
 
 

Delft University of Technology

Affine Pieri rule for periodic Macdonald spherical functions and fusion rings

van Diejen, J.F.; Emsiz, E.; Zurrián, I.N.

DOI
10.1016/j.aim.2021.108027
Publication date
2021
Document Version
Final published version
Published in
Advances in Mathematics

Citation (APA)
van Diejen, J. F., Emsiz, E., & Zurrián, I. N. (2021). Affine Pieri rule for periodic Macdonald spherical
functions and fusion rings. Advances in Mathematics, 392, 1-30. Article 108027.
https://doi.org/10.1016/j.aim.2021.108027

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.aim.2021.108027
https://doi.org/10.1016/j.aim.2021.108027


Advances in Mathematics 392 (2021) 108027
Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Affine Pieri rule for periodic Macdonald spherical 
functions and fusion rings ✩

J.F. van Diejen a, E. Emsiz b,∗, I.N. Zurrián c

a Instituto de Matemáticas, Universidad de Talca, Casilla 747, Talca, Chile
b Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 
5031, 2600 GA Delft, the Netherlands
c FAMAF-CIEM, Universidad Nacional de Córdoba, Córdoba 5000, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 October 2020
Received in revised form 2 August 
2021
Accepted 10 August 2021
Available online xxxx
Communicated by Roman 
Bezrukavnikov

MSC:
primary 05E05
secondary 17B67, 33D52, 33D80, 
81T40

Keywords:
Macdonald spherical functions
Affine Hecke algebras
Affine Lie algebras
Wess-Zumino-Witten fusion rings
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In type Ân−1 = A
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1. Introduction

The Hall polynomials form a generalization of the Littlewood-Richardson coefficients 
that provide the structure constants of the classical Hall algebra in the basis of Hall-
Littlewood polynomials; these structure constants (which are polynomial in the Hall-
Littlewood parameter) are known to enjoy a very intricate combinatorics [36, Chapters 
II, III]. Indeed, the Hall algebra and its generalizations in terms of quivers turn out 
to encode a host of combinatorial, algebra-geometric, and representation-theoretic data 
[4,36,48,55]. Recently, Korff introduced an affine analog of the Hall polynomials; these 
arise as structure constants of a t-deformation of the fusion ring (a.k.a. Verlinde algebra) 
for ŝl(n)c-Wess-Zumino-Witten conformal field theories with respect to a natural basis 
built from cylindric Hall-Littlewood polynomials [28]. While to date the precise geometric 
and/or representation-theoretic interpretation of this t-deformed fusion ring has yet to 
be disclosed, indications of an intimate relation with the deformed Verlinde algebras in 
[52,53] have been noticed [21,28,43].

At t = 0 the Hall-Littlewood polynomials become Schur polynomials. The correspond-
ing Littlewood-Richardson coefficients [36, Chapter I.9] and their affine counterparts, 
which arise as fusion coefficients for ŝl(n)c-Wess-Zumino-Witten conformal field theo-
ries [14, Chapter 16], have received massive attention across the mathematics literature 
because of their rich combinatorics and profound applications in representation the-
ory and Schubert calculus, cf. e.g. [17] and [20,18,29,40] as well as further references 
therein. Korff’s t-deformation is different from the q-deformed fusion ring in [16], which 
recovers the ŝl(n)c-Wess-Zumino-Witten fusion ring at the value q = 1. Of special inter-
est is in this connection the well-known fact that the closely related ĝl(n)c-fusion ring 
amounts to a q = 1 degeneration of the small quantum cohomology ring of the Grass-
mannian of n-dimensional linear subspaces in Cn+c [3,6]. The structure coefficients of 
this small quantum cohomology ring in the basis of Schubert classes, the genus zero 
3-point Gromov-Witten invariants, can be computed as quantum counterparts of the 
Littlewood-Richardson coefficients for Schur polynomials [5,18,25,46,50,51,54,56]. Vari-
ous other combinatorial constructions related to the computation of genus zero 3-point 
Gromov-Witten invariants have been considered in the literature, e.g. via the structure 
constants of algebras of symmetric polynomials in bases of cylindric Schur polynomials 
[45,39], in bases of k-Schur polynomials [32,30,31], or in bases of noncommutative Schur 
polynomials in variables from a plactic algebra [29], respectively.

If at least one of the two factors in the Littlewood-Richardson product consists of a 
Hall-Littlewood polynomial attached to a partition with only a single column, then the 
explicit form of the pertinent Hall polynomials is given by the Pieri formula [36, Chapter 
III.3]. The affine analog of this Pieri formula for cylindric Hall-Littlewood polynomials 
can be found in [28, Corollary 7.4]. The purpose of the present work is to generalize the 
affine Pieri formula in question from ŝl(n)c to the case of an arbitrary affine Lie algebra 
ĝ [26], excluding those of type B̂Cn = A

(2)
2n . In other words, ĝ is assumed to be untwisted 

or to be the twisted counterpart of an untwisted affine Lie algebra.



J.F. van Diejen et al. / Advances in Mathematics 392 (2021) 108027 3
Let us recall at this point that from the perspective of Lie algebras the Hall-Littlewood 
polynomials in n variables are associated with sl(n). The corresponding generalization 
of these polynomials to simple Lie algebras of arbitrary type is given by the Macdon-
ald spherical functions [37,42,44,49], which were constructed originally by Macdonald as 
spherical functions on p-adic symmetric spaces [34]. With the aid of suitable representa-
tions of the affine Hecke algebra, the Pieri formula for the Hall-Littlewood polynomials 
was generalized to a Pieri formula for Macdonald spherical functions of arbitrary simple 
Lie type in [11]. The key to achieve an analogous generalization of the affine Pieri formula 
in [28] is to connect with the work in [9]. To this end, we will detail briefly how affine 
Pieri formulas arise in the context of [9], while also emphasizing in which sense these 
differ from the usual Pieri formulas for the Hall-Littlewood polynomials in [36].

