
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no

lo
gy

Master of Science Thesis
Tilt-rotor Tailsitter Global Acceleration Control: Be-
havioural Cloning of a Nonlinear Model Predictive Con-
troller

Alexis van Wissen

Master of Science
Thesis

Tilt-rotor Tailsitter Global Acceleration Control:
Behavioural Cloning of a Nonlinear Model

Predictive Controller

by

Alexis van Wissen
to obtain the degree of Master of Science at the Delft University of Technology, to be defended

publicly on Wednesday December 6, 2023.

Student number: 4676793
Thesis committee: Prof. Dr. G.C.H.E. de Croon TU Delft, Chair

Dr. Ir. E.J.J. Smeur TU Delft, Supervisor
Dr. N. Eleftheroglou TU Delft, External
Z. Ma MSc. TU Delft, PhD Candidate

Project Duration: May, 2022 - December, 2023
Faculty: Faculty of Aerospace Engineering, Delft

An electronic version of this thesis is available at https://repository.tudelft.nl/

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Contents

1 Introduction 1

2 Academic Paper 3

3 Literature Study 21
3.1 Literature Study Research Questions . 21
3.2 State of the Field . 21

3.2.1 Outer-loop Control of Hybrid MAVs . 22
3.2.2 Aerodynamics and Thrust Modelling . 24
3.2.3 Trajectory Tracking . 27

3.3 Research Gap & Conclusion . 32

4 Verification 35
4.1 Model Verification . 35

4.1.1 Manual Verification of State Derivatives . 35
4.1.2 Full Simulation Verification . 37

5 Conclusion 40

References 42

A Literature Study Initial Proposal 45
A.1 Proposed Kinematic Controller: Three-Dimensional L1 Path Following 45
A.2 Proposed INDI Controller Derivation . 46

B Model Identification 48
B.1 Distance between centre of gravity and centre of pressure 48

C Initial Investigation 49
C.1 Longitudinal Model . 49
C.2 Cascaded INDI . 50
C.3 Differential Flatness combined with INDI . 50
C.4 Feedforward Control Input Generation Through Differential Flatness 51

i

Acronyms
BRF Body Reference Frame. 46

INDI Incremental Nonlinear Dynamic Inversion. 23, 24, 31
IRF Inertial Reference Frame. 46

LQR Linear Quadratic Regulator. 22, 23

MAV Micro Air Vehicle. i, 1, 2, 21, 22, 35
MPC Model Predictive Control. 31

NDI Nonlinear Dynamic Inversion. 23
NMPC Nonlinear Model Predictive Control. 40

PID Proportional Integrative Differential. 22, 29

RMSE Root Mean Square Error. 31

SLMPC Sequentially Linearised Model Predictive Control. 32

UAV Unmanned Air Vehicle. 1, 26, 28, 30

ii

Nomenclature
α Angle of attack

α0 Zero-lift angle-of-attack

αl Left propeller tilt angle

αr Right propeller tilt angle

αprop Propeller angle-of-attack

C̄l Averaged lift coefficient

q̄ Dynamic pressure

ẋ Derivative of the state x

υ Virtual control input

u0 Initial input vector

u Input vector

x0 Initial state vector

x State vector

η Angle between L1 vector and the velocity vector

γ Waypoint bearing gain

⟨p, q, r⟩ Angular velocity components

⟨q0, qx, qy, qz⟩ Attitude quaternion components

⟨Vx, Vy, Vz⟩ Inertial velocity components

⟨x, y, z⟩ Position coordinates

ω Angular velocity

ωl Left propeller angular velocity

ωr Right propeller angular velocity

ϕ Roll angle

Φ(fv) Aerodynamics coefficients matrix

ϕin Inflow angle

ψ Yaw angle

ρ Air density

σ Propeller solidity

θ Pitch angle

φd Desired bearing

iii

Nomenclature iv

φR Bearing from the previous waypoint to the destination waypoint

φT Bearing from the UAV to the destination waypoint

a⃗ Acceleration in the inertial reference frame

D⃗A Vector from CG to point A

F⃗g Gravitational force vector

F⃗I Inertial force vector

F⃗aero Aerodynamic force vector

F⃗Baero
Aerodynamic force in the body reference frame

g⃗ Gravitational acceleration in the inertial reference frame

T⃗B Thrust force vector in the body reference frame

T⃗I Thrust force vector in the inertial reference frame

U⃗ Input vector

v⃗B Free-stream velocity vector in the body reference frame

X⃗ State vector

A State transition matrix

a Airfoil lift-curve slope

acmd 3D Commanded acceleration

Adisc Propeller disc surface area

ascmd
Commanded lateral acceleration

B Control matrix

c Chord length

Cd Drag coefficient

cT Thrust coefficient

Cd0 Zero-lift drag coefficient

CLα
Lift slope coefficient

Cy0
Lateral force coefficient

D Propeller diameter

DT Distance from target

DCT Cross track error

e(t) State error as a function of time

F (x0,u0) State effectiveness matrix

fa Average propeller force

FB Force in the BRF

Fdrag Drag force function

Nomenclature v

Flift Lift force function

g Gravity acceleration

G(x0,u0) Control effectiveness matrix

I Inertia matrix

J Advance ratio

Jcost Cost function

K Optimal control feedback matrix

KC Cross track error gain

KD Path reaching gain

Kd Derivative gain

Ki Integral gain

Kp Proportional gain

Khvr Reduced flow turning efficiency correction coefficient

L Lift

L1 Vector between vehicle and reference point

m Mass

M I
B Transformation matrix from the body reference frame to inertial reference frame

N Number of blades

P Solution to Riccati equation

PP Propeller pitch

Q State penalising coefficients matrix

R Input penalising coefficients matrix

r Radius

r(t) Reference value as a function of time

S Wing surface area

S Wing surface area

T Thrust

T ∗ Look-ahead time

u(t) Input value as a function of time

Vg Ground speed

VN Normal velocity component

V∞ Free-stream velocity

w0 Induced velocity

y(t) State value as a function of time

Zfwd Corrective aerodynamic force in forward flight

Zhvr Corrective aerodynamic force in hovering flight

1
Introduction

Quad-rotor drones are the first drone configuration that comes to mind when thinking of small UAVs.
Their ability to perform agile manoeuvres and perform stationary flight has seen their popularity explode.
However, their wingless configuration severely limits their energy efficiency and thus their range. This
is why work has been performed on tail-sitter aircraft that have the benefit of being able to perform
more efficient horizontal flight as well as stationary flight. The typical tail-sitter has two fixed rotors and
controls itself through differential thrust for yaw control, and uses its flaps for pitch and roll. The problem
with this configuration is that the maximum pitch and roll moments that can be achieved are limited by
the airspeed over the aerodynamic control surfaces. Additionally, a complete loss of control authority
for pitch and roll can be caused by descending fast whilst hovering as the airflow over the wing would
be reversed.

The proposed solution to this problem is removing the aerodynamic control surfaces and purely con-
trolling the tail-sitter through two tilt-rotors. This removes the dependence of pitch and roll control on
airspeed and greatly increases the moments that can be generated which facilitates general control of
the drone but also the transition from hover to horizontal flight. For a better idea of the configuration, a
picture of the drone can be seen in Figure 1.1.

Figure 1.1: Tilt-rotor Tailsitter MAV

Some issues do arise from such a configuration. Mainly, the largely nonlinear behaviour of the system
and the difficulty in modelling aerodynamic forces. To mitigate these issues and start developing a

1

2

controller for this configuration, Incremental Nonlinear Dynamic Inversion was used to control the atti-
tude in [1]. This acceleration-based controller allows for the system to be controlled by only needing a
simplified model of the system and a control effectiveness matrix. The incremental nature of the control
in turn deals with modelling discrepancies and external disturbances such as wind [2].

The novelty and new work that will be performed in this thesis will be related to figuring out the best
way to implement acceleration control for the drone.

Research Objective:
To design and implement a global acceleration controller for a novel tilt-rotor tailsitter MAV.

Research Questions:

1. How can the acceleration of a tilt-rotor tailsitter MAV be controlled?
2. To what extent does the proposed acceleration controller for the tilt-rotor tailsitter MAV exhibit

global effectiveness?
3. How can the global acceleration controller be practically implemented on the tilt-rotor tailsitter

MAV?

Structure
In chapter 2, the academic paper summarising the main results from this thesis can be found. The
paper can be read as a standalone document. Following the paper in chapter 3, the initial literature
study is presented. Next in chapter 4, the results from a verification of the dynamics model used in the
academic paper are shown. To finish, the main findings and answers to the research questions are
summarised in chapter 5.

2
Academic Paper

3

1

Tilt-rotor Tailsitter Global Acceleration Control:
Behavioural Cloning of a Nonlinear Model

Predictive Controller
A.J.R. van Wissen, Z. Ma, and E.J.J. Smeur,

Delft University of Technology, 2628HS Delft, The Netherlands

Abstract—Capable of both vertical take-off and landing and
forward flight, tail-sitters are a versatile class of UAVs with
a large range of potential applications. A variant of tailsitters
using tilt-rotors instead of ailerons for pitch and roll control
has been proposed to mitigate the reduced control authority at
low to zero velocities. The control of the translational dynamics
for this platform is uniquely challenging. The extended flight
envelope requires the controller to be able to perform hover and
forward flight which are two flight phases with very different
dynamics. Additionally, the tilt-rotor mechanism used to control
the system is highly nonlinear which adds to the challenge. This
paper presents a novel acceleration controller using Nonlinear
Model Predictive Control (NMPC) in addition to the use of
behavioural cloning to mimic the NMPC using a feedforward
neural network. It is shown that behavioural cloning does
successfully transfer general flight characteristics but that the
performance is degraded with respect to the NMPC. Additionally,
a sensitivity analysis was performed to investigate the effects of
improper parameter estimation on controller performance. The
most interesting result from this analysis is the strong sensitivity
of both controllers to changes in centre of gravity location and
mass.

Index Terms—UAV, Tailsitter, Tilt-rotor, Acceleration Control,
Nonlinear Model Predictive Control, Behavioural Cloning

I. INTRODUCTION

There has been a surge in the use of micro air vehicles
(MAVs) over the last few years with uses spanning a spec-
trum of civilian and military applications including inspection
services, crop monitoring and surveillance tasks [1]. Some
of these applications necessitate the combination of features
seen in fixed-wing MAVs, such as long-range flight and high
endurance, with the hovering and vertical take-off and landing
abilities typically associated with rotorcraft. Hybrid MAVs
cover these requirements by combining the ability to hover
with a wing to have an efficient forward flight. A specific
type of Hybrid MAV called tailsitter rotates their whole body
90 degrees to transition between flight phases. According to
[2], this reduces the mechanical complexity of the system
and adds minimal dead weight thanks to the use of fixed
rotors and aerodynamic control surfaces. However, the use
of aerodynamic control surfaces limits the ability to control
roll and pitch at lower airspeeds. To resolve this issue, the
addition of tilt-rotor mechanisms to the propellers and the
removal of the ailerons has been proposed in [3], removing
the dependence on airspeed for pitch and roll control.

Controlling such a system is difficult in part due to the
large flight envelope that includes hover, transition and forward

flight which means that the flight dynamics vary substantially.
Adding to this, a nonlinear tilt-rotor control mechanism that
has to control both attitude and position, the selection of a
control method should take these challenges into account.

In [4], a fused-PID velocity controller was developed to
control a tilt-rotor Vertical Take-Off and Landing (VTOL)
drone. Two different PID controllers had to be designed to
deal with hover and forward flight and were fused to deal with
transition flight. This highlights a weakness of PID control
where highly nonlinear systems require the design of multiple
PID controllers to deal with the system dynamics.

In [5], the outer-loop control of a tilt-rotor drone was
designed using a state-dependent LQR trajectory controller
that controls the angular rates and thrust. The low-level control
is made of multiple PID controllers requesting moments to
achieve these angular rates. Although this method achieved
moderately aggressive trajectories, the use of PID controllers
in the low-level control would be challenging for this highly
nonlinear platform.

Incremental Nonlinear Dynamic Inversion (INDI) is a good
candidate for acceleration control thanks to its successful
implementation on multiple similar fixed-rotor tailsitters. In
[6], two INDI controllers controlling attitude and velocity indi-
vidually were combined in a cascaded structure to successfully
control a fixed-rotor tailsitter in all phases of forward flight.
Additionally, in [7], an adaptation of INDI using differential
flatness was successfully implemented to perform accurate and
aggressive uncoordinated flight manoeuvers. The use of INDI
was tested, but after several trials, a cascaded INDI approach
showed difficulties in controlling the drone adequately. It can-
not be guaranteed that it is impossible to use such an approach
but the difficulties encountered were most likely caused by the
high coupling between translational and rotational control on a
tilt-rotor control mechanism. For example, using the tilt-rotor
mechanism to fulfil an immediate acceleration requirement
may be possible but could negatively affect the attitude of the
drone in the future. It therefore became apparent that a solution
that can deal with this coupling is needed to control this drone.
Model Predictive Control is one such method that can optimise
the control outputs to follow acceleration requirements without
jeopardising its ability to do so in the future. The system
being highly nonlinear warrants the use of Nonlinear Model
Predictive Control (NMPC) [8].

To the best knowledge of the author, NMPC has not been
used for the control of a tilt-rotor tailsitter before. NMPC

2

is an elegant solution to the problem of controlling a tilt-
rotor tailsitter thanks to its ability to follow objectives such as
acceleration defined in a cost function. The nonlinear solver
then minimises the value of the cost function to find the
required control inputs. Through some initial testing, it became
apparent that the NMPC may have difficulties running in real-
time on hardware that can be placed on the drone.

Imitation learning is a method that can be used to solve
this issue as explained in [9] where the behaviour of an expert
NMPC controller was replicated using a neural network. A
neural network can run substantially faster than the NMPC on
much less powerful hardware. This is called imitation learning.
Imitation learning at its core aims to replicate the behaviour
of an expert controller which in this case is the NMPC
mentioned previously. In a survey summarising the different
imitation learning methods [10], three different techniques
were identified: Behavioural Cloning, Direct Policy Learning
and Inverse Reinforcement Learning.

Behavioural Cloning is the most straightforward method
where the expert controller is used to generate input-output
data pairs which the neural network will then try to replicate
through training. Direct Policy Learning starts identically as
Behavioural Cloning by training an initial policy but can
request additional expert controller input-output pairs in sit-
uations where the original policy performs poorly. Inverse
Reinforcement Learning consists in learning a reward function
from expert demonstrations which in this case is the NMPC
to then apply this reward function in a normal reinforcement
learning framework.

For this work, Behavioural Cloning will be used as a frame-
work for imitation learning thanks to its simplicity. This means
that a feedforward neural network will be built and trained on
input-output pairs generated by an NMPC controller.

The contribution of this paper is the development of an ac-
celeration controller using nonlinear model predictive control
for a tilt-rotor tailsitter simulation. Additionally, due to its high
computational requirements, behavioural cloning is proposed
and tested to mimic the behaviour of NMPC allowing it to be
run on hardware that can be placed on the tilt-rotor tailsitter.

This paper is structured as follows. To start, the design
of the vehicle simulation along with some definitions and
conventions will be detailed in section II. Then, the reasoning
behind the design of the general control structure is outlined
in section III. The design of the NMPC and the NN used for
behavioural cloning are outlined in section IV and section V
respectively. Next, the performances of both controllers are
assessed in section VI. Following this, a sensitivity analysis is
performed in section VII. To finish, the results are discussed
in section VIII and conclusions made in section IX.

II. VEHICLE SIMULATION

The vehicle simulation will base itself on the tilt-rotor
tailsitter shown in Figure 1 which was developed in [3]. The
model will be used to test the developed control methods and
will be composed of three major components: the aerodynam-
ics model, the thrust model and the actuator dynamics.

Fig. 1. Tilt-rotor tailsitter MAV [3].

A. Definitions and Conventions

Before diving into the modelling of the system, some
definitions and conventions need to be defined.

Firstly, the inertial reference frame that is used is the North-
East-Down (NED) reference frame. The cube in Figure 2
illustrates this, the positive X-axis points North, the positive
Y-axis points East and the positive Z-axis points Down.

Fig. 2. Modelling reference frames: inertial reference frame (bottom left cube)
and body reference frame (drone model).

Secondly, the body reference frame of the drone is centred
at its origin with the positive direction of its X-axis pointing
towards the nose of the drone and the positive direction of the
Y-axis pointing perpendicularly along the wing. The Z-axis
completes the right-handed axes. These axes are represented
in Figure 2.

Finally, the representation of Euler angles in plots will not
use the standard ”ZYX” rotation sequence but the ”ZXY”
rotation sequence to avoid issues with representing attitude
during hovering phases of flight.

B. Aerodynamics Model

In [7], a fixed-rotor tail-sitter was successfully controlled
using INDI and differential flatness. The aerodynamic model
used in this paper called ϕ theory is a singularity-free model
that has been expressly developed for the ”algorithmic flight

3

control of tail sitters” [11]. The objective of this model
is not to be more accurate than other models but instead,
trade some accuracy for a more consistent and numerically
stable model. The authors of [11] also conclude that this
model effectively captures the main dynamic characteristics
throughout the whole range of flight conditions. This last point
is important as it implies that if the ϕ theory model parameters
are properly identified, the model will depict the main flight
characteristics of the drone. The aerodynamic model

F⃗aB
=

1

2
ρSV∞Φ(fv)V⃗B , (1)

where F⃗aB
is the aerodynamic force vector in the body refer-

ence frame, ρ is the air density, S the wing surface area, V∞
the free-stream velocity, Φ(fv) the aerodynamics coefficients
matrix and V⃗B the air velocity in the body reference frame.

The aerodynamic coefficients matrix Φ(fv)

Φ(fv) =

 Cd0 0 0
0 Cy0 0
0 0 CLα

+ Cd0

 , (2)

where CLα is the lift coefficient slope, Cd0 is the minimum
drag coefficient and Cy0

the minimum lateral force coefficient.

C. Thrust Model

The thrust model consists of three steps. First, the static
thrust T0 is calculated using

T0 = 5 · 10−6ω2 − 0.0008ω + 0.1034, (3)

where the propeller angular velocity ω is the input. This
equation was determined experimentally by G.H.L.H. Prescod
in [3].

Static propeller thrust is not what is experienced during ac-
tual flight as the inflow velocity of the air reduces the capacity
of the propeller to produce force. Modelling this effect can be
done by using the relationship shown in Equation 4 which is
adapted from [12]. The effective thrust Tc is calculated using

Tc = T0
ve − v

ve
, (4)

where T0 is the static thrust discussed previously, ve the trans-
lational velocity and v the inflow velocity. The translational
velocity ve shown in

ve =
ω

2π
PP , (5)

depends on the propeller angular velocity ω and propeller pitch
PP . It can be described as the velocity at which the propeller
would progress in a viscous liquid. Finally, inflow velocity
v is the velocity of the airflow perpendicular to the plane of
rotation of the propeller. With the estimation of the effective
thrust performed, the force vector in the body reference frame
F⃗TBl,r

can be calculated using

F⃗TBl,r
=

 TBl,r
cos(αl,r)
0

−TBl,r
sin(αl,r)

 , (6)

where TBl,r
is the effective thrust of the propeller and αl,r is

the angle of the propeller nacelle. l and r subscripts denote the
left and right propellers. Figure 3 shows the positive definitions
of TBl,r

and αl,r in a simplified side view of the drone. The
final thrust force F⃗TB

is calculated using

F⃗TB
= F⃗TBl

+ F⃗TBr
. (7)

Fig. 3. Simplified drone side view: definition of TBl,r
and αl,r in the body

reference frame.

