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Abstract

In the past decades, several EOR (Enhanced Oil Recovery) techniques have been developed to in-
crease the amount of oil recoverable from a reservoir. Among these techniques, polymer flooding
consists in the injection of a solution of water and polymer into the reservoir, and it is performed
in order to lower the mobility of injected water. A peculiarity of a water-polymer flow through a
porous medium is the velocity enhancement, or hydrodynamic acceleration, that affects the poly-
mer molecules. Experimentally, polymers are observed to travel faster than inert chemical species.
Therefore, when simulating numerically a polymer flooding, a velocity enhancement effect has to be
incorporated into the governing equations to accurately predict oil recovery. The simple model that
introduces a constant enhancement factor, usually implemented in commercial simulators, leads
to an ill-posed problem, causing stability issues in the simulations, which further leads to a mono-
tonicity loss in the solution: the polymer is predicted to pile-up at the water-oil interface. While
accumulation of polymer at the water front is not necessarily unphysical, it should not be the result
of a mathematical ill-posed problem. Hence, an alternative model, employing a saturation depen-
dent factor, has been proposed in the work of Bartelds et al. [4], and has been extended by Hilden et
al. [21] to overcome some physical restrictions. In this thesis, these models are re-examined through
a thorough analytical study in the one-dimensional case. An analytical solution, resulting in an ac-
celeration of the polymer front, is computed for the well-posed model proposed by Bartelds, while
the extended enhancement factor derived in [21] is shown to lead again to an ill-posed problem. A
study of the monotonicity of the numerical schemes reveals that accumulation of polymer at the
water front is strictly related to ill-posedness.

Obtaining accurate numerical solutions is not an easy task. Commercial simulators adopt fully
implicit schemes to solve the multi-phase flow, and transport of chemical agents is solved through
the development and coupling of separate modules. In this case, the use of high-resolution methods
for the transport of polymer is not compatible with the first order solver for the underlying flow.

To investigate the interaction of the enhancement model proposed by Bartelds with other phys-
ical phenomena, adsorption of polymer onto the reservoir rock is added to the governing equations.
The problem maintains the well-posedness property, but because of a raise in equations complexity,
only numerical results are presented. The model is then extended to the two-dimensional case and,
relying on numerical solutions, similar conclusions as in the one-dimensional case are derived.
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1
Introduction

It is needless to state the importance of oil in the world economy, as it is one of the primary sources
of energy worldwide. Many different techniques are applied to maximize the amount of oil that
can be extracted from a reservoir. During the producing life of a reservoir, three phases are usu-
ally distinguished: primary, secondary and tertiary recovery. Primary recovery is driven by natural
mechanisms, such as fluid expansion due to pressure decline, and no injection process is involved.
The absence of water injection in the production makes this phase the most profitable one of the
reservoir’s life. Once the pressure drops below a certain limit, usually water or gas is injected to
maintain a higher pressure and to sweep out oil through a displacement process. This is known as
the secondary recovery. However, oil is left behind after a waterflood, either because it is trapped
by capillary forces, or because it is bypassed by the water, which has a higher mobility and may find
a path through the reservoir. At this point, at the production well, water is also produced and the
method becomes inefficient and uneconomical. All the other techniques used after waterflooding
are tertiary recovery. The nature of the recovery is now based on displacement of the oil. These tech-
niques includes thermal, solvent and chemical methods. In general, Enhanced Oil Recovery (EOR)
are all the techniques for oil recovery that involve the injection of materials not normally present in
the reservoir. This definition does not restrict EOR to a particular phase of oil recovery. The purpose
of EOR is to displace the amount of oil which is unrecoverable through conventional methods.

In this work, the focus will be on polymer flooding, that is, polymer is added to the injected
water in order to increase its viscosity, resulting in a more favourable mobility ratio M , defined as

M = λw

λo
= kr,wµo

kr,oµw
,

where λ,µ and kr are the mobility, viscosity and relative permeability respectively, and the sub-
scripts {o, w} refer to oil and water phase. A lower mobility ratio means that water flow will behave
more similarly to oil. Thus, the displacement of oil will be more uniform and the overall recovery
will improve [9]. In order to study polymer flooding from a theoretical point of view, a mathemat-
ical model for the flow of a fluid in a reservoir (a porous medium) is needed. The complexity of
these models raises rather quickly as more physical and chemical factors are considered, thus it is
essential to state reasonable assumptions to simplify the models, allowing for analytical study and
numerical simulations of the flow.

The report will be structured as follows: in chapter 2, general theory for hyperbolic equations
is discussed. The governing equations of the presented models are mainly in hyperbolic form, so a
detailed understanding of the main features of the solution of these equations, such as rarefaction
and shock waves, is necessary. In Chapter 3, first a glossary of petroleum terms is given, so that
the reader will become familiar with the chemical and physical properties of a reservoir. Then, the
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2 1. Introduction

basic theory and equations of fluid flow in porous media are discussed, including the fractional flow
formulation, which is used in a wide range of models and simulators. This chapter is concluded by
an overview of numerical methods, based on a finite volume discretization with upwind schemes
for the fluxes, that will be used to simulate the flow through the reservoir. Chapter 4 will focus
on the discussion of more advanced one-dimensional models of specific use for polymer flooding.
Here, the inaccessible pore volume (IPV) effect, which is the main object of study of this research,
will be discussed: since the polymer molecules are larger, they will not enter all the pores available
for water, so that the polymer may travel faster than inert chemical species. As a consequence,
velocity enhancement models are considered. These models must be treated with caution since, as
it will be shown, they may lead to ill-posed problems, causing an uncontrolled pile-up of polymer
at the water front in the numerical simulations. A (monotone) analytical solution for the velocity
enhancement model proposed in [4] is computed. In chapter 5, the monotonicity of the numerical
schemes employed is investigated for the different models proposed in chapter 4. Finally, in chapter
6 the models are extended to the two-dimensional case, and the effects of other phenomena, such
as adsorption, are added to the governing equations. Conclusions and recommendations for future
work are given in chapter 7.



2
Hyperbolic Conservation Laws

Hyperbolic laws arise in many different applications. They have a central role also in EOR, espe-
cially in water and polymer flooding, where even basic models for fluid flow present typical features
related to its hyperbolic nature. Thus, a complete understanding of the peculiarities of the solu-
tions that are generated, such as rarefaction waves and discontinuities (often referred to as shocks),
is essential. In this chapter, the main ingredients needed to build a (unique) solution to scalar and
systems of conservation laws are recalled. Since it is not feasible to present here a thorough dis-
cussion on the theory of conservation laws, we concentrate on the key aspects of the solutions to
such equations that will be useful to analyze the well-posedness of the models introduced in later
chapters. For an introduction to conservation laws, the reader is referred to Salsa [19]. For a formal
and detailed study, one should consult the work of Leveque [17] and Holden-Risebro [5].

2.1. Introduction to Conservation Laws
The general form of a scalar conservation law is

ut + f (u)x = 0, x ∈R, t > 0, (2.1)

where f ∈C 1 is usually referred to as the flux function and u represents some physical property such
as concentration. Equation (2.1) and the initial condition

u(x,0) = u0(x), x ∈R, (2.2)

together form an initial value (or Cauchy) problem.
The characteristic theory is used to build the solution of this kind of problems: it is possible to

find curves on the (x, t )−plane for which u is constant. That is, curves of the form x = ξ(t ; x0) such
that

d

d t
u(ξ(t ; x0), t ) = 0.

Let us consider the Cauchy problem in the case of a linear equation{
ut +aux = 0 x ∈R, t > 0
u(x,0) = u0(x)

(2.3)

where a > 0 is a given constant. For this simple case, the characteristics are of the form ξ(t ; x0) =
at +x0. Indeed,

d

d t
u(ξ(t ; x0), t ) = d

d t
u(x(t ), t ) = ut +aux = 0.

3



4 2. Hyperbolic Conservation Laws

The initial data u0(x) is then transported along the characteristics, where u(x, t ) is constant.
Formally,

u(ξ(t ; x0), t ) = u(ξ(0; x0),0) = u(x0,0) = u0(x0),

meaning, more explicitly,
u(at +x0, t ) = u0(x0).

Rewriting x = at +x0 and x0 = x −at gives the solution to problem (2.3):

u(x, t ) = u0(x −at ).

In the linear scalar case studied above, the characteristics do not intersect and the solution is
well defined in every point (x, t ). In the more general case (2.1), the characteristic theory is still
applied, but a more precise analysis would show that, even with regular initial data, singularities
may arise within the solution.

The equation for the characteristics reads

x(t ) = f ′(u0(x0))t +x0, f ′ = d f

du
.

To compute u(x, t ), consider the characteristic through (x, t ) and follow it backward in time to deter-
mine the point (x0,0). One then has u(x, t ) = u0(x0). Substituting the equation for the characteristic
in the latter gives

u(x, t ) = u0(x − f ′(u0(x0))t ),

which can be rewritten as
u = u0(x − f ′(u)t ).

Note that the last expression determines u implicitly.
The slope of the characteristics depends on the initial data u0 and on f ′(u). It is clear then that

existence and uniqueness of the solution in every point is not ensured, since the characteristics may
intersect or be absent from a part of the (x, t )-plane. To deal with these situations, it is necessary to
introduce a more flexible definition of solution which allows for discontinuities.

Definition 2.1. A function u, bounded in R× [0,∞), is called a weak solution to problem (2.1)-(2.2)
if, for every test function ϕ ∈C∞

0 (R× [0,∞)) it holds∫ ∞

0

∫
R

(uϕt + f (u)ϕx )d xd t +
∫
R

u0ϕ(x,0)d x = 0.

The subscript in C∞
0 stands for compact support of the test function ϕ(x, t ). A classical solu-

tion is also a weak solution. Definition (2.1) seems quite flexible, since it allows for discontinuous
solutions. It is though necessary to understand the behaviour of a weak solution around such dis-
continuity.

A discontinuity, referred to as shock, arises when multiple characteristics meet in a point, as
depicted in figure 2.1. The locus of points determined by the intersection of the characteristics
defines the shock curve s(t ). The well-known Rankine-Hugoniot condition is used to compute the
derivative ṡ(t ) of the shock wave (i.e. the velocity of the wave):

ṡ(t ) = f (ur (s, t ))− f (ul (s, t ))

ur (s, t )−ul (s, t )
. (2.4)

Here, ur and ul stand for the solution u immediately right and immediately left of the shock, respec-
tively. The velocity of the shock given by (2.4) is usually the quantity one is interested in. However,
along with an appropriate initial condition (in the case depicted in Figure 2.1 it would be s(0) = 0),
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t 

x 
Figure 2.1: Characteristics collide: generation of a shock wave.

(2.4) can be solved to determine also the equation of the shock wave s(t ). The solution u across the
shock jumps from ul to ur .

Consider now a case where the characteristics are absent from a region of the (x, t )-plane, as
depicted in figure 2.2. No characteristics enter the central region: an alternative way must be found
to define a solution in such region. In this case, the solution is found through rarefaction waves:
lines spread out from a point and fill the empty region. The fan of characteristics is depicted in
Figure 2.3. One can show that, if f ′ is monotone, the following formula gives the solution in a region
where rarefaction waves (centered at x = 0) occur:

u(x, t ) = r
( x

t

)
, r = ( f ′)−1. (2.5)

Rarefaction and shock waves seem to ensure existence of a solution in the different configura-
tions that may occur. What about uniqueness?

There are cases where both rarefaction and shock waves can be built to define a (weak) solution,
so one may wonder if further conditions can be derived to ensure uniqueness. To this purpose, it
is convenient to think of a physical interpretation of the solution. These solutions are referred to
as entropy solutions, related to the study of gas dynamic. There are various ways to formulate an
entropy condition. One of the most common is the viscous regularization: equation (2.1) is replaced
by

ut + f (u)x = εuxx . (2.6)

Note that (2.6) is a parabolic equation, thus, even if ε is small, the equation has a much more reg-
ular behaviour. The idea is that, physically, a model is more realistic if some diffusion is taken into
account, and a conservation law represents a limit model when diffusion goes to zero. A unique
solution for (2.1) is selected as the limit of the solution of (2.6) for ε→ 0.

One can show that, for sufficiently regular solutions, this entropy condition is equivalent to the
K r užkov entropy condition. A solution satisfies a Kružkov entropy condition ifÏ

(η(u)φt +q(u)φx )d xd t ≥ 0 (2.7)
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t 

x 

u=? 

Figure 2.2: No information in the central region: generation of a rarefaction wave.

t 

x 

u=r(x/t) 

Figure 2.3: Rarefaction wave centered in the origin.

holds for all convex functions η and all nonnegative test functions φ ∈ C∞
0 (R× (0,∞)), where q(u)

is such that q ′(u) = f ′(u)η′(u). It is often more convenient to work with this condition to show that
solutions satisfy entropy conditions.

2.2. The Riemann Problem
Studying a particular initial value problem, the Riemann problem, gives useful insights on the be-
haviour of problems with more complicated initial value.

The Riemann problem is the initial value problem

ut + f (u)x = 0, u(x,0) =
{

ul for x < 0,
ur for x ≥ 0,

(2.8)

where both ul and ur are constant. Since both the equation and initial data are invariant under
the transformation x 7→ kx and t 7→ kt , it makes sense to look for a similarity solution of the form
u(x, t ) = w(x/t ). Assuming for a moment that f ∈ C 2 and substituting the similarity solution into
the equation yields

− x

t 2 w ′+ 1

t
f ′(w)w ′ = 0. (2.9)
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Equation (2.9) has either the simple solution w ′(x/t ) = 0 or, rewriting the equation as

x/t = f ′(w(x/t )), (2.10)

the solution w = ( f ′)−1(x/t ) if f ′ is strictly monotone, recovering (2.5). Of course, in general the
monotonicity of f ′ cannot be guaranteed. In the case of a non-convex or non-concave flux function
f , the solution to the Riemann problem (2.8) will consist of a sequence of shock and rarefaction
waves. The typical approach that provides a way to build the solution in this general case, consists
in replacing f ′ by a monotone function on the interval between ul and ur (see for instance [5],[17]).
Depending whether ul < ur or ul > ur , f is replaced, respectively, by its lower convex envelope f^
or by its upper concave envelope f_.

Consider the case ul < ur . Then, permitting jump discontinuities where f ′̂ is constant, so that
its inverse can be defined, one can show that a solution to (2.8) satisfying a Kružkov entropy condi-
tion is given by

u(x, t ) =


ul for x ≤ f ′̂ (ul )t ,
( f ′̂ )−1(x/t ) for f ′̂ (ul )t ≤ x ≤ f ′̂ (ur )t ,
ur for x ≥ f ′̂ (ur )t .

(2.11)

The intervals where ( f ′̂ )−1 is continuous correspond to the rarefaction waves, while the disconti-
nuities correspond to the shocks.

Analogously, the solution in the case ul > ur is found by taking the concave upper envelope of
f ′:

u(x, t ) =


ul for x ≤ f ′
_(ul )t ,

( f ′
_)−1(x/t ) for f ′

_(ul )t ≤ x ≤ f ′
_(ur )t ,

ur for x ≥ f ′
_(ur )t .

(2.12)

These results can be summarized in the following theorem [5]:

Theorem 2.2. The initial value problem (2.8) with a flux function f(u) such that f^,_ 6= f on finitely
many intervals, alternating with intervals where they coincide, has a weak solution given by (2.11) if
ul < ur , or by (2.12) if ur < ul . This solution satisfies the K r užkov entropy condition.

2.3. Systems of Conservation Laws
The governing equations that describe water and polymer flooding consist of a system of two con-
servation laws. Therefore, it is essential to present here the main results regarding the study of sys-
tems of conservation laws. The typical features arising from scalar laws will be extended to the case
of systems. In this section, mainly the work of Leveque [17] and Holden-Risebro [5] will be followed,
and we refer to these texts for a thorough discussion.

2.3.1. Linear Systems of Conservation Laws
A linear system of hyperbolic equations has the form

ut + Aux = 0, x ∈R, t > 0, (2.13)

where A ∈ Rm×m , u : R× [0,∞) 7→ Rm . A system is hyperbolic if the matrix A is diagonalizable with
real eigenvalues. If, in addition, the eigenvalues are distinct, the system is strictly hyperbolic. For a
hyperbolic linear conservation law, one can obtain a system of m decoupled equations by writing

A = RΛR−1,

where R is the matrix of the right eigenvectors. Introducing the new variables

v = R−1u,
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equation (2.13) is rewritten as
vt +Λvx = 0. (2.14)

Analogously to the scalar case, when the initial data

u(x,0) = u0(x), x ∈R,

is given, the solution to (2.14) can be found through the m characteristic curves ξ(t ; x0) = x0 +λp t ,
p = 1, · · · ,m. In particular, the pth equation will have the solution

v p (x, t ) = v p
0 (x −λp t ),

where v0(x) = R−1u0(x). The solution for u, given by u(x, t ) = Rv(x, t ), can then be seen as a super-
position of waves with velocities λp . For this reason, the eigenvalues λp are sometimes referred
to as characteristic velocities, and their respective characteristic curves ξ(t ; x0) = x0 +λp t as p-
characteristics. These manipulations are valid as long as the matrix A is constant. In general, for
a non-linear system, the equations cannot be decoupled, and it will be much harder to find an ana-
lytical solution.

At this point, it is convenient to look at the solution of the Riemann problem for equation (2.13).
The piecewise constant initial data is given by

u(x,0) =
{

ul for x < 0,
ur for x ≥ 0.

(2.15)

To build the solution to the Riemann problem, decompose the initial data in the basis formed by
the eigenvectors r p :

ul =
m∑

p=1
v p

l r p , ur =
m∑

p=1
v p

r r p . (2.16)

The pth uncoupled equation has initial data

v p (x,0) =
{

v p
l for x < 0,

v p
r for x ≥ 0,

(2.17)

so that the solution is given by the propagation of the initial discontinuity:

v p (x, t ) =
{

v p
l for x −λp t < 0,

v p
r for x −λp t ≥ 0.

(2.18)

The solution for the system of equations is then

u(x, t ) = ∑
p:λp<x/t

v p
r r p + ∑

p:λp>x/t
v p

l r p . (2.19)

Thus, when the pth characteristic is crossed, the respective v p jumps from the left to the right state.
Consequently, the solution consists of m discontinuities separating m + 1 wedges where u(x, t ) is
constant.

It is important to note that the jump in the solution across the pth characteristic is an eigenvec-
tor of A:

(v p
r − v p

l )r p ≡βp r p .

This fact can be generalized in the context of nonlinear systems, and the more general Rankine-
Hugoniot condition for shock solutions is consequently derived, see [17].
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2.3.2. Nonlinear Systems of Conservation Laws
In this section, we will present the basic concepts for shock and rarefaction waves for nonlinear
systems. We will state the main results of the theory, which will be used in later chapters to build
analytical solutions of the physical models.

A nonlinear conservation law takes the form

ut + f (u)x = 0, x ∈R, t > 0. (2.20)

For smooth solutions, equation (2.20) can be rewritten in the quasi-linear form

ut + f ′(u)ux = 0, (2.21)

where f ′(u) is the Jacobian of the flux function. A nonlinear conservation law (2.20) is hyperbolic if
the Jacobian f ′(u) is diagonalizable with real eigenvalues for each physically relevant value of u; it is
strictly hyperbolic if it is hyperbolic and the eigenvalues are distinct. Although the quasi-linear form
is often useful for analytical purposes, the conservation form (2.20) is the correct one to use when
computing shock solutions and deriving numerical methods. In fact, discretizations based on the
quasi-linear form (2.21) may lead to unphysical results [17].

Analytical solutions to systems of conservation laws are generally hard to find, since the equa-
tions cannot be decoupled and the waves continuously interact with each other. However, it turns
out that, under some requirements, existence and uniqueness of the solution to the Riemann prob-
lem can be ensured.

First, we will see how shock and rarefaction waves are computed in the case of a nonlinear sys-
tem of hyperbolic equations. The Rankine-Hugoniot condition (2.4) can be extended to systems
without restrictions:

ṡ(t ) = f (ur (s, t ))− f (ul (s, t ))

ur (s, t )−ul (s, t )
, (2.22)

where ṡ(t ) is the velocity of the shock. The concept of entropy is though much more difficult, but
we will not focus on it in this thesis.

To find an expression for a rarefaction wave, let us consider the Riemann problem

ut + f (u)x = 0, u(x,0) =
{

ul for x < 0,
ur for x > 0.

(2.23)

As in the scalar case, looking for similarity solutions of the form u(x, t ) = w(x/t ) = w(η) leads to the
system of ODEs

f ′(w(η))w ′(η) = ηw ′(η). (2.24)

Since we are considering a system of hyperbolic equations, the term w ′(η) is no longer a scalar and
cannot be cancelled from (2.24). Note that (2.24) requires w ′(η) to be an eigenvector of the Jacobian
f ′(w(η)) for each value of η. Since the Jacobian has the m eigenvectors r p , p = 1, · · · ,m, it must hold

w ′(η) = r p (w(η)), λp (w(η)) = η (2.25)

for a certain value of p. The differential equation in (2.25) must be completed with an initial con-
dition. Since the left edge of the rarefaction wave should be the ray η = λp (ul ) and the right edge
should be the ray η=λp (ur ), the following conditions hold:

w(λp (ul )) = ul , w(λp (ur )) = ur . (2.26)

Relation (2.25) defines also the normalization of the eigenvectors, since differentiating λp (w(η)) = η
gives

∇λp (w(η)) · r p (w(η)) = 1. (2.27)
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Thus, the system of ODEs can be rewritten in the form

w ′(η) = r p (w(η))

∇λp (w(η)) · r p (w(η))
. (2.28)

The ODEs (2.28) make sense provided that the denominator is nonzero. If this is the case and,
moreover, λp (ul ) < λp (ur ), then the centered rarefaction wave for the initial value problem (2.20)
has the form

u(x, t ) =


ul if x/t ≤λp (ul ),
w(x/t ) ifλp (ul ) ≤ x/t ≤λp (ur ),
ur if x/t ≥λp (ur ).

