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The paper describes a generalization of the Hankel norm model reduction
theory to time-varying systems. For time-invariant systems, this problem
has a solution which goes back to the work of Adamyan, Arov and Krein
on the Schur-Takagi problem. Our approach extends that theory to cover
general, not only Toeplitz, upper operators as well. We derive the usual
parametrization of all possible Hankel norm approximants of a given upper
operator with respect to a given approximation tolerance.

1. INTRODUCTION

In classical model reduction theory, one is given a transfer function T(z)
belonging to H.. of the unit circle, T(z) = to+ h1z+ 522 + - - - . Associated to
T(z) are its transfer operator T and Hankel operator Hr:

: : h B
o 0 B LB
T= 0 , Hr=
[
to o

The model order of T(z) is equal to the rank of Hr and finite if and only
if the system has a rational transfer function. Adamyan, Arov and Krein
[1] showed that Hr can be approximated by a Hankel matrix of low rank,
n say, such that the Euclidian norm difference between the original Hankel
operator and the approximant is equal to the (n+ 1)-st singular value of Hr.
This approximation leads to the optimal reduced system in Hankel norm. It
was soon recognized that this can be utilized to solve the problem of optimal
model-order reduction of a dynamical system (2, 3, 4, 5]. Calculations can
be done in a recursive fashion [6] based on interpolation theory of Schur-
Takagi type. The state space theory for this interpolation problem was
extensively studied in the book [7].

In the present paper, the aim is to extend the model reduction theory to
the time-varying context, by considering bounded upper £2-operators with
matrix representation

Ta T;n

T= Ty Tz
0 T2

an

which are now no longer taken to be Toeplitz. The 00-entry in the ma-
trix representation is distinguished by a surrounding square. T maps £3-
sequences ¥ = [--- @ uy uy ---) into £2-sequences y via y = uT, and
is thus seen to be a causal operator: an entry y; only depends on entries
ug for k < i. The rows of T can be viewed as the impulse responses of the
system. We will be interested in systems 7 that admit a realization in the
form of the recursion

Xeel = XeAr+ 08y Ty = [ A G }

1.2
Yo = xCr+uDy a2

By Dy

in which the matrices {Ay, Bx, Cx, Di} all have finite (but possibly time-
varying) dimensions. We call such systems locally finite. Let A be of size
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di X dis1, then the size of x, i.e., the system order at point k, is equal to
dy. Define a sequence of operators {H;}>, with matrix representations

Ttk Tkt Ti-1as2
T2k Ti24e1

Hy = . . 1.3
= Toas .. 13)

We will call the H; time-varying Hankel matrices of 7, although they have
no Hankel structure unless T is a Toeplitz operator. Their matrix representa-
tions are mirrored submatrices of 7. Although we have lost the traditional
anti-diagonal Hankel structure, a number of important properties are re-
tained, for example, if {Ag, Bi, Cr, D} is a realization of T, then Hj has a
factorization into

Biy
Bi2Ai

Hi= Bi-3Ai2Ak1

[Ck ArCirt AARICiiz  --°] =0 COk. (14)

Cx and Oy can be regarded as time-varying controllability and observability
operators. If the realization is minimal, then one can show that the rank of
Hy is equal to the system order of any minimal realization of T at point k.

The Hankel norm of an operator T can be defined at present as

Tl = sup || He). (1.5
This definition is a generalization of the time-invariant Hankel norm and
reduces to it if all H, are the same. We will prove the following theorem:

Theorem 1.1. Let T be a bounded operator which is strictly upper,
strictly stable and locally finite, and let T be an invertible Hermitian di-
agonal operator. Let Hy be the Hankel matrix of T7\T at time instant k.
Suppose that the singular values of each Hy decompose into two sets o
and o, , with all o larger than 1, uniformly over k, and all o, ; uniformly
smaller than 1. Let Ny be equal to the number of singular values of H,
which are larger than 1.

Then there exists a strictly upper locally finite operator T, of system order
at most Ny at point k, such that

1T~ < 1. 1.6)
Operators T, satisfying (1.6) are called Hankel norm approximants of T,
parameterized by the error tolerance I. We are interested in Hankel norm
approximants of minimal system order. There is a collection of such T,.
Theorem 4.3 gives a parametrization of all solutions. A consequence is that
no Hankel norm approximants of order lower than N; exist. This paper is
a summary of {8] in which full proofs appear.