D. Actuator Dynamics

The actuators in this system are composed of the propeller
motors of which the angular velocities are denoted ω and
the tilting mechanism servos whose angles are denoted α.
Including actuator dynamics in the simulation is important as
in real life, control inputs are not replicated instantly in the
system. Simple first-order dynamics will be used to model the
actuators using the transfer function H(s) shown in

H(s) =
1

τs+ 1
, (8)

where τ is the time constant. This also means that the actuators
are now part of the state vector and the control inputs become
commands for these actuators to follow. As an example,
the calculation of the derivative of the left propeller angular
velocity ω̇l using Equation 8 is shown in

ω̇l =
1

τ
(ωlc − ωl) (9)

where ωlc is the commanded angular velocity and ωl is the
current angular velocity of the propeller. The same method is
used for the remaining actuators ωr, αl and αr. As the focus
of this work is not on complete modelling accuracy with the
real-world drone, all actuators will have the same first-order
dynamics for this proof of concept. The equation for these
dynamics (Equation 8) uses τ which is the time constant and
for this simulation is set to 0.04 seconds. This means that its
settling time, which is the time it takes for the state to reach
95% of the commanded value, is 0.12 seconds.

E. Integrated Model

To summarise, both the aerodynamics and thrust model
forces are combined to produce the equations of motion of
the system. The translational equations of motion are defined
in V̇x

V̇y

V̇z

 =
1

m
RIB(F⃗TB

+ F⃗aB
) +

 0
0
g

 , (10)

4

where F⃗TB
and F⃗aB

are the thrust forces and aerodynamics
forces in the body reference frame, RIB the reference frame
transformation matrix from body reference frame to inertial
reference frame and g the Earth’s acceleration. The rotational
equations of motion are defined in

 ṗ
q̇
ṙ

 =
1

I
(D⃗CP ×F⃗aB

+
∑
i=l,r

D⃗Ti × F⃗TiB
−Ω⃗×IΩ⃗), (11)

where I is a 3-by-3 matrix containing the moments of inertia
of the drone around the x-, y- and z-axis on the diagonal of the
matrix and Ω⃗ the angular velocity vector ⟨p, q, r⟩. Equation 11
can be simplified to ṗ

q̇
ṙ

 =
1

I
(D⃗CP × F⃗aB

+
∑
i=l,r

D⃗Ti
× F⃗TiB

), (12)

where the term Ω⃗×IΩ⃗ is ignored as its contribution compared
to the other terms is much smaller due to the low angular ve-
locities expected in the simulation. Additionally, the following
notation D⃗A indicates a vector starting at the centre of gravity
and ending at position A. Performing the cross product of this
distance vector with the force applied at the end of it generates
vector moments in the respective axes. CP stands for Center
of Pressure. In general, the Center of Pressure is not a fixed
point, but the aerodynamics model [11] used in this paper
calls for a fixed point at which the aerodynamic forces are
applied and thus D⃗CP is constant. Ti designates the points at
which the propellers generate their force. Tl refers to the left
propeller and Tr the right propeller.

For further reference, the full state X⃗ and control inputs U⃗
of the system are defined

X⃗ = ⟨x⃗, V⃗ , q⃗, Ω⃗, ωl, ωr, αl, αr⟩
U⃗ = ⟨ωlc , ωrc , αlc , αrc⟩

, (13)

where x⃗ is the position vector ⟨x, y, z⟩, V⃗ the velocity vector
⟨Vx, Vy, Vz⟩, q⃗ the quaternion vector ⟨q0, qx, qy, qz⟩ and finally
⟨ωl, ωr, αr, αr⟩ the actuator states. As for the control inputs,
ωl,rc denotes the propeller angular velocity and αl,rc the pro-
peller nacelle tilt angle. Additionally, the c subscript indicates
that the value is the commanded value and not the actual state
of the actuator.

F. Unmodelled effects and forces

As the objective of this work is to investigate the ability
of the developed control methods to handle the main dynamic
properties of a tilt-rotor tailsitter, some effects and forces were
left unmodelled. The addition of these forces to the controllers
in the future will be beneficial for modelling accuracy. This
section will discuss these forces and how not modelling them
affects the results that will be shown later.

1) Prop-wash: Determining the effects of prop-wash for
a tilt-rotor tailsitter is difficult due to its novel nature and
thus a lack of experimental data from the literature. The
forces generated by the prop-wash differ greatly depending on
the angle of the propeller nacelle. This can be visualised in

Fig. 4. Simplified prop-wash side view visualisation (dashed lines represent
region affected by prop-wash).

Figure 4. The figure depicts a side view of one of the tilt-rotor
propellers with two different angles of the propeller nacelle.
The dashed lines represent approximately the regions where
the flow has been accelerated based on propeller momentum
theory [12]. The two different propeller nacelle angles generate
vastly different regions affected by prop-wash which will
interact with the wing differently. Modelling of prop-wash-
induced forces is thus recommended for future work.

2) Propeller Angular Acceleration: Propeller angular ac-
celeration generates torques that are not modelled in this
simulation. The effect on the overall system is expected to
be low due to the small inertia of the propellers. Therefore for
this paper, it can be left unmodelled.

3) Propeller Nacelle Angular Acceleration: The rotation
of the propeller nacelle is what makes this drone a tilt-
rotor drone. In the model developed in this paper, the torque
required to rotate the propeller nacelles is not modelled and
therefore no torques are applied to the body of the drone when
rotating the nacelles. This torque should be added to the model
in further work.

4) Inflow Velocity to Drone Angular Velocity: Currently, the
inflow velocity to the propellers is only calculated based on the
point mass velocity of the drone. For steady-state flight, this
does not cause any errors. However, because the propellers are
not positioned at the centre of gravity of the drone when the
drone rotates, this causes the propellers to move at different
velocities than the centre of gravity. This effect should be
modelled if aggressive manoeuvres are performed but this is
not the case in this paper.

III. CONTROL STRUCTURE

As the objective of this work is to develop an acceleration
controller, the general control structure should be designed
around this. The structure should also allow for easy switching
between the NMPC controller and the neural network designed
to mimic the NMPC. The proposed general structure is given
in Figure 5. To calculate the target acceleration a⃗ref , a
proportional controller calculates the error between the target
velocity V⃗ref and the actual velocity V⃗ and multiplies it by
a gain KV = 0.8 which was determined through trial and
error. The components of a⃗ref are limited between -5 and
5 m/s2 to avoid large acceleration requirements from large
velocity errors. The acceleration controller then takes this
target acceleration along with additional states from the drone
X⃗ to calculate the control actuation required to achieve that
acceleration. This is a very modular structure which allows for

5

different acceleration controllers to be implemented as long as
they have the same inputs and outputs.

Fig. 5. General overview of control structure.

The velocity reference V⃗ref is generated by combining two
different controllers. On the right in Figure 5 an altitude
controller calculates the error between the drone z position
and the target altitude zref which is then multiplied by a gain
Kz = 0.2 (determined through trial and error) to get Vrefz .
To generate the velocity references ⟨Vrefx , Vrefy ⟩, a waypoint-
based method is used. Figure 6 illustrates how this is done.
A line is drawn between the drone position and the waypoint
location. Then, a unit vector can be built on this line and scaled
depending on the desired target velocity which finally creates
⟨Vrefx , Vrefy ⟩.

Fig. 6. Velocity reference generator.

The velocity reference generator switches to the next way-
point once the drone is within rw distance of the current

waypoint. Additionally, first-order dynamics in the same form
as Equation 8 were added to the velocity reference V⃗ref to
avoid large sudden changes. The time constant used for these
dynamics is 0.5 seconds. One of the benefits of this overall
structure is that minimal planning is needed for a mission. All
that is needed is a target velocity and the location and order
of the waypoints.

IV. NONLINEAR MODEL PREDICTIVE CONTROL (NMPC)

To define the Nonlinear Model Predictive Controller, a few
elements are needed. The dynamics model, the cost function,
the constraints of the system and the prediction parameters
(Prediction horizon and sample time). The dynamics model
used has been previously defined in section II. The cost
function value J is defined as

J = Ka · ae +Kpqr · Ωe −Kcross ·He, (14)

where ae is a term penalising acceleration error, Ωe penalises
excessive angular rates and He ensures the drone aligns its
body XZ-plane with the reference velocity vector. Terms
starting with Kx are simple weights used to balance the error
terms. ae is calculated using

ae =

p∑
i=1

(axrefi
− axi

)
2
+ (ayrefi

− ayi
)
2
+ (azrefi − azi)

2
,

(15)
where the x,y, and z accelerations are subtracted to their
respective reference values denoted axref

then squared. The
subscript i denotes the specific timestep and p is the prediction
horizon which in this case is 10. The term Ωe is calculated
using

Ωe =

p∑
i=1

(p2i + q2i + r2i), (16)

where the angular rates p, q and r are squared and summed
over all timesteps in the prediction horizon. Ωe was required in
the cost function as without it, the NMPC has no incentive to
find a stable attitude. This term being a secondary objective is
weighted less than the acceleration error. The final term called
He and which is defined in

He =

p∑
i=1

∥∥∥∥∥∥ diag(1, 1, 0) · V⃗ref∥∥∥diag(1, 1, 0) · V⃗ref

∥∥∥ × projxy(Y⃗B)i∥∥∥projxy(Y⃗B)i

∥∥∥
∥∥∥∥∥∥, (17)

was designed to make the drone align its XZ-plane in the
body reference frame with the current reference velocity
vector. To make sure the alignment calculation works in all
circumstances, a vector-based method is devised. Two vectors
are built to calculate He. First, on the left side of the cross
product in Equation 17, the x- and y-components of the
reference velocity vector are extracted, and then this vector
is normalised. On the right side of the cross-product, the y-
axis of the drone in its body reference frame is projected onto
the inertial xy-plane and then normalised. The cross product
of both these vectors is taken then the norm of the results is

6

summed for each timestep. The norm of the cross product of
both these vectors produces the largest value of 1 when they
are perpendicular and 0 when they are parallel. As this value is
subtracted from the cost function, the solver will aim to keep
the vectors perpendicular which is the desired behaviour. This
current implementation can be adapted to take into account
wind by modifying the diag(1, 1, 0) · V⃗ref term with the x
and y wind components.

It should be noted that no terms governing pitch or roll were
added to the cost function. The reasoning behind this is that
forcing the drone into specific attitudes may be less optimal
than leaving the freedom to the solver to determine the best
attitudes to minimise the cost function.

The next step to describe the NMPC is to set constraints
on the system. Being able to set explicit constraints on both
the state and control inputs is a big reason for the success
of NMPC [12]. In this case, setting constraints on the control
inputs is essential as there are physical limits to the capabilities
of the actuators.

ωl,r ∈ [100, 1400], (rad/s)
ω̇l,r ∈ [−500, 500], (rad/s2)
αl,r ∈ [−π/4, π/4], (rad)
α̇l,r ∈ [−π/9, π/9], (rad/s)

(18)

Equation 18 summarises the constraints applied to the
actuators. This minimal set of constraints also has its use in
terms of improving computational performance. This has been
shown in [13] where an initial set of nonlinear constraints
was aggregated into a smaller number of nonlinear constraints
which had the effect of saving significant computational time.

Finally, the prediction parameters which are the prediction
horizon and the sample time are discussed. The main driver of
computational complexity for model predictive control is the
amount of decision variables [14]. The amount of decision
variables is calculated by multiplying the control horizon c
with the number of control inputs which in this case is 4. As
in this work, the control horizon is equal to the prediction
horizon, p can be used to calculate the amount of decision
variables. Selecting the prediction parameters is therefore
a balancing act between the controller and computational
performance.

Through trial and error, a prediction horizon of 10 and a
sample time of 0.1 seconds struck a good balance between
computational performance and controller performance bring-
ing the number of decision variables to 40.

A. Sub-stepping

It has been mentioned previously that the sample time for
the NMPC was set to 0.1 seconds. In its current implementa-
tion, this means that the open-loop prediction of the NMPC is
simulated at 10 Hz, which in this case causes issues related to
the stability of the dynamics which causes the solver to crash
in certain cases. This was confirmed by keeping the 0.1-second
sample time for the NMPC but sub-stepping the integration
steps at 0.01 seconds. Solver crashes were not detected after
implementing this change. Further references to the NMPC
using sub-stepping will be called Sub-stepping NMPC. It is

important to note that all simulations were run at 100 Hz and
that it only is the internal prediction model of the NMPC that
was run at 10 Hz.

B. Real-time Performance

Applying this controller in real-time requires that the pro-
cessing time of the whole control algorithm shown in Figure 5
must at least be less than the sample time δ of the NMPC.
In practice, the objective is to get the processing time much
smaller than the sample time. This is because the control input
that is calculated is optimal for the system state at time t
but due to the processing time, the state has changed and the
control input is no longer optimal.

Fig. 7. Control loop processing time as a fraction of sample time overview.

The average optimisation time for the NMPC takes about
0.7 seconds with maximums reaching about 1 second. The
hardware used is a desktop Intel® i5-12400 CPU. It is thus
expected for hardware that can be placed on the drone to have
difficulties running the NMPC in real-time. As mentioned in
the introduction, a successful method of solving this issue
is explained in [9] where the behaviour of an expert NMPC
controller was replicated using a neural network. This method
is called imitation learning and will be discussed next.

V. IMITATION LEARNING NEURAL NETWORK

The neural network (NN) used in this work is a feedforward
network with three hidden layers. An overview of the structure
is shown in Figure 8. The design choices will be divided into
three parts: the NN inputs, the activation functions and the NN
size.

7

Fig. 8. Neural network structure diagram.

1) NN Inputs: The input used in the NN consists of states
of the drone whose values affect the forces applied to the
drone. This includes the velocity vector V⃗ , the quaternion
attitude vector q⃗ and the angular rates Ω⃗. The reasoning behind
this is that the NN needs to have access to the states of
the drone that affect the forces applied for it to be able to
control acceleration. This is why position is not an input to
the NN as it does not influence the acceleration in the model.
Additionally, as this is an acceleration controller, the current
acceleration a⃗ and reference acceleration a⃗ref are added to
the input. One would be tempted to subtract the acceleration
a⃗ from the reference acceleration a⃗ref to reduce the number
of inputs of the NN. However, this was implemented and hurt
controller performance. This is possibly explained by the loss
of information that using the acceleration error causes as the
absolute values of the acceleration and reference acceleration
are lost.

2) Activation Functions: Looking at Figure 8 it can be
seen that two different activation functions were used in the
NN. For the hidden layers, ReLU activation was used as it
is the first go-to activation function for hidden layers [15].
As for the activation of the output layer, a required property
of the activation function is that it should be bounded. This
is to ensure that the outputs of the NN do not exceed what
the actuators can physically achieve. Therefore, a Sigmoid
activation function was used and its output was scaled to fit
the range of values the actuators may take.

3) Hidden Layers and Neurons: Choosing the number of
hidden layers and neurons was performed through trial and
error and ended up with three fully connected hidden layers
with 128 neurons each.

A. Training data generation

The initial training data generation objective was to gener-
alise as much as possible. This meant randomly sampling the
drones’ possible states as well as the reference accelerations
that are used as input. The NMPC would then calculate the
optimal control output for this situation and a data point would
be generated.

Provided enough samples of the state and references to
follow are generated, it was assumed that the network could
learn from this and generalise. This was however not the
case, the network could not learn from this random sampling
method. A possible reason for this is that generalised random
sampling over all states and reference accelerations may
require substantially more training data than was generated
for the neural network to be able to generalise. Therefore, it
was decided to create a method that generates more specific
training data to reduce the amount of data generation required.
This method involved the generation of randomised flight
scenarios. The basic design of these scenarios is for the drone
to start in a randomised orientation and follow a randomised
velocity vector. The drone is given a set amount of time to
reach this velocity, then the velocity reference is set to zero for
which it has the same amount of time to reach. By generating
a large number of scenarios, the neural network should be able
to generalise and perform scenarios that it has not encountered
in the training data.

TABLE I
TRAINING DATA GENERATION SCENARIO INFORMATION.

Velocity Range 1 Velocity Range 2
Target Velocity
Range [m/s] [0.5, 5] [5, 11]

Number of
Scenarios [-] 4454 3895

Number of
Generated
Input-Output
Pairs [-]

356560 389500

Scenario
Time [s] 8 10

Starting Yaw
Range [rad] [−π/2, π/2] [−π/2, π/2]

Starting Pitch
Range [rad] [π/4, 3π/4] [π/4, 3π/4]

Starting Roll
Range [rad] [0,0] [0,0]

Reference Flight Path
Angle Range
[rad]

[−π/2, π/2] [−π/8, π/8]

Table I summarises the scenario parameters used to generate
the data. Overall, the training data covers target velocities
starting at 0.5 m/s up to 11 m/s by combining two different
ranges of training data shown in Table I. The training data
does not go beyond 11 m/s for practical reasons linked to the
time it takes to generate the training data. The training data
summarised in Table I took about 80 hours to generate.

What both target velocity ranges have in common are the
initial attitude ranges. The idea behind randomising the initial
attitudes is simply to generate more diverse training data for
the NN to train on.

8

The use of different reference flight path ranges depending
on the target velocity has to do with the flight envelope used
for the performance tests presented later in this paper. All
tests have a constant altitude hold which means that the flight
path angle for all tests is technically zero. In practice, the
NN controller needs to be able to correct for vertical error so
training data where the flight path angle is non-zero needs to
be generated. At slow velocities in the range of 0.5 to 5 m/s,
the limits on flight path angle are [−π/2, π/2] radians which
essentially means no limits. This was done to allow the NN to
move the drone in any direction during hover. For the range of
5 to 11 m/s, the flight path angle range was reduced to [−π/8,
π/8] radians to improve training data generation efficiency.

B. Training

With the NN defined and the training data generated, the NN
can now be trained. Setting up the training of a neural network
requires the definition of multiple settings. These are the loss
function, optimiser, learning rate, batch size and number of
epochs. The loss function used to calculate the error between
the prediction of the NN and the output of the NMPC is the
Mean Square Error (MSE) defined in

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2, (19)

with n being the number of samples, Y the predicted output
and Ŷ the true output. It was selected due to its common use
in feedforward neural networks used for regression tasks [16,
17, 18].

After calculating the MSE, the weights and biases of the
neural network are updated using the Adam optimiser which
is a gradient-based optimiser known to be able to deal with
problems involving large amounts of data whilst remaining
efficient computationally [19]. Additionally, [19] recommends
a learning rate of 0.001 as a good starting point.

The batch size and number of epochs were determined
through trial and error. A summary of these training settings
is presented in Table II.

TABLE II
NEURAL NETWORK TRAINING SETTINGS.

Value
Loss Function Mean Square Error (MSE)
Optimiser Adam [19]
Learning Rate 0.001
Batchsize 512
Number Epochs 50

The final step before training the model is to divide the data
into training and test datasets. According to [20], an 80%/20%
split is commonly used in machine learning and thus is used
as a good starting point. Splitting the data is done to verify
the generalisation ability of the network throughout training. If
the test average loss starts to diverge from the training average
loss it is a possible sign that the NN is starting to overfit the
training data. The resulting loss plot for the NN used in this
paper is shown in Figure 9.

