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matrix representation 

T =  (1.1) 

xk+l = XkAk -I- UkBk Tk= [" " 1  (1.2) 

in which the matrices {Ak, Bk, ck, Dk} id have finite (but possibly time- 

yk = *kck+UkDk Bk Dk 

varying) dimensions. We call such systems locally$nite. k t  Ak be of size 
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dk X dk+i, then the size of X k ,  i.e., the system order at point k, is equal to 
dk. Define a sequence of operators {Hk}Ifb. with matrix representations 

We will call the Hk time-varying Hankel matrices of T, although they have 
no Hankel structure unless Tis a Toeplitz operator. Their matrix representa- 
tions are mirrored submatrices of T. Although we have lost the traditional 
anti-diagonal Hankel structure, a number of important properties are re- 
tained, for example, if {&, &, c k ,  &} is a realization of T, then Hk has a 
factorization into 

c k  and can be regarded as time-varying controllability and observability 
operators. If the realization is minimal, then one can show that the rank of 
Hk is equal to the system order of any minimal realization of T at point k. 

The Hankel norm of an operator T can be defined at present as 

l I T / I H  = syP IIHklI. (1.5) 

This definition is a generalization of the time-invariant Hankel norm and 
reduces to it if all Hk are the same. We will prove the following theorem: 

Theorem 1.1. Let T be a bounded operator which is strictly upper, 
strictly stable and locally finite, and let T be an invertible Hermitian di- 
agonal operator. Let Hk be the Hankel matrix of r l T  at time instant k .  
Suppose that the singular values of each Hk decompose into two sets u-,k 

and c+,k, with all o-,k larger than I. uniformly over k, and all a+,k uniformly 
smaller than 1. Let Nk be equal to the number of singular values of Hk 
which are larger than 1. 

Then there exists a strictly upper locallyjnite operator T ,  of system order 
at most N k  at point k, such that 

Operators T, satisfying (1.6) are called Hankel norm approximants of T,  
parameterized by the error tolerance r. We are interested in Hankel norm 
approximants of minimal system order. There is a collection of such To. 
Theorem 4.3 gives a parametrization of all solutions. A consequence is that 
no Hankel norm approximants of order lower than Nk exist. This paper is 
a summary of [8] in which full p m f s  appear. 

2. PRELIMINARIES 

Spaces 

Starting with a realization (1.2), we can assemble the matrices {At} .  {Bk} 
etc. as operators on spaces of sequences of appropriate dimensions, by 



defining A = diag(A3, B = diag(&), C = diag(Ck) and D = diag(Dk). 
Together these operators define a realization T of T: 

T =  [; E ]  . (2.1) xz' = A+us 
y = x C + u D  

The diagonal operators act on sequences U = 1.. . , U I  u2 . . .I, x = 
[. . . XI xz . . .I, and the causal shift operator Z on these sequences is 
defined by XZ' = [. . . x2 x3 . . .]. The realization in (2.1) is equivalent 
to (1.2). but more convenient to handle in equations because the time- 
index has been suppressed. Shifted diagonal operators are A(') = ZIAZ = 
diag(Ak-1) and A(-1) = ZAZ' = diag(Ak+I). An important aspect of these 
sequences is that the dimensions of their components can vary in time. 
Suppose that Xk E ~ k ,  with Bk = C" an Euclidean space of dimension 
Nk, then we define B = . . . x BO x 01 x . . . to be the space of sequences 
x with entries in t?k. and hence x E B and A : 0 -+ @-'I, where &I) 

is a shifted space sequence corresponding to f l l .  We write N = #B for 
the dimension sequence of B. Even input- and output sequences can have 
varying dimensions. We will typically use M for input sequences and N 
for output sequences, and hence T : M + N .  Let e, = lim 11 [AZ]" be 
the spectral radius of (AZ). If e, < 1, then ( I  -AZ) has a bounded inverse 
that is again upper, and the realization T is such that T = D+BZ(/-AZ)-'C . 
We call such realizations strictly stable. 

