-
not be evaluated for only C0-smooth functions. The following examples demonstrate
that—depending on the value of the parameter ε that controls the magnitude of the
jump—approximately smooth functions are suitable for solving such a higher-order
problem and even to maintain full approximation power with respect to the L2, H 1

and H 2 errors.
We consider the discretized weak form of the biharmonic equation:

Find u ∈ Ĝ1,ε
h,0 such that

∫

�

�u(x)�v(x)d(x) =
∫

�

f (x)v(x) ∀v ∈ Ĝ1,ε
h,0,

(26)

where Ĝ1,ε
h,0 = {u ∈ Ĝ

1,ε
h

: u|∂� = (∇u · n)|∂� = 0}. Again, we impose the
boundary conditions strongly in the test function space and solve (26) by means
of the Galerkin method. The right-hand side f is obtained from the exact solution
(1 − cos(2πx))(1 − cos(2πy)). The domain � is a square, which is split into two
patches with a curved interface, see Fig. 7, left. Figure 7, right, depicts the solution
for 2101 basis functions of degree four and element size h = 2−5 for ε = h2.
The shading demonstrates the smoothness of the solution across the interface in the
patch-wise plot.

We consider the decay of the relative error for different degrees of the basis
functions, starting with degree p = 3. The plots in Fig. 8 show that the optimal
approximation order with respect to the L2 (left) andH 2 (right) norm is reached for
ε = C · hk for k ≤ 2, but not for k = 3.

The situation is slightly different for p = 4. Here, the optimal approximation
order with respect to the L2 (left) and H 2 (right) norm is reached for ε = C · hk
for k = 2, 3, but neither for k ≤ 1 nor for k ≥ 4, see Fig. 9. Finally, the optimal
approximation order for p = 5 with respect to the L2 (left) and H 2 (right) norm is
reached for ε = C · hk for k = 3, but neither for k ≤ 2 nor for k ≥ 4, as shown in
Fig. 10.

On the one hand, a higher power of h and thus a smaller value of ε results
in smoother, but at the same time in fewer basis functions, hence in a loss of
approximation power. On the other hand, while choosing a larger value of ε
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Fig. 7 Biharmonic equation (26): Domain with its control net (left) and patch-wise plot of the
solution with shading (right) for 2101 basis functions of degree four in Ĝ1,ε

h with ε = h2
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Fig. 8 Biharmonic equation (26): Relative L2 (left) and H 2 (right) errors of the approximate
solution for basis functions of degree three in Ĝ1,ε

h for four choices of ε

increases the dimension of Ĝ1,ε
h , the resulting discretizations are not smooth enough

for solving higher order problems. We conjecture that ε = C · hp−2 is the optimal
choice.

5.2 Dimension of the Space

We investigate the influence of ε on the number of interface basis functions, and
thus on the dimension of the space Ĝ1,ε

h . Note that the number of trivially smooth
basis functions is not affected by the choice of ε.
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Fig. 9 Biharmonic equation (26): Relative L2 (left) and H 2 (right) errors of the approximate
solution for basis functions of degree four in Ĝ1,ε

h for four choices of ε
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Fig. 10 Biharmonic equation (26): Relative L2 (left) andH 2 (right) errors of the numeric solution
for basis functions of degree five in Ĝ1,ε

h for three choices of ε

We cannot expect nested spaces, i.e., we cannot ensure that

Ĝ
1,ε
h ⊆ Ĝ1,ε

h
2
.

Nevertheless, the number of interface basis functions grows as h is decreased.
Figure 11 shows the number of interface basis functions for different degrees and

different choices of ε. For ε = C · hk with k ≤ p− 2, the number of interface basis
functions grows linearly under h-refinement for all degrees. A larger choice of k,
however, results in significantly fewer functions.
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Fig. 11 Number of interface basis functions under uniform h-refinement on the domain shown in
Fig. 1. Basis functions of degree three (top left), four (top right), five (bottom left) and six (bottom
right) for various choices of ε

6 Conclusion

We proposed a concept of constructing approximately C1-smooth isogeometric
functions on planar multi-patch domains which is based on selecting eigenvalues
and corresponding eigenvectors of the matrix representation of a suitable bilinear
form. The functions will have a non-zero gradient jump across the interface.

We studied two different bilinear forms. The first bilinear form led to a bound on
the gradient jump of the form

‖[∇f ]‖2
L2(�)

≤ ε‖f ‖2
L2(�)

,

where ε is to be chosen in advance. This bound is h-independent. However,
the space constructed via this bilinear form does not necessarily contain trivially
smooth functions, which led to a decrease in the approximation order. The function
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space based on the second bilinear form contains all trivially smooth isogeometric
functions and the gradient jump is bounded by a mesh-dependent term.

Numerical experiments suggested that for second-order problems, the latter
approach maintains the optimal approximation order even for constant choices of
ε and that the functions are sufficiently smooth to solve the biharmonic equation.
The convergence of the approximate solution was influenced by the choice of ε.
Depending on the degree of the basis functions, ε had to be chosen as a suitable
power of the mesh size h in order to achieve convergence of the solution to the
biharmonic problem.

In future work we would like to establish a theoretical background for the
experimental results. This includes

• investigating a projector to the space of approximately C1-smooth isogeometric
functions to prove optimal convergence rates,

• studying the eigenstructure of the matrix Q to develop a lower bound for the
number of non-trivial basis functions and

• analyzing the influence of ε.

The last point affects the first two points as well: A smaller value of ε creates
smoother but fewer functions. Last but not least we are interested in generalizing
the approach to domains with more than two patches and to the three-dimensional
case.
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Properties of Spline Spaces Over
Structured Hierarchical Box Partitions

Ivar Stangeby and Tor Dokken

Abstract Given a spline space spanned by Truncated Hierarchical B-splines
(THB), it is always possible to construct a spline space spanned by Locally Refined
B-splines (LRB) that contains the THB-space. Starting from configurations where
the two spline spaces are equal, we address what happens to the properties of
the LRB-space when it is modified by local one-directional refinement at convex
corners of, and along edges between dyadic refinement regions. We show that such
local modifications can reduce the number of B-splines over each element to the
minimum prescribed by the polynomial bi-degree, and that such local refinements
can be used for improving the condition numbers of mass and stiffness matrices.

1 Introduction

The use of Hierarchical B-splines (HB) introduced in [2] has gained much attention
in Isogeometric Analysis (IgA) in recent years. Hierarchical B-splines are based on
a dyadic sequence of grids determined by scaled lattices. On each hierarchical level
a spline space is defined as the tensor product of univariate spline spaces spanned
by uniform B-splines.

Hierarchical B-splines do not constitute a partition of unity, a much desired
property in both Computer Aided Design (CAD) and IgA. As a remedy to this
Truncated Hierarchical B-splines (THB) [5, 13] were introduced, where B-splines
on one hierarchical level are suitably truncated by B-splines from finer hierarchical
levels when the support of a B-spline at a finer level is contained in the support of a
B-spline at a coarser level.

An alternative to the THB-approach for forming a partition of unity came with
the introduction of Locally Refined B-splines (LRB) [1], where initial tensor product
B-splines are split until only B-splines of minimal support remain. LRB permits
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dyadic refinement of hierarchical meshes while ensuring that all B-splines have
minimal support. In the occasional case where meshlines at a dyadic level are
too short to split an LR B-spline, the meshlines in question are extended. This
fact ensures that the spline space spanned by THB-splines is either identical to or
constitutes a subset of the LRB spline space.

In IgA open knot vectors are used to simplify the interpolation of boundary
conditions, as reported for THB in [4] and for LRB in [6]. In open knot vectors
the multiplicity at boundary knots is set to m = d + 1. An alternative approach is
to use B-splines with knot multiplicity of m = 1 along the boundary. In order to
force the partition of unity in this case, a ghost domain is added around the domain
of interest, as seen in [7] for both THB and LRB. This distinction is illustrated for
univariate cubic splines in Fig. 1.

In Sect. 2 we address the effects the choice of boundary knot multiplicity has
on condition numbers. To distinguish between single multiplicity and open knots
at the domain boundary we prefix any method using single knot multiplicity on
the boundary with a ghosted domain by an “S”. Using this naming convention, the
methods addressed in [6] are respectively S-THB and S-LRB. In this paper, we
show that for the same tensor product spline space, THB and LRB are superior
with respect to condition numbers of mass and stiffness matrices compared to
respectively S-LRB and S-THB. We also explain the intriguing near constant
behaviour of the condition numbers reported in [7], where S-LRB and S-THB
were addressed, and condition numbers seemed to be nearly independent of the
refinement level. We show that this is due to single knot multiplicity at domain
boundaries for the examples presented in [7]. Further it is shown that for more levels
of refinement the condition numbers for the mass matrix for S-THB and S-LRB will
meet and then follow the growing curves for respectively THB and LRB.

In HB and THB the refinement procedure (at an element level) consists of
marking elements for splitting. Marked elements are subsequently split in both
parameter directions. This contrasts with the refinement procedure LRB allows,
namely that of splitting an element in a single parameter direction at the time,
provided that at least one B-spline is split in the process. This can be used to modify
the hierarchical refinement, and possibly improve the approximation properties of
the resulting spline space. In the remaining sections we use open knot vectors at
domain boundaries and address how such modifications influence the condition
numbers for mass and stiffness matrices for bi-cubic spline spaces in particular.
The remaining sections are structured as follows:

Section 3 gives a lightweight introduction to box-partitions and spline spaces
over such partitions. The starting point for THB and LRB refinement is a tensor
product spline space. The key concept of element overloading is defined, the
situation where more B-splines cover an element than are needed for spanning the
polynomial space over the element. We briefly summarize some key properties.
Subsequently, we recall the definitions of both LRB and THB splines. We also
relate the refinement strategies for LRB to T-splines [12]. Those readers already
familiar with the contents of this section may feel free to skip it.
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Fig. 1 Spline spaces over the domain � = [0, 5]. In (a), the partition of unity is satisfied at the
boundary by setting the knot multiplicity tom = d+1 = 4. In (b), the partition of unity is satisfied
at the boundary by extending the domain to allow the full polynomial space to be spanned at the
boundary elements. The shaded regions indicate the domain �, and the spline space spanned by
the B-splines over � are the same in both cases

Section 4 takes a look at overloading. We look at how to reduce or completely
remove overloaded regions in a mesh. We showcase some specific overloading
patterns that occur for hierarchical refinement of THB and LRB. Furthermore,
we show how local modifications to the LRB-mesh reduce overloading as well
as condition numbers.

Section 5 provides a quantitative comparison between the methods. We conduct
our numerical experiments using modified central and diagonal refinement
examples from [7] with a finer initial tensor-product mesh. This gives enough
room on each hierarchical level for the local modifications to take place. The
examples show that LRB with no overloading have smaller condition numbers
for the mass matrix per degree of freedom than THB and LRB with overloading.
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However, the difference seems to be so small that in general all methods have a
similar behaviour.

Section 6 summarizes the main results of this paper.

2 Condition Numbers and Knotline Multiplicity at Domain
Boundary

In [7], hierarchical refinement was performed for five levels of refinement, using
S-THB and S-LRB. The results reported that the number of refinement levels had
little to no influence on the evolution of condition numbers for stiffness and mass
matrices. There were some minute differences between S-THB and S-LRB, but they
followed the same trend. In Fig. 2 we display the condition number of the mass
matrix for up to eight refinement levels for S-THB, S-LRB, THB and LRB when
run on a hierarchical mesh from [7]. The relevant mesh at the fifth refinement level
is displayed in Fig. 4.

The results from [7] is reproduced, and corresponds to the S-THB and S-LRB
curves for the first five refinements. However, at the sixth refinement, the curve
for the condition number of the mass matrix for S-LRB breaks off and grows
exponentially following the curves of LRB that starts three orders of magnitude
lower. In Fig. 2 there are also two additional curves (S-LRB1 and LRB1). These are
added to show that modifying the mesh by inserting additional knot lines in one
parameter direction, with the effect of reducing overloading, significantly reduces
the condition numbers of LRB-refinement. This modified mesh is shown in Fig. 4b.
We will discuss such modifications more closely in Sect. 4.

Multiplicity of domain boundary knot lines also influences the condition number
of the stiffness matrix, as seen in Fig. 3. Here we see that the condition numbers
for single boundary knot multiplicity (S-THB, S-LRB and S-LRB1) are two orders
of magnitude higher than the condition numbers for open knot vectors (THB, LRB,
LRB-1) (Fig. 4).

2.1 Boundary Knotline Multiplicities

We now take a stab at explaining the drastic change in behaviour occuring at
n = 6 refinements for the S-LRB and S-THB methods as shown in Fig. 2. Since
the condition number of a matrix are computed in terms of its largest and smallest
eigenvalues, we decided to take a look at the geometric localization of the eigenvec-
tors corresponding to these eigenvalues. By coloring the hierarchical mesh based on
the influence of each in terms of the corresponding coefficient in the eigenvector,
we obtained a rudimentary geometric visualization of these eigenvectors. In Fig. 5,
we see the smallest eigenvector for the mass-matrix corresponding to LRB and S-
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Fig. 2 The condition number of the mass matrix. We see that under repeated refinement, the
condition numbers corresponding to spline spaces with open knot vectors (THB, LRB) tends
towards the condition numbers corresponding to spline spaces with single knots (S-THB, S-LRB).
We also see that a small local modification to reduce overloading in the LRB-space reduces the
condition number of the mass matrix (S-LRB1, LRB1)
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Fig. 3 The condition number of the stiffness matrix. Here the separation between S-LRB, S-THB,
LRB and THB are seen in even greater effect
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(a)

(b)
Fig. 4 The meshes used for the preliminary comparison. In (a), the unmodified mesh used for
S-THB, S-LRB, THB and LRB. In (b) the modified mesh used for S-LRB1 and LRB1. This mesh
generates a few extra degrees of freedom
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(a) (b)

(c) (d)

(e) (f)
Fig. 5 The eigenvectors corresponding to the smallest eigenvalue of the mass matrix for LRB (a)
to (c), and for S-LRB visualized over the hierarchical mesh after one, three and six refinements
(d) to (f). Darker color indicates higher influence. As we see, the smallest eigenvalues for LRB is
localized in the refined region after only one refinement. On the other hand, S-LRB is localized
in the corners of the domain up until but not including six refinements, as shown for n = 1 and
n = 3. The effect of the locally refined region dominates only after n = 6 refinements as in (f).
(a) n = 1 (LRB). (b) n = 3 (LRB). (c) n = 6 (LRB). (d) n = 1 (S-LRB). (e) n = 3 (S-LRB). (f)
n = 6 (S-LRB)
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LRB at the first, third and sixth refinement, and in Fig. 6, the corresponding largest
eigenvector.

These figures correspond to the behaviour observed in Fig. 2 where the condition-
ing for LRB grows after only one refinement, whereas S-LRB needs six refinements
before the behaviour in the refined region is registered.

The reason for this behaviour is due to the size of the B-splines defined along
the boundary in comparison to the size of the B-splines defined in the interior of the
domain. In order to illustrate this, we compute analytically the entries in the mass
matrix corresponding to B-splines on various tensor product level and compare these
values to the mass matrix entry corresponding to a B-spline defined in the corner of
the domain.

2.1.1 Observation for the Mass Matrix

Over the domain � = [0, 1] × [0, 1] we define a tensor product grid with element
size �. In the case of bi-cubic spline spaces, the B-spline defined in the lower left
corner of the domain can for LRB and S-LRB be written in terms of their knots as

B := B[x]B[y],
Q := B[s]B[t], (1)

where x = y = [0, 0, 0, 0, �] and s = t = [−3�,−2�,−�, 0, �]. In both cases,
the two B-splines have only one element of support in the domain �, namely β :=
[0, �] × [0, �]. To get a feel for the differences in influence on the mass matrix
these B-splines have, we compute the corresponding diagonal elements in the mass
matrix.

The polynomial restrictions of B andQ to the element β is

B
∣∣
β
(x, y) = (�− x)3(�− y)3

�6
,

Q
∣∣
β
(x, y) = (�− x)3(�− y)3

36�6 .

(2)

In other words, B
∣∣
β
= 36Q

∣∣
β

. If we now compute the diagonal mass matrix entries
corresponding to these two elements, we obtain the following:

∫

β

B2 = �2

49
,

∫

β

Q2 = �2

49
· 1

362
. (3)

We here see that the matrix element corresponding to the corner B-spline Q
arising in S-LRB is three orders of magnitude smaller than the matrix element
corresponding to B. Recall the disparity between the curves in Fig. 2, where the
differences in the condition numbers also were three orders of magnitude.
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(a) (b)

(c) (d)

(e) (f)
Fig. 6 The eigenvectors corresponding to the largest eigenvalue of the mass matrix for LRB (a)
to (c) and for S-LRB visualized over the hierarchical mesh after one, three and six refinements
(d) to (f). Darker color indicates higher influence. For the largest eigenvalue, the two methods
approximately correspond geometrically, and the largest eigenvalues are constant over refinement
levels for each of the methods. (a) n = 1 (LRB). (b) n = 3 (LRB). (c) n = 6 (LRB). (d) n = 1
(S-LRB). (e) n = 3 (S-LRB). (f) n = 6 (S-LRB)
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Remark 1 This relation betweenQ and B is both dimension and degree-dependent.
The effect will be magnified for higher spatial dimension and higher polynomial
degree. A similar condition number analysis was performed for embedded methods
in [10], with scaling effects reported along the lines of the effects reported above.