0 10 20 30 40 50

Epoch [-]

0

1

2

3

4

5

6

7

L
o
s
s
 v

a
lu

e
 [
-]

10
-4

Training Average Loss

Test Average Loss

Fig. 9. Average training and test loss plot.

C. Real-time performance of onboard hardware

The development of this neural network was done in the
interest of real-time performance. Therefore, it is necessary
to test its real-time performance on hardware that could be
placed onboard a drone. In this case, the neural network was
tested on a Raspberry Pi® 4 Model B with 4 Gigabytes of
RAM.

The model in its PyTorch format is first converted to ONNX
(Open Neural Network Exchange) format for performance
improvements. At this time, the ONNX Runtime module for
Python has better-optimised inference for the ARM-type pro-
cessor of the Raspberry Pi 4 than PyTorch itself. The converted
model is then run 1,000,000 times and the computational time
for each inference is recorded. The results of this test are
presented in Table III.

TABLE III
NEURAL NETWORK REAL-TIME PERFORMANCE TESTING RESULTS ON

RASPBERRY PI 4B.

Value Unit
Mean 9.4029e−5 s
Standard Deviation 1.6026e−3 s
Maximum 1.1261e−3 s

Typical control loops run at about 100-200 Hz which gives
0.005 to 0.01 seconds as maximums for computational time.
The maximum computational time of 1.1261e−3 seconds
which is the worst-case scenario is still smaller than these
values. This leaves a safety factor and room for the neural
network to grow in size if needed. It should be noted that
the tests were performed with no other processes being run
on the Raspberry Pi. If other tasks need to be run alongside
the inference, this testing should be performed again as the
additional load might affect performance.

VI. PERFORMANCE COMPARISON

This section will assess the differences in performance be-
tween the expert NMPC and NN controller. The performance
of the Sub-stepping NMPC will be succinctly discussed for
each test but not compared in depth with the NMPC and NN
as it was not used for the generation of the training data.
Additionally, test failures will be classed into three types:
Solver, Performance and Crash failure. Solver failure is only

9

relevant to the NMPC and indicates that the test failed because
the solver did not converge to a solution. Performance failure
indicates that a waypoint was missed or that the drone is
circling around waypoints before reaching them. Crash failure
indicates that the controller no longer had control of the drone
and crashed. For each test, a table with the maximum velocities
each controller could perform the test up to is presented. An
additional column contains the failure mode of the controller
when that maximum velocity is surpassed.

A. Maximum Forward Velocity

This first simple test will assess the maximum forward
velocity in the X-direction the controllers can achieve. The
results are summarised in Table IV.

TABLE IV
MAXIMUM FORWARD VELOCITY EXPERIMENT: NN, NMPC AND
SUB-STEPPING NMPC RESULTS WITH FAILURE MODES PAST THE

MAXIMUM VELOCITIES

Velocity [m/s] Failure Mode
NN 8 Crash
NMPC 19 Solver
Sub-stepping NMPC 24.5 None (Actuator Saturation)

It is important to note that the training data generated for
the NN only included scenarios with velocities up to 11 m/s
which would make it very unlikely for the NN to fly past
this velocity. In this maximum velocity test, the NN is able to
reach around 70% of this maximum theoretical velocity.

The NMPC and Sub-stepping NMPC reach higher velocities
as they are not limited by the training data velocity ranges.
The NMPC cannot make it past 19 m/s due to the solver not
converging and the Sub-stepping NMPC stops accelerating
at 24.5 m/s due to the saturation of the propeller angular
velocities.

To assess the transfer or flight control logic between the
NMPC and the NN, the maximum velocity of the NN will
be used as the target velocity for both. Looking at Figure 10,
the NMPC reaches the target velocity faster and settles to the
target velocity after 5 seconds. Its attitude also remains very
flat with no yaw or roll to be seen. In comparison, the NN
takes about 4 seconds to reach the target and remains slightly
offset from the target velocity. It also does not fly completely
flat with small variations in yaw and roll throughout.

Both controllers show very smooth changes in actuator
states as shown in Figure 11. For the NMPC this is not
surprising as rate limits are applied when calculating the values
for the actuators. For the NN, behaviour is learned through
the training data and thus shows that it is able to mimic the
behaviour of the NMPC.

0 5 10 15

Time [s]

0

2

4

6

8

10

V
 [
m

/s
]

Velocity

NMPC

NN

Target Velocity

0 5 10 15

Time [s]

0

20

40

60

80

100

a
n
g
le

 [
d
e
g
]

NMPC Euler Angles

Yaw

Roll

Pitch

0 5 10 15

Time [s]

0

20

40

60

80

100

a
n
g
le

 [
d
e
g
]

NN Euler Angles

Yaw

Roll

Pitch

Fig. 10. Maximum forward velocity experiment: velocity and Euler angles
of the NMPC and NN.

0 5 10 15

Time [s]

0

500

1000

l [
ra

d
/s

]

Left Propeller Angular Velocity

NMPC

NN

0 5 10 15

Time [s]

0

500

1000

r [
ra

d
/s

]

Right Propeller Angular Velocity

NMPC

NN

0 5 10 15

Time [s]

0

20

40

l [
d

e
g

]

Alpha
l

NMPC

NN

0 5 10 15

Time [s]

0

20

40

r [
d

e
g

]

Alpha
r

NMPC

NN

Fig. 11. Maximum forward velocity experiment: control actuator states.

B. Hover to Forward Flight back to Hover

This test involves finding the fastest forward velocity at
which the controller can accelerate to then slow back down to

10

hover. The results are summarised in Table V.

TABLE V
HOVER TO FORWARD FLIGHT TO HOVER EXPERIMENT: NN, NMPC AND

SUB-STEPPING NMPC RESULTS WITH FAILURE MODES PAST THE
MAXIMUM VELOCITIES

Velocity [m/s] Failure Mode
NN 8 Crash
NMPC 8 Solver
Sub-stepping NMPC 24 None (Actuator Saturation)

Both the NN and the NMPC managed to perform this task
up to 8 m/s. This is one of the rare cases where the maximum
target velocities are identical. The Sub-stepping NMPC having
the advantage of not experiencing solver issues manages to
perform this test up to 24 m/s. It does not have a failure mode
because it simply cannot reach 25 m/s as previously seen in
the maximum forward velocity test.

Just like the maximum forward velocity test, the NN can
perform this test over about 70% of the velocity range it was
trained on. It can be argued that although its maximum velocity
is lower, the fact that it can slow back down to a hover from its
maximum velocity is safer than a system such as the NMPC
which can fly much faster but not safely slow down.

0 5 10 15 20

Time [s]

0

2

4

6

8

10

V
 [
m

/s
]

Velocity

NMPC

NN

Target Velocity

0 5 10 15 20

Time [s]

0

20

40

60

80

100

a
n
g
le

 [
d
e
g
]

NMPC Euler Angles

Yaw

Roll

Pitch

0 5 10 15 20

Time [s]

0

20

40

60

80

100

a
n
g
le

 [
d
e
g
]

NN Euler Angles

Yaw

Roll

Pitch

Fig. 12. Hover to forward flight to hover experiment: velocity and Euler
angles.

Looking at Figure 12, some assessments on control logic
transfer can be made. The NN reached the target velocity
with about a 1-second delay compared to the NMPC. This
is reflected in Figure 13 where the sharp change in control
inputs for the slow-down procedure is delayed over that of the
NMPC. Interestingly, the velocity profile and control inputs of
the NMPC and NN are similar up until about 2 seconds when

the NN starts to deviate and slows down when approaching the
target velocity. Additionally, the NN never slows back down
to zero velocity after it has reached the target velocity. This
slower response with respect to the NMPC shows degradation
of the NMPC control logic through the imitation learning
process. This strengthens the need to improve the cloning
process of the NN.

0 5 10 15 20

Time [s]

0

500

1000

l [
ra

d
/s

]

Left Propeller Angular Velocity

NMPC

NN

0 5 10 15 20

Time [s]

0

500

1000

r [
ra

d
/s

]

Right Propeller Angular Velocity

NMPC

NN

0 5 10 15 20

Time [s]

0

20

40
l [

d
e

g
]

Alpha
l

NMPC

NN

0 5 10 15 20

Time [s]

0

20

40

r [
d

e
g

]

Alpha
r

NMPC

NN

Fig. 13. Hover to forward flight to hover experiment: control actuator states.

C. Circular Waypoint Following

This test will investigate the ability of both controllers to
perform a more complex trajectory. This trajectory is a circle
with a radius of 40 meters and is composed of 14 waypoints
for the drone to follow. The waypoint radius rw is 5 metres.

TABLE VI
CIRCULAR WAYPOINT FOLLOWING EXPERIMENT: NN, NMPC AND
SUB-STEPPING NMPC RESULTS WITH FAILURE MODES PAST THE

MAXIMUM VELOCITIES

Velocity [m/s] Failure Mode
NN 6 Crash
NMPC 10 Solver
Sub-stepping NMPC 11 Performance

The NN has managed to complete this test up to 6 m/s after
which the drone would lose control and crash. As summarised
in Table VI, the NMPC and Sub-stepping NMPC performed
similarly but past these velocities failed very differently. The
NMPC fails by missing a waypoint, after which, the solver
fails and the simulation stops. The Sub-stepping NMPC does
not experience a solver failure but instead misses the waypoint

11

and circles around it until it reaches it. It then moves to the
next waypoint where it does the same.

To properly compare the NMPC and NN, the maximum
velocity of the NN will be used as the target velocity for
comparison in this test.

0 10 20 30 40

Time [s]

-5

0

5

e
V

x
 [
m

/s
]

X Velocity Error

NMPC

NN

0 10 20 30 40

Time [s]

-5

0

5

e
V

y
 [
m

/s
]

Y Velocity Error

NMPC

NN

0 10 20 30 40

Time [s]

-5

0

5

e
V

z
 [
m

/s
]

Z Velocity Error

NMPC

NN

0 10 20 30 40

Time [s]

-5

0

5
e

a
x

 [
m

/s
2
]

X Acceleration Error

NMPC

NN

0 10 20 30 40

Time [s]

-5

0

5

e
a

y

 [
m

/s
2
]

Y Acceleration Error

NMPC

NN

0 10 20 30 40

Time [s]

-5

0

5

e
a

z

 [
m

/s
2
]

Z Acceleration Error

NMPC

NN

Fig. 14. Circular trajectory experiment: velocity and acceleration errors.

0 5 10 15 20 25 30 35 40 45

Time [s]

-200

-100

0

100

200

a
n

g
le

 [
d

e
g

]

NMPC Euler Angles

Yaw

Roll

Pitch

0 5 10 15 20 25 30 35 40 45

Time [s]

-50

0

50

100

150

200

a
n

g
le

 [
d

e
g

]

NN Euler Angles

Yaw

Roll

Pitch

Fig. 15. Circular trajectory experiment: NMPC and NN Euler angles. NN
flies upside down after t=25 seconds.

A general characterisation of the NMPC performance is that
it has accurate tracking of the succeeding waypoints confirmed

by small velocity and acceleration errors seen in Figure 14.
Along with a smooth continuous change in yaw around the
circle visible in Figure 15 in the top plot.

Fig. 16. Circular trajectory experiment top view (target velocity = 6m/s, circle
radius = 40m).

The NN, relative to the NMPC, performs worse. It cannot
maintain a constant altitude and is not as consistent in tracking
the waypoints as visible in Figure 16 and Figure 17. This
is characterised by larger velocity and acceleration errors
shown in Figure 14. Both controllers present recurrent sudden
changes in velocity errors in the X and Y directions. This
is likely due to the waypoint velocity reference generation
system. With these peaks showing in both controllers and the
periods between peaks also being similar between controllers,
the switching of the current waypoint to the next waypoint
would explain the spikes in velocity errors and the periodic
nature of these spikes explained by the equal distance between
waypoints.

Interestingly, looking at Figure 15, the progression of the
Euler angles for the NN during the test is very different than
the NMPC. At the XY coordinates [-25 -70] in Figure 16, the
NN has the drone flying in knife-edge flight. It then reaches the
leftmost part of the circle where it flips and starts to fly upside
down. This can be observed in Figure 15 in the bottom plot.
Between 28 and 32 seconds, the pitch is near vertical which
is when the drone is flying at knife edge. After 32 seconds,
the pitch continues to increase indicating that it is now fully
flying upside down.

This type of behaviour is not unexpected from either con-
troller. For the NMPC, this can be explained by the fact that
there are no terms in the NMPC governing attitude, the NMPC
will simply try to minimise acceleration error. Adding to this
that the model is symmetrical, there is no performance benefit
for the NMPC to fly ”upright” and thus will fly upside down
when needed. The training data used for the NN has an equal
amount of ”upright” flight scenarios and upside-down flight
scenarios. Thus confirming that the ability of the NN to fly
upside down is inherited from the NMPC.

12

Fig. 17. Circular trajectory side view (target velocity = 6m/s, circle radius = 40m).

D. Rectangular Waypoint Following

This test continues the evaluation of both controllers in more
complex trajectories. In this case, a rectangular trajectory to
test the ability of the controllers to perform 90-degree turns.
The waypoint radius rw is 5 metres.

TABLE VII
RECTANGULAR WAYPOINT FOLLOWING EXPERIMENT: NN, NMPC AND

SUB-STEPPING NMPC RESULTS WITH FAILURE MODES PAST THE
MAXIMUM VELOCITIES

Velocity [m/s] Failure Mode
NN 5 Crash
NMPC 8 Solver
Sub-stepping NMPC 24 Performance

Looking at the summarised results in Table VII, the NN has
only managed to perform this trajectory up to 5 m/s which is
less than half the range of velocities included in the training
data. The NMPC is again limited by a solver failure that can
be mitigated by the use of sub-stepping. Concerning the Sub-
stepping NMPC, what is meant by ”Performance” as a failure
mode in Table VII is related to the physical limits of the
system. It has been calculated that the minimum turning radius
the drone can perform at 24 meters per second is around 56
meters. With the distance between waypoints being 40 meters
and in perfect circumstances, a minimum turning radius of
56 meters, the tracking of the waypoints is degraded as the
distance between waypoints is too small for this velocity.

0 5 10 15 20 25 30 35

Time [s]

-200

-100

0

100

200

a
n

g
le

 [
d

e
g

]

NMPC Euler Angles

Yaw

Roll

Pitch

0 5 10 15 20 25 30 35

Time [s]

-100

-50

0

50

100

150

a
n

g
le

 [
d

e
g

]

NN Euler Angles

Yaw

Roll

Pitch

Fig. 18. Rectangular trajectory experiment: NMPC and NN Euler angles. NN
flies upside down after t=8 seconds.

13

Fig. 20. Square trajectory side view (target velocity = 5m/s, square size = 40m).

0 10 20 30 40

Time [s]

-5

0

5

e
V

x
 [

m
/s

]

X Velocity Error

NMPC

NN

0 10 20 30 40

Time [s]

-5

0

5

e
V

y
 [

m
/s

]

Y Velocity Error

NMPC

NN

0 10 20 30 40

Time [s]

-5

0

5

e
V

z
 [

m
/s

]

Z Velocity Error

NMPC

NN

0 10 20 30 40

Time [s]

-5

0

5

e
a

x

 [
m

/s
2
]

X Acceleration Error

NMPC

NN

0 10 20 30 40

Time [s]

-5

0

5

e
a

y

 [
m

/s
2
]

Y Acceleration Error

NMPC

NN

0 10 20 30 40

Time [s]

-5

0

5

e
a

z

 [
m

/s
2
]

Z Acceleration Error

NMPC

NN

Fig. 19. Rectangular trajectory experiment: velocity and acceleration errors.

Using as target velocity the maximum velocity of the NN
for this test, the NMPC and NN are compared. Both controllers
present large pitch-up movements at around 8 seconds in
Figure 18 which coincide with large X and Y acceleration
errors in Figure 19 caused by the change in waypoint as
mentioned in the circular test. A possible explanation for this
effect is that the drone is not required to maintain the target
velocity that is given. This means that to transition to a new
velocity vector, the controller may slow down the drone to
then turn and accelerate to the desired speed. If smooth turns
by banking the drone are required in future work, the NMPC
will have to be adapted to perform this new behaviour.

Looking at Figure 20 and Figure 21, the NN does not

Fig. 21. Square trajectory top view (target velocity = 5m/s, square size =
40m).

smoothly reach each waypoint. This difficulty is reflected in
the velocity errors shown in Figure 19. The controller manages
to correct large disturbances but has trouble reducing them to
zero like the NMPC can and therefore shows some offsets.
These are most noticeable in Figure 19 in the Y Velocity Error
plot.

Finally, looking at Figure 18 and the pitch angle of the
NN, it can be seen flipping to upside-down flight just like the
circular test. Most likely for the same reason as the previous
test. To perform turns, the controller pitches up the drone
significantly. In this case, over 90 degrees to a point where
the controller transitions to upside-down flight.

VII. SENSITIVITY ANALYSIS

The sensitivity analysis will assess the effect of improper
parameter estimation on controller performance. One way to
perform a sensitivity analysis for a model-based controller
such as NMPC would be to change the parameters used in
the NMPC internal model and keep the simulation model
parameters constant. However, this is not possible for the NN

14

as it is trained with the original parameters from the NMPC.
Therefore, the simulation model parameters will be changed
instead to assess the effects on performance. A flight path
including a 90-degree turn and half a circle path will be used
to compare performance between the simulations. Simulations
where there are no changed parameters are called nominal. A
top view of the waypoints defining this flight path is presented
in Figure 22 depicted with magenta-coloured circles along
with the nominal trajectories of the NMPC and NN.

Fig. 22. Waypoint top view with nominal trajectories.

The parameters that will be analysed are summarised in
Table VIII with their initial value, the percentage change that
will be applied (if applicable) and the equivalent value of
this percentage change. These parameters are the aerodynamic
coefficients CLα , Cd0 and Cy0 , the wing surface area S, the
mass m, the moments of inertia Ixx, Iyy and Izz and the x-
position of the center of gravity CGx (in the body reference
frame).

TABLE VIII
SENSITIVITY ANALYSIS PARAMETERS.

Parameter Value % Change Value Change
CLα [-] 4 ±10 ±0.4
Cd0 [-] 0.05 ±10 ±0.005
Cy0 [-] 0.05 ±10 ±0.005
S [m2] 0.26 ±5 ±0.013
m [kg] 1.27 ±5 ±0.0635
Ixx [kg.m2] 0.065 ±10 ±0.0065
Iyy [kg.m2] 0.009 ±10 ±0.0009
Izz [kg.m2] 0.0662 ±10 ±0.00662
CGx [m] 0 N.A. ±0.01

To assess the results of these simulations, two tools will be
used. First, visual results are presented as two figures depicting
the trajectories of each simulation, the first of which Figure 23
shows an overview of all the NMPC trajectories and the
second Figure 24 shows all of the NN trajectories. Secondly,

a performance metric based on the error between the desired
velocity and the actual velocity of the drone will be calculated
for each simulation and presented in Table IX. Using a metric
based on position would not be consistent across tests due to
the waypoint-based method of generating velocity references.
First, a Mean Absolute Error (MAE) velocity vector V⃗MAE

for each simulation is calculated using

V⃗MAE =

n∑
i=1

∣∣∣V⃗refi − V⃗i

∣∣∣
n

, (20)

where n is the total amount of timesteps in the simulation,
V⃗ref the reference velocity vector and V⃗ the drone velocity
vector. From these MAE vectors, a velocity error metric eV
can be calculated using

eV =
3∑

i=1

(V⃗MAEt
− V⃗MAEm

)i, (21)

where the sum from i = 1 to 3 simply means adding the
components of the vector, the subscript t in V⃗MAEt

denotes the
MAE for the simulation with the modified parameters and the
subscript m in V⃗MAEm denotes the simulation where there is
no difference between the controller parameters and simulation
parameters.

