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The use of RGB Imaging and FTIR Sensors for Mineral mapping in the 
Reiche Zeche underground test mine, Freiberg 

Feven S. Desta, Mike W.N. Buxton 

 Resource Engineering, Delft University of technology, Stevinweg 1, 2628 CN Delft, The Nether-
lands 

ABSTRACT 

The application of sensor technologies for raw material characterization is rapidly growing, 
and innovative advancement of the technologies is observed. Sensors are being used as 
laboratory and in-situ techniques for characterization and definition of raw material proper-
ties. However, application of sensor technologies for underground mining resource extrac-
tion is very limited and highly dependent on the geological and operational environment. In 
this study the potential of RGB imaging and FTIR spectroscopy for the characterization of 
polymetallic sulphide minerals in a test case of Freiberg mine was investigated. A defined 
imaging procedure was used to acquire RGB images. The images were georeferenced, 
mosaicked and a mineral map was produced using a supervised image classification tech-
nique. Five mineral types have been identified and the overall classification accuracy 
shows the potential of the technique for the delineation of sulphide ores in an underground 
mine. FTIR data in combination with chemometric techniques were evaluated for discrimi-
nation of the test case materials. Experimental design was implemented in order to identify 
optimal pre-processing strategies. Using the processed data, PLS-DA classification mo-
dels were developed to assess the capability of the model to discriminate the three materi-
al types. The acquired calibration and prediction statistics show the approach is efficient 
and provides acceptable classification success. In addition, important variables (wavel-
ength location) responsible for the discrimination of the three materials type were identifi-
ed. 

1 Introduction  

The future challenges in mining can be attributed to depletion of known shallow mineral reserves, 
and limited exploration of deep (>400m depth) resources. Future mining is moving to extraction of 
valuable materials under geologically more complex conditions. Geologically complex conditions 
are exemplified by deeper mines, a low continuity in grade, presence of toxic elements and high 
irregularity in the geometry of the ore boundaries. Mining in complex conditions requires novel 
technique and a real-time framework for advanced data acquisition and resource model updating 
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[1]. Advanced data acquisition to provide relevant data for real-time online process control and op-
timization in mining application can be achieved using sensor technologies. 

The applicability of sensor technologies for insitu material characterization is very limited. The li-
mited use of sensors for insitu material characterization is attributed to various factors. For example, 
additional work is needed to show the added value of the use of sensors in the mining industry; the 
design of some of the technologies are only intended for laboratory applications, sensor choice is 
very specific to material/ deposit type and dependent on the sensor type, the initial investment to 
purchase (and setup) the instrument might be higher than the benefit to be realized. 

In spite of the limited use of sensors in the mining industry; studies [2]  [3] [4]  indicate that, the use 
of sensor technologies in the mining industry will result in improved efficiency; increase producti-
vity and safety,  reduce operational cost and environmental impact. 

Sensor technologies provide data on different aspects of material properties. Fundamental understanding of 
material characteristics is crucial in selecting the appropriate sensor solutions for material discrimination. 
Material property is a broad term which addresses different properties of a certain material; these properties 
include physical, chemical, optical, mechanical and atomic properties. Sensor technologies can be applied 
throughout the mining value chain; it can be applied during extraction at the mining face, during material 
handling and processing. This study presents the results of RGB Imaging and FTIR when applied to raw 
material characterization in a test case using the Freiberg mine. 

2 RGB Imaging and FTIR techniques 

2.1 RGB Imaging 

Red-Green-Blue (RGB) cameras operate in the visible range of the electromagnetic spectra and are 
commercially most mature technology with rapid data processing capability. RGB sensors are ro-
bust for environmental conditions, non-destructive, need no sample preparation and can be used for 
in-situ application. In addition, the technique is completely passive so it can be used in multiple 
environments. RGB sensors are manufactured by multiple suppliers as consumer digital cameras. 
Commercial availability is therefore not a concern. 

RGB imagers characterize the reflectance property of a material and deliver 3 (red-green-blue) 
spectral band information often using three independent CCD sensors. As an alternative, some 
cameras capture the three band information using complementary metal oxide semiconductor 
(CMOS) technology. A RGB camera captures images using a line scan technique and a frame (area 
scan) sensor. To capture an image, frame cameras use a two-dimensional array of sensors. Line scan 
cameras have a 1 -dimensional array of sensors. 