2. PRELIMINARIES
Spaces

Starting with a realization (1.2), we can assemble the matrices {A}, {Bi}
eic. as operators on spaces of sequences of appropriate dimensions, by



defining A = diag(Ax), B = diag(By), C = diag(Cy) and D = diag(Dy).
Together these operators define a realization T of T:

A C
T=[B D]‘
The diagonal operators act on sequences u = [---, @ uy up 0, x =
[--- @ x1 x2 ---], and the causal shift operator Z on these sequences is
defined by xZ1 =1- - - X2 x3 ---]. The realization in (2.1) is equivalent
to (1.2), but more convenient to handle in equations because the time-
index has been suppressed. Shifted diagonal operators are A(D = Z1AZ =
diag(Ax1) and ACD = ZAZ = diag(As ). An important aspect of these
sequences is that the dimensions of their components can vary in time.
Suppose that x; € By, with By = €M an Euclidean space of dimension
Ni, then we define B = --- X By x By x -+ .'to be the space of sequences
x with entries in Bg, and hence x € B and A : B — BN, where BD
is a shifted space sequence corresponding to xZ. We write N = #8 for
the dimension sequence of B. Even input- and output sequences can have
varying dimensions. We will typically use M for input sequences and A
for output sequences, and hence T : M — N. Let {4 = lim || [AZ]" [|'"" be
the spectral radius of (AZ). If ¢4 < 1, then (/ - AZ) has a bounded inverse
that is again upper, and the realization T is such that T = D+BZ(/~AZ)™'C.
We call such realizations strictly stable.

xZ1 = xA+uB

2.1
y = xC+uD @b

The space of non-uniform sequences A with index sequence N and with
finite 2-norm is denoted by ¢4, It is a Hilbert space. Let M and N be
space sequences corresponding to index sequences M, N. We denote by
X(M,N) the space of bounded linear operators £1 — ¢: an operator
T is in X(M,N) if and only if for each u € ¢4*, the result y = uT is
in £, in which case the induced operator norm of T is bounded. Such
operators have a block matrix representation [T;;], much as in (1.1). They
have an upper part and a lower part (which taken on themselves are not
necessarily bounded): all entries Tj; above the main (0-th) diagonal and
including this diagonal form the upper part, while all entries below the
diagonal, including the diagonal, form the lower part. We define 2{(M, N),
LM, N) and DM, N) to be, respectively, the space of bounded upper,
lower and diagonal operators £1 — £

Besides the spaces X', U, £, D in which the operator norm reigns, we shall
need Hilbert-Schmidt spaces A2, Uy, L2, D, which consist of elements of
X, U, L, D respectively, and for whom the norms of the entries are square
summable. These spaces are Hilbert spaces for the usual Hilbert-Schmidt
inner product. They will often be considered to be input or output spaces
for our system operators. Indeed, if T is a bounded operator £41 — Lﬁ’ .
then it may be extended as a bounded operator X" — A4 by stacking an
infinite collection of sequences in {3 to form elements of A3._This leads
for example to the expression y = uT, where k € XM = Xz(CZ , M) and
ye & = L, N P

We define P as the projection operator of A on s, Py as the projection
operator of A2 on D2, and P,z as the projection operator of A2 on LaZ.
The domain of Py can be extended to X'. T € A has a formal decomposition
into a sum of shified diagonal operators as in T = Y"p_, ZW Ty, where
Ty = Po(Z*T) € D(M®, N) is the k-th diagonal above the main (0-th)
diagonal.

Left D-invariant subspaces

X3, as a Hilbert space, has subspaces in the usual way. We say that a
subspace H C X3 is left D-invariantif Ae H=>DAe HforallDe D.

Let Ay = diag{--- 0 O 7 O O ---], where the unit operator appears at the
k-th position, and let H be a left D-invariant subspace. Define Hy = A¢H,
then H; is also left D-invariant, and H, < H. It follows that H = @ H;. A
left D-invariant subspace is said to be locally finite if dim M, is uniformly
bounded by some finite number. In that case, there exists a local basis
for H, where each basisvector is itself a basisvector of some H;. The
conjunction of the basisvectors of all ; span H. With dy = dim M, we

“-2)

U

o)

“11)

®)

Fig. 1. Realization T (a) on £;-sequences, (b) on A3 sequences of diagonals.

will call the sequence [--- dp di d
‘H, in notation s-dim H.