The velocity error metric for each parameter change is
documented in Table IX for both the NMPC and NN. As
each cell containing the error metric represents a simulation,
a colour will be assigned to each cell based on the success or
failure of the simulation. Each colour will now be explained:

1) Success : Mission completed. All waypoints were
reached and performance remained acceptable.

2) Performance Failure : Reaches all waypoints but in a
”non-direct” way. An example of this type of failure is
the purple trajectory in Figure 24.

3) Failure : Drone stays in flight but does not complete
waypoints

4) Total Failure : Crash / Drop out of the sky
5) Solver Failure : The NMPC solver cannot converge to

a solution and fails

TABLE IX
SENSITIVITY ANALYSIS RESULTS.

Parameter Value NMPC eV NN eV
CLα [-] 3.6 0.5036 -0.0959
CLα [-] 4.4 0.3905 0.1176
Cd0 [-] 0.045 0.0108 0.0315
Cd0 [-] 0.055 0.0068 -0.0280
Cy0 [-] 0.045 -0.0010 0.0013
Cy0 [-] 0.055 0.0014 -0.0014
S [m2] 0.273 0.2018 0.0358
S [m2] 0.247 0.2186 -0.0404
m [kg] 1.3335 0.3672 7.7529
m [kg] 1.2065 0.4475 2.7402
Ixx [kg.m2] 0.0715 -0.0002 -0.0002
Ixx [kg.m2] 0.0585 2.93504E-05 -0.0008
Iyy [kg.m2] 0.0099 0.0052 0.0058
Iyy [kg.m2] 0.0081 -0.0051 -0.0068
Izz [kg.m2] 0.07282 -0.0006 0.0007
Izz [kg.m2] 0.05958 0.0006 -0.0006
CGx [m] +0.01 3.3991 48.8413
CGx [m] -0.01 - 4.7458

15

Fig. 23. Overview of all NMPC trajectories. Different coloured lines represent simulations with different parameters changed.

Fig. 24. Overview of all NN trajectories. Different coloured lines represent simulations with different parameters changed.

A first look at Figure 23 and Figure 24 shows that out of the
simulations that succeeded, the vertical variation in trajectories
for the NN is much smaller than for the NMPC compared
to their respective nominal trajectories. This is reflected in
Table IX where it can be seen that the eV for NN is either
similar to that of the NMPC or substantially smaller in the
case of CLα

and S. However, although the NMPC shows more
impact on performance when changing parameters, it succeeds
in having the least failures overall.

Both controllers have similar low sensitivity to changes
in Cd0 , Cy0 and the moments of inertia. However, some
interesting results show up when looking at CLα , S and m.
The NMPC is substantially more sensitive to CLα

and S which
directly affect the aerodynamic lift force but the NN fails the
tests where the mass is changed. Finally, both the NMPC and
NN are very sensitive to changes in the centre of gravity due
to both centre of gravity changes causing failures.

VIII. DISCUSSION

The current formulation of the NMPC provides a simple so-
lution to the acceleration controller. However, the NMPC used
to generate the training data used an integration timestep equal
to the sample time of 0.1 seconds. This had as consequence
that the main limits in performance for the NMPC were caused
by solver crashes due to instability in the prediciton model.
This was confirmed by introducing sub-stepping integration
timesteps of 0.01 seconds which stopped solver failures and

increased performance in all experiments. This Sub-stepping
NMPC should be used in future work to generate the training
data.

Considering the flight characteristics of the NMPC, if these
need to be changed, an updated formulation of the cost func-
tion would be needed. In the rectangular trajectory experiment,
the drone pitches up substantially and slows down to make
turns. Enforcing a target velocity in the cost function could
possibly push the NMPC to perform a smoother turn.

Concerning the NN, behaviours seen in the NMPC such as
the pitch up to slow down for turns and the ability to fly upside
down are transferred successfully from the NMPC to the
NN. However, the NN shows some performance degradation
with respect to the NMPC. The NN manages to follow
general velocity requirements but does not settle for the actual
requested value. This is reflected in the hover test where once
it slows back down after having reached the target velocity, it
does not manage to slow down to 0 m/s completely, or in the
maximum velocity test where it does not settle to the target
8 m/s. The more complex circular and rectangular trajectory
tests show the ability of the NN to perform turns which is a
task not included in the training data. These trajectories were
achieved up to about half the maximum velocity included in
the training data (11 m/s). Increasing the maximum velocity
these trajectories can be performed at could be done by
increasing the velocity range included in the training data
and/or adding more specific training data that includes turns.

16

From the sensitivity analysis, the NN shows reduced sensi-
tivity to changes in parameters that affect lift generation (CLα

and S) over the NMPC. It is difficult to say, however, if this
reduced sensitivity will remain once the performance of the
NMPC and the training of the NN have been improved.

Looking at both controllers as a whole, the trade-off the NN
proposes is very attractive. Velocity and acceleration errors
are relatively worse but it solves the main issue of the NMPC
which is its difficulty to run in real-time. From the inference
speed test results shown in Table III, the NN can comfortably
run onboard the drone.

One of the main problems when talking about validating
the controllers on the real drone is that the NMPC has
difficulties running in real-time. This is why a NN was trained
to mimic the behaviour of the NMPC. This makes identifying
reasons for issues in the validation results very difficult. Poor
performance of the NN controller on the real drone could result
from issues at any stage of the design process. This issue is
amplified by the time it takes to perform a design iteration.

The training data generation took about 80 hours and the
training of the neural network around 10 minutes. Any change
to the model parameters requires a re-generation of all the
training data and retraining of the neural network. The main
limiting factor for the amount of time it takes to perform a
design iteration is therefore the generation of the training data.
An idea to get around this issue is to set up a reinforcement
learning framework to continue the training of the neural
network after it has been trained on the NMPC training data.
This is called pretraining the network and has been shown to
significantly improve reinforcement learning performance for
an autonomous driving application in [21].

The validation process may also require improvements to
the underlying dynamics model. The sensitivity analysis gives
an initial idea of the parameters that will require the most
attention. Mainly the position of the centre of gravity, the mass
m, the wing surface S and the lift coefficient slope CLα

. The
centre of gravity location is the most sensitive out of these
mentioned parameters. This is most likely a consequence of the
NMPC being a model-based controller. Changing the position
of the center of gravity changes the moment arm lengths of
all the applied forces creating a substantial mismatch between
the controller internal model and the simulation model.

For future work, before testing the NN in real flight, it
is recommended to perform an additional design iteration
using the Sub-stepping NMPC to generate the training data.
Additionally, it would be beneficial to expand the velocity
ranges included in the training data and add scenarios which
include turns. With this newly trained NN, real flight tests
should be performed and compared to simulation to start the
validation process of the controller.

IX. CONCLUSION

This paper demonstrates the ability to transfer complex
acceleration control logic from an expert controller using
Nonlinear Model Predictive Control to a neural network using
a process called behavioural cloning. In addition, it provides
insights on how to improve the framework and improve

controller performance. In its current formulation, the NMPC
that was used to generate the training data shows an ability to
control this complex platform up to 19 m/s in forward horizon-
tal flight and perform circular and rectangular trajectories up to
10 and 8 m/s respectively. These performances were mainly
limited by an issue in the prediction model where a large
integration timestep was used which caused model instability.
The use of sub-steps to reduce the integration timesteps fixed
this issue and extended the performance of the NMPC.

Behavioural Cloning of the NMPC acceleration controller
using a feedforward neural network has shown successful
transfer of general flight behaviours but does show perfor-
mance degradation with respect to the NMPC in all tests
performed. An expansion of training data and variety of the
training data is required to improve the learning transfer.

Although the NMPC controller performance has probably
not reached its limits, if new formulations require substantially
more computational time, a practical limit may be reached
with regards to the time it takes to generate training data. With
the current training data taking around 80 hours to generate,
design iterations are slow and are substantial decisions to
make. A proposal to mitigate this issue is to use the neural
network trained with the NMPC data as a pre-trained network
for a reinforcement learning framework.

REFERENCES

[1] A.S. Saeed et al. “A survey of hybrid Unmanned
Aerial Vehicles”. In: Progress in Aerospace Sciences
98 (2018), pp. 91–105. ISSN: 0376-0421. DOI: https :
/ / doi . org / 10 . 1016 / j . paerosci . 2018 . 03 . 007. URL:
https : / / www. sciencedirect . com / science / article / pii /
S0376042117302233.

[2] G.J.J. Ducard and M. Allenspach. “Review of designs
and flight control techniques of hybrid and convertible
VTOL UAVs”. In: Aerospace Science and Technology
118 (2021), p. 107035. ISSN: 1270-9638. DOI: https :
/ / doi . org / 10 . 1016 / j . ast . 2021 . 107035. URL:
https : / / www. sciencedirect . com / science / article / pii /
S1270963821005459.

[3] G.H.L.H. Lovell-Prescod, Z. Ma, and E.J.J. Smeur.
“Attitude Control of a Tilt-rotor Tailsitter Micro Air
Vehicle Using Incremental Control”. In: 2023 Inter-
national Conference on Unmanned Aircraft Systems
(ICUAS). IEEE. 2023, pp. 842–849.

[4] L. Bauersfeld and G. Ducard. “Fused-PID Control for
Tilt-Rotor VTOL Aircraft”. In: (2020), pp. 703–708.
DOI: 10.1109/MED48518.2020.9183031.

[5] J. Willis, J. Johnson, and R.W. Beard. “State-Dependent
LQR Control for a Tilt-Rotor UAV”. In: (2020),
pp. 4175–4181. DOI: 10 . 23919 / ACC45564 . 2020 .
9147931.

[6] E.J.J. Smeur, M. Bronz, and G.C.H.E. de Croon. “In-
cremental Control and Guidance of Hybrid Aircraft
Applied to a Tailsitter Unmanned Air Vehicle”. English.
In: Journal of Guidance, Control, and Dynamics: de-
voted to the technology of dynamics and control 43.2
(2020), pp. 274–287. ISSN: 0731-5090. DOI: 10.2514/
1.G004520.

17

[7] E. Tal and S. Karaman. “Global Trajectory-tracking
Control for a Tailsitter Flying Wing in Agile Uncoordi-
nated Flight”. In: AIAA AVIATION 2021 FORUM (Aug.
2021). DOI: 10.2514/6.2021-3214.

[8] L. Grüne and J. Pannek. Nonlinear Model Predictive
Control: Theory and Algorithms. Springer London,
2011.

[9] M. Wang et al. “A Lightweight Control Method for Fast
and Agile Quadrotor Using NMPC-Imitation Learning”.
In: Proceedings of 2022 International Conference on
Autonomous Unmanned Systems (ICAUS 2022). Ed. by
W. Fu, M. Gu, and Y. Niu. Singapore: Springer Nature
Singapore, 2023, pp. 2940–2953. ISBN: 978-981-99-
0479-2.

[10] L. Mero et al. “A Survey on Imitation Learning Tech-
niques for End-to-End Autonomous Vehicles”. In: IEEE
Transactions on Intelligent Transportation Systems 23
(Sept. 2022), pp. 1–20. DOI: 10 . 1109 / TITS . 2022 .
3144867.

[11] L. Ribeiro Lustosa, F. Defaÿ, and J. Moschetta. “Global
Singularity-Free Aerodynamic Model for Algorithmic
Flight Control of Tail Sitters”. In: Journal of Guidance,
Control, and Dynamics 42 (Dec. 2018), pp. 1–14. DOI:
10.2514/1.G003374.

[12] B. Volker. “Chapter 2 - Propellers”. In: Practical Ship
Hydrodynamics (Second Edition). Ed. by B. Volker.
Second Edition. Oxford: Butterworth-Heinemann, 2012,
pp. 41–72. ISBN: 978-0-08-097150-6. DOI: https://doi.
org / 10 . 1016 / B978 - 0 - 08 - 097150 - 6 . 10002 - 8. URL:
https : / / www. sciencedirect . com / science / article / pii /
B9780080971506100028.

[13] M. de Freitas Virgilio Pereira, I.V. Kolmanovsky,
and C.E.S. Cesnik. “Nonlinear Model Predictive Con-
trol with aggregated constraints”. In: Automatica 146
(2022), p. 110649. ISSN: 0005-1098. DOI: https : / /
doi . org / 10 . 1016 / j . automatica . 2022 . 110649. URL:
https : / / www. sciencedirect . com / science / article / pii /
S0005109822005131.

[14] R. Cagienard et al. “Move blocking strategies in re-
ceding horizon control”. In: Journal of Process Control
17.6 (2007), pp. 563–570. ISSN: 0959-1524. DOI: https:
/ / doi . org / 10 . 1016 / j . jprocont . 2007 . 01 . 001. URL:
https : / / www. sciencedirect . com / science / article / pii /
S0959152407000030.

[15] T. Szandała. “Review and Comparison of Commonly
Used Activation Functions for Deep Neural Networks”.
In: Bio-inspired Neurocomputing. Ed. by A.K. Bhoi et
al. Singapore: Springer Singapore, 2021, pp. 203–224.
ISBN: 978-981-15-5495-7. DOI: 10.1007/978-981-15-
5495-7 11. URL: https://doi.org/10.1007/978-981-15-
5495-7 11.

[16] G. Civelekoglu et al. “Prediction of Bromate For-
mation Using Multi-Linear Regression and Artifi-
cial Neural Networks”. In: Ozone: Science & Engi-
neering 29.5 (2007), pp. 353–362. DOI: 10 . 1080 /
01919510701549327. URL: https : / / doi . org / 10 . 1080 /
01919510701549327.

[17] A. Saberian et al. “Modelling and Prediction of Pho-
tovoltaic Power Output Using Artificial Neural Net-
works”. In: International Journal of Photoenergy 2014
(Apr. 2014), pp. 1–10. DOI: 10.1155/2014/469701.

[18] K.C. Hikmet and A. Murat. “Generalized regression
neural network in modelling river sediment yield”.
In: Advances in Engineering Software 37.2 (2006),
pp. 63–68. ISSN: 0965-9978. DOI: https : / / doi . org /
10 . 1016 / j . advengsoft . 2005 . 05 . 002. URL: https :
/ / www . sciencedirect . com / science / article / pii /
S0965997805000888.

[19] D.P. Kingma and J. Ba. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG].

[20] S. Raschka. Model Evaluation, Model Selection, and
Algorithm Selection in Machine Learning. 2020. arXiv:
1811.12808 [cs.LG].

[21] T. Wang and D.E. Chang. “Improved Reinforcement
Learning through Imitation Learning Pretraining To-
wards Image-based Autonomous Driving”. In: 2019
19th International Conference on Control, Automation
and Systems (ICCAS). 2019, pp. 1306–1310. DOI: 10.
23919/ICCAS47443.2019.8971737.

3
Literature Study

This section summarises the initial assessment of the literature concerning the different control methods
applied to hybrid MAVs.

3.1. Literature Study Research Questions
The literature study will aim to answer the following research questions.

1. What are the different outer-loop control methods for hybrid MAVs available for following kinematic
references generated by the trajectory tracking controller?

(a) What are the benefits of using this method?
(b) What are the limitations of this method?
(c) Is the method feasible to implement in the time frame of the thesis?
(d) Does the method require data that cannot be acquired in the framework of this thesis?

2. Tail-sitters have a large flight envelope which makes aerodynamic modelling challenging. What
are the current methods employed for modelling these aerodynamics?

(a) What are the benefits of using this model?
(b) What are the limitations of the model?

3. What is a suitable method of modelling the thrust generated by the propellers of the drone in the
context of this project?

(a) What are the main methods of modelling propeller thrust?
(b) It is known that wind speed and direction affect propeller performance, what are the current

methods of modelling these changes?

4. What are currently the different trajectory trackingmethods available for following a three-dimensional
trajectory for MAVs?

(a) What are the benefits of using this method?
(b) What are the limitations of this method?
(c) Is the method feasible to implement in the time frame of the thesis?
(d) Does the method require data that cannot be acquired in the framework of this thesis?

3.2. State of the Field
This chapter will discuss the state of the field for the topics mentioned in the literature study part of the
research questions. The order in which topics are discussed in this chapter will be the same as the
order they appear in the research questions.

21

3.2. State of the Field 22

3.2.1. Outer-loop Control of Hybrid MAVs
This section will explore different outer-loop control methods that can be applied for control hybrid of
MAVs and how they were implemented in the literature.

PID Control
PID stands for Proportional-Integral-Derivative and is a controller that translates errors in a system
to control inputs via a combination of proportional, integral and derivative terms. Its simplest form is
depicted in Equation 3.1.

u(t) = Kpe(t) +Ki

t∫
0

e(τ)dτ +Kd
de(t)

dt
(3.1)

The error e(t) is defined as e(t) = r(t) − y(t) where r(t) is the reference and y(t) the current state of
the system. Kp/Ki/Kd are gains that can be tuned to improve the performance of the system and u(t)
is the control output that the equation calculates and that should be applied to the system to reduce the
error. PID control has the advantage of not requiring any modelling of the system to function. However,
its original form in Equation 3.1 performs very poorly for highly non-linear systems. Countermeasures
can be taken such as gain scheduling but that is a time-intensive task.

Chiappinelli et al. [3] implemented a PI controller that translated the forward velocity error into a required
forward force which is the control input. In [4], the authors proposed a fused-PID velocity control system
for their tilt-rotor VTOL (Vertical Take-Off and Landing) drone. The use of this method highlights one
of the problems with PID control which is the difficulty of dealing with nonlinear systems. Indeed in [4],
two different PID controllers are developed to deal with both hover and horizontal flight separately. The
transition between flight conditions is then dealt with by fusing the control outputs of both controllers
adding more importance to one or the other depending on velocity.

LQR Control
LQR or Linear Quadratic Regulator control is a form of optimal state feedback control that calculates
the optimal gains required to have a stable and high-performance closed-loop system. Different forms
of LQR are possible, for simplicity the formulation that will be detailed here concerns a continuous time
and infinite horizon formulation of LQR. First a time-invariant state-space system in the form shown in
Equation 3.2 is needed.

ẋ = Ax+Bu, x(0) = x0 (3.2)

Then as the objective of the feedback control is to calculate the optimal control input, u is calculated
using Equation 3.3. This clearly shows that LQR is a state feedback method as u is a linear combination
of the states x of the system.

u = Kx (3.3)

To start calculating K, a cost function is defined in Equation 3.4.

Jcost =

∞∫
0

(xTQx+ uTRu)dt (3.4)

Where Q and R are square positive matrices of size of the number of states and the number of control
inputs respectively. The optimal control feedback gain matrix K∗ can then be defined as shown in
Equation 3.5.

K∗ = −R−1BTP (3.5)

Where P is a positive matrix and can be found by solving the Ricatti equation given by Equation 3.6.