Associated with the standard unit basis e1, . . . , en for Zn ⊂ Rn ⊂ Cn, let us denote 
ēj = ej − 1

n (e1 + · · · + en) (j = 1, . . . , n) and ωr = ē1 + · · · + ēr (r = 1, . . . , n − 1). For 
λ ∈ Λ(n) = {m1ω1 + · · · + mn−1ωn−1 | m1, . . . , mn−1 ∈ Z≥0} the sl(n) Hall-Littlewood 
polynomial Rλ(x; t) with variable x = (x1, . . . , xn) and parameter t is defined by the 
explicit formula

Rλ(x; t) =
∑
σ∈Sn

C(xσ1 , . . . , xσn
; t)xλ1

σ1
· · ·xλn

σn
,

where

C(x1, . . . , xn; t) =
∏

1≤j<k≤n

1 − tx−1
j xk

1 − x−1
j xk

,

and the summation is meant over all permutations σ =
( 1 2 ··· n
σ1 σ2 ··· σn

)
of the symmetric 

group Sn. When μ = ωr, the corresponding t-deformed Littlewood-Richardson coeffi-
cients

RλRμ =
∑

ν∈Λ(n)

cνλ,μ(t)Rν (λ, μ ∈ Λ(n))

are given explicitly by the Pieri rule [36, Chapter III.3]

RλRωr
= cωr

(t)
∑

J⊆{1,...,n}, |J|=r

λ+ēJ∈Λ(n)

Rλ+ēJ

∏
1≤j<k≤n
j∈J, k �∈J
λj=λk

1 − tk−j+1

1 − tk−j
. (1.1)

Here ēJ =
∑

j∈J ēj , |J | denotes the cardinality of J , and cωr
(t) = Sr(t)Sn−r(t) with 

Sn(t) =
∏

1≤j<k≤n
1−tk−j+1

1−tk−j .
Given a positive integral level c, an affine analog of the Pieri formula (1.1) valid for 

λ ∈ Λ(n,c) = {m1ω1 + · · · + mn−1ωn−1 ∈ Λ(n) | m1 + · · · + mn−1 ≤ c} follows from [9, 
Theorem 5.1]:
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R
(c)
λ R(c)

ωr
= (1.2)

cωr
(t)

∑
J⊆{1,...,n}, |J|=r

λ+ēJ∈Λ(n,c)

R
(c)
λ+ēJ

∏
1≤j<k≤n
j∈J, k �∈J
λj=λk

1 − tk−j+1

1 − tk−j

∏
1≤j<k≤n
j �∈J, k∈J
λj=λk+c

1 − tn+1−k+j

1 − tn−k+j
.

Here R(c)
λ : X(n,c) → C refers to the Hall-Littlewood polynomial Rλ viewed as a function 

on a discrete set X(n,c) = X(n,c)(t) ⊂ Tn = {(x1, . . . , xn) ∈ Cn | |xj | = 1, j = 1, . . . n}. 
This set consists of points xμ(t), μ ∈ Λ(n,c) that depend analytically on the Hall-
Littlewood parameter t ∈ (−1, 1). Specifically, for μ ∈ Λ(n,c) and t ∈ (−1, 1) the point 
xμ(t) is of the form (eiξ1 , . . . , eiξn) with the vector of angle coordinates ξ = ξμ(t) being 
defined as the unique global minimum of the radially unbounded strictly convex Morse 
function V(n,c)

μ : Rn → R

V(n,c)
μ (ξ) =

∑
1≤j<k≤n

ξj−ξk∫
0

v(x)dx +
∑

1≤j≤n

(
c
2ξ

2
j − 2π(ρj + μj)ξj

)
, (1.3)

where ρ = ω1 + · · · + ωn−1 and v(x) =
∫ x
0

1−t2

1−2t cos(y)+t2 dy. This Morse function can 
be loosely thought of as an analog of the fusion potential, cf. [18,8]. It is known that 
the Hall-Littlewood polynomials R(c)

λ , λ ∈ Λ(n,c) form a linear basis for the algebra of 
functions f : X(n,c) → C (cf. [9, Theorem 5.2]), which gives rise to the following affine 
analog of the Littlewood-Richardson coefficients for the Hall-Littlewood polynomials:

R
(c)
λ R(c)

μ =
∑

ν∈Λ(n,c)

cν,(c)λ,μ (t)R(c)
ν (λ, μ ∈ Λ(n,c)). (1.4)

For μ = ωr, the explicit form of cν,(c)λ,μ (t) is given by the affine Pieri rule in Eq. (1.2).
The structure constants cν,(c)λ,μ (t) (1.4) constitute a t-deformation of the fusion coef-

ficients for the genus zero ŝl(n)c-Wess-Zumino-Witten conformal field theories, which 
are recovered at t = 0. Indeed, sλ(x) = Rλ(x; 0) is given by the sl(n) Schur char-
acter and the vector of coordinate angles becomes ξμ(0) = 2π

n+c (ρ + μ). The coordi-
nates of the points in X(n,c) = X(n,c)(0) are thus given by explicit roots of unity: 
xμ(0) = e

2πi
n+c (ρ+μ) = (e

2πi
n+c (ρ1+μ1), . . . , e

2πi
n+c (ρn+μn)), μ ∈ Λ(n,c). The basis functions 

s
(c)
λ : X(n,c) → C, λ ∈ Λ(n,c), given by

s
(c)
λ (xμ) = sλ(e

2πi
n+c (ρ+μ)) (λ, μ ∈ Λ(n,c)),

and the associated structure constants

s
(c)
λ s(c)

μ =
∑

cν,(c)λ,μ s(c)
ν (λ, μ ∈ Λ(n,c))
ν∈Λ(n,c)
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for the algebra of functions f : X(n,c) → C in this basis, provide a well-studied combi-
natorial model for the genus zero ŝl(n)c-Wess-Zumino-Witten fusion ring [14,18,20,26,
27,29]. In particular, the corresponding t = 0 specialization of the affine Pieri formula 
(1.2):

s
(c)
λ s(c)

ωr
=

∑
J⊆{1,...,n}, |J|=r

λ+ēJ∈Λ(n,c)

s
(c)
λ+ēJ

(1.5)

is well-known in this context, cf. e.g. [2, Equation (3.2)], [14, Equations (16.112), 
(16.121)], [18, Equation (3.6)], [20, Proposition 2.6], and [47, Theorem 6.2].

