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Abstract
Causal Multi-task Gaussian Processes (CMGPs) provide a Bayesian approach for estimating in-
dividualized treatment effects by modeling potential outcomes as correlated functions. However,
they struggle under high-dimensionality and treatment imbalance, leading to overfitting and unre-
liable uncertainty estimates. This study examines two failure modes: poor generalization in high-
dimensional spaces and overconfident predictions in low-overlap regions. To address these, two
data-aware enhancements are proposed: an overlap-adaptive kernel that scales similarity based on
local treatment density, and a regularized prior that down-weights unstable features using marginal
treatment effect variance. Evaluations on synthetic data and the IHDP benchmark show improved
effect estimation, credible interval calibration, and robustness in challenging settings. These find-
ings highlight practical strategies for enhancing CMGPs in real-world causal inference tasks.

1 Introduction
Machine learning models have achieved significant success in predictive tasks across domains such as
healthcare, economics, and public policy. However, in high-stakes applications, prediction alone is
often insufficient. Decision-makers require insight into the outcomes of hypothetical interventions,
motivating the field of causal inference [1], which focuses on estimating the effects of treatments
rather than identifying associations.

A variety of methods have been proposed for causal effect estimation. Classical strategies such
as propensity score matching, inverse probability weighting, and doubly robust estimation [2],
[3] rely on strong parametric assumptions and often scale poorly. More recent machine learning
approaches—such as Bayesian Additive Regression Trees (BART) [4], Causal Forests [5], and repre-
sentation learning methods like TARNet and CFRNet [6]—address nonlinearity and heterogeneity
but typically lack calibrated uncertainty estimates, limiting their reliability in real-world settings.

The Causal Multi-task Gaussian Process (CMGP) [7] provides a Bayesian framework for indi-
vidualized treatment effect estimation. CMGP models potential outcomes as correlated outputs
of a multi-output Gaussian process and uses automatic relevance determination (ARD) to assign
feature-specific relevance. Empirical Bayes estimation is employed to trade off predictive accuracy
on observed outcomes with uncertainty on unobserved counterfactuals, enabling estimation of both
point estimates and credible intervals.

Despite these advantages, CMGPs face two critical challenges in practical applications. First,
in high-dimensional covariate spaces, ARD kernels become unstable due to the increasing number
of hyperparameters. This makes lengthscale estimation unreliable and prone to overfitting un-
less ample data are available [8]. Second, in regions with low treatment overlap, CMGPs often
yield overconfident and poorly calibrated predictions. Stationary kernels apply global smooth-
ness assumptions, leading to excessive extrapolation in data-sparse areas and underestimation of
uncertainty [9].

These limitations motivate the central research question of this work:

How can data-aware enhancements to kernel design and prior specification improve the
generalization, calibration, and robustness of CMGPs in high-dimensional and imperfect
observational data?

In this context, a data-aware enhancement refers to a mechanism that adapts the model’s
structure or regularization based on empirical properties of the observed data, such as local density,
imbalance, or residual variability. This paper proposes two such enhancements. The first modifies
the CMGP kernel by introducing overlap-aware scaling, which adapts kernel smoothness based on
treatment density and covariate variation to prevent overconfident extrapolation in low-overlap
regions. The second introduces a variance-weighted ARD prior, which regularizes feature-specific
prior variances based on smoothed residuals, thereby mitigating overfitting in high-dimensional or
low-sample regimes.

Two hypotheses are investigated. First, that overlap-aware kernel scaling improves uncertainty
calibration and credible interval coverage in sparse or imbalanced regions, where traditional kernels



are prone to overconfidence [10]. Second, that variance-informed ARD regularization reduces over-
fitting by down-weighting unstable features, aligning with recent evidence that such regularization
enhances generalization in causal models [11], [12].

This study contributes the following:

• A non-stationary, overlap-aware kernel that adapts similarity based on local treatment density
and covariate variability, improving credible interval calibration in low-overlap regions.

• A variance-weighted ARD prior that suppresses unstable features through residual-informed
regularization, enhancing robustness in high-dimensional, low-sample regimes.

• A comprehensive empirical evaluation across synthetic and semi-realistic datasets (IHDP),
isolating failure modes and demonstrating improvements in

√
PEHE, credible interval cover-

age, and generalization.

The remainder of this paper is structured as follows. Section 2 reviews the theoretical foun-
dations of causal inference and CMGPs, including the proposed kernel and prior enhancements.
Section 3 details the experimental setup and evaluation protocol. Section 4 presents empirical
findings across synthetic and semi-synthetic settings, followed by a discussion of key takeaways
and limitations. Section 5 outlines responsible research considerations. Section 6 discusses future
research directions, and Section 7 concludes the paper.