-- -] the sequence of dimensions of

Hankel operators and state spaces

Let T € X be a bounded operator. An abstract version of the Hankel
operator maps “inputs” in £2Z1 to outputs restricted to Z>: the Hankel
operator Hr connected to T is the map u € £2Z — P(uT). Note that only
the strictly upper part of T plays a role in this definition. The operators
H; of equation (1.3) are “snapshots” of it: Hj can be obtained from Hr by
considering a further restriction to inputs Azu of which only the -th row
is non-zero: the operator (A - )Hr is isomorphic to H;. Realization theory
is based on distinguishing characteristic spaces in £2Z and U3,

— the input state space H(T) =ran (H}) = {P£,10T") 1y € Uy} € L2Z7,
— the output state space Ho(T) = ran (Hr) = {PuT) : u € L2Z7'} c Us.

These spaces are left D-invariant: DH < H, DHg € Ho. H and Hp
are not necessarily closed; their closures 7 and Ho are left D-invariant
subspaces, Throughout the paper, it will be assumed that T is such that
H(T) and Ho(T) are locally finite subspaces. Such T will be called locally
finite operators. On a local level, it holds that dim M = dim ran (H}) =
rank(H};) and dim (Ho), = dim ran (H,) = rank(Hy) = dim H;. Hence
s-dim H = s-dim Ho = [rank H;]=, is equal to the minimal state dimension
sequence of T.

Let the Hankel norm of T be defined as the operator norm of its Hankel
operator: || T|ly = ||Hr||. This definition is equivalent o (1.5). It is
straightforward to show that the Hankel norm is weaker than the operator
nomm: [| |y < || T}

Realizations

The realization (2.1) can be generalized further, by considering inputs in

A.’ZM, outputs in A’ A, and states in X, for which again the same relations

hold. By projecting onto the k-th diagonal, and using the fact that A,B,C,D

are diagonal operators, a generalization of the recursive realization (1.2) is
obtained as

0

[k+1}

Yid

= xuA+unB

2.2
X1 C + uyyD @2

1]

(see figure 1). Note the diagonal shift in x{}ﬁl.
The Hankel operator Hy has a factorization: if u, € £2Z 1 then y=P@=
UpHT can be written as a map u, — xjo; followed by a map xjo) = yr:

Po(x) = Po(uBZ( - AZy ') = () u®,
xo(I —AZy'C.

= 3
X = u---lc

Y

or in expanded form { y[g) yﬁ]l) yf;lz) -+ 1= x10/0, where

B
B@AM

BOADAD C ACTY AACDCED L

O =

3077



C and O are the controllability and observability operators of the re-
alization. C; and O in (1.4) arc obtained by taking the 4-th entry
along each diagonal of C and O. The realization is said to be control-
lable if C*C > 0 and observable if @O* > 0, and uniformly control-
lable/observable if the expressions are uniformly positive. If a realiza-
tion is uniformly controllable then Ho(7) = Df(l - AZ)IC, if it is uni-
formly observable then H(T) = D§[BZ(I—AZy'1*. This shows, again, that
s-dim H = s-dim Hp = #B, the state dimension sequence. It also shows
that the input state space is determined by the pair (4, B).

Lyapunov Equations

A state transformation on a given realization T has the form

el )

where R is a boundedly invertible diagonal operator. State transformations
are often used to bring a transition operator into some desirable form. For
example, an input normal form (A*A + B*B = I) is obtained by putting
M = R*R and solving the Lyapunov equation

MV =A"MA+B'B, Me D(B,B) 2.3)

Equation (2.3) will have a unique solution provided {4 < 1. By taking the
k-th entry of each diagonal which appears in (2.3), this equation leads to
Mp1 = AiMA, + BiBy, which can be solved recursively if an initial value
for some My is known. If C is the controllability operator of the given
realization, then M = C*C is the solution of (2.3), which shows that M is
boundedly invertible if the realization is uniformly controllable. Likewise,
if the realization is strictly stable and uniformly observable (O is such that
Q = 00" is boundedly invertible), then @ is the unique bounded solution
of the Lyapunov equation

Q=AQA* + CC

and with the factoring of Q = R™'R™* this yields a state transformation R
such that A’A” + C’C" = 1. The resulting realization then forms an output
normal realization for the operator. In section 3 we shail assume that the
operator to be approximated is indeed specified by a realization in output
normal form. This is always possible to achieve.