3 Box Partitions, Meshes, and Spline Spaces

In order for the paper to be self-contained, we review the concept of box partitions
and spline spaces over such partitions in the following section. Readers already
familiar with these notions may feel free to skip this section. While the construction
generalizes to any dimension, we will gradually focus our attention to the two-
dimensional case, as this is most relevant for our discussion. A fully general
treatment can be found in [1, 8]. The fundamental building block of a box partition
is the d-dimensional box.

Definition 1 A box β in R
d (or d-box) is the Cartesian product of d closed finite

intervals J1, . . . , Jd :

β =
d×
i=1

Ji. (4)

The dimension of β is defined to be the number of non-trivial intervals in its
definition, and is denoted dim(β). We call a d-box of dimension d an element, while
a d-box of dimension d − 1 is called a mesh-rectangle. To any mesh-rectangle,
we associate an integer k corresponding to which parametric dimension its trivial
component resides, and we call the mesh-rectangle a k-mesh-rectangle if this has
to be emphasized.

In the two-dimensional setting (d = 2), a meshline is a one-dimensional mesh-
rectangle.

Remark 2 Note that these naming-conventions are independent of the dimension of
the ambient space. Hence, a mesh-rectangle may very well be something different
from a rectangle. As an example, a mesh-rectangle in R

4 is an axis aligned
box. Furthermore, the integer k corresponding to any mesh-rectangle encodes
the direction of the mesh-rectangle. In the two-dimensional case, where mesh-
rectangles are lines, a 1-mesh-rectangle is a vertical line, and a 2-mesh-rectangle
is a horizontal line.

As customary in discretizations of computational domains, a large domain is
partitioned into a set of non-overlapping smaller geometrical entities. We call such
a partition in this specific setting a box partition, and this is more precisely defined
as follows:
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Definition 2 Let� ⊂ R
d be an element (d-box of dimension d). A finite collection

E of elements is said to be a box partition of � if

1. βo
i ∩ βo

j = ∅ for all βi, βj ∈ E where βi �= βj , and

2.
⋃

β∈E
β = � .

In other words, a box partition is an interior-disjoint partition of � into a set of
smaller elements.

Associated to any element β is its boundary, which naturally consists of boxes of
dimension one less, i.e., mesh-rectangles. Given a box partition of a larger element
�, it is therefore sensible to discuss the set of mesh-rectangles associated to this box
partition.

Definition 3 (Informal) Given a box partition E of a domain �, we may naturally
associate a set of mesh-rectangles M called a box mesh on � formed by taking
unions of element boundaries.

Remark 3 The link between a box partition E and the associated box mesh M
is such that by knowing one of them you may recover the other. The box mesh
generated by a box partition is denoted M(E), and the box partition generated by a
box mesh is denoted E(M).

As our ultimate goal is to define spline spaces based on tensor-product splines
over box-partitions, we need to have a concept of knot multiplicity in this more
general setting.

Definition 4 A box mesh with multiplicity is a pair (M, μ) where μ : M → N

associates to each mesh-rectangle γ a positive integer μ(γ ), called the multiplicity
of the mesh-rectangle. Note that this is completely analogous to the notion of knot
multiplicity for univariate B-splines.

Definition 5 Let a polynomial multi-degree p = (p1, . . . , pd) as well as a
box mesh with multiplicity (M, μ) corresponding to the box-partition E of a d-
dimensional domain � be given. The spline space of degree p over M is defined
as

Sμp(M) :=
{
f : �→ R : f ∣∣

β
∈ "p for all β ∈ E

and f ∈ Cpk−μ(γ ) for all k-mesh-rectangles γ ∈ M,

with k = 1, . . . , d
}
. (5)

A dimension formula for general spline spaces over box partitions was presented
in [9]. In general, the dimension depends on both the topological properties of the
box partition and the parametrization of the box partition. In the two-dimensional
case—with some requirements on the length of the constituent meshlines—the
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formula reduces to a formula depending only on the topological features of the
mesh. We consider this outside the scope of this text, and refer the reader to [9] for
details.

In order to compute with spline spaces over box partitions of the form above,
we must be able to construct a set of basis functions that span this space. Several
constructions has been studied. We will only be dealing with Truncated Hierarchical
B-splines, and Locally Refined B-splines.

Before we move on, we define the notion of a hierarchical mesh, a type of box
partition over which spline bases of the aforementioned type may be defined. This
provides a common ground for comparison of the two methods. The construction
is simple and relies on marking regions for which a tensor product mesh of various
refinement levels is used.

Definition 6 Let � be a domain, and let M1 ⊂ · · · ⊂ MM be a sequence of nested
tensor product meshes on �. Let �1 ⊃ · · · ⊃ �M be a set of nested subsets of �
whose boundaries ∂�� align with the meshlines of the corresponding mesh on the
coarser level M�−1 for � = 2, . . . ,M . The hierarchical mesh M is defined as

M = {
γ ∩�� : γ ∈ M� for � = 1, . . . ,M

}
, (6)

i.e., M consists of meshlines from each level intersected with the corresponding
region, see Fig. 7.

(a) (b)

Fig. 7 Two examples of hierarchical meshes. In (a) a mesh consisting of three levels of refinement,
and in (b) a mesh with four levels of refinement. Note here that the region residing at level � = 4
consists of two disjoint components
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3.1 Tensor Product Splines

The foundation for all the locally refined spline spaces over box partitions addressed
in this paper, is the tensor product B-spline. We start by glossing over some
preliminary definitions.

Recall that a univariate B-spline of polynomial degree p relies on exactly p + 2
knots. This observation enables us to define B-splines locally without referring to
some global knot vector.

Definition 7 Given a polynomial degree p and a non-decreasing knot-vector t =
(t1, . . . , tp+2), we recursively define the univariate B-spline B[t] : R → R as
follows:

If p = 0, then

B[t] =
⎧
⎨

⎩
1, x ∈ [t1, t2);
0, otherwise.

(7)

If p > 0, then

B[t](x) = x − t1
tp+1 − t1B[t

−](x)+ tp+2 − x
tp+2 − t2B[t

+](x), (8)

where t+ and t− are obtained by dropping the first and last elements of t
respectively:

t+ = (t2, . . . , tp+2), t− = (t1, . . . , tp+1). (9)

In the cases of a vanishing denominator, the whole term is taken to be zero.

Such univariate splines can be easily extended to higher dimensions through a
tensor product construction.

Definition 8 Let the polynomial multi-degree p = (p1, . . . , pd) and the d
local knot vectors t1, . . . , td be given. The d-variate tensor product B-spline
B[t1, . . . , td ] : Rd → R is then defined as

B[t1, . . . , td ](x) =
d∏

i=1

B[ti](xi), (10)

where x = (x1, . . . , xd).
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The support of B[t1, . . . , td ] is the closure of the area where the B-spline takes
non-zero values, which we denote by:

supp(B[t1, . . . , td ]) =
{

x ∈ Rd : B[t1, . . . , td ](x) �= 0
}
. (11)

Since our B-spline construction is inherently local, we need to know when a
tensor product B-spline has minimal support with respect to some box mesh.

Definition 9 (Informal) A B-spline B = B[t1, . . . , td ] has support on (M, μ)

if all the knot lines of B occurs as meshlines in M. We say that B has minimal
support on (M, μ) if in addition, all the knot lines of B occur consecutively in
(M, μ).

One of the central concepts we will be addressing in this paper is the overloading
of elements. We make this precise in the following definition.

Definition 10 Let a box partition E of a domain � and a polynomial multi-degree
p = (p1, . . . , pd) be given. Assume that we construct a set B of B-splines degree
p over the mesh M corresponding to E. We say that an element β is overloaded
with respect to B if the number of B-splines with support on β is larger than the
dimension of the corresponding space of polynomials over this element, namely

dim("p(β)) =
d∏

i=1

(pi + 1). (12)

We now proceed to review the definitions of LR B-splines and THB-splines.

3.2 Locally Refined Spline Spaces

In preparation for the following discussion, we will adopt the notational convention
as in [7] in order to differentiate between the distinct types of basis functions.
Depending on the underlying box partition, some of these types may coincide.

Type Basis Function

Tensor Product B-spline B B

Truncated Hierarchical B-spline H H

LR B-spline L L

Furthermore, in this and the following sections we will be dealing with box
partitions and spline spaces in R

2, unless otherwise stated.
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3.2.1 LR-Splines

Locally Refined B-splines (LRB or LR-splines) was introduced by [1]. The LR-
spline framework permits the insertion of local splits in a tensor product mesh, and
subsequently enables local refinement of the mesh. Being scaled tensor product
B-splines, LR-splines admit a set of nice properties. The set of LR B-splines
form a partition of unity. Their scaling weights are positive, meaning that they
satisfy the convex hull property, and are therefore inherently stable in computations.
Moreover, with some restrictions on the refinement process, linear independence of
the resulting set of functions can be guaranteed.

LR-splines are defined over so-called LR-meshes, being special box partitions.
Starting from an initial tensor product mesh, meshlines are inserted sequentially,
yielding a sequence of box-meshes, where no meshline is allowed to terminate in
the middle of an element. This is formalized in the following definition, and Fig. 8
gives an example.

Definition 11 An LR mesh is a box mesh M = MN resulting from a sequence of
meshline insertions in an initial tensor product mesh M1. That is

Mi+1 = Mi + γi (13)

for i = 1, . . . , N − 1 where each intermediate mesh is a box mesh.

Remark 4 We often think of an LR-mesh as a sequence of intermediate meshes

M = MN ⊇ MN−1 ⊇ · · · ⊇ M2 ⊆ M1 (14)

as each intermediate step is needed for the LR B-spline construction.

(a) (b)

Fig. 8 In (a), an initial tensor product mesh, which is also an LR-mesh. In (b), an LR-mesh
obtained from the insertion of three meshlines in the initial tensor product mesh from (a)
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Over such an LR-mesh we may define the associated set of LR B-splines
algorithmically. Starting from an initial space of tensor product B-splines, meshlines
are inserted sequentially. Whenever a meshline completely traverses the support of
a B-spline, the B-spline is split according to the knot insertion procedure, and two
new B-splines are added. The B-spline that was split is removed.

Definition 12 Let M be an LR-mesh over a domain � and p = (p1, p2) a
polynomial bi-degree. We define the set L(M) of LR B-splines of degree p over
M algorithmically as in Algorithm 3.1.

Algorithm 3.1 The LR B-spline construction
Let L1 := B(M1) be the set of tensor product B-splines on M1.
for each intermediate mesh Mi+1 = Mi + γi , with i = 1, . . . , N − 1 do

Li+1 := Li
while there exists B ∈ Li+1 without minimal support on Mi+1 do
B+, B− = SPLIT(B, γi) & knotline insertion
Li+1 = (Li+1 \ {B}) ∪

{
B+, B−} & update the set of B-splines

end while
end for
L(M) := LN

Remark 5 Note that all LR B-splines have minimal support on the resulting mesh.
This is by construction. However, there is an important distinction to be made,
namely that the set of LR B-splines differ from the set of minimal support B-splines
on the resulting mesh. This is due to the LR refinement procedure putting some
restrictions on the resulting mesh. A survey on the properties of LR-splines and
minimal support B-splines are given in [8].

3.2.2 Truncated Hierarchical B-Splines

Hierarchical B-splines, first introduced in [2], is a method for specifying locally
refined spline spaces on hierarchical meshes. Recall that a hierarchical mesh consists
of regions corresponding to various levels of tensor product grids. The hierarchical
B-spline construction involves replacing any B-spline with support completely
contained in a region of a finer level by B-splines at this finer level. This procedure
will, however, lead to coarse B-splines partially overlapping the finer regions, and
does not constitute a partition of unity.

A remedy to this problem came with the introduction of Truncated Hierarchical
B-splines [5], where B-splines on a coarse level are truncated by B-splines on a finer
level. This leads to the resulting set of B-splines forming a partition of unity. The
construction relies on the truncation operator. Recall that a spline f ∈ span(B�)
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can be represented in terms of the finer basis B�+1:

f =
∑

Bi∈B�+1

c�+1
i (f )Bi, (15)

where c�+1
i (f ) is the coefficient multiplying Bi in the representation of f in terms

of B�+1. For uniform B-splines, this relation is often called the two-scale relation.
The truncation operator is defined as follows:

Definition 13 Let B ∈ B� be a coarse B-spline. The truncation with respect to the
set of fine B-splines B�+1 and the corresponding region ��+1 is

trunc�+1B :=
∑

Bi∈B�+1
suppBi �⊆��+1

c�+1
i (B)Bi. (16)

Remark 6 The definition above represents the truncation operator in an additive
sense, where the contributions from the finer level are summed up. It is also possible
to represent the truncation operator subtractively, by instead removing the bits of the
representation that have been replaced by finer B-splines:

trunc�+1B = B −
∑

Bi∈B�+1
suppBi⊆��+1

c�+1
i (B)Bi (17)

Definition 14 Let M be a hierarchical mesh over a domain � (see Definition 6)
and p = (p1, p2) a polynomial bi-degree. On each level � = 1, . . . , N we have a
tensor product spline space V� spanned by a collection of B-splines B� = B(M�).
We define the set of THB-splines of degree p over M algorithmically as in
Algorithm 3.2.

Algorithm 3.2 The THB-spline construction
Let H1 = B(M1) be the set of tensor product B-splines on M1.
for each level � = 1, . . . , N − 1 do

H trunc
�+1 :=

{
trunc�+1H : H ∈ H� and supp(H) �⊆ ��+1

}

Hnew
�+1 := {

B ∈ B�+1 : supp(β) ⊆ ��+1
}

H�+1 := H trunc
�+1 ∪Hnew

�+1

end for
H = HN .
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Remark 7 Note that in the cases where a B-spline B ∈ B� is truncated with respect
to B�+1 and ��+1 and the support of B happen to be entirely contained in ��+1,
the truncation operator completely removes the coarse B-spline. In the THB-spline
construction, this has the effect of replacing the coarse B-splines with fine B-splines
defined in its support.

Remark 8 A simple framework for the implementation of truncated hierarchical B-
splines is given in [3], and this serves as a good introduction to the many ways
such splines have been implemented in the literature. Efficient algorithms for the
assembly of finite element matrices are also presented.

3.2.3 T-Splines

While not directly addressed in this paper, we briefly mention T-splines as LRB
with local modifications to the LR-meshes used in this paper will reproduce the
spline space generated by semi-standard T-splines [12] and Analysis Suitable T-
splines [11]. An example of an Analysis Suitable T-mesh in the index domain is
displayed in Fig. 9 to the left, with the corresponding LR-mesh to the right. This is
a close up of the structure of a mesh similar to the one used in Fig. 11b.

(a) (b)

Fig. 9 In (a) a T-spline mesh in the index domain. The dots denote Greville points or “anchors” for
each individual B-spline. A black dot is a B-spline at level � = 0 and a green star a B-spline at level
� = 1. The resulting spline space can be replicated by an LR-mesh without overloaded elements
(c.f. Fig. 11b), as displayed in (b). Here we have used multiplicity m = 4 along the boundary
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4 Local Modification of Meshes and the Reduction
of Overloading

In this section we take a deeper look at the overloading of elements, and how local
modifications to the mesh may be used to remedy this. Recall from the previous
definition that an element β in a box-partition E is said to be overloaded if the
number of supported B-splines on the element exceeds the number needed to span
the full polynomial space over the element.

We are interested in such overloaded regions, because by reducing or removing
completely the overloading on elements we may

1. reduce the bandwidth of the resulting finite element matrices; and
2. improve conditioning of finite element matrices.

Such overloaded regions occur for LRB in convex corners of a fine hierarchical
level, where a large B-spline from one hierarchical level overlaps several elements
of a finer hierarchical level. For THB, overloading occurs along any border between
two hierarchical levels. By coloring in elements with too many supported B-splines
we obtain a visualization of this phenomenon, as seen in Fig. 10 on a hierarchical
mesh with three levels of refinement.

In order to reduce, or completely remove such overloaded regions, we may for
LRB extend meshlines from the fine hierarchical level to the coarse level, in order to
split the culprit B-splines. The length needed for this extended meshline depends on
the polynomial degree of the B-spline to be split. In Fig. 11 we see the effects of two
types of meshline extension to the LRB-mesh from Fig. 10 for a space of bi-cubic
splines. The corresponding splines are named LRBNO and T-LRBNO, signifying
the fact that these local modifications completely remove overloading.