It is important to emphasize at this point that the deformation of the genus zero ŝl(n)c-
Wess-Zumino-Witten fusion ring stemming from Eq. (1.4) is not constructed in exactly 
the same manner as in [28, Section 7]. In a nut-shell: both deformations are related via 
level-rank duality [14,20,41], which has not been established for t ∈ (−1, 1) \ {0} and 
thus a priori gives rise to two dual choices for the Hall-Littlewood deformation of the 
fusion ring.

In order to generalize the affine Pieri formula (1.2) from ŝl(n)c to other affine Lie 
algebras, we present an affine counterpart of the Pieri formula for Macdonald spherical 
functions of arbitrary simple Lie type from [11], which stems from the implementation 
of periodic boundary conditions. The underlying representations of the affine Hecke 
algebra that lead to this affine Pieri formula are inspired by previous constructions for the 
graded affine Hecke algebra that were developed in the context of the study of quantum 
integrable particle models, cf. [22,15] and references therein. From this perspective, a 
partial construction for twisted affine Lie algebras can be found in [12]; here we apply 
these techniques to present a combinatorial model to compute the structure constants of 
deformed genus zero Wess-Zumino-Witten fusion rings for both twisted and untwisted 
affine Lie algebras (excluding those of type B̂Cn = A

(2)
2n , cf. [10]). In line with was 

remarked at the end of the first paragraph for ŝl(n)c, we expect that these deformed 
fusion rings are isomorphic to deformed Verlinde algebras from [52,53]; for ŝl(2)c this 
isomorphism is manifest from the explicit construction in [1, Appendices A and B].

The material is organized as follows. Section 2 presents our deformation of the genus 
zero Wess-Zumino-Witten fusion ring, which is built from a basis of periodic Macdonald 
spherical functions. The main result is an affine Pieri rule that permits to compute 
the structure constants for the multiplication in the periodic Macdonald spherical basis 
by basis elements attached to weights that are either minuscule or quasi-minuscule. 
After setting up some further notational preliminaries concerning the affine Weyl group 
in Section 3, the pertinent structure constants are exhibited in Section 4. When the 
deformation parameter vanishes, one finds a corresponding Pieri formula and structure 
constants for the genus zero Wess-Zumino-Witten fusion ring itself. The bulk of the 
paper is devoted to the proof of our Pieri rule via a suitable representation of the Hecke 
algebra of the affine Weyl group. Specifically, the affine Hecke algebra is first employed 
in Section 5 to construct an affine intertwining operator acting in the space of complex 
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functions over the weight lattice. Via a standard construction involving the idempotent 
associated with the trivial representation of the Hecke algebra of the finite Weyl group, 
the periodic Macdonald spherical functions arise in Section 6 upon acting with the affine 
intertwining operator. In Section 7 it is shown that the periodic Macdonald spherical 
functions give rise to a basis for a finite-dimensional algebra of functions supported 
on critical points of a ‘fusion potential’ of the type in Eq. (1.3). We apply the affine 
intertwining operator so as to derive a family of difference operators diagonalized by the 
basis of periodic Macdonald spherical functions. The action of these difference operators 
permits us to compute the corresponding structure constants associated with this basis. 
In Section 8 the computation in question is carried out explicitly for the particular case 
of the Pieri formula, and Section 9 outlines how to recover the structure constants more 
generally from the action of the difference operators.

2. Affine Pieri rule

2.1. Macdonald spherical functions

Let V be a real finite-dimensional Euclidean vector space with inner product 〈·, ·〉
spanned by an irreducible reduced crystallographic root system R0. We write Q, P , and 
W0, for the root lattice, the weight lattice, and the Weyl group associated with R0. The 
semigroup of the root lattice generated by a (fixed) choice of positive roots R+

0 is denoted 
by Q+ whereas P+ stands for the corresponding cone of dominant weights (see e.g. [7,24]
for more details concerning root systems).

The dual root system R∨
0 := {α∨ | α ∈ R0} and its positive subsystem R∨,+

0 are 
obtained from R0 and R+

0 by applying the involution

x �→ x∨ := 2x/〈x, x〉 (x ∈ V \ {0}). (2.1)

Definition 2.1. For λ ∈ P+, the Macdonald spherical function Mλ : V → C is the 
W0-invariant trigonometric polynomial given explicitly by

Mλ(ξ) =
∑
v∈W0

C(vξ)ei〈vξ,λ〉 (2.2)

with

C(ξ) :=
∏

α∈R+
0

1 − tαe
−i〈ξ,α〉

1 − e−i〈ξ,α〉 . (2.3)

Here t : R0 −→ C is a root multiplicity function such that twα = tα for every w ∈ W0
and α ∈ R0.

For our purposes the range of the root multiplicity function will be restricted such 
that t : R0 → (−1, 1) \ {0}.
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2.2. Basis of periodic Macdonald spherical functions

Let ϕ and ϑ denote the highest root and the highest short root of R+
0 , respectively. 

We fix an admissible pair (R0, R̂0) with R̂0 being equal either to R∨
0 or to uϕR0, where 

uϕ = 2
〈ϕ,ϕ〉 , and with the positive system R̂+

0 obtained from R+
0 . In particular, for simply-

laced R0 we have that R̂0 = R∨
0 . For α ∈ R0, let α̂ := α∨ if R̂0 = R∨

0 and let α̂ := uϕα

if R̂0 = uϕR0. Then α∨ = mαα̂ with mα = 2〈α, α̂〉−1, i.e. mα = 1 if R̂0 = R∨
0 and 

mα = 〈ϕ,ϕ〉
〈α,α〉 if R̂0 = uϕR0. It follows that {mα}α∈R0 = {1, mϑ}.

We denote the highest short root of R̂∨,+
0 by −α0 = ϑ(R̂∨

0 ), so in particular α0 = −ϑ if 
R̂0 = R∨

0 and α0 = −ϕ if R̂0 = uϕR0. We also write Q̂, Q̂∨, P̂ and P̂∨ for the root lattice, 
the co-root lattice, the weight lattice and the co-weight lattice of R̂0, respectively. In this 
setup it will turn out natural to extend the domain of the root multiplicity function in 
a straightforward manner: t : R0 ∪R∨

0 ∪ R̂0 → (−1, 1) \ {0} such that tα̂ = tα∨ = tα for 
all α ∈ R0.