(2.29)

A pth field for which ∇λp (u) · r p (u) 6= 0 for all u is called genuinely nonlinear. There might be
systems for which ∇λp (u) · r p (u) ≡ 0 for all u. In this case, the field is said to be linearly degenerate.
A trivial example of when this situation occurs is the constant coefficient linear hyperbolic system,
where λp is constant and hence ∇λp ≡ 0. For this kind of fields, if the initial data is a discontinuity,
then this discontinuity will propagate at constant speed given by the respective eigenvalues. This
discontinuity is not properly a shock, because the characteristic velocities on each side agree with
the velocity of the wave. The solutions of linearly degenerate fields are often referred to as contact
discontinuities, because they arise when considering passive tracers in a general flow equation. The
tracer will not influence the flow because its equation is decoupled from the governing equations,
and it will simply be advected by the velocity of the flow.

A theorem that guarantees the existence and uniqueness of a (local) solution, satisfying entropy
conditions, of the Riemann problem (2.23) can be found in [5].



3
Introduction to Reservoir Simulation

In this chapter, the main aspects of the physics of a reservoir, along with numerical methods used
to simulate the flow of a fluid through it, are introduced.

First, the terminology and the physical quantities that describe reservoir properties are pre-
sented. The traditional models employed for these quantities, together with typical assumptions
made to simplify the expression of the governing flow equations, are also briefly discussed. The
purpose of this research is to clarify a specific phenomenon (the velocity enhancement) that occurs
when a solution of water and polymer is injected in the reservoir, therefore we will avoid the use of
more complicated models that would distract us from our goal.

A section dedicated to study the multi-phase flow equations that govern the flow will then follow.
These equations will be tailored in order to model two main scenarios: the (simpler) case when
pure water is injected into the reservoir, and the case where polymer is added to the injected water.
The analytical solution of the two cases will be discussed in detail, so that, when the model will be
refined to incorporate also the velocity enhancement effects, it will be easier to make conjectures
on the behaviour of the solution.

Last, the finite volume method, adopted to solve the equations numerically, is presented. While
the equation for water conservation is solved through a fully implicit solver, a separate module is
developed to simulate the transport of chemical agents dissolved in water. In particular, differ-
ent discretizations are introduced and compared. First order upwind schemes and high resolution
methods are discussed for the discretization in space, while for the discretization in time, implicit
and semi-implicit schemes are introduced.

3.1. Introduction to Petroleum Terms
Before starting to develop mathematical models for fluid flow in porous media, it is essential to be
familiar with the physical and chemical properties that characterize both the rock and the fluid.
These properties will influence the flow of the fluid through the rock. The main rock properties of
interest are porosity and permeability, while for the fluid density, compressibility and viscosity will
have relevant importance. In addition, the rock-fluid interaction properties will play an important
role in the modeling. Material is taken from Chen [23].

3.1.1. Reservoir Rock Properties
The tiny empty passages in a reservoir rock are called pores. Typically, their size varies between 1
and 200µm, depending on the rock layer. The porosity, indicated by φ, is the fraction of volume of
rock which is pore space. One may further distinguish between total porosity and effective porosity:
the latter includes only the pores which are interconnected, hence the ones responsible for fluid

11
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flow, while the total porosity includes also isolated pores. We shall consider effective porosity in the
rest of the discussion. Porosity often varies in space, since in a reservoir different layers of rock may
be present, but in many models will be considered constant for simplicity.

Permeability, denoted by k, measures the capacity of the rock to conduct fluids through its in-
terconnected pores. This quantity is also known as absolute permeability, to distinguish it from
the relative permeability that will be introduced later. A common unit for permeability is the milli-
darcy (md) (1 darcy ' 10−12m2). Permeability usually varies on location and flow direction, but, in
3 dimensions, it is possible to assume it is a diagonal tensor (i.e. the porous medium is isotropic).
However, most of the models considered later are one-dimensional, so that the permeability k will
be a scalar, and for simplicity we may assume it constant.

Often, porosity and permeability are positively correlated: this result should not be surprising,
since larger pores are most likely going to allow for more fluid to flow through the porous medium.

3.1.2. Reservoir Fluid Properties
The main properties of fluids in a reservoir are now introduced.

A fundamental notion to be familiar with is the compressibility of a fluid: a fluid is classified as
incompressible if its density is independent of pressure, otherwise it is said to be compressible. At
reservoir condition the fluids may have a slightly compressible behaviour, but often the assumption
of incompressibility will be used to derive mathematical models.

The viscosity of a fluid, denoted by µ, is a measure of the energy dissipated when it is in motion
resisting an applied shearing force. It has the dimension of force/area and the most commonly
used unit in field is centipoise (cp). Viscosity is basically a consequence of the friction between the
molecules of the fluid. In a gas, for example, where molecules are very far apart, viscosity will be low
and the fluid will have a low resistance to flow.

3.1.3. Reservoir Rock/Fluid Properties
The interaction between the rock and the fluid is fundamental to derive realistic and appropriate
models.

The first definition to be considered is wettability: the wettability of the rock measures the pref-
erence of the rock surface to be wetted by a particular phase. A formation which has a preference
to be wetted by water is called water wet; an oil wet formation has a preference to be wetted by
oil. The wettability influences other physical quantities, such as relative permeability and capillary
pressure. This definition leads to the following characterization of a fluid displacement process:

• Imbibition: a displacement process where the wetting phase increases. In a water wet system,
water flood will be an imbibition process: water will imbibe into a core containing mobile oil
and occupy the smaller pores, thus displacing the oil.

• Drainage: a displacement process where the nonwetting phase increases.

Other properties, like capillary pressure and relative permeability, depend on the nature of the fluid
displacement process.

A quantity widely used in the governing equations for fluid flow in porous media is the fluid
phase saturation Sσ, where the subscript σ denotes the fluid phase (typically, σ= {w,o, g }, indicat-
ing water, oil and gas). The saturation is the fraction of the pore space that a fluid phase occupies.
For a two phase flow with oil and water, it holds

So +Sw = 1.

The residual saturation of a phase is the amount of that phase which is trapped and cannot be dis-
placed, i.e. the fluid is immobile. For oil, this saturation is usually indicated as Sor (residual oil
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saturation), while for water the threshold value is called irreducible water saturation, Swi r . In the
literature sometimes this saturation value is also referred to as connate water saturation Swc , but
there is a subtle yet important difference between the two terms: connate water saturation is more
precisely defined as the fraction of water that remains trapped within sedimentary rocks during the
process of sedimentation. This definition does not imply that connate water is immobile, although
this will be the case in most of the reservoirs and many authors consider the connate water immo-
bile.

Capillary pressure refers to the discontinuity between the pressure of the nonwetting phase, say
oil, and the wetting phase, say water, thus taking the form

pc = po −pw . (3.1)

Capillary pressure appears in a two-phase flow as a consequence of interfacial tension at the inter-
face between the two immiscible fluids, such as oil and water. Throughout this thesis, the capillary
pressure will be assumed to be zero, so that we have pw = po = p.

The relative permeability is a dimensionless quantity (a fraction) that measures the effective
permeability of a phase in the case of multiphase flow. In a two phase flow, one would expect the
permeability to either fluid to be lower than that for the single fluid since it occupies only part of
the pore space. Relative permeabilities are usually modeled as functions of saturation. A popular
model for an analytic expression of relative permeabilities was proposed by Corey [11]:

kr,w = k0
r,w


0 Sw ≤ Swi r ,(

Sw −Swi r

1−Swi r −Sor

)nw

Swi r < Sw < 1−Sor ,

1 Sw ≥ 1−Sor ,

(3.2)

kr,o = k0
r,o


0 Sw ≤ Swi r ,(

1−Sw −Sor

1−Swi r −Sor

)no

Swi r < Sw < 1−Sor ,

1 Sw ≥ 1−Sor ,

(3.3)

where nw , no are the Corey coefficients and k0
r,w , k0

r,o the endpoints of the relative permeabilities
curves. The values of these coefficients can be chosen to capture the physical properties of the
reservoir. Typical curves for the relative permeabilities are shown in figure 3.1.
Relative permeability models for three phase flows are rather complicated and will not be discussed
here, as the focus throughout the report will be on two phase systems.

Next, it is useful to define the mobility λσ and the fractional flow fσ of a phase σ. The mobility
is the ratio between relative permeability and viscosity of a certain phase:

λw = kr,w

µw
, λo = kr,o

µo
. (3.4)

The mobility ratio M is the ratio between the mobility of the displacing fluid and the mobility of the
displaced fluid. For waterflooding:

M = λw

λo
. (3.5)

Typically, M > 1 because water is more mobile than oil. This is the quantity that a polymer flood tar-
gets: polymer will increase water viscosity µw , resulting in a smaller (and more favourable) mobility
ratio.

The interstitial velocity of the flowing phase is denoted by vσ. In the derivation of the model for
the flow through the porous medium, it is common to work with the superficial (or Darcy) velocities
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nw no k0
r,w k0

r,o µw µo Swi r Sor

2 3 0.6 0.9 1cP 5cP 0.15 0.2

Table 3.1: Reference case for the reservoir parameters.

uσ =φSσvσ. The reason is that an empirical law for uσ has been discovered by the French engineer
Henry Darcy in 1856. Such law will be illustrated in the next section. Note that it holds uσ ≤ vσ.

The fractional flow is a quantity that determines the (fractional) volumetric flow rate of a phase
in the presence of another phase. The fractional flow of a phase is expressed as the ratio between
the Darcy velocity of that phase and the total Darcy velocity u = uo +uw :

fw = uw

u
, fo = uo

u
. (3.6)

Note that fw + fo = 1. The fractional flow is a really useful quantity, as many models used in wa-
terflooding and polymer flooding adopt a fractional flow formulation, which allows for the con-
struction of analytical solutions. It depends strongly on the saturation of the associated phase. The
fractional flow curve has a typical s-shaped form, as it is shown in figure 3.2. We establish in table
3.1 a reference case for the reservoir parameters that will be used to compute both analytical and
numerical solutions, unless specified otherwise.
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Figure 3.1: Corey’s relative permeabilities with k0
r,w =

0.6, k0
r,w = 0.9, nw = 2, no = 3, Swi r = 0.15, Sor = 0.2.
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Figure 3.2: Typical fractional flow curve fw (Sw ).

3.2. Multi-Phase Flow in Porous Media
Before deriving models for the velocity enhancement effect, it is necessary to present the general
and basic equations for fluid flow in porous media. These equations arise from the usual funda-
mental law of conservation of mass, and they are completed employing the empirical Darcy’s law as
a constitutive relation. Typically, the assumption of incompressibility is made, which is an appropri-
ate approximation far away from the well, where velocities are low. First, the case of a waterflooding
(injection of pure water) is studied. In order to find an analytical solution, the equations are re-
formulated within the fractional flow theory, resulting in a hyperbolic system of equations. This
formulation is also known as the Buckley-Leverett formulation.
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3.2.1. Mass Conservation
Consider a control volume V with outward normal n and a general scalar propertyϕ of a one-phase
fluid flowing with velocity v through V . The law of mass balance for the control volume states:

rate of inflow-rate of outflow=change in mass.

This statement is formulated as ∫
∂V

−ϕv ·nd∂V =
∫

V

∂ϕ

∂t
dV. (3.7)

In the framework that will be considered, the source term is usually incorporated in the boundary
conditions (injection of water-polymer at x = 0), therefore it is absent in (3.7). Using the divergence
theorem, (3.7) is rewritten as ∫

V

(
∂ϕ

∂t
+∇· (ϕv)

)
dV = 0. (3.8)

Since the control volume V is arbitrary, the integrand must be equal to zero, namely

∂ϕ

∂t
+∇· (ϕv) = 0. (3.9)

Note that equation (3.9) is a general relation for a conservation of a fluid’s property when the source
term is absent. For a porous medium, we take ϕ = φρ, with φ the porosity of the rock and ρ the
density of the fluid, and v is the interstitial velocity. Using the superficial (or Darcy) velocity u =φv,
equation (3.9) reads

∂(φρ)

∂t
+∇· (ρu) = 0. (3.10)

For multi-phase flow, the concept of saturation is used. In this case,ϕ=φSσρσ and uσ =φSσvσ,
where σ ∈ {o, w} denotes the phase considered (oil or water). The equation then reads

∂(φρσSσ)

∂t
+∇· (ρσuσ) = 0. (3.11)

At this point, it is necessary to have an expression for the Darcy’s velocities uw , uo . Darcy’s law
is an empirical law discovered by Henri Darcy. The differential form of this relation in the case of a
single-phase flow, disregarding gravitational effects, is

u =−k

µ
∇p, (3.12)

where k is the absolute permeability and µ the viscosity. The minus sign is needed because the fluid
flows from high pressure to low pressure.

In the case of multi-phase flow, the definition of Darcy’s velocity is slightly modified by intro-
ducing the relative permeabilities:

uσ =−kkr,σ

µσ
∇pσ. (3.13)

Darcy’s velocity (3.13) can be used in the governing equation (3.11) to obtain

∂(φρσSσ)

∂t
−∇·

(
ρσ

kkr,σ

µσ
∇pσ

)
= 0, σ ∈ {w,o}. (3.14)

The system of equations (3.14) has four unknowns, so further relations for the saturations and pres-
sures are needed in order to close the model. From chapter 3, we can use the definitions of satura-
tion and capillary pressure to obtain the following equations:

Sw +So = 1, (3.15)
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pc = po −pw . (3.16)

The system of differential-algebraic equations (3.14), (3.15) and (3.16) describes the flow of water
and oil through a porous medium. As stated previously, capillary pressure effects will be disre-
garded, so that (3.16) gives pw = po = p and hence the pressure in (3.14) will not depend on the
phase σ.

3.2.2. Fractional Flow Formulation
Classical fractional flow theory was firstly developed by Buckley-Leverett [9, 20] to describe water-
flooding. This formulation allows to find an analytical profile for the water saturation. The major
assumptions of the model are:

1. Fluids are incompressible.

2. The flow is horizontal and one dimensional.

3. Two phases are flowing.

4. Dispersion is negligible

5. Gravity and capillary forces are negligible.

6. Darcy’s law is valid

7. The reservoir is homogeneous.

8. A constant composition is continuously injected, starting at time zero.

Since the flow is one-dimensional, Darcy’s velocities have now the form

uα = kkr,α

µα

∂p

∂x
. (3.17)

Due to the incompressibility assumption, the density ρσ is canceled from (3.14), and equations for
the saturation of oil and water read

φ
∂Sw

∂t
+ ∂uw

∂x
= 0, (3.18)

φ
∂So

∂t
+ ∂uo

∂x
= 0. (3.19)

Summation of the above equations, along with condition (3.15), yields

∂u

∂x
= 0, (3.20)

where u = uw+uo is the total (constant) velocity. Using the fractional flow functions defined in (3.6),
equations (3.18)-(3.19) become

φ
∂Sw

∂t
+u

∂ fw

∂x
= 0, (3.21)

φ
∂So

∂t
+u

∂ fo

∂x
= 0. (3.22)

Note that using the expression (3.17) for the Darcy velocities, the fractional flow functions can be
rewritten as

fw = λw

λw +λo
, fo = λo

λw +λo
. (3.23)



3.2. Multi-Phase Flow in Porous Media 17

Since the mobilities λσ, defined in (3.4), depend on the relative permeabilities which, in turn, de-
pend on the saturation, it is evident that fw = fw (Sw ) and fo = fo(Sw ) (recall that So = 1−Sw ). For
the relative permeabilities, Corey’s model is employed. Note that if the velocity u is known, then it
is sufficient to solve equation (3.21) for water saturation, since the saturation of oil will follow from
(3.15).
Initial and boundary conditions for a one-dimensional reservoir where the fluid is injected at x = 0
and water is initially at the irreducible saturation, can be modeled setting the Riemann problem

Sw (x,0) =
{

Sw,i n j x < 0,
Swi r x ≥ 0,

(3.24)

where Sw,i n j indicates the saturation of water at the injection point. Unless diversely specified, we
will set Sw,i n j = 1−Sor . Note that water will flow from left to the right, hence u > 0.

Consider now the equation for water conservation (3.21). Since the fractional flow function is
neither convex or concave, we expect the formation of both a rarefaction and a shock wave. Rewrit-
ing it in quasi-linear form gives the classical Buckley-Leverett formulation, namely

∂Sw

∂t
+ u

φ

d fw

dSw

∂Sw

∂x
= 0. (3.25)

This is a hyperbolic equation for Sw , with characteristic velocity given by

λw =
(

d x

d t

)
Sw

= u

φ

d fw

dSw
. (3.26)

On a front propagating with such velocity, the saturation is constant [14]. However, because of the
s-shaped graph of f (Sw ), the derivative d f /dSw is not monotone: after a first increasing phase, it
starts decreasing in correspondence of the inflection point of f (Sw ). Thus, the characteristic lines
intersect and, as discussed in chapter 2, a shock forms. Since 1−Sor > Swi r , a solution is formally
given by (2.12), i.e. taking the concave upper envelope of fw . The rarefaction wave starting from
x = 0 is given by

Ŝw (x/t ) =
(

u

φ

d fw

dSw

)−1

(x/t ), λw (1−Sor ) < x/t <λw (S∗), (3.27)

where S∗ is the value of saturation on the left of the shock. Note that λw (1−Sor ) = 0. The velocity of
the shock σw can be found through the usual Rankine-Hugoniot condition. For the point ahead of
the shock, Sw = Swi r . The condition then gives

σw = u

φ

fw (S∗)− fw (Swi r )

S∗−Swi r
. (3.28)

Since the velocities given by (3.26) and (3.28) must be equal at the contact between the shock and
the continuous saturation distribution, it holds

fw (S∗)− fw (Swi r )

S∗−Swi r
= d fw

dSw
(S∗). (3.29)

Thus, S∗ can be obtained from (3.29). The value of S∗ can also be obtained graphically, by building
the upper concave envelope of fw (Sw ), see figure 3.3. From this figure, we see that the two meth-
ods are indeed equivalent, since (3.29) defines a straight line with slope d fw /dSw and intercept
(Swi r ,0). The straight line in figure 3.3 corresponds to the shock, while the smooth part for Sw > S∗

corresponds to the rarefaction wave. The solution to the Riemann problem defined by (3.21)-(3.24)
is

Sw (x, t ) =


1−Sor for x/t < 0,
Ŝw (x/t ) for 0 < x/t <λw (S∗),
Swi r for x/t >λw (S∗).

(3.30)
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Figure 3.3: Construction of the Buckley-Leverett solu-
tion for water flooding. Swi r = 0.15, Sor = 0.2.
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Figure 3.4: Buckley-Leverett solution for water flood-
ing and a fixed t > 0. Swi r = 0.15, Sor = 0.2.

3.3. Polymer Flood
To improve oil recovery, polymer is added to the injected water in order to increase its viscosity,
resulting in a more favourable mobility ratio M . The mobility ratio here is defined by

M = λw

λo
= µokr,w

µw kr,o
. (3.31)

For a water flood, typically M > 1. Adding polymer to the injected water will usually lower the mo-
bility ratio to values close to 1. A thorough discussion on polymer flooding can be found in [9, 11].

Since the polymer does not change the residual oil saturation, both waterflooding and polymer
flooding will theoretically produce all of the moveable oil over a very long time scale. This time
scale, however, is usually many times the practical reservoir development period. The polymer will
essentially speed up the recovery, see figure 3.5. The figure shows also an approximated economic
limit for both water and polymer flood. Polymer flooding will be particularly useful in those reser-
voirs where waterflooding is or is predicted to be inefficient. In order to evaluate projects, it is im-
portant to predict recovery profiles for waterflood and polymer flood employing different chemical
agents. One way of obtaining these data is to perform different simulations of the proposed projects.
This motivates the development and analysis of mathematical models for polymer flood. Although
there are many physical and chemical effects that influence the flow of the polymer-water solu-
tion through the reservoir, simulations of these models are a good and efficient mean to evaluate
proposed projects. Under reasonable assumptions, models for the flow through the reservoir are
derived, giving the chance to simulate saturation and polymer concentration profiles for injected
water and polymer.

Figure 3.5: Comparison of production profiles for a water flood and a polymer flood. From [9].
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3.3.1. Thick Water Model
A first simple approach is to apply classical Buckley-Leverett theory to polymer flooding [2]. This
means that the polymer flood is treated as a water flood, only with a different value for viscosity.
This model is called the thick water model. Thus, this model is mathematically equivalent to the
Buckley-Leverett waterflooding and no new features must be discussed. Figure 3.6 shows two sat-
uration profiles for different water viscosity: µw = 1cP corresponds to a waterflooding; µw = 5cP
corresponds to a polymer flooding. Figure 3.7 shows the recovery for the two cases. As it can be
seen, the polymer delays the breakthrough of the water front. As a consequence, even if the ulti-
mate recovery will be the same for both cases, a higher oil recovery will be reached earlier when
employing a polymer flooding instead of a waterflooding.
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Figure 3.6: Floods for different values of water viscosity. Compared to the waterflooding (µw = 1cP ), the front of the
polymer-water solution (µw = 5cP ) is delayed.
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Figure 3.7: Oil production for values of water viscosity in figure 3.6, on a longer time scale. The polymer delays the
breakthrough of water, so that the recovery is improved.

3.3.2. Extended Fractional Flow Theory
To have a more accurate model, classical Buckley-Leverett fractional flow theory can be extended [9,
14], deriving a continuity equation also for the polymer concentration c. On top of the assumptions
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stated above for the fractional flow theory for waterflooding, further assumptions for the polymer
are

1. The polymer solution has a Newtonian flow behaviour.

2. Polymer dispersion, gravity, capillary forces and adsorption to rock are negligible.

3. The polymer is present only in the aqueous phase.

The purpose of this section is to derive a qualitative profile for the water saturation and polymer
concentration, therefore we disregard effects that would lead to unnecessary complexities.