In order to capture what is happening, we take a closer look at overloading in a
convex corner in Fig. 12 where we show how B-splines from the coarse level of a
hierarchical mesh may overlap with B-splines from the fine level in such a way that
too many B-splines are active over a given element.

5 Numerical Experiments

In order to compare the methods addressed in this paper, we assemble the mass
and stiffness matrices associated to discretizations of partial differential equations
using IgA or FEM. By computing the condition number of these matrices, we
obtain a metric useful for comparison. These matrices arise amongst others in the
discretizations of the Poisson equation, and in the computation of the L2-projection
of a function.
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(a)

(b)

Fig. 10 The overloading patterns on a hierarchical mesh with two levels of refinement. In (a),
we see that regions in the corners of the refined regions are overloaded, due to the influence
of four LR B-splines from the coarser layer, whose support has not been split by any newly
introduced meshlines. In (b) we observe “bands” of overloaded elements along the boundary
between two consecutive refinement levels for THB, arising due to the fact that fine B-splines
must be completely contained in the support of a coarse B-spline before truncation occurs. (a)
LRB. (b) THB
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(a)

(b)

Fig. 11 Two different local modifications with the effect of completely removing the overloaded
elements. In (a) we extend the meshlines closest to the convex corner by three elements, and the
meshline next to them by one element. This has the effect of completely removing the overloading
on the corner elements. In (b), we make a mesh that can be defined using T-splines that has no
overloading. As in (a) meshlines closest to the corners are extended by three, while meshlines at
the borders between refinement levels are extended by two as in Fig. 9. (a) LRBNO. (b) T-LRBNO
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Fig. 12 The effects of extending meshlines on the bi-cubic B-splines covering the element in pink.
The upper left corner of each B-spline is marked with a black dot. The knotlines of each B-spline
can be identified by starting from the dot and going four knotlines to the right/down. We chose
to not use Greville points as some overloaded configurations produce overlapping Greville points.
In the upper mesh we look at the element just inside the corner of the region refined, and no
overloading occurs. In the middle meshes we move one element diagonally into the refined region.
Before refinement the overloading is one, and after additional lines are inserted the overloading is
removed. In the bottom meshes we move two additional element diagonally into the refined region,
Before refinement the overloading is four, after additional lines are inserted the overloading is
removed
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5.1 L2-Projection

Given a domain�, a function f : �→ R in some space of functions V , and a finite-
dimensional subspace Vh of V , we are interested in finding the function u ∈ Vh that
minimizes the L2(�)-error

‖e‖L2 = ‖u− f ‖L2 . (18)

This can be reformulated as a variational equation by requiring u to satisfy

∫

�

uvd� =
∫

�

f vd�, (19)

for all v ∈ Vh. By introducing a basis
{
ϕ1, . . . , ϕN

}
for Vh, which in our case will

be one of the THB or LRB-bases, we may write this as a linear equation

Mc = b, (20)

where M is the mass matrix and c is the vector of coefficients representing u in our
chosen basis. The entries for M and the right-hand side b are given as

Mij =
∫

�

ϕiϕjd�, bj =
∫

�

f ϕjd�. (21)

5.2 The Poisson Equation

A commonly encountered differential equation is the Poisson equation. Given a
function f : �→ R, we wish to find a function u in a space of admissible functions
V such that

−�u = f in �, (22)

subject to the boundary conditions

u = 0 on �D ,
∂u

∂n
= g on �N. (23)

Here �D denotes the Dirichlet-boundary and �N the Neumann-boundary. We
assume ∂� = �D ∪ �N and �D ∩ �N = ∅. Furthermore, n is the outward facing
boundary normal to� and g is the prescribed flux along the boundary. This is called
the strong form of the Poisson equation.

By multiplying the strong form with a suitable test function, and integrating
over the domain, we obtain the variational form of the Poisson equation. The
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requirements on the smoothness of the sought solution u can be relaxed, by moving
some derivatives onto the test-functions. Again, we seek the solution u in a subspace
Vh of V spanned by a set of basis functions

{
ϕ1, . . . , ϕN

}
. The variational form of

the Poisson-equation then reads

∫

�

∇u · ∇vd� =
∫

�N

gvdS −
∫

�

f vd�, (24)

for all v ∈ Vh. Rewriting this in terms of the basis functions, we obtain the system
of linear equations

Ac = b, (25)

where A is the stiffness matrix of the problem. The entries of A and b are given as

Aij =
∫

�

∇ϕi · ∇ϕjd�, bj =
∫

�N

ϕjgdS −
∫

�

f ϕjd�. (26)

5.3 Condition Numbers

The condition number of a matrix B ∈ R
n×n quantifies how sensitive the solution x

to the linear system Bx = y is to small perturbations both in B and the right-hand
side y and is formally defined as

Cond(B) := ‖B‖‖B−1‖, (27)

where ‖·‖ is some matrix norm. Note that the condition number is norm-dependent,
but all matrix norms are equivalent on R

n×n. We will be computing the condition
numbers in the 2-norm, and in this specific setting for normal matrices the condition
number can be computed as the ratio between the largest and smallest eigenvalue

Cond(B) = |λ1(B)|
|λn(B)| . (28)

Here λ1 ≥ λ2 ≥ . . . ≥ λn, i.e., ordered in a decreasing fashion.
As in [7], we chose to estimate the condition numbers of the matrices before

imposing any boundary conditions, as imposing boundary conditions can have a
large impact on the conditioning of the matrix. The mass matrix M is non-singular,
even with no imposed boundary condition. The stiffness matrix A however will be
singular, and have a zero-eigenvalue of multiplicity one.

In addition to this, the computation of the smallest eigenvalue of a matrix is a
numerically unstable procedure. We will therefore estimate the condition numbers
as follows:
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Cond(M) ≈ |λ1(M)|
|λn(M)| , and Cond(A) ≈ |λ1(A)|

|λn−1(A)| , (29)

using the second-smallest eigenvalue for the stiffness matrix.

5.4 Numerical Results

Below we present results of the numerical simulations. As LRBNO generates higher
dimensional spline spaces than THB and LRB we plot the condition numbers as a
function of the degrees of freedom. Just plotting the condition numbers as a function
of the levels provides less information. By including the dimension of the spline
space we obtain a clearer distinction between the methods.

5.4.1 Central Refinement

We assemble the stiffness and mass matrices on a sequence of meshes corresponding
to central refinement, shown at the third refinement for bi-cubic splines in Figs. 10
and 11. In addition to the bi-cubic case, we also assemble the matrices on similar
meshes for bi-quadratic and bi-quartic spline spaces, where the spacing between
each refined region is kept the same for all degrees. The results are shown in Figs. 13
and 14. Unfortunately, due to time constraints, we were not able to get results for
bi-quartic THB-splines.

Start by noting that for the mass matrix, THB performs better than LRB with no
modifications, while for the stiffness matrices, the two methods are comparable with
LRB having a slight advantage. The number of degrees of freedom are the same. By
locally modifying the mesh, as is the case for LRBNO and T-LRBNO, we see that
the number of degrees of freedom goes up, as expected. The condition number per
degree of freedom is smallest for T-LRBNO.

5.4.2 Diagonal Refinements

We now consider the case of diagonal refinement for bi-cubic spline spaces. Again,
we use the same hierarchical mesh for LRB and THB. We will only consider one
sequence of meshes with local modifications. In the diagonal refinement setting, the
corners of the refined region are sufficiently close to each other so that we need
to make a decision on which direction to refine in. The diagonally refined mesh
is not compatible with a T-spline type mesh, and will therefore not be taken into
consideration here.

We assemble stiffness and mass matrices on the meshes displayed in Fig. 15.
The results are shown in Figs. 16 and 17. Note that for the diagonal refinement,
the number of degrees of freedom generated when removing overloading, shown in
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Fig. 13 The condition numbers for mass matrices over a centrally refined hierarchical mesh
for six levels of refinement. In the figures N denotes the number of degrees of freedom in the
corresponding space. (a) Quadratic. (b) Cubic. (c) Quartic
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Fig. 14 The condition numbers for stiffness matrices over a centrally refined hierarchical mesh
for six levels of refinement. In the figures N denotes the number of degrees of freedom in the
corresponding space. (a) Quadratic. (b) Cubic. (c) Quartic
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Fig. 15 The overloading
patterns on a hierarchical
mesh with three levels of
diagonal refinement. In this
case, we see in greater effect
the behaviour of LRB over
convex corners. Here the
difference in overloading
between THB and LRB are
smaller, as opposed to the
central refinement case, due
to the high number of corners
relative to the length of the
sides of the refined levels. By
using a one-directional
meshline extension along the
diagonal, and extensions
similar to the
central-refinement case, we
may completely remove
overloading. (a) LRB. (b)
THB. (c) LRBNO

(a)

(b)

(c)
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Fig. 16 Condition numbers for mass matrices over a diagonally refined hierarchical mesh for four
levels of refinement. There is one data point for each method at each refinement level. The first
point is the same for all methods as the all methods start from the same tensor product spline
space. N denotes the number of degrees of freedom in the corresponding spline space. The none
overloaded LRBNO mesh has clearly the smallest condition numbers
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Fig. 17 The condition numbers for stiffness matrices over a diagonally refined hierarchical mesh
for four levels of refinement. In the figures N denotes the number of degrees of freedom in the
corresponding space. All methods are similar in behaviour with respect to condition numbers as a
function of degrees of freedom

the mesh in Fig. 15c, is a fair bit larger than the unmodified counterparts. Despite
this, LRBNO outperforms THB and LRB by a significant amount when it comes to
the mass matrix. The conditioning of the stiffness matrix on the other hand grows
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approximately linearly with the number of degrees of freedom, and no significant
effect of the overload-reduction can be seen.

6 Conclusion

We have addressed differences and similarities of Truncated Hierarchical B-splines
(THB) and Locally Refined B-splines (LRB) on similar hierarchical meshes. The
overall conclusion is that there are no big differences between the methods with
respect to condition numbers of mass and stiffness matrices for the example meshes
addressed.

• When THB and LRB are run on identical meshes THB has better condition
numbers for the mass matrix except for the most complex example run, the
diagonal example in Figs. 15 and 16. The behaviour of the stiffness matrix is
very similar for both methods.

• When making a mesh for LRB that has no overloading the condition numbers for
the mass matrix of LRB are smaller than those of THB, with condition numbers
of stiffness being similar. It should be noted that using meshes for LRB that has
no overloading guarantees that the B-splines generated are linearly independent,
and that the number of B-splines covering an element is the minimal needed
for spanning the polynomial space over the element. For hierarchical meshes of
bi-degree less than (4, 4) there is always linear independence in the set of LR
B-splines generated. For bi-degree (4, 4) and higher linear dependence can occur
in very special configurations when the elements outside two opposing concave
corners of a refinement region is covered by the same B-spline from a cruder
level. This happens for bi-degree (4,4) when a refinement region is split if just
one element from the cruder level is not refined, e.g., the refinement region is
locally very narrow.

When trying to represent hierarchical refinements using T-splines as in Fig. 9
there is a region of one directional refinement of length two just outside the
boundary of the refinement region. This gives a smoother transition between
refinement levels that can also be replicated by LRB. The results in Figs. 13 and 14
show a better behaviour than going directly from one refinement level to the
next. Having such an intermediate level of refinement if possible is advantageous.
However, in situations such as the diagonal refinement in Fig. 15 this is not possible.

Most often THB is described as based on dyadic sequences of grids determined
by scaled lattices over which uniform B-spline spaces are defined. This implies
that there is single knot multiplicity along domain boundaries. However, variants
of THB are published [4] where open knots are used along the domain boundary. In
Sect. 2 we have shown that open knot vectors are preferable, not only with respect to
simplified interpolation of boundary conditions, but also to avoid that the condition
number of the mass matrix is biased by the boundary B-splines. As we see the same
effect for LR B-splines we have a strong recommendation that open knot vectors
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are used for locally refined splines, rather than single knot multiplicity at domain
boundaries.
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Efficient p-Multigrid Based Solvers
for Isogeometric Analysis on Multipatch
Geometries

Roel Tielen, Matthias Möller, and Cornelis Vuik

Abstract Isogeometric Analysis can be considered as the natural extension of
the Finite Element Method (FEM) to higher-order spline based discretizations
simplifying the treatment of complex geometries with curved boundaries. Finding
a solution of the resulting linear systems of equations efficiently remains, however,
a challenging task. Recently, p-multigrid methods have been considered [18], in
which a multigrid hierarchy is constructed based on different approximation orders
p instead of mesh widths h as it would be the case in classical h-multigrid schemes
[8]. The use of an Incomplete LU-factorization as a smoother within the p-multigrid
method has shown to lead to convergence rates independent of both h and p for
single patch geometries [19]. In this paper, the focus lies on the application of
the aforementioned p-multigrid method on multipatch geometries having a C0-
continuous coupling between the patches. The use of ILUT as a smoother within
p-multigrid methods leads to convergence rates that are essentially independent of
h and p, but depend mildly on the number of patches.

1 Introduction

Isogeometric Analysis (IgA) [9] can be considered as the natural extension of the
Finite Element Method (FEM) to higher-order spline based discretizations simplify-
ing the treatment of complex geometries with curved boundaries. However, solving
the resulting linear systems arising in IgA efficiently is considered a challenging
task, especially for higher-order discretizations. The exponential increase of the
condition numbers of the mass and stiffness matrices with the approximation order
p, make the use of (standard) iterative solvers inefficient. The wider support of the
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basis functions and, consequently, increasing bandwidth of the matrices for larger
values of p make the use of direct solvers on the other hand also not straightforward.

The use of established solution techniques from FEM in IgA has been an active
field of research. For example, h-multigrid methods have been investigated, as
they are considered among the most efficient solvers in Finite Element Methods
for elliptic problems. The use of standard smoothers like (damped) Jacobi or
Gauss-Seidel leads, however, to convergence rates which deteriorate drastically for
increasing values of p [5], caused by very small eigenvalues associated with high-
frequency eigenvectors [3]. Non-classical smoothers have been developed to solve
this problem leading to (geometric) multigrid methods which are robust in both h
and p [8, 13].

An alternative solution strategy are p-multigrid methods. In contrast to h-
multigrid methods, where each level of the constructed hierarchy is obtained by
refining the mesh, in p-multigrid methods each level represents a different approx-
imation order. p-Multigrid methods are widely used within the Discontinuous
Galerkin framework [4, 10, 11, 14], where p = 0 is used on the coarsest hierarchy
level.

Some research has been performed for continuous Galerkin methods [7] as well,
where the coarse grid correction was obtained at level p = 1. Throughout this
paper, the coarse grid is also obtained at level p = 1. Here, B-spline basis functions
coincide with piecewise-linear (p = 1) Lagrange basis functions, enabling the use
of well known solution techniques for standard FEM.

Recently, the authors developed an efficient p-multigrid method for IgA dis-
cretizations that makes use of an Incomplete LU factorization based on a dual
threshold strategy (ILUT) [15] as a smoother. This approach was shown to result
in a p-multigrid method with essentially h- and p-independent convergence rates
[19] in contrast to the use of Gauss-Seidel as a smoother.

In this paper, the focus lies on the extension of p-multigrid based methods on
multipatch geometries, giving rise to (reduced) C0-continuity between individual
patches. The spectral properties of the p-multigrid method are analysed and
numerical results are presented for different two-dimensional benchmarks. The use
of ILUT as a smoother leads to a p-multigrid method that shows essentially h-
and p-independent convergence rates on multipatch geometries. Furthermore, the
number of iterations needed to achieve convergence depends only mildly on the
number of patches.

This paper is organised as follows. The model problem and spatial discretization
are briefly considered in Sect. 2. Section 3 presents the p-multigrid method together
with the adopted ILUT smoother in more detail. In Sect. 4, a spectral analysis
is performed and discussed. Numerical results for the considered benchmarks are
presented in Sect. 5. Conclusions are finally drawn in Sect. 6.