Q+ATP + PA− PBR−1BTP = 0 (3.6)

3.2. State of the Field 23

LQR has successfully been implemented as mentioned in [5] as a low-level velocity controller for the
AR.Drone quadcopter combined with a nonlinear inverse kinematic controller that provides the velocity
references for the LQR controller to follow.

In [6], a state-dependent LQR trajectory controller was developed as outer-loop control for a tilt-rotor
drone. Limitations from this method involve not being able to guarantee the stability of the controller as
the LQR controller is state-dependent and concerning the flight performance, only moderately aggres-
sive trajectories could be achieved.

The main problem with LQR is that it is model-dependent control and thus the quality of the model
affects the effectiveness of the control severely if there are model inaccuracies or external disturbances.
Additionally, LQR can only guarantee stability for linear systems. This means that if it is used for
nonlinear systems and is made state-dependent, the stability of the controller cannot be guaranteed
just as mentioned in [6].

INDI Control
Incremental Nonlinear Dynamic Inversion (INDI) is a modification of Nonlinear Dynamic Inversion (NDI)
that reduces the dependency of the control method on the model and knowledge of the system dynam-
ics. NDI creates a linear mapping of inputs to outputs from the nonlinear dynamics that can be used by
a linear control law [7, 8, 9]. After being applied to multiple aircraft for flight control [10, 11, 12, 13, 14],
NDI was deemed not robust enough as performance of exact dynamic inversion suffers severely from
sensor noise and modelling uncertainty [15]. The INDI form adds incremental changes to the inputs
based on linear and angular acceleration measurements. This provides better robustness over NDI as
external disturbances and modelling uncertainties are mitigated through the inertial measurements.

To understand the basic principles of INDI, the derivation in [16] for a general nonlinear system will be
detailed. To start, a general nonlinear system is defined in Equation 3.7.

ẋ = f(x,u) (3.7)

Where x is the state vector and u is the control input vector. A Taylor expansion can then be performed
around [x0,u0] where a 0 subscript indicates the latest available information about the states and the
control inputs and no subscript for x, ẋ,u indicates the values in the next time-step. The expansion is
presented in Equation 3.8.

ẋ ≈ f(x0,u0) +
∂f(x,u)

∂x

∣∣∣
x=x0,u=u0

(x− x0) +
∂f(x,u)

∂u

∣∣∣
x=x0,u=u0

(u− u0) + h.o.t.

ẋ ≈ ẋ0 + F (x0,u0)(x− x0) +G(x0,u0)(u− u0)
(3.8)

The notable simplifications in Equation 3.8 are the removal of the higher order terms (h.o.t.) and us-
ing Equation 3.7, f(x0,u0) can be rewritten as ẋ0. To further simplify Equation 3.8, some additional
assumptions can be taken. Based on the assumption that the control system is run at a small sam-
pling time and the assumption of instantaneous control effectors [16] this means that it is assumed that
x ≈ x0 and that u ̸= u0. This results in Equation 3.9.

ẋ = ẋ0 +G(x0,u0)(u− u0) (3.9)

Equation 3.9 can then be rearranged to obtain u. Additionally, ẋ is replaced with υ which is the virtual
control input that has to be designed and is essentially the reference the system has to follow.

u = u0 +G−1(x0,u0)(υ − ẋ0) (3.10)

To the best knowledge of the author, there is no literature concerning the acceleration control of a
tilt-rotor tail-sitter specifically. Therefore, mentions of INDI implementations will also note the drone
configuration that was used in the paper. In [17], INDI was implemented for a fixed rotor tail-sitter
where two INDI controllers were designed to control attitude and velocity using the general method
described earlier which makes use of the control effectiveness matrix.

3.2. State of the Field 24

An alternative implementation of INDI is implemented in [18] that removes the need to locally linearise
the dynamics and invert the control effectiveness matrix of the tail-sitter. This was done by deriving a
differential flatness transform of the tail-sitter’s nonlinear dynamics which included a simplified aerody-
namics model [19]. This implementation showed accurate trajectory tracking for aggressive uncoordi-
nated flight manoeuvres.

3.2.2. Aerodynamics and Thrust Modelling
Two key components for robust control are the accurate modelling of the aerodynamics and thrust. This
section will cover methods used in the literature and discuss their advantages and disadvantages.

Aerodynamics Modelling
Due to the large flight envelope tail-sitters encounter, it becomes challenging to model the aerodynamic
forces of all flight phases. This section will look at the current methods employed to model the aerody-
namics of tail-sitters and discuss their benefits and limitations.

Static Force Aerodynamic Model
In [17], a very simple approach to the aerodynamics model is taken. It is assumed that the flight path
angle is always zero. This means that only gravity needs to be countered through the use of lift and
thrust. A simple function shown in Equation 3.11 can then be used to estimate lift.

L(θ) = −9.81 sin(−θ)m, θ ∈ [−π
2
, 0] (3.11)

Where θ is pitch angle and m is the mass of the drone. As for thrust, it is assumed that it always
compensates for drag which results in Equation 3.12.

T (θ) = −9.81 cos(θ)m, θ ∈ [−π
2
, 0] (3.12)

These equations provide a very simple model to implement for the aerodynamics of the system and in
[17], were sufficient to perform horizontal flight for a fixed rotor tail-sitter. However, this method poses
some limitations. The assumption that the flight path angle is zero means that the model is very inaccu-
rate when the trajectory performed by the drone is not horizontal. Furthermore, the assumption that the
thrust always counters the drag also leads to significant inaccuracies when the drone is accelerating.
For the tests performed in [17], this model was good enough to perform horizontal flight. However, it is
expected that such a simple model would not be sufficient for following a three-dimensional trajectory.

Singularity-Free Aerodynamic Model
This method was developed in [19] to provide a simple singularity-free aerodynamic model for control
purposes of tail-sitters. It is important to note that the main focus of the model is not to provide the
most accurate aerodynamic model but to propose a model that is accurate enough whilst being easy to
work with. The general proposed method is shown in Equation 3.13 where ρ is air density, S the wing
surface area, V∞ the free-stream velocity, v⃗B the velocity vector in the body reference frame and Φ(fv)

the aerodynamics coefficients matrix created with the model where Φ(fv) ∈ R3×3.

F⃗Baero
=

1

2
ρSV∞Φ(fv)v⃗B (3.13)

For a xz-symmetrical aircraft, Φ(fv) can be defined by Equation 3.14.

Φfv =

 Φ11 0 Φ13

0 Φ22 0
Φ31 0 Φ33

 ,Φ13 = Φ31 (3.14)

Using thin-airfoil theory, additional coefficients can be removed and the remaining coefficients can be
estimated without the use of large amounts of wind tunnel test data. The effective matrix Φ(fv) that
can be used is shown in Equation 3.15 where the only coefficient that is needed is Cd0

which is the
minimum drag coefficient. Cy0

is not needed as it can be assumed that lateral aerodynamic forces are
minimal compared to longitudinal forces for aircraft that have no vertical control surfaces such as the
tilt-rotor tailsitter.

3.2. State of the Field 25

Φfv =

 Cd0 0 0
0 Cy0

0
0 0 2π + Cd0

 (3.15)

The resulting model derived in [19] provides a robust method of calculating longitudinal aerodynamic
forces and while the modelling accuracy is lower than other methods, it has already been proven suc-
cessful by its use in [18] where a tail-sitter performed agile and aggressive manoeuvres which included
knife-edge flight and transition from knife-edge flight to horizontal flight.

Parameter Learning Aerodynamics Model
Another option to model the aerodynamic forces is through parameter learning of a model. This has
been done in [20] where parametrised functions are used to describe the lift and drag aerodynamic
forces. Then through gathering data from onboard sensors, a parameter learning scheme can be
applied to estimate the best value for these coefficients. Other learning methods were considered,
however, parameter learning was chosen for this application thanks to its low computational and mem-
ory requirements compared to the other methods [21].

The model defines the aerodynamic forces in the body reference frame F⃗Baero as is shown in Equa-
tion 3.16 where Flift and Fdrag are the parametrised functions for lift and drag respectively. Both are
functions of angle of attack α, free-stream velocity V∞ and what is called the average propeller force
fa which is defined as fa = (fl+fr)/2 where fl and fr are the left and right propeller forces. It is impor-
tant to note that the presence of the average propeller force in the model does not mean this method
includes thrust force, it means the aerodynamic forces induced by the thrust are taken into account.

F⃗Baero =
[
−Flift(α, V∞, fa) 0 Fdrag(α, V∞, fa)

]T (3.16)

The parameterised functions Flift and Fdrag are defined in Equation 3.17 where the coefficients that
need to be learned are denoted k....

Flift(α, V∞, fa) = (kl1 sin(α) cos(α)2 + kl2 sin(α)3)V 2
∞ + kl3fa,

Fdrag(α, V∞, fa) = (kd1 sin(α)2 cos(α) + kd2 cos(α))V 2
∞ + kd3fa

(3.17)

The implementation of this model in [20] where a fixed rotor tail-sitter was successfully flown and
showed good tracking performance supports the potential use of this model for the controller of the
drone. This is further supported by the fact that wind tunnel test data is not required as flight data
from onboard sensors can be used to train the model. Implementation of this model would however
require the addition of a term related to the angle of the propellers in the parameterised functions as it
is expected that this angle significantly affects the aerodynamic forces applied to the drone.

Thrust Modelling
In the context of the tilt-rotor tailsitter drone, accurate modelling of the available thrust force is important
for effective control of the system as this is the sole control method of the system. For this reason, this
section will detail different thrust modelling methods that may be used.

In [18], a very simple model for thrust was used and is shown in Equation 3.18 where T is thrust, ω
the propeller angular velocity and cT the thrust coefficient which was obtained by performing a force
balance bench test.

T = cTω
2 (3.18)

The simplicity of this model implies that a lot of aerodynamic effects are being ignored and thus that its
accuracy is limited. However, this model was successfully implemented in [18] where a fixed rotor tail-
sitter performed agile uncoordinated flight such as knife’s edge flight which implies that such a simple
model might be sufficient for this research. In the case that this model is not sufficient for the purposes
of this research, additional models are proposed.

3.2. State of the Field 26

Separate Thrust and Propeller Aerodynamics Modelling
Thrust coefficients are typically calculated based on bench tests where the flow of air is axial to the
propeller rotation axis. Therefore, the accuracy of these coefficients diminishes when the flow becomes
non-axial as the non-axial velocity components generate additional aerodynamic forces that are not
taken into account in these coefficients. The method proposed in [22] uses just like in [18], a simple
thrust model but adds corrective forces when the airflow relative to the propellers becomes non-axial.
The thrust model used is shown in Equation 3.19 where T is the thrust force, cT the thrust coefficient,
ρ the air density, ω the propeller angular velocity and D the propeller diameter.

T = cT ρω
2D4 (3.19)

In [22], the thrust coefficient cT varies based on the advance ratio J which is defined in Equation 3.20
where VN is the normal velocity component of the flow with respect to the propeller disc. This means
that cT is a function of J so cT (J). Finding the coefficients cT as a function of J is done in [22] by using
blade element momentum theory and in particular using the PROPID code [23].

J =
VN
ωD

(3.20)

Now that the thrust is modelled for axial flow, the method proposed to correct for non-axial flow is
presented Equation 3.21 where Zfwd is the corrective force in the same axis as the propeller rotational
axis, σ is what is called the propeller solidity which is the ratio of blade area over disk area, q̄ is dynamic
pressure, Adisc is the propeller disc surface area, a is the airfoil lift-curve slope which is set to 2π, Cd

the drag coefficient, αprop the angle of the flow with respect to the propeller hub and C̄l is the averaged
lift coefficient which is defined in Equation 3.22

Zfwd = −σq̄Adisc

2
(C̄l +

aJ

2π
ln(1 + (

π

J

2
)) +

π

J
Cd)αprop (3.21)

C̄l = (
3J

2π
)(

2

σq̄Adisc

J

π
T + Cd) (3.22)

In hover and near-hover conditions, Equation 3.21 cannot be used which is why when the drone tran-
sitions to hovering flight, Equation 3.21 is progressively switched to Equation 3.23 where Khvr is an
empirical coefficient that corrects for reduced flow turning efficiency and is equal to 0.8, V∞T is the
freestream velocity component in the disk plane which can be calculated with V∞T = V∞ sinαprop and
w0 is the induced velocity caused by the propeller during hovering and is defined in Equation 3.24.

Zhvr = −Khvr(ρw0Adisc)V∞T (3.23)

w0 =

√
T

2ρAdisc
(3.24)

The main limitation of this method is acquiring the data required to map the thrust coefficient as a func-
tion of the advance ratio. A solution is proposed by using the PROPID code but it is currently difficult
to estimate how much time it would take or if it would be precise enough. If it proves too difficult to use
the PROPID code, another method will now be proposed that is physics-based.

Physics Based Thrust Model
To avoid extensive testing to accurately model the thrust of the propellers for UAVs, the authors of [24]
propose a physics-based model to accurately predict the thrust generated by the propellers. The model
was compared to experimental test results and only had an error of 4.7% for the thrust. To be able to
calculate the thrust using this model, a few values need to be known with respect to the radial location
of the propeller blades and these are shown in Table 3.1.

3.2. State of the Field 27

Table 3.1: Required Propeller Data

Name Symbol Function of
Chord c Radial Position (r)
Chord line Pitch Angle θ Radial Position (r)
Zero-Lift Angle-of-Attack α0 Radial Position (r)
2D Lift Curve Slope a Radial Position (r)
2D Drag Coefficient Cd Radial Position (r)

It is important to note that the variables in Table 3.1 are dependent on the radial position of the propeller
but this will not be shown in further equations. To calculate the thrust, Equation 3.25 needs to be
numerically integrated starting at the radius of the propeller hub rh and ending at the propeller tip rp.
The variables not mentioned in Table 3.1 are air density ρ, the number of bladesN , the propeller angular
velocity ω and the inflow angle ϕin. The inflow angle ϕin is defined as tanϕin = (Vx + Vi)/(ωr) where
Vx is the velocity component of the freestream normal to the propeller disc plane and Vi is the induced
velocity.

T =
1

2
ρNω2

rp∑
r=rh

(
r2

cos(ϕin)
c(a(θ − α0−ϕin)− Cd tan(ϕin))∆r (3.25)

All variables in Equation 3.25 should be known already except for ϕin. ϕin is solved for each section of
the propeller radius by solving the nonlinear equation presented in Equation 3.26 and solutions for ϕin
should respect the following boundaries 0 < ϕin < π/2.

ωNc(a(θ − α0 − ϕin)− Cd tanϕin) = 8π sinϕin(ωr tanϕin − Vx) (3.26)

Whilst this method proposes a way to estimate generated thrust without extensive experiments, it still
requires measurement and estimation of the propeller characteristics which if this information is not
available from the manufacturer would take a substantial amount of time to obtain.

3.2.3. Trajectory Tracking
Trajectory tracking involves ensuring that the system that is being controlled is properly following a de-
signed trajectory. This means that methods involved in trajectory tracking at least cover the kinematics
of the system but are not limited to this and can additionally take into account the dynamics of the
system. For this reason, purely kinematic trajectory tracking methods will be covered first (Waypoint
Tracking and L1 Guidance) then, methods involving both kinematics and dynamics will be covered
(Differential Flatness and Model Predictive Control).

Waypoint Tracking
Waypoint tracking [25] is probably the simplest form of trajectory tracking that there is and is a good
starting point for this section. It is considered simple as it does not take into account the dynamics of
the vehicle and typically requires little information to function.

Vector Field Guidance
As the name implies, vector field guidance generates a field of vectors that typically depend on vehicle
position. In [25] for example, each position in space gives a bearing value that the vehicle should follow
and in [26], each position in space outputs the desired velocity vector to follow a loitering pattern. As
there is no standard formulation for generating a field, the formulation from [25] will be presented in
Equation 3.27. The definitions of the symbols in Equation 3.27 can be found in Table 3.2.

δ = KD

√
|DCTKC(φT − φR)| ∗ sign(DCT)

γ = min(1, DT)

φd = φT + δγ

(3.27)

3.2. State of the Field 28

Table 3.2: Definition of symbols in Equation 3.27 [25]

Symbol Definition
DCT Cross track error
DT Distance from target
φd Desired bearing
φT Bearing from the UAV to the destination waypoint
φR Bearing from the previous waypoint to the destination waypoint
KD Path reaching gain
KC Cross track error gain
γ Waypoint bearing gain

From Equation 3.27, waypoint following can be achieved and generates a vector field that is shown in
Figure 3.1 [25] which starts on the left and ends on the right waypoint.

Figure 3.1: Waypoint Vector Field [25]

Alternative trajectories can be generated such as loitering around a point with a certain radius. To
achieve this in [25], the equation for φd in Equation 3.27 was replaced by Equation 3.28.

φd = φT +
π

2
+min(|DCTKC | ,

π

2
) ∗ sign(DCT) (3.28)

In [26], the loitering vector field is generated by default by the formulation. This means no modifications
are needed to achieve loitering and waypoint navigation can be achieved by switching the loitering circle
positions. This can be done as the generated vector field is globally convergent to the loitering pattern.
An example of a loitering pattern vector field can be seen in Figure 3.2 [26].

3.2. State of the Field 29

Figure 3.2: Loitering Vector Field [26]

L1 Guidance
L1 guidance [27] is a non-linear guidance method that generates a lateral acceleration command based
on a reference point on the desired trajectory. The general logic is shown in Equation 3.29 and a visual
representation of the logic is shown in Figure 3.3 [27].

ascmd
= 2

V 2

L1
sin η (3.29)

Where ascmd
is the commanded lateral acceleration, V the vehicle inertial velocity, L1 the vector be-

tween the vehicle and the reference point and η is the angle between the vector L1 and the velocity
vector V .

Figure 3.3: Guidance Logic Diagram [27]

This nonlinear method offers several advantages over traditional PID controllers. First, the use of η
provides three advantages:

1. η provides a heading correction

3.2. State of the Field 30

2. For small angles, the controller behaves like a PD controller for cross-track error
3. As the L1 vector essentially looks ahead of the desired trajectory, the method provides an antici-

patory acceleration for turns in the reference

Second, the method does not require any knowledge of the dynamics of the system. Finally, the fact
that the controller uses the inertial velocity V of the vehicle means that it can deal with external distur-
bances such as wind.

L1 is a well-established guidance method and is implemented in multiple open source autopilots such
as PX41 and Ardupilot2. Additionally, there are multiple papers addressing issues with the method and
extending its capabilities.

For example, [28] proposes solutions for small, slow-flying fixed-wing UAVs to be able to handle small
loiter radii and high winds. To handle small loiter radii, the L1 distance was adaptively calculated based
on the knowledge that to follow a circle of radius R, the L1 distance should respect L1 ≤ R. As for high
winds, when the wind velocity exceeds the airspeed of the UAV, the feasibility of following a desired L1

trajectory depends on the bearing of the wind. This is why a bearing feasibility estimator was developed.
The logic behind it is that when the desired trajectory is deemed feasible, the L1 controller will function
normally. But when the desired bearing is not feasible, the L1 guidance will change its objective to
what is called in [28] the ”Safety Objective” which is in the feasibility region.