The technology has great potential for mineral/lithological mapping. It produces a multispectral 
image and can be used for identification of minerals and lithological units based on material colour  
or visual appearance. It produces images that can been seen by human eyes. The data becomes in-
stantly understandable to viewers or operators e.g for a quality control application. RGB sensors are 
portable and so are easier for embedding and surface mounting. One potential such application is 
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side wall imaging at a mine face. In general, the technology can be directly applied in colour  detec-
tion or indirectly for shape recognition of geological units.  

Application of RGB images for material characterization is very limited, so far it is used in recyc-
ling, sorting and agricultural application. The use of high spatial resolution and colour  selectivity, 
[5] revealed the application of the technology for mineral sorting such as sorting of talc and calcite. 
[6, 7] showed the potential of RGB images for automatic detection, classification of plant leaf dise-
ases and crop monitoring. The technology can be used for colour  sorting of different  material 
streams and surface inspection of natural material [8]. However, application of RGB images for 
underground mine material characterization is poorly defined. This study addresses the potential of 
the technology for mine face mapping. In addition, the result was validated using FTIR technique. 

2.2 Fourier-transform infrared spectroscopy (FTIR) 

Infrared (IR) spectroscopy is a mature technology for the analysis of inorganic and organic materi-
als[9-11]. When samples are exposed to infrared radiation, the bonds in the molecules selectively 
absorb the energy of the infrared radiation at specific wavelengths and this causes a change in vibra-
tional energy level of the molecules. Signals in the infrared spectrum of materials are produced as a 
consequence of molecular vibrations. Vibration mode is different for each molecule that the infrared 
spectrum can be analysed to get information on different functional groups which further can be 
related to mineralogy.  

The infrared region of the electromagnetic spectrum is divided in to Near Infrared (NIR: 0.7 – 
1.4µm), Shortwave Infrared (SWIR:1.4– 2.5 µm), Mid Wave Infrared (MWIR: 2.5 - 7µm), Long 
Wave Infrared (LWIR: 7-15µm) and Far Infrared (FIR: 15 - 1000µm) regions. SWIR is commonly 
used for analysis of a wide range of alteration minerals. The LWIR region is used for identifying 
rock forming minerals. However, the MWIR region is the least explored region and it is the focal 
point of this study.  

FTIR spectrometer has significant advantages of over other infrared spectrometers. It is a particular 
focus of this study. For example, FTIR spectroscopy has a higher signal to noise ratio (The desired 
signal to the level of background noise is higher so extracting signal is easier), higher accuracy, 
short scan time, high resolution and wider scan range [10, 12-14]. Moreover, current advances of 
the technology have produced portable FTIR spectrometers and the technology has a high potential 
for real-time (in-situ) application [13].  

A FTIR analyser has integrated sampling interfaces; Diffuse Reflectance, Attenuated Total Re-
flectance (ATR) and External Reflectance to enable molecular spectra to be obtained with little or 
no sample preparation[13]. It is a non-destructive technique, it provides point data with high data 
frequency (measurement time less than 30 seconds) and enable infrared (IR) spectral analysis in a 
handheld package that it can be used for in-situ application in real-time basis. However, a protective 
cover is required for an underground application. The analyser works over a wide range of the 
electromagnetic spectrum (1.9μm - 14.0μm) that it is ideal for identification of various minerals. 

Unlike other sensor technologies with a well-established spectral libraries (such as SWIR and RA-
MAN),  the MWIR region of the FTIR spectra lacks well-developed libraries. This might be a chal-
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lenge for direct interpretation of the spectral features. This study aims to explore the opportunities 
of FTIR combined with Chemometric techniques for material discrimination. 

3 Study Area and Data acquisition 

To assess the potential of RGB imaging and FTIR spectroscopy for raw material characterization, a 
realistic test case was chosen. This test case was chosen to be the Reiche Zeche underground test 
mine located in Freiberg, Germany. 

3.1 Study Area 

The Reiche Zeche underground mine is located in the eastern part of the Erzgebirge, Germany. It 
was mined for Silver, Copper, Lead and Arsenic (from 1168 to 1915) and later mainly for Zinc and 
pyrite [15]. Due to economic factors, the mine was closed in 1969. Starting from 1976, “Reiche 
Zeche” and “Alte Elisabeth” shafts were reconstructed as a research and teaching mine. 

3.1.1 Geology 

The Erzgebirge is part of the Mid-European metamorphic basement and it represents an antiformal 
megastructure. The antiformal megastructure has a large core which is constituted by  medium to 
high grade metamorphic gneisses and mica schists with intercalations of eclogite [16]. 