Efficient p-Multigrid Based Solvers for Isogeometric Analysis 211

2 Model Problem

As a model problem to describe the spatial discretisation, Poisson’s equation is
considered:

−�u = f, on �, (1)

where � ⊂ R
2 is a connected, Lipschitz domain, f ∈ L2(�) and u = 0 on the

boundary ∂�. Let V = H 1
0 (�) denote the subspace of the Sobolev space H 1(�)

that contains all functions that vanish on the boundary ∂�. By multiplying both
sides of (1) with an arbitrary test function v ∈ V and applying integration by parts
in the left side, the following variational form of (1) is obtained:

Find u ∈ V such that

a(u, v) = (f, v) ∀v ∈ V, (2)

where

a(u, v) =
∫

�

∇u · ∇v d� and (f, v) =
∫

�

f v d�. (3)

A bijective geometry function F is then defined to parameterize the physical domain
�:

F : �0 → �, F(ξ) = x, (4)

where ξ = (ξ, η) and x = (x, y) denote the coordinates in the parametric and
physical domain, respectively. The geometry function F describes an invertible
mapping connecting the parameter domain �0 ⊂ R

2 with the physical domain �.
In case � cannot be described by a single geometry function, the physical domain
is divided in a collection of non-overlapping subdomains �(k) such that

� =
K⋃

k=1

�(k). (5)

A geometry function F(k) is then defined to parameterize each subdomain �(k):

F(k) : �0 → �(k), F(k)(ξ) = x. (6)

We refer to � as a multipatch geometry consisting of K patches. Throughout this
paper, the tensor product of one-dimensional B-spline basis functions φix,p(ξ) and
φiy,q(η) of order p and q, respectively, with maximum continuity are adopted for
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the spatial discretisation:

#i,p(ξ) := φix,p(ξ)φiy,q(η), i = (ix, iy), p = (p, q). (7)

Here, i and p are multi indices, with ix = 1, . . . , nx and iy = 1, . . . , ny denoting
the one-dimensional basis functions in the x and y-dimension, respectively. Further-
more, i = ixnx + iyny assigns a unique index to each pair of one-dimensional basis
functions, where i = 1, . . . Ndof. The spline space Vh,p can then be written, using
the inverse of the geometry mapping F−1 as pull-back operator, as follows:

Vh,p := span
{
#i,p ◦ F−1

}

i=1,...,Ndof
. (8)

Here, Ndof denotes the number of degrees of freedom, or equivalently, the number
of tensor-product basis functions. The Galerkin formulation of (2) becomes:

Find uh,p ∈ Vh,p such that

a(∇uh,p,∇vh,p) = (f, vh,p) ∀vh,p ∈ Vh,p, (9)

or, equivalently:

Ah,puh,p = fh,p. (10)

Here, Ah,p denotes the stiffness matrix resulting from the discretization of the left-
hand side with the tensor-product of B-spline basis functions of order p and knot
span size h. To assess the quality of the p-multigrid method throughout this paper,
the following benchmarks are considered:

Benchmark 1 Here, Poisson’s equation is considered on the unit square, i.e. � =
[0, 1]2. The right-hand side is chosen such that the exact solution u is given by:

u(x, y) = sin(πx)sin(πy).

Benchmark 2 Let� be the quarter annulus with an inner and outer radius of 1 and
2, respectively. Again, Poisson’s equation is considered, where the exact solution u
is given by

u(x, y) = −(x2 + y2 − 1)(x2 + y2 − 4)xy2,

Benchmark 3 Let � = {[−1, 1] × [−1, 1]}\{[0, 1] × [0, 1]} be an L-shaped
domain. As with the other benchmarks, Poisson’s equation is considered, where
the exact solution u is given by

u(x, y) =

⎧
⎪⎨

⎪⎩

3
√
x2 + y2sin

(
2atan2(y,x)−π

3

)
if y > 0

3
√
x2 + y2sin

(
2atan2(y,x)+3π

3

)
if y < 0

,
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where atan2 is the 2-argument arctangent function. The right-hand side is chosen
according to the exact solution. For the first two benchmarks, homogeneous
Dirichlet boundary conditions are applied on the entire boundary ∂�, while for the
third benchmark inhomogeneous Dirichlet boundary conditions are applied. Note
that the geometry of each benchmark can be described by a single patch. The
multipatch geometries considered throughout this paper are obtained by splitting
the single patch uniformly in both directions.

3 p-Multigrid Method

Multigrid methods solve linear systems of equations by defining a hierarchy of
discretizations. At each level of the hierarchy, a basic iterative method, like Gauss-
Seidel or (damped) Jacobi, is then applied as a smoother. On the coarsest level,
a correction is determined by solving the residual equation. With p-multigrid
methods, a sequence of spaces Vh,1, . . . ,Vh,p is obtained by applying refinement
in p. The coarse grid correction is then determined at level p = 1. Since basis
functions with maximal continuity are considered, the spaces in the hierarchy are not
nested. For p-multigrid, the two-grid correction scheme consists of the following
steps [18, 19]:

1. Apply a fixed number ν1 of presmoothing steps to update the initial guess u(0)h,p:

u(0,m)h,p = u(0,m−1)
h,p + Sh,p

(
fh,p − Ah,pu(0,m−1)

h,p

)
, m = 1, . . . , ν1. (11)

Here, S is a smoothing operator applied to the high-order problem.
2. Project the residual at level p onto Vh,p−1 using the restriction operator Ip−1

p :

rh,p−1 = Ip−1
p

(
fh,p − Ah,pu(0,ν1)

h,p

)
. (12)

3. Determine the coarse grid error, by solving the residual equation at level p − 1:

Ah,p−1eh,p−1 = rh,p−1. (13)

4. Use the prolongation operator Ipp−1 to project the error eh,p−1 onto the space

Vh,p and update u(0,ν1)
h,p :

u(0,ν1)
h,p

:= u(0,ν1)
h,p + Ipp−1

(
eh,p−1

)
. (14)



214 R. Tielen et al.

= 3

= 2

= 1

Restrict
Restrict

Pr
olo

ng
ate

Pr
olo

ng
ate

Fig. 1 Description of a V-cycle and W-cycle

5. Apply ν2 postsmoothing steps to obtain u(0,ν1+ν2)
h,p =: u(1)h,p:

u(0,ν1+m)
h,p

= u(0,ν1+m−1)
h,p

+ Sh,p
(

fh,p − Ah,pu(0,ν1+m−1)
h,p

)
, m = 1, . . . , ν2. (15)

The residual equation can be solved recursively by applying the same two-grid
correction scheme until level p = 1, which results in a V-cycle. Different cycle
types can be applied, however, as shown in Fig. 1.

3.1 Prolongation and Restriction

The prolongation and restriction operators transfer both coarse grid corrections and
residuals between different levels of the hierarchy. The prolongation and restriction
operator adopted in this paper are based on the L2 projection [1, 2, 17]. The
prolongation operator Ikk−1 : Vh,k−1 → Vh,k can be derived from the following
variational form

(Ikk−1(uh,k−1), vh,k) = (uh,k−1, vh,k) ∀uh,k−1 ∈ Vk−1, ∀vh,k ∈ Vk (16)

and is therefore given by

Ikk−1(vk−1) = (Mk)
−1Pkk−1 vk−1, (17)

where the mass matrix Mk and the transfer matrix Pkk−1 are defined, respectively, as
follows:

(Mk)(i,j) :=
∫

�

#i,k#j,k d�, (Pkk−1)(i,j) :=
∫

�

#i,k#j,k−1 d�. (18)
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The restriction operator Ik−1
k

: Vh,k → Vh,k−1 is given by the Hilbert adjoint of
the prolongation operator and defined by

Ik−1
k (vk) = (Mk−1)

−1Pk−1
k vk. (19)

The explicit solution of a linear system of equations for each projection step is
prevented by replacing the consistent mass matrix M in both transfer operators by
its lumped counterpart ML. Here, ML is obtained by applying row-sum lumping:

ML
(i,i) =

Ndof∑

j=1

M(i,j). (20)

3.2 Smoother

In this paper, an Incomplete LU factorization with a dual threshold strategy (ILUT)
[15] is adopted as a smoother. The ILUT factorization is completely determined
by a tolerance τ and fillfactor f . All matrix entries in the factorization smaller (in
absolute value) than the tolerance multiplied by the average magnitude of all entries
in the current row are dropped. Furthermore, only the average number of non-zeros
in each row of the original operator Ah,p multiplied with the fillfactor are kept in
each row.

Throughout this paper, a fillfactor of 1 is adopted and the dropping tolerance τ
equals 10−12. As a consequence, the number of non-zero entries of the factorization
is similar to the number of non-zeros of the original operator. An efficient
implementation of an ILUT factorization is available in the Eigen library [6] based
on [16]. Once the factorization is obtained, a single smoothing step is applied as
follows:

e(n)h,p = (Lh,pUh,p)−1(fh,p − Ah,pu(n)h,p), (21)

u(n+1)
h,p = u(n)h,p + e(n)h,p. (22)

3.3 Coarse Grid Operator

The system operator Ah,p is needed at each level of the hierarchy to apply the
smoothing steps or solve the residual equation at level p = 1. The operators at
the coarser levels can be obtained by rediscretizing the bilinear form in (9) with
lower-order spline basis functions or by applying a Galerkin projection:

AGh,k−1 = Ik−1
k Ah,k Ikk−1. (23)
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Since the condition number of the resulting coarse grid operator Ah,1 is significantly
lower when using rediscretizing [19], this approach is adopted throughout the rest
of this paper.

4 Spectral Analysis

To investigate the performance of the p-multigrid method on multipatch geometries,
the spectrum of the iteration matrix is determined. The iteration matrix describes the
effect of a single multigrid cycle on uh,p and can be used to obtain the asymptotic
convergence rate of the p-multigrid method. For all benchmarks introduced in
Sect. 2, results are presented considering a different number of patches.

The asymptotic convergence rate of a multigrid method is determined by the
spectral radius of the corresponding iteration matrix. This matrix can be obtained
explicitly by considering −�u = 0 with homogeneous Dirichlet boundary condi-
tions. By applying a single iteration of the p-multigrid method using the ith unit
vector as initial guess, one obtains the ith column of the iteration matrix [20].

The spectra obtained for the first two benchmarks are shown in Fig. 2 for a
different number of patches. The multipatch geometries are obtained by splitting
the single patch uniformly in both directions, leading to 4 or 16 patches with a
C0-continuous coupling at the interfaces. For the single patch, all eigenvalues of
the iteration matrix are clustered around the origin. For the multipatch geometries,
some eigenvalues are slightly further from the origin. Table 1, showing the spectral
radius of the iteration matrix for different values of h and p for the first benchmark,
confirms this observation. The spectral radii are larger for all numerical experiments
when the number of patches is increased, but still relatively low. Furthermore, since
the spectral radii remain almost constant for higher values of p, the p-multigrid
method is expected to show (essentially) p-independent convergence rates.

The obtained spectral radii for the second benchmark for different values of h
and p can be found in Table 2. Again, the multipatch geometries consist of 4 and
16 patches. For all configurations, the spectral radius for a single patch geometry is
lower compared to the spectral radius obtained for the multipatch geometries. As a
consequence, the p-multigrid is expected to show slower convergence behaviour
for multipatch geometries. On the other hand, the asymptotic convergence rates
for the multipatch geometries are almost independent of p and still relatively low.
For a single configuration the resulting p-multigrid method is unstable, which is
reflected by a spectral radius larger then 1. The obtained spectral radii for the third
benchmark are presented in Table 3. As with the other benchmarks, the spectral radii
remain almost constant for higher values of p, implying (essentially) p-independent
convergence rates.
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Fig. 2 Spectra of the iteration matrix (with p = 3 and h = 2−5) for the first (left) and second
(right) benchmark for a different number of patches
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Table 1 Spectral radius ρ for the first benchmark for different values of h and p for a different
number of patches

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 0.012 0.130 0.200 h = 2−4 0.003 0.064 0.156 h = 2−4 0.004 0.012 0.083

h = 2−5 0.021 0.129 0.177 h = 2−5 0.013 0.132 0.214 h = 2−5 0.014 0.091 0.168

h = 2−6 0.021 0.131 0.133 h = 2−6 0.015 0.143 0.187 h = 2−6 0.031 0.140 0.223

Table 2 Spectral radius ρ for the second benchmark for different values of h and p for a different
number of patches

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 0.014 0.049 0.141 h = 2−4 0.003 0.013 0.073 h = 2−4 0.003 0.007 1.312

h = 2−5 0.039 0.093 0.155 h = 2−5 0.020 0.073 0.155 h = 2−5 0.029 0.035 0.090

h = 2−6 0.057 0.103 0.116 h = 2−6 0.024 0.124 0.169 h = 2−6 0.023 0.114 0.174

Table 3 Spectral radius ρ for the third benchmark for different values of h and p for a different
number of patches

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 0.004 0.038 0.080 h = 2−4 0.001 0.002 0.013 h = 2−4 2.6 · 10−5 6.5 · 10−5 0.003

h = 2−5 0.012 0.082 0.129 h = 2−5 0.007 0.035 0.080 h = 2−5 0.002 0.005 0.020

h = 2−6 0.016 0.089 0.127 h = 2−6 0.010 0.091 0.159 h = 2−6 0.005 0.059 0.118

5 Numerical Results

The proposed p-multigrid method is applied in this section as a stand-alone solver
and as a preconditioner within a Biconjugate gradient stabilized (BiCGSTAB)
method. Results are obtained using different numbers of patches. Furthermore,
results are compared when using ILUT as a solver. Finally, different coarsening
strategies (i.e. coarsening in h, p or both) are compared with respect to the number
of iterations and computational time.

The initial guess u(0)h,p is chosen randomly for all experiments, where each entry
is sampled from a uniform distribution on the interval [−1, 1] using the same seed.
The method is considered to be converged if

||r(n)h,p||
||r(0)h,p||

< 10−8, (24)

where r(n)h,p denotes the residual after iteration n. The solution of the residual
equation is obtained at level p = 1 by means of a Conjugate Gradient solver with a
relatively high tolerance (ε = 10−4). The same number of pre- and postsmoothing
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Table 4 Number of V-cycles needed for achieving convergence for the first benchmark with
p-multigrid, ν = 2

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 3 5 7 h = 2−4 2 3 5 h = 2−4 2 2 4

h = 2−5 3 6 7 h = 2−5 3 5 7 h = 2−5 2 4 5

h = 2−6 3 5 6 h = 2−6 3 6 7 h = 2−6 3 5 7

h = 2−7 3 5 5 h = 2−7 3 5 5 h = 2−7 2 5 6

Table 5 Number of V-cycles needed for reaching convergence for the first benchmark with p-
multigrid, ν = 4

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 2 4 5 h = 2−4 1 2 3 h = 2−4 1 2 2

h = 2−5 3 5 6 h = 2−5 2 4 5 h = 2−5 2 3 3

h = 2−6 2 5 6 h = 2−6 2 5 6 h = 2−6 2 4 5

h = 2−7 2 4 4 h = 2−7 2 4 5 h = 2−7 2 4 5

steps are applied for all experiments (ν = ν1 = ν2) and boundary conditions are
imposed using Nitsche’s method [12].

The number of V-cycles needed to reach convergence for different values of
h and p for a different number of patches for the first benchmark are shown in
Table 4. Here, the number of smoothing steps at each level equals 2. Results have
been obtained considering 1, 4 and 16 patches, where the multipatch is based on
splitting a single patch uniformly in both directions. In general, the p-multigrid
method shows convergence rates which are essentially independent of both h and p.
However, an increase of the number of patches leads to an increase in the number
of V-cycles needed to achieve convergence. Note that this increase is relatively low,
especially for smaller values of h.

Table 5 shows the number of V-cycles needed when the number of smoothing
steps is doubled. Hence, ν = 4 for all numerical experiments. Doubling the
number of smoothing steps at each level, slightly decreases the number of V-cycles.
However, since the number of V-cycles is already relatively low, the reduction is
limited.

The number of V-cycles needed to achieve convergence for the second bench-
mark are presented in Table 6. Compared to the first benchmark, convergence is
obtained in the same or even a lower number of V-cycles. Furthermore, only a
small increase of the number of V-cycles needed is observed when the number of
patches increases. For one configuration, however, the p-multigrid method diverges,
as expected based on the spectral analysis; see Table 2.

Table 7 presents the number of V-cycles needed to achieve convergence for the
third benchmark. Again, convergence is reached in a relatively low number of V-
cycles. Furthermore, no instabilities are observed for the considered configurations.
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Table 6 Number of V-cycles needed to achieve convergence for the second benchmark with p-
multigrid, ν = 2

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 2 3 5 h = 2−4 2 2 3 h = 2−4 1 2 –

h = 2−5 3 4 5 h = 2−5 2 3 4 h = 2−5 2 2 3

h = 2−6 3 4 5 h = 2−6 2 4 5 h = 2−6 2 4 5

h = 2−7 3 4 4 h = 2−7 2 4 5 h = 2−7 2 4 5

Table 7 Number of V-cycles needed to achieve convergence for the third benchmark with p-
multigrid, ν = 2

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 3 4 5 h = 2−4 2 2 3 h = 2−4 2 2 3

h = 2−5 3 5 6 h = 2−5 2 4 5 h = 2−5 2 3 3

h = 2−6 3 4 5 h = 2−6 2 5 6 h = 2−6 2 4 5

h = 2−7 3 4 5 h = 2−7 2 4 5 h = 2−7 2 4 5

Table 8 Number of iterations needed to reach convergence for the first benchmark with precon-
ditioned BiCGSTAB, ν = 2

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 2 2 2 h = 2−4 1 2 2 h = 2−4 1 1 2

h = 2−5 2 2 3 h = 2−5 1 2 2 h = 2−5 1 2 2

h = 2−6 2 2 3 h = 2−6 2 2 3 h = 2−6 1 2 2

h = 2−7 2 2 2 h = 2−7 1 2 2 h = 2−7 1 2 2

The increase in the number of V-cycles needed to reach convergence when the
number of patches is increased is only mild.