J-unitary operators and J-unitary realizations

If an operator is at the same time unitary and upper, we shali call it an inner
operator. A J-unitary operator © is an operator with 2 x 2 block decom-
position so that the input and output spaces of @ are split into sequences
M @ N and M, ® A3, and has corresponding signature operators:

e ©p Im Im
= , Ji= 1 ) = 2
© [911 922] ! [ -IM} % [ —IM]
24

such that 8°J:0 = J,, ©'J,8 = J;. Let be given a state operator ©, and
let B be the space sequence of the state of ©. Suppose that B = B, @ B_
is a centain decomposition of B into two space sequences. Let

I
JB=[ B Is ]

be a corresponding signature matrix, which we call the state signature se-
quence of 6.

2.5)

Theorem 2.1. If a state realization operator © is strictly stable and
satisfies
* 'IB - ng)
e [ 7 }8— [ I 2.6)
J(B_ b . I8
8[ I o' = I Q.7

then the corresponding transfer operator © will be J-unitary in the sense
that
/8=,

QL8 =J;. 2.8

With ‘# indicating the sequence of dimensions of a space sequence, the
dimensions of the signatures satisfy the inertia relations

#B5Y + #M,
#BCD + #A; .

#B., + #M,
#B_ + #A)

"

29)

1

A J-unitary upper operator has an interpolation-type property: it maps its
input state space (in [£2Z7 £,Z7']) to [, Uz]. This general property,
formulated for a J-unitary state realization of ©, reads

Lemma 2.2. If {a B 7, 6} is a J-unitary state realization for a J-unitary
block-upper operator ©, then Z*(I - &’ Z'Y )18 e [U U].

Scattering operators

Associated to © is an operator X such that [a; &1 = (&2 b1] &
[a1 811© =[ay by]. I can be evaluated in terms of the block-entries of @
as

5o [ Zn I ] - [ 01~ 0203718, —81283} 2.10)

In Iz 8316, 67}

where J-unitarity of © ensures that 65} is bounded and that X is unitary.
One fact which will be essential for the approximation theory in the later
sections is that, although © has block-entries which are upper, 63} need
not be upper but can be of mixed causality, so that the block-entries of T
are in general not upper.

Partition the state x of the realization ® according to the signature Jz into
x = [x x}, and parition @ likewise, then a corresponding scattering
operator X can be defined by the relation

b1
hIZ =

xZ1 a )
X a b}

xz!
[x,z?

[x% x a

e [k xZ1 a4 @1

(inputs of Z have positive signature). Z can be computed independently for
each time instant from @. It is a kind of generalized or implicit realization
for Z, which can be obtained after elimination of x. and x,. Z is unitary:
IX*=]; Z*E =/, whichis easily derived from the J-unitarity of ©.

3. APPROXIMATION PROCEDURE

The problem that we shall solve in this section is the model reduction
problem for a strictly upper operator described. by a strictly stable “higher
order model”. Let I" be a diagonal and hermitian operator. We shalt use
T as a measure for the local accuracy of the reduced order model. It will
also parametrize the solutions. We will look for a contractive operator E
such that E = (T*—T'*)["* where T’ is an operator which is not necessarily
upper triangular, but whose strictly causal part will assumed to be bounded
and have state space dimensions of low order — as low as possible for a
given I'. Once we have such a contractive E, it is immediately verified that
it satisfies | T}(T-T") || = || E|| < 1. Let T, be the strictly causal part of
T'. Then
ITYT-T)|w < |TT-T)| <1,

and T, is a Hankel-norm approximant when 7' is an operator-norm approx-
imant. The construction of a suitable T’ consists of three steps. We start
by determining a (minimal) factorization of T in the form T = A*U where A
and U are upper operators which have finite state space dimensions of the
same size as that of T, and U is inner: UU* = I; U*U = I. Next, we look
for a locally finite J-unitary operator ® with upper block entries chosen
such that

v -TTe=[a -8 @3.1)

consists of two upper operators. © will again be locally finite. Then,
because © is J-unitary, we have that €5} will exist (but not necessarily
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be upper) and Zj; = —€,265] will be contractive. From (3.1) we have
B’ = ~U'81, + T'T 18y, . Define the approximating operator T’ as