In [29], several improvements are performed so that the guidance can be used in the real world. This
involves adding additional logic for when the L1 intercept cannot be defined as the distance from the
vehicle to the trajectory is larger than the L1 distance. Furthermore, to improve stability when flying on
downwind trajectories, the length of L1 was adaptively calculated based on its ground speed following
Equation 3.30 where T ∗ is essentially a look-ahead time in seconds and Vg is the ground speed. It was
concluded in [29] that for an adequate transient response, the value of T ∗ should be at least 3-4 times
the roll response lag.

L1 = T ∗Vg (3.30)

Some limitations of L1 guidance will now be discussed. First, the method does not take into account
the dynamics of the system it is controlling. This has two implications, if the system has slow jerk char-
acteristics it could overshoot as the controller assumes that the commanded acceleration it provides is
applied instantaneously. The second implication is that as the dynamics of the system are not taken
into account when generating the trajectory, it is possible to generate trajectories that are impossible
to follow properly.

Second, the method does not control the complete velocity vector of the vehicle, it only provides a
perpendicular acceleration to the velocity vector. Furthermore, when velocity is zero, the control law in
Equation 3.29 says that the lateral acceleration is zero. This means that a separate velocity controller
needs to be implemented.

Finally, the method needs additional logic to deal with problems such as when the distance between
the vehicle and the closest part of the trajectory is further than the length L1.

Trajectory Tracking Using Differential Flatness
Differential flatness [30] is in itself not a control method but a characteristic of nonlinear systems that
simplifies their control. A definition given by [31] will be detailed. A general nonlinear system shown
in Equation 3.31 is differentially flat if there exists outputs called flat outputs of the form shown in
Equation 3.32 such that x and u can be expressed as shown in Equation 3.33.

ẋ = f(x,u),x ∈ Rn,u ∈ Rm (3.31)
1https://px4.io/
2https://ardupilot.org/

3.2. State of the Field 31

y = y(x, u̇, ...,u(p)),y ∈ Rm, p ∈ Z≥0 (3.32)

x = x(y, ẏ, ...,y(q)),u = u(y, ẏ, ...,y(q)), q ∈ Z≥0 (3.33)

The implications of such a system are very advantageous. In [18], the flat output is defined as (x, y, z, ϕ)
which means that defining this flat output is the same as defining the desired trajectory. From this, a
unique set of states and inputs can be calculated to achieve this trajectory. This enables more agile
and aggressive manoeuvres to be performed. Most notably in [18], this method enabled the fixed rotor
tail-sitter to perform a stable knife edge flight and transition from this knife edge flight to coordinated
flight whilst also performing a 1.6g turn. It should be noted that the ability to perform such manoeuvres
is not completely thanks to differential flatness but its combination with INDI for linear and angular ac-
celeration control that can deal with external disturbances and model inaccuracies.

The ability to perform aggressive and agile flight is further supported by [32] where differential flatness
and INDI were applied to a quadrotor that achieved an RMSE of 6.6cm for position tracking and reached
accelerations of up to 2.1g.

Using differential flatness for control does prove to have some limitations. For example, ensuring that
the system is differentially flat cannot be guaranteed. This is because finding functions that relate the
states and inputs to the flat outputs can be difficult or impossible (In which case the system cannot be
differentially flat).

Additionally, looking at Equation 3.33, It should be noted that there are limitations on the type of trajec-
tory that can be designed as calculating the states x and u requires the derivatives of y up to q. So a
defined trajectory must be differentiable q times.

Model Predictive Control
An MPC is an advanced control method that typically makes use of a simplified model of the system
to calculate the optimal control inputs the system needs to perform over a certain prediction horizon.
Figure 3.4 depicts a simplified MPC scheme where the system consists of one input and one output.
Starting at t = k, the MPC will calculate, through the use of an objective function, the optimal control
input to minimise the error between the predicted output in orange and the reference trajectory in red.
The output of the optimisation is the predicted control input in light blue. From this predicted control
input, the vehicle will apply the control input of k + 1 to the real system then one sample time after the
first optimisation it will perform the same process over again.

Figure 3.4: Single Input, Single Output MPC Example [33]

An additional concept that is not depicted in Figure 3.4 is the control horizon. The control horizon must
always be equal to or smaller than the prediction horizon p. The control horizon dictates the number of

3.3. Research Gap & Conclusion 32

time steps over which the control inputs may vary. Past the control horizon, the inputs must remain the
same as the last input of the control horizon. This translates to an equality constraint in the formulation
of the optimisation problem.

In [34], a version of Model Predictive Control called Successive Linearisation Model Predictive Control
(SLMPC) was used to follow a reference trajectory for a quadrotor tail-sitter in hovering flight. Succes-
sive linearisation indicates that the model is linearised at each timestep to be able to perform linear
optimisation even though the system is nonlinear. The implementation of SLMPC in [34] does show
some weaknesses. First, the method described is not a general controller for all flight phases of the tail-
sitter and would require extensions for transition and horizontal flight. Secondly, the wind disturbances
are assumed to be known in the simulations that were performed which means that wind needs to be
estimated during the flight in real-world conditions.

Another potential method of dealing with nonlinear systems is to make use of nonlinear model predic-
tive control. With a proper model, this ensures that model inaccuracies are kept minimal. However,
the nonlinear nature of the system means that a nonlinear solver must be used which implies that a
globally optimal solution cannot be guaranteed and also significantly increases the computational load.

3.3. Research Gap & Conclusion
From the research performed in section 3.2 and to the best knowledge of the author, the autonomous
guidance of a twin tilt-rotor tail-sitter has not yet been achieved. Implementations on similar platforms
such as fixed-rotor tail-sitters have been successful and point towards the feasibility of achieving au-
tonomous guidance for a tilt-rotor platform. As the novelty lies in achieving autonomous guidance, the
body of literature explored in section 3.2 will serve as guidance for the best way to achieve that objective.
The literature research explored the topics of hybrid MAV control, aerodynamics & thrust modelling and
trajectory tracking. Each topic had multiple methods available which is why in this section, a method
from each topic will be selected to be implemented. Trajectory tracking will be covered first, then the
control method that will be combined with this and finally, the aerodynamics and thrust models that will
be used in the control method will be chosen.

Trajectory Tracking
To the best knowledge of the author, none of the trajectory tracking methods detailed previously have
been applied to the specific twin tilt-rotor tail-sitter platform. However, certain methods have been
applied to very similar platforms such as differential flatness which was applied to a twin fixed-rotor tail-
sitter and model predictive control which was applied to a quad fixed-rotor tail-sitter. The application of
such methods to very similar platforms is a good argument for their potential use further on. However,
each has a principal problem which leads to choosing another option.

Differential flatness has proven to be excellent for agile manoeuvres for a fixed-rotor tail-sitter. The
main issue concerning the application of this method is time. When considering the time it has taken
to simply implement INDI attitude stabilisation on the platform (A full thesis was dedicated to this), it is
not realistic to assume the full implementation of this method could take a maximum of 8 months.

Concerning MPC, the two available options are SLMPC and nonlinear MPC. The first has been shown
to perform well but would require model extensions for transition and horizontal flight which may take
too much time. The second, as it is solved by a nonlinear solver would potentially encounter two prob-
lems. The computational power required could be too high for such a complex system or, the solved
solutions are not optimal which could severely affect the performance of the system.

There now remains Waypoint Tracking and L1 Guidance. Waypoint Tracking is essentially a PID con-
troller which for a heavily nonlinear system would most likely require gain scheduling with a lot of tuning
required for the system to perform correctly. For this reason, this method will not be chosen. This means
that despite the practical adaptations the method needs to be implemented, L1 Guidance will be used
for trajectory tracking due to the simplicity and robustness of its control logic.

3.3. Research Gap & Conclusion 33

Outer-loop Control Method
With L1 guidance providing a reference acceleration to follow, this reference now needs to be translated
to effective control inputs that will achieve the required acceleration. From the research performed in
subsection 3.2.1, three methods are available: PID, LQR and INDI.

PID control does not require any model information which for simple linear systems is very practical as
the controller only needs to be tuned to the desired performance. Unfortunately, this simplicity does not
carry over to highly nonlinear systems such as a tilt-rotor tail-sitter and thus would not be an effective
method of translating the acceleration requirement to control inputs.

The performance of LQR control suffers mostly when there are model inaccuracies or the system is
subject to external disturbances. For the purposes of a tilt-rotor tail-sitter, this method is not optimal.
Firstly due to the limited accuracy of dynamics models for tail-sitters and secondly, outdoor flight re-
quires robustness to external disturbances. This method will therefore not be used.

Finally, INDI is considered. Its successful implementation in two different fixed-rotor tail-sitters [18, 17]
shows promising performance for controlling such a nonlinear system and by design can deal with
external disturbances.

Aerodynamics and Thrust Models
For the aerodynamic and thrust models, as they are not the focus of this research, the simplest or most
practical implementations will be used at first. If their performance is not sufficient to ensure the proper
functioning of the system, the proposed alternatives will be implemented.

For the aerodynamics, this means that the singularity-free model will first be implemented as it requires
no experimental or simulation data and as the name implies it is also singularity-free which is very ad-
vantageous for a tail-sitter MAV.

Finally, concerning the thrust model, the simplest form shown in Equation 3.18 will be used initially as
it has successfully been used for the agile control of a fixed-rotor tail-sitter. In the potential scenario it
is not sufficient, one of the two other alternatives may be implemented.

Conclusion
With methods from each topic selected, the control structure is complete. An overview of the control
structure that will be developed is presented in Figure 3.5. Starting from the right is the inner loop control
which consists in attitude stabilisation using INDI and was developed by Gervase Lovell-Prescod [1]. As
can be seen, the inner loop takes as inputs a required thrust and attitude which is then translated to ac-
tual actuator commands in the inner loop. These inputs are provided by the INDI acceleration controller
that will be developed. In combination with the 3D L1 controller, the INDI acceleration controller forms
the outer loop of the control structure and should allow the drone to follow a desired three-dimensional
trajectory. In Appendix A, an explanation of the adapted L1 kinematic controller is given and a partial
derivation of the INDI acceleration controller is derived.

3.3. Research Gap & Conclusion 34

Figure 3.5: Control Structure Overview

4
Verification

This chapter is dedicated to verifying the simulation model used to simulate the behaviour of the tilt-rotor
tailsitter MAV. This will be done in two steps. First, the calculation of the state derivatives will be verified
by comparing manually calculated derivatives with the derivatives calculated by the developed function.
Finally, some full simulation verifications will be performed where specific simulation scenarios will be
performed and the outputs analysed to check that the expected behaviours and outputs are observed.

4.1. Model Verification
The states and control inputs of the model will be referred to multiple times in this chapter therefore to
avoid repetition, the units for each symbol will be summarised here in the following tables. The units
for the states are shown in Table 4.1, the units for the corresponding state derivatives are presented in
Table 4.2 and finally, the units for the inputs of the model are shown in Table 4.3.

X⃗ = ⟨x, y, z, Vx, Vy, Vz, q0, qx, qy, qz, p, q, r⟩
U⃗ = ⟨ωl, ωr, αl, αr⟩

(4.1)

Table 4.1

Symbols x y z Vx Vy Vz q0 qx qy qz p q r
Units [m] [m/s] [−] [rad/s]

Table 4.2

Symbols ẋ ẏ ż V̇x V̇y V̇z q̇0 q̇x q̇y q̇z ṗ q̇ ṙ
Units [m/s] [m/s2] [−] [rad/s2]

Table 4.3

Symbols ωl ωr αl αr

Units [rad/s] [rad]

4.1.1. Manual Verification of State Derivatives
A simple first verification that can be done is to check that the function calculating the state derivatives
is producing the right values. To do so, some simple states can be generated. The derivatives can then
be calculated manually and then compared to the output of the state derivatives function. For each test,
the inputs to the function will be described in an equation similar to Equation 4.1 except the symbols will
be replaced with numerical values, then a table will detail the ”Expected” values calculated manually
and the values produced by the ”Simulation” function. An error will also be calculated if there is any.

35

4.1. Model Verification 36

Test 1
This first test has the drone flying in the x-direction at 10m/s with zero yaw, pitch and roll. This means it
is completely flat and aligned with the velocity vector. Additionally, both propellers are spinning at 1000
rad/s and tilted upwards by 10 degrees. An overview of these values is shown in Equation 4.2.

X⃗ = ⟨0, 0, 0, 10, 0, 0, 1, 0, 0, 0, 0, 0, 0⟩
U⃗ = ⟨1000, 1000, π

18 ,
π
18 ⟩

(4.2)

The results of this test in Table 4.4 show no error between the expected and simulation values. Fur-
thermore, the system behaves as expected, there is an acceleration in the x-direction V̇x caused by the
propellers and a reduction of gravity’s acceleration in the z-direction V̇z due to the tilting of the propeller
by 10 degrees. The tilting of the propellers also generates a moment around the y-axis which generates
a positive angular acceleration q̇.

Table 4.4: Verification Test 1 Results

Derivatives ẋ ẏ ż V̇x V̇y V̇z q̇0 q̇x q̇y q̇z ṗ q̇ ṙ
Expected 10 0 0 2.7953 0 9.2066 0 0 0 0 0 11.4956 0
Simulation 10 0 0 2.7953 0 9.2066 0 0 0 0 0 11.4956 0
Error 0 0 0 0 0 0 0 0 0 0 0 0 0

Test 2
For this test, the drone will have a yaw and pitch of 90 degrees with zero degrees of roll. Values for
position have been given to simply check that they do not affect calculations of the derivatives. A
velocity of 5 m/s will be given in the y-direction and no velocity in other directions. As for the propellers,
the only change is that αr will now be negative. These values are shown in Equation 4.3.

X⃗ = ⟨10, 10, 10, 0, 5, 0, 0.5,−0.5, 0.5, 0.5, 0, 0, 0⟩
U⃗ = ⟨1000, 1000, π

18 ,−
π
18 ⟩

(4.3)

Before looking at the results, some predictions about the derivatives can be made. First, because the
drone is perpendicular to the velocity, a large deceleration should be expected in the y-direction due
to the force produced by the aerodynamics model. This deceleration will be slightly complemented by
a differential in actual thrust produced by the propellers. This is caused by the difference in propeller
inflow velocity experienced by each propeller. Indeed, αr being negative points the propeller into the
flow increasing the inflow velocity and reducing its thrust whereas αl points away from the flow having
an equal but opposite inflow velocity increasing its thrust. The result is an additional deceleration in the
y-direction. Secondly, a reduction of gravitational acceleration should be expected. Thirdly, ṗ should
be positive due to the opposite angles of the propellers, q̇ should be large and negative due to the large
aerodynamic moment and finally ṙ should not be zero but positive because a moment is generated due
to the differential thrust caused by the different inflow velocities.

Table 4.5: Verification Test 2 Results

Derivatives ẋ ẏ ż V̇x V̇y V̇z q̇0 q̇x q̇y q̇z ṗ q̇ ṙ
Expected 0 5 0 0 −12.7467 3.136 0 0 0 0 6.8979 −25.9105 1.65
Simulation 0 5 0 0 −12.7467 3.136 0 0 0 0 6.8979 −25.9105 1.65
Error 0 0 0 0 0 0 0 0 0 0 0 0 0

Looking at Table 4.5, the results match up exactly when rounded to the fourth digit. In practice, the
results still match past four digits but for presenting the results four has been deemed sufficient.

Results of State Derivatives Verification
The results of both tests performed in this section give sufficient proof that the calculation of the state
derivatives is performed correctly and thus is verified.

4.1. Model Verification 37

4.1.2. Full Simulation Verification
This section is dedicated to verifying the implementation of the full simulation. This entails verifying
that the flight characteristics and behaviour of the drone in different scenarios is what is expected. The
tests will consist of two drop tests with no thrust and a vertical spin test with thrust. The first two tests
with no thrust aim to verify the correct behaviour of the aerodynamics model and the vertical spin test
aims to verify the correct behaviour of the thrust force calculations. Before the results of each test, the
expected flight characteristics of each test will be detailed and then compared to the actual results in
the figure. For a better understanding of the tests, the starting orientations of the drone in each test are
shown in Figure 4.1.

(a) Flat Drop (b) Sideway Drop (c) Vertical Spin

Figure 4.1: Starting Orientations of the Different Verifications

Flat Drop Test
The flat drop test is performed to verify the aerodynamic behaviour of the drone, more specifically, the
lift and drag implementation from the ϕ aerodynamic theory model from [19]. The starting orientation of
the drone is depicted in Figure 4.1a. As the centre of pressure is behind the centre of gravity, the drone
is expected to drop and start pitching downwards once it has attained some downwards velocity. This
pitching movement should oscillate a bit but should stabilise to −90 degrees which is pointing straight
down. Additionally, due to the drag force, the Z acceleration should tend to zero with increasing vertical
velocity.

Looking at the results in Figure 4.2 the drone indeed pitches forward andwithin three seconds is pointing
straight down with a pitch value of −90 degrees. No velocity or acceleration in the y-direction can be
observed which is expected as no forces are produced in that direction. Furthermore, the acceleration
in the z-direction can be seen approaching zero after 10 seconds. The velocity at which the drone
should no longer accelerate in this situation or in other words its terminal velocity is around 39.5559
m/s. Simulating this test up to 20 seconds, the velocity in the z-direction has a value of 39.551 m/s
and an acceleration of 0.00249m/s2 which slowly pushes the velocity to the expected terminal velocity
confirming the proper implementation of the drag element of the aerodynamics.

0 5 10

Time [s]

-3

-2

-1

0

1

V
x
 [

m
/s

]

X Velocity

Sim

0 5 10

Time [s]

-1

-0.5

0

0.5

1

V
y
 [

m
/s

]

Y Velocity

Sim

0 5 10

Time [s]

0

10

20

30

40

V
z
 [

m
/s

]

Z Velocity

Sim

0 5 10

Time [s]

-10

-5

0

5

10

a
x
 [

m
/s

2
]

X Acceleration

Sim

0 5 10

Time [s]

-1

-0.5

0

0.5

1

a
y
 [

m
/s

2
]

Y Acceleration

Sim

0 5 10

Time [s]

0

5

10

a
z
 [

m
/s

2
]

Z Acceleration

Sim

(a) fig 1

0 2 4 6 8 10

Time [s]

-140

-120

-100

-80

-60

-40

-20

0

a
n
g
le

 [
d
e
g
]

Euler Angles

Yaw

Roll

Pitch

(b) fig 1

Figure 4.2: Flat Drop Test

4.1. Model Verification 38

Sideway Drop Test
The flat drop test has verified the implementation of the aerodynamic lift and drag force, this sideway
drop test is designed to verify the proper implementation of the lateral aerodynamic force implemen-
tation. The starting orientation of the drone is shown in Figure 4.1b. With no thrust during this test,
the drone is expected to start falling and then with the velocity increasing the lateral force should start
to rotate the drone around its z-axis as depicted in Figure 4.1b. The lateral force coefficient is much
smaller than the coefficient generating lift, therefore slower and larger oscillations around the z-axis of
the drone are expected.

The results of this test in Figure 4.3 indeed show an increase in velocity in the z-direction along with
a large oscillation and slow oscillation of roll. The reason that it is roll that is oscillating and that yaw
and pitch have large jumps in values at the start is due to the ambiguity of the definitions of these Euler
angles when the drone is positioned with 90 degrees of roll as shown in Figure 4.1b. Changing the
rotation sequence back to the more popular ZYX rotation sequence would not help much in terms of
clarity as this test also has the drone rotate directly downwards which is ambiguous for this sequence
as well. To clarify, it has been verified that this oscillation in roll translates to an oscillation around the
body z-axis depicted in Figure 4.1b which is what is expected.