Alternatively, the p-multigrid method is applied as a preconditioner within a
Biconjugate gradient stabilized (BiCGSTAB) method. At the preconditioning phase
of every iteration of the BiCGSTAB method, a single V-cycle is applied. Again, a
tolerance of ε = 10−8 is adopted as a stopping criterion for the BiCGSTAB solver.

Results obtained for the first benchmark are presented in Table 8. Compared to
the use of p-multigrid as a stand-alone solver, the number of iterations needed on
a single patch geometry is smaller for all configurations. In case of a multipatch
geometry, however, the number of iterations needed reduces even more when a
BiCGSTAB method is adopted. Hence, the difference in BiCGSTAB iterations for
single patch and multipatch geometries becomes even smaller.

For the second and third benchmark, results are presented in Tables 9 and 10,
respectively. For the single patch geometry, the number of iterations with the
BiCGSTAB method is again smaller compared to the number of V-cycles for the
p-multigrid method for almost all configurations. A slightly larger reduction in the
number of iterations can be observed for some numerical experiments in case of a
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Table 9 Number of iterations needed for reaching convergence for the second benchmark with
preconditioned BiCGSTAB, ν = 2

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 1 2 2 h = 2−4 1 1 2 h = 2−4 1 1 3

h = 2−5 2 2 2 h = 2−5 1 1 2 h = 2−5 1 1 2

h = 2−6 2 2 2 h = 2−6 1 2 2 h = 2−6 1 2 2

h = 2−7 2 2 2 h = 2−7 1 2 2 h = 2−7 1 2 2

Table 10 Number of iterations needed for reaching convergence for the third benchmark with
preconditioned BiCGSTAB, ν = 2

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 1 2 2 h = 2−4 1 1 2 h = 2−4 1 1 1

h = 2−5 2 2 3 h = 2−5 1 2 2 h = 2−5 1 1 2

h = 2−6 2 2 3 h = 2−6 1 2 3 h = 2−6 1 2 2

h = 2−7 2 2 2 h = 2−7 1 2 2 h = 2−7 1 2 2

multipatch geometry. Note that BiCGSTAB restores stability for the setting in which
the p-multigrid algorithm separately is unstable; see Table 2.

As discussed in Sect. 3, different cycle types can be adopted. The use of a W-
cycle instead of the V-cycle leads to the same number of cycles needed for all
numerical experiments. Considering the higher computational costs for a single W-
cycle, a V-cycle is adopted throughout the rest of this paper.

5.1 ILUT as a Solver

The obtained results are compared to using ILUT as a stand-alone solver. In this
way, the effectiveness of the coarse grid correction within the p-multigrid method
can be investigated. Table 11 shows the number of iterations needed to achieve
convergence with ILUT as a solver. For all numerical experiments, the number
of iterations needed with ILUT is significantly higher compared to the number of
V-cycles needed with p-multigrid (see Table 4 for comparison). Furthermore, the
number of iterations needed with ILUT as a solver becomes h-dependent, leading
to a high number of iterations on finer meshes. As shown in Tables 12 and 13, the
same observations can be made for the second and third benchmark, respectively.
These results indicate that the coarse grid correction is necessary to obtain a low
number of iterations until convergence in reached.
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Table 11 Number of iterations needed for achieving convergence for the first benchmark with
ILUT as solver

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 25 40 55 h = 2−4 12 18 29 h = 2−4 7 10 18

h = 2−5 96 125 148 h = 2−5 50 53 67 h = 2−5 22 27 35

h = 2−6 352 397 437 h = 2−6 171 182 199 h = 2−6 80 86 106

h = 2−7 1280 1356 1440 h = 2−7 609 623 664 h = 2−7 288 307 324

Table 12 Number of iterations needed to obtain convergence for the second benchmark with
ILUT as solver

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 14 17 28 h = 2−4 6 9 15 h = 2−4 4 6 −−
h = 2−5 56 55 63 h = 2−5 23 21 30 h = 2−5 12 13 16

h = 2−6 194 219 217 h = 2−6 76 84 83 h = 2−6 37 39 41

h = 2−7 716 710 700 h = 2−7 251 276 301 h = 2−7 131 138 137

Table 13 Number of iterations needed to obtain convergence for the third benchmark with ILUT
as solver

# patches # patches # patches

p = 2 1 4 16 p = 3 1 4 16 p = 4 1 4 16

h = 2−4 33 26 32 h = 2−4 13 10 16 h = 2−4 8 7 12

h = 2−5 126 90 88 h = 2−5 45 25 33 h = 2−5 23 14 17

h = 2−6 469 290 288 h = 2−6 168 88 100 h = 2−6 80 40 47

h = 2−7 1667 1046 1050 h = 2−7 596 320 332 h = 2−7 283 150 146

5.2 Comparison h- and hp-Multigrid

In the previous subsection, it was shown that a coarse grid correction is necessary
to obtain an efficient solution method. To determine the quality of the coarse
grid correction with p-multigrid in more detail, results are compared with h- and
hp-multigrid methods. In these methods, only the way in which the hierarchy is
constructed differs. For the h-multigrid method, coarsening in h is applied, while for
the hp-multigrid method coarsening in h and p is applied simultaneously. All other
components (i.e. smoothing, prolongation and restriction) are identical. It should
be noted that, since coarsening in h leads to a nested hierarchy of discretizations,
a canonical prolongation/restriction operator could be defined for the h-multigrid
method. These transfer operators are, however, not taken into account in this paper.
Results obtained for the benchmarks with the different coarsening strategies on a
multipatch geometry for different values of h and p are shown in Tables 14, 15,
and 16, respectively.



Efficient p-Multigrid Based Solvers for Isogeometric Analysis 223

Table 14 Comparison of p-multigrid with h- and hp-multigrid for the first benchmark on 4
patches, ν = 2

p = 2 p h hp p = 3 p h hp p = 4 p h hp

h = 2−3 5 8 9 h = 2−3 3 4 4 h = 2−3 2 3 3

h = 2−4 6 18 20 h = 2−4 5 10 11 h = 2−4 4 6 6

h = 2−5 5 28 31 h = 2−5 6 25 31 h = 2−5 5 14 16

h = 2−6 5 32 35 h = 2−6 5 56 70 h = 2−6 5 36 48

Table 15 Comparison of p-multigrid with h- and hp-multigrid for the second benchmark on 4
patches, ν = 2

p = 2 p h hp p = 3 p h hp p = 4 p h hp

h = 2−3 3 4 4 h = 2−3 2 2 3 h = 2−3 2 2 2

h = 2−4 4 10 11 h = 2−4 3 5 5 h = 2−4 2 3 3

h = 2−5 4 20 22 h = 2−5 4 13 16 h = 2−5 4 8 8

h = 2−6 4 26 27 h = 2−6 4 31 39 h = 2−6 4 19 23

Table 16 Comparison of p-multigrid with h- and hp-multigrid for the third benchmark on 4
patches, ν = 2

p = 2 p h hp p = 3 p h hp p = 4 p h hp

h = 2−3 4 6 6 h = 2−3 2 3 3 h = 2−3 2 2 2

h = 2−4 5 14 16 h = 2−4 4 6 6 h = 2−4 3 3 3

h = 2−5 4 23 25 h = 2−5 5 14 17 h = 2−5 4 8 8

h = 2−6 4 28 30 h = 2−6 4 34 46 h = 2−6 4 20 25

For all benchmarks, the number of V-cycles needed with p-multigrid is signifi-
cantly lower for all configurations compared to h- and hp-multigrid. Furthermore,
the difference in the number of V-cycles increases when the knot span size is halved.
In general, coarsening in h is more efficient compared to coarsening both in h and
p. Results indicate that the coarsening in p leads to the most effective coarse grid
correction, resulting in the lowest number of V-cycles.

Besides the number of iterations, CPU times have been compared for the different
multigrid methods. This comparison is in particular interesting, since the coarse
grid correction is more expensive for p-multigrid methods compared to h- and hp-
multigrid approaches. A serial implementation is considered on a Intel(R) Xeon(R)
E5-2687W CPU (3.10 GHz). Tables 17, 18, and 19 present the computational times
(in seconds) for all benchmarks obtained with the different coarsening strategies.

Table 17 Computational times (in seconds) with p, h- and hp-multigrid for the first benchmark
on 4 patches, ν = 2

p = 2 p h hp p = 3 p h hp p = 4 p h hp

h = 2−3 1.4 1.0 1.2 h = 2−3 1.4 1.4 1.4 h = 2−3 2.0 1.8 1.9

h = 2−4 4.2 4.9 4.5 h = 2−4 5.1 5.8 5.8 h = 2−4 7.4 7.9 6.8

h = 2−5 13.1 22.1 21.9 h = 2−5 21.9 38.7 40.7 h = 2−5 31.6 48.0 44.7

h = 2−6 62.0 126.3 127.7 h = 2−6 105.1 384.2 419.5 h = 2−6 169.1 508.8 542.4
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Table 18 Computational times (in seconds) with p, h- and hp-multigrid for the second bench-
mark on 4 patches, ν = 2

p = 2 p h hp p = 3 p h hp p = 4 p h hp

h = 2−3 1.2 1.0 1.1 h = 2−3 1.6 1.5 1.7 h = 2−3 2.2 1.8 1.9

h = 2−4 4.4 4.9 4.8 h = 2−4 5.7 5.9 5.3 h = 2−4 7.3 7.7 6.9

h = 2−5 14.4 22.1 23.0 h = 2−5 22.1 33.7 33.5 h = 2−5 35.5 42.4 36.8

h = 2−6 64.2 142.3 136.7 h = 2−6 105.6 306.3 320.8 h = 2−6 175.8 382.6 376.6

Table 19 Computational times (in seconds) with p, h- and hp-multigrid for the third benchmark
on 4 patches, ν = 2

p = 2 p h hp p = 3 p h hp p = 4 p h hp

h = 2−3 1.1 1.1 1.0 h = 2−3 1.3 1.3 1.6 h = 2−3 2.0 1.8 1.7

h = 2−4 4.2 4.8 3.9 h = 2−4 5.4 5.2 5.0 h = 2−4 7.1 6.4 6.1

h = 2−5 13.1 20.0 20.1 h = 2−5 20.5 27.3 27.9 h = 2−5 29.1 32.9 29.9

h = 2−6 59.8 120.1 119.7 h = 2−6 94.3 257.5 299.1 h = 2−6 149.0 307.6 308.8

On coarser grids, the computational times for all multigrid methods are com-
parable. For smaller values of h, however, the computational time needed with
p-multigrid is significantly smaller compared to h- and hp-multigrid due to the
considerable h-dependency of the latter two approaches. Furthermore, the compu-
tational time needed with p-multigrid scales (almost) linearly with the number of
degrees of freedom. This holds for all benchmarks and all values of p considered in
this study.

6 Conclusion

In this paper, we have extended our p-multigrid solver for IgA discretizations
using a Incomplete LU factorization [19] to multipatch geometries. An analysis
of the spectrum of the iteration matrix shows that this p-multigrid method can be
applied on multipatch geometries, with convergence rates essentially independent
of the knot span size h and approximation order p. Only a mild dependence of
the convergence rate on the number of patches is observed. Numerical results,
obtained for Poisson’s equation on the unit square, the quarter annulus and an L-
shaped domain, confirm this analysis. Furthermore, results show the necessity of the
coarse grid correction within the p-multigrid method. Finally, different coarsening
strategies have been compared, indicating that coarsening in p is most effective
compared to coarsening in h or h and p simultaneously. Future research should
focus on the application of the p-multigrid method on partial differential equations
of higher-order, for example the biharmonic equation. Furthermore, the use of p-
multigrid in a HPC framework can be investigated, in which block ILUT can be
applied efficiently as a smoother on each multipatch separately.
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The Use of Dual B-Spline
Representations for the Double de Rham
Complex of Discrete Differential Forms

Yi Zhang, Varun Jain, Artur Palha, and Marc Gerritsma

Abstract In R
n, let$k(�) represent the space of smooth differential k-forms in�.

The de Rham complex consists of a sequence of spaces, $k(�), k = 0, 1 . . . , n,
connected by the exterior derivative, d : $k(�) → $k+1(�). Appropriately
chosen B-spline spaces together with their associated dual B-spline spaces form
a discrete double de Rham complex. In practical applications, this discrete double
de Rham complex leads to very sparse systems. In this paper, this construction will
be explained and illustrated by means of a non-trivial three-dimensional example.

1 Introduction

Given a bounded domain � in R
n, spaces of smooth differential forms, $k(�),

k = 0, 1, · · · , n, and the exterior derivative d compose an exact sequence,

R ↪→ $0(�)
d−→ $1(�)

d−→ · · · d−→ $n(�) −→ 0 ,

called the de Rham complex [1, 3, 10, 13, 16].
Consider finite dimensional Hilbert spaces Wk ⊂ $k(�) and the linear operator

d:Wk → Wk+1 such that the range of d onWk , Bk+1, is contained in the null space
of d onWk+1, Zk+1, i.e. Bk+1 ⊂ Zk+1 [1]. The space of harmonic forms is defined
as Hk := Bk,⊥ ∩ Zk . With these subspaces we have the Hodge decomposition,

Wk = Bk ⊕ Hk ⊕ Zk,⊥ .
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Since we are in finite dimensional function spaces, the operator d is trivially
bounded and all the spaces Wk are complete. A de Rham complex then can be
depicted as

R ↪→ W 0 d−→ W 1 d−→ · · · d−→ Wn −→ 0 ,

where the real numbers on the left of the sequence denote the null space of d onW 0.
With each function space Wk , we will associate a dual function space W̃ k of

linear functionals acting on the elements of Wk . The linear operator d acting on
the spaces Wk induces an adjoint operator d̃ acting on the dual spaces W̃ k . Let
α̃k+1 ∈ W̃ k+1, then d̃ is defined by Kreyszig [14],

(
d̃ α̃k+1

)
(ω) := α̃k+1 (dω) , ∀ω ∈ Wk . (1)

So d̃ : W̃ k+1 −→ W̃ k . The dual spaces and the adjoint operator form an adjoint de
Rham complex:

0 ←− W̃ 0 d̃←− W̃ 1 d̃←− · · · d̃←− W̃n ←↩ R .

Since we are now working with Hilbert spaces, Riesz’ representation theorem states
that for every linear functional α̃k ∈ W̃ k , there exists a unique element ωα ∈ Wk ,
such that

α̃k(ω) = (ωα, ω)Wk , ∀ω ∈ Wk , (2)

where (·, ·)Wk denotes an inner product on Wk . If gk denotes the metric tensor on
Wk , then this relation can be written as α̃k = gkωα . This connection between the
primal and the dual spaces leads to the double de Rham complex shown in Fig. 1.

Fig. 1 The double de Rham complex



Dual B-Spline Representations for the Double de Rham Complex 229

In the current paper, the finite dimensional spacesWk ⊂ $k(�) will be spanned
by B-splines, see [5]. The construction of their dual representations will also be
introduced. These B-spline spaces and their dual representations form a particular
instance of the double de Rham complex given in Fig. 1. The use of this particular
instance leads to very sparse discrete systems which can preserve the exterior
derivative d.

The layout of this paper is as follows: In Sect. 2, we introduce the construction of
B-spline spaces and their dual representations. They are used to solve the Poisson
problem in a mixed formulation in Sect. 3. Conclusions are drawn in Sect. 4.

2 B-Spline Spaces

2.1 Primal B-Spline Spaces

Let p and N , 1 ≤ p ≤ N , be two positive integers. We consider a p-open knot
vector,  := {

ξ0, ξ1, · · · , ξN+p+1
}
, where

ξ0 = ξ1 = · · · = ξp < ξp+1 < · · · < ξN+1 = ξN+2 = · · · = ξN+p+1 .

With  , (N + 1) B-spline basis functions of degree p, Bi,p , i = 0, 1, · · · , N , can
be derived by the well-known Cox-de Boor recursion [6, 7]: For p = 0,

B
i,0
 (ξ) =

⎧
⎨

⎩

1 if ξi ≤ ξ < ξi+1

0 otherwise
,

and for p ≥ 1,

B
i,p
 (ξ) = ξ − ξi

ξi+p − ξi B
i,p−1
 (ξ)+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
B
i+1,p−1
 (ξ) .

These (N + 1) linearly independent B-spline basis functions span a finite dimen-
sional B-spline space, Sp ,

Sp := span
{
B
i,p
 

}
.