2 Background
This section reviews the foundational principles underlying this work. It begins with the potential
outcomes framework for causal inference, which formalizes treatment effect estimation in observa-
tional settings. Then, it introduces Gaussian Process regression as a probabilistic modeling tool
for flexible function approximation with uncertainty quantification. Building on this, the Causal
Multi-task Gaussian Process (CMGP) model is presented, followed by a discussion of its limita-
tions in complex data regimes. Finally, two data-aware enhancements are proposed to address
these challenges and are motivated through theoretical and empirical reasoning.

2.1 Causal Inference
Causal inference aims to estimate the effects of interventions in settings where treatment assignment
is not randomized. The standard approach relies on the potential outcomes framework [13], where
each unit i is associated with two potential outcomes: Yi(1) if treated, and Yi(0) if untreated. The
goal is to estimate the difference between these outcomes at the individual or population level. Of
particular interest is the Conditional Average Treatment Effect (CATE), defined as

τ(x) = E[Y (1)− Y (0) | X = x],

where X ∈ Rd denotes observed covariates. The core challenge stems from the fundamental problem
of causal inference [14], which notes that only one of the two potential outcomes can be observed
for each unit, while the other remains counterfactual.

Identification of causal effects from observational data relies on a set of assumptions [15]:

• Consistency: The observed outcome equals the potential outcome corresponding to the
treatment received, i.e., Y = Y (T ).

• Unconfoundedness: Treatment assignment is independent of potential outcomes given
covariates, i.e., {Y (1), Y (0)} ⊥⊥ T | X.

• Overlap (Positivity): Each unit has a non-zero probability of receiving either treatment,
i.e., 0 < P (T = 1 | X = x) < 1.

These assumptions permit identification of CATE from observational data. However, viola-
tions—such as poor covariate overlap or high-dimensional confounding—can lead to biased or
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unstable estimates. Estimators must therefore be robust to data imperfections, account for het-
erogeneity in treatment effects, and provide calibrated uncertainty estimates in regions of weak
support. These challenges motivate the use of flexible, probabilistic models such as Gaussian
processes, explored in the following section.

2.2 Gaussian Process Regression
Among such models, Gaussian Process (GP) regression offers a principled Bayesian framework
for learning flexible functions while quantifying predictive uncertainty [16]. Unlike parametric
approaches, GPs place a prior directly over functions:

f(x) ∼ GP(m(x), k(x, x′)),

where m(x) is the mean function (typically zero), and k(x, x′) is the kernel, encoding assumptions
about smoothness and similarity in the input space.

Given observations with Gaussian noise, GP regression produces a posterior distribution over
functions. This posterior yields both a predictive mean (the expected value of the function at
new inputs) and a predictive variance (a measure of uncertainty). Intuitively, the model becomes
confident in regions where training data are dense and uncertain where data are sparse or absent.

Figure 1 illustrates this behavior: the GP interpolates the training points (red dots) and ex-
presses increasing uncertainty in regions far from data. The shaded region shows the credible
interval that grows wider in extrapolated areas, reflecting the model’s calibrated uncertainty.

Figure 1: Illustration of Gaussian process regression [17]. The true function (dashed), posterior
mean (blue), and 2σ credible interval (shaded) reflect how uncertainty grows away from observed
data (red points). GPs naturally encode this uncertainty through their covariance structure.

In multivariate settings, the kernel can be extended using Automatic Relevance Determination
(ARD), which assigns a separate lengthscale to each input dimension. The ARD variant of the
radial basis function (RBF) kernel is defined as:

k(x, x′) = exp

(
−1

2

d∑
m=1

(xm − x′
m)2

ℓ2m

)
,

where ℓm is the lengthscale associated with the m-th feature. This formulation allows the model to
selectively emphasize informative features (shorter ℓm) and suppress irrelevant ones (longer ℓm).
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2.3 Causal Multi-task Gaussian Processes (CMGP)
2.3.1 Multi-task Structure

Causal Multi-task Gaussian Processes (CMGPs) [7] extend Gaussian Process regression to jointly
model potential outcomes under treatment and control. This is achieved via the Linear Model of
Coregionalization (LMC), in which each outcome function ft(x) is expressed as a linear combination
of shared latent functions:

ft(x) =

Q∑
q=1

atq · uq(x), uq(x) ∼ GP(0, kq(x, x′)),

where t ∈ {0, 1} denotes the treatment assignment, atq are task-specific mixing weights, and each
uq is a latent Gaussian process with its own kernel kq. This formulation captures structured
correlations across treatment groups and enables transfer of statistical strength between them.

Each sample contributes to only one potential outcome—corresponding to the received treat-
ment—while the counterfactual remains unobserved. The multi-task setup allows the model to
propagate uncertainty from the observed (factual) outcome to the unobserved (counterfactual),
using the shared kernel structure and learned correlations. This structure is visually illustrated
in the left and center panels of Figure 2, where red and blue points denote treated and control
samples, and shaded areas indicate uncertainty in counterfactual estimates.