The space of non-uniform sequences N with index sequence N and with 
finite 2-norm is denoted by e?. It is a Hilbert space. Let M and N be 
space sequences corresponding to index sequences M, N. We denote by 
X ( M , N )  the space of bounded linear operators + e f :  an operator 
T is in X ( M , N )  if and only if for each U E e?, the result y = UT is 
in e?, in which case the i n d u d  operator norm of T is bounded. Such 
operators have a block matrix representation [Ti,], much as in (1.1). They 
have an upper part and a lower part (which taken on themselves are not 
necessarily bounded): all entries T8, above the main (0-th) diagonal and 
including this diagonal form the upper part, while all entries below the 
diagonal, including the diagonal, form the lower part. We define U ( M ,  N) ,  
L ( M , N )  and V ( M , N )  to be, respectively, the space of bounded upper, 
lower and diagonal operators ey + e?. 
Besides the spaces X .  U, L, V in which the operator norm reigns, we shall 
need Hilbert-Schmidt spaces Xz,  Uz, Lz, Vz which consist of elements of 
X, U, C, V respectively, and for whom the noms of the entries are square 
summable. These spaces are Hilbert spaces for the usual Hilbert-Schmidt 
inner product. They will often be considered to be input or output spaces 
for our system operators. Indeed. if T is a bounded operator ep + @, 
then it may be extended as a bounded operator Xi" + Xf by stacking an 
infinite collection of sequences in e 2  to form elements of Xz. This leads 
for example to the expression y = UT, where U E Xi" = Xz(CZ, M )  and 
y E Xf = Xz(Cz, N) [9]. 
We define P as the projection operator of Xz on Uz, PO as the projection 
operator of Xz on Vz, and PLg4 as the projection operator of Xz on LcpZ'. 
The domainof PO can be extended to X. T E X has a formal decomposition 
into a sum of shifted diagonal operators as in T = C L  aklT[k], where 
T1kl = P0(ZkT) E V(M(k) ,  N )  is the k-th diagonal above the main (0-th) 
diagonal. 

Left D-invariant subspaces 

Xz, as a Hilbert space, has subspaces in the usual way. We say that a 
subspace 'H c X2 is ldt D-invariant if A E 'H * DA E 'H for all D E V. 
Let Ak = diag[ . . . 0 0 I 0 0 . . . I ,  where the unit operator appears at the 
k-th position, and let 'H be a left D-invariant subspace. Define 'Hk = A&, 
then ?it is also left D-invariant, and ?it c 31. It follows that 'H = $k'Ht.  A 
left D-invariant subspace is said to be local& finire if dim 'Hk is uniformly 
bounded by some finite number. In that case, there exists a local basis 
for 31, where each basisvector is itself a basisvector of some ' H k .  The 
conjunction of the basisvectors of all 'Hk span 'H. With dk = dim'&, we 

Fig. 1. Realization T (a) on &-sequences, (b) on XZ sequences of diagonals. 

will call the sequence [ . . . do dl dz . . . ] the sequence of dimensions of 
H ,  in notation s-dim 'H. 

Hankel operators and state spaces 

Let T E X be a bounded operator. An abstract version of the Hankel 
operator maps "inputs" in L2Z1 to outputs restricted to UZ: the Hankel 
operator HT connected to T is the map U E C Z ~  e RUT). Note that only 
the strictly upper part of T plays a role in this definition. The operators 
Hk of equation (1.3) are "snapshots" of it: Hk can be obtained from HT by 
considering a further restriction to inputs A k U  of which only the k-th row 
is non-zero: the operator (A,. )HT is isomorphic to Hk. Realization theory 
is based on distinguishing characteristic spaces in LzZI and UZ, 

-the input state space H ( r )  = ran (Wr) = {PLZz-1CyT) : y E UZ} c Lzz'. 

-the output state space 'Ho(T) = ran (HT) = {P(uT) : U E CzZ'} c 2-42. 