Since the polymer influences the water viscosity, and thus the mobility, the fractional flow func-
tion depends not only on the water saturation, but also on the polymer concentration. The depen-
dence of water viscosity on polymer concentration can be modelled by the Flory-Huggins equation
[11]:

µw (c) =µ0
w

(
1+α1c +α2c2 +α3c3)=µ0

wµmul t (c), (3.32)

whereµ0
w is the water viscosity without polymer,µmul t the viscosity multiplier function ansαi some

constants. A typical curve for the viscosity multiplier µmul t is shown in figure 3.8. When adding
polymer to water, the fractional flow curve shifts toward the right, as shown in figure 3.9.

According to Pope [14], continuity equations for water and polymer in fractional flow formula-
tion are

φ
∂Sw

∂t
+u

∂( fw (Sw ,c))

∂x
= 0, (3.33)

φ
∂(Sw c)

∂t
+u

∂(c fw (Sw ,c))

∂x
= 0. (3.34)

To complete equations (3.33) and (3.34), a Riemann initial condition is assigned for both water
and polymer:

Sw (x,0) =
{

1−Sor x < 0,
Swi r x > 0,

(3.35)

c(x,0) =
{

c̄ x < 0,
0 x > 0.

(3.36)

During a polymer flood, generally two shocks arise [14]: one at the polymer front, where poly-
mer contacts connate water, and one as the water saturation increases from its initial value (as in the
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Figure 3.8: Viscosity multiplier µmul t (c), with α1 = 24,
α2 = 31, α3 = 50.
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Figure 3.9: Fractional flow curves for different values
of polymer concentration.
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waterflood). The procedure to build an analytical solution commonly followed in the literature is
rather intuitive and guided from physical concepts, but lacks of a more formal and detailed discus-
sion. Therefore, we will investigate the behaviour of the solution using the ingredients introduced
in chapter 2.

Expanding equation (3.34) and using (3.33), the equation for polymer concentration is rewritten
as

φSw
∂c

∂t
+u fw

∂c

∂x
= 0, (3.37)

so that the system of hyperbolic equations (3.33)-(3.34) in quasi-linear form is

∂

∂t

(
Sw

c

)
+ A

∂

∂x

(
Sw

c

)
=

(
0
0

)
, (3.38)

where

A = u

φ


∂ fw

∂Sw

∂ fw

∂c

0
fw

Sw

 . (3.39)

Note Sw ∈ [Swi r ,1−Sor ], so division by zero in (3.39) does not occur. The eigenvalues of the system
for the water and polymer waves are, respectively,

λw = u

φ

∂ fw

∂Sw
, λp = u

φ

fw

Sw
. (3.40)

The respective eigenvectors are

rw =
[

1
0

]
, rp =


∂ fw

∂c
fw

Sw
− ∂ fw

∂Sw

 . (3.41)

We compute now the gradients of the eigenvalues (3.40) to check if the water and polymer fields are
genuinely nonlinear or linearly degenerate. The gradients are

∇λw = u

φ


∂2 fw

∂S2
w

∂2 fw

∂Sw∂c

 , ∇λp = u

φ


1

Sw

∂ fw

∂Sw
− fw

S2
w

1

Sw

∂ fw

∂c

 . (3.42)

Computing the inner products between these gradients and the eigenvectors gives

∇λp · rp = 0,

∇λw · rw = u

φ

∂2 fw

∂S2
w

.

Hence, the polymer field is linearly degenerate and will behave as a contact discontinuity. The water
field, instead, is genuinely nonlinear as long as the second derivative of the fractional flow function
is nonzero. We have seen that fw (Sw ) has an inflection point, so the water field is not genuinely
nonlinear for all the values of Sw in its interval of definition. However, we will see that this inflection
point is not reached by the solution.

The water field defines the system of ODEs (2.28), as discussed in chapter 2, which theoretically
give raise to a rarefaction wave for both water and polymer. In this case, though, the second com-
ponent of rw is zero, meaning that the ODE for polymer concentration has the constant solution

c(x, t ) = c̄, λw (1−Sor , c̄) < x/t <λw (Sl , c̄),
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where Sl is the value of saturation on the left of the shock, see figure 3.11. The rarefaction wave for
Sw (x, t ) = S̃w (x/t ) is given by solving the ODE

S̃′
w (x/t ) =

(
u

φ

∂2 fw

∂S2
w

)−1

(x/t ), λw (1−Sor , c̄) < x/t <λw (Sl , c̄).

Note that ∂2 fw /∂2Sw at Sw = 1 − Sor is zero, hence the rarefaction wave at x = 0 will start with
a vertical slope. Since the front where the polymer concentration jumps to zero corresponds to
a contact discontinuity, the value of Sl is the one for which the characteristic velocities (i.e. the
eigenvalues (3.40)) are equal. Thus, Sl is found by solving

fw (Sl , c̄)

Sl
= d fw

dSw
(Sl , c̄). (3.43)

Note that if the eigenvalues are equal, the system is no more strictly hyperbolic. The consequences
of the loss of strict hyperbolicity are still poorly understood. However, the fact that the polymer
wave is linearly degenerate ensures that no mathematical difficulties arise [17].

In figure 3.10 we depict the fractional flow curves for the concentration values c = 0, c = c̄ and
the Buckley-Leverett construction of the solution. From this picture, it is clear that relation (3.43)
excludes the possibility of crossing the inflection point of the fractional flow curve, since it defines
a straight line through the origin and tangent to fw (Sw , c̄).

Since at the contact discontinuity the fractional flow function jumps from fw (Sw , c̄) to fw (Sw ,0),
we expect a shock in the water saturation. To compute the value of Sw on the right of the polymer
front, which we will denote by Sr , we can impose, as in the waterflood case, that the characteristic
velocity of water equals the shock velocity. Using the Rankine-Hugoniot relation, the shock velocity
takes the form

σ2 = u

φ

fw (Sl , c̄)− fw (Sr ,0)

Sl −Sr
. (3.44)

The value of Sr is then computed through the relation

d fw

dSw
(Sl , c̄) = fw (Sl , c̄)− fw (Sr ,0)

Sl −Sr
. (3.45)

In front of this shock, c = 0 and we are in the standard case of a waterflooding. In most of the cases,
the value Sr will be smaller than the saturation value S∗ for which the concave envelope of fw (Sw ,0)
becomes a straight line (i.e. the value of saturation at the front in a waterflooding). However, we
consider the general case where it may happen that Sr > S∗. Ahead of the polymer front, there is
a constant saturation plateau where Sw = Sr . If Sr > S∗, ahead of the constant plateau another
rarefaction wave forms, defined, as for waterflooding, by

Ŝw (x/t ) =
(

u

φ

d fw

dSw

)−1

(x/t ), λw (Sr ,0) < x/t <λw (S∗,0). (3.46)

Finally, the water saturation jumps to the irreducible saturation, with velocity given by the Rankine-
Hugoniot relation

σ1 = u

φ

fw (S∗,0)− fw (Swi r ,0)

S∗−Swi r
. (3.47)

S∗ is found by the relation σ1 = λw (S∗,0). If Sr < S∗, no rarefaction wave occurs, and S∗ must be
substituted by Sr in (3.47). This scenario is the one depicted in figures 3.10-3.11. The solution to the
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Riemann problem for polymer flooding is

Sw (x, t ) =



1−Sor for x/t < 0,
S̃w (x/t ) for 0 < x/t <λw (Sl ,cl ),
Sr for λw (Sl ,cl ) < x/t <λw (Sr ,0) and Sr > S∗,
Ŝw (x/t ) for λw (Sr ,0) < x/t <σ1 and Sr > S∗,
Sr for λw (Sl ,cl ) < x/t <σ1 and Sr < S∗,
Swi r for x/t >σ1,

(3.48)

c(x, t ) =
{

c̄ for x/t <λw (Sl , c̄),
0 for x/t >λw (Sl , c̄).

(3.49)
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Figure 3.10: Construction of the Buckley-Leverett so-
lution for polymer flooding.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3.11: Buckley-Leverett solution for polymer
flooding and a fixed t > 0.

3.4. Overview of Numerical Methods
Except for very simple cases, analytical solutions for water saturation and polymer concentration
profiles are not available and therefore numerical methods are needed. Sintef provides a Matlab
simulation toolbox (MRST, Matlab Reservoir Simulation Toolbox [8]) in order to simulate the flow
both in the case of a waterflood or polymer flood. This toolbox uses a finite volume discretization
in space with first order upwind schemes for the fluxes and an implicit discretization in time in or-
der to avoid stability issues. Equations are rewritten in conservation form and then discretized. In
this chapter, the numerical scheme used by the MRST toolbox is presented first for the waterflood
case. The method is then extended to the polymer flood, where the water and polymer equations
are coupled and solved simultaneously using a fully implicit first order upwind method. Although
this approach yields an unconditionally stable method, it introduces a strong numerical diffusion
and, moreover, it is computationally expensive since equations are non-linear and must be solved
using the Newton method. Thus, an alternative approach was proposed in [10]. Focusing first on the
transport of an inert tracer (so that the transport equation is decoupled from the flow equations),
implicit and semi-implicit methods are studied and higher-resolution methods are employed to im-
prove the accuracy of the solution. These methods are then extended to polymer flooding, solving
the equations sequentially: flow equations are solved with the old concentration value, while the
polymer continuity equation is solved using the current value of water saturation. Information pre-
sented in the following sections are mainly taken from [10].
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Figure 3.12: Cell-centered grid.

3.4.1. Numerical Methods for Waterflooding
The one-dimensional domain [0,L] is discretized into N equal sized control volumes V j , j = 1, · · · , N ,
|V j | =∆x, using a cell-centered discretization. Cell centers are denoted by x j (see figure 3.12). Equa-
tions for water and oil in conservation form and with incompressibility assumption are recalled to
be

∂

∂t
(φSσ)+ ∂

∂x
(uσ) = 0, σ ∈ {o, w}. (3.50)

Disregarding capillary pressures, integration of the spatial derivative (3.50) over a control volume
gives ∫

V

∂

∂x
(uσ)d x =−

∫
V

∂

∂x

(
λσ

∂p

∂x

)
=−

[
λσ

∂p

∂x

]x j+1/2

x j−1/2

=−(Fσ, j+1/2 −Fσ, j−1/2), (3.51)

where Fσ, j+1/2 and Fσ, j−1/2 represent the fluxes through the right and left boundaries, respectively.
The pressure derivative is discretized using a central difference scheme

∂p

∂x

∣∣∣∣
x j+1/2

≈ p j+1 −p j

∆x
,

while the mobility λσ(Sσ) is discretized through a first order upwind scheme. Since water is injected
at x = 0, the flow is from left to right and the upwind approximation reads

λσ, j+1/2 =λσ(Sσ, j+1/2) ≈λσ(Sσ, j ) = kkr,σ(Sσ, j )

µσ
.

For the time derivative of (3.50), a first order backward scheme with time step ∆t gives

∂

∂t
(φSσ) ≈φSn+1

σ −Sn
σ

∆t
.

Integration over a control volume V j and mean value theorem lead to the fully implicit discretized
form of equation (3.50)

φ∆x
Sn+1
σ, j −Sn

σ, j

∆t
=

(
λn+1
σ, j

pn+1
j+1 −pn+1

j

∆x
−λn+1

σ, j−1

pn+1
j −pn+1

j−1

∆x

)
. (3.52)

Since the mobilities are non-linear functions of the saturation, Newton method is used to solve
the discrete system. Rewriting (3.52) in the residual form

Rσ, j =φ∆x
Sn+1
σ, j −Sn

σ, j

∆t
−

(
λn+1
σ, j

pn+1
j+1 −pn+1

j

∆x
−λn+1

σ, j−1

pn+1
j −pn+1

j−1

∆x

)
= 0,

the system of discretized equations that must be solved is

R(xn+1,xn) = 0,
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where x is the vector containing the unknowns. The Newton scheme solves the following system at
each iteration:

dR

dx
δxk+1 =−R(xk ), k = 0,1, · · · ,

updating at each step xk+1 = δxk+1+xk . The iterations continue until ||R(xk )||∞ < ε, where ε is some
given tolerance. The analytical expression of the Jacobian dR

dx may be extremely expensive to com-
pute. The MRST simulator uses automatic differentiation to prevent this problem: all operations
applied to the variables are also applied to their derivatives in differential form [18].

The implicit scheme used by the MRST simulator is unconditionally stable, but this comes at the
expenses of accuracy. The water front might be severely smeared out at the discontinuity. Further-
more, Taylor series expansion cannot be carried out at the discontinuity since it requires the func-
tion to be smooth, so at the shock the order of accuracy is even less than one [10]. For these reasons,
both implicit and semi-implicit schemes will be discussed when discretizing the polymer continu-
ity equation. A semi-implicit scheme is usually less computationally intensive than an implicit one,
but restrictions on the time step are needed in order to ensure stability. To improve accuracy, higher
order fluxes will also be considered. Figure 3.13 shows how the implicit solver fails to capture the
discontinuity accurately and smears out the water saturation profile.

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N = 100
N = 400

Figure 3.13: Water saturation profile for a water flood. The black line represents the analytical solution, N is the number
of cells and time steps.

3.4.2. Numerical Methods for Inert Tracer
Before dealing with numerical schemes for polymer flooding, it may be useful to investigate the case
of transport of an inert tracer in order to gain insights on the behaviour of semi-implicit and implicit
schemes, as well as higher-resolution methods, when applied to an uncoupled transport equation.
Water properties are not affected by the presence of the tracer, so that the fractional flow function
depends only on water saturation. The transport equation for the tracer concentration c is

∂

∂t
(φcSw )+ ∂

∂x
(cuw ) = 0. (3.53)

The tracer front is simply advected at velocity

vt = u fw (S̄)

φS̄
,
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where S̄ is the value for which the characteristic velocities of water and tracer are equal, see [10].
First, the flow is solved with the fully implicit method. Then, the obtained discrete values of uw

and Sw are used to solve the transport equation. Similarly to the previous section, a finite volume
discretization combined with a first order backward time scheme results in

φ∆x
(cSw )n+1

j − (cSw )n
j

∆t
=−(F j+1/2 −F j−1/2), (3.54)

where the fluxes F j±1/2 are again approximated by a first order upwind scheme. Two approaches,
that will be extended to the polymer flooding, are compared:

• Semi-implicit

F j+1/2 = cn
j un+1

w, j , (3.55)

• Implicit

F j+1/2 = F n+1
j+1/2 = cn+1

j un+1
w, j . (3.56)

In [10], a pure explicit discretization F j+1/2 = F n
j+1/2 = cn

j un
w, j , is discussed as well, but it will not

be adopted in the polymer flooding case because the polymer transport equation is not uncoupled
from the flow equation. Therefore, we do not discuss it here. Equation (3.54) is solved for the un-

known (cSw )n+1
j and the concentration is found as cn+1

j = (cSw )n+1
j

Sn+1
w, j

. If Sn+1
w, j is close to zero, this term

is replaced by a value ε in order to avoid numerical issues which can lead to unphysical solutions.
Numerical solutions for the two choices of fluxes are shown in figure 3.14. The semi-implicit

method reduces numerical diffusion, but the front is still severely smeared out. Monotonicity of
the concentration profile for the semi-implicit scheme can be guaranteed by imposing restriction
on the time step, which may though be stricter than the CFL condition for small values of Sw . No
restrictions on the time step are needed for the implicit scheme. For a thorough analysis of the
monotonicity, refer to [10].

To reduce the numerical diffusion, high-resolution methods are introduced. The idea of these
methods is to use a higher order scheme for the fluxes, switching to a first order scheme near the
discontinuity. This approach is well suited for advection problems since first order upwind smears
out the solution, while higher order schemes result in oscillations close to the jump. The high reso-
lution methods considered here are the total variation diminishing (TVD) flux-limiter methods, i.e.

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
w

c semi-implicit
c implicit
c exact

Figure 3.14: Saturation and concentration profiles for exact and numerical solutions, with 100 cells and 100 time steps.
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methods for which the total variation (of the concentration)

T V (c) =
N∑

j=1
|c j − c j−1|

does not grow over time, meaning that T V (cn+1) ≤ T V (cn). Such methods guarantee that no un-
physical oscillations will arise in the solution [10].

The expression of the flux will then take the form

F j+1/2 = FL, j+1/2 +Φ j+1/2(FH , j+1/2 −FL, j+1/2), (3.57)

where FL is the low order flux given by the upwind scheme discussed previously, FH the higher order
flux given by the second order scheme

FH , j+1/2 = 1

2
uw, j (c j + c j+1)− 1

2
(uw, j )2 ∆t

∆x
(c j+1 − c j ),

andΦ=Φ(θ j+1/2) the flux limiter function, where

θ j+1/2 =
c j − c j−1

c j+1 − c j
.

Flux limiter functionsΦ are chosen such that, far away from the discontinuity, θ j+1/2 ≈ 1 andΦ(1) =
1, while close the discontinuity θ j+1/2 ≈ 0 and Φ(0) = 0. TVD flux limiters must be used in order to
have a TVD scheme. Among the most common TVD limiters are the van Leer one, defined by

Φ(θ) = θ+|θ|
1+|θ| , (3.58)

and the superbee, defined by

Φ(θ) = max(0,min(1,2θ),min(2,θ)). (3.59)

Again, the two cases with semi-implicit and implicit schemes are compared. The resulting fluxes
are:

• Semi-implicit

F j+1/2 = cn
j un+1

w, j +Φ(θn
j+1/2)

1

2
un+1

w, j

(
1− ∆t

∆x
un+1

w, j

)
(cn

j+1 − cn
j ), (3.60)

• Implicit

F j+1/2 = F n+1
j+1/2 = cn+1

j un+1
w, j +Φ(θn+1

j+1/2)
1

2
un+1

w, j

(
1− ∆t

∆x
un+1

w, j

)
(cn+1

j+1 − cn+1
j ). (3.61)

While the semi-implicit method is linear in cn+1
j , the implicit method results in a non-linear scheme

in cn+1
j , so that Newton’s method has to be used to solve the non-linear system.
Simulation results using a van Leer limiter are shown in figures 3.15-3.16. The semi-implicit

high-resolution scheme performs best, strongly reducing the numerical diffusion. As mentioned
before, when using a non-fully implicit flux, restrictions on the time step are needed in order to
preserve monotonicity. The implicit scheme has the advantage of being unconditionally stable and
monotone, but the numerical diffusion smears out the solution even with higher order fluxes. More-
over, due to the non-linearity, this scheme is more expensive. Overall, given the efficiency in term of
accuracy and computation time, the semi-implicit high resolution scheme should be preferred over
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the implicit one. The method is TVD, so it is stable provided that the CFL condition holds. Using
the method of frozen coefficients and Von Neumann analysis [10], a local stability criterion for the
transport equation in the form of CFL condition is found to be

CT = ∆t

∆x
|vmax | = max

Sw

∣∣∣∣ ∆t

φ∆x

uw (Sw )

Sw

∣∣∣∣≤ 1, (3.62)

where vmax is the maximum wave speed encountered and CT is the Courant number. If the restric-
tion on the time step becomes too strict, it is safer to switch to the implicit scheme.
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Figure 3.15: Saturation and concentration profiles for
exact and numerical solutions, with 100 cells and 100
time steps and high resolution methods.
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Figure 3.16: Saturation and concentration profiles for
exact and numerical solutions, with 500 cells and 500
time steps and high resolution methods.

3.4.3. Numerical Methods for Polymer Flooding
Adding polymer to the injected water will influence chemical and physical properties of the fluid.
In this case, continuity equation for water saturation and polymer concentration are coupled. The
MRST simulator solves the equations simultaneously with a fully implicit first order upwind method.
This approach result in the following scheme

Sn+1
o, j = Sn

o, j − ∆t
φ∆x

(
uo(Sn+1

o, j ,cn+1
j )−uo(Sn+1

o, j−1,cn+1
j−1 )

)
,

Sn+1
w, j = Sn

w, j − ∆t
φ∆x

(
uw (Sn+1

w, j ,cn+1
j )−uw (Sn+1

w, j−1,cn+1
j−1 )

)
,

(cSw )n+1
j = (cSw )n

j − ∆t
φ∆x

(
cn+1

j uw (Sn+1
w, j ,cn+1

j )− cn+1
j−1 uw (Sn+1

w, j−1,cn+1
j−1 )

)
.

Although it has the advantage to be a more stable scheme, accuracy is low due to the first order
upwind fluxes, and the non linearities in both Sw and c makes it computationally expensive. For this
reason, an alternative sequential approach has been proposed [10]: the flow equations are solved
implicitly using the value of concentration at time level n and subsequently the polymer continuity
equation is solved using the updated value of Sw . The scheme reads:

1. Compute Sn+1
w using cn and the fully implicit solver: Sn+1

o, j = Sn
o, j − ∆t

φ∆x

(
uo(Sn+1

o, j ,cn
j )−uo(Sn+1

o, j−1,cn
j−1)

)
Sn+1

w, j = Sn
w, j − ∆t

φ∆x

(
uw (Sn+1

w, j ,cn
j )−uw (Sn+1

w, j−1,cn
j−1)

)
.

2. Compute cn+1 using Sn+1
w

(cSw )n+1
j = (cSw )n

j −
∆t

φ∆x

(
F j+1/2(Sn+1

w ,cn ,cn+1)−F j−1/2(Sn+1
w ,cn ,cn+1)

)
.
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In order to complete the scheme, an expression for the fluxes F j±1/2 must be selected. Given the dis-
cussion of the previous section, the two first order upwind (3.55)-(3.56) and the two high-resolution
methods (3.60)-(3.61) are compared. Note that in this case the water velocity is evaluated as un+1

w, j =
uw (Sn+1

w, j ,cn
j ), so technically the implicit scheme is not fully implicit.

Results are shown in figures 3.17 and 3.18. Again, the semi-implicit scheme seems to perform
best in term of accuracy, while the implicit scheme smears the water saturation profile at the poly-
mer front and the concentration profile.