Given a fixed positive integer c > 1, we consider two affine alcoves in P and P̂ :

Pc := {λ ∈ P | 0 ≤ 〈λ, β〉 ≤ c, ∀β ∈ R̂+
0 }, (2.4)

P̂c := {μ ∈ P̂ | 0 ≤ 〈μ, α〉 ≤ c, ∀α ∈ R+
0 }, (2.5)

and an associated set of nodes Pc :=
{
ξμ | μ ∈ P̂c

}
. Here ξμ := ξμ(t) (μ ∈ P̂ ) is defined 

as the unique global minimum of a radially unbounded strictly convex Morse function 
Vμ : V → R of the form

Vμ(ξ) = c

2 〈ξ, ξ〉 − 2π〈ρ̂ + μ, ξ〉 +
∑

α∈R+
0

2
〈α, α̂∨〉

〈ξ,α〉∫
0

vα(x)dx, (2.6)

where ρ̂ := ρ(R̂0) = 1
2
∑

α∈R̂+
0
α and vα(x) := (1 − t2α) 

∫ x
0

dy
1−2tα cos(y)+t2α

.

Let C(Pc) denote the algebra of functions f : Pc → C. For any λ ∈ Pc, the periodic 
Macdonald spherical function M (c)

λ ∈ C(Pc) is given by the restriction of Mλ to the nodes 
Pc.

Theorem 2.2 (Basis). The periodic Macdonald spherical functions M (c)
λ , λ ∈ Pc, form a 

basis of C(Pc).

Remark 2.3. In Sect. 6 we will introduce the W0-invariant affine Macdonald spherical 
functions Φξ ∈ C(P ). It will be seen that, for ξ ∈ Pc, the lattice function Φξ is periodic 
with respect to translations over elements in cQ̂∨ ⊂ P and that M (c)

λ (ξ) = Φξ(λ) for 
λ ∈ Pc (see Remark 6.5 for more details).
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2.3. Structure constants

Theorem 2.2 gives rise to an affine analog of the (t-deformed) Littlewood-Richardson 
coefficients:

M
(c)
λ M (c)

μ =
∑
ν∈Pc

cν,(c)λ,μ (t)M (c)
ν (λ, μ ∈ Pc). (2.7)

When μ is minuscule or quasi-minuscule we have an explicit expression for the structure 
constants cν,(c)λ,μ (t). Let us recall in this connection that a weight μ ∈ P is called minuscule
if 0 ≤ 〈μ, α∨〉 ≤ 1 for all α ∈ R+

0 and quasi-minuscule if 0 ≤ 〈μ, α∨〉 ≤ 2 for all α ∈ R+
0

with the upper bound being realized only once (i.e., the quasi-minuscule weight is unique 
and equal to the highest short root ϑ).

To formulate this explicit expression for the corresponding structure constants let us 
put:

mλ(eiξ) :=
∑

ν∈W0λ

ei〈ν,ξ〉 (λ ∈ P, ξ ∈ V ),

and

ĥt := tα0 êt(−α∨
0 ) (2.8)

with

êt(η) := t
〈ρ̂∨

s ,η〉
ϑ t

〈ρ(R̂∨
0 )−ρ̂∨

s ,η〉
ϕ =

∏
β∈R̂+

0

t
〈η,β∨〉/2
β (η ∈ Q̂) (2.9)

and where ρ̂∨s = 1
2
∑

α∈W0ϑ∩R+
0
α̂∨ ∈ P̂∨ (so êt(η) is a Laurent polynomial in tα, cf. e.g. 

[35]).

Theorem 2.4 (Affine Pieri rule). For λ ∈ Pc, ξ ∈ Pc and ω ∈ P+ minuscule or quasi-
minuscule, we have that

mω(eiξ)M (c)
λ (ξ) = Uλ,ω(t)M (c)

λ (ξ) +
∑

ν∈W0ω
λ+ν∈Pc

Vλ,ν(t)M (c)
λ+ν(ξ). (2.10)

Here

Vλ,ν(t) :=
∏

β∈R̂+
0

〈λ,β〉=0
〈ν,β〉>0

1 − tβ êt(β)
1 − êt(β)

∏
β∈R̂+

0
〈λ,β〉=c
〈ν,β〉<0

1 − tβĥtêt(−β)
1 − ĥtêt(−β)

(2.11)

and the coefficient Uλ,ω(t) is given by Eq. (4.1) below (which implies in particular that 
Uλ,ω(t) vanishes when ω is minuscule).
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To state the exact expressions for the coefficient Uλ,ω(t) in (2.10) and for cν,(c)λ,μ (t)
in Eq. (2.7) when μ is (quasi)-minuscule, some more notation regarding the underlying 
affine Weyl group and affine root system is required. (A more thorough discussion can 
be found e.g. in [7,24,38]).

3. The affine Weyl group

The affine root system R associated with the admissible pair (R0, R̂0) is the set of all 
affine roots α∨ +mαrc = mα(α̂+rc) (α ∈ R0, r ∈ Z). An affine root a = α∨ +mαrc ∈ R

will be regarded as an affine linear function a : V → R of the form a(x) = 〈x, α∨〉 + rc

(x ∈ V , α ∈ R, r ∈ Z), and gives rise to an affine reflection sa : V → V across the 
hyperplane Va := {x ∈ V | a(x) = 0} given by sa(x) := x − a(x)α. The choice of 
positive roots R+

0 , with a simple basis α1, . . . , αn, determines the set of affine positive 
roots R+ := R∨,+

0 ∪ {α∨ + mαrc | α ∈ R0, r ∈ N} and a corresponding basis of affine 
simple roots a0, . . . , an of the form a0 := α∨

0 + c and aj := α∨
j for j = 1, . . . , n. Here n

denotes the rank of R0 (= dimV ). Notice that these conventions imply that the affine 
root system R is of twisted type iff R̂0 = uϕR0 is not simply-laced and of untwisted type 
otherwise.