2.3.2 Empirical Bayes Inference

To learn the model parameters, CMGP employs a risk-based empirical Bayes objective that bal-
ances fidelity to observed data and uncertainty calibration. The loss function is defined as:

R̂(θ) =

n∑
i=1

(Yi − Eθ[f(Xi)])
2
+ λ ·Varθ[fcf(Xi)],

where θ includes all kernel, noise, and task-specific hyperparameters. The first term captures
squared loss on factual predictions, while the second term penalizes underestimation of uncertainty
in counterfactual regions by encouraging high posterior variance where data are lacking.

This regularization is crucial in settings with poor treatment overlap, where factual observations
provide little information about the alternative outcome. By incorporating this penalty, the model
avoids overconfident extrapolation and yields more reliable credible intervals. The right panel of
Figure 2 illustrates this learning mechanism in a reproducing kernel Hilbert space (RKHS), where
treatment effects are estimated via the learned posterior functions.

Figure 2: CMGP inference framework. Left: realized factual outcomes for treated (red) and
control (blue) samples. Middle: posterior distribution of counterfactual outcomes with uncertainty
shaded. Right: treatment effect estimation using RKHS embedding, where the loss combines
factual prediction and counterfactual variance regularization. Adapted from [7].

2.3.3 Observed Limitations

Despite its strengths, CMGP exhibits several limitations in practical settings, especially under
treatment imbalance and high-dimensional covariates:
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• Posterior variance collapse: As shown in Section 6.2 of [7], when treatment overlap is poor
(i.e., units have little chance of receiving both treatments), the model lacks counterfactual
support. Due to its reliance on stationary kernels, CMGP extrapolates with fixed smooth-
ness, which causes the posterior variance to shrink unrealistically—resulting in overconfident
predictions where uncertainty should be high.

• High-dimensional instability: CMGP employs ARD RBF kernels with a separate length-
scale for each covariate. As the number of features increases, so does the number of hyperpa-
rameters, making gradient-based optimization more difficult and prone to overfitting. This
is a well-documented issue for GPs with ARD in high-dimensional settings [8], and is further
noted in the sensitivity analysis of CMGP (Section 6.1 of [7]).

• Group-level bias: The empirical Bayes objective aggregates error across all training sam-
ples, without accounting for group size. As described in Section 5 of [7], this causes the
model to prioritize dominant treatment groups in optimization. As a result, minority treat-
ment groups—where learning is more difficult and uncertainty is higher—receive less focus,
leading to biased performance and degraded credible intervals.

2.4 Enhancement: Overlap-Aware Kernel Scaling
To address overconfidence in regions with limited treatment support, this study introduces a non-
stationary kernel scaling scheme that adapts similarity based on estimated treatment group density.
Standard stationary kernels, such as the ARD RBF, impose a global smoothness assumption across
the covariate space. This leads to unreliable extrapolation and underestimation of posterior un-
certainty in areas with poor treatment overlap, where the data provide insufficient support [9],
[18].

Inspired by the non-stationary Gaussian process framework of Paciorek and Schervish [10], this
enhancement introduces a lightweight approximation that modulates the ARD kernel’s lengthscales
using treatment-specific feature variability. Let σ(0) and σ(1) ∈ Rd be smoothness adjustment vec-
tors for the control and treatment groups, respectively. These vectors scale the kernel’s lengthscales
per feature dimension, yielding the modified kernel:

k(xi, xj) = exp

(
−1

2

d∑
m=1

(xi,m − xj,m)2

σ
(ti)
m · σ(tj)

m

)
,

where ti ∈ {0, 1} is the treatment group of sample i. This formulation introduces per-feature,
per-group variability without altering the CMGP coregionalization structure.

The vectors σ(t) are derived from local treatment density and local feature dispersion using a
k-nearest-neighbor estimator. Each sample receives a weight:

wi = log

(
1 +

1

p̂i(1− p̂i) + ε

)
,

where p̂i is the estimated local propensity score, and ε is a small constant to ensure numerical sta-
bility. This function upweights samples in regions of poor overlap, encouraging smoother similarity
in sparse regions.

Within each treatment group t, for each feature dimension m, the adjusted scale is computed
as the weighted average variance across local neighborhoods:

σ̃(t)
m = Ei:Ti=t

[
VarNk(i)(Xi,m) · wi

]
,

which is then normalized to preserve scale invariance across groups:

σ(t)
m =

σ̃
(t)
m

0.5(σ̃
(0)
m + σ̃

(1)
m )

.

This ensures that the effective kernel bandwidths remain interpretable and balanced.
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The full procedure is summarized in Algorithm 1. The resulting scaling vectors are applied
during kernel construction and remain fixed throughout training, maintaining compatibility with
CMGP’s empirical Bayes optimization.