A stability criterion for the semi-implicit scheme can be found via Von Neumann analysis [10],
giving the necessary condition

Cp = max
Sw ,c

∣∣∣∣ ∆t

φ∆x

uw (Sw ,c)

Sw

∣∣∣∣= max
Sw ,c

∣∣∣∣∆t

∆x

uT

φ

fw (Sw ,c)

Sw

∣∣∣∣≤ 1. (3.63)

Since the fractional flow curve shifts to the right when polymer is added to water, the above maxi-
mum is attained at c = 0, so that condition (3.63) is equivalent to (3.62).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exact
Semi-implicit
Implicit

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exact
Semi-implicit
Implicit

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exact
Semi-implicit
Implicit

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exact
Semi-implicit
Implicit

Figure 3.17: Saturation and concentration profiles for exact and numerical solutions, with first order upwind methods
and 100 cells, 100 time steps (above) and 400 cells, 400 time steps (bottom).
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Figure 3.18: Saturation and concentration profiles for exact and numerical solutions, with high-resolution methods and
100 cells, 100 time steps (above) and 400 cells, 400 time steps (bottom).



4
Velocity Enhancement in Polymer Flooding

The models introduced in chapter 4 for polymer flooding are rather qualitative and disregard many
physical and chemical properties of rock, fluid and their interaction. Although they are useful to
gain insights on the behaviour of the floods, these models should be refined to achieve more re-
alistic simulations. Modeling further physical phenomena may quickly lead to complexities in the
analytical model, requiring numerical methods to be very accurate and computationally efficient.
According to Dawson et al. [15], adsorption of polymer molecules onto the rock plays an important
role in polymer flooding, causing a delay of the polymer effluent profile. The resulting water bank
will be gradually denuded of polymer, depending on the nature of the polymer and reservoir rock.
Therefore, adsorption should be included in any realistic mathematical model. However, the effect
that will be investigated in this chapter, studied previously for instance in [15], [9], [2], is the ve-
locity enhancement effect (also referred to as hydrodynamic acceleration) due to inaccessible and
excluded pore volume (IPV and EPV, respectively). Since the polymer’s molecules have a larger size,
they may not access the smallest pores of the rock (IPV) and they may be excluded from the layer
close to the wall of the pore channels (EPV), where velocities are lower. These combined effects re-
sult in a macroscopic velocity enhancement of the polymer’s molecules. In some experiments, the
polymer is observed to travel faster than the water in which it is dissolved [22], meaning that IPV
and EPV effects overwhelm adsorption and other polymer retention mechanisms. One may won-
der if the velocity enhancement will cause an accumulation of polymer at the water/oil interface,
especially when the flood is performed in secondary mode (i.e. when water in the reservoir is at
the irreducible saturation). Experimentally, a pile-up effect at the front has not been investigated
exhaustively and there is no clear evidence of a raise in polymer concentration. Mathematically,
the classic approach adopted in the literature to model enhancement effects leads to a peak in the
polymer concentration at the water front [4], [21], [10]. A formal analysis of the analytical model
carried out by Bartelds et al. [4] reveals that the resulting system of PDEs is not strictly hyperbolic,
but contains elliptic regions that cause instabilities in the numerical simulations. Therefore, alter-
native models are proposed in [4] and by Hilden et al. [21]. Although the numerical simulations
presented in these papers show more stable results and no accumulation effects, it is not clear if
this will always be the case, and no analytical solutions have been computed. Hence, in the cur-
rent research we focus on a detailed study of the velocity enhancement models and the respective
analytical solutions. The goal is to discuss thoroughly and fully understand the consequences that
an enhancement term will produce on the water saturation and polymer concentration profiles, so
that the model can be adjusted suitably to catch the properties of a certain reservoir.

31
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4.1. Inaccessible and Excluded Pore Volume
It was first observed experimentally by Dawson et al. [15] that polymer molecules are transported
through the porous media faster than those of an inert tracer. They explained this by introducing
the Inaccessible Pore Volume theory. The physical interpretation was that the polymer’s molecules,
due to their larger size, cannot enter the smallest pores of the rock (the ones whose size is smaller
than polymer’s molecules). Since the polymer flows through larger pores, it tends to move ahead,
resulting in an acceleration effect. The result of the original experiments demonstrating the IPV ef-
fect is shown in figure 4.1, where polyacrylamide is employed in a Berea sandstone. The polymer’s
effluent concentration profile anticipates the one of salt. Dawson and Lantz worked then on several
experiments where they managed to combine adsorption and IPV effects, to see how the concen-
tration profile would look depending on which factor is dominating the polymer’s flow. Results are
illustrated in figure 4.2. We see that in absence of adsorption, the acceleration effect becomes more
evident. They concluded that IPV has a beneficial effect on field performance as it contrasts adsorp-
tion, so that polymer response will be seen sooner than expected at the production well. In addition,
they stated that mathematical models and fields predictions developed without including IPV and
adsorption effects will be in error. They did not mention any accumulation effect of the polymer at
the front.

An alternative physical interpretation of the velocity enhancement effect, known as Excluded
Pore Volume, has been given later (see [9], [2] and literature referenced there). Polymer molecules,
once more due to their larger size, are excluded from a layer close to the pore wall. The polymer
tends then to travel at the center of the pore throats. Since the streamlines away from the wall
are associated with higher velocities, the polymer winds up travelling faster than an inert tracer.
The overall velocity enhancement effect is due to a combination of IPV and EPV. At low permeabil-
ities (≤ 100 md), hydrodynamic acceleration is mainly due to IPV, while at higher permeabilities
(≥ 500 md) the effect is primarily caused by EPV.

Although it is well established that polymer will flow faster than an inert tracer, there is more
uncertainty concerning whether it will accumulate at the water/oil interface. Experimental results

Figure 4.1: Experimental concentration profiles for polymer (polyacrylamide) and salt. The amount of fluid injected is
measured in pore volume (PV ), with PV = 1 being the total pore volume of the rock sample. From [15].
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Figure 4.2: Breakout curves for various combination of IPV and adsorption. From [15].

from the literature do not clearly catch a pile-up of polymer, but these experiments are not specifi-
cally designed to measure this phenomenon. The typical experimental setup consists of a core (i.e.
a rock sample) that has been previously flushed with water before injecting the polymer solution.
In this case, the oil is approximately at the residual oil saturation and there is a significant amount
of water ahead of the polymer front. The polymer will thus be able to invade this bulk of water, so
that no accumulation is measured. We are instead more interested in a core filled with oil, where
water is at the connate (or irreducible) water saturation. In this situation, there will be less water
to invade for the polymer, so there might be a chance to observe an accumulation of polymer at
the front. Experiments carried out in these conditions are though more focused on measuring oil
recovery rather than the propagation of polymer concentration within the core. In the PhD the-
sis of Bartelds [2], they aim to measure a peak in polymer concentration at the front, but results
are not entirely reliable: concentration is measured to be up to 8-10 times initial concentration (in
some cases even more), while there is no measure of a local increase in viscosity1. Moreover, the
methods they use to measure concentration (UV measurement) may not be appropriate, leading to
considerable experimental errors. When they employ a different method (TOC), the peak in poly-
mer concentration is much lower. For these reasons, we do not consider these results to constitute
a sufficient experimental evidence to state that polymer will accumulate at the water/oil interface.

The reason why polymer may not accumulate even when the flooding is performed in secondary
mode, is that a non negligible amount of water free of polymer is commonly seen to precede the

1Viscosity is an increasing function of polymer concentration, meaning that a significant difference in viscosity values
should be observed as well.
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polymer solution. The water bank free of polymer originates because polymer dilutes into connate
water. This water bank is also predicted by the extended fractional flow theory (in the case of no ad-
sorption and no hydrodynamic acceleration), see previous chapter. This is a crucial fact to consider
when studying the velocity enhancement effect: it suggests that polymer does not accumulate at
the front, but rather invades the available water ahead. As a consequence, the water that has been
invaded by the polymer will suffer from an alteration of its flow properties (i.e. mobility), so that the
overall result is that the velocity of the water-polymer front becomes higher than the case without
hydrodynamic acceleration.

The chemical nature of the polymer is also playing a role: molecule interactions are an impor-
tant factor that could influence the hydrodynamic acceleration and, especially, the accumulation
effect. The structure of a synthetic polymer such HPAM is most likely not going to allow for an
accumulation: polymer molecules form a chain, so that a local raise in the concentration is not
expected. Bio-polymer structure would be more keen to allow for polymer accumulation, but the
pile-up should be restricted to a slight increase of injected concentration [11].

The above considerations show the many difficulties and uncertainties related to the velocity
enhancement effect. Deriving an accurate model is thus a complex task and many commercial
simulators insert simply a constant factor in the governing equations to take into account the hy-
drodynamic acceleration. Typically, the magnitude of the velocity enhancement factor is such that
the polymer travels at velocities up to about 20% faster than inert tracer species. When velocity
enhancement effects are observed, they may be caused by a combination of IPV and EPV. More ex-
perimental results on the velocity enhancement and its relation to other reservoir properties can be
found in [22].

If the velocity enhancement effect is simply modeled mathematically by a constant factor α,
essentially both IPV and EPV effects discussed above are included. A constant velocity enhance-
ment factor may though lead to an unphysical peak of polymer concentration at the water front.
Bartelds [4] showed that using a constant α results in an ill-posed problem. Refined model for the
factor α are then necessary to get rid of unphysical behaviours. At this point, IPV and EPV may be
modeled differently, since they have distinct physical interpretations. Typically, the EPV effect is
preponderant over IPV, but it is also more difficult to model. Bartelds proposed a model for the IPV
effect using a percolation approach; the same approach is used also in [2] to model EPV. Hilden et
al. [21] extended then the IPV model of Bartelds. These models will be presented and discussed in
this chapter.

4.2. Models for the Velocity Enhancement Factor
Given the influence of IPV and EPV effects on the polymer flood, models for the velocity enhance-
ment factor α are needed in order to perform more realistic simulations. Following the approach of
Bartelds [4], the velocity enhancement factor is defined as the ratio between the average interstitial
velocities of polymer and water, namely

α= 〈vp〉
〈vw 〉 . (4.1)

4.2.1. Constant Velocity Enhancement Factor
In first approximation, one may employ a constant value for α. Introducing the effective porosity
φp for the polymer and using Darcy’s velocities, (4.1) takes the form

α= vp

vw
= uw /φp

uw /φ
= φ

φp
> 1. (4.2)

In this section results from Bartelds [4], showing that this choice for α leads to an ill-posed problem
when dispersive effects are ignored, will be presented. We will investigate the consequences which
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the velocity enhancement factor cause on the governing equations, in particular on the character-
istic velocities of the system.

In chapter 3, conservation equations for both water and polymer were derived in a fractional
flow formulation. Adding to this model a constant velocity enhancement factorα> 1, the governing
equations become

φ
∂Sw

∂t
+u

∂ fw

∂x
= 0, (4.3)

φ
∂cSw

∂t
+αu

∂c fw

∂x
= 0. (4.4)

Here, we have omitted an adsorption term that is instead included in Bartelds governing equations.
The adsorption term delays the polymer front, but plays no relevant role in the study of the IPV
effect and its relation to well-posedness, so it will not be considered now. The fractional flow fw is a
function of water saturation and polymer concentration such that

∂ fw

∂c
< 0,

∂ fw

∂Sw
≥ 0. (4.5)

We aim to study how IPV/EPV affect the velocity of the polymer front. It will be shown below
that the enhancement term does not simply increase the velocity of the polymer front, given by
λp in (3.40) when α = 1, but that the issue is more subtle. Expanding derivatives, equation (4.4)
becomes

c

(
φ
∂Sw

∂t
+αu

∂ fw

∂x

)
+φSw

∂c

∂t
+αu fw

∂c

∂x
= 0.

Using equation (4.3), the expression above takes the form

u(α−1)c
∂ fw

∂x
+φSw

∂c

∂t
+αu fw

∂c

∂x
= 0. (4.6)

Note that if α = 1 (no IPV/EPV), we recover (3.37) and, in particular, the first term where the
concentration c appears explicitly cancels. This is the term in which the ill-posedness of the model
is hidden. Lake [11] uses the approximation c ≈ 0, so that the velocity of the polymer front results in

λp = u

φ

α fw

Sw
. (4.7)

Since α > 1, the claim is that the factor accelerates the polymer front, and a solution can be found
through the Buckley-Leverett construction presented in chapter 3, with (4.7) as the polymer char-
acteristic velocity. However, this approach is not formally correct, because the equations rewritten
in quasi-linear form with the assumption c ≈ 0 are clearly not equivalent to (4.3)-(4.4). Even if (4.7)
might be a good approximation for the polymer characteristic velocity, the manipulations used to
obtain it ignore the fact that the nature of the mathematical model has changed. In fact, we are not
even guaranteed that characteristic velocities are well-defined.

Before delving in the formal analysis of the system of PDEs with a constant enhancement model,
we remark that the approximation c ≈ 0 may be an acceptable physical assumption to understand
the implications of IPV/EPV on the flow model, but it is a crucial fact for stability. Numerical schemes
are developed based on the equations in conservation form, meaning that the term depending ex-
plicitly on c has not been neglected. The consequence is that the numerical algorithm is solving
another set of equations and, due to the ill-posedness of the model that will be addressed below,
simulations result in an uncontrolled peak in polymer concentration at the polymer front, as it is
shown in figure 4.3. Furthermore, note that the polymer accumulates at the second water shock: a
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Figure 4.3: Saturation and concentration profiles obtained with implicit first order upwind schemes, 400 cells and
timesteps, α= 1.1 (left) and α= 1.3 (right).

bulk of water free of polymer is flowing ahead of this front. We have not found a physical explana-
tion that could justify why the polymer would not invade this water bank, so we classify this pile-up
as unphysical. To summarize, introducing a (constant) velocity enhancement parameter has deeper
consequences on the mathematical model and it does not simply accelerate the speed of the poly-
mer front, as stated in the literature [11], [9].

A more precise mathematical analysis of the model has been carried out by Bartelds [4]. Bartelds
shows that the model is not strictly hyperbolic, but there is an elliptic region that the solution must
cross which leads to stability issues.

Since fw = fw (Sw ,c), we expand

∂ fw

∂x
= ∂ fw

∂Sw

∂Sw

∂x
+ ∂ fw

∂c

∂c

∂x

and substitute in equations (4.3) and (4.6). Thus, the quasi-linear system rewritten in matrix form is

∂

∂t

(
Sw

c

)
+ A

∂

∂x

(
Sw

c

)
=

(
0
0

)
, (4.8)

where

A = u

φ


∂ fw

∂Sw

∂ fw

∂c

(α−1)c ∂ fw

∂Sw

Sw

α fw + (α−1)c ∂ fw

∂c

Sw

 . (4.9)

The nature of the system can be determined by computing the eigenvalues of A. In order to have
a strictly hyperbolic system, the two eigenvalues must be real and distinct for all values of Sw and
c. Note that, when no IPV/EPV effects are taken into account (i.e. α = 1), the matrix of the system
(4.9) is upper triangular. Using the approximation c = 0 would also result in an upper-triangular
matrix, so that the eigenvalues lie on the diagonal and correspond to the characteristic velocities
of water and polymer. In particular, they would be real (and positive), so that the problem would
result well-posed. This is the reason why sometimes in the literature a Buckley-Leverett solution
is computed even when considering the enhancement effect, but, as we remarked previously, the
underlying equations are not equivalent to the conservation equations (4.3)-(4.4).
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An additional remark could be helpful: in the literature, when computing the characteristic ve-
locity for water saturation, sometimes the term ∂ fw /∂c is not considered because the polymer con-
centration is assumed to be constant before (c = 0) and after (c = c̄) the shock. This simplification
has no impact when α= 1, since in this case the eigenvalues are the diagonal entries of the matrix.
When α> 1, the term ∂ fw /∂c has to be accounted for, since it will affect the eigenvalues of A. This
means that the velocity enhancement has an impact not only on the speed of the polymer front, but
it will affect also the characteristic velocity of water.

These remarks show how the velocity enhancement model changes deeply the nature and be-
haviour of the system. In particular, the eigenvalues of A are not always real, meaning that the
system has an elliptic region. Fourier analysis shows that the system is unstable in these regions
(see for instance [3]), so that the model is ill-posed. To show that the eigenvalues are complex for
some values of (Sw ,c), consider the discriminant of the quadratic equation

det (A−λI ) = 0, (4.10)

as done by Bartelds. The discriminant is given by

D =
(

u

φ

)2
(

∂ fw

∂Sw
− α fw + (α−1)c ∂ fw

∂c

Sw

)2

+4

∂ fw

∂c

(α−1)c ∂ fw

∂Sw

Sw

 . (4.11)

First, consider the case where α = 1 (no velocity enhancement effect). As discussed above and
within the fractional flow theory in chapter 3, at the polymer front the characteristic velocities of
water and polymer are equal, giving

∂ fw

∂Sw
= fw

Sw
. (4.12)

Since it is reasonable to assume that ill-posedness of the model would cause problems close to the
shock, we study expression (4.11) for the discriminant when (4.12) holds, showing that, in general,
the eigenvalues are not real. Define then the region H to be the set of all pairs (Sw ,c) where the two
eigenvalues are equal for α= 1, i.e. where (4.12) holds:

H =
{

(Sw ,c)

∣∣∣∣ ∂ fw

∂Sw
= fw

Sw

}
. (4.13)

Setting α= 1+ε, for (Sw ,c) ∈ H the expression for the discriminant is

D =
(

u

φ

)2 [
ε

Sw

(
ε

Sw

(
c
∂ fw

∂c
+ fw

)2

+4c
∂ fw

∂c

∂ fw

∂Sw

)]
. (4.14)

Since ε may be chosen arbitrarily small, the second term of (4.14) dominates and, due to (4.5), the
discriminant is negative. This means that the eigenvalues are complex and there exists an elliptic re-
gion around the set H : the model is ill-posed. A plot of the discriminant for a fixed value of c and the
elliptic region where D < 0 are shown in figures 4.4 and 4.5. We see that the discriminant is negative
for a range of saturation values that correspond to the ones on the left of the water-polymer shock.
Note that the two initial states (Swi r ,0) and (1−Sor , c̄) of the Riemann problem lie on different sides
of the elliptic region, so that the solution has to cross this region. Thus, numerical solutions result
in uncontrolled and unphysical peaks at the polymer front. The velocity enhancement appears to
have a double effect: it speeds up the polymer front, but at the same time the model is no more hy-
perbolic, so it cannot be treated as such by studying characteristic velocities. An alternative model
for the velocity enhancement is needed to ensure a hyperbolic behavior.
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Figure 4.4: Discriminant (4.11) for a fixed value of con-
centration (c = c̄) and α= 1.3.
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Figure 4.5: Solution in the phase plane (in blue) and
elliptic region where D < 0 (dotted points), with α =
1.3.

4.2.2. Percolation Model for IPV
In order to improve the model and get rid of instabilities, Bartelds [4] proposed a model of the ve-
locity enhancement factor based on percolation theory. Percolation theory describes through sta-
tistical means the morphology of, and transport through, randomly disordered media. We restrict
now the discussion exclusively to the IPV effect. Extension to EPV effect is studied by Bartelds in [2];
a brief discussion of this model will be carried out later in this chapter.

To use a percolation-type description, the polymer flood is seen as a three-phase flow. These
phases are:

1. Water which cannot contain polymer, with saturation denoted by Sw1.

2. Water which may potentially contain polymer, with saturation denoted by Sw2.

3. Oil without polymer, with saturation So .

Polymer is restricted to water phase 2, while exchange of water molecules between phase 1 and
2 is allowed. It is assumed further that there is local equilibrium in the polymer concentration,
meaning that there is instantaneous diffusion of polymer molecules between movable water and
the part of connate water which is accessible to polymer.

Percolation theory is used to model networks that consist of branches and nodes. The basic idea
used to apply a percolation approach is that the smallest pores do not contain polymer molecules
(IPV), thus polymer is excluded from the pores with radius smaller than a threshold value ri pv . The
accessible pores for the polymer are then the ones with radius r > ri pv . Figure 4.6 illustrates an
example of a probability density function P (r ) describing the distribution of pores radii. This prob-
ability density function gives the fractional volume occupied by pores with radius belonging to a
certain interval.

In a water-wet reservoir, water prefers to enter pores in a sequence of increasing radius. This
means that all the pores with r < ri pv have to be filled with water before polymer is allowed to enter
the porous medium. The threshold water saturation needed to fulfill this condition is denoted by
Si pv and it is assumed to be lower than the irreducible water saturation, i.e. Si pv < Swi r

2. The water

2The assumption of Bartelds is actually Si pv < Swc , but it is also assumed that the connate water is immobile. This fact
was noticed by Hilden et al. [21], who then concluded that in Bartelds Swc = Swi r . For the purpose of comparison, here
we use the irreducible water saturation.
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Water
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Figure 4.6: Illustrative example of a probability distribution showing the threshold radius and the three different phases.

phase 1 where polymer is not allowed corresponds then to the area of P (r ) with r < ri pv . The asso-
ciated saturation is Sw1 = Si pv . The water phase 2 correspond to the area where ri pv < r < rw , and
its saturation is Sw2 = Sw −Si pv .

Model equations for the three phase flow read

φ
∂Sw1

∂t
+ ∂uw1

∂x
= R, (4.15)

φ
∂Sw2

∂t
+ ∂uw2

∂x
=−R, (4.16)

φ
∂cw2Sw2

∂t
+ ∂cw2uw2

∂x
= 0, (4.17)

where R denotes the net transfer rate of water molecules from phase 1 to phase 2. It is convenient
to introduce the average polymer concentration c in the total water phase,

c = cw2Sw2

Sw1 +Sw2
. (4.18)

The velocity enhancement factor can be expressed as

α= vp

vw
= vw2

vw
= uw2

Sw2

Sw

uw
= uw2

uw1 +uw2

Sw1 +Sw2

Sw2
. (4.19)

Since it assumed that Sw1 = Si pv < Swi r , ∂Sw1/∂t is zero and water phase 1 is unable to flow, giving
uw1 = 0. It follows that the transfer rate R is zero: no water is exchanged between phase 1 and phase
2. Using Sw1 = Si pv and Sw2 = Sw −Si pv in (4.19), the velocity enhancement factor becomes

α(Sw ) = Sw

Sw −Si pv
. (4.20)

Thus, in this model, the velocity enhancement factor is no longer constant, but it depends on the
water saturation Sw . Near the irreducible water saturation the factor has higher values, and it de-
creases to an almost constant value as water saturation increases, see figure 4.7. This follows di-
rectly from the assumption that, in a water wet reservoir, water invades smallest pores first: at low
water saturation values, the IPV will consist of a considerable fraction of the occupied volume, so
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Figure 4.7: Velocity enhancement factor (4.20) proposed by Bartelds, for Swi r = 0.15 and Si pv = 0.1.

that polymer has access to a small part of the occupied space and thus travels faster. It will be
shown later that the decreasing property of this model is a key fact when proving well-posedness
and monotonicity of the concentration profile.