These spaces are left D-invariant: D'H c 31, D'Ho c 'Ho. 'H and Ho 
are not necessarily closed; their closures 72 and 720 are left D-invariant 
subspaces, Throughout the paper, it will be assumed that T is such that 
H(T)  and %o(T) are locally finite subspaces. Such Twill be called LocaUy 
finite operators. On a local level, it holds that dim 'Hk = dim ran (K) = 
rank(%) and dim ('Ho)~ = dim ran (Hk) = rank(Hk) = dim 'Hk. Hence 
s-dim 'H = s-dim 'Ho = [rank Hk]: is equal to the minimal state dimension 
sequence of T. 
Let the Hankel norm of T be defined as the operator norm of its Hankel 
operator: I l T l l ~  = I lH~l l .  This definition is equivalent to (1.5). It is 
straightfonvard to show that the Hankel norm is weaker than the operator 
norm: II T l l ~  9 II TII. 

Realizations 

The realization (2.1) can be generalized further, by considering inputs in 
XzM, outputs in Xf. and states in Xf, for which again the same relations 
hold. By projecting onto the k-th diagonal, and using the. fact that A, B,  C, D 
are diagonal operators, a generalization of the recursive realization (1.2) is 
obtained as 

(2.2) 

- 

x(-" = 
[ k + l ]  X[kIA + UIklB 
Y[kl = X[kIC+ U[@ 

(see figure 1). ~ o t e  the diagonal shift in x ~ ; ~ ~ , .  

The Hankel operator HT has a factorization: if up E LzZ' then yf = PCy) = 
U ~ H T  can be written as a map U,, I+ 401 followed by a map X[O]  e yfi 

. . .] C X[O]  = Po(x) = Po( uBZ(I -AZ)-l ) = [ul!{, uWI 
yf = x[o](/-AZ)-'C. 

or in expanded form [y[o]  ytyi) yii;) . . . I = x[olO, where 

c := 
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C and U are the controllability and observability operators of the re- 
alization. c k  and Uk in (1.4) are obtained by taking the k-th entry 
along each diagonal of C and 0. The realization is said to be control- 
lable if C'C > 0 and obsexvable if (30 > 0, and uniformly control- 
lable/observable if the expressions are uniformly positive. If a realiza- 
tion is uniformly conmllable then Ho(T)  = Vf(I  - AZ)-'C, if it is uni- 
formly observable then H(T)  = Z)f[BZ(I-AZ)-I]*. This shows, again, that 
s-dim H = s-dim NO = #B, the state dimension sequence. It also shows 
that the input state space is determined by the pair (A,  8). 

Lyapunov Equations 

A state transformation on a given realization T has the form 

where R is a boundedly invertible diagonal operator. State transformations 
are often used to bring a transition operator into some desirable form. For 
example, an input normal form (A'A + B*B = r)  is obtained by putthg 
M = R'R and solving the Lyapunov equation 

= A'MA + B'B , M E  V(8, B )  (2.3) 

Equation (2.3) will have a unique solution provided < 1. By taking the 
k-th entry of each diagonal which appears in (2.3). this equation leads to 
M ~ + I  = A w k A k  + B&, which can be solved recursively if an initial value 
for some Mk is known. If C is the controllability operator of the given 
realization, then M = C'C is the solution of (2.3). which shows that M is 
boundedly invertible if the realization is uniformly controllable. Likewise, 
if the realization is strictly stable and uniformly observable (0 is such that 
Q = 06' is boundedly invertible), then Q is the unique bounded solution 
of the Lyapunov equation 

Q = AQ(-~)A* + c c  
and with the factoring of Q = R-IR' this yields a state transformation R 
such that A 'A" + C'C" = I .  The resulting realization then forms an output 
normal realization for the operator. In section 3 we shall assume that the 
operator to be approximated is indeed specified by a realization in output 
normal form. This is always possible to achieve. 

J-unitary operators and J-unitary realizations 

If an operator is at the same time unitary and upper, we shall call it an inner 
operator. A J-unitary operator 8 is an operator with 2 x 2 block decom- 
position so that the input and output spaces of 8 are split into sequences 
M 1 @ NI and M z  @ N2, and has corresponding signature operators: 

such that 8*J18 = Jz ,  WJ28 = JI. Let be given a state operator 8, and 
let B be the space sequence of the state of 8. Suppose that B = B+ @ B- 
is a certain decomposition of 8 into two space sequences. Let 

(2.5) 

be a corresponding signature matrix, which we call the state signature se- 
quence of 8. 
Theorem 2.1. If a state realization operator 8 is strictly stoble and 

(2.6) 

30 

then the corresponding t r m f e r  operator 8 will be J-unitary in the sense 
that 

8'Jle = 52, W28' = J I  . (2.8) 

With '# indicating the sequence of dimensions of a space sequence, the 
dimensions of the signatures satisfy the inertia relations 

(2.9) 
#B+ + # M I  = #B!-') + #Mz 
#B- + #nil = + #Nz. 