" =B'&yT, (32)

then £ = (T* — T"")[™! = =U"%y; has || E|[ € 1, so that T = B'&;}T is
indeed an approximant with an admissible modeling error. In view of the
target theorem 1.1, we have to show that the strictly causal part T, of T’
has the stated number of states and to verify the relation with the Hankel
singular values of I'™'T. This will done at the end of this section.

Factorization of T

Theorem 3.1. Let T be an upper operator which has a strictly stable
locally finite and uniformly observable state space realization {A,B,C,D}.
Then there exists a factorization of T as T = A*U , where A and U are upper
operators, again locally finite and strictly stable, and U is inner, i.e., upper
and unitary.

PROOF We start from a realization of T in output normal form, i.e., such
that AA® + CC* = 1. For each time instant &, augment the state transition
matrices {A;x Ci] of T with as many extra rows as needed to yield a unitary
(hence square) matrix Uy:

Ue = Ay Ci
Bux Oux |-

Assemble the individual matrices {Ax, (Bu), Ck, (Dy)i} in diagonal oper-
ators {A, By, C,Dy}, then the corresponding operator U is a state space
realization for U; U = Dy + ByZ(I -AZy''C. U is well-defined and upper,
and it is unitary because it has a unitary realization (as in theorem 2.1). It
is straightforward to verify that A = UT* is indeed upper. a
Note that the number of rows added to [A; Ci] is time-varying, so that
U (and hence also A) has a time-varying number of inputs. The varying
number of inputs of U will of course be matched by a varying number of
outputs of A*.

(3.3)

Construction of 8

The next step is to construct a locally finite and block-upper J-unitary ©
that satisfies equation (3.1). Let B be the space in which the state sequences
of the realization @ of © live. @ will be J-unitary in the sense of (2.4) if
© satisfies (2.6) with some state signature matrix J 5 to be determined yet.
Let {A, B, C, 0} be the realization for T used in the previous section (it is in
output normal form), and let {4, By, C, Dy} be the realization for the inner
factor U of T. We submit that © satisfying (3.1) has a realization @ of the

ol B o

which is a square matrix at each time instant £, and where X and C;, D;;
are yet to be determined. Note that the state sequence space B is the same
for ® and T. X is a boundedly invertible diagonal state transformation
operator which is such that @ is J-unitary as in (2.6). Writing A = X*JgX,
the signature of A will determine Jz, and it is straightforward to derive that
A =1-M, where M is given by

MY = AMA+ B TTB,

(3.5

M is the solution of one of the Lyapunov equations associated to I'"'7, and
can be determined recursively from the given realization of T via My =

AMA, + BiTPT By
Theorem 3.2. Ler T be a strictly upper locally finite operator mapping

&M 10 ¢}, with output normal realization {A,B, C,0} such that €4 < 1, and
let T be a Hermitian diagonal operator. Also let U be the inner factor of
a coprime factorization of T. If the solution M of the Lyapunov equation
(3.5) is such that A = I - M is boundedly invertible, then there exists a
J-unitary block upper operator © such that (U* —T*T10 is block upper.

PROOF The condition insures that there exists a state transformation X such

By(xthy!
that &= XAX©Y)™, f= [ r‘-ll;((ﬂ-')))“l

oJpa + N8 = ISV,

satisfy

(3.6)

X is obtained by solving the Lyapunov equation (3.5) for M, putting A =
1-M, and factoring A into A = X*JgX. This also determines the signature
operator Jg and thus the space sequence decomposition B = B, @ B_. The
next step is the construction of a realization © of the form (3.4) which is
a square matrix at each point £, and where the X and C;, D;; are yet to be
determined. © is to satisfy (2.6) for

= [IMU y ] , b= [ Inm, i ]
2

where the dimensionality of the output space sequences M and A, follow
from theorem 2.1, equation (2.9) as

My = #B,—#BSD s #My 20

#N> #8_-#BCD +#M 20.