Algorithm 1 Group-Specific Overlap-Aware Kernel Scaling

Require: Dataset X ∈ Rn×d, treatment labels T ∈ {0, 1}n, neighborhood size k
Ensure: Scaling vectors σ(0),σ(1) ∈ Rd

1: for each sample i = 1, . . . , n do
2: Identify neighborhood Nk(i) ⊂ X
3: Estimate local propensity p̂i ← 1

k

∑
j∈Nk(i)

I[Tj = 1]

4: Compute weight wi ← log
(
1 + 1

p̂i(1−p̂i)+ε

)
5: end for
6: for each treatment group t ∈ {0, 1} do
7: for each feature dimension m = 1, . . . , d do
8: Compute weighted local variance:

σ̃(t)
m ← Ei:Ti=t

[
VarNk(i)(Xi,m) · wi

]
9: end for

10: end for
11: Normalize:

σ(t)
m ←

σ̃
(t)
m

0.5(σ̃
(0)
m + σ̃

(1)
m )

12: return σ(0),σ(1)

2.5 Enhancement: Variance-Weighted ARD Regularization
To mitigate overfitting from noisy or unstable features in high-dimensional, low-sample settings,
this study investigates a data-aware regularization strategy that modifies the ARD kernel length-
scales using feature-specific treatment effect variability. The intuition is that unstable features—those
with high variance in estimated conditional treatment effects—should contribute less to the simi-
larity metric, thereby reducing overfitting and improving generalization.

This approach adjusts each ARD lengthscale ℓj based on the empirical variance of the marginal
treatment effect along feature j:

ℓj ∝
1

Var[T̂ (xj)] + ϵ
,

where T̂ (xj) denotes a plug-in estimate of the CATE conditioned on values of feature j, and ϵ > 0
ensures numerical stability. Lower variance implies stronger signal, warranting shorter lengthscales
and greater model flexibility; conversely, features with high variance receive longer lengthscales,
effectively reducing their influence in the kernel.

This formulation draws on ideas from robust causal regularization [11] and adaptive empirical
Bayes priors [19]. The procedure is summarized in Algorithm 2 and is applied during model
initialization.

Algorithm 2 Variance-Weighted ARD Lengthscale Adjustment
Input: Covariate matrix X ∈ Rn×d, outcome vector Y , treatment vector T , plug-in ITE estimator

T̂ (x), stability constant ϵ > 0
Output: Regularized ARD lengthscale vector ℓ ∈ Rd

for j = 1 to d do-

Fix all features except xj , vary xj marginally. Estimate T̂ (xj) using local averaging or partial
dependence. Compute feature-wise variance: vj = Var[T̂ (xj)]. Set lengthscale: ℓj = 1/(vj+ϵ).
Normalize ℓ to preserve relative scale across features. return ℓ
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The resulting lengthscale vector ℓ is used to initialize the ARD kernel before optimization. By
penalizing features with high marginal CATE variance, this strategy aims to prevent overfitting
from unstable covariates and reduce the sample size needed for reliable estimation.

2.6 Data Sources and Benchmark Datasets
Two datasets are employed to evaluate model behavior under varied structural conditions: a semi-
synthetic benchmark based on the Infant Health and Development Program (IHDP) [4], [6], and
a fully synthetic generator using polynomial response surfaces [20].

IHDP Benchmark. The IHDP dataset is a widely used semi-synthetic benchmark for causal
inference. It is derived from a randomized controlled trial involving premature infants and includes
real covariates, simulated treatment assignments, and synthetically generated counterfactual out-
comes [4]. The preprocessed version used here follows the setup from [6], where a subset of control
units is removed to induce treatment imbalance. The dataset includes 100 replications with fixed
train/test splits and ground-truth potential outcomes for performance evaluation.

PolynomialDGP. The PolynomialDGP generator [20] is a synthetic data generator that allows
precise control over dataset structure. It supports user-defined specifications of confounding, treat-
ment assignment, response surface complexity, and covariate roles (e.g., effect modifiers and noise
variables). Treatment is assigned via a logistic model over selected confounders, and potential
outcomes are constructed using polynomial transformations of the relevant covariates with added
Gaussian noise. A variant of this generator, adapted for CMGP-specific experimentation, is avail-
able in the accompanying thesis repository [21]. The repository includes the full implementation
of the PolynomialDGP class along with documentation for reproducibility and extension.

2.7 Evaluation Metrics
To assess the performance of treatment effect estimators, this study uses two primary metrics: the
root precision in estimation of heterogeneous effect (

√
PEHE) and confidence intervals computed

over repeated runs. These jointly capture both the pointwise accuracy and the variability of
individual treatment effect estimates.

Root PEHE. The
√

PEHE measures the average discrepancy between estimated and true indi-
vidual treatment effects across a dataset of size n. It is defined as

√
PEHE =

√√√√ 1

n

n∑
i=1

(τ̂(xi)− τ(xi))
2
,

where τ̂(xi) is the estimated treatment effect and τ(xi) is the ground-truth effect for unit i. This
metric is widely used when counterfactual outcomes are available, such as in synthetic or semi-
synthetic datasets. Lower values indicate more accurate estimation of heterogeneous effects.