Using (4.20), the average polymer concentration can be written as

c = cw2

α
. (4.21)

Rewriting the conservation equations in fractional flow formulation (uw = fw u) and using (4.21)
and (4.20), the final governing system is

φ
∂Sw

∂t
+u

∂ fw

∂x
= 0, (4.22)

φ
∂cSw

∂t
+u

∂αc fw

∂x
= 0. (4.23)

To study the well-posedness, the same approach as with the constant velocity enhancement
factor is followed. Governing equations are rewritten in the quasi-linear matrix-vector form

∂

∂t

(
Sw

c

)
+ A

∂

∂x

(
Sw

c

)
, (4.24)

where the matrix A is given by

A = u

φ


∂ fw

∂Sw

∂ fw

∂c
dα

dSw
c fw + (α−1)c ∂ fw

∂Sw

Sw

α fw + (α−1)c ∂ fw

∂c

Sw

 . (4.25)

Again, the purpose is to show that the eigenvalues of A are real by analyzing the discriminant of the
characteristic equation. Note that in the lower-left entry there is now the term dα/dSw ≤ 0. The
discriminant D takes the form

D =
(

u

φ

)2
(

∂ fw

∂Sw
− α fw + (α−1)c ∂ fw

∂c

Sw

)2

+4

∂ fw

∂c

dα
dSw

c fw + (α−1)c ∂ fw

∂Sw

Sw

 . (4.26)



4.2. Models for the Velocity Enhancement Factor 41

Here we see why the velocity enhancement factor must be decreasing (at least in the key interval
where D < 0 in the constant α case) in order to achieve well-posedness: we must have D ≥ 0 and,
since ∂ fw /∂c ≤ 0, a positive term has now been added to the first order part of D . Using

dα

dSw
=−α(α−1)

Sw
, (4.27)

after some tedious manipulations, the expression for the discriminant becomes

D =
(

u

φ

)2
(
∂ fw

∂Sw
− α fw − (α−1)c ∂ fw

∂c

Sw

)2

, (4.28)

and it follows that the discriminant is nonnegative and there are no elliptic regions. Bartelds claims
then that the model is strictly hyperbolic, but there is no guarantee that the discriminant (4.28) is
always nonzero. Hence, we can only conclude that the model is hyperbolic. It must be remarked
that this model is valid under the assumption Si pv < Swi r . This restriction is though claimed to be
acceptable since a commonly observed value for the enhancement isα≈ 1.1, which corresponds, at
the residual oil saturation Sw = 1−Sor = 0.8, to a threshold saturation Si pv ≈ 0.07. Most reservoirs
have a value of irreducible water saturation larger than 0.1, so that assuming Si pv < Swi r is reason-
able. In addition, we remark that this restriction ensures also that division by zero in (4.20) does not
occur. Caution must though be exercised when Si pv is close to Swi r , since numerical difficulties
may arise. In [10], this fact has been overlooked and it is stated that, in absence of adsorption, no
restriction is needed on the value of Si pv , but this is not the case.

Using the same test problem of the previous section, where a constant velocity enhancement
factor caused a peak in the concentration at the polymer front, results of the new model are shown
in figure 4.9. The peak now is absent and there is no polymer accumulation at the front. It is also
interesting to observe that the (normalized) polymer concentration on the left boundary jumps im-
mediately to a value lower than 1. Moreover, the concentration has now a decreasing profile.

Conclusions of Bartelds are that a constant velocity enhancement factor leads to an ill-posed
model and causes an unlimited pile-up of the polymer at the polymer front. Retardation effects like
adsorption play no role in the well-posedness of the model, as they result in a slowdown of the poly-
mer front and do not affect the concentration profile’s shape. The height of the peak for constant
α is unbounded and depends on the grid spacing used in the simulation, highlighting the ill-posed
behaviour of the model. Moreover, the constant velocity factor model does not have a clear physi-
cal counterpart and it is just a convenient mathematical model. The saturation-dependent model
for the velocity enhancement factor presented by Bartelds is built on a clear physical concept and
the resulting equations are shown to be well-posed (without elliptic regions). The model proposed
takes into consideration only IPV effects. Other mechanisms, such as EPV, may be incorporated in
the governing equations as well. As discussed previously, pile-up of the polymer is not necessarily
unphysical, but it is unlikely to occur, especially when there is a water bank free of polymer ahead.
Hence, we would be satisfied to have a stable model even if it does not allow polymer accumula-
tion. However, no further analytical considerations have been carried out by Bartelds, so we have
no guarantee that the concentration profile will always be monotone. This fact motivates us to in-
vestigate further the model of Bartelds, and possibly find an analytical solution.

Following the same ideas as for the simpler case when no IPV effects are taken into account, we
compute now an analytical solution for the system of equations (4.22)-(4.23), employing the satu-
ration dependent model (4.20) for α(Sw ). Since it has been shown that the model is hyperbolic, we
compute the eigenvalues, the respective eigenvectors and determine the nature of the water and
polymer fields (linearly degenerate or genuinely nonlinear). Having already computed the discrim-
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Figure 4.8: Discriminant (4.26) for a fixed value of con-
centration (c = c̄) and Si pv = 0.1.
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Figure 4.9: Saturation and concentration profiles ob-
tained with implicit first order upwind schemes, 400
cells and timesteps, Si pv = 0.1.

inant in (4.28), the eigenvalues are given by

λw,p = u

2φ

(
∂ fw

∂Sw
+ α fw + (α−1)c ∂ fw

∂c

Sw

)
± 1

2

√√√√√(
u

φ

)2
(
∂ fw

∂Sw
− α fw − (α−1)c ∂ fw

∂c

Sw

)2

. (4.29)

We select the sign in (4.29) that corresponds to water and polymer in such a way that we would
recover the characteristic velocities (3.40) when α= 1. Thus, the characteristic velocities are

λw = u

φ

(
∂ fw

∂Sw
+ (α−1)c

Sw

∂ fw

∂c

)
, (4.30)

λp = u

φ

α fw

Sw
. (4.31)

Note that, since α(Sw ) > 1 and ∂ fw /∂c ≤ 0, the characteristic velocity of polymer is larger than the
case without IPV effects, while the characteristic velocity of water is lower. This fact agrees with the
interpretation that, if polymer travels faster and invades more water ahead, then the invaded water
will suffer from an increase in viscosity and, consequently, a mobility drop.

The eigenvectors of the system are

rw =

 1

(α−1)c

Sw

 , rp =


∂ fw

∂c
α fw

Sw
− ∂ fw

∂Sw

 . (4.32)

The main difference with the respect to the eigenvectors (3.41) where α(Sw ) = 1, is that the second
component of rw is nonzero. The gradients of the eigenvalues are

∇λw = u

φ


∂2 fw

∂S2
w

+ (α−1)c

S

∂2 fw

∂Sw∂c
+ dα

dSw

c

Sw

∂ fw

∂c
− (α−1)c

S2
w

∂ fw

∂c
∂2 fw

∂Sw∂c
+ (α−1)

Sw

∂ fw

∂c
+ (α−1)c

Sw

∂2 fw

∂c2

 , (4.33)

∇λp = u

φ


dα

dSw

fw

Sw
+ α

Sw

∂ fw

∂Sw
− α fw

S2
w

α

Sw

∂ fw

∂c

 . (4.34)
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Computing the inner products, for the polymer field we obtain

∇λp · rp = 0, (4.35)

meaning that the field behaves as a contact discontinuity, as for theα= 1 case. It has been remarked
that in figure 4.9 the profile of polymer concentration is decreasing. This feature must then be a
consequence of the water continuity equation. For the water field,

∇λw · rw = u

φ

(
∂2 fw

∂S2
w

+2
(α−1)c

Sw

∂2 fw

∂Sw∂c
−2

(α−1)c

S2
w

∂ fw

∂c
+ (α−1)2c2

S2
w

∂2 fw

∂c2

)
. (4.36)

Given the complicated analytical expression of (4.36), it is hard to prove that there is no physical
admissible couple (Sw ,c) for which the inner product is zero. We expect a situation similar to the
case without velocity enhancement: there might be a couple for which (4.36) is zero, but this state
is not reached by the solution. Therefore, we assume that the water field is genuinely nonlinear.
Therefore, the rarefaction waves are defined by the system of ODEs

S̃′
w (x/t ) = 1

∇λw · rw
, λw (Sb ,cb) < x/t <λw (Sl ,cl ), (4.37)

c̃ ′(x/t ) = (α−1)c

Sw

1

∇λw · rw
, λw (Sb ,cb) < x/t <λw (Sl ,cl ), (4.38)

where the couple (Sl ,cl ) are the values of saturation and concentration immediately left of the
water-polymer front, while (Sb ,cb) are the values on the left boundary (which may now be differ-
ent from the injected values (1−Sor , c̄)). In order to solve (4.37)-(4.38), we need to determine the
initial condition (S̃w (0), c̃(0)) = (Sb ,cb). The reason why the values on the left boundary change, is
that the water with polymer is injected at rate u, but the polymer will immediately start to flow at a
higher velocity, hence its concentration will decrease. We model this situation by setting a Riemann
problem with discontinuous flux function for the polymer continuity equation:

∂(cSw )

∂t
+u

∂(c fw )

∂x
= 0 for x < 0,

∂(cSw )

∂t
+u

∂(αc fw )

∂x
= 0 for x > 0.

(4.39)

The problem (4.39) is completed by the initial data

Sw (x,0) =
{

1−Sor for x < 0,
Swi r for x > 0,

(4.40)

c(x,0) =
{

c̄ for x < 0,
0 for x > 0.

(4.41)

A jump in the concentration implies that also the fractional flow function fw = fw (Sw ,c) might
be discontinuous, but this will not be the case here. Indeed, a material balance around x = 0 for
water and polymer gives, respectively, fw (1−Sor , c̄) = fw (Sb ,cb),

fw (1−Sor , c̄)c̄ =α(Sb) fw (Sb ,cb)cb .
(4.42)

Since fw (1−Sor , c̄) = 1 for any value of c̄, then the first equation of (4.42) yields Sb = 1−Sor (recall
that the fractional flow function reaches value 1 only for Sw = 1−Sor ). The second equation results
in

cb = c̄

α(1−Sor )
. (4.43)



44 4. Velocity Enhancement in Polymer Flooding

Now that we have computed the initial condition for the ODEs, the next step is to determine the
values of (Sl ,cl ) at which the ODEs must be stopped. These values are precisely the ones for which
the characteristic velocities (4.30) and (4.31) are equal, because the polymer field is still a contact
discontinuity as in the case α = 1. Therefore, the ODEs are solved numerically through a MATLAB
solver, setting an event (λw = λp ) at which the solver must stop. At the front (Sl ,cl ), the polymer
concentration jumps to zero, so we expect a shock in water saturation as well. The same procedure
as in the case disregarding IPV can be adopted to compute the value Sr on the right of the polymer
front and the velocity of the first shock. Rankine-Hugoniot relation at the polymer front gives the
shock velocity

σ2 = u

φ

fw (Sl ,cl )− fw (Sr ,0)

Sl −Sr
. (4.44)

The value of Sr is given by imposing the equality σ2 =λw (Sl ,cl ). If Sr is smaller than the saturation
value S∗ (i.e. the saturation value at the front of a waterflooding), then the velocity of the first pure
water front is

σ1 = u

φ

fw (Sr ,0)− fw (Swi r ,0)

Sr −Swi r
. (4.45)

To summarize, assuming Sr < S∗, the solution to the Riemann problem defined by (4.22), (4.39),
(4.40) and (4.41) is given by

Sw (x, t ) =


1−Sor for x/t < 0,
S̃w (x/t ) for 0 < x/t <λw (Sl ,cl ),
Sr for λw (Sl ,cl ) < x/t <σ1,
Swi r for x/t >σ1,

(4.46)

c(x, t ) =


c̄ for x/t < 0,
c̃(x/t ) for 0 < x/t <λw (Sl ,cl ),
0 for x/t >λw (Sl ,cl ).

(4.47)

In figure 4.10, we depict the graphical method typically used to build the solution for waterflooding
and polymer flooding. Few differences must be remarked when α(Sw ) is incorporated in the gov-
erning equations. First, the rarefaction wave does not follow one specific fractional flow curve, but
will touch all the curves in between the two limiting values of concentration cb , cl . In particular, the
starting point of the rarefaction wave will be on the curve fw (Sw ,cb) (red line) at saturation value
Sw = 1−Sor . The end point will be on the curve fw (Sw ,cl ) (green line) at saturation value Sw = Sl .
Hence, the straight line that connects the two points fw (Sl ,cl ) and fw (Sr ,0) is not tangent to the
curve fw (Sw ,cl ), but rather intersects it in two points. Another interesting observation is that this
line intersect the x-axis at Sw = Si pv , while without velocity enhancement we have seen that the
straight line passes through the origin. This is a consequence of the acceleration provoked in the
polymer front. We can verify analytically: this line is defined by the relations λp = λw = σ2, from
which we have seen the triplet (cl ,Sl ,Sr ) is computed. Therefore, the equation of the line y = y(Sw )
is

y(Sw ) = fw (Sl ,cl )+ fw (Sl ,cl )− fw (Sr ,0)

Sl −Sr︸ ︷︷ ︸
=σ2=λp (Sl ,cl )

(Sw −Sl ). (4.48)

Since λp (Sl ,cl ) has the form (4.31), it is easy to compute the value of Sw for which y(Sw ) = 0:

− fw (Sl ,cl ) = α(Sl ) fw (Sl ,cl )

Sl
(Sw −Sl )

⇐⇒ −Sl =
Sl

Sl −Si pv
(Sw −Sl )

⇐⇒ Sw = Si pv .



4.2. Models for the Velocity Enhancement Factor 45

Solutions for different values of Si pv and different numerical schemes are shown in figures 4.11
and 4.12. The fact that the concentration profile is decreasing as a function of x can be explained,
from a physical point of view, in the following way: since α(Sw ) is a decreasing function of the satu-
ration, and the saturation itself has a decreasing profile, the polymer acceleration keeps increasing
through the reservoir. As a consequence, the polymer molecules keep getting more distant between
each other, and the concentration decreases. This consideration does not mean that every decreas-
ing enhancement factor will result in a monotone profile, because hyperbolicity of the model is
needed in order to study analytical solutions. The value of Si pv strongly affects the velocity of the
fronts: when Si pv → Swi r , the two shocks almost coincide. Hence, the model of Bartelds allows
to speed up the polymer front until the limit case, where there is no more water flowing ahead, is
reached, see figure 4.12. In this sense, the model is quite powerful: being α(Sw ) a continuous func-
tion, all the intermediate states between α= 1 (no enhancement) and the limit case just discussed
can be reached.

While an analytical proof ensuring monotonicity for the concentration seems hard to be found
due to the complicated expressions, the matter will be addressed from a numerical point of view in
chapter 5, working with the discretized equations. It will turn out that monotonicity is strictly related
to well-posedness, and the insights that we will get suggest that the accumulation of polymer at the
front is merely a result of a mathematical ill-posedness, while a well-posed model, related in turn
to a decreasing α(Sw ), results in a decreasing concentration profile. Note that in the case of figure
4.12, there is a slight non-monotonous profile for the concentration computed with semi-implicit
scheme. This issue is numerical, and restrictions on the time step for the semi-implicit scheme will
be addressed in the following chapter.

Since the aim of polymer flooding is to improve oil recovery, in figure 4.13 we depict the oil
production in two cases: one without including IPV effects, and one using Bartelds IPV model. Be-
cause the water-polymer front is accelerated when including IPV, the water breakthrough at the
production well is seen sooner and, initially, the oil recovery is improved. However, the height of the
saturation front (i.e. the value of Sl ) is lower than the case without IPV, so that, once both the water
breakthroughs have reached the production well, the predicted oil recovery becomes lower. This is,
in turn, a consequence of the mass balance principle: the water front travels with the polymer front
and is accelerated as well, hence the value of Sl is lower.
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Figure 4.10: Illustration of the construction of the solution with enhancement factor modeled by (4.20).
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Figure 4.11: Saturation (left) and concentration (right) profiles obtained with implicit and semi-implicit first order upwind
schemes, 1000 cells and timesteps, Si pv = 0.1.
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Figure 4.12: Saturation (left) and concentration (right) profiles obtained with implicit and semi-implicit first order upwind
schemes, 1000 cells and timesteps, Si pv = 0.149. The two shocks in water saturation are barely distinguishable.
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Figure 4.13: Oil production for a case without velocity enhancement (black line) and with velocity enhancement modeled
by Bartelds factor (4.20) and Si pv = 0.1 (red line).
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The percolation model has been extended by Bartelds in [2] to consider the EPV effect as the
major cause of velocity enhancement. The conservation equations are still (4.22) and (4.23), while
the velocity enhancement factor is expressed as

α(Sw ) = Sw kr,w2

Sw2kr,w
, (4.49)

where Sw = Sw1 +Sw2 and the subscripts refer to the three phase model discussed before. The rela-
tive permeabilities kr,w and kr,w2 are determined using a percolation approach. Since this approach
results in a more complex model for the relative permeabilities, which do not have a closed form but
are computed numerically, it is not feasible to determine the well-posedness of the model through
the eigenvalues of the system matrix, as done previously. It must be remarked that the enhance-
ment factor in this alternative models depends also on the polymer concentration, i.e. α=α(Sw ,c).
Numerical plots of α(Sw ,c) presented in [2] show that it decreases with both concentration and wa-
ter saturation. The curve for α(Sw ,c) is though really steep for low saturation values, warning that
a division for a value close to 0 may occur. This fact may cause serious numerical issues that would
further lead to instabilities and unphysical results. Even if it is not possible to compute explicitly
α(Sw ,c) and its derivatives, it is still interesting to see how the matrix A of the system, and hence the
discriminant, change when considering a concentration dependent factor. The matrix A reads

A = u

φ


∂ fw

∂Sw

∂ fw

∂c
∂α
∂Sw

c fw + (α−1)c ∂ fw

∂Sw

Sw

α fw + (α−1)c ∂ fw

∂c + c fw
∂α
∂c

Sw

 . (4.50)

In the lower-right entry, there is now the partial derivative of α(Sw ,c) with respect to the concentra-
tion. The expression for the discriminant then changes to

D =
(

u

φ

)2
(

∂ fw

∂Sw
− α fw + (α−1)c ∂ fw

∂c + c fw
∂α
∂c

Sw

)2

+4

∂ fw

∂c

∂α
∂Sw

c fw + (α−1)c ∂ fw

∂Sw

Sw

 . (4.51)

Since ∂α/∂c appears in the quadratic term of the discriminant (4.51), it is hard to conclude whether
it will help to achieve well-posedness: the term inside brackets can be either positive or negative,
depending on the values of (Sw ,c). If this term is positive, the ∂α/∂c ≤ 0 will contribute to get a
larger quadratic term, contrasting ill-posedness. Viceversa, ∂α/∂c will contribute to ill-posedness
when the sum of the other terms is negative. Since here the eigenvalues cannot be computed as in
the case focusing solely on IPV, the system is not guaranteed to be strictly hyperbolic.

For a detailed discussion of the percolation model, the reader is referred to [2]. A result that
must be outlined is that smooth accumulation of polymer at the front is observed in the numerical
simulations of this model. Given the above discussion, the peak is probably the result of an ill-
posed behaviour of the model rather than a realistic physical state. In addition, a diffusive term has
been added to the governing system of equations to avoid numerical instabilities. This operation
seems more a mathematical artifact to overcome numerical issues and reinforces our idea that the
extended model is not well-posed, although we stress that no formal analysis has been carried out.

Technically, the numerical solutions obtained were qualitatively in good agreement with the
physical experiments, that measured a pile-up of the polymer in [2]. However, it has been discussed
at the beginning of the chapter that experimental measurement of [2] are not entirely reliable. Con-
sidering the experimental unreliability, the complexity of the model for the relative permeabilities
which requires the use of numerical algorithms, the shape of α(Sw ,c), the impossibility to prove
well-posedness and the ambiguous simulations result, we will not adopt this model that includes
EPV, but rather focus on IPV effects only.
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4.2.3. Hilden-Nilsen-Raynaud Model for IPV
The models proposed by Bartelds for IPV seeks and succeeds in solving stability issues related to
the velocity enhancement factor modeling. An analytical solution can be computed, and no peaks
in polymer concentration appears to grow unbounded in the numerical simulations. The model is
though subject to the restriction Si pv < Swi r , where we recall Si pv is some threshold saturation that
must be reached by water before polymer is allowed to be transported through the porous medium.
Since it is not guaranteed that this condition holds for every reservoir, Hilden et al. [21] proposed an
extended model to relax this assumption. Based on an heuristic physical understanding of the rela-
tive permeabilities, an alternative saturation dependent enhancement factor is derived. This model
reduces to the one proposed by Bartelds when Si pv < Swi r . To verify well-posedness, a necessary
condition is proposed by considering shock solutions and hyperbolic laws with discontinuous flux
function (for an introduction to such theory, refer to [5]).