A J-unitary upper operator has an interpolation-type property: it maps its 
input state space (in [LzZ' C2Z'I) to [U2 UzI. This general property. 
formulated for a J-unitary state realization of 0, reads 

Lemma 2.2. If { a, 1, y, 8) is a J-unitary state realization for a J-unitary 
block-upper operator 8, then Z'(I - cr*Z')-'flJl 8 E [U U]. 

Scattering operators 

Associated to 8 is an operator Z such that [al 
[al bll8 = [az bzl . Z can be evaluated in terms of the block-entries of 8 
as 

b & E  = [a2 b11 

where J-unitarity of 0 ensures that 634 is bounded and that X is unitary. 
One fact which will be essential for the approximation theory in the later 
sections is that, although 8 has block-entries which are upper, 82 need 
not be upper but can be of mixed causality, so that the block-entries of Z 
are in general not upper. 

Partition the state x of the realization 8 according to the signature JB into 
x = [x, I L ] ,  and p d t i o n  8 likewise., then a corresponding scattering 
operator E can be defined by the relation 

(2.11) [s x- al bile = [SZ' IT' a2 h] 
[x, S I  al h ] Z  = [x,Z' I a2 bl] 

(inputs of E have positive signature). E can be computed independently for 
each time instant from 8. It is a kind of generalized or implicit realization 
for Z, which can be obtained after elimination of x- and x+. E is unitary: 
EZ' = I; E T  = I, which is easily derived from the J-unitarity of 8. 

3. APPROXIMATION PROCEDURE 

The problem that we shall solve in this section is the model reduction 
problem for a strictly upper operator described by a strictly stable "higher 
otder model". Let r be a diagonal and hennitian operator. We shall use 
r as a measure for the local accuracy of the reduced order model. It will 
also parametrize the solutions. We will look for a contractive operator E 
such that E = (T-T")T' where T' is an operator which is not necessarily 
upper triangular, but whose strictly causal part will assumed to be bounded 
and have state space dimensions of low order - as low as possible for a 
given r. Once we have such a contractive E, it is immediately verified that 
it satisfies 1) r ( T -  T') 11 = 11 E 1) I 1 . Let T. be the strictly causal part of 
T'. Then 

II w T -  To) iiH s II r l v - T o  1 1  2 1 . 
and T. is a Hankel-nom approximant when T' is an operator-norm appmx- 
imant. The construction of a suitable T' consists of three steps. We start 
by determining a (minimal) factorization of T in the form T = A*U where A 
and U are upper operators which have finite state space dimensions of the 
same size as that of T, and U is inner: ULT = I; LTU = I. Next, we look 
for a locally finite J-unitary operator 8 with upper block entries chosen 
such that 

[U* -rrl]e= [A' -B ' ]  (3.1) 

comists of two upper operators. 8 will again be locally finite. Then, 
because 8 is J-unitary, we have that will exist (but not necessarily 
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be upper) and 212 = -812%; will be contractive. From (3.1) we have 
B' = - U ' 8 1 2  + Tr1'Le)?Z. Define the approximating operator T' as 

T I *  = B i e $ - ,  (3.2) 

then E = (T - T ' * ) r l  = -U'& has 11 E 1 1  5 1. so that T'* = B ' 8 i i r  is 
indeed an approximant with an admissible modeling emr. In view of the 
target theorem 1.1. we have to show that the strictly causal part T.  of T' 
has the stated number of states and to verify the relation with the Hankel 
singular values of r l T .  This will done at the end of this section. 

Factorization of T 

Theorem 3.1. Let T be an upper operator which has a strictly stable 
locally jnite and uniformly observable state space realization {A,  B, C ,  D } .  
Then there exists a factorization of T as T = A'U . where A and U are upper 
operators, again locally finite and strictly stable, and U is inner, i.e., upper 
and unitary. 