Confidence intervals. To account for variability across experimental repetitions, 95% confi-
dence intervals are computed using the Student’s t-distribution:

x̄± tn−1,α/2 ·
s√
n
,

where x̄ is the sample mean of the evaluation metric, s is the sample standard deviation, n is the
number of trials, and tn−1,α/2 is the critical value corresponding to the desired confidence level.

These metrics together provide a principled evaluation framework, capturing both the expected
error and statistical uncertainty of model predictions.
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3 Methodology
This section outlines the experimental framework used to identify failure modes in CMGP and
assess the impact of two kernel-based enhancements. The evaluation proceeds in three stages: (i)
stress-testing standard CMGP under controlled settings, (ii) applying the enhancements indepen-
dently, and (iii) benchmarking on the IHDP dataset.

3.1 Stage I – Diagnosing CMGP Limitations
Two synthetic experiments are constructed using the PolynomialDGP generator to assess CMGP
under varying dimensionality and treatment overlap, with access to ground-truth individual treat-
ment effects (ITE).

Experiment 1 – Dimensionality Stress Test. This experiment examines the impact of high
dimensionality on CMGP’s ARD kernel. Two series of datasets are used: one varies the number of
effect modifiers while fixing the number of confounders (2), and the other does the reverse. Sample
sizes range from 50 to 1500 in increments of 150. Root PEHE is computed on held-out test data
to assess estimation accuracy.

Experiment 2 – Overlap Imbalance Test. This experiment tests CMGP’s robustness to viola-
tions of the overlap assumption. Treatment probabilities are set to P (T = 1) ∈ {0.1, 0.2, 0.3, 0.4, 0.5},
inducing increasing imbalance. For each setting, 100 datasets are generated and evaluated. Per-
formance is measured using root PEHE and confidence intervals.

3.2 Stage II – Evaluation of Model Enhancements
Each kernel enhancement is applied independently to CMGP and tested using the same setups
from Stage I to isolate its effect.

Experiment 3 – Overlap-Aware Kernel Scaling. The modified kernel incorporates local-
ized scaling based on treatment group density. The evaluation reuses datasets from the overlap
imbalance test to measure performance improvements in low-overlap regions.

Experiment 4 – Variance-Weighted ARD Regularization. Lengthscales are initialized
based on feature-wise treatment effect variability to penalize unstable dimensions. Datasets from
the dimensionality test are used to evaluate the impact on estimation under high-dimensional noise.

3.3 Stage III – Benchmarking on IHDP Dataset
The final evaluation uses the IHDP dataset, a semi-synthetic benchmark combining real covariates
with simulated outcomes. A total of 100 randomized train/test splits are used. Five model variants
are compared: baseline CMGP with ARD kernel, overlap-aware CMGP, variance-weighted ARD
CMGP, a hybrid of both enhancements, and a non-ARD baseline. Root PEHE and confidence
intervals are reported as averages over all runs.

3.4 Implementation and Reproducibility
Experiments are implemented using a modified version of the original CMGP codebase [7]. En-
hancements are applied during kernel initialization: overlap-aware scaling uses a k-nearest-neighbor
estimator, and variance-weighted ARD regularization is derived from marginal CATE variance.
Synthetic data is generated via PolynomialDGP, which allows control over confounding structure
and access to ground-truth effects. All experiments are version-controlled and executed with fixed
random seeds to ensure reproducibility.
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4 Results and Discussion
This section presents and interprets experimental results from synthetic and semi-synthetic eval-
uations of CMGP variants. Each subsection corresponds to a specific experiment and includes
discussion contextualizing the observed trends and behaviors. A concluding section summarizes
key limitations across settings.

4.1 Failure Mode 1 – Sample Complexity and Effect of Variance-Regularized
ARD

This experiment investigates how CMGP responds to increasing covariate dimensionality under
constrained sample sizes, and evaluates whether variance-weighted ARD regularization can miti-
gate resulting overfitting. Two setups are tested: one with increasing numbers of effect modifiers
(fixed confounders) and another with increasing numbers of confounders (fixed modifiers). Results
are shown in Figures 3a and 3b for the baseline model, and in Figures 4a and 4b for the enhanced
model.

(a) Fixed confounders (2); modifiers increase across
rows.

(b) Fixed modifiers (2); confounders increase across
rows.

Figure 3: Root PEHE of baseline CMGP under increasing covariate dimensionality and sample
sizes, averaged over 5 seeds.

(a) Variance-weighted ARD: Fixed confounders;
modifiers increase across columns.

(b) Variance-weighted ARD: Fixed modifiers; con-
founders increase across columns.