The affine Weyl group W is defined as the group generated by the affine reflections 
sa, a ∈ R and contains the finite Weyl group W0 as the subgroup fixing the origin. It is 
an infinite Coxeter group with the simple affine reflections sj := saj

(j = 0, 1, . . . , n) as 
generators and subject to the relations

(sjsk)mjk = 1, j, k ∈ {0, . . . , n} (3.1)

Here mjk = 1 if j = k and mjk ∈ {2, 3, 4, 6} if j �= k (and the provision that for n = 1
the order m10 = m01 = ∞). In particular, any w ∈ W can be decomposed as

w = sj1 · · · sj� , (3.2)

with j1, . . . , j� ∈ {0, . . . , n}. The length 
(w) is defined as the minimum number of reflec-
tions sj (j = 0, 1, . . . , n) involved in any decomposition (3.2) of w. Any decomposition 
(3.2) with 
 = 
(w) is called a reduced expression of w.

A fundamental domain for the action of W on V is given by the dominant Weyl alcove

Ac = {x ∈ V | 0 ≤ 〈x, β〉 ≤ c, ∀β ∈ R̂+
0 }. (3.3)

Furthermore, since our positive scale parameter c is integral-valued the weight lattice 
P ⊂ V is stable with respect to the action of W and Pc (2.4) is a fundamental domain 
for this restriction. Given x ∈ V , we will also write wx ∈ W for the unique shortest affine 
Weyl group element such that

x+ := wxx ∈ Ac. (3.4)
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For any λ ∈ P let

t[λ] :=
∏

a∈R[λ]

ta′ (3.5)

where (α∨ + mαrc)′ := α∨ denotes the differential and

R[λ] := {a ∈ R+ | a(λ) < 0}. (3.6)

The action of w ∈ W on V induces a dual action on the space C(V ) of functions 
f : V → C given by

(wf)(x) := f(w−1x) (w ∈ W, f ∈ C(V ), x ∈ V ). (3.7)

In Section 4 we will use that C(P ) is an invariant subspace under this action.

4. Affine Littlewood-Richardson coefficients and fusion rules

We are now in the position to make the coefficient Uλ,ω(t) in Theorem 2.4 explicit:

Uλ,ω(t) =
∑

ν∈W0ω
(λ+ν)+=λ

t[λ + ν] + (1 − t−1
ϑ )

∑
ν∈W0ω

wλ+νλ=λ

dλ,ν , (4.1)

where

dλ,ν :=
{
θ(λ + ν)et(−ν)hsign(〈λ,ν̂〉)

t if ν ∈ W0ϑ

0 otherwise
(4.2a)

(with the convention that sign(0) := 0) and

ht := tϑ et(−α0) with et(ν) :=
∏

α∈R+
0

t〈ν,α
∨〉/2

α , (4.2b)

(cf. Eq. (2.9)). Here θ : P → N ∪ {0} denotes the function

θ(λ) :=
∣∣{a ∈ R+ | a(λ) = −2}

∣∣ . (4.2c)

Remark 4.1. Observe that dλ,ν is also a Laurent polynomial in tα, α ∈ R0. We will also 
see in Lemma 8.2 that θ(λ +ν) = 0 if ν is in the orbit of a minuscule weight and therefore 

it is also possible to write dλ,ν = θ(λ + ν)et(−ν)hsign(〈λ,ν∨〉)
t .

A function t : W → (−1, 1) \ {0} satisfying tww̃ = twtw̃ if 
(ww̃) = 
(w) + 
(w̃)
is called a length multiplicative function. We compatibilize this function with the root 
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multiplicative function by setting tj := tsj = tαj
for j = 0, 1, . . . , n. For any finite 

subgroup G ⊂ W we consider the generalized Poincaré series

G(t) =
∑
w∈G

tw (4.3)

of G associated with the length multiplicative function t.

Corollary 4.2 (Affine Littlewood-Richardson coefficients). If ω is a (quasi)-minuscule 
weight and λ, ν ∈ Pc, then the affine Littlewood-Richardson coefficients in (2.7) are 
given by

cν,(c)λ,ω (t) =

⎧⎪⎪⎨⎪⎪⎩
W0;ω(t)

(
Uλ,ω(t) − U0,ω(t)

)
if λ = ν,

W0;ω(t)Vλ,ν−λ(t) if ν − λ ∈ W0ω,
0 otherwise.

(4.4)

Here W0;ω(t) refers to generalized Poincaré series (4.3) of W0;ω = {w ∈ W0 | wω = ω}.

Proof. Applying Theorem 2.4 with λ = 0 and using that M0(ξ) = W0(t) and V0,θ(t) =
W0(t)/W0;ϑ(t) yields the identity M (c)

ω (ξ) = W0;ω(t)
(
mω(eiξ) −U0,ω(t)

)
. Combining this 

with Theorem 2.4 entails the desired result. �
When R0 is of type An−1 and ω is minuscule, Corollary 4.2 reproduces the affine Pieri 

rule in Eq. (1.2).
At tα = 0 (α ∈ R0) the Macdonald spherical functions Mλ (2.2) specialize to the 

Weyl characters

χλ(ξ) = δ(ξ)−1
∑

w∈W0

(−1)�(w)ei〈wξ,λ+ρ〉 (λ ∈ P+), (4.5)

where ρ = ρ(R0) and δ(ξ) denotes the Weyl denominator

δ(ξ) =
∑

w∈W0

(−1)�(w)ei〈wξ,ρ〉 =
∏

α∈R+
0

(ei〈ξ,α〉/2 − e−i〈ξ,α〉/2). (4.6)

The nodes Pc are in this situation given explicitly by

ξμ(0) := 2π
h + c

(ρ̂ + μ) (μ ∈ P̂c), (4.7)

where h = h(R) = 1 − 〈ρ, α∨
0 〉 denotes the Coxeter number of the affine root system R. 