37

Finally, to obtain @, it remains to show that [ ; ] can be completed to

form @ in (3.4), in such a way that the whole operator is now J-unitary in
the sense of (2.6). It can be shown that this completion exists under the
present conditions and can be achieved at the local level: it is for each time
instant k an independent problem of matrix algebra. To conclude the proof,
we have to show that [U* —~T*I"]@ is block upper. We have

[ -177TY = D, -D'T+CZU-AZY[B; -B'TY
and it will be enough to show that
D.Z'(I-AZ) (B -B'T18

is block upper. With entries as in equation (3.4), and using the state
equivalence transformation defined by X, this is equivalent to showing that
DyXZ*(I-oZ")" 8" J1 © is block-upper. That this is indeed the case follows
directly from lemma 2.2. o
We conclude this section by establishing the link between the Lyapunov
equation and the Hankel operator connected with I™T.

Theorem 3.3.  Under the hypothesis on the singular values of the Han-
kel operators Hy of T'T in theorem 1.1, the solution M of the Lyapunov
equation (3.5) is such that A = I - M is boundedly invertible and has sig-
nature Jp having Ny negative entries at point k, where Ny is the number of
singular values of Hy that are larger than 1.
PROOF The solutions of the two Lyapunov equations associated to "7,

MED = A*MA+B'T2B

0 = AQUVA*+CC*
may be expressed in terms of the controllability and observability op-
erators of ™7 as M = C*C, Q = QO*. The Hankel operator Hy of
T at time instant k& satisfies the decomposition Hy = CiO;. Hence
HyH, = CrOwO[C; . We have started from a state realization in output
nommal form: @ = OO* = /. With the current finiteness assumption,
the non-zero eigenvalues of HiH; = CiC; will be the same as those of
CiCx = M;. In particular, the number of singular values of H that are
larger than 1 is equal to the number of eigenvalues of M; that are larger
than 1. Writing Ax = I~ M,, this is in turn equal to the number of negative
eigenvalues of Ag. o
Figure 2 shows a simple instance of the application of the theory developed
in this section, especially with regard to the dimensions of the input, output
and state sequence spaces related to the ©-matrix. While the signal flow of
© runs strictly from top to bottom and from left to right, the directions of
the arrows in the figure correspond to the signal flow of the unitary state
space operator E that can be associated to ©, and that will play an important
role in the next section. Upward arrows in the state of X are caused by the
negative cntries in the state signature Jg of 6.

3079



| * = =L

171 =
—* L=
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Fig. 2. (a) Computational scheme for 7, (&) Computational scheme for a possible
¥, where it is assumed that one singular value of the Hankel operator of
I™T at time 1 is larger than 1.

Complexity of the approximant

At this point we have proven the first part of theorem 1.1: we have con-
structed a J-unitary operator © and from it an operator T, which is a
Hankel-norm approximant of 7. It remains to verify the complexity asser-
tion, which stated that the dimension of the state space of T, is at most
equal to N: the number of Hankel singular values of I'!T that are larger
than one. In view of theorems 3.2 and 3.3, N is equal to the number of
negative entries in the siate signature Jz of ©. Suppose that the conditions
of theorem 3.2 are fulfilled so that © satisfies

W -71'18 = [A' -B')

withA’, B’ € U. Let T*T™ = B’87} . The approximating transfer function
T, is given by the strictly upper part of 7’. It might not be a bounded
operator but its Hankel map Hr, = Hy: is well-defined and bounded. We
have

Lemma 3.4. Under the conditions of theorem 3.2, the input state space
of T7, satisfies H(TIT,) c H(©33).

PROOF From the definition of H and the operators we have

P (LT, TH)
P z:(LT"T)
P,71(16B'83})
Ppyza( 831)
HE3).

n

H(TT,)

n

n

m]

Hence the dimension sequence of M(®3;) is of interest. Define the
“conjugate-Hankel” operator #’ := Hé;zl =Pgz(- 9521){u2 Then H(833) =
ran (H’).