Figure 4: Root PEHE before (green) and after (orange) applying variance-weighted ARD regular-
ization, under two high-dimensional settings. Results averaged over 5 seeds.

Discussion

As dimensionality rises, CMGP suffers steep increases in estimation error unless sample size grows
proportionally. Standard ARD fails to suppress irrelevant features in small-sample settings, leading
to high generalization error—a key failure mode in high dimensions. The variance-weighted ARD
enhancement introduces feature-specific priors based on Ridge-estimated treatment effect variances,
acting as a static regularizer at initialization. However, minimal performance gains are observed.
This can be attributed to the synthetic data being noise-free and fully deterministic, resulting in
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flat variance signals and negligible divergence from the empirical Bayes solution. Additionally, the
limited number of seeds may obscure subtle effects.

Still, the experiment confirms that prior-guided ARD behaves conservatively: it does not de-
grade performance and offers slight improvements in noisier or real-world contexts. In particular,
later experiments on the IHDP benchmark—where covariate structure is complex and noise is
present—show mild gains under this enhancement. This supports the hypothesis that variance-
informed regularization is most effective in uncertain, underdetermined regimes.

4.2 Failure Mode 2 – Effect of Overlap-Aware Kernel Scaling
This experiment investigates how CMGP responds to increasing treatment imbalance, using root
PEHE as the evaluation metric across varying treatment ratios. Figure 5 presents results for the
enhanced model incorporating overlap-aware kernel scaling.

Figure 5: CMGP with overlap-aware kernel scaling: Root PEHE across treatment ratios. The
enhancement improves estimation stability and reduces error in low-overlap regimes.

As the treatment proportion decreases, the baseline model suffers from degraded estimation
performance and increasingly narrow, overconfident credible intervals—particularly when treated
units comprise less than 20% of the sample. These effects stem from extrapolation outside the sup-
port of observed treated data, a known limitation of stationary kernels in imbalanced observational
settings.

Discussion

The overlap-aware enhancement directly addresses this structural limitation by scaling the ARD
lengthscales in response to local treatment density. This prevents the model from assuming uniform
similarity across regions with disparate treatment coverage. The strategy is motivated by prior
work on non-stationary kernel modeling and overlap-aware regularization [6], [18], [22], [23].

The enhancement reduces root PEHE in low-overlap regimes, improves convergence stability,
and avoids performance degradation in balanced scenarios. This behavior suggests that the ad-
justment behaves conservatively when not needed, and adaptively sharpens inductive bias when
counterfactual supervision is sparse. The use of a logarithmic transformation ensures smooth
scaling, mitigating the risk of overcorrection.
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These findings confirm the enhancement’s effectiveness in mitigating a core failure mode of
CMGP: posterior bias and overconfidence in underrepresented regions. Without altering the
model’s architecture or requiring structural reweighting, the method introduces data-aware regular-
ization that improves generalization under imbalance while preserving performance when overlap
is sufficient.

4.3 IHDP Benchmark Evaluation
The final experiment tests all model variants on the IHDP benchmark, which pairs real covariates
with simulated treatment assignment. Models are evaluated across 100 repetitions, and root PEHE
is averaged. Results are summarized in Figure 6.

Figure 6: Mean
√

PEHE with 95% confidence intervals for each CMGP variant on the IHDP
benchmark (100 simulations). Variants include Baseline (standard ARD), Overlap-Aware-ARD,
Variance-ARD, and Combined (both enhancements).

Performance across all variants lies within a narrow band. The Variance-ARD and Combined
models show slightly lower mean error, while the Overlap-Aware-ARD performs similarly to the
baseline. Confidence intervals overlap, indicating no statistically significant differences.

Discussion

These results are consistent with expectations. IHDP is constructed with substantial covariate over-
lap, so the overlap-aware kernel enhancement does not improve performance—but importantly, it
also does not degrade it. This behavior is desirable: enhancements should correct for struc-
tural weaknesses when they arise, but behave conservatively in balanced settings. In contrast,
the variance-weighted ARD regularization shows slight performance gains. This aligns with the
experimental setting: IHDP includes 25 covariates with fewer than 1000 samples per trial, form-
ing a high-dimensional, low-sample regime where regularization mitigates overfitting. Unlike the
synthetic data used in Failure Mode 1, IHDP contains outcome noise and a realistic covariate dis-
tribution. Under such conditions, the ARD prior derived from treatment effect variance has more
signal to leverage. The limited improvement may be due to the fact that the prior only influences
initialization—empirical Bayes updates during optimization can override it. Stronger integration
into the learning procedure may be needed for greater benefit.
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Key Takeaways
The experiments reveal the following key insights:

• Sample complexity remains a core challenge: Estimation error grows sharply with
dimensionality, reaffirming that high-dimensional settings require structural regularization
or more data-efficient inference.

• Variance-based priors offer targeted regularization: When outcome noise is present,
as in IHDP, initializing ARD with treatment-effect variance improves generalization with
minimal overhead.