Indeed, limt→0 ξμ(t) = ξμ(0) by Lemma 6.2 and Eq. (6.8) below, since ρ̂v(ξ) = hξ for 
tα = 0 in view of Schur’s lemma.
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The corresponding parameter degeneration of the structure constants in C(Pc),

χλ(ξ)χμ(ξ) =
∑
ν∈Pc

cν,(c)λ,μ (0)χν(ξ) (λ, μ ∈ Pc, ξ ∈ Pc), (4.8)

model the fusion rules of the genus-zero Wess-Zumino-Witten conformal field theories 
associated with the affine Lie algebra ĝ of type R∨ = {2a/〈a′, a′〉 | a ∈ R} [14,23,26] (cf. 
also Remark 4.3 below). Corollary 4.2 gives rise to the following Pieri rule in the fusion 
ring for μ = ω ∈ P+ minuscule or quasi-minuscule:

χω(ξ)χλ(ξ) = (N0,ω −Nλ,ω)χλ(ξ) +
∑

ν∈W0ω
λ+ν∈Pc

χλ+ν(ξ) (λ ∈ Pc, ξ ∈ Pc),

with

Nλ,ω = |{aj | aj(λ) = 0 and αj ∈ W0ω}|

(so Nλ,ω = 0 if ω is minuscule). When R0 is of type An−1 and ω is minuscule, this Pieri 
rule amounts to Eq. (1.5).

To infer the boxed Pieri rule, one first observes that limt→0 Vλ,ν−λ(t) = 1, 
limt→0 W0;ω(t) = 1, and

lim
t→0

(1 − t−1
ϑ )dλ,ν =

{
− limt→0 t

−1
ϑ et(−ν) if ν ∈ R−

0 ∩W0ϑ and 〈λ, ν̂〉 = 0,
− limt→0 et(−α0 − ν) if ν ∈ R+

0 ∩W0ϑ and 〈λ, ν̂〉 = c,

and where R−
0 = −R+

0 = R0\R+
0 . Since limt→0 t

−1
ϑ et(α) = 1 if α ∈ R+

0 is a simple root 
and 0 otherwise, this shows that limt→0 Uλ,ω(t) = −Nλ,ω in view of Lemma 8.2 below. 
The asserted Pieri rule in the fusion ring is now immediate from Corollary 4.2.

Remark 4.3. If, following [38, Chapter I], we denote by S(R0; c) = R0+cZ the (untwisted) 
affine root system associated with R0. Then the following table identifies the Dynkin type 
of the affine root system R and of the affine Lie algebra ĝ in terms of the admissible pair 
(R0, R̂0), via the classification in [38, Chapter I.3]:

(R0, R̂0) R ĝ

(R0, R
∨
0 ) S(R∨

0 ; c) S(R∨
0 ; c)∨

(R0, uϕR0) S(R0; c/uϕ)∨ S(R0; c/uϕ)

Remark 4.4. If ĝ is untwisted (i.e. (R0, R̂0) = (R0, uϕR0)), then cν,(c)λ,ϑ (0) is a nonnegative 

integer. The same is true when ĝ is twisted (i.e. (R0, R̂0) = (R0, R∨
0 ) with R0 not simply-

laced) provided c is not an integer multiple of 〈ϕ,ϕ〉 ∈ {2, 3}. If ĝ is twisted and c is an 
〈ϑ,ϑ〉
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integer multiple of 〈ϕ,ϕ〉
〈ϑ,ϑ〉 ∈ {2, 3}, however, then cλ,(c)λ,ϑ (0) = N0,ϑ − Nλ,ϑ = −1 when 

λ ∈ Pc is chosen such that aj(λ) = 0 for all j ∈ {0, 1, 2, . . . , n} with αj ∈ W0ϑ. This 
state of affairs is in agreement with prior observations in [19] regarding the occurrence
of negative structure constants in the genus-zero Wess-Zumino-Witten fusion ring when 
the underlying affine Lie algebra ĝ is twisted.

Remark 4.5. Recently in [10] a deformation of the Wess-Zumino-Witten fusion ring of 
type B̂Cn = A

(2)
2n was derived, based on a diagonalization of a finite q-boson model with 

diagonal open end boundary conditions obtained in [13]. The approach in [13] does not 
use affine Hecke algebras and hinges instead on Sklyanin’s quantum inverse scattering 
method (a.k.a. the algebraic Bethe Ansatz method) for the diagonalization of quantum 
integrable eigenvalue problems with boundary conditions.

5. Affine intertwining operator

The remainder of the paper is devoted to the proofs of Theorems 2.2 and 2.4 with the 
aid of the affine Hecke algebra H. By definition, H is the unital associative algebra over 
C with invertible generators T0, T1 . . . , Tn such that the following relations are satisfied

(Tj − tj)(Tj + 1) = 0 (0 ≤ j ≤ n), (5.1)

TjTkTj · · ·︸ ︷︷ ︸
mjk factors

= TkTjTk · · ·︸ ︷︷ ︸
mjk factors

(0 ≤ j �= k ≤ n), (5.2)

where the number of factors mjk on both sides of the braid relation (5.2) is the same as 
the order of the corresponding braid relation (3.1) for W (see e.g. [24,38]).

For a reduced expression w = sj1 · · · sj� , let Tw := Tj1 . . . Tj� (which does not depend 
on the choice of the reduced expression by virtue of the braid relations). It is known that 
the elements Tw, with w ∈ W , form a basis for H over C.

The subalgebra of H generated by T1, . . . Tn is referred to as the finite Hecke algebra
H0 (associated with W0 and t).

To define the affine intertwining operator we need the following integral-reflection 
representation of H.

Proposition 5.1. The following defines an action of H on C(P ):

Tjf = (tjsj + (tj − 1)Jj)f (f ∈ C(P ), j = 0, . . . , n), (5.3)

where Jj : C(P ) → C(P ) denotes the operator given by

(Jjf)(λ) :=

⎧⎪⎪⎨⎪⎪⎩
−

∑aj(λ)
k=1 f(λ− kαj) if aj(λ) > 0,

0 if aj(λ) = 0,∑−aj(λ)−1
f(λ + kα ) if a (λ) < 0,

(5.4)
k=0 j j
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Proof. For any k ∈ {0, 1, . . . , n} consider the (finite dimensional) parabolic subalgebra 
Hk of H generated by T0, T1, . . . , Tk−1, Tk+1, . . . , Tn. The idea of the proof is to show 
that, for any (fixed) k, Tj �→ Ij , j �= k extends to a representation of Hk on C(P ). Here 
Ij := tjsj + (tj − 1)Jj denote the operator on the right-hand side of Eq. (5.3). The fact 
that H is generated by T0, . . . , Tn subjected to the braid relations and quadratic relations 
implies then the proposition. For this let us introduce the vertices v0 = 0, v1, . . . , vn of 
the alcove Ac (3.3), so in particular

aj(vk) = δj,k, for all j �= k. (5.5)