In the Erzgebirge region, two main gneiss units are identified. These are “Red Gneiss Unit” and the 
“Grey Gneiss Unit”. Based on textural differences, Grey Gneisses in the Eastern Erzgebirge (Frei-
berg mine area) have been subdivided into two groups [17, 18]: (1) Inner Grey Gneiss: coarse- and 
medium-grained biotite gneisses containing K-feldspar-porphyroblasts, and (2) Outer Grey Gneiss: 
mostly fine-grained biotite gneisses. The other rock types at the Freiberg mine include; mica schist, 
granulites, gabbro, variscan granites, variscan rhyolithes and eclogites [17] 

3.1.2 Geological structures 

The ore vein network in the test mine is characterized by two (NNE-SSW to N-S and E-W to ENE-
WSW) shear systems, and spatially associated fissure veins [19]. In general, ores in the Freiberg 
mining district are associated with a system of dykes.  

3.1.3 Mineralization  

The Freiberg polymetallic sulphide deposit was formed by two hydrothermal mineralization events 
of Late-Variscian and Post-Variscian age [20]. The Late-Variscian mineralization event, which do-
minates in the central part of the mine, is rich in Sulphur, Iron, Lead, Zinc and Copper. Typical ore 
minerals are galena, pyrite, sphalerite, arsenopyrite, and chalcopyrite as well as quartz and minor 
carbonate gangue.  
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The Post-Variscian mineralization event is characterized by ore minerals with less Iron, Copper and 
Zinc. It consists of a fluorite-barite-lead ore assemblage, mainly comprising galena, sphalerite, pyri-
te, chalcopyrite and marcasite as well as quartz, barite, fluorite, and carbonates as gangue [20, 21]. 
The polymetallic sulphide veins of the base metal deposits in the Erzgebirge are hostetd by ortho 
gneiss (Freiberg district), mica  schists (northern part of the Freiberg districts, Johanngeorgenstadt), 
and sub-ordinately by postkinematic granites (Schneeberg and eastern part of the Freiberg district). 

For this study, ore implies the polymetallic sulphide deposits including Galena, Sphalerite and 
Chalcopyrite. Waste implies the gangue materials including carbonates, quartz and fluorite.   

3.2 Data acquisition 

Field work was carried out to define, image and map a selected mine face. This face was used to 
test the project concept. In addition, the test case material is characterized by a high material and 
mineralogical variability. A strategic sampling campaign was planned and conducted to generate 
reliable and usable data of appropriate accuracy and precision. The RGB images were taken in-situ 
and the FTIR measurements were performed in the laboratory using the samples acquired from sys-
tematic channel samples from the defined mine face. 

3.2.1 RGB Imaging 

The defined mine face has a lateral extent of ~ 22m and height ~2m,  42 reference points with 50cm 
spacing are marked horizontally at the mine face (Figure 2). RGB photographs are acquired at the 
defined mine face using Nikon D7100 digital camera with a focal length of 35 mm. The geographic 
coordinate of the 21 reference points with 1m spacing are acquired using LIDAR scan. Later, these 
points are used to georeference and mosaic the images. In addition, each image was taken at the 
specified 21 reference points. The full sets of images are acquired using the same camera setting. 

The field of view of the camera varies depending on the distance between the camera and the mine 
face, effort has been made to ensure the same areal extent coverage during image acquisition. Most 
importantly, the images ensures to cover at least 3 reference points that these points can be used as 
Ground Controlling Points(GCP) to tie the images together. Taking in to account the approximate 
area coverage of each images, two vertical reference points were used to cover the whole defined 
face laterally and vertically (Figure 1 and Figure 2). 

To avoid or minimize illumination effect, halogen lamps were used to ensure constant illumination 
condition throughout the mine face. To minimize distortion, the photographs were taken right in 
front of the face (~ 900). Photos have about 40% overlap that the defined face is fully captured and 
the images can be tied together. At each reference point 2 or 3 pictures were taken in case to avoid 
errors which can be associated with the photographing process. 
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of ~2.5 µm to ~15µm. To ensure maximum signal to noise the background reference was conducted 
over 126 scans. 

4 Methodology 

4.1 RGB Imaging 

The RGB images were acquired from the two vertical reference points (illustrated in Figure 2b) and 
a total of 42 images were acquired to cover the defined ~22m lateral extent of the mine face. This 
study presents the result of 8 images which cover ~ 5m laterally and ~ 2m in height.  The GCP’s 
were used to georeference and mosaic the images together. The coordinate transformation was done 
using a similarity polynomial (a first order polynomial which preserves shapes). To enhance distinct 
identification of feature types, pre-processing and classification of the RGB images were carried 
out. The major steps followed are presented in Figure 4.  