The Greville points of the p-open knot vector  are obtained by

τi = 1

p

p∑

j=1

ξi+j , i = 0, 1, · · · , N.
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If ϕ(0)(ξ) is a continuous 0-form. The projection of ϕ(0) in Sp , ϕ(0)h , can be
expressed as

ϕ
(0)
h (ξ) =

N∑

i=0

ϕiB
i,p
 (ξ) ,

whose coefficients, ϕi , can be computed by

(
ϕ0, ϕ1, · · · , ϕN

)T = B
−1
(
ϕ(0)(τ0), ϕ

(0)(τ1), · · · , ϕ(0)(τN)
)T
,

where B is an (N + 1) by (N + 1) matrix and Bij = Bj,p (τi).
We use  ′ to denote the (p − 1)-open knot vector,  ′ := {

ξ1, ξ2, · · · , ξN+p
}
.

From  ′, the Cox-de Boor recursion gives N B-spline basis functions of degree
(p − 1), Bj,p−1

 ′ , j = 1, 2, · · · , N . We can further construct the Curry-Schoenberg

B-spline basis functions, [4, 5, 11], by scaling Bj,p−1
 ′ as

M
j,p−1
 ′ := p

ξp+j − ξj B
j,p−1
 ′ , j = 1, 2, · · · , N.

TheseN B-spline basis functions form a basis of a B-spline space, denoted by Sp−1
 ′ ,

Sp−1
 ′ := span

{
M
j,p−1
 ′

}
.

Let a continuous 1-form, u(1)(ξ), be expanded in Sp−1
 ′ ,

u
(1)
h (ξ) =

N∑

j=1

ujM
j,p−1
 ′ (ξ)dξ ,

whose coefficients, uj , can be computed by

(u1, u2, · · · , uN)T = M
−1

(∫ τ1

τ0

u(1)(ξ),

∫ τ2

τ1

u(1)(ξ), · · · ,
∫ τN

τN−1

u(1)(ξ)

)T

,

where M is an N by N matrix and Mij =
∫ τi
τi−1

M
j,p−1
 ′ (ξ)dξ . For the condition of

B and M being non-singular, we refer to [2, 7].
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Furthermore, if ϕ(0) and u(1) satisfy u(1) = dϕ(0), their discrete formulations,
ϕ
(0)
h and u(1)h , will satisfy

u
(1)
h =

N∑

j=1

ujM
j,p−1
 ′ (ξ)dξ =

N∑

j=1

(
ϕj − ϕj−1

)
M
j,p−1
 ′ (ξ)dξ = dϕ(0)h ,

which implies that the range of the exterior derivative d on Sp is in Sp−1
 ′ . In other

words, Sp and Sp−1
 ′ form a discrete de Rham complex in R

1,

R ↪→ Sp 
d→ Sp−1

 ′ −→ 0 .

Furthermore, let ϕ and u be the vectors of the expansion coefficients of ϕ(0)h and

u
(1)
h . We have

u =

⎛

⎜⎜⎜⎜
⎝

−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...
. . .

...

0 · · · 0 −1 1

⎞

⎟⎟⎟⎟
⎠

ϕ = E
1,0ϕ ,

where E
1,0, called the incidence matrix, is very sparse and only depends on the

topology of the mesh. Notice that the relation between ϕ(0)h and its derivative u(1)h is
exact, which means that the incidence matrix is an exact discrete counterpart of the
exterior derivative d.

The B-spline spaces for higher dimensional spaces are constructed using the

tensor product. For example, in R
3 with coordinate system

{
ξ1, ξ2, ξ3

}
, let  1,

 2 and  3 be p1-, p2- and p3-open knot vectors along ξ1, ξ2 and ξ3 respectively.
We define

S0
 1, 2, 3

:= Sp1,p2,p3
 1, 2, 3

,

S1
 1, 2, 3

:= Sp1−1,p2,p3
 ′

1, 2, 3
× Sp1,p2−1,p3

 1, 
′
2, 3

× Sp1,p2,p3−1
 1, 2, 

′
3
,

S2
 1, 2, 3

:= Sp1,p2−1,p3−1
 1, 

′
2, 

′
3

× Sp1−1,p2,p3−1
 ′

1, 2, 
′
3

× Sp1−1,p2−1,p3
 ′

1, 
′
2, 3

,

S3
 1, 2, 3

:= Sp1−1,p2−1,p3−1
 ′

1, 
′
2, 

′
3

,

where, for example, Sp1,p2,p3
 1, 2, 3

represents the space Sp1
 1

⊗ Sp2
 2

⊗ Sp3
 3

, Sp1−1,p2,p3
 ′

1, 2, 3

represents the space Sp1−1
 ′

1
⊗Sp2

 2
⊗Sp3

 3
, and so on. These spaces are suitable spaces

for discrete 0-, 1-, 2- and 3-forms respectively, and they form a discrete de Rham
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complex,

R ↪→ S0
 1, 2, 3

d−→ S1
 1, 2, 3

d−→ S2
 1, 2, 3

d−→ S3
 1, 2, 3

−→ 0 ,

where the exterior derivative d has an exact, topological, sparse discrete counterpart,
the incidence matrix. We call these spaces primal B-spline spaces and call the basis
functions primal B-spline basis functions or simply primal B-splines.

2.2 Dual Representations

From now on, we restrict ourselves to R
3.

Let Bmi,j,k be any primal B-spline in Sm 1, 2, 3
for m = 0, 1, 2, 3, then a basis

dual functional fmr,s,t satisfies the basic property

f mr,s,t

(
Bmi,j,k

)
= δi,r δj,sδk,t , (3)

where δ is the Kronecker delta,

δi,r =
⎧
⎨

⎩

1 if i = r
0 otherwise

.

Dual functionals were already considered by de Boor [8]. A possible construction
of a dual B-spline basis is through the use of the Gram matrix, see, for instance,
Dornisch et al. [9]. Two elements p(3)h and q(3)h in S3

 1, 2, 3
, for example, are

represented by

p
(3)
h (ξ

1, ξ2, ξ3) =
N∑

i=1

N∑

j=1

N∑

k=1

pi,j,kM
i,p1−1
 ′

1
(ξ1)M

j,p2−1
 ′

2
(ξ2)M

k,p3−1
 ′

3
(ξ3)

and

q
(3)
h (ξ

1, ξ2, ξ3) =
N∑

i=1

N∑

j=1

N∑

k=1

qi,j,kM
i,p1−1
 ′

1
(ξ1)M

j,p2−1
 ′

2
(ξ2)M

k,p3−1
 ′

3
(ξ3) .

(4)

The L2-inner product of them is given by

(
p
(3)
h , q

(3)
h

)

L2(�)
= pT

M
(3)q , (5)
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where p and q represent vectors of the expansion coefficients of p(3)h and q(3)h
respectively. The matrix M

(3) is the mass matrix or the Gram matrix.
Instead of expanding q(3) using the primal B-splines in the way given in (4),

we can expand it using basis functions which are linear combinations of the primal
B-splines as long as these new basis functions are still linearly independent. For
example, we can use a set of new basis functions, #̃, given by

#̃ =
(
M
(3)
)−1

# ,

where # =
(
· · · ,Mi,p1−1

 ′
1

(ξ1)M
j,p2−1
 ′

2
(ξ2)M

k,p3−1
 ′

3
(ξ3), · · ·

)T

is the vector of

primal B-splines in S3
 1, 2, 3

. Following directly the surjectivity and injectivity of

M
(3), the proof of the linear independence of basis functions #̃i is trivial. We call

basis functions #̃i the dual representations of primal B-splines #j or simply the
dual B-splines. The dual B-splines are bi-orthogonal to the primal B-splines in the
sense that

(
#̃i, #j

)

L2(�)
= δi,j ,

which mimics the duality pairing between dual basis functions, (3). Using these dual
B-splines, a new expansion of q(3), expressed as q̃(3)h , can be obtained. Its expansion
coefficients are then given by

q̃ = M
(3)q . (6)

It is straightforward to see that, in this case,

(
p
(3)
h , q̃

(3)
h

)

L2(�)
= pTq̃ , (7)

where, comparing to (5), effectively the mass matrix is removed from the inner
product. And if we relate this to (2), we see that q̃(3)h plays the role of α̃k and p(3)h
represents wα , and the mass matrix is an analogue of the metric tensor.

The main disadvantage of the conversion to dual B-splines is that one needs
to multiply the primal B-splines with the inverse of the mass matrix and that
the resulting dual B-splines no longer have local support. However, during the
discretization, we do not explicitly set up these dual B-splines, but only use the
property (7) in the weak formulation, which will give rise to very sparse systems.
Afterwards, if we want to reconstruct the solutions, the dual B-splines have to be set
up. This can be done locally for every patch in parallel, which is computationally
efficient.

The same process of constructing dual B-splines can be applied to other
primal B-spline spaces. Let S̃0

 1, 2, 3
, S̃1
 1, 2, 3

, S̃2
 1, 2, 3

, S̃3
 1, 2, 3

denote the



234 Y. Zhang et al.

Fig. 2 A discrete double de Rham complex of primal and dual B-spline spaces

dual B-spline spaces constructed from S0
 1, 2, 3

, S1
 1, 2, 3

, S2
 1, 2, 3

, S3
 1, 2, 3

respectively. We can then construct the following discrete de Rham complex:

0 ←− S̃0
 1, 2, 3

d̃←− S̃1
 1, 2, 3

d̃←− S̃2
 1, 2, 3

d̃←− S̃3
 1, 2, 3

←↩ R ,

where d̃ is an adjoint exterior derivative acting on the dual spaces, see (1). For more
information about d̃, we refer to [12, 18]. Notice that a dual B-spline space is just
a representation of its primal B-spline space. In other words, it is isomorphic to its
primal B-spline space because the dual B-splines are just linear combinations of the
primal B-splines. But here we still distinguish them because the L2-inner product
between an element in S̃k 1, 2, 3

and an element in Sk 1, 2, 3
mimics the duality

pairing, see (7).
Finally, we can set up a particular instance, see Fig. 2, of the double de Rham

complex in Fig. 1.
By now, all constructions in this paper are done in Cartesian domain. The

construction of primal B-splines in curvilinear domains follows the general way of
coordinates transformation, for example, see [17]. And the way of setting up their
dual representations remains the same.

3 Numerical Test

In this section, we apply the B-spline spaces constructed in the previous section to
a weak mixed formulation of the Poisson problem. Comparison between conditions
of systems using the dual space and not using that is made.
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3.1 Poisson Problem

In a bounded domain � in R
3, a mixed formulation of the Poisson problem in

differential forms is [16],

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(2) + d∗ϕ(3) = 0 in �

du(2) = −f (3) in �

tr * ϕ(3) = ϕ̂(0) on ∂�

. (8)

where ϕ̂(0) and f (3) are given, d∗, the codifferential operator, is the adjoint of the
exterior derivative d in terms of the L2-inner product, and * is the Hodge operator. A

weak formulation of (8) is then given as: For known
(
ϕ̂(0), f (3)

)
∈ H 1/2$0(∂�)×

L2$3(�), find
(
u(2), ϕ(3)

)
∈ H 1$2(�)× L2$3(�), such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
u(2), ū(2)

)

L2(�)
+
(
ϕ(3), dū(2)

)

L2(�)
=
∫

∂�
tr ū(2) ∧ ϕ̂(0) ∀ū(2) ∈ H 1$2(�)

(
du(2), ϕ̄(3)

)

L2(�)
=−

(
f (3), ϕ̄(3)

)

L2(�)
∀ϕ̄(3) ∈ L2$3(�)

.

To discretize this weak formulation, a conventional choice is to select finite
dimensional spaces S2

 1, 2, 3
× S3

 1, 2, 3
for H 1$2(�) × L2$3(�). This gives

rise to the following system,

⎡

⎣ M
(2)

(
E

3,2
)T

M
(3)

M
(3)
E

3,2 0

⎤

⎦
[
u

ϕ

]

=
[

Bϕ̂

−M
(3)f

]

, (9)

where M
(2) and M

(3) are mass matrices of spaces S2
 1, 2, 3

and S3
 1, 2, 3

,

E
3,2 is the incidence matrix which represents the discrete exterior derivative d :

S2
 1, 2, 3

→ S3
 1, 2, 3

and B represents the matrix generated from the boundary
integral term. We call this setup the primal-primal setup and we denote the left hand
side matrix by P.

We can alternatively use the primal-dual setup in which we select spaces
S2
 1, 2, 3

× S̃3
 1, 2, 3

forH 1$2(�)×L2$3(�). By doing this, the discrete system
will be

⎡

⎣M
(2)
(
E

3,2
)T

E
3,2 0

⎤

⎦
[
u

ϕ̃

]

=
[
Bϕ̂

−f

]

. (10)

We denote the left hand side matrix of this system by D.
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It is easy to see that systems (9) and (10) are equivalent in terms of linear algebra
if we replace ϕ̃ by M

(3)ϕ, see (6). However, the system of the primal-dual setup
is easier to construct, and matrices P and D have different conditions, for instance
sparsity and condition number, which will affect their solvabilities.

3.2 Manufactured Solution Test Case

To study the convergence of the method and the conditions of P and D, we do a test
with a manufactured solution in both Cartesian and curvilinear domains in R

3.
The Cartesian domain is selected to be a unit cube, x = y = [−0.5, 0.5], z =

[0, 1]. The curvilinear domains are obtained by fixing the bottom surface, z = 0, of
the unit cube and twisting it along the z-axis. In polar coordinates, the mapping is
described by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rt = r
θt = θ + tz
zt = z

,

where the deformation coefficient, t , represents the maximum twist on the upper
surface, z = 1. We use �t to express such a domain. Some examples of �t are
shown in Fig. 3. The whole domain is considered as one patch and N3 elements
are uniformly distributed. Within these domains, we solve the system (10) with the
following manufactured solution,

ϕ
(0)
exact = *ϕ(3)exact = cos(πxy)ez .

The B-spline degree is selected to be p along all three axes.

Fig. 3 The Cartesian domain (unit cube) �0 (Left) and curvilinear domains �π/4 (Middle) and
�π/2 (Right)
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D

Fig. 4 The L2-error of ϕ(3)h and the H 1-error of u(2)h under a h-refinement

The implementation is done within Python and the system is solved with the
direct solver provided by the Scipy package. Iterative refinement [15] is employed
to reduce the roundoff error.

We first investigate the convergence of the method. In Fig. 4, it is seen that
the optimal algebraic convergence is always obtained for the L2-error of ϕ(3)h and

the H 1-error of u(2)h when we do h-refinement in both Cartesian and curvilinear
domains. The H 1-error, a generalization of the H(grad)-, H(curl)- and H(div)-
error in vector calculus, is defined as

∥∥∥a(k)h
∥∥∥
H 1−error

=
√∥∥∥a(k)h

∥∥∥
2

L2−error
+
∥∥∥da(k)h

∥∥∥
2

L2−error
.

In Fig. 5 where results of the L2-error of ϕ(3)h and the H 1-error of u(2)h under a p-
refinement are presented, we see that the exponential convergence is only obtained
for a limited range of p. This is because of the rapidly increasing condition number
of the system D damages the accuracy of the solver at high B-spline degree, see,

Fig. 5 The L2-error of ϕ(3)h and the H 1-error of u(2)h under a p-refinement
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Fig. 6 The L2-error of
(

du(2)h + f (3)h
)

under a h-refinement (Left) and under a p-refinement

(Right)

for example, the L2-error of ϕ(3)h at p = 10. An investigation into the condition

numbers will be given later. In Fig. 6, we present the L2-error of
(

du(2)h + f (3)h
)

. It

shows that the relation du(2)h = −f (3)h , the mass conservation, is always preserved
to the machine precision, which proves the discretization of the exterior derivative
d with the incidence matrix is exact.

Since the systems (9) and (10) are equivalent in terms of linear algebra, besides
the fact that (10) is easier to construct, we expect the gain of using dual B-splines is
that D has better condition than P. Most obviously, the sparsity of D can be higher
than that of P since the mass matrix M

(3) is removed from the system. We have
presented the sparsities of P and D for N = 3 and t = 0 (Cartesian domain) in
Fig. 7. In this figure, we can see that, when p = 1, P and D have the same sparsity
because M

(3) is a diagonal matrix in this case. When we increase p, the sparsity of
M
(3) decreases, which then results in a higher sparsity in D than that in P. And when

the domain is curvilinear, the sparsity of M(3) is even worse (if p < N , otherwise,
M
(3) is a full matrix anyway). We emphasize that the incidence matrix only depends

on the topology of the mesh. So it does not change when we change the B-spline
degree p or distort the domain. We conclude that, in terms of sparsity, the primal-
dual setup is preferable.