We fix a k ∈ {0, 1, . . . , n} and consider the finite subsystem obtained from R by consid-
ering the vertex vk as the “new origin”: Rk = {(a′)∨ | a ∈ R, a(vk) = 0}. Then a �→ a′

defines a root system isomorphism from the parabolic subsystem {a ∈ R | a(vk) = 0}
of R onto R∨

k . The root system Rk is a finite root system of rank n in V , although 
not necessarily irreducible. A basis of simple roots for Rk is given by αj , j �= k. The 
map sj �→ s′j = sα∨

j
, j �= k defines a group isomorphism from the parabolic subgroup 

Wk = 〈sj | j �= k〉 of W to the finite Weyl group W0(Rk) of Rk. This isomorphism 
induces a natural isomorphism from the parabolic subalgebra Hk = 〈Tj | j �= k〉 of H to 
the finite Hecke algebra H0(W0(Rk)) associated with W0(Rk) and tj , j �= k.

From Rk ⊂ R0 follows that P ⊂ P (Rk), where P (Rk) denotes the weight lattice of 
Rk. We will also need the (−vk)-translation P ′

k := −vk +P ⊂ P (Rk) of P . For any j �= k

consider the integral-reflection operator I ′j : C(P (Rk)) → C(P (Rk)) associated to the 
finite root system Rk, i.e. I ′j = tjs

′
j +(tj −1)J ′

j where J ′
j is given by the same expression 

as (5.4) but with aj(λ) replaced mechanically by 〈α∨
j , λ〉. Observe that C(P ′

k) is invariant 
under the operators J ′

j and I ′j , j �= k. The linear isomorphism 
k : C(P ) → C(P ′
k) defined 

by (
kf)(y) = f(vk + y) satisfies 
k(sjf) = s′j
k(f), 
k(Jjf) = J ′
j
k(f), and therefore 

also 
k(Ijf) = I ′j
k(f), for all j �= k.
By [11, Lem. 4.2], applied to the finite root system Rk and restricted to the finite Hecke 

algebra part, it follows that Tj �→ I ′j , j �= k, defines a representation of H0(W0(Rk)) on 
C(P (Rk)) (see also Remark 5.2 below). Since C(P ′

k) is an invariant subspace under this 
representation it follows that Tj �→ I ′j , j �= k extends to a representation of H0(W0(Rk))
on C(P ′

k). Using the above mentioned isomorphisms from Hk to H0(W0(Rk)) we deduce 
that Tj �→ I ′j , j �= k extends to a representation of Hk on C(P ′

k). By taking the pullback 
of the linear isomorphism 
k we conclude that Tj �→ Ij , j �= k extends to representa-
tion of Hk on C(P ). Since k was arbitrary this finishes the proof, as indicated in the 
beginning. �
Remark 5.2. In [11, Lem. 4.2] it was assumed that the underlying finite crystallographic 
root system R was irreducible and of full rank. However, the proposition holds for all
finite crystallographic root systems of full rank. If R is decomposed into disjoint, irre-
ducible and orthogonal subsystems R1∪· · ·∪R�, then H0(W0(R)) � H0(W0(R1)) ⊗· · ·⊗
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H0(W0(R�)) and the action of the integral-reflection representation also decomposes on 
C(P ) � C(P (R1)) ⊗ · · · ⊗ C(P (R�)), which yields immediately the result.

Alternatively, the proof of [11, Lem. 4.2] works verbatim if the requirement that R be 
irreducible is dropped.

The affine intertwining operator J : C(P ) → C(P ) is now defined as follows:

(J f)(λ) := t[λ]−1(Twλ
f)(λ+). (5.6)

Proposition 5.3. The operator J is invertible.

Proposition 5.3 is a direct consequence of Lemma 5.4 below. Given v, w ∈ W we recall 
that v ≤ w in the Bruhat partial order on W if v may be obtained by deleting simple 
reflections from the reduced expression of w (see [38, Sec. 2.3]). For x ∈ V , we denote 
by [x] the finite set {y ∈ V | y+ = x+ and wy ≤ wx} and by Conv [x] the convex hull of 
[x]. Now we consider the following partial order � on P :

∀μ, λ ∈ P μ � λ iff (i) λ− μ ∈ Q and (ii) Conv [μ] ⊆ Conv [λ]. (5.7)

Lemma 5.4. The action of J is triangular with respect to the above partial order:

(J f)(λ) =
∑

μ∈P, μ
λ

Jλ,μf(μ), (f ∈ C(P ), λ ∈ P ) (5.8)

for some coefficients Jλ,μ ∈ C and with Jλ,λ = t[λ]−1.

Proof. We observe that t[λ] = twλ
and proceed inductively in the length of wλ. For 


(wλ) = 0 clearly (J f)(λ) = f(λ). Next, assuming 
(wλ) > 0 let j be such that wλsj <

wλ. Hence

(J f)(λ) = t[λ]−1(Twλ
f)(λ+) = t−1

j t[sjλ]−1(Twsjλ
Tjf)((sjλ)+)

IH= t−1
j

∑
μ∈P, μ
sjλ

Jsjλ,μ(Tjf)(μ) =
∑

μ∈P, μ
λ

Jλ,μf(μ), (5.9)

where the step IH hinges on the induction hypothesis and the last equality is due to the 
fact that the convex hull of Conv [sjλ] and sj(Conv [sjλ]) is contained in Conv [λ] since 
[sjλ] ∪ sj([sjλ]) ⊆ [λ].

The diagonal coefficient of ∑
μ∈P, μ
sjλ

Jsjλ,μ(Tjf)(μ)

corresponds to term with μ = sjλ and the coefficient of f(λ) in (Tjf)(sjλ) is equal to 1
when sjλ ≺ λ (by Eqs. (5.3), (5.4)). Hence, upon comparing the coefficients of f(λ) on 
both sides of (5.9) it is seen that Jλ,λ = t−1

j Jsjλ,sjλ, which proves the lemma. �
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To prepare for the next section, we finish with a convenient characterization of the 
W -invariant subspace of C(P ) in terms of H and J .