The underlying flow equations adopted by Hilden et al. are again (4.22)-(4.23), but the necessary
condition is derived under some further assumptions. Indeed, the water flow is assumed to be not
affected by the presence of polymer (i.e. fw = fw (Sw ) does not depend on polymer concentration).
In this way, the governing equations become

∂Sw

∂t
+ u

φ

∂ fw (Sw )

∂x
= 0, (4.52)

∂(Sw c)

∂t
+ u

φ

∂

∂x

(
cα(Sw ) fw (Sw )

)= 0, (4.53)

where it is clear that water continuity equation is uncoupled from the polymer one, and hence the
flow can be solved independently. We stress that this assumption is used only to derive the necessary
condition for well-posedness and it is not applied to the governing equations. Defining z = Sw c, a
Riemann problem with values (Sl , zl ) and (Sr , zr ) on, respectively, the right hand side and the left
hand side, is considered. Moreover, the solution to (4.52) is assumed to be a pure shock (which
is of course not true in general, but, since the equation is uncoupled, the value on the left of the
water shock can be computed through the procedure discussed in chapter 3. The focus can then
be devoted to the polymer equation and, in particular, to the behaviour at the water shock). Since
the water saturation solution is discontinuous, the flux function of (4.53) is discontinuous as well.
Polymer continuity equation is then reformulated in a frame moving with the shock velocity given
by the usual Rankine-Hugoniot condition applied to (4.52). In this way, a Riemann problem with
discontinuous flux function centered in the origin is obtained. Through the theory elaborated in
the work of Holden and Risebro [5], several requirements are derived in order to build a solution to
such problem. These requirements lead to the following restriction on the enhancement factor:

α(Sw ) ≤ Sw

Sw −Swi r
. (4.54)

Inequality (4.54) is a necessary condition for well-posedness of the Riemann problem. Note that, in
the model derived by Bartelds, the velocity enhancement factor is

α(Sw ) = Sw

Sw −Si pv
. (4.55)

In the case Si pv < Swi r (which is the restriction imposed by Bartelds model), the necessary condition
for the factor (4.55) is satisfied. On the other hand, if Si pv ≥ Swi r , (4.54) does not hold and the
resulting model is ill-posed. Hilden et al. have shown that, under mild assumptions on the fractional
flow function, condition (4.54) is also sufficient.

Condition (4.54) is adopted to classify the velocity enhancement models as well-posed or ill-
posed. Although the approach followed to derive it is appealing because (4.54) can be verified and
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applied to any model of enhancement (as far as the governing equations are (4.22)-(4.23)), quite
strict assumptions have been made in the problem formulation. We will show that the model of
α(Sw ) proposed by Hilden et al. and reported below, despite fulfilling condition (4.54), will not re-
sult in a well-posed model (in the sense of a strictly hyperbolic model). This fact was overlooked by
the authors probably because the behaviour of numerical simulations is much more stable than the
constant factor model, but concentration profile can still result in a peak at the polymer front when
Si pv > Swi r is chosen.

We present now the main ideas behind the model of α(Sw ) proposed by Hilden et al. [21]. For a
thorough and detailed discussion, the reader is referred to the original paper. The assumption that
will guide the model derivation is that, in a water wet system, water invades smallest pores first. In
these smallest pores, permeability is lower and water travels slower.

Similarly to the percolation model, a distribution function χ(r̂ ) is defined, where r̂ denotes the
radius of a pore. Since permeability is assumed to depend on the pore size, for each r̂ there corre-
sponds a permeability k̂(r̂ ) and the total permeability is given by

k = n
∫ ∞

0
φ̂(r̂ )k̂(r̂ )χ(r̂ )dr̂ , (4.56)

where n is the number of pores in a cross section and the function φ̂ contains the geometric infor-
mation on the structure of this section.

Due to the assumption that pores are filled successively in increasing size, for a given global
saturation Sw there exists a threshold value for the pore size, denoted by r , for which

Ŝw (r̂ ) =
{

1 if r̂ ≤ r,
0 if r̂ > r.

(4.57)

The global water saturation is then defined similarly to (4.56) as

Sw = n

φ

∫ r

0
φ̂(r̂ )χ(r̂ )dr̂ , (4.58)

Polymer is then included in the model. The inaccessible pore volume effect is modeled by defin-
ing a threshold value ri pv such that polymer cannot enter pores with r̂ < ri pv . Polymer concentra-
tion can then be expressed as

ĉ(r̂ ) =
{

0 if r̂ ≤ ri pv ,
c̄ if r̂ > ri pv ,

(4.59)

where it is assumed that in the region r̂ > ri pv the polymer diffuses uniformly and reaches a constant
concentration c̄. An expression for the total polymer concentration is then given by

Sw c = n

φ
c̄
∫ r

ri pv

φ̂(r̂ )χ(r̂ )dr̂ . (4.60)

These expressions for permeability, saturation and concentration are inserted into the governing
equations. An analytical expression for the velocity enhancement factor is found manipulating the
system of equations, but the necessary condition (4.54) is still not fulfilled. Hence, the model has to
be slightly modified.

The idea is then to introduce a weighting function ŵ(r̂ ) and relax the definition of inaccessible
pore volume by allowing a small quantity of polymer to enter the smallest pores as well. The polymer
concentration (4.59) becomes

ĉ(r̂ ) = ŵ(r̂ )c̄, (4.61)
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Figure 4.14: Velocity enhancement factor (4.63) proposed by Hilden et al. (red line) and necessary condition (4.54) (blue
line), for Swi r = 0.15 and Si pv = 0.2.

where

ŵ(r̂ ) =
{
ε/Si pv if r̂ ≤ ri pv ,
1 if r̂ > ri pv .

(4.62)

It is shown by Hilden et al. that an optimal3 value for ε can be found, and the resulting model of the
velocity enhancement factor, namely

α(Sw ) =



(
1− Swi r

Si pv

kr,w (Si pv )

kr,w (Sw )

)
Sw

Sw −Swi r
if Si pv ≥ Swi r and Sw > Si pv ,

Sw

Sw −Si pv
if Si pv < Swi r and Sw > Si pv ,

1 if Sw ≤ Si pv ,

(4.63)

fulfills the necessary condition (4.54). Note that, when Bartelds restriction Si pv < Swi r is complied,
α(Sw ) reduces indeed to Bartelds model. Caution must be used when Si pv ≈ Swi r , because a divi-
sion for a quantity close to zero may lead to numerical issues. Therefore, in the implementation of
these models in MATLAB, we make sure to define a tolerance value δ> 0 such that

|Si pv −Swi r | ≥ δ.

A plot of the enhancement factor defined by (4.63), along with the necessary condition (4.54), is
shown in figure 4.14. Note that there is an initial region where α(Sw ) is increasing. In figure 4.15,
illlustrating the discriminant D for this model, we see that D < 0 for certain Sw , showing that the
model is not hyperbolic for all Sw . It turns out, though, that the loss of hyperbolicity is not due only
to the region whereα(Sw ) is increasing. The discriminant is negative for a range of values of Sw that
are not necessarily associated to the region where α(Sw ) is increasing.

Due to the loss of hyperbolicity, characteristic velocities are not well-defined, and the theory
presented in chapter 2 for the solution of hyperbolic equations cannot be applied here. Hence, we
do not have an analytical solution for the enhancement model proposed by Hilden.

All the numerical solutions presented in [21], obtained with the MRST simulator and an explicit
two-points upwind scheme, result in a decreasing concentration profile for the proposed model

3optimal in the sense that for every smaller value there is a Corey coefficient nw (recall that nw is used in the model of
relative permeabilities (3.2)) such that the necessary condition (4.54) is not fulfilled, and every greater value will allow
more polymer to enter the inaccessible pore volume
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nw no k0
r,w k0

r,o µw µo Swi r Sor

2 2 0.6 0.9 1cP 30cP 0.15 0.25

Table 4.1: Alternative case for the problem parameters, highlighting the instability of numerical solutions.

(4.63). However, we show now numerical simulations where a non-monotonous concentration
profile is obtained. The reference models for relative permeabilities and viscosity are used, but
we change the numerical values of some parameters, because they were seen to emphasize the ill-
posed behaviour of this model. The choice for these values is illustrated in table 4.1. We vary the
value of the inaccessible pore volume saturation Si pv in order to monitor the solution profile when
only the enhancement model is modified. We use implicit first order upwind schemes, so that any
non-monotonous result is most likely due to the analytical model. Results of the simulations are
depicted in figures below.

An interesting fact that must be remarked, is that accumulation of polymer is observed as the
grid is refined. This means that the numerical diffusion introduced by the adopted schemes might
smear the concentration front, disguising the non-monotonicity property and giving misleading
results. Moreover, the solution was observed to be generally more stable than the one where a
constant velocity enhancement is employed, and the accumulation phenomenon is much more
limited. For these reasons, the authors might have overlooked the non-monotonous profile of the
polymer concentration that can arise by implementing the proposed model. It must be remarked
that in the conclusions of [21], the authors state clearly that there is no guarantee that the polymer
concentration will always be monotone, and that a pile-up of polymer was observed in the unphys-
ical case where the connate water saturation is less than the irreducible water saturation.
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Figure 4.15: Discriminant (4.26) for a fixed value of concentration c = c̄, Si pv = 0.2 (left) and Si pv = 0.3 (right).
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Figure 4.16: Saturation (left) and concentration (right) profiles obtained with implicit and semi-implicit first order upwind
schemes, 200 cells and timesteps, Si pv = 0.2.
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Figure 4.17: Saturation (left) and concentration (right) profiles obtained with implicit and semi-implicit first order upwind
schemes, 1000 cells and timesteps, Si pv = 0.2.
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Figure 4.18: Saturation (left) and concentration (right) profiles obtained with implicit and semi-implicit first order upwind
schemes, 200 cells and timesteps, Si pv = 0.3.

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Semi-implicit
Implicit

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

Semi-implicit
Implicit

Figure 4.19: Saturation (left) and concentration (right) profiles obtained with implicit and semi-implicit first order upwind
schemes, 1000 cells and timesteps, Si pv = 0.3.
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4.2.4. Further Remarks on Enhancement Modeling and Conclusions
Several models for the velocity enhancement factor have been proposed. It was shown that a con-
stant factor leads to an ill-posed model and numerical simulations show a peak in polymer con-
centration at the polymer front, therefore this approach should be avoided. This peak grows un-
controlled depending on the grid size adopted for the numerical method. These facts motivate us
to consider more accurate models that can prevent stability issues. A model based on a percola-
tion approach to predict IPV effects was first derived by Bartelds et al. [4], introducing a saturation
dependent enhancement factor. Such model is shown to be well-posed4 and, moreover, we could
compute the analytical solution. However, this model is subject to the restriction that the inaccessi-
ble pore volume saturation must be smaller than the irreducible water saturation. In practical situ-
ations, we are not guaranteed that this will always be the case. Therefore, Hilden et al. [21] proposed
a model that relaxes this restriction. In this model, a small fraction of polymer is allowed to enter the
inaccessible pores. Despite the conclusions reported in the paper were positive that this enhance-
ment factor would lead to a well-posed problem, we have shown that this is not the case, so we will
discard this choice of α(Sw ). Hence, we suggest to adopt the model proposed by Bartelds, even if it
does not seem to allow for any accumulation of polymer (monotonicity of the concentration profile
will be further addressed in the next chapter). In fact, accumulation seems to be strictly related to
ill-posed models, and if the desired output of the model should allow for accumulation, the over-
all modelling approach might need to be reviewed. Even if there are no experimental data that can
support the results of Bartelds model, neither we have found clear measurement of an accumulation
of polymer caused by IPV effects. In the PhD. Thesis [2], Bartelds reported several physical exper-
iments where a higher polymer concentration right after the water breakthrough was observed at
the effluent, but the measurement methods adopted may have caused severe experimental errors,
so we classify these data as unreliable. In this thesis, Bartelds tries to model EPV (excluded pore
volume) effects as well, so a saturation and concentration dependent factor α=α(Sw ,c) was intro-
duced. The model has been briefly discussed previously and we concluded that it will be discarded
in this research.

Introducing a dependency on the concentration could be an interesting idea. A concentration
dependent model could offer an alternative way to prevent (or allow) accumulation of polymer. A
driving idea could be that, if concentration locally grows, it may originate counter forces which will
contrast polymer accumulation. For instance, we would expect viscosity to grow locally with con-
centration. The effect of a local raise in viscosity needs to be understood better. Indeed, viscosity
as a function of polymer concentration is already accounted for in Darcy velocity, and a raise in vis-
cosity will alter the properties of the flow. It is unclear if an increased viscosity would affect directly
the velocity enhancement, raising the question whether it makes sense or not to insert a viscosity
dependency in the enhancement factor. This approach has been undertaken in [12] to model the
enhancement effect in the case of colloids, which have though different chemical properties com-
pared to polymers. Moreover, the equation for the colloid transport is the usual linear advection
equation, so viscosity is not modeled through a Darcy velocity. In addition, we discussed that a
decreasing concentration dependent factor mat not have a beneficial effect on the sign of the dis-
criminant.

Given these uncertainties, we prefer to work with an enhancement factor depending only on
saturation and focusing on IPV effect. The EPV effect is much harder to model: on a macro scale, this
phenomenon appears hard to be captured. Moreover, if we use the assumption of water invading
pores in increasing size, we would imagine that EPV effects increases with water saturation. This fact
would contradict the previous analysis, where it was shown that an enhancement factor decreasing
with saturation is needed to achieve well-posedness.

The model for IPV developed by Bartelds is more suited for porous medium with low permeabil-

4here well-posedness is intended in the sense that the resulting system of governing equations is strictly hyperbolic.
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ity, since we recall that in this case IPV dominates over EPV. Since these models result in monotone
concentration profile, they are also more addressed to model flows in which synthetic polymers are
injected, as a pile-up would be very unlikely to occur. Although the model is subject to the afore-
mentioned restriction, we can think of a way to overcome this limitation. We have seen that the
model proposed by Bartelds allows to reach the limit case where the two shocks in water saturation
basically coincide. The polymer cannot travel any faster, because the water ahead is immobile. As
Hilden et al. tried to overcome this limitation, the model lost the hyperbolicity property. Hence, we
can employ the model of Bartelds transcending the underlying physical motivation and using it in
a bit more abstract way. In fact, the value of Si pv can be adjusted in order to accelerate the polymer
front as much as desired, keeping in mind the restriction Si pv < Swi r . If experimental data concern-
ing the enhancement effect are available for a specific reservoir, the value of Si pv can be selected
in order to properly fit these data. With this interpretation, we can even go beyond the distinction
between IPV and EPV, since both effects are supposed to cause an acceleration of the polymer front.
The chemical composition of the polymer may also affect the enhancement magnitude, so again
the value of Si pv can be chosen consequently. To sum up, the model of Bartelds may be employed
to capture any kind of acceleration effect, independently of the origin of such phenomenon. The
speed of the polymer front can be varied using different quantitative values for Si pv . In particular,
as Si pv increases, the velocity of the front increases as well.

We mention one last mechanism that affects polymer flow through a porous medium and is
usually observed in experimental measurements. The molecules of the injected polymers do not
have all the same size, but are rather distributed within a certain interval. The consequence is that
the bigger molecules are trapped and retained in the porous medium, so that the polymer profile at
the effluent will be more smeared than the tracer’s one when approaching injected concentration,
see for instance results from [16]. This phenomenon is commonly referred to as filtration. However,
filtration is usually treated as a retention term, independent from IPV/EPV effects. Since there is no
clear evidence of how filtration is correlated to hydrodynamic acceleration, we will not include it in
the model.





5
Monotonicity Analysis

As it has been remarked in the previous chapter, the crucial point of the velocity enhancement mod-
eling is to understand whether the peak observed in the polymer concentration right after the sec-
ond shock is a physical prediction that the model aims to capture, or rather the result of a mathe-
matically ill-posed problem. It has been shown that the model proposed by Bartelds is the only one
resulting in a hyperbolic system of equations, while the constant factor and the Hilden et al. models
result in a system with elliptic regions, causing a pile-up of polymer at the front. However, we could
not prove analytically how monotonicity is affected by these regions, nor we could actually guaran-
tee that Bartelds model always gives a monotone solution (although we are quite confident that this
is the case).

The aim of this chapter is to study thoroughly the monotonicity of the numerical solution given
the different models of the enhancement. In particular, we will derive a monotonicity condition for
the discretized equations and relate it to the analytical properties of the models. This approach will
show that monotonicity is not guaranteed for the constant factor and the factor proposed by Hilden
et al., while we will gain insights that support our idea of a monotone solution in the case of Bartelds
factor and, more in general, in the case of a hyperbolic model. Furthermore, restrictions on the time
step will be derived for the semi-implicit scheme, and high-resolution methods will be discussed as
well.

5.1. Monotonicity Analysis for a Constant Factor
We start by studying the monotonicity of the discretized equations using the constant velocity en-
hancement factor model. The sequential approach used to solve for the flow and transport of poly-
mer results in the following scheme:

1. Compute Sn+1
w using cn and the fully implicit solver Sn+1

o, j = Sn
o, j − ∆t

φ∆x

(
uo(Sn+1

o, j ,cn
j )−uo(Sn+1

o, j−1,cn
j−1)

)
Sn+1

w, j = Sn
w, j − ∆t

φ∆x

(
uw (Sn+1

w, j ,cn
j )−uw (Sn+1

w, j−1,cn
j−1)

)
.

2. Compute cn+1 using Sn+1
w

(cSw )n+1
j = (cSw )n

j −
∆t

φ∆x

(
F j+1/2(Sn+1

w ,cn ,cn+1)−F j−1/2(Sn+1
w ,cn ,cn+1)

)
.

Since we address now the problem of monotonicity, we consider first order upwind schemes for
the fluxes to avoid dealing with complicate expressions. To use a lighter notation, the subscript w
in Sw will be omitted in the subsequent. The expressions for the fluxes become

57
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• Semi-implicit:

F j+1/2 =αuw (Sn+1
j ,cn

j )cn
j =αun+1

w, j cn
j ,

• Implicit:

F j+1/2 =αuw (Sn+1
j ,cn

j )cn+1
j =αun+1

w, j cn+1
j .

Note that the implicit flux is not fully implicit, since the velocity is evaluated for the concentration
at time level n.

5.1.1. Semi-implicit Fluxes
In order to perform a local monotonicity analysis, we freeze the concentration at time level n. On
the left of the second shock, it holds cn

j−1 = cn
j = c̄. The discretized equation for polymer becomes

cn+1
j Sn+1

j =
(
Sn

j −
∆tα

φ∆x
(un+1

w, j −un+1
w, j−1)

)
c̄.

Rearranging the equation and substituting the implicit scheme for Sn+1
j gives

cn+1
j =

Sn
j − ∆tα

φ∆x (un+1
w, j −un+1

w, j−1)

Sn
j − ∆t

φ∆x (un+1
w, j −un+1

w, j−1)
c̄.

To have a decreasing concentration profile, the denominator must be greater than the numerator,
hence

Sn
j −

∆t

φ∆x
(un+1

w, j −un+1
w, j−1) ≥ Sn

j −
∆tα

φ∆x
(un+1

w, j −un+1
w, j−1)

⇐⇒ α(un+1
w, j −un+1

w, j−1) ≥ (un+1
w, j −un+1

w, j−1). (5.1)

Since the saturation decreases in space, it holds Sn+1
j−1 ≥ Sn+1

j ∀ j , ∀n. Rewriting uw with the frac-

tional flow function as uw = u fw , we see that it holds un+1
w, j−1 ≥ un+1

w, j because the fractional flow is an
increasing function of the saturation. Hence, the condition (5.1) results in the requirement

α≤ 1,

which is in contrast with the physical modeling assumption α > 1. Therefore, semi-implicit fluxes
for the constant enhancement factor will give a non monotone profile for the concentration.

5.1.2. Implicit Fluxes
The discretized equation employing implicit fluxes becomes

(cS)n+1
j = (cS)n

j −
∆tα

φ∆x

(
un+1

w, j cn+1
j −un+1

w, j−1cn+1
j−1 )

)
.

Since the peak in the concentration is observed to occur close to the shock, assume that cn+1
j−1 =

c̄ = cn
j , so that we can focus on the local behavior of the concentration at cell j and time n + 1.

Rearranging the equation in the following form(
Sn+1

j + ∆tα

φ∆x
un+1

w, j

)
cn+1

j =
(
Sn

j +
∆tα

φ∆x
un+1

w, j−1

)
c̄,
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Figure 5.1: Saturation and concentration profiles obtained with semi-implicit (left) and implicit (right) first order upwind
schemes, 400 cells and timesteps, α= 1.3.

the study of the monotonicity can be carried out as in the previous section. Substituting the implicit
scheme for Sn+1

j , the condition for monotonicity reads

Sn
j −

∆t

φ∆x
(un+1

w, j −un+1
w, j−1)+ ∆tα

φ∆x
un+1

w, j ≥ Sn
j +

∆tα

φ∆x
un+1

w, j−1,

⇐⇒ un+1
w, j−1 −un+1

w, j ≥α(un+1
w, j−1 −un+1

w, j ),

⇐⇒ 1 ≥α,

where we used that un+1
w, j−1 ≥ un+1

w, j . The condition derived to achieve a monotone profile is again in
contrast with the physical meaning of the hydrodynamic acceleration.

Hence, the conclusion is that a constant enhancement factor leads to a non-monotonous nu-
merical solution for both schemes adopted for the fluxes. This result confirms the analytical con-
siderations discussed in the previous chapter and the output of the numerical simulation in figure
5.1. Note that the peak in the concentration becomes more evident with the semi-implicit scheme.

The approach used by Braconnier et al. [1] to study the effect of inaccessible pore volume on
the monotonicity of the numerical solution, where the flow and the transport of polymer are solved
explicitly, leads to similar results.

The MRST simulator uses a constant factor to model the velocity enhancement effect, and it in-
troduces a numerical control parameter cmax to impose a limit on the values of the concentration.
In particular, if cmax = c̄, then no peak will appear in the polymer concentration profile. This sort
of dangerous approach is not recommendable, since it forces the numerical solution to a solution
which is not the one of the governing equation, but rather an artificial one. Moreover, the ill-posed
model is sometimes observed to affect also the water saturation profile, giving an unphysical solu-
tion. Thus, the control parameter cmax might hide the origin of these unphysical results.