PROOF We start from a realization of T in output normal form, i.e., such 
that AA' + C C  = I. For each time instant k, augment the state transition 
matrices [Ak ck] of T with as many extra rows as needed to yield a unitary 
(hence square) matrix u k :  

(3.3) 

Assemble the individual matrices {Ak, (Bu)k, ck, ( & f ) k }  in diagonal oper- 
ators {A,Bu,C,Du},  then the corresponding operator U is a state space 
realization for U; U = D u  + BuZ(1- A V ' C .  U is well-defined and upper, 
and it is unitary because it has a unitary realization (as in theorem 2.1). It 
is straightforward to verify that A = UT' is indeed upper. 0 

Note that the number of rows added to [Ak ck] is time-varying, so that 
U (and hence also A) has a time-varying number of inputs. The varying 
number of inputs of U will of course be matched by a varying number of 
outputs of A*. 

Construction of €9 

The next step is to construct a locally finite and block-upper J-unitary 8 
that satisfies equation (3.1). Let B be the space in which the state sequences 
of the realization 8 of €9 live. 8 will be J-unitary in the sense of (2.4) if 
8 satisfies (2.6) with some state signature matrix JS to be determined yet. 
Let {A,  B, C, 0) be the realization for T used in the previous section (it is in 
output normal form), and let {A, Bu. C, Du} be the realization for the inner 
factor U of T. We submit that 8 satisfying (3.1) has a realization 8 of the 
form 

which is a square mamx at each time instant k, and where X and Ci, Dq 
are yet to be determined. Note that the state sequence space B is the same 
for 8 and T. X is a boundedly invertible diagonal state transformation 
operator which is such that 8 is J-unitary as in (2.6). Writing A = X'J& 
the signature of A will determine J g ,  and it is straightforward to derive that 
A = I - M, where M is given by 

M(-') = A'MA + B' T ' r ' B  . (3.5) 

M is the solution of one of the Lyapunov equations associated to F I T ,  and 
can be determined recursively from the given realization of T via Mk+l = 

Theorem 3.2. Let T be a strictly upper locally frnite operator mapping 
ep to e$, with output normal realization {A,  8, C ,  0)  such that ea c 1, and 
let r be a Hermitian diagonal operator. Also let U be the inner factor of 
a coprime factorization of T. If the solution M of the Lyapunov equation 
(3.5) is such that A = I - M is boundedly invertible, then there exists a 
J-unitary block upper operator 8 such that [U' - T p ] 8  is block upper. 

A p k &  + B;G'G'&. 

PROOF The condition insqres that there exists a state transformation X such 

a*Jaa + fJ,/3 = /a'). (3.6) 

X is obtained by solving the Lyapunov equation (3.5) for M, putting A = 
I - M, and factoring A into A = X'JoX. This also determines the signature 
operator Jg and thus the space sequence decomposition B = B+ @ B-. The 
next step is the construction of a realization 8 of the form (3.4) which is 
a square matrix at each point k,  and where the X and Ci, Db are yet to be 
determined. 8 is to satisfy (2.6) for 

where the dimensionality of the output space sequences M 2  and N2 follow 
from theorem 2.1, equation (2.9) as 

#Ma = #B+ - #&') + # M u  2 0 
#Nz = #B--#Bl-l)+#M 20, 

Finally, to obtain 8, it remains to show that can be completed to 

form 8 in (3.4), in such a way that the whole operator is now J-unitary in 
the sense of (2.6). It can be shown that this completion exists under the 
present conditions and can be achieved at the local level: it is for each time 
instant k an independent problem of matrix algebra. To conclude the p m f ,  
we have to show that [U' - T r ' ] 8  is block upper. We have 

[;I 

[U - TT'] = [D; - D'T'] + C'Z"(I-A'Z")-'[B; - B'T'] 

and it will be enough to show that 

Z)zZ"(I -A*Z')-'[B; - B'T'] 8 

is block upper. With entries as in equation (3.4), and using the state 
equivalence transformation defined by X, this is equivalent to showing that 
D2X,T(I-a*Z)-'fl J1 8 is block-upper. That this is indeed the case follows 
directly from lemma 2.2. 0 

We conclude this section by establishing the link between the Lyapunov 
equation and the Hankel operator connected with r'T. 
Theorem 33. Under the hypothesis on the singular values of the Han- 
kel operators H k  of r l T  in theorem 1.1. the solution M of the Lyapunov 
equation (3.5) is such that A = I - M is boundedly invertible and has sig- 
nature Jg having N k  negative entries at point k,  where N k  is the number of 
singular values of Hk that are larger than I .  

PROOF The solutions of the two Lyapunov equations associated to T-'T, 

M(-I) = A'MA+B'r*B 
Q = AQ(-')A* + C C  

may be expressed in terms of the controllability and observability op- 
erators of I-'T as M = C'C, Q = (70'. The Hankel operator Hk of 
e T  at time instant k satisfies the decomposition H k  = C@k. Hence 
H& = c k O k 0 ; c ; .  We have started from a state realization in output 
normal form: Q = 00' = 1. With the current finiteness assumption, 
the non-zero eigenvalues of HkH; = C& will be the same as those of 
c&!k = Mk. In particular, the number of singular values of Hk that are 
larger than 1 is equal to the number of eigenvalues of Mk that are larger 
than 1. Writing Ak = /-Mk, this is in turn equal to the number of negative 
eigenvalues of Ak. 0 

Figure 2 shows a simple instance of the application of the theory developed 
in this section, especially with regard to the dimensions of the input, output 
and state sequence spaces related to the 8-matrix. While the signal flow of 
8 runs strictly from top to bottom and from left to right, the directions of 
the arrows in the figure correspond to the signal flow of the unitary state 
space operator Z that can be associated to 8, and that will play an important 
role in the next section. Upward arrows in the state of Z are caused by the 
negative entries in the state signature Ja of 8. 
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I 4  

-F 
-D 

al r b) 

Fig. 2. (a) Computational scheme for T, (6) Computational scheme for a possible 
Z, where it is assumed that one singular value of the Hankel operator of 
P T  at time 1 is hger  than 1. 

Complexity of the approximant 

At this point we have proven the first part of theorem 1.1: we have con- 
structed a J-unitary operator €9 and from it an operator T. which is a 
Hankel-norm approximant of T. It remains to verify the complexity asser- 
tion, which stated that the dimension of the state space of T, is at most 
equal to N: the number of Hankel singular values of P ' T  that are larger 
than one. In view of theorems 3.2 and 3.3, N is equal to the number of 
negative entries in the state signature JB of 8. Suppose that the conditions 
of theorem 3.2 are fulfilled so that 8 satisfies 

[U - r r l ] e  = [A' -B ' ]  

with A' ,  B' E U. Let T " T 1  = B ' q i .  The approximating transfer function 
To is given by the strictly upper part of T'. It might not be a bounded 
operator but its Hankel map HT. = HT,  is well-defined and bounded. We 
have 
Lemma 3.4. Under the conditions of theorem 3.2, the input state space 
o f r l T ,  sa&jes ? i ( r l T , )  c "(q;). 
PROOF From the definition of 31 and the operators we have 

Hence the dimension sequence of 31(q;) is of interest. Define the 
"conjugate-Hankel" operator H' := H& = PLzz.~( .  @&)I& Then a(%;) = 
ran (HI) .  

Let the signals a l ,  61, az, br and the state sequences x+, x- be in XZ and 
be related by 8 as in (2.11). Define decompositions into past and future 
parts of signals in Xz: a1 = alp + alf with alp = PL,z-l(al) and a1f = P(a1). 
Because = &z. the conjugate-Hankel operator H' is a restriction of 
h e  partial map &z : br e bl,  that is, H' : by I+ bl, is such that bzp 
and bip satisfy the input-output relations defined by I: under the conditions 
a1 = 0 and b2p = 0. Inspection of figure 3 shows that H' can be factored 
as H' = m, where the operators 

n 

U :  i-) ~ [ o l  2: x - [ o ~  e bl, 

can be derived fmm X by elimination of x+[ol. again taking a1 = 0 and 
bzp = 0. It can be shown [8] that the operator U is 'onto' while r is 'one- 
to-one', so that the factorization of H' into these operators is minimal. It 

0 

n l z r l  
I I 

Fig. 3. (a) The state transition scheme for 2, with &-sequences as inputs. (b) The 
decomposition of Z into a past operator Z, and a future operator Z, linked 
by the state [x+[ol ~ [ o ] ] .  This summarizes the figure on the left for all time. 

follows, in lemma 3.5, that the dimension of x-101 at each point in time 
determines the local dimension of the subspace ?d(e;;) at that point. 
Lemma 3.5. The s-dimension of ?i(eZ) is equal to N = #(B-), i.e., the 
number of negative entries in the state signature sequence of 8. 
Lemma 3.5 completes the proof of theorem 1.1. It is possible to derive 
explicit fonnulas for a realization of the approximant Te [SI. This realization 
is given in terms of four recursions: two that run fonvard in time, the other 
two mn backward in time and depend on the first two recursions. One 
implication of this is that it is not possible to compute part of an optimal 
approximant of T if the model of T is known only partly, say up to time 
instant k. 

4. PARAMETRIZATION OF ALL APPROXIMANTS 

The present section is devoted to the description of all possible solutions to 
the Hankel norm approximation problem of order smaller than or equal to 
N, where N = s-dim W(@) is the sequence of dimensions of the input state 
space of G. We shall determine all possible bounded operators T' E X 
for which it is true that 

(1) 
and (2) 

11 r'V- T') ( 1  I 1 , 
the state dimension sequence of To = (upper pan of T') 
is at most equal to N.  

It turns out that there are no Hankel norm approximants with state dimension 
sequence lower than N. The result is that all solutions are obtained by 
a linear fractional transform (chain scattering transformation) of 8 with 
an upper and contractive parameter SL. That this procedure effectively 
generates all approximants of with state dimensions at most equal to N can 
be seen from the fact that if 11 T 1 ( T -  T,) I I H  5 1, then an extension T' of 
T. must exist such that (1 T ' ( T -  T') (1 S 1 (Nehari's theorem). 

We will use the following preliminary fact. 

Theorem 4.1. ([81) Let A E U, B = I - X  where X E X, llXll < 1, 
and let A be invertible in X .  Suppose that s-dim PLZz4(UzA-') = N. Then 
s-dim Pqz~(UzB-'A-')=N+p s-dimPLd4(&AB)=p. 

Generating new solutions of the interpolation problem 

Theorem 4.2. Let T, r and U be ar in theorem 3.2. and let N be the 
sequence of number of singular values of the Hankel operator of T-'T that 
are larger than I .  Let 8 be a J-unitary block-upper operator such that 
[U' -TI-'] 8 = [A' - B'] E [U U], which exists by theorem 3.2. 
Let SL E U be a contractive operator. (1) 8~ - is bounded@ invert- 
ible, and S = (e1ISL - 9lz ) (& - &&)-' is contractive. 
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(2)  Let, furthermore, T’ = T + TS’U. Then 

11 T 1 ( T -  T’) 11 = 11 S’U 11 I 1,  
the state dimension sequence of T,, = (upper part of T’ )  
is precisely equal to N. 

(a)  
(b) 

That is. T, is a Hankel norm approximant of T. The Hankel norm approx- 
imant of the previous section is obtained for SL = 0. 
PROOF (1) is true by J-unitarity of 8 and contractiveness of SL. (&) 
follows immediately since r ( T -  T’) = SU and U is unitary. To prove 
(26), use the following equality: 

Since (A’& + B‘)  E U, the state dimension sequence of T‘ is at most equal 
to the s-dim p~3-1  [&(e22 - &~SL)-’ 1. Because the latter operant is equal 
to (I - @&&)-‘64, and Il6&z1SLII < 1, application of theorem 4.1 
with A = €922 and B = I - €3&& shows that sdim PqZ-1[&(&z - 
&~SL)-’ J = s-dim P~p@4&) = sdim H ( q ) ,  i.e., equal to N. Hence 
s-dim H(T’) I N (pointwise). 
The proof terminates by showing that also s-dim H(T’) 2 N ,  so that in fact 
s-dim H(T’) = N .  We omit this part here. 

so all s of the form ,S  = (ellsL - elz)(&z - eZlS~)-l with SL E U, 
0 

11 SL 11 I 1 give rise to Hanke.1 norm approximants of T. It is well known 
that this type of expression for S is a chain scattering transformation of S L  
by 8. The reverse question is: are all Hankel norm approximants obtained 
this way? That is, given some T’ whose strictly upper part is a Hankel 
norm approximad of T, is there a conesponding upper and contractive SL 
such that T‘ is given by T’ = T + TS’U, with S as above. This problem 
is addressed in the next theorem. The main issue is to prove that S L  as 
defined by the equations is upper. 

Generating all approximants 

Theorem 4.3. Let T,  r, U and 8 be as in theorem 4.2, and let N be the 
number of Hankel singular values of T-IT that are Iarger than I .  Let be 
given a bounded operator T’ E X such that 

11 r l ( T -  T’) 11 S. 1 . 
the state dimension sequence of T, = (upper part of T’) 
is at most equal to N .  

(1) 
(2) 

Define S = U(,“ - T)l? Then there is an operator SL with (SL E 

U, 1 1  SL 11 5 1) such rhar S = (811Sr. - 812)(&z - &ISL)-~ (i.e.. 8 gener- 
ates all Honkel nom approximants). The state dimension of T ,  is in fact 
precisely equal to N .  

PROOF The main line Of the p m f  runs in parallel with [7], but differs 
in detail. In particular, the ‘winding number’ argument to determine state 
dimensions is replaced by theorem 4.1. 

1. From the definition of S, and using the factorization T = A*U, we 
know that 

IISII=IIU(TN-y)TIII= l l l - l ( T ‘ - ~ l l  I 1 

so S is contractive. Since S = - A r l  + U T ’ T I ,  where A and U 
are upper, *dim H ( S )  I s-dim H(T’) I N, i.e., the state dimension 
sequence of a minimal realization of the causal part of S’ is at most 
equal to N. 

Define [Gi G;] := [S’ I]e. Then 7c(G;) c H(T’) and H(G;) c 
H(T’). (Proof omitted.) 

The definition of G1 and Gz can be rewritten using 8 - I  = JB’J as 

[ ? I ]  = e [  21 (4.1) 

GZ is boundedly invertible, and SL defined by SL = GIG,’ is well 
defined and contractive: (1  SL ( 1  I 1. In addition, S satisfiess = (811SL- 

el2)(eU - &ISL)-~ as required. (Proof omitted.) 

G,l E U, the space %(TI) has the same sdimension as W ( 8 2 ) .  and 
H(G;) c “(G:). 

PROOF According to equation (4.1). G;’ satisfies 

GI’ = 8u(I-@ezIsL) 
GZ = ( I - ~ ; & ~ S L ) - ’ & &  

Let p = s-dim H ( q )  = s-dim PLzz-~(&GS1), NZ = s-dim H(G:) = 
sdim PL2z-1(&Gz), and N = sdim H ( s )  = s-dim Phz4(Uz8&. 
Then Nz I N. Application of theorem 4.1 with A = &Z and B = 
(I - a&&) shows that Nz = N + p ,  and hence Nz = N and p = 0 
GS1 E U, and H(GZ) has s-dimension N. Step 2 claimed H(G;) c 
H(T‘), and because the latter space has at most s-dimension N, we 
must have that in fact W(G;) = ‘H(T’), and hence H(G;) c H(G;). 

SL E U. 
PROOF This can be inferred from G’ E U, and H(G;) c H(Gb). as 
follows. SL E U is equivalent to PLg4(&S~) = 0, and 

PL~z-I(&&) = P L ~ Z ~ ( & G I G ~ ’ )  
= Pcgq (Ptfii(U2G)G;’ ) 

Using X(Gi) c H(G;), or P,-2Z-~(&Gl) since G,’ E U. 
PLzz-~(U2G2) we obtain that 

c 

p ~ , p  (UZSL) c P , ~ - I  ( PL,~(&Gz)GI’ ) 
= I’~,Z~(Z~ZGZG,~) (sin= G;’ E U) 
= 0. 

0 
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