We then investigate the condition numbers of P and D. The results are given in
Fig. 8. It has shown that for given B-spline degrees p, see Fig. 8a–c, the matrix D

has much lower condition numbers than P on coarse meshes. And when we refine
the mesh, the condition numbers of P grow steadily while the condition numbers of
D first almost remain unchanged (apparently for p ≥ 2). However, after a certain
mesh density, N0, condition numbers of D increase even faster than those of P. The
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Fig. 7 Sparsities of P (Left) and D (Right) for N = 3 and t = 0. The
[
0 : 107

]2 block refers to
the upper-left block, M(2), of P and D. (a, b) p = 1. (c, d) p = 2. (e, f) p = 3
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(a) (b)

(c) (d)

Fig. 8 Condition numbers of the primal-primal system P (gray) and the primal-dual system D

(black). (a) p = 1. (b) p = 2. (c) p = 3. (d) N = 16

transition point N0 depends on p. When p increases, N0 will be delayed:

N0 ≤ 4 when p = 1,

N0 = 8 when p = 2,

N0 = 15 when p = 3.

When we do p-refinement, a similar phenomenon is observed. But the transition
point does not depend on the mesh density. After the transition, the increasing ratio
of D’s condition numbers is the same with that of P’s, for example, see Fig. 8d. To
fully understand this phenomenon, more research is needed. In the current paper, we
will just cautiously say that, considering the most widely used B-splines are those
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of degree p = 3 or 4, the dual B-splines, under careful usage, can bring down the
condition numbers of the discrete systems by several magnitudes.

4 Conclusions

In this paper, we propose a way of constructing dual representations of B-spline
basis functions. The spaces spanned by these B-splines and their dual representa-
tions form a discrete double de Rham complex, with which exact discretization of
the exterior derivative can be obtained. The dual B-spline spaces, like precondi-
tioners, can give rise to much more sparse discrete systems and can conditionally
decrease the condition numbers significantly.
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Manifold-Based B-Splines
on Unstructured Meshes

Qiaoling Zhang, Thomas Takacs, and Fehmi Cirak

Abstract We introduce new manifold-based splines that are able to exactly repro-
duce B-splines on unstructured surface meshes. Such splines can be used in
isogeometric analysis (IGA) to represent smooth surfaces of arbitrary topology.
Since prevalent computer-aided design (CAD) models are composed of tensor-
product B-spline patches, any IGA suitable construction should be able to reproduce
B-splines. To achieve this goal, we focus on univariate manifold-based constructions
that can reproduce B-splines. The manifold-based splines are constructed by
smoothly blending together polynomial interpolants defined on overlapping charts.
The proposed constructions are able to reproduce B-splines in regular parts of
the mesh, with no extraordinary vertices, and polynomial basis functions in the
remaining parts of the mesh. We study and compare analytically and numerically the
finite element convergence of several univariate constructions. The obtained results
directly carry over to the tensor-product case.

1 Introduction

Manifold-based surface construction techniques from geometric modelling provide
an elegant and flexible framework for generating basis functions on surfaces
with arbitrary topology [9, 16, 25, 8]. They combine manifold descriptions from
differential geometry, see e.g. [20, 3], with the flexibility of the partition of unity
framework from numerical analysis [15, 1]. If a manifold surface in R

3 can be
mapped onto a single planar parametric domain in R

2, it is straightforward to obtain
partition of unity basis functions of any desired regularity on the manifold surface.
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Although it is impossible to map a surface with arbitrary topology onto a single
parametric domain, it can always be represented as an atlas composed of a number
of charts. The charts consist of planar domains in R

2 that map onto the manifold
surface in R

3. The planar chart domains in R
2 are not connected and transition

functions are used to navigate between the different domains. The manifold-based
basis functions are obtained by simply applying the partition of unity method on
the collection of chart domains [14, 26]. The flexibility of the original partition of
unity method carries over to the manifold case. The partition of unity functions,
referred to as blending functions, in this paper, the local approximants on each chart
domain and the transition functions can all be chosen to fit the requirements of the
application at hand.

The definition of smooth functions over unstructured meshes, such as shown in
Fig. 1, or multi-patch geometries has always been of vital interest in isogeometric
analysis, cf. [10, 7]. Approaches for the definition of such functions include
the subdivision surfaces [5, 4, 18, 27], constructions that are Ck almost every-
where [19, 2],Gk constructions [21, 22, 17, 6, 11, 12, 13] and Ck constructions with
singular parameterisations [24, 23]. Since most conventional CAD models are based
on B-spline or NURBS surfaces, any isogeometric analysis suitable construction
should be able to reproduce tensor-product B-splines and NURBS. For this reason
we especially focus on manifold-based constructions that can reproduce tensor-
product B-splines in regular portions of the mesh.

Fig. 1 Isogeometric analysis of a car body as used in computer animation. The manifold-based
representation (top) is obtained from an unstructured coarse quadrilateral control mesh (bottom,
left), with extraordinary vertices indicated by blue spheres. The deflected shape of the car body
subjected to an axial torsion is computed with Kirchhoff-Love shell finite elements (bottom, right)
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In this paper, we exploit the flexibility of the partition of unity method to devise
manifold-based basis functions that can reproduce or are identical to B-splines. The
proposed techniques are introduced for the sake of clarity with the help of univariate
B-splines. Evidently, manifold-based basis functions can reproduce B-splines only
on structured regions of an unstructured mesh with extraordinary vertices, i.e. non-
boundary vertices with different than four attached elements. In the vicinity of
extraordinary vertices, the basis functions consist of a local polynomial approximant
that can smoothly blend with the surrounding B-spline reproducing basis functions.
The extent of the transition region depends on the size of the chosen chart domain,
which consists of an nv-ring of elements around each vertex. We consider several
different choices for the weight functions that lead to B-spline reproducing basis
functions. Especially promising are weight functions which are defined as a linear
combination of B-splines defined on a grid obtained by subdividing the elements
multiple times. They satisfy partition of unity without normalisation and, hence, lead
to polynomial manifold-based basis functions. To obtain manifold-basis functions
that are identical to B-splines the local polynomial approximants have to be altered.
Whereas in the original manifold constructions the local polynomial approximants
are C∞, they have to be chosen to have the same smoothness as the considered
B-splines.

On structured meshes the approximation properties of manifold-based basis
functions can be inferred from the theory presented in Melenk and Babuska [15].
The summation of the local errors on the charts gives a global error estimate under
some smoothness assumptions on the weight functions. The local error, for instance
in L∞ or L2 norms, is bounded by hp+1, where h is the diameter of the chart
domain and p is the degree of the polynomials contained in the local approximant.
Each chart domain consists of nv-rings of elements around a vertex so that there
are on unstructured meshes multiple types of chart domains depending on the
local connectivity of the control mesh. The local connectivity of the control mesh
determines the type of transition function used in the manifold construction. When
a control mesh is refined by quadrisecting its elements, all the newly introduced
vertices are ordinary. That is, for points close to the extraordinary vertices the type of
the transition function used depends on the refinement level of the mesh. Therefore,
the theory presented in Melenk and Babuska [15] has to be extended to cover the
extraordinary vertices, which we do not attempt in this paper.

The outline of this paper is as follows. In Sect. 2 we review the manifold basis
functions as introduced in [14]. Although only univariate basis functions on polygo-
nal control meshes are considered, no specific choices for the weight functions, local
approximants and the transition functions are given so that the presented theory is
applicable to the multivariate case as well. Subsequently, in Sect. 3 several specific
choices, first for weight functions and then for local approximants are introduced.
More specifically, in Sect. 3.1 five choices for the weight functions are proposed, two
of which yield manifold basis functions that can reproduce B-splines. In Sect. 3.2 it
is illustrated how to choose the local approximants so that manifold-basis functions
are identical to B-splines. Finally, in Sect. 4 we provide a summary and comparison
of the different proposed constructions.
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2 Review of Manifold-Based Basis Functions

We provide a brief informal review of univariate manifold basis functions for curves
with the aim to fix ideas and notation.

2.1 Basic Approach

Given is a control polygon with the vertex coordinates xi ∈ R
3 which describes the

manifold curve �. To begin with, the control polygon and the curve are assumed to
be closed to sidestep the discussion of boundaries. The curve is composed of a set
of nc overlapping subdomains

� =
nc⋃

i=1

�i . (1)

Each subdomain�i is associated with a vertex xi of the control polygon in a manner
yet to be described. The subdomains �i are obtained from corresponding planar
domains �̂i ∈ R with a mapping

ϕi : �̂i → �i

ξi #→ x .
(2)

The pair consisting of (�̂i ,ϕi ) is called a chart. In the following we refer to �̂i as
the chart domain or simply as the chart. Each chart domain �̂i has its own coordinate
system with the coordinates ξi ∈ R. The coordinates of points on the intersection
between two subdomains �i and �j can be mapped with transition functions, that
is,

tj i : �̂ji ⊂ �̂i → �̂j

ξi #→ ξj
(3)

defined as

tj i = ϕ−1
j ◦ ϕi . (4)

Here, �̂ji = ϕ−1
i (�i∩�j) is the pull-back of the intersection of the two subdomains.

For constructing a smooth approximant, on each chart domain we have given a
blending (or, weight) function wi : �̂i → R

+
0 with

supp(wi) ⊆ �̂i
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which have to satisfy

nc∑

i=1

wi ◦ ϕ−1
i ≡ 1 on � (5)

and have to be Ck smooth. In addition, at the chart domain boundaries, wi and
its derivatives up to k-th order have to be zero. On each chart domain also a local
approximant fi : �̂i → R is defined. The approximant fi is usually expressed in a
polynomial basis, like the power, Lagrangian or the Bézier basis. In this paper both
the Lagrangian and Bézier basis of a fixed degree are used. However, the basis and
the degree of the approximant fi may be different on every chart. Hence, having

the local bases Pi =
{
p
(j)
i (ξi)

}qp+1

j=1
of degree qp and the corresponding local

coefficients αi = {α(j)i } on chart �̂i gives the local approximant

fi(ξi) =
qp+1∑

j=1

p
(j)
i (ξi)α

(j)
i

:= pT
i (ξi)αi , (6)

and, in turn, the global approximant

f (ξi) =
∑

l : ϕl (ξl )=ϕi (ξi )

wl(ξl)fl(ξl) =
∑

l : ϕl (ξl )=ϕi (ξi )

wl(ξl)pT
l (ξl)αl , (7)

as well as the global basis

Pglobal =
nc⋃

i=1

wiPi = {wi(ξi)p(j)i (ξi) : with i = 1, . . . , nc and j = 1, . . . , qp + 1} .

(8)

Note that the index i from the basis p(j)i may be dropped when on each chart
domain �̂i the same basis is used, as in the present paper.

Next, each chart domain �̂i and its image �i are associated with seg-
ments/elements in the nv-neighbourhood of the vertex xi of the given control
polygon. That is, there are as many charts as vertices in the mesh. An
1-neighbourhood of a vertex is defined as the union of elements that contain
the vertex. The nv-neighbourhood is defined recursively as the union of all
1-neighbourhoods of the (nv−1)-neighbourhood vertices. The number of segments
associated with a chart is hence 2nv . In turn, each segment is present in 2nv charts.
See Fig. 2 for a construction where each chart domain �̂i consists of the two
segments in the 1-neighbourhood of the vertex xi .

In Sect. 3 we consider the span of Pglobal in (8) as the analysis space on �.
That is, the basis together with the corresponding set of coefficients {αj } is used
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Fig. 2 Construction of a univariate manifold basis. The chart domains �̂1 and �̂2 are chosen to
consist out of two segments. The segment [x1, x2] on the (dashed) control polygon is present on
both chart domains. On each chart the local basis p1(ξ1) and p2(ξ2) is a quadratic Lagrange basis
and the blending functions w1(ξ1) and w2(ξ2) are normalised B-splines constructed according
to (16), see also Fig. 6. The reference element (i.e. reference finite element) is denoted with �.
The same vertex has the same colour in the four domains �, �̂1, �̂2 and �. Note that for
the considered quadratic Lagrange basis and three vertices per chart domain the least-squares
projection matrices A1 and A2 are identity matrices. Only choosing a constant or linear Lagrange
basis on each chart domain requires a least-squares projection

for L2-fitting. However, the set of coefficients {αj } lack an intuitive interpretation,
similar to the control vertices of splines, so that the basis (8) is not suitable for
geometric modelling. Hence, in the following we define a design space as a suitable
subspace having degrees of freedom corresponding to the vertices xi .

2.2 Mesh-Based Approach

On each chart domain the coefficients of the local approximant can be assigned to
vertices in the nv-neighbourhood, see Fig. 2. Each vertex is present on 2nv+1 charts
which leads to a coupling between the coefficients of the local approximants (6) of
the involved charts. If the number of the coefficients of the local approximant is less
than the number of vertices in the chart a least squares fitting has to be applied

αi = AiPif , (9)
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where Ai denotes the least-squares projection matrix, f is an array of the scalar
vertex coefficients fi ∈ R for the entire polygon (one scalar per vertex) and Pi a
gather matrix filled with ones and zeros to pick up the control vertex coefficients for
a particular chart from f. Hence, the global approximant (7) can be rewritten as

f (ξi) =
∑

l : ϕl (ξl )=ϕi (ξi )

wl(ξl)pT
l (ξl)AlPlf . (10)

Finally, the manifold curve� can be obtained by replacing the array of vertex scalar
coefficients f with the array of given vertex coordinates x, so that each map (2) reads

ϕi (ξi) = wi(ξi)pT
i (ξi)AiPix . (11)

To summarise so far, each segment on the control mesh has a unique set
of corresponding segments on several planar chart domains �̂i . The introduced
manifold construction ensures that the images of the set of segments from disparate
planar charts are identical on the manifold �. To advance a more classical finite
element interpretation, each segment on the manifold (�, s) with the index s
represents an element and has a corresponding reference element (�, s) to evaluate
the element integrals, where � := [0, 1].1 The mapping of the parent element onto
the manifold is composed of two maps

ϕi ◦�i,s : (�, s)→ (�̂i , s)→ (�, s)

(η, s) #→ ξi #→ x
(12)

with (�̂i, s) ⊂ �̂i and (�, s) ⊂ � being a segment on the chart domain or
manifold, respectively. This implies for the field variables in a reference element s,

f (η, s) ≡ f (�−1
i,s (ϕ

−1
i (x))) . (13)

In applications the maps �i,s have to be chosen carefully. Namely, the transition
functions defined in (4) can be determined as, c.f. Fig. 2,

tj i = �j,s ◦�−1
i,s (14)

so that the required smoothness of tj i depends on the collection of maps �i,s
and �j,s on the respective chart domains.

1The index s for the reference element � is usually dropped because all of them can be assumed
to have the same domain.
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The approximation of the field variables with (10) leads for the element s to the
following definition of finite element basis functions N(η, s):

f (η, s) =
⎛

⎜
⎝

∑

j : ϕj (ξj )=ϕi (ξi )

wj (ξj )pT
j (ξj )AjPj

⎞

⎟
⎠

︸ ︷︷ ︸
NT(η, s)

f with ξj = �j,s(η) . (15)

In the following we denote the basis functions with N(η) and the mapping from the
reference element to the chart with�s . This notation is not precise when charts have
different geometries and number of vertices.

It is clear that the smoothness of the basis functions N(η) depends on the
smoothness of the blending functionswi(ξi), the local basis pi (ξi) and the mappings
�i(η). For instance, in the two-dimensional Ck continuous construction introduced
in [14], the blending functions wi are chosen to be (normalised) B-splines of degree
k + 1, the local basis pi are chosen to be a polynomial basis and �i are conformal
maps. Furthermore, each chart domain consists of the elements in the 1-neigborhood
of the corresponding vertex. Figure 2 illustrates this construction for C2 continuous
basis functions in the univariate case.

3 Reproduction of B-Splines

We consider again the global basis (8) for analysis, repeated here for convenience,

Pglobal =
nc⋃

i=1

wiPi = {wi(ξi)p(j)i (ξi) : with i = 1, . . . , nc and j = 1, . . . , qp + 1} ,

and discuss how to choose the blending functions wi and the local basis p(j)i
so that B-splines are a subset of the basis Pglobal . To reproduce B-splines it is
sufficient to choose either the blending functions wi or the local basis pi suitably.
In the following we introduce several choices for the blending functions and local
basis and comment on their extendability to the bivariate case. Evidently, B-splines
are defined on a structured mesh so that manifold-based basis functions will only
reproduce B-splines on the parts of the mesh with no extraordinary vertices.

In the univariate case, the parameter domain of the manifold curve � can be
assumed to be one single finite interval �̂. Due to the choice of the single finite
interval the transition functions tij are identity maps and �s are affine maps, both
are omitted in the following. Without loss of generality, the parameter domain is
uniformly partitioned with n inner nodes with the coordinates ξ̂j = j . Moreover,
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we use the notation P
p for polynomials of degree p, Sp,r for B-splines of degree p

and continuity Cr and define the space

W = span{wi : i = 1, . . . , nc}

as a function space on �̂.