5.2. Monotonicity Analysis for a Saturation Dependent Factor
Having proved that using a constant factor will not give a monotone solution, we analyze now how
introducing a dependency on the saturation affects the monotonicity issue. As shown in the previ-
ous chapter, numerical simulations with Bartelds model give smooth and decreasing concentration
profiles, while accumulation of polymer was still observed for Hilden model. We expect to find con-
ditions on the problem parameters and restrictions on the time step that can be fulfilled in order
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to achieve monotonicity. We do not focus now on Bartelds or Hilden model, but rather keep a gen-
eral saturation dependent factor α = α(S). As before, both the semi-implicit and the implicit first
order upwind schemes are studied. Since the sequential approach is used, the enhancement factor
is evaluated at αn+1

j =α(Sn+1
j ).

5.2.1. Semi-implicit Fluxes
Using a semi-implicit scheme and assuming cn

j = cn
j−1 = c̄ on the left of the shock, the discrete equa-

tion for polymer becomes

cn+1
j Sn+1

j =
(
Sn

j −
∆t

φ∆x
(αn+1

j un+1
w, j −αn+1

j−1 un+1
w, j−1)

)
c̄.

Substituting once again the implicit scheme for Sn+1
j , the discrete equation can be rewritten in the

form

cn+1
j =

Sn
j − ∆t

φ∆x (αn+1
j un+1

w, j −αn+1
j−1 un+1

w, j−1)

Sn
j − ∆t

φ∆x (un+1
w, j −un+1

w, j−1)
c̄.

For monotonicity, we impose that the denominator must be greater than the numerator and, after
rearrangements and simplifications, the condition becomes

αn+1
j un+1

w, j −αn+1
j−1 un+1

w, j−1 ≥ un+1
w, j −un+1

w, j−1,

⇐⇒
αn+1

j −1

αn+1
j−1 −1

≥
un+1

w, j−1

un+1
w, j

.

Rewriting using the fractional flow function, the condition for monotonicity is

αn+1
j −1

αn+1
j−1 −1

≥
f n+1

w, j−1

f n+1
w, j

. (5.2)

Since it holds that Sn+1
j−1 ≥ Sn+1

j and, consequently, f n+1
w, j−1 ≥ f w,n+1

j , for the condition (5.2) we have
that

αn+1
j −1

αn+1
j−1 −1

≥
f n+1

w, j−1

f n+1
w, j

≥ 1. (5.3)

Here it becomes more evident why the shape ofα(S) is a crucial feature in order to have a decreasing
solution for c: in regions where α(S) is an increasing function of S, inequality (5.3) will never be
satisfied since, on the left of the second shock, strict inequality Sn+1

j−1 > Sn+1
j holds. Hence, in order

to guarantee monotonicity, the enhancement factor must be a decreasing function of the water
saturation S. This remark is a discrete counterpart of what we observed when studying analytically
the sign of the eigenvalues of the system of equations: the fact that dα/dS ≤ 0 was a key feature
to ensure that the eigenvalues would always be real. Note that condition (5.2) does not lead to any
restriction on the grid size or time step. Since the concentration is fixed, inequality (5.2) results in a
condition only on the saturation value. For this reason, we claim that (5.2) arises from the analytical
model rather than from the numerical scheme employed, as we will see that the same inequality is
found for the implicit scheme. We will investigate further the monotonicity condition (5.2) later on
in this chapter.

To ensure monotonicity, it is not enough to study the solution only on the left of the shock.
A specific analysis must be carried out for the cell J where the concentration is jumping to zero.
Assuming then cn

J = 0, the discrete equation for cell J is

cn+1
J Sn+1

J = ∆t

φ∆x
αn+1

J−1 un+1
w,J−1cn

J−1.
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As done previously, we require
∆t
φ∆xα

n+1
J−1 un+1

w,J−1

Sn+1
J

≤ 1.

This is a CFL type condition, which can be restated as

∆t

φ∆x
≤

Sn+1
J

αn+1
J−1 un+1

w,J−1

∀J , ∀n. (5.4)

Thus, the time step can be chosen sufficiently small in order to avoid stability issues.

5.2.2. Implicit Fluxes
The discretized equation using an implicit scheme is

cn+1
j Sn+1

j = cn
j Sn

j −
∆t

φ∆x
(αn+1

j un+1
w, j cn+1

j −αn+1
j−1 un+1

w, j−1cn+1
j−1 ).

As done when studying the implicit scheme for a constant enhancement factor, we focus on local
monotonicity for cell j at time n +1, thus assuming cn+1

j−1 = cn
j = c̄. The equation is rewritten in the

form (
Sn+1

j + ∆t

φ∆x
αn+1

j un+1
w, j

)
cn+1

j =
(
Sn

j +
∆t

φ∆x
αn+1

j−1 un+1
w, j−1

)
c̄.

Substituting the implicit scheme for the saturation Sn+1
j leads to

cn+1
j =

Sn
j + ∆t

φ∆xα
n+1
j−1 un+1

w, j−1

Sn
j − ∆t

φ∆x (un+1
w, j −un+1

w, j−1)+ ∆t
φ∆xα

n+1
j un+1

w, j

c̄.

Therefore, we find the same monotonicity condition as for the explicit scheme:

un+1
w, j (αn+1

j −1) ≥ un+1
w, j−1(αn+1

j−1 −1) (5.5)

⇐⇒
αn+1

j −1

αn+1
j−1 −1

≥
f n+1

w, j−1

f n+1
w, j

.

Finding the same monotonicity result for the two different discretization confirm our previous hint:
this monotonicity condition derives from the analytical modeling of α(S), not by the numerical
scheme adopted. Moreover, implicit schemes do not usually require any restriction on the time
step in order to ensure stability of the results. Indeed, studying monotonicity for the cell J where the
concentration jump to zero, meaning cn

J = 0, the discrete equation becomes

cn+1
J Sn+1

J =− ∆t

φ∆x
(αn+1

J un+1
w,J cn+1

J −αn+1
J−1 un+1

w,J−1cn+1
J−1 ).

Use the implicit scheme for Sn+1
J and rewrite in the ratio form:

cn+1
J =

∆t
φ∆xα

n+1
J−1 uw,J−1

Sn
J − ∆t

φ∆x (un+1
w,J −un+1

w,J−1)+ ∆t
φ∆xα

n+1
J un+1

w,J

cn+1
J−1 .

Thus, the requirement for monotonicity is

Sn
J +

∆t

φ∆x
un+1

w,J (αn+1
J −1) ≥ ∆t

φ∆x
un+1

w,J−1(αn+1
J−1 −1). (5.6)

Since Sn
J ≥ 0, condition (5.6) is less restrictive than condition (5.5). Hence, if (5.5) is satisfied also for

cell J , the implicit scheme will result in a monotone profile. In particular, there is no restriction on
the time step as for the explicit scheme.
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5.2.3. Monotonicity Condition and Well-Posedness
The purpose of this section is to investigate the meaning and implications of the monotonicity con-
dition (5.2), and relate it to the well-posedness of the models. We have already remarked that a nec-
essary condition to fulfill (5.2) is the decreasing property of α(S). While the model of Bartelds pro-
poses a decreasing hydrodynamic acceleration factor, in the extended model proposed by Hilden
et al. there is a region where α(S) is increasing with the saturation. Thus, the latter model will not
fulfill (5.2) for all the physical values of S. However, requirement (5.2) is more restrictive than simply
asking thatα(S) is decreasing, and in most of the cases this region whereα(S) is increasing is not the
one causing a peak in the polymer concentration. Indeed, the plots presented in chapter 4 showed
that the range of saturation values for which the discriminant is negative is quite wide, and it does
not correspond only with the increasing part of the enhancement factor curve. Unfortunately, due
to the functional form of α(S) and fw (S), it is hard to derive a closed form for the restriction on the
saturation from the monotonicity condition. To gain insights on the actual values that S can take in
order to accomplish monotonicity, we plotted numerically the ratios of the velocity enhancement
and of the fractional flow functions, using a set of equidistant points in the interval [Swi r ,1−Sor ]
for Sn+1

j . Results for both Bartelds and Hilden models are shown in figure 5.2 and 5.3, respectively.
Note that condition (5.2) is fulfilled for all values of saturation greater than a threshold value, which
will be denoted by Smon. Since the monotonicity condition has been derived for cells on the left of
the shock, if we assume the saturation to be decreasing, then Sl is the minimum value and (5.2) is
fulfilled when Sl ≥ Smon.

In the case of Bartelds with Si pv = 0.1, the approximated value of Smon is very close to Sl = 0.596,
which is computed through the analytical solution. It appears clear that there must be a relation
between the monotonicity condition and the value of water saturation at the polymer front. Also
for Hilden, when the reference case defined in table 3.1 is used, the value of Smon seems close to the
value of saturation at the polymer front, and the accumulation effect is slightly noticeable.

The value computed numerically of Smon is not enough accurate to derive further conclusions,
but the insights gained in this paragraph suggest that there is more to be discovered about the
monotonicity condition.
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Figure 5.2: Numerical solution (left) and monotonicity condition (right) for Bartelds model, with Si pv = 0.1, 400 cells and
time steps, settings defined in table 3.1.
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Figure 5.3: Numerical solution (left) and monotonicity condition (right) for Hilden model, with Si pv = 0.3, 400 cells and
time steps, settings defined in table 3.1.

Consider the Rankine-Hugoniot relations applied to both the water and polymer conservation
equations (4.22)-(4.23) at the polymer front. We know that the polymer concentration jumps to
c = 0 and that the shock velocityσ2,p is equal to the characteristic velocity λp because of the linearly
degenerate nature of polymer transport equation. However, suppose that the value of the concen-
tration on the right of the shock is unknown. In this case, the shock velocities of water and polymer
are

σ2,w = u

φ

fw (Sl ,cl )− fw (Sr ,cr )

Sl −Sr
, (5.7)

σ2,p = u

φ

α(Sl ) fw (Sl ,cl )cl −α(Sr ) fw (Sr ,cr )cr

Sl cl −Sr cr
, (5.8)

where cr denotes the value of the concentration on the right of the shock. At the shock, it holds
σ2,p = σ2,w . Adopt now the same point of view of the monotonicity analysis for the discrete equa-
tions: right on the left of the shock, the concentration is constant and equal to cl , while, for an h > 0,
the saturation jumps from the value Sh to the value Sh −h (interpreting as the values of S in cells
j −1, j ). Therefore, we consider the states

• cl = cr ,

• Sr = Sh −h,

• Sl = Sh .

Since we claim to be really close to the shock, we impose the equality σ2,w = σ2,p for the states
above, giving

fw (Sh ,cl )− fw (Sh −h,cl )

Sh −Sh +h
= α(Sh) fw (Sh ,cl )cl −α(Sh −h) fw (Sh −h,cl )cl

Shcl − (Sh −h)cl
.

The expression can be simplified to the form

fw (Sh ,cl )− fw (Sh −h,cl ) =α(Sh) fw (Sh ,cl )−α(Sh −h) fw (Sh −h,cl ). (5.9)

Rename now the variables as
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• f n+1
w, j = fw (Sh −h,cl ), f n+1

w, j−1 = fw (Sh ,cl ),

• αn+1
j =α(Sh −h), αn+1

j−1 =α(Sh).

Relation (5.9) is thus rewritten as

f n+1
w, j−1 − f n+1

w, j =αn+1
j−1 f n+1

w, j−1 −αn+1
j f n+1

w, j

⇐⇒
αn+1

j −1

αn+1
j−1 −1

=
f n+1

w, j−1

f n+1
w, j

, (5.10)

which is the same expression as the monotonicity condition (5.2), except that we have an equality.
Therefore, we have found an analytical counterpart of (5.2): the value of saturation Smon , for which
the monotonicity condition is satisfied when S ≥ Smon , corresponds to the value Sl on the left of
the shock. In order to have a monotone profile for the polymer concentration, the values of satura-
tion must be greater than the value Sl of saturation at the shock. This requirement is equivalent to
stating that the rarefaction wave must be decreasing. Therefore, we conclude that the monotonic-
ity condition (5.2) is indeed a consequence of the analytical solution, and does not depend on the
numerical scheme employed.

Note that, in the case of Bartelds, the value Sl is well-defined and computed through the pro-
cedure illustrated in the previous chapter. If the water rarefaction wave is decreasing, then the
monotonicity condition is naturally fulfilled and, using adequate restrictions on the time step for
the semi-implicit scheme, the numerical concentration profile will be monotone as well. This fact
is, in turn, a consequence of the expression of the ODEs that define the rarefaction waves for water
and polymer: monotonicity of the rarefaction waves depends only on the sign of the inner prod-
uct ∇λw · rw which appears in both the ODEs, see previous chapter and expressions (4.37)-(4.38).
Hence, the monotonicity of saturation and concentration is correlated: if the rarefaction wave of S
is decreasing, then the rarefaction wave of c will be decreasing as well.

On the other hand, the model proposed by Hilden et al. leads to an ill-posed problem, and no
analytical solution is available. Therefore, there is no guarantee that the values of saturation on the
left of the shock are greater than Sl . If this is the case, the monotonicity condition is not fulfilled and
the concentration results in a non-monotone profile. One may claim then that a non-monotone
numerical solution should then be observed for both S and c. Water saturation appears though to
be more subject to numerical diffusion that may mask a non-monotone behaviour.

Although the discussion above may not be completely formal, it gives valuable insights on the
origin of the polymer accumulation effect and on the expected results of the selected model for the
enhancement. The hyperbolic model proposed by Bartelds is the only one that does not lead to
numerical instabilities. Although we could not prove analytically that saturation and concentration
profiles will always be monotone, we are quite confident that this will be the case, given also the
discussion of chapter 4. The accumulation effect for the constant and Hilden enhancement factor
is due to mathematical ill-posedness, as confirmed from the monotonicity analysis carried out in
this chapter.

There is one last aspect that we would like to remark. When Bartelds model is adopted and
Si pv → Swi r , the CFL-type restriction on the time step (5.4) for the semi-implicit scheme becomes
much more expensive. This happens becauseα(Swi r ) can take very high values (recallα(S) = S/(S−
Si pv )) and, concurrently, the two shocks in water saturation almost coincide. As a consequence,
the saturation basically jumps from Sl to Swi r and the enhancement factor will be evaluated at
values close to the irreducible water saturation. When the two shocks in water are more separated,
the numerical method manages to catch the constant plateau where S = Sr , and the enhancement
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factor is evaluated for values of S greater than Sr . In figures 5.4 and 5.5, we show that, for Si pv →
Swi r , as the selected number of time steps increases, the peak in the concentration disappears.
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Figure 5.4: Saturation (left) and concentration (right) profiles obtained with semi-implicit first order upwind schemes,
400 cells and time steps, Si pv = 0.149, Swi r = 0.15, condition (5.4) not fulfilled.
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Figure 5.5: Saturation (left) and concentration (right) profiles obtained with semi-implicit first order upwind schemes,
400 cells, 800 timesteps, Si pv = 0.149, Swi r = 0.15, condition (5.4) fulfilled.

5.3. High-Resolution Methods
In this section, we restrict our interest to the model proposed by Bartelds, as it is the only one well-
posed. First order methods introduce a severe numerical diffusion, resulting in smeared profiles for
saturation and concentration. This effect is clearly noticeable for instance in figure 4.11, where even
on a grid with 1000 cells the numerical methods have difficulties in capturing a sharp front. As it is
well-known, implicit schemes have the advantage of being unconditionally stable, but they result
in a poor approximation as numerical diffusion is much stronger than for explicit (or semi-implicit)
methods. On the other hand, explicit schemes are subject to a time step constraint in order to guar-
antee stability. Unless Si pv → Swi r , this time step restriction is not exceptionally strict, but the nu-
merical solution is still smeared out at the shock, even on fine grids. For these reasons, we consider
now high-resolution methods to solve the polymer conservation equation, while for the water flow
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the fully-implicit solver implemented in MRST is still used. It has been remarked in chapter 3 that
the implicit high-resolution method does not bring relevant improvement to the accuracy of the
solution, despite being the most expensive scheme. Given the computational inefficiency and the
raise in complexity, this kind of schemes are generally not adopted in the industry. However, since
some issues raise when the polymer transport equation is solved through higher order methods,
we will compare the semi-implicit and the implicit high-resolution schemes proposed in chapter 3.
Adding a saturation dependent velocity enhancement factor, the numerical fluxes F j+1/2 take the
form

• Semi-implicit

F n
j+1/2 =αn+1

j cn
j un+1

w, j +Φ(θn
j+1/2)

1

2
αn+1

j un+1
w, j

(
1− ∆t

∆x
αn+1

j un+1
w, j

)
(cn

j+1 − cn
j ), (5.11)

• Implicit

F n+1
j+1/2 =αn+1

j cn+1
j un+1

w, j +Φ(θn+1
j+1/2)

1

2
αn+1

j un+1
w, j

(
1− ∆t

∆x
αn+1

j un+1
w, j

)
(cn+1

j+1 − cn+1
j ). (5.12)

Simulations are shown in the figures below. For the semi-implicit flux, a peak in polymer concen-
tration is observed even when the CFL condition (5.4) is complied. We have set Swi r = 0.15 and
Si pv = 0.14, since we have seen that when Si pv → Swi r instabilities become more evident. A slight
peak in polymer concentration has though been observed even for lower values of Si pv . Although
the height of the peak becomes lower as the time step is refined, it does not disappear completely.
Simulations were run with very fine time steps, but the non-monotonous behaviour seems to char-
acterize the high-resolution semi-implicit scheme. Unfortunately, we cannot analyze the mono-
tonicity of the scheme as for first order methods, because the assumption cn

j = cn
j−1(= cn

j+1) would
cancel the higher order contribute in (5.11). Using different flux limiters does not help either to fix
the monotonicity issue.

These issues motivate us to solve the water-polymer flow with the implicit high-resolution method
to understand if the non-monotonicity is due to a very strict time step constraint, or is rather a prob-
lem caused, more in general, by higher order fluxes. Simulations are shown in figures 5.9, 5.10 and
5.11. At first glance, it seems that the concentration profile is monotone. However, when grid size
and time step are proportionally refined in order to get rid of numerical diffusion, a slight peak ap-
pears at the polymer front. Since implicit schemes are known for being unconditionally stable, this
feature suggests that the high-resolution fluxes (5.11)-(5.12) proposed to improve the accuracy of
the polymer flow solver are not appropriate.

Slight variations on the high-resolution schemes (different flux limiters or, alternatively, use of
slope limiters) have been tested as well, but no significant changes have been observed: a non-
monotonous concentration profile seems to characterize high-resolution methods for this specific
problem. A question that naturally arises, is if we could find a reason explaining why the high-
resolution methods, which work for polymer flooding without hydrodynamic acceleration, do not
result in monotone solutions for a model including such effect. An aspect that might be worth to in-
vestigate, is the impact that using a (fully implicit) first order upwind scheme to solve the water flow
can have on the high order scheme for the concentration. In fact, a saturation dependent enhance-
ment factor α(S) introduces a stronger coupling between the governing equations. The inaccuracy
of the water flow solver at the shock may cause the higher order methods to fail. Thus, we use a
high-resolution method for both the water and polymer conservation equations, with an explicit
time discretization to avoid difficulties due to the solution of a non-linear system that would arise
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from an implicit discretization. The scheme becomes

Sn+1
j = Sn

j −
∆t

φ∆x

(
F s

j+1/2 −F s
j−1/2

)
, (5.13)

(cS)n+1
j = (cS)n

j −
∆t

φ∆x

(
F c

j+1/2 −F c
j−1/2

)
. (5.14)

The numerical fluxes F s
j+1/2, F c

j+1/2 are given by

F s
j+1/2 =un

w, j +Φ
(
θs,n

j+1/2

) 1

2

(
1− ∆t

∆x
un

w, j

)(
un

w, j+1 −un
w, j

)
, (5.15)

F c
j+1/2 =αn

j cn
j un

w, j +Φ
(
θc,n

j+1/2

) 1

2
αn

j un
w, j

(
1− ∆t

∆x
αn

j un
w, j

)
(cn

j+1 − cn
j ), (5.16)

where
θs

j+1/2 =
u j −u j−1

u j+1 −u j
, θc

j+1/2 =
c j − c j−1

c j+1 − c j
.

In figure 5.12, a numerical solution computed with this method and same settings as in figure 5.7
is shown. The concentration profile is now monotone. However, there is no evident gain in the
accuracy of the solution, and the time step must be much smaller than the grid size to avoid stability
issues.

A similar monotone solution has been observed for different settings, when proper restrictions
on the time step are fulfilled. These results suggest that the problems encountered using a high-
resolution scheme for the polymer transport equation and a first order solver for the underlying
flow, are indeed due to an incompatibility between the two different schemes. The hydrodynamic
acceleration factor introduces a stronger coupling between the equations that leads to the failure of
this sequential solver. This conclusion raises a warning: commercial simulators are used to simulate
much more complicated models, and usually adopt first order implicit schemes. Hence, modifying
the whole flow solver to tailor it to the high-resolution scheme for the polymer transport may not be
a feasible option. This fact might preclude the chance of implementing a high-resolution methods
for transport equations of active chemicals as polymers. However, further research may lead to the
development of a high-resolution scheme that works when coupled with the first order flow solver.
Designing a well-suited scheme is though an hard task, since the performance of a method could
be strongly affected by the non-linearity of the equations. A thorough analysis of high-resolution
methods is beyond the scope of this thesis, and can be the subject of future research.
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Figure 5.6: Solution for saturation (left) and concentration (right) using the semi-implicit high-resolution scheme, 400
cells and 800 time steps.
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Figure 5.7: Solution for saturation (left) and concentration (right) using the semi-implicit high-resolution scheme, 400
cells and 3200 time steps.
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Figure 5.8: Solution for saturation (left) and concentration (right) using the semi-implicit high-resolution scheme, 400
cells and 6400 time steps.
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Figure 5.9: Solution for saturation (left) and concentration (right) using the implicit high-resolution scheme, 400 cells and
800 time steps.
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Figure 5.10: Solution for saturation (left) and concentration (right) using the implicit high-resolution scheme, 400 cells
and 1600 time steps.
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Figure 5.11: Solution for saturation (left) and concentration (right) using the implicit high-resolution scheme, 800 cells
and 3200 time steps.
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Figure 5.12: Solution for saturation (left) and concentration (right) using the fully explicit high-resolution scheme, 400
cells and 3200 time steps.