Lemma 5.5. The W -invariant subspace

C(P )W := {f ∈ C(P ) | wf = f, w ∈ W} (5.10)

consists of the functions f : C(P ) → C that satisfy

J TjJ−1f = tjf (j = 0, . . . , n).

Proof. For any f ∈ C(P ), j ∈ {0, . . . n} and λ ∈ P we have

(J TjJ−1f)(λ)=t[λ]−1(Twλ
TjJ−1f)(λ+)

=
{
t[λ]−1(TwλsjJ−1f)(λ+) if aj(λ) ≥ 0
t[λ]−1 (tj(TwλsjJ−1f)(λ+) + (tj − 1)(Twλ

J−1f)(λ+)
)

if aj(λ) < 0

=tjt[λ]−1(Twλ
J−1f)(λ+)

+ t
χ(aj(λ))
j

(
t−1
wλsj

(TwλsjJ−1f)(λ+) − t[λ]−1(Twλ
J−1f)(λ+)

)
=tjf(λ) + t

χ(aj(λ))
j (f(sjλ) − f(λ)) .

Here χ denotes the characteristic function of [0, ∞) and we also used that

TwTj =
{
Twsj if 
(wsj) = 
(w) + 1,
tjTwsj + (tj − 1)Tw if 
(wsj) = 
(w) − 1,

the relation 
(wλsj) = 
(wλ) + 1 if aj(λ) ≥ 0, 
(wλsj) = 
(wλ) − 1 if aj(λ) < 0, and the 
observation that

t−1
wλsj

(Twλsjf)(λ+) = t[sjλ]−1(Twsjλ
f)(λ+).

Hence, f is W -invariant if and only if J TjJ−1f=tjf . �
6. Periodic Macdonald spherical functions

For a ξ ∈ V we define the affine Macdonald spherical functions function in C(P ):

Φξ := J φξ with φξ :=
∑
v∈W0

Tve
iξ, (6.1)

where eiξ denotes the plane wave function eiξ(λ) := ei〈λ,ξ〉 (λ ∈ P ).
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The plane waves decomposition for φξ (6.1) in the next theorem is a known result, 
see [33, Thm. 1] and (with more details) [34, (4.1.2)] or also [42, Thm. 2.9(a)] and [44, 
Thm. 6.9]). To keep our presentation self contained we include a brief verification based 
on the representation from Proposition 5.1. For any w ∈ W we define the finite set

R(w) := R+ ∩ w−1(R−)

with R− = −R+ = R\R+. Let us observe that the cardinality of R(w) is equal to the 
length of w and that for any λ ∈ P we have that R(wλ) = R[λ] (the reader may consult 
[38, Section 2.2] and [38, (2.4.4)], respectively). It is also clear that for any w ∈ W0 one 
has R(w) = R+

0 ∩ w−1(R−
0 ) and where (recall) R−

0 = −R+
0 .

Proposition 6.1. The function φξ, for

ξ ∈ Vreg := {ξ ∈ V | 〈ξ, α〉 �∈ 2πZ, ∀α ∈ R+
0 }, (6.2)

decomposes as the following linear combination of plane waves

φξ =
∑

w∈W0

C(wξ)eiwξ, (6.3)

with

C(ξ) :=
∏

α∈R+
0

1 − tαe
−i〈ξ,α〉

1 − e−i〈ξ,α〉 . (6.4)

In particular, φξ(λ) = Mλ(ξ) (λ ∈ P+, ξ ∈ Vreg).

Proof. From the action of Tj (j = 1, . . . , n) (5.3) we have that for any ξ ∈ Vreg

Tjeiξ = bj(sjξ)eiξ + cj(sjξ)eisjξ = bj(−ξ)eiξ + cj(−ξ)eisjξ, (6.5a)

with

cj(ξ) = 1 − tje
−i〈ξ,αj〉

1 − e−i〈ξ,αj〉
, bj(ξ) = tj − cj(ξ) = cj(−ξ) − 1.

Since the stabilizer of ξ ∈ Vreg for the action of W0 � 2πQ∨ is trivial, all the vectors wξ, 
for w ∈ W0, are different to each other modulo 2πQ∨. Then, for any ξ ∈ Vreg the plane 
waves eiwξ, w ∈ W0, are linearly independent in C(P ). Therefore, the function φξ may 
be written as

φξ =
∑

Cw(ξ)eiwξ, (6.5b)

w∈W0
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for some unique coefficients Cw(ξ) ∈ C.
It follows from Eq. (6.5a) that for any reduced expression w = sj� . . . sj1 ∈ W0 the 

action of Tw on eiξ is of the form

Tweiξ =

⎛⎝ ∏
1≤k≤�

cjk(sjk · · · sj2sj1ξ)

⎞⎠ eiwξ + l.o., (6.5c)

for some coefficients cjk and l.o. is a linear combination of plane waves eivξ with v < w

in the Bruhat partial order on W0.
Let w0 be the longest element of W0. Applying the above identity to a reduced ex-

pression w0 = sj� . . . sj1 (so 
 = #R+
0 ) we conclude that

Cw0(ξ) =
∏

1≤k≤�

cjk(−sjk−1 · · · sj2sj1ξ) =
∏

1≤k≤�

1 − tjke
i〈ξ,sj1sj2 ···sjk−1αjk

〉

1 − ei〈ξ,sj1sj2 ···sjk−1αjk
〉

=
∏

α∈R+
0

1 − tαe
i〈ξ,α〉

1 − ei〈ξ,α〉
= C(−ξ) = C(w0ξ).

In the last equality we have used that R+
0 = R(w0) and in the third that (see e.g. [38, 

(2.2.9)]) R+
0 = R(w0) = {sj1sj2 · · · sjk−1αjk | k = 1, 2, . . . , 
}.

Let us denote the trivial idempotent

ı0 :=
∑
v∈W0

Tv, (6.6)

having then φξ = ı0 e
iξ. Since Tjı0 = tjı0 we have that Tjφξ = tjφξ for j = 1, . . . , n. It 

follows from Eq. (6.5a) and the linear independence of the plane waves that for ξ ∈ Vreg

Csjw(ξ)cj(wξ) = Cw(ξ)cj(−wξ) for all w ∈ W0, j ∈ {1, . . . , n}. (6