0 5 10

Time [s]

0

10

20

30

V
x
 [

m
/s

]

X Velocity

Sim

0 5 10

Time [s]

0

10

20

30

V
y
 [

m
/s

]

Y Velocity

Sim

0 5 10

Time [s]

0

10

20

30

V
z
 [

m
/s

]

Z Velocity

Sim

0 5 10

Time [s]

0

2

4

6

8

a
x
 [

m
/s

2
]

X Acceleration

Sim

0 5 10

Time [s]

0

2

4

6

8

a
y
 [

m
/s

2
]

Y Acceleration

Sim

0 5 10

Time [s]

0

2

4

6

8

a
z
 [

m
/s

2
]

Z Acceleration

Sim

(a) fig 1

0 2 4 6 8 10

Time [s]

-100

-50

0

50

100

a
n
g
le

 [
d
e
g
]

Euler Angles

Yaw

Roll

Pitch

(b) fig 1

Figure 4.3: Sideway Drop Test

Vertical Spin Test
This vertical spin test is designed to verify the proper behaviour of the thrust model. The propeller
angular velocities will be set to 1300 rad/s with each nacelle pointing 5 degrees in the opposite direction
of each other. These values are shown in Equation 4.4 using the previously mentioned format.

U⃗ = ⟨1300, 1300,− π

36
,
π

36
⟩ (4.4)

With near full throttle, the drone is expected to start flying up even though the propellers are slightly
angled. Furthermore, this vertical acceleration is expected to tend to zero as the inflow velocity will
increase, decreasing the thrust. Due to the propeller nacelles being angled in opposite directions, the
drone is expected to start spinning around its x-axis shown in Figure 4.1c. No aerodynamic forces
due to drone rotation have been implemented, therefore there will be no resistance to rotation so the
angular velocity of the drone should linearly increase. Furthermore, the angular velocity of the drone is
not taken into account when calculating the inflow velocity of the propellers. This means no reduction
in thrust should be expected due to the increasing spin of the drone.

Looking at Figure 4.4, the previously made predictions are correct. The drone slowly stops accelerating
vertically and reaches a stable velocity and also starts spinning. However, the spin behaviour shown
in Figure 4.4b is odd. The yaw rate slowly starts increasing progressively faster but then starts to slow
down when it is expected to linearly increase. The slowing down of the yaw rate can be visualised by
the slope of the yaw plot or by the increasing distance between the sharp peaks.

4.1. Model Verification 39

0 5 10

Time [s]

-4

-3

-2

-1

0

V
x
 [

m
/s

]

X Velocity

Sim

0 5 10

Time [s]

-4

-3

-2

-1

0

V
y
 [

m
/s

]

Y Velocity

Sim

0 5 10

Time [s]

-4

-3

-2

-1

0

V
z
 [

m
/s

]

Z Velocity

Sim

0 5 10

Time [s]

-1.5

-1

-0.5

0

a
x
 [

m
/s

2
]

X Acceleration

Sim

0 5 10

Time [s]

-1.5

-1

-0.5

0
a

y
 [

m
/s

2
]

Y Acceleration

Sim

0 5 10

Time [s]

-1.5

-1

-0.5

0

a
z
 [

m
/s

2
]

Z Acceleration

Sim

(a) fig 1

0 2 4 6 8 10

Time [s]

-200

-150

-100

-50

0

50

100

150

200

a
n
g
le

 [
d
e
g
]

Euler Angles

Yaw

Roll

Pitch

(b) fig 1

Figure 4.4: Vertical Spin Test

To investigate this issue, Figure 4.5 was created to compare the angular rate calculated by the equations
of motion preq and the angular rate actually displayed by the quaternion attitude pquat. The left plot in
Figure 4.5 shows both values evolve over the simulation time and shows the origin of the angular rate
slowdown observed in Figure 4.4b. The right plot shows the error evolves with increasing preq. This
error has been identified as a quaternion dynamics integration error. This has been verified by reducing
the timestep and observing a reduction in the error. Although in this scenario the errors get very large,
it should be noted that such large angular velocities are typically never reached. To give a better idea
of the magnitude of the error at more reasonable speeds, the error at 360 degrees per second is about
5 degrees per second.

0 5 10

Time [s]

-60

-50

-40

-30

-20

-10

0

p
 [

ra
d

/s
]

p
req

p
quat

-60-40-200

p
req

 [rad/s]

0

5

10

15

20

25

30

35

40

45

e
p
 [

ra
d

/s
]

p
quat

-p
req

Figure 4.5: Quaternion Integration Angular Rate Error

It can be concluded that although in this specific scenario, the error gets very large, in practice, these
angular rate values are never reached and therefore the error stays minimal. Additionally, the aerody-
namic drag caused by the spinning of the drone is not modelled which means that during real flight, the
angular velocity would never reach such high values. Therefore, no changes have to be made but this
source of integration error should be checked if changes to the integration scheme are made.

5
Conclusion

Tailsitter hybrid MAVs offer the ability to fly in hover and horizontal flight allowing them to perform
tasks that require hovering and the increased energy efficiency of using a wing for horizontal flight. A
novel tilt-rotor tailsitter using leading-edge tilting propellers has been proposed in [1]. The replacement
of ailerons by tilt-rotors is to tackle the reduced control authority of ailerons for pitch and roll control
at lower to zero velocities. The work focused on attitude control of the platform using Incremental
Nonlinear Dynamic Inversion which successfully followed commanded attitudes over the entire flight
envelope. Using a simulation of this same platform, this thesis aims to develop a method of controlling
the acceleration of this tilt-rotor tailsitter MAV which can then be used for position control of the drone.

Based on the previous success of [1] to control attitude using INDI and [17] using a cascaded INDI
structure to control the acceleration of a fixed-rotor tailsitter, initial developments investigated the use
of a cascaded INDI structure to control the platform. Issues were encountered when implementing this
method which led to a change of methodology and was not further investigated. The new proposed
method to control acceleration is a Nonlinear Model Predictive Controller. Using a model of the system
and some high-level objectives defined in a cost function, this controller can calculate the optimal control
input that minimises the value of the cost function.

Several simulations were performed to assess the performance of the NMPC. The first simulation
tested themaximum forward velocity which the NMPCmanaged to get to 19m/s. The second simulation
tested the ability of the controller to slow back down to hover from a certain forward velocity. It managed
this up to a velocity of 8 m/s which is significantly lower than the maximum forward velocity from hover.
More complex tests were simulated namely a circular and square trajectory. The maximum velocities
achieved for both tests were 10 and 8 m/s respectively. These performances were mainly limited by
an issue in the prediction model where a large integration timestep was used which caused model
instability. The use of sub-steps to reduce the integration timesteps fixed this issue and extended
the performance of the NMPC. After the implementation of this fix, the Sub-stepping NMPC, as it will
be referred to, flew to a maximum of about 24.5 m/s in the maximum forward velocity test where the
controller could no longer accelerate due to the saturation of the propeller motors. The hover to forward
flight to hover test was performed up to 24 m/s and was limited by the previously mentioned maximum
forward velocity. As for the circular and square trajectories, maximum velocities increased for both up
to 11 and 24 m/s respectively. Most importantly, failures past these velocities were no longer caused by
the solver crashing but by performance failures. Based on the limitations of the Sub-stepping NMPC
being caused by actuator saturation for the maximum forward velocity and the hover to forward flight
to hover test, the Sub-stepping NMPC does show global effectiveness for acceleration control.

In terms of practical limitations, it was determined that in its current form, the NMPC would have
difficulties running on hardware that is small enough to be placed on the drone such as a Raspberry Pi.
To mitigate this, a feedforward neural network that can run much faster on a Raspberry Pi was trained
using a process called behavioural cloning. Using training data from the NMPC, the neural network
managed to approximate the complex control logic used by the NMPC. When comparing the NMPC
and the NN using the same target velocities in the simulation, performance was reduced in all tests but
the neural network showed similar general behaviour to that of the NMPC. This points to behavioural
cloning being an effective method of transferring computationally intensive control logic to a neural

40

41

network that can run faster.

References
[1] G.H.L.H. Lovell-Prescod, Z. Ma, and E.J.J. Smeur. “Attitude Control of a Tilt-rotor Tailsitter Micro

Air Vehicle Using Incremental Control”. In: 2023 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE. 2023, pp. 842–849.

[2] E.J.J. Smeur, Q. Chu, and G.C.H.E. de Croon. “Adaptive Incremental Nonlinear Dynamic Inver-
sion for Attitude Control of Micro Air Vehicles”. In: Journal of Guidance, Control, and Dynamics
39 (Dec. 2015), pp. 1–12. DOI: 10.2514/1.G001490.

[3] R. Chiappinelli et al. “Modeling and Control of a Passively-Coupled Tilt-Rotor Vertical Takeoff and
Landing Aircraft”. In: (2019), pp. 4141–4147. DOI: 10.1109/ICRA.2019.8793606.

[4] L. Bauersfeld andG. Ducard. “Fused-PIDControl for Tilt-Rotor VTOLAircraft”. In: (2020), pp. 703–
708. DOI: 10.1109/MED48518.2020.9183031.

[5] L.V. Santana, A.S. Brandão, andM. Sarcinelli-Filho. “Outdoor waypoint navigation with the AR.Drone
quadrotor”. In: (2015), pp. 303–311. DOI: 10.1109/ICUAS.2015.7152304.

[6] J. Willis, J. Johnson, and R.W. Beard. “State-Dependent LQR Control for a Tilt-Rotor UAV”. In:
(2020), pp. 4175–4181. DOI: 10.23919/ACC45564.2020.9147931.

[7] J.J.E. Slotine and W. Li. Applied Nonlinear Control. Prentice-Hall International Editions. Prentice-
Hall, 1991. ISBN: 9780130400499. URL: https://books.google.nl/books?id=HddxQgAACAAJ.

[8] A. Isidori. Nonlinear Control Systems. Communications and Control Engineering. Springer Lon-
don, 1995. ISBN: 9783540199168. URL: https://books.google.nl/books?id=fPGzHK%5C_
pto4C.

[9] S. Sastry. Nonlinear Systems: Analysis, Stability, and Control. Interdisciplinary Applied Mathe-
matics. Springer New York, 2013. ISBN: 9781475731088. URL: https://books.google.nl/
books?id=j%5C_PiBwAAQBAJ.

[10] S.A. Snell, D.F. Enns, and W.L. Garrard. “Nonlinear inversion flight control for a supermaneuver-
able aircraft”. In: Journal of Guidance, Control, and Dynamics 15.4 (1992), pp. 976–984. DOI:
10.2514/3.20932. eprint: https://doi.org/10.2514/3.20932. URL: https://doi.org/10.
2514/3.20932.

[11] D.J. Bugajski and D.F. Enns. “Nonlinear control law with application to high angle-of-attack flight”.
In: Journal of Guidance, Control, and Dynamics 15.3 (1992), pp. 761–767. DOI: 10.2514/3.
20902. eprint: https://doi.org/10.2514/3.20902. URL: https://doi.org/10.2514/3.20902.

[12] J. Hauser, S. Sastry, and G. Meyer. “Nonlinear Control Design for Slightly Non-minimum Phase
Systems: Application to V/STOL Aircraft”. In: Automatica 28 (Aug. 1992). DOI: 10.1016/0005-
1098(92)90029-F.

[13] D. Enns et al. “Dynamic inversion: an evolving methodology for flight control design”. In: Interna-
tional Journal of Control 59.1 (1994), pp. 71–91. DOI: 10 . 1080 / 00207179408923070. eprint:
https : / / doi . org / 10 . 1080 / 00207179408923070. URL: https : / / doi . org / 10 . 1080 /
00207179408923070.

[14] T.J. Koo and S. Sastry.Output tracking control design of a helicopter model based on approximate
linearization. Vol. 4. 1998, 3635–3640 vol.4. DOI: 10.1109/CDC.1998.761745.

[15] D. Lee and S. Sastry. “Feedback linearization vs. adaptive sliding mode control for a quadrotor
helicopter. International Journal of Control, Automation and Systems, 7(3), 419-428”. In: Interna-
tional Journal of Control, Automation and Systems 7 (June 2009), pp. 419–428. DOI: 10.1007/
s12555-009-0311-8.

[16] R. van ’t Veld, E. Van Kampen, and Q. Chu. “Stability and Robustness Analysis and Improve-
ments for Incremental Nonlinear Dynamic Inversion Control”. In: AIAA Guidance, Navigation,
and Control Conference (Jan. 2018). DOI: 10.2514/6.2018-1127.

42

https://doi.org/10.2514/1.G001490
https://doi.org/10.1109/ICRA.2019.8793606
https://doi.org/10.1109/MED48518.2020.9183031
https://doi.org/10.1109/ICUAS.2015.7152304
https://doi.org/10.23919/ACC45564.2020.9147931
https://books.google.nl/books?id=HddxQgAACAAJ
https://books.google.nl/books?id=fPGzHK%5C_pto4C
https://books.google.nl/books?id=fPGzHK%5C_pto4C
https://books.google.nl/books?id=j%5C_PiBwAAQBAJ
https://books.google.nl/books?id=j%5C_PiBwAAQBAJ
https://doi.org/10.2514/3.20932
https://doi.org/10.2514/3.20932
https://doi.org/10.2514/3.20932
https://doi.org/10.2514/3.20932
https://doi.org/10.2514/3.20902
https://doi.org/10.2514/3.20902
https://doi.org/10.2514/3.20902
https://doi.org/10.2514/3.20902
https://doi.org/10.1016/0005-1098(92)90029-F
https://doi.org/10.1016/0005-1098(92)90029-F
https://doi.org/10.1080/00207179408923070
https://doi.org/10.1080/00207179408923070
https://doi.org/10.1080/00207179408923070
https://doi.org/10.1080/00207179408923070
https://doi.org/10.1109/CDC.1998.761745
https://doi.org/10.1007/s12555-009-0311-8
https://doi.org/10.1007/s12555-009-0311-8
https://doi.org/10.2514/6.2018-1127

References 43

[17] E.J.J. Smeur, M. Bronz, and G.C.H.E. de Croon. “Incremental Control and Guidance of Hybrid
Aircraft Applied to a Tailsitter Unmanned Air Vehicle”. English. In: Journal of Guidance, Control,
and Dynamics: devoted to the technology of dynamics and control 43.2 (2020), pp. 274–287.
ISSN: 0731-5090. DOI: 10.2514/1.G004520.

[18] E. Tal and S. Karaman. “Global Trajectory-tracking Control for a Tailsitter Flying Wing in Agile
Uncoordinated Flight”. In: AIAA AVIATION 2021 FORUM (Aug. 2021). DOI: 10.2514/6.2021-
3214.

[19] L. Ribeiro Lustosa, F. Defaÿ, and J. Moschetta. “Global Singularity-Free Aerodynamic Model for
Algorithmic Flight Control of Tail Sitters”. In: Journal of Guidance, Control, and Dynamics 42 (Dec.
2018), pp. 1–14. DOI: 10.2514/1.G003374.

[20] R. Ritz and R. D’Andrea. “A The controller for flying wing tailsitter vehicles”. In: (2017), pp. 2731–
2738. DOI: 10.1109/ICRA.2017.7989318.

[21] G. Chowdhary and R. Jategaonkar. “Aerodynamic parameter estimation from flight data apply-
ing extended and unscented Kalman filter”. In: Aerospace Science and Technology 14.2 (2010),
pp. 106–117. ISSN: 1270-9638. DOI: https://doi.org/10.1016/j.ast.2009.10.003. URL:
https://www.sciencedirect.com/science/article/pii/S1270963809000650.

[22] M. Selig. “Modeling Propeller Aerodynamics and Slipstream Effects on Small UAVs in Realtime”.
In: AIAA Atmospheric Flight Mechanics Conference 2010 (Aug. 2010). DOI: 10.2514/6.2010-
7938.

[23] M. Selig. PROPID - Software for Horizontal-Axis Wind Turbine Design and Analysis. 1995. URL:
https://m-selig.ae.illinois.edu/propid.html.

[24] W. Khan andM. Nahon. “Toward an Accurate Physics-BasedUAVThruster Model”. In: IEEE/ASME
Transactions on Mechatronics 18.4 (2013), pp. 1269–1279. DOI: 10.1109/TMECH.2013.2264105.

[25] D. Stojcsics. “Autonomous Waypoint-based Guidance Methods for Small Size Unmanned Aerial
Vehicles”. In: Acta Polytechnica Hungarica 11 (Jan. 2014), pp. 215–233.

[26] D. Lawrence, E. Frew, and W. Pisano. “Lyapunov Vector Fields for Autonomous Unmanned Air-
craft Flight Control”. In: Journal of Guidance Control and Dynamics - J GUID CONTROL DYNAM
31 (Sept. 2008), pp. 1220–1229. DOI: 10.2514/1.34896.

[27] S. Park, J Deyst, and J. How. “A New Nonlinear Guidance Logic for Trajectory Tracking”. In: AIAA
Guidance, Navigation, and Control Conference and Exhibit. DOI: 10.2514/6.2004-4900. eprint:
https://arc.aiaa.org/doi/pdf/10.2514/6.2004-4900. URL: https://arc.aiaa.org/doi/
abs/10.2514/6.2004-4900.

[28] T. Stastny. “L1 guidance logic extension for small UAVs: handling high winds and small loiter
radii”. In: (Apr. 2018).

[29] R. Curry et al. “L+2, an improved line of sight guidance law for UAVs”. In: (2013), pp. 1–6. DOI:
10.1109/ACC.2013.6579804.

[30] M. Fliess et al. “Flatness and defect of non-linear systems: introductory theory and examples”. In:
International Journal of Control 61 (June 1995), pp. 13–27. DOI: 10.1080/00207179508921959.

[31] P. Kotaru, G.Wu, and K. Sreenath. “Differential-flatness and control of quadrotor(s) with a payload
suspended through flexible cable(s)”. In: (2018), pp. 352–357. DOI: 10.1109/INDIANCC.2018.
8308004.

[32] E. Tal and S. Karaman. “Accurate Tracking of Aggressive Quadrotor Trajectories Using Incre-
mental Nonlinear Dynamic Inversion and Differential Flatness”. In: IEEE Transactions on Control
Systems Technology 29.3 (2021), pp. 1203–1218. DOI: 10.1109/TCST.2020.3001117.

[33] M. Behrendt. A basic working principle of Model Predictive Control. https://commons.wikimed
ia.org/wiki/File:MPC_scheme_basic.svg. 2009.

[34] W. Zhou et al. “Position control of a tail-sitter UAV using successive linearization based model
predictive control”. In: Control Engineering Practice 91 (Oct. 2019), p. 104125. DOI: 10.1016/j.
conengprac.2019.104125.