Let the signals ay, b1,a2, b2 and the state sequences x.,x- be in A2 and
be related by © as in (2.11). Define decompositions into past and future
parts of signals in A2: a1 = a1 + ai with a1 = P/ 71(a1) and ayy = P(a1).
Because 65] = ¥, the conjugate-Hankel operator H' is a restriction of
the partial map X33 : b2 ~ by, that is, H' : by — by, is such that by
and b, satisfy the input-output relations defined by Z under the conditions
a; = 0 and by, = 0. Inspection of figure 3 shows that /# can be factored
as H' = or, where the operators

[+ bzf = X.j0) TI X [0 = blp

can be derived from X by elimination of x,[g}, again taking a; = 0 and
by, = 0. It can be shown [8] that the operator o is ‘onto’ while 7 is ‘one-
to-one’, so that the factorization of H’ into these operators is minimal. It

0 ) A )
b2 Z2 0 [
aip axp
0
b1 I, }: 0 bip by
x50 X0 Xo) X0
0 a a;
P bao 1y 25
by by
0 ' 1
* I by ] ]

L= 1
(a} )

Fig. 3. (a) The state transition scheme for X, with £;-sequences as inputs. (5) The
decomposition of E into a past operator X, and a future operator ; linked
by the state [x.(0) x-(o)]. This summarizes the figure on the left for all time.

follows, in lemma 3.5, that the dimension of x_jo; at each point in time
determines the local dimension of the subspace H(©33) at that point.
Lemma 3.5. The s-dimension of H(833) is equal to N =#(B_), i.e., the
number of negative entries in the state signature sequence of ©.

Lemma 3.5 completes the proof of theorem 1.1. It is possible to derive
explicit formulas for a realization of the approximant T, [8]. This realization
is given in terms of four recursions: two that run forward in time, the other
two run backward in time and depend on the first two recursions. One
implication of this is that it is not possible to compute part of an optimal
approximant of T if the model of T is known only partly, say up to time
instant .

4. PARAMETRIZATION OF ALL APPROXIMANTS

The present section is devoted to the description of all possible solutions to
the Hankel norm approximation problem of order smaller than or equal to
N, where N = s-dim H(633) is the sequence of dimensions of the input state
space of ©5;. We shall determine all possible bounded operators T/ € A’
for which it is true that

M THT-T)| <1,
and (2) the state dimension sequence of T, = (upper part of T”)
is at most equal to N.

It tuns out that there are no Hankel norm approximants with state dimension
sequence lower than N. The result is that all solutions are obtained by
a linear fractional wansform (chain scattering transformation) of © with
an upper and contractive parameter S;. That this procedure effectively
generates all approximants of with state dimensions at most equal to N can
be seen from the fact that if | (T - T,) ||w < 1, then an extension T’ of
T, must exist such that || (T'- T7) || < 1 (Nehari’s theorem).

We will use the following preliminary fact.

Theorem 4.1. ((8])) Let Ae U, B=I-X whereX e X, || X| <1,
and let A be invertible in X. Suppose that s-dim Pgz:(bA™") = N. Then
s-dim Pg,z:(UhB'A ) =N+p =  s-dim Py z(lhAB) =p.
Generating new solutions of the interpolation problem

Theorem 4.2. Let T, T and U be as in theorem 3.2, and let N be the
sequence of number of singular values of the Hankel operator of TT that
are larger than 1. Let © be a J-unitary block-upper operator such that
[U* =TTV 8=[A' ~B'le [U U, which exists by theorem 3.2.

Let S € U be a contractive operator. (1) 82— 6215, is boundedly invert-
ible, and S = (8115, — ©12)(@2 — 8215,)7! is contractive.
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(2) Let, furthermore, T' = T+T'S*U. Then

@ |TT-T|=|sU|=1,
()] the state dimension sequence of T, = (upper part of T')
is precisely equal to N .

That is, T, is a Hankel norm approximant of T. The Hankel norm approx-
imant of the previous section is obtained for Sy = 0.

PROOF (1) is true by J-unitarity of © and contractiveness of S.. (2a)
follows immediately since I'}(T—T*) = §*U and U is unitary. To prove
(2b), use the following equality:

Tt = [U* -TTY -Sz
= [ -TT g;: g;;] [f’;}(ezz-gzl&)']

W -8 [ % | (@~ @Sy
(A'SL+B") (8- 655.)".