Categorical classification using both unsupervised and supervised classification techniques were 
used. First, unsupervised classification (UC) using k-mean methods were applied to assess any clus-
tering or grouping of pixels based on their grey level. The k-mean method is one of the most com-
monly used and efficient UC method for cluster analysis. It assigns n observations into k clusters 
using the centroid of the clusters and minimizes the sum of squared error [29]. UC is done with no 
apriori knowledge about the different classes however it requires apriori specification of the num-
ber of  cluster centers. This part is considered as part of exploratory data analysis. 
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5 Results and Discussion 

5.1 RGB imaging 

RGB images are acquired in-situ and georeferenced/mosaicked together using the GCP’s marked on 
the mine face. Georeferencing and mosaicking of the RGB images is advantageous; to comprehend 
the full spatial distribution of minerals (spatial variability ) on a single image, gives extended or full 
area coverage of the mine face, to generate spatially constrained image data which further can be 
linked with other sensor outputs based on location and improve positional accuracy of data. 

The output of unsupervised classification using k-mean is used to determine the general pattern/ 
groups of the different classes with minimum degree of heterogeneity within a class (Figure 8). This 
is considered as the first step for image classification since unsupervised classifiers might be useful 
for discovering unknown but useful classes [28]. In addition, the classified image was used as a 
preliminary input for definition of the training set. 

 

Figure 8: a) RGB image b) Thematic map produced by K-mean classifier  

Using the same training set the accuracy of ML, MD and SAM classification methods were com-
pared. The classification results were examined visually (pattern match) and validated. As can be 
inferred from Figure 9, a better pattern match was achieved using ML. The classifier choice was 
optimized using a single image at a time but tested on multiple images. Once the preferred classifier 
is selected it was applied to the mosaicked images. 

  

a) b) 

0      10cm 







REAL TIME MINING - Conference on Innovation on Raw Material Extraction Amsterdam 2017 
 

118 

methods; RGB imaging gives objective, reproducible results and an expandable database. It can be 
considered as complementary technique for mineral mapping.  

 
 Figure 11:  Thematic map of the mosaicked images. The relative location of the classified 

images with respect to the 22m mine face is indicated in the inset map 
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Figure 12: Mosaicked RGB images showing the position of the channel samples superimpo-
sed. The channels have ~80 cm to 120 cm spacing. Channel locations with their 
corresponding intervals were digitized from the images. Thus, samples acquired 
from the channels were spatially constrained. 



Scores
Scores
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 Figure 14: The score plots of the first three factors from PLS model a) MWIR data after 

baseline correction is applied to the data b) LWIR data after Gaussian and 
Normalize data filtering is applied to the dataset 

The PCA model was used to transform the full spectra into latent values (PC’s), later the loading 
plot of the PC’s was interpreted to select the important variables for class differentiation. The first 3 
PC’s explained 99% and 96% of the variation for MWIR and LWIR data respectively. The loading 
plot of the first 3 PC’s are shown in Figure 15 and Figure 16. Regions indicated by orange coloured 
squares are informative variables in the spectral data which are responsible for the difference 
between the samples. For purpose of clarity, not all important variables are indicated. As can be 
inferred from Figure 15 large loading coefficients (most variation) are observed for the MWIR data 
from 2895 – 2300 cm-1 (3.45 – 4.3µm) and 1985 – 1581cm-1 (5 – 6.3 µm), so these region are the 
most informative region for the class differentiation since variation equal information. There is a 
clear difference among the three classes (Figure 14a ) that the selected variables are valid to distin-
guish the three classes. 

 
  

a) b) 
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Figure 15: The loading plot of the first 3 PC’s of the MWIR data  

Figure 16 shows the loading plot for the first 3 PC’s of LWIR data. Variables with large loading 
coefficients are observed at 7µm, 8.2 µm, 8.9 µm, 9.5 µm 10.7 µm and 13µm. Thus, these variables 
are responsible for the observed differences between the samples or have a large influence for the 
differentiation. This might explain why LWIR could not differentiate weathered material from the 
host rock, since most of the variation is in region from 8.2 µm to 9µm where quartz is a prominent 
feature in this region. This might be because the concentration of quartz in Gneiss and the weat-
hered products (relatively quartz is resistant to weathering) is higher than the quartz content in the 
ore.  

Figure 16: The loading plot of the first 3 PC’s of the LWIR data 

Later, the pre-procced data were used to develop classification models using PLS-DA. The ac-
curacy of the results were compared for the different independent and combined filtering techniques 
Table 1. 