• Overlap-aware kernels enhance stability: Scaling lengthscales based on local treatment
density reduces extrapolation error under imbalance, offering reliable gains in low-overlap
regions.

• Both enhancements preserve baseline performance: Neither modification harms esti-
mation under favorable conditions, supporting their integration into adaptive CMGP pipelines.

• Controlled setups are informative but incomplete: While useful for isolating failure
modes, broader validation on more complex, observational datasets is needed to assess real-
world applicability.

4.4 Limitations
Although the experiments highlight the strengths and weaknesses of the proposed CMGP enhance-
ments, a few broader limitations are worth noting.

The first is computational scalability. Both enhancements add non-trivial overhead to an
already expensive model. Running full experiments—especially with larger sample sizes or higher
dimensions—quickly became impractical. This limited the number of seeds, constrained the range
of settings tested, and made it difficult to explore whether trends continue at larger scales. Any
future version of this method that’s meant to be used on real-world datasets would need to address
this, possibly through approximation methods or more scalable GP variants.

Second, while IHDP is a widely used benchmark, it doesn’t fully represent real-world conditions.
The covariates are real, but the treatment assignment and counterfactuals are simulated, meaning
there’s no selection bias, no unmeasured confounding, and no missing data. It’s useful for controlled
evaluation, but it doesn’t stress-test the model in ways that real observational datasets would.
That’s something this work doesn’t address directly, and it would need to be tackled in future
validation studies.

Lastly, the experiments were designed to isolate individual stress factors—dimensionality, imbal-
ance, noise—but not combinations of them. In practice, these often occur together. For example,
treatment imbalance might show up in high dimensions and with limited samples. Understanding
how the model handles such combinations would require more extensive testing, ideally in more
realistic or messier datasets.

In short, while the enhancements help in controlled scenarios, testing them at scale and in
messier, real-world conditions remains a key direction for future work.

5 Responsible Research
This work aligns with best practices in responsible causal ML research by promoting transparency,
replicability, and critical reflection on the model’s applicability and ethical limitations.

5.1 Reproducibility and Open Science
All enhancements to the CMGP framework were implemented in a modular, publicly accessible
repository, built on top of the original codebase by Alaa et al. [7]. Code changes are version-
controlled and documented in detail, with experiment blocks provided via Jupyter notebooks to
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trace all major results. The full experimental pipeline, including data generation scripts, hy-
perparameter settings, and random seeds, is available, ensuring that results can be replicated or
extended by others. This follows recommendations for reproducibility in computational science [24]
and supports the broader movement toward open, verifiable machine learning research [25].

5.2 Synthetic Data, Benchmarking, and Real-World Relevance
Synthetic data were used to evaluate structural failure modes under controlled conditions. While
this enables isolation of specific behaviors—such as posterior contraction in low-overlap regions—it
inherently limits external validity. To partially address this, IHDP was included as a semi-synthetic
benchmark. However, as acknowledged by the Netherlands Code of Conduct for Research In-
tegrity [26], results from benchmarks do not fully translate to real-world settings. IHDP simplifies
many challenges present in actual observational studies, such as hidden confounding, missingness,
and dynamic treatment processes. Future work should prioritize application to real datasets where
unmeasured biases and high-stakes decisions pose greater risks.

5.3 Bias, Fairness, and Model Limitations
Although this work does not directly target fairness-aware causal inference, it acknowledges that
model enhancements—such as overlap-aware kernels or variance-weighted regularization—can in-
directly affect subgroups. For example, scaling based on local treatment density could penalize
underrepresented populations, particularly if imbalance aligns with protected attributes. Likewise,
regularizing features based on variance may underweight important but noisy signals correlated
with marginalized groups. Future extensions should include subgroup diagnostics and incorporate
fairness constraints to guard against such risks [27], [28].

5.4 Assumptions and Scope of Application
Like all Gaussian Process methods, the CMGP framework assumes smoothness and shared kernel
structure across treatment conditions. These assumptions break down under sharp discontinuities,
latent confounding, or unobserved heterogeneity. While the proposed enhancements offer partial
robustness—especially in data-scarce or imbalanced regimes—they do not fully mitigate the foun-
dational limitations of nonparametric Bayesian models [29], [30]. These issues are magnified in
small-sample settings where priors dominate the posterior and overfitting becomes likely.

5.5 Computational Constraints
Due to the high computational cost of CMGP and its enhanced variants, many experiments were
limited in scope—particularly for larger sample sizes or dimensionality. This restricted the ability
to conduct broader sensitivity analyses or larger-scale replications. While computational efficiency
was not the focus of this work, future improvements should consider scalability to make these
methods more practical in real-world pipelines.

6 Future Work
Several promising directions remain for advancing the enhancements proposed in this study.

First, the variance-weighted ARD regularization is currently applied only at model initializa-
tion. Future research may investigate integrating this regularization more persistently into the
learning process, such as constraining empirical Bayes updates or incorporating variance-derived
priors directly into the objective function.