3.1 Blending Function Choices

We fix the local basis p(j)i to be polynomials of some prescribed degree and study
how to choose the blending functions wi to obtain B-spline reproducing manifold-
based basis functions. As the B-splines form a local, non-negative partition of unity,
they are used as blending functions. Specifically, the blending functions will be
chosen either as

– standard B-splines of maximum smoothness,
– rational B-spline functions, or
– linear combinations of B-splines.

We compare the different approaches in terms of maximum number of overlap-
ping charts at any point of the domain, number of degrees of freedom, expected
approximation order as well as smoothness properties.

3.1.1 Piecewise Linear C0 Continuous Blending Functions

In case of linear B-spline blending functions of degree qw = 1 each chart domain
contains three knots. This means that any point on the parameter domain is present
on two different chart domains. Having C0 hat functions as blending functions
and polynomials of degree qp as local functions on every chart, we reproduce
continuous, piecewise polynomials of degree qp + 1, i.e., C0 B-splines. Hence,
W = S1,0 and span(Pglobal) = Sqp+1,0. In Fig. 3 the manifold-based basis
obtained with linear B-spline blending functions and a cubic Bézier local basis is
shown. The corresponding hat function and the cubic Bézier basis are depicted in
Fig. 4.

Extending the construction to surfaces, we obtain functions that are tensor-
product polynomials within every quadrilateral element and C0 continuous across
every edge. Hence, we can only reproduce C0 continuous basis functions on
unstructured quadrilateral Bézier meshes.
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Fig. 3 Global basis for piecewise linear blending function with qw = 1 and local cubic Bézier

basis with qp = 3 restricted to the chart domain �̂i =
[
ξ̂i−1, ξ̂i+1

]

Fig. 4 Piecewise linear blending function with qw = 1 (left) and a local cubic Bézier basis with
qp = 3 (right) used in computing the basis in Fig. 3

3.1.2 Higher Order Cp−1 Continuous B-Spline Blending Functions

The generalisation of the linear B-spline blending functions to the higher order B-
splines with qw > 1 is straightforward. As shown in Fig. 5 the support of each basis
function on the parameter domain is defined as a chart. Therefore, for B-splines of
degree qw and smoothness qw− 1 in any point of the domain qw+ 1 charts overlap.

Taking splines of degree qw > 1 as blending functions, together with polyno-
mials of degree qp as local basis, we reproduce B-splines of degree qw + qp and
smoothness qw − 1. Hence, we have W = Sqw, qw−1. Let W0 be the subspace of
W without global polynomials, i.e.,

W0 = W/Pqw ,

then we have

span(Pglobal) = P
qw+qp ⊕ ξqpW0 ⊕ . . .⊕ ξW0 ⊕W0 = Sqw+qp,qw−1.
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Fig. 5 Spline blending
functions with qw = 3
without boundary correction
(top), with boundary
correction (bottom)

The dimension of ξkW0 is independent of k and is equal to the number n of inner
knots of the spline space W = Sqw,qw−1, i.e., dim(W) = n+qw+1, dim(W0) = n
and

dim(span(Pglobal)) = (qw + qp + 1)+ n · (qp + 1).

As the span of Pglobal contains splines of degree qw + qp, we can expect an
approximation order of O(hqw+qp+1) in L2. Note that since the space of blending
functions contains polynomials, the functions in Pglobal are linearly dependent for
qw > 0, as we then have |Pglobal | = (qp + 1) · (n+ qw + 1) > (qw + qp + 1)+ n ·
(qp + 1).

The treatment of the boundary is not straightforward. In Fig. 5 two different
options for choosing cubic blending functions with qw = 3 is presented. The treat-
ment of boundaries becomes relevant when extending the construction to surfaces.
This leads to surfaces that are Cqw−1 if the mesh is regular. The construction on
the top contains all splines, but leads to C0 smooth surfaces at the extraordinary
vertices. The construction on the bottom reproduces only a subspace of all B-splines,
but generates surfaces that are C2 smooth everywhere. However, as the overlap
between the charts is large, the construction becomes cumbersome. Especially, in
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the bivariate case there can be several extraordinary vertices within one chart domain
which can render their smooth parametrisation challenging.

For this reason, in the following, we consider blending functions that have a small
support, but generate a smooth basis.

3.1.3 Rational B-Spline Blending Functions

To circumvent the difficulties that arise from using chart domains with a large num-
ber of overlaps, we construct blending functions that lead to only two overlapping
chart domains in any point of the domain. That is, we consider blending functions
with an overlap similar to the hat function in Fig. 4 (left), but possess the smoothness
of higher order B-spline blending functions as in Fig. 5 (bottom). To reproduce this
behaviour, we first select a linear combination of the B-splines in Fig. 5 as blending
functions, so that the supports of no more than two blending functions overlap at
the same time. In addition the B-splines to be used as blending functions are chosen
from a suitably scaled coordinate system. See Fig. 6 for a construction with cubic
B-splines with qw = 3 defined on a coordinate axis scaled by a factor 2. Here, the
blending functions are defined as

wi(ξ) = B3
2i (2ξ)

B3
2(i−1)(2ξ)+ B3

2i (2ξ)+ B3
2(i+1)(2ξ)

, (16)

where B3
k are the B-spline basis functions. Note that every other B-spline is chosen

as a blending function and their sum does not add up to one. To obtain a partition
of unity, all functions are divided by their sum. The resulting blending functions are
then piecewise rational, as depicted in Fig. 6. The resulting manifold-based basis
functions are also rational and their numerical integration may need more quadrature
points than polynomial basis functions of similar order and smoothness.

Fig. 6 Blending function wi
(solid line) as a normalised
cubic B-spline (dashed lines)



Manifold-Based B-Splines 255

Fig. 7 Blending function wi
(solid line) composed out of
three consecutive cubic
B-splines (dashed lines) and
the mask (1, 1, 1)

Fig. 8 Blending function w∗
i

(solid line) composed out of
five consecutive cubic
B-splines (dashed lines) and
the mask ( 1

2 , 1, 1, 1, 1
2 )

3.1.4 Linear Combinations of B-Splines as Blending Functions

One can take linear combinations of consecutive B-splines as blending func-
tions to obtain polynomial blending functions. We consider only cubic B-splines
with qw = 3 and express the coefficients in the linear combination as masks
(m0, m1, . . . , mk). To begin with, the B-splines to be used as blending functions
are defined on a coordinate axis scaled by a factor 3 and the blending function mask
is (1, 1, 1), see Fig. 7. That is, the blending functions are obtained as

wi(ξ) = B3
3i (3ξ)+ B3

3i+1(3ξ)+ B3
3i+2(3ξ) . (17)

Alternatively, it is possible to use B-splines defined on a coordinate axis scaled by a
factor 4 with a mask ( 1

2 , 1, 1, 1, 1
2 ) so that

w∗
i (ξ) =

1

2
B3

4i (4ξ)+B3
4i+1(4ξ)+B3

4i+2(4ξ)+B3
4i+3(4ξ)+

1

2
B3

4i+4(4ξ), (18)

This choice is illustrated in Fig. 8. As is indicated in Figs. 7 and 8 within a chart the
blending functionw(ξ) andw∗(ξ) have five and seven breaking points, respectively.
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Fig. 9 Global basis for a
B-spline blending function
composed according to (17)
and a local cubic Bézier basis
with qp = 3 restricted to one
chart

We can now compute the local contribution of the global basis on one chart. This
is depicted in Fig. 9. The basis functions using weights as in (16) or (18) are visually
indistinguishable and are omitted here.

3.1.5 Comparison of Different Blending Function Choices

To summarise, the constructions using rational functions or sums of B-splines
generate charts that have only a one ring overlap. The same is true for piecewise
linear hat functions as blending functions. Moreover, the dimension of the global
function space is the same in these three cases. However, for piecewise linears, the
functions are only C0, whereas for the other three approaches the smoothness is
Cqp−1. In the following we compare the approximation power of the respective
approaches by means of a numerical example.

In Fig. 10 we show log-error plots when performing L2-fitting onto a given
function. The corresponding number of degrees of freedom for each construction
is given in Table 1. In this example we considered a sine function over the unit
interval. The mesh size satisfies h = 1/2�+2, where we used levels � = 1, . . . , 4.
We compare linear blending functions with local polynomials of degree qp = 2
(blue line) and qp = 3 (red line), as in Sect. 3.1.1. The former has a theoretical
convergence rate of O(h4) in L2, while the latter has a theoretical rate of O(h5).
Both discretizations are C0 only. We moreover compare rational blending functions
as in (16) (yellow line), linear combinations of B-splines as blending functions as
in (17) (green line) or in (18) (purple line) of degree qw = 3 and local polynomials
of degree qp = 3. In all three cases, the expected convergence rate is O(h4).

We compare all constructions with uniform cubic B-splines of mesh size h
(orange line). They can be interpreted as a manifold construction as in Sect. 3.1.2
with qw = 3 and qp = 0. This construction yields the highest error. Similarly high
errors are observed for the basis from Sect. 3.1.1 with qp = 2 (resulting in piecewise
cubics) and the lowest error for the same construction with qp = 3 (resulting in
piecewise quartics). The bases constructed in Sect. 3.1.2 produce rates depending
on the polynomial degree of the resulting splines. As all splines of a given degree
and varying smoothness converge similarly (here e.g. qw = 2, qp = 1), we have
omitted this case in Fig. 10. Note that the weight functions with boundary correction
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Fig. 10 L2 approximation error plots for various choices of blending functions. Rates for h4 and
h5 are included for comparison

Table 1 The number of
degrees of freedom for the
constructions compared in
Fig. 10

Number of DOFs

Cubic B-spline 4 · 2� + 3

Linear w, qp = 2 3(4 · 2� + 1)

Linear w, qp = 3 4(4 · 2� + 1)

w as in (16), qp = 3 4(4 · 2� + 1)

w as in (17), qp = 3 4(4 · 2� + 1)

w as in (18), qp = 3 4(4 · 2� + 1)

in Fig. 5 (bottom) will not converge optimally without increasing the degree of local
functions close to the boundary.

When comparing the constructions from Sects. 3.1.3 and 3.1.4, it turns out that
all three converge with optimal rates of order h4 and with significantly smaller
constant when compared to piecewise polynomials of degree 3. This means that,
when fitting onto a smooth, univariate function, manifold constructions yield a better
approximation than standard B-splines, even though the manifold constructions
do not reproduce B-splines. Among the manifold constructions, the non-rational
variant (17) from Sect. 3.1.4 seems to be the faster.

Even though the numerical evidence suggests that manifold-based splines com-
pare reasonably well with standard B-splines, there are still several open questions.
On the one hand, one may compare the constructions with respect to computation
times, which depend on the number of degrees of freedom as well as on the
support size of the basis functions (i.e. the number of basis functions that are
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non-zero within one element). On the other hand, it is of vital importance to
devise optimal quadrature rules, depending on the choice of blending functions.
An efficient implementation for manifold-based B-splines, taking into account their
specific structure, remains a task for future research.

3.2 Local Approximants

We discuss next how to choose the local basis p(j)i so that the manifold-based
construction reproduces B-splines of maximum smoothness. Here, the blending
functions wi have only to satisfy the partition of unity property. Hence, any
one of the blending functions introduced in Sect. 3.1 can be used. To avoid the
complications arising from chart domains �̂i with large number of overlaps, we
consider only blending functions which lead to two overlapping charts. In addition,
for the sake of concreteness we focus in the following on cubic B-splines and note
that the proposed construction carries over to arbitrary degree.

The global manifold-based approximant (7) on a parameter domain consisting of
a single finite interval is given by

f (ξ) =
∑

i

wi(ξ)fi(ξ) =
∑

i

wi(ξ)

⎛

⎝
∑

j

p
(j)
i (ξ)α

(j)
i

⎞

⎠ . (19)

It is required that this approximant is equal to a B-spline over all or some of the
chart domains �̂i ≡ suppωi . The cubic B-spline approximant is defined as

f B(ξ) =
∑

k

B3
k (ξ)βk , (20)

where βk are the control point coefficients. This approximant can be expressed as
a weighted sum of chart domain contributions by multiplying with the partition of
unity function, that is,

f B(ξ) =
∑

i

wi(ξ)

︸ ︷︷ ︸
≡1

∑

k

B3
k (ξ)βk =

∑

i

wi(ξ)f
B
i (ξ) (21)

The support of each of the terms wi(ξ)f Bi (ξ) is strictly restricted to one chart
domain, see Fig. 11. Note that the local basis in Fig. 11 (bottom) consists of five
functions, which are scaled differently due to the multiplication with the blending
function. Term by term matching of the manifold-based (19) and the weighted
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Fig. 11 Cubic B-spline basis
functions and blending
function (top). The weighted
cubic B-spline basis functions
on one chart to be reproduced
with manifold-based basis
functions (bottom)

B-spline approximants (21) requires on every chart domain

∑

j

p
(j)
i α

(j)
i = f Bi (ξ) for ξ ∈ �̂i = [ξ̂i−1, ξ̂i+1] . (22)

This equation yields a set of equations for determining the coefficients α(j)i in
dependence of the coefficients βk . The cubic B-spline B3

k (ξ) has one knot with Ck ,

k ≤ 2, at the centre of the chart domain ξ = ξ̂i so that p(j)i has to consist out of
two pieces. Indeed, it is sufficient to consider in each half [ξ̂i−1, ξ̂i] and [ξ̂i , ξ̂i+1]
of the chart domain �̂i a separate polynomial approximant. Choosing in each half
a Bézier basis the coefficients αi can simply be obtained by Bézier extraction
as a linear combination of the B-spline coefficients βk . Or more generally, the
coefficients αi are obtained by solving a small linear system of equations obtained
by collocating (22) at four distinct points (for a cubic B-spline) within the segment.
Since f Bi (ξ) is not known (22) has to be considered for each of the four non-zero
B-spline basis functions individually. Similar to (9), this gives a relation between
the two sets of coefficients expressed as

αi = APiβ , (23)



260 Q. Zhang et al.

Note that the projection matrix A depends on the specific local basis chosen and
is here the same on all the chart domains. Introducing the obtained coefficients
into (19) yields the manifold-based basis functions, which are by design the same
as the B-spline basis functions.

In the bivariate case the B-spline approximant (20) is only available on parts of
the mesh with a tensor-product structure. In the vicinity of extraordinary vertices
there is no representation as in (22). In such regions, as in the original manifold
construction introduced in Sect. 2.2, a continuous polynomial approximant has to
be fitted to the control mesh coefficients. The manifold construction ensures that the
global approximant has the desired smoothness properties.

4 Conclusions

We developed new manifold-based B-spline basis functions motivated by the
manifold-based surface construction techniques from geometric modelling. As
illustrated the manifold-based surface construction techniques can be understood
as the extension of the partition of unity method to manifolds. Specific choices for
the blending functions and local approximants yield B-splines on structured control
meshes. Owing to the flexibility of the partition of unity method several such choices
are possible. We introduced in total five different choices for the blending functions
two of which reproduce B-splines. In addition, we introduced one choice for the
local approximant that leads to B-splines.

In Table 2 the properties of the manifold-based basis functions obtained from
each of the six different choices are listed. For finite elements polynomial basis
functions are to be preferred because they usually require fewer quadrature points
to integrate. The number of breaking points within a finite element gives out of how
many smoothly attached pieces a basis function consists. For efficient numerical
integration the breaking points of the basis function have to be considered so that
constructions with fewer breaking points are to be preferred. In the multivariate
case, on unstructured meshes only constructions which require only one-ring of
elements around each vertex as a chart domain are viable. If the chart domain

Table 2 Comparison of the properties of the introduced manifold-based basis functions on
structured control meshes

Rational/ B-spline Breaking Approx.

polynomial reproducing Chart size points order

w in Sect. 3.1.1 p � One-ring 0 hqp+2

w in Sect. 3.1.2 p � (qw + 1)/2-ring 0 hqw+qp+1

w in Sect. 3.1.3 r One-ring 1 hqp+1

w in Sect. 3.1.4 p One-ring 2 hqp+1

w∗ in Sect. 3.1.4 p One-ring 3 hqp+1

p as in Sect. 3.2 p � One-ring ≥ 1 hqp+1
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consists out of more than one ring of elements, there can be several extraordinary
vertices in a chart which makes their parametrisation challenging. In the regular
setting the approximation order of the introduced constructions can be inferred
from Melenk and Babuska [15]. In Table 2 the higher order convergence of the
first two constructions is remarkable. The first construction yields however only C0

basis functions and the second construction requires charts with several rings of
elements. Overall, the most promising constructions for finite elements appear to be
the blending functions assembled from B-splines introduced in Sect. 3.1.4 and the
local approximant introduced in Sect. 3.2. We note that the smoothness of the two
resulting basis functions is Ck with k = min(qp, qw). In closing, we note that the
mathematical and numerical study of the introduced constructions on unstructured
meshes provides a promising area for future research.
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