PC-1

PC-2

PC-3

X-variables (ALL)

3399 3297 3197 3097 2995 2895 2793 2693 2591 2491 2389 2289 2187 2087 1985 1885 1783 1683 1581 1481

 -0,1

0

0,1

Loadings

  3000         3228           3454         3713         4014        4368          4791         5305          5941      6752 
Wavelength in nm 

PC-1

PC-2

PC-3

X-variables (ALL)

7002 7173 7352 7547 7745 7961 8183 8424 8673 8944 9225 9532 9852 10245 10695 11185 11737 12330 12987 13736 14556

 -0,1

0

0,1

Loadings

Wavelength in nm 
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Table 1 : PLS-DA model calibration and prediction statistics for ore prediction  

Filtering techniques  
  

RMSECal RMSECV RMSEP R
2
 

MWIR LWIR MWIR LWIR MWIR LWIR MWIR LWIR 

Raw data 0.19 0.21 0.21 0.23 0.21 0.19 0.71 0.78 

SNV 0.077 0.12 0.09 0.15 0.08 0.14 0.96 0.886 

Baseline 0.1 0.13 0.11 0.155 0.09 0.15 0.95 0.87 

MSC 0.11 0.14 0.13 0.19 0.134 0.22 0.895 0.72 

Gaussian 0.09 0.15 0.097 0.166 0.074 0.16 0.97 0.85 

Combinations 

Baseline/SNV 0.097 0.12 0.109 0.114 0.098 0.133 0.944 0.898 

MSC/ Baseline 0.099 0.125 0.12 0.21 0.13 0.194 0.9 0.78 

Baseline/normalize 0.08 0.11 0.087 0.13 0.09 0.11 0.95 0.93 

Gaussian/SNV 0.08 0.12 0.09 0.14 0.082 0.14 0.96 0.886 

Gaussian /normalize 0.076 0.089 0.08 0.1 0.09 0.09 0.954 0.95 

Gaussian / baseline 0.085 0.11 0.09 0.145 0.07 0.142 0.97 0.88 

Gaussian / MSC 0.11 0.13 0.13 0.19 0.133 0.17 0.897 0.84 

 

As is inferred from Figure 14 and Table 1, for this specific dataset MWIR data provides more accu-
rate discrimination results compared to LWIR data. Independent and combined data filtering tech-
niques were employed to evaluate the performance of the processed data for the discrimination of 
the three classes. For each data processed with either independent or combined filtering techniques, 
the calibration statistics and model prediction statistics show that generally the RMSE values are 
lower and the R2 values are higher for MWIR data than LWIR. This indicate that the discrimination 
capability of MWIR data is superior to LWIR data. However, for both datasets the discrimination 
capability was enhanced by employing the filtering techniques. The result is interesting since 
MWIR is the least explored region in terms of material characterization, and this region shows the 
potential of the MWIR data for discrimination of these materials.   

Considering a single filtering technique, the MWIR data gives a better discrimination result after 
the data is treated using Gaussian filter smoothing while baseline correction resulted in a better 
discrimination result for LWIR data. In general, a better discrimination results were achieved after 
both datasets are processed using the filtering techniques. However not all filtering techniques ne-
cessarily improve the model performance. For example, for the LWIR dataset, MSC filtering tech-
nique does not improve the result while baseline correction gave an improved result. This might 
arise from the fact that multiplicative effect is not pronounced in the data.     

Comparing the single filtering techniques with combined filtering techniques, technique combinati-
on resulted in improvement of the discrimination results for LWIR data. The maximum accuracy 
was achieved when Gaussian filter smoothing is combined with area normalization. However, com-
bination of the filtering techniques did not improve the accuracy of discrimination results for 



Scores

Scores
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three classes (ore, weathered material and the host rock) using both datasets separately. The discri-
mination result shows remarkable improvement after a pre-processing strategy was applied to the 
dataset. Furthermore, using the processed data PLS-DA discrimination models were developed and 
the predictive abilities of the models were evaluated by the calibration and prediction statistics in 
the form of an estimated prediction error. The results demonstrated that (for the tested datasets) the 
MWIR data shows a better  discrimination result than the LWIR data. Loading plots were inter-
preted and important variables (wavelength location) responsible for the discrimination of the three 
materials type were identified. This could be an important input for identification of minerals using 
FTIR spectra. Using FTIR combined with chemometrics it is possible to classify the test case mate-
rial. With more FTIR spectral data and accurate model calibration, the approach can be extended for 
automation of the material discrimination process. 
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