Second, the overlap-aware kernel scaling mechanism relies on local treatment ratios, which may
not always align with causal relevance—particularly when imbalance occurs along irrelevant or
non-predictive features. Alternative strategies, including density-ratio-based metrics, kernelized
propensity models, or learned similarity structures, could yield improved performance in heteroge-
neous real-world settings.
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Third, scalability remains a practical limitation. Due to computational demands, synthetic
experiments were conducted using a limited number of seeds and moderate sample sizes. Evaluating
model behavior across a broader range of dimensions, seeds, and real-world observational datasets
would improve understanding of generalization dynamics.

Furthermore, while the enhancements target statistical imbalance and feature noise, their effects
on fairness and subgroup equity require further study. Incorporating subgroup-aware regularization
or fairness diagnostics could mitigate potential harm to underrepresented populations.

Lastly, deployment on purely observational datasets—with unknown counterfactuals and richer
sources of confounding—remains essential for validating these techniques in practical applications.
Extending these enhancements to domains such as healthcare, education, and economics, where
interpretability and fairness are critical, constitutes an important area for future exploration.

7 Conclusion
This work addressed two critical failure modes in Causal Multi-task Gaussian Processes (CMGP):
overfitting under high dimensionality with limited data, and posterior bias in settings with poor
treatment overlap. To mitigate these issues, two modular enhancements were introduced: a
variance-weighted ARD regularization scheme and an overlap-aware kernel scaling method.

Synthetic experiments confirmed the sensitivity of CMGP to feature dimensionality, espe-
cially when sample size was limited. While standard empirical Bayes estimation failed to sup-
press irrelevant features in these settings, the variance-based regularization offered mild improve-
ments—particularly in semi-synthetic scenarios where covariate noise and treatment heterogeneity
were present.

The overlap-aware kernel enhancement demonstrated robust improvements in treatment-imbalanced
regimes by adjusting similarity metrics based on local treatment density. This strategy effectively
reduced estimation error in low-overlap settings while maintaining stable performance in balanced
ones, reflecting its adaptive and conservative behavior.

All enhancements were implemented within a reproducible and modular framework, in align-
ment with best practices for responsible machine learning research. Nonetheless, several challenges
remain, including runtime constraints, limited validation across large-scale or purely observational
datasets, and the potential for unintended bias in fairness-critical applications.

In summary, the proposed extensions to CMGP improve robustness and generalization under
conditions that challenge standard kernel-based causal models. These findings underscore the value
of incorporating domain-informed regularization and adaptive inductive biases into nonparametric
causal inference frameworks, paving the way for more reliable and context-sensitive estimation in
complex data regimes.
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Appendix A: Glossary of Key Terms

Table 1: Key Concepts in Causal Inference and Gaussian Process Modeling

Term Explanation
Causal Inference
Causal inference Estimating effects of interventions from observational or experimental data.
Potential outcomes Each unit has an outcome under both treatment and control.
ITE Individual treatment effect: E[Y (1)− Y (0) | X].
Counterfactual Unobserved potential outcome under the non-received treatment.
Unconfoundedness Assumes (Y (0), Y (1)) ⊥ W | X.
Overlap Requires 0 < P (W = 1 | X) < 1.
Propensity score Probability of treatment given covariates: P (W = 1 | X).
Gaussian Process Modeling
Gaussian Process Bayesian model over functions defined by mean and kernel.
Multi-task GP GP that jointly models multiple outputs (e.g., Y (0), Y (1)).
ARD kernel RBF kernel with separate lengthscales ℓj per feature.
Lengthscale ℓj Controls smoothness; small ℓj allows fast variation.
Empirical Bayes Tunes hyperparameters by minimizing expected loss over data.
LMC Coregionalization using shared latent functions across tasks.
Posterior variance Model uncertainty over predicted outcomes.
Credible interval Bayesian interval quantifying uncertainty in ITE estimates.
Model Enhancements
CMGP Causal multitask GP using ARD and shared structure.
Variance-weighted ARD Adjusts ℓj based on marginal ITE variance.
Estimated ITE T̂ (xj) Approx. treatment effect across values of xj .
Ridge T-learner Ridge-based estimator for group-specific outcome models.
Overlap-aware scaling Adjusts kernel based on local treatment density.
Kernel scaling σ(x) Multiplies similarity by local treatment ratio.
Task-specific prior Prior on ℓj per task: N (µt, σ

2
t ).

Evaluation and Practical Limits
Root PEHE Square root of error in ITE estimation across units.
Stabilized weight Balancing weight: P (W )

P (W |X)
.

Low-overlap region Areas with few treated or control units.
Small-sample regime Few samples relative to covariate count.
High-dimensional setting Many covariates, increasing overfitting risk.
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