6
Adsorption and Extension to 2D

In this chapter, we incorporate in the governing equations an adsorption term and we apply the
presented models of IPV to the two-dimensional case. Because of adsorption, the water bank will
be gradually denuded of polymer, resulting in a delay of the polymer front [11]. We expect then
the concentration profile to maintain the same shape as in the case where only IPV effects are ac-
counted for, and to observe a slow down of the polymer front. While the numerical solutions comply
with this hint, an analytical study shows that the system of equations is affected by additional com-
plexity, and computing an analytical solution becomes much harder. However, the well-posedness
of the model is maintained, so that stability of numerical methods can be ensured by fulfilling the
adequate restrictions on the time step.

The extension to two dimensions does not arise any particular new issue. Equations are prop-
erly reformulated for the multi-dimensional case, and the finite volume discretization is briefly dis-
cussed. Numerical results reflect what has been observed in the one-dimensional case: the constant
and Hilden factors lead to accumulation of polymer at the front, while Bartelds factor results in a
monotone concentration profile

6.1. Adsorption
Depending on the reservoir and on the chemical species employed, adsorption of polymer onto the
rock will play a key role in the front propagation. Experimental results [15],[22] show that adsorption
effects slow down the polymer front. This phenomenon ultimately affects the predicted oil recovery,
so it should be included in any realistic model. In the following, we investigate analytical and nu-
merical solutions of the flow when an adsorption term is added to the governing equations. Given
the discussion on the well-posedness of IPV models, the enhancement factor proposed by Bartelds
will be adopted throughout this section.

6.1.1. Adsorption Model and Analysis of the Equations
The conservation equations in fractional flow formulation and with an adsorption term are

φ
∂Sw

∂t
+u

∂ fw

∂x
= 0, (6.1)

φ
∂cSw

∂t
+φ∂a

∂t
+u

∂αc fw

∂x
= 0, (6.2)

where a(c) is a function depending on c such that

d a

dc
≥ 0. (6.3)
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Figure 6.1: Langmuir adsorption isotherm for b = 10, amax = 0.5c̄, c̄ = 0.002 is the usual injected polymer concentration.

Note that, because of the adsorption term, polymer is being subtracted by the system and mass is
not conserved. In order to have an analytical expression of a(c), we adopt a Langmuir adsorption
isotherm model (see [16]):

a(c) = amax

φ

bc

1+bc
, (6.4)

where amax represents the maximum adsorbed polymer concentration and b is a parameter rep-
resenting the non-linearity of the isotherm. A typical curve for the model (6.4) is shown in figure
6.1.

To study analytically equations (6.1)-(6.2), we proceed as in the previous section, rewriting the
system in quasi-linear form and computing the characteristic velocities. The equations in matrix-
vector form are

∂

∂t

(
Sw

c

)
+ A

∂

∂x

(
Sw

c

)
= 0, (6.5)

where the matrix A is given by

A = u

φ


∂ fw

∂Sw

∂ fw

∂c
dα

dSw
c fw + (α−1)c ∂ fw

∂Sw

Sw + d a
dc

α fw + (α−1)c ∂ fw

∂c

Sw + d a
dc

 . (6.6)

Bartelds had already considered an adsorption term in the study of well-posedness, so we report
here the computed discriminant which becomes

D =
(

u

φ

)2

(
∂ fw

∂Sw
− α fw − (α−1)c ∂ fw

∂c

Sw + d a
dc

)2

−4
α(α−1)

Sw

(
Sw + d a

dc

)2 c fw
∂ fw

∂c

d a

dc

 . (6.7)

Since α> 1, ∂ fw /∂c ≤ 0 and d a/dc ≥ 0, the discriminant (6.7) is nonnegative. In particular, it is pos-
itive for non trivial values of (Sw ,c). This fact has a significant impact on the nature of the system:
the governing equations are now classified as strictly hyperbolic, meaning that the characteristic
velocities λw ,λp are distinct. Thus, the polymer equation does not behave as a contact disconti-
nuity, and the procedure used in chapter 4 to compute the analytical solution must be reviewed.
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Unfortunately, the expressions of the characteristic velocities are much more complicated in this
case:

λw,p = u

2φ

(
∂ fw

∂Sw
+ α fw + (α−1)c ∂ fw

∂c

Sw + d a
dc

±
p

D

)
, (6.8)

where D is given by (6.7). Given the complexity of expression (6.8), we have not verified if the water
and polymer fields are genuinely nonlinear or linearly degenerate. Since the system of ODEs that
defines the rarefaction waves requires the computation of the eigenvectors and of the gradients of
λw ,λp , we rely on numerical solutions. Despite the raise in complexity, the system of equations
conserves the well-posedness property ensured by the strict hyperbolicity, so we do not expect in-
stabilities in the numerical solutions.

6.1.2. Numerical Solutions with Adsorption
The finite volume discretization presented in chapter 3 is extended to the equations including the
adsorption term. Such term must be discretized only in time, so the first order backward scheme is
employed. The discretized equation results in

(cSw )n+1
j − (cSw )n

j

∆t
+

an+1
j −an

j

∆t
=− 1

φ∆x

(
F j+1/2(Sn+1

w ,cn ,cn+1)−F j−1/2(Sn+1
w ,cn ,cn+1)

)
, (6.9)

where for the flux F j+1/2 we use the semi-implicit discretization

F j+1/2 =αn+1
j un+1

w, j cn
j ,

since it ensures a more accurate solution without severe time step constraints (as long as we are not
in the case of Si pv → Swi r ). Hence, the discretized equation (6.9) can be rewritten as

(cSw )n+1
j +an+1

j = (cSw )n
j +an

j −
∆t

φ∆x

(
αn+1

j un+1
w, j cn

j −αn+1
j−1 un+1

w, j−1cn
j−1

)
. (6.10)

Equation (6.10) is nonlinear in cn+1
j , so a nonlinear solver must be called at every iteration. The

default fsolveMatlab solver is used. Note that, given N control volumes, N independent equations
must be solved, so no numerical difficulties due to a coupling of the discrete equations arise. An
implicit choice of the flux F j+1/2 would have coupled these non-linear discrete equations into a
system, so we have another good reason to discard that approach.

In the following, some numerical simulations are shown, along with a plot of the discriminant.
The polymer front (figures 6.3-6.4) is clearly delayed with respect to the case without adsorption.
It is interesting to observe that the rarefaction waves for both saturation and concentration seem
to coincide with the (exact) solution computed in chapter 4, at least until the point where the ear-
lier shock of the IPV-adsorption case occurs. However, there is no guarantee that these waves are
the same: the change in polymer concentration magnitude might be too small to be noticed with
numerical solutions. A second rarefaction wave for water saturation occurs in both configurations
of figures 6.3 and 6.4, even if in the latter case it is only slightly visible. The formation of this wave
depends, as discussed in chapter 3, by the saturation value of the constant plateau ahead of the
polymer front. In the case of adsorption, the constant plateau value is higher, so that a second
rarefaction wave has more chances to occur. In figure 6.2, a plot of the discriminant is depicted.
Although it goes very close to zero for saturation values around 0.6, we have verified that it stays
positive. Note that the saturation value on the left of the polymer front is greater than the satura-
tion for which the discriminant reaches its minimum, while in the case without adsorption these
two values coincide. This fact reinforces our argument that the polymer front is no more a contact
discontinuity, because the shock occurs at a saturation value for which the characteristic velocities
are considerably different.
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Figure 6.2: Discriminant (6.7) for a fixed value of c and Si pv = 0.1, b = 10, amax = 0.5c̄, c̄ = 0.002 injected concentration.
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Figure 6.3: Saturation (left) and concentration (right) profiles obtained with semi-implicit first order upwind schemes,
400 cells and timesteps, Si pv = 0.1, b = 10, amax = 0.5c̄.
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Figure 6.4: Saturation (left) and concentration (right) profiles obtained with semi-implicit first order upwind schemes,
400 cells and timesteps, Si pv = 0.1, b = 1, amax = 0.3c̄.
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6.2. Extension to 2D
We are now interested in applying the velocity enhancement factor models to the two-dimensional
case and see if we get similar results. Given the complexity that inevitably raises by considering a
multi-dimensional system, we prefer to focus on the numerical solutions and their stability. Since
we have seen that adsorption does not influence the well-posedness of the problem, it will be disre-
garded in this section.

The governing equations in conservation form reformulated in a two-dimensional framework,
with the incompressibility assumption, are

φ
∂Sw

∂t
+∇·uw = 0, (6.11)

φ
∂(cSw )

∂t
+∇· (αcuw ) = 0, (6.12)

where we do not select now a particular model for the enhancement factor. Gravity effects and
capillary pressure are neglected as well, so that Darcy velocity takes the form

uw = kkr,w

µw
∇p, (6.13)

where k is the permeability tensor. Assuming the porous medium to be isotropic with constant
permeability, the tensor k becomes a diagonal matrix:

k =
[

k
k

]
.

The cell-centered finite volume discretization is used in the two-dimensional case as well. The
domain consists of a square D = [0,L]×[0,L], uniformly subdivided in N×N cells. The unknowns are
denoted by {(Si , j ,ci , j )}N

i , j=1. The injection well is placed at the lower-left vertex and the production
well at the upper-right vertex, as shown in figure 6.5. Integration over a control volume

Vi j = [i −1/2, i +1/2]× [ j −1/2, j +1/2]

of equation (6.11) gives

φ

∫
Vi j

∂Sw

∂t
dV +

∫
Vi j

(∇·uw )dV = 0. (6.14)
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Figure 6.5: Two-dimensional domain and illustration of the injection (I ) and production (P ) wells.
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Applying the divergence theorem results in

φ

∫
Vi j

∂Sw

∂t
dV +

∫
∂Vi j

(uw ·n)d∂V = 0, (6.15)

where n is the outward normal to cell Vi j . The boundary integral is approximated by∫
∂Vi j

(uw ·n)d∂V =∆y ux

∣∣∣i+1/2, j

i−1/2, j
+∆x uy

∣∣∣i , j+1/2

i , j−1/2
, (6.16)

where

ux =−kkr,w

µw

∂p

∂x
.

Using a first order upwind approximation for the relative permeability and the viscosity and a cen-
tral differentiation scheme for the pressure gradient, gives

ux

∣∣∣
i+1/2, j

=−kkr,w

µw

∣∣∣
i , j

pi+1, j −pi , j

∆x
. (6.17)

Hence, the discretized water conservation equation is

φ∆x∆y
Sn+1

i , j −Sn
i , j

∆t
=−∆y ux

∣∣∣i+1/2, j

i−1/2, j
−∆x uy

∣∣∣i , j+1/2

i , j−1/2
. (6.18)

A similar procedure leads to the discretized polymer conservation equation

φ∆x∆y
(cS)n+1

i , j − (cS)n
i , j

∆t
=−∆y

[
αux c

]i+1/2, j

i−1/2, j
−∆x

[
αuy c

]i , j+1/2

i , j−1/2
. (6.19)

As for the one-dimensional case, we use a sequential approach to solve the system of equations.
The flow is solved through the fully implicit discretization implemented in MRST, except that the old
value for the concentration is used. The polymer transport equations is then solved with the current
value of saturation and either a semi-implicit or an implicit time discretization for the fluxes:

• Semi-implicit

αux c
∣∣∣
i+1/2, j

=αn+1
i , j ux (Sn+1

i , j ,cn
i , j )cn

i , j ,

• Implicit

αux c
∣∣∣
i+1/2, j

=αn+1
i , j ux (Sn+1

i , j ,cn
i , j )cn+1

i , j .

As the number of cells increases, the implicit method becomes very expensive, and the semi-implicit
scheme is subject to severe time step restrictions [10]. Hence, alternative methods have been pro-
posed, for instance in [10]. However, the scope of this section is to study how the enhancement fac-
tor affects the two-dimensional problem, with particular regard to the accumulation phenomenon
that has been observed in some of the one-dimensional simulations. Therefore, the methods pre-
sented above are implemented for the polymer equation and coupled to the MRST solver in order
to use the sequential approach just discussed. The high-resolution methods showed unclear results
even in the one-dimensional case, so they will not be considered here.

Below, we show the results of the simulations. On the boundary, a no-flow condition is set by
MRST as default. At the injector and producer wells, a constant injection rate and a constant pres-
sure conditions are assumed, respectively. Settings of table 4.1 are used in order to emphasize the
pile-up effect of the ill-posed models. In figures 6.6 and 6.7, the solution computed through the



6.2. Extension to 2D 77

semi-implicit and implicit schemes with α = 1 is shown. With appropriate choice of the time step,
both schemes result in the expected profiles for saturation and concentration. Due to the rough
grids, a great deal of numerical diffusion is introduced in the simulations, causing a severe smear-
ing of the fronts. The semi-implicit scheme is particularly expensive, since 3000 time steps had to
be used to avoid numerical issues.

In figure 6.8, a constant enhancement factorα is selected. An accumulation effect occurs for the
polymer: the height of the peak is bounded to low values of c because of the large amount of numer-
ical diffusion introduced by the implicit scheme and the rough grid. To test Hilden model, we set
Si pv = 0.3 and we choose again an implicit scheme to avoid stability issues. Similarly to the constant
factor model, the concentration profile shown in figure 6.9 is not monotone, and numerical diffu-
sion helps to keep the pile-up limited. Last, the model of Bartelds is tested with Si pv = 0.05. Since
graphically we did not observe a huge difference between the semi-implicit and implicit methods
when α = 1, we employ again the implicit scheme to avoid expensive restrictions on the time step.
Results in figure 6.10 show a monotone profile for the polymer concentration.

The key facts observed and remarked for the one-dimensional case seem to apply to the two-
dimensional case as well. In particular, the enhancement factor proposed by Bartelds is the only
one leading to a well-posed problem, while for the constant and Hilden factor a peak in the concen-
tration is obtained. No significant changes were observed when using Bartelds model with different
values of Si pv , as long as the condition Si pv < Swi r was fulfilled, beside the stricter time step con-
straint for the semi-implicit method. This restriction on the time step becomes much more severe
for the two-dimensional case. Also the computational cost of the implicit scheme raises consis-
tently as the grid is refined. Moreover, the shocks, especially the one in the saturation, are severely
smeared. Therefore, alternative numerical methods have been proposed in the literature, see for
instance [10] and references therein.



78 6. Adsorption and Extension to 2D

Figure 6.6: Solution using α= 1, semi-implicit scheme, 100×100 cells, 3000 time steps.

Figure 6.7: Solution using α= 1, implicit scheme, 100×100 cells, 500 time steps.
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Figure 6.8: Solution using α= 1.3, implicit scheme, 100×100 cells, 500 time steps.

Figure 6.9: Solution adopting Hilden model, implicit scheme, 100×100 cells, 500 time steps, Si pv = 0.3.

Figure 6.10: Solution adopting Bartelds model, implicit scheme, 100×100 cells, 500 time steps, Si pv = 0.05.





7
Conclusions

The goal of this thesis was to investigate the velocity enhancement (or hydrodynamic acceleration)
effect that occurs when injecting a solution of water and polymer into a reservoir. The polymer
molecules, due to inaccessible and excluded pore volume, are observed to travel faster than inert
chemical species. The modeling of this phenomenon leads to analytical and numerical difficulties,
which have been addressed throughout the report. In this chapter, we present the main conclusions
of this research, along with recommendations for future work.

In chapter 2, a review of the theory on hyperbolic laws has been carried out. This formal theory
allowed us to analyze properly the different models proposed, and to compute solutions where pos-
sible. Often, the polymer flooding problem is approached in a more intuitive but less formal way.
Although this approach works for simpler cases, it leads to wrong conclusions when the velocity
enhancement is incorporated in the governing equations.

In chapter 3, we introduced the physics of the reservoir and the conservation equations that
govern the flow of water and polymer through the reservoir. Analytical solutions are computed using
the tools presented in chapter 2, resulting in the typical Buckley-Leverett profile well-known in the
literature. The various numerical methods adopted to solve the flow were also introduced here.
In particular, a sequential solver is discussed: at each time step, the water conservation equation
is solved through an implicit discretization and, then, the computed value of saturation is used to
solve the polymer transport equation through different schemes, that are briefly compared (for a
thorough analysis of these schemes, refer to [10]).

Next, we addressed the main target of this research: the velocity enhancement effect. Exper-
imentally, the polymer is observed to travel faster than a passive tracer. This phenomenon is ex-
plained physically through the inaccessible and excluded pore volume theory: due to their larger
size, the polymer molecules do not enter the smallest pores (IPV) and tend to travel at the center
of the pore channels (EPV). A simple model employed in most of the commercial simulator consist
in inserting into the polymer continuity equation a constant factor α to increase the polymer front
velocity. It was shown by Bartelds [4] that this model leads to an ill-posed problem. In particular,
numerical simulations result in a sharp peak in the polymer concentration at the front. Although
a pile-up of polymer at the front is not necessarily unphysical, this peak arises because of the loss
of hyperbolicity of the system that the factor α causes. Hence, it is the result of a mathematical
ill-posedness rather than a physical outcome predicted by the model. Therefore, alternative mod-
els have been proposed. Bartelds [4] derived a saturation dependent factor α(Sw ) suited to model
only IPV effects. In this research, we have computed the analytical solution for this model, which is
shown to be hyperbolic and hence well-posed. Analytical considerations on this model allowed us
to conclude also that the monotonicity of saturation and concentration profiles are related: if the
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saturation profile is decreasing (which is a very plausible feature for the problem considered), con-
centration profile will be decreasing as well. The pile-up of polymer seems to be strictly related with
the loss of hyperbolicity that the enhancement factor may cause. In [2], Bartelds derived a satura-
tion and concentration dependent factor α(Sw ,c) in order to model both IPV and EPV effects. This
model results in a pile-up of polymer at the front, and the experimental data presented to validate
the model have reliability issues. Hence, we have discarded it from the discussion, and the model-
ing of EPV remains an open question. Since the IPV model of Bartelds is subject to the restriction
Si pv < Swi r , Hilden et al. [21] tried to extend the model in order to overcome any kind of constraints
on the physical parameters. Using an alternative definition of well-posedness, a new enhancement
factor is proposed, and numerical simulations shown in their work result in a decreasing profile of
the polymer concentration. However, we showed that this model leads to the loss of hyperbolicity
and simulations are subject to stability issues as in the constant factor case.

In chapter 5, we studied the monotonicity of the first order numerical methods. We showed that,
when using a constant enhancement factor, monotonicity cannot be achieved, as expected from
the ill-posedness of the model. For a saturation dependent factor, we obtained a usual CFL-type re-
striction on the time step when using the semi-implicit method, and an additional condition more
related to the analytical model. This condition defines a saturation value Smon such that mono-
tonicity is achieved as long as, on the left of the shock, Sw > Smon . We related the monotonicity
condition to the Rankine-Hugoniot relation at the shock, claiming then that Smon = Sl . Since for
Bartelds model the Rankine-Hugoniot relation is one of the ingredients used to build the solution
and contributes to determine formally the value Sl of saturation at the polymer front, we claimed
that the monotonicity condition can be fulfilled (although we could not prove that this will always
be the case). For Hilden model, instead, the value Sl is not well-defined, so there is no guarantee
that the monotonicity condition can be satisfied.

A section has been dedicated to the study of high-resolution methods. When these schemes are
adopted to solve the polymer transport equation, the resulting concentration profile is not mono-
tone even when using the well-posed model of Bartelds. In particular, we highlighted an incom-
patibility between the water flow and polymer transport solvers: if a first order implicit scheme is
used to compute the saturation profile, then the proposed high-resolution schemes for the polymer
do not maintain a monotone profile. When a fully explicit high-resolution method was applied to
both water and polymer conservation equations, we achieved again a monotone profile for the con-
centration. However, the solution did not show any relevant gain in accuracy and, furthermore, it is
desirable to have a scheme that works when coupled to the existing solver. Therefore, the derivation
of a high-resolution method suited to accurately solve the transport of polymer subject to hydrody-
namic acceleration remains an open question.

In chapter 6, we incorporated in the governing equations the adsorption of polymer onto the
rock. Adsorption is known for causing a delay in the polymer front. This retardation effect is indeed
observed in the numerical results. Unfortunately, the analysis of the equation becomes much more
complicated and we did not compute the analytical solution. The system with adsorption becomes
strictly hyperbolic, meaning that it maintains the stability property, but the characteristic veloci-
ties are different for every point, so the polymer equation is no more a contact discontinuity. The
enhancement models were then applied to the two-dimensional case. Essentially, the same conclu-
sion as in the one-dimensional case can be drawn. The numerical methods become though much
more expensive, so alternative schemes may be considered in order to improve accuracy and effi-
ciency of the solution.

In this research, we have focused on the origin of the ill-posedness for velocity enhancement
models and carried out a thorough analysis showing that Bartelds model is the only one leading to a
well-posed problem. An experimental validation of this model is still missing and can be addressed
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in future work. This work will hopefully provide useful tools to study analytically polymer flooding
equations, and give important insights for the derivation of alternative models of the hydrodynamic
acceleration in case the one of Bartelds is seen to predict unphysical fronts acceleration. Although
we could not prove that the saturation dependent factor proposed by Bartelds will always result in a
monotone solution, the knowledge gained throughout this work makes us think that this will be the
case.

Diffusion or dispersion effects have been left out of this research. Often, these terms help to
overcome stability issues by smoothening the sharp fronts. However, when these effects are inserted
just as mathematical artifacts to avoid instabilities, they may lead to unphysical solutions.

Excluded pore volume modeling are also still an open question. We proposed to adopt Bartelds
factor to model a general acceleration of the polymer front, disregarding its physical origin. The
enhancement of the polymer front is determined by the magnitude of Si pv and as Si pv → Swi r ,
the front will reach its maximum enhancement achievable (no more pure water is flowing ahead).
Hence, the value of Si pv can be used to adjust the magnitude of the front acceleration and to match
the experimental data available for a certain reservoir, independently of the cause of the velocity
enhancement.

Future research can be dedicated to investigate why high-resolution methods failed to result
in the correct solution and if alternative solvers, that improve the accuracy of the solution, can be
proposed.
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