[35] H. Gu et al. “Coordinate Descent Optimization for Winged-UAV Design”. In: Journal of Intelligent
& Robotic Systems 97 (Jan. 2020). DOI: 10.1007/s10846-019-01020-2.

https://doi.org/10.2514/1.G004520
https://doi.org/10.2514/6.2021-3214
https://doi.org/10.2514/6.2021-3214
https://doi.org/10.2514/1.G003374
https://doi.org/10.1109/ICRA.2017.7989318
https://doi.org/https://doi.org/10.1016/j.ast.2009.10.003
https://www.sciencedirect.com/science/article/pii/S1270963809000650
https://doi.org/10.2514/6.2010-7938
https://doi.org/10.2514/6.2010-7938
https://m-selig.ae.illinois.edu/propid.html
https://doi.org/10.1109/TMECH.2013.2264105
https://doi.org/10.2514/1.34896
https://doi.org/10.2514/6.2004-4900
https://arc.aiaa.org/doi/pdf/10.2514/6.2004-4900
https://arc.aiaa.org/doi/abs/10.2514/6.2004-4900
https://arc.aiaa.org/doi/abs/10.2514/6.2004-4900
https://doi.org/10.1109/ACC.2013.6579804
https://doi.org/10.1080/00207179508921959
https://doi.org/10.1109/INDIANCC.2018.8308004
https://doi.org/10.1109/INDIANCC.2018.8308004
https://doi.org/10.1109/TCST.2020.3001117
https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg
https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg
https://doi.org/10.1016/j.conengprac.2019.104125
https://doi.org/10.1016/j.conengprac.2019.104125
https://doi.org/10.1007/s10846-019-01020-2

References 44

[36] R. Farhadi et al. “Estimation of the lateral aerodynamic coefficients for skywalker x8 flying wing
from real flight-test data”. In: Acta Polytechnica 58 (Apr. 2018), p. 77. DOI: 10.14311/AP.2018.
58.0077.

[37] M. Faessler, A. Franchi, and D. Scaramuzza. “Differential Flatness of Quadrotor Dynamics Sub-
ject to Rotor Drag for Accurate Tracking of High-Speed Trajectories”. In: IEEE Robotics and
Automation Letters 3.2 (2018), pp. 620–626. DOI: 10.1109/LRA.2017.2776353.

[38] Maplesoft, a division of Waterloo Maple Inc. Maple 2022. Waterloo, Ontario.

https://doi.org/10.14311/AP.2018.58.0077
https://doi.org/10.14311/AP.2018.58.0077
https://doi.org/10.1109/LRA.2017.2776353

A
Literature Study Initial Proposal

A.1. Proposed Kinematic Controller: Three-Dimensional L1 Path
Following

Traditional L1 guidance is made to be implemented in the horizontal plane and only gives a reference
lateral acceleration that the vehicle should follow. This means that the third dimension which is altitude
is controlled separately. To the best knowledge of the author, converting this method to follow a three-
dimensional trajectory has not been performed. The advantage of doing so would remove the separate
altitude control and result in a simple kinematic controller for three-dimensional trajectories.

This method will be called 3D L1 Path Following and will now be explained. Looking at Figure A.1, the
3D variant of L1 path following makes use of the same concepts as its two-dimensional counterpart. In
Figure A.1, the blue dotted line is the desired trajectory the drone needs to follow and in the scenario
depicted in the figure, the desired trajectory is at a higher altitude than the drone currently is. Just
as in the two-dimensional scenario, the angle η is calculated between the velocity vector V⃗ and L⃗1.
Using this, the magnitude of the lateral acceleration a⃗cmd can be calculated using Equation A.1. The
additional challenge for 3D L1 comes from generating the a⃗cmd vector in the correct orientation.

Figure A.1: 3D L1 Path Following Overview

To start, the magnitude of a⃗cmd is calculated in the same way as Equation 3.29 but for clarity, Equa-
tion A.1 is given in the context of magnitude of vectors.

acmd = 2

∥∥∥V⃗ ∥∥∥2∥∥∥L⃗1

∥∥∥ sin η (A.1)

45

A.2. Proposed INDI Controller Derivation 46

What is left to calculate is a unit vector in the direction of a⃗cmd, then multiply it by the required magnitude.
There are multiple ways to do this, the method that will be described here uses vector operations and
quaternion rotation of vectors. Some important information about a⃗cmd is known. First, the vector lies
in the plane generated by V⃗ and L⃗1. Second, a⃗cmd is always perpendicular to V⃗ in the plane mentioned
previously. Finally, the 90-degree rotation from V⃗ to a⃗cmd is always performed in the direction of L⃗1

with respect to V⃗ .

Knowing this, a vector R⃗ is calculated in Equation A.2. This vector will serve as the vector around which
the quaternion rotation will be performed. It should be noted that the vector is normalised for it to work
in the quaternion rotation.

R⃗ =
V⃗ × L⃗1∥∥∥V⃗ × L⃗1

∥∥∥ (A.2)

Next, in Equation A.3, the setup of the different quaternions for the rotation can be found. qV is built
using the x, y, z components of V⃗ . qR and qR′ are built using the x, y, z components of R⃗ and the
magnitude of the desired rotation θ which in this case will be π

2 .

qV = [0, V⃗x, V⃗y, V⃗z]

qR = [cos(θ2), R⃗x sin(θ2), R⃗y sin(θ2), R⃗z sin(θ2)]

qR′ = [cos(θ2),−R⃗x sin(θ2),−R⃗y sin(θ2),−R⃗z sin(θ2)]

(A.3)

With the quaternions set up, all that is left is to multiply them together using Equation A.4 where H
stands for a Hamilton product.

qfinal = H(H(qR, qV), qR′) (A.4)

Extracting the last three components of qfinal gives a vector U⃗ in the desired orientation. However, this
vector still has the magnitude of V⃗ so it must be normalised, then multiplied by acmd.

a⃗cmd =
U⃗∥∥∥U⃗∥∥∥acmd (A.5)

A.2. Proposed INDI Controller Derivation
The controller deals with linear accelerations and thus only requires knowledge of the sum of forces
applied to the body. To this effect, the sum of forces in the Inertial Reference Frame (IRF) which is F⃗I

is given in Equation A.6 where T⃗I is the thrust in the IRF, F⃗aero the aerodynamic forces in the IRF and
F⃗g is the gravitational force in the IRF.∑

F⃗I = F⃗g + T⃗I + F⃗aero (A.6)

To get acceleration, both sides are divided by the mass as is shown in Equation A.7.

a⃗ = g⃗ +
1

m
(T⃗I + F⃗aero) (A.7)

Now, both T⃗I and F⃗aero will be expanded. First, T⃗I is defined in Equation A.8 where T⃗B is the thrust
vector in the body reference frame (BRF) and M I

B is the transformation matrix from BRF to IRF (See
Equation A.11). T⃗B consists of a single component in the z axis. It is important to note that for vectors
with subscripts x, y or z this indicates that the value of the respective component is taken and is a scalar
value and not a vector. This means that T⃗Bz

is the scalar value of the z component of T⃗B .

T⃗I =M I
BT⃗B =M I

B

 0
0

T⃗Bz

 (A.8)

A.2. Proposed INDI Controller Derivation 47

Next, F⃗aero which is the aerodynamics model is explained. The aerodynamics model is based on ϕ-
theory developed in [19] and applied in [18] for a fixed-rotor tail-sitter. The model only requires CLV

and CDV
which are the lift and drag coefficients respectively.

F⃗aero =M I
B

 (2π + Cd0)V⃗Bx

0

Cd0
V⃗Bz

∥∥∥V⃗B∥∥∥ (A.9)

Finally, g⃗ is simply the acceleration caused by gravity in the NED inertial reference frame which means
the acceleration is in the z-component of the vector as is shown in Equation A.10.

g⃗ =

 0
0

9.81

 (A.10)

M I
B =

 cθcψ − sϕsθsψ −cϕsψ sθcψ + sϕcθsψ
cθsψ + sϕsθcψ cϕcψ sθsψ − sϕcθcψ

−cϕsθ sϕ cϕcθ

 (A.11)

With the thrust and aerodynamics forces defined. The model can be expressed in the form a⃗ = f⃗(x⃗, u⃗)
and is shown in Equation A.12. Before applying INDI to this system, the inputs and states need to
be identified. The variables that are being controlled and thus are inputs are T⃗Bz

, ϕ, θ, ψ so u⃗ =

[T⃗Bz
, ϕ, θ, ψ]T . As for the states, these are simply the components of the wind velocity in the BRF.

Thus, x⃗ = [V⃗Bx
, V⃗By

, V⃗Bz
]T and

∥∥∥V⃗B∥∥∥ =
√
V⃗ 2
Bx

+ V⃗ 2
By

+ V⃗ 2
Bz

.

a⃗ = g⃗+
1

m

(cθcψ − sϕsθsψ)(2π + Cd0

)V⃗Bx

∥∥∥V⃗B∥∥∥+ (sθcψ + sϕcθsψ)(T⃗Bz
+ Cd0

V⃗Bz

∥∥∥V⃗B∥∥∥)
(cθsψ + sϕsθcψ)(2π + Cd0

)V⃗Bx

∥∥∥V⃗B∥∥∥+ (sθsψ − sϕcθcψ)(T⃗Bz
+ Cd0

V⃗Bz

∥∥∥V⃗B∥∥∥)
(−cϕsθ)(2π + Cd0

)V⃗Bx

∥∥∥V⃗B∥∥∥+ (cϕcθ)(T⃗Bz
+ Cd0

V⃗Bz

∥∥∥V⃗B∥∥∥)

 (A.12)

From this point, the Taylor expansion of a⃗ can be performed around (x⃗0, u⃗0) and the general method
described in Equation 3.2.1 can be followed.

B
Model Identification

Table B.1: Model Constants Required for Simulation with their Source

Symbol Name Value Units Source
CLα Lift Coefficient Slope 4 [-] [35]
Cd0

Minimum Drag Coefficient 0.05 [-] [35]
Cy0

Lateral Force Coefficient 0.05 [-] [36]
S Wing Surface Area 0.26 [m2] Drone Spec Sheet
g Gravity Acceleration 9.81 [m/s2] -
m Mass 1.27 [kg] Measured
ρ Air Density 1.225 [kg/m3] ISA Sea Level Density
I Inertia Matrix diag(0.065, 0.009, 0.0662) [kg ·m2] [1]
PP Propeller Pitch 0.127 [m] Propeller Spec Sheet
D⃗CP Vector from CG to CP [-0.015,0,0] [m] See B.1
D⃗Tl

Vector from CG to Tl [0.135,-0.3,0] [m] Measured
D⃗Tr

Vector from CG to Tr [0.135,0.3,0] [m] Measured

B.1. Distance between centre of gravity and centre of pressure
Estimating the location of the centre of pressure is a complex task as it requires aerodynamic modelling
of the drone over multiple flight conditions as the centre of pressuremoves with changing angle of attack.
As this work is mainly interested in evaluating the ability of controllers to control the main dynamic
characteristics of this drone, such accurate modelling is not necessary. The location of the centre of
pressure is thus assumed to be fixed at a location of 1.5 centimetres behind the centre of gravity.

48

C
Initial Investigation

This section is dedicated to documenting the other methods that were evaluated/tested to control this
drone configuration but failed. These are a cascaded INDI configuration and a combination of differ-
ential flatness and INDI. Additionally, a differential flatness derivation was performed to investigate the
possibility of generating feedforward control inputs based on a desired trajectory.

C.1. Longitudinal Model
The simplified tail-sitter model used to test the previously mentioned control algorithms is constrained
to two dimensions of motion with z pointing down and x being horizontal and positive to the right.
Additionally, the tail-sitter may rotate around its centre of gravity which means it can change its pitch
angle θ. The states and inputs of the system are detailed in Equation C.1 where x and z are the
horizontal and vertical positions respectively, Vx and Vz are the inertial velocities in their respective
axes, θ is the pitch angle and ω is the pitch rate. Finally, T and αT are the thrust and thrust angle
respectively.

x⃗ = ⟨x, y, Vx, Vz, θ, ω⟩
u⃗ = ⟨T, αT ⟩

(C.1)

Using these states and input, the derivatives of each state can be defined to be able to model the
system. These derivatives are shown in Equation C.3.

Figure C.1: Diagram of longitudinal tail-sitter model

The forces in Figure C.1 are detailed in Equation C.2 where Fg is the force caused by gravity, m
is the mass of the drone, g is the acceleration caused by gravity, FBx and FBz are the aerodynamic

49

C.2. Cascaded INDI 50

forces using the singularity-free model developed in [19] expressed in the BRF, ρ is the air density, S
the wing surface area, Vx and Vz the inertial velocities, Cd0

the zero-lift drag coefficient, CLα
the linear

lift-curve slope, VBx
and VBz

the drone velocities in the BRF.

Fg = mg

FBx = − 1
2ρS

√
V 2
x + V 2

z Cd0VBx

FBz = − 1
2ρS

√
V 2
x + V 2

z (CLα + Cd0)VBz

(C.2)

ẋ
ż

V̇x
V̇z
θ̇
ω̇

 =

Vx
Vz

1
m (T cos (αT + θ)− FBx

cos(θ)− FBz
sin(θ))

g + 1
m (−T sin (αT + θ) + FBx

sin(θ)− FBz
cos(θ))

ω
1
I (T sin (αT) dt − FBzd)

 (C.3)

C.2. Cascaded INDI
Attempts to control the acceleration of the longitudinal model previously mentioned using cascaded
INDI have proven to be unsuccessful. In a minority of scenarios, the controller can follow acceleration
references but in most cases, the controller fails. An overview of the control loop is presented in
Figure C.2.

Starting from the top, an acceleration reference is given to the Linear Acceleration INDI controller.
This controller calculates using INDI a command thrust Tc and pitch angle θc whilst assuming that the
thrust angle αT is constant for that time-step. The commanded thrust is sent to the actuator and the
commanded attitude is given to the Angular Acceleration INDI controller that will calculate the thrust
angle αTc

to achieve the commanded pitch angle.
Looking at the control loop overview, the calculation of T and αT are separate. This is troubling as

both controls are extremely coupled. A change in one inherently changes the efficacy of the other. This
is further compounded by the separation of Linear and Angular acceleration calculations. As the thrust
is calculated with as objective to follow a desired linear acceleration, it is possible that this objective
does not always coincide with the objective of the angular acceleration controller that calculates the
value of αT . The suspected issue here is essentially that a multi-objective problem is being solved as
two separate single-objective problems whilst having controls that are extremely coupled.

Another proposal to solve the control issue for this drone is to skip the Angular Acceleration INDI
and directly calculate the thrust T and thrust angle αT based on the required linear accelerations.
Mathematically, this is possible as there are two states and two control inputs which means the system
is solvable. Practically, this does not work due to the following.

Through the fundamentals of INDI, it is possible to deduce that having T and αT as the output of
the Linear Acceleration INDI would mean that the aerodynamics of the system would be completely
ignored in the calculation of these control inputs which leads to poor controller performance.

C.3. Differential Flatness combined with INDI
With cascaded INDI not working, the next idea was to adapt the work done in [18] where differential
flatness was combined with INDI to control a fixed-rotor tailsitter. Adapting the method used in [18]
which in itself is a cascaded approach to the control problem is possible but practically does not work.
A critical assumption in the work done in [18] is that the orientation of the total thrust vector remains
constant in the Body Reference Frame. This is obviously not the case of the drone where any change
of propeller nacelle angle changes the orientation of the total thrust vector in the BRF.

It is technically possible to assume that for each timestep the total thrust vector is constant based
on the current nacelle angles. This allows for the desired attitude and total thrust to be calculated.
However, to achieve the desired attitude a combination of differential thrust and more importantly a
change in propeller nacelle angles are required. This of course breaks the initial assumption that the
total thrust vector is constant in the BRF and invalidates the calculations made in the first step.

This highlights the advantage of having control actuators that have minimal overlap over the states
that they control. The use of ailerons purely for attitude control is most likely what allows [18] to make
the necessary assumptions to use differential flatness in this scenario.

C.4. Feedforward Control Input Generation Through Differential Flatness 51

Figure C.2: Cascaded INDI: Control Loop Overview

C.4. FeedforwardControl Input Generation ThroughDifferential Flat-
ness

Finally, it was investigated whether feedforward control inputs based on a desired trajectory could be
calculated using differential flatness. If possible, a feedback control law could potentially be designed
to control the drone as was done in [37].

y = [x, z]T (C.4)

Assuming that the flat output y consists of the states x and z in the longitudinal model. Derivatives
of this flat output can be taken to make ẏ.

ẏ =

[
ẋ
ż

]
=

[
Vx
Vz

]
(C.5)

ÿ =

[
ẍ
z̈

]
=

[
V̇x
V̇z

]
(C.6)

At the second derivative of the flat output ÿ, expressions for ẍ and z̈ are available from Equation C.3
as these are the equations for linear acceleration. Theoretically, T and αT could be solved at this point
as all other variables are known states. This is not typically done as this method does not impose
any constraints on the attitude θ and its derivatives which is undesirable for the general controllability
and stability of the drone. Therefore, additional derivatives are taken until the angular acceleration θ̈
appears from the equations.

C.4. Feedforward Control Input Generation Through Differential Flatness 52

....
y =

[....
x....
z

]
= f(T, Ṫ , T̈ , αT , α̇T , α̈T , Vx, V̇x, V̈x, Vz, V̇z, V̈z, θ, θ̇, θ̈) (C.7)

Looking at Equation C.7 it can be seen that the second derivative of the pitch angle θ̈ appears which
is the angular acceleration. θ̈ can be calculated using Equation C.8 and then replaced in Equation C.7

θ̈ = ω̇ =
1

I
(T sin (αT) dt − FBz

d) (C.8)

With θ̈ replaced using Equation C.8, Equation C.7 can be solved for T and αT . This can be done as
the derivatives of the states can be measured and estimated and actuator dynamics can be added to T
and αT to get their respective derivatives. Assuming that all the variables of f are calculated properly,
the solutions T and αT should ensure the system follows the flat output and its derivatives.

Implementation
Theoretically, this method can work for this system, however, practically, some issues arise. Taking

the time derivative twice of the acceleration equations generates a large expression with many terms.
The expression for the fourth derivative is still not too large but once this expression is solved for T
and then consequently αT , the expressions become very large. After solving for T in Maple 2022 [38],
the resulting expression contains over 270000 characters. This expression then needs to be used to
be able to solve for αT by replacing all instances of T in the next equation with this large expression.
Additional manipulation of this expression will only make it larger and solving for αT which is contained
in either sine or cosine functions will make it very difficult to solve.

Additionally, issues related to the terms calculated also arise such as some of the states being
raised to the power of 10. This is not necessarily a problem if it only concerns a few terms, but the
combination of a very large amount of terms combined with these large powers could quickly cause
overflow errors during the calculations.

Finally, it is very important to notice that this derivation is for the simplified longitudinal system which
only contains six states and two inputs. For every extra state and input added to the system, an extra
term is added due to its dependency on time. The 6 degree of freedom model used in this paper has
20 states and 4 control inputs which increases the amount of variables dependent on time by 16. With
this, it is expected that the already large expressions will become significantly larger.

	Introduction
	Academic Paper
	Literature Study
	Literature Study Research Questions
	State of the Field
	Outer-loop Control of Hybrid mavs
	Aerodynamics and Thrust Modelling
	Trajectory Tracking

	Research Gap & Conclusion

	Verification
	Model Verification
	Manual Verification of State Derivatives
	Full Simulation Verification

	Conclusion
	References
	Literature Study Initial Proposal
	Proposed Kinematic Controller: Three-Dimensional L1 Path Following
	Proposed INDI Controller Derivation

	Model Identification
	Distance between centre of gravity and centre of pressure

	Initial Investigation
	Longitudinal Model
	Cascaded INDI
	Differential Flatness combined with INDI
	Feedforward Control Input Generation Through Differential Flatness