Since (A’S;, +B') € U, the state dimension sequence of 7" is at most equal
1o the s-dim P, 7:[U2(82~ 62151)" 1. Because the latter operant is equal
to (/ - €5]62,51)7165], and ||63102:15. || < 1, application of theorem 4.1
with A = O and B = I - 6;]6,5, shows that s-dim P ;1(26(82 -
€,15.)7 ] = s-dim P 7.k 63)) = s-dim H(633), i.e., equal to N. Hence
s-dim H(T’) < N (pointwise).

The proof terminates by showing that also s-dim H(T') 2 N, so that in fact
s-dim H(T') = N. We omit this part here. ]
So all S of the form S = (0115, — ©12)(62; — 6,,5.)"! with S; € U,
[|SL|] < 1 give rise to Hankel norm approximants of 7. It is well known
that this type of expression for S is a chain scattering transformation of S,
by ©. The reverse question is: are all Hankel norm approximants obtained
this way? That is, given some T’ whose strictly upper part is a Hankel
norm approximant of T, is there a corresponding upper and contractive Sz
such that T’ is given by T/ = T+ I'S*U, with S as above. This problem
is addressed in the next theorem. The main issue is to prove that Sy as
defined by the equations is upper.

Generating all approximants
Theorem 4.3. Let T, T, U and © be as in theorem 4.2, and let N be the

number of Hankel singular values of T'T that are larger than 1. Let be
given a bounded operator T' € X such that

O (TT-1)| <1,
Q) the state dimension sequence of T, = (upper part of T')
is at most equal to N .

Define S = U(T™ =TT\,  Then there is an operator S with (Sp €
U,||SLIl < 1) such that S = (8111 - ©12X(O2 — O181)™! (i.e., © gener-
ates all Hankel norm approximants). The state dimension of T, is in fact
precisely equal to N.

PROOF The main line of the proof runs in parailel with {7], but differs
in detail. In particular, the ‘winding number’ argument to determine state
dimensions is replaced by theorem 4.1.

1. From the definition of $, and using the factorization T = A*U, we
know that

IS =lva@™ -t =TT -D| <1

so S is contractive. Since § = —AI'! + UT”"I™!, where A and U
are upper, s-dim H(S*) < s-dim H(T’) < N, i.e, the state dimension
sequence of a minimal realization of the causal part of S* is at most
equal to N.
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2. Define [G} G3] = [§* [18. Then H(G}) < H(T’) and H(G}) <
H(T'). (Proof omitted.)

3. The definition of G1 and G, can be rewritten using 671 = J@"J as

s1_ o[ G
[5]-e] &)
G, is boundedly invertible, and S defined by S, = G1G3! is well

defined and contractive: || S, [{ < 1. In addition, S satisfies S = (0115~
©12)(0 - 6,15.)! as required. (Proof omitted.)

4. G3' e U, the space H(T”) has the same s-dimension as H(€33), and
H(GY) < HGY).
PROOF According to equation (4.1), G;! satisfies

G;! 6 (1 - 6516151)
G -636,5)7163} .

Let p = s-dim H(G3*) = s-dim P,7:(06G3Y), N; = s-dim H(G3) =
s-dim P,71(thG2), and N = s-dim H(833) = s-dim P ;.@4663)).
Then N, < N. Application of theorem 4.1 with A = @5, and B =
(/ - ©3162151) shows that N = N +p, and hence N, = N and p = 0:
G3' € U, and H(G3) has s-dimension N. Step 2 claimed #(G}) <
H(T'), and because the latter space has at most s-dimension N, we
must have that in fact 7(G3) = H(T"), and hence H(G}) < H(G3).

5. SLelU.
PROOF This can be inferred from G3! € U, and H(G}) < H(GS), as
follows. Sp € U is equivalent to P z:(USL) =0, and
PL,z—l(uzsL) = P[;zz-l(uzGlel)
P[,zz-l (PLzZ'1 (th])Gil )
since G3' € U. Using H(G}) © H(G}). or Pzi(thG) <
P, 71(U:G2) we obtain that

PC:Z‘ (uZSL) c P yoya ( P le-l(usz)Gi 1 )
= P.;(hGiGy!)  (since G3' e U)
0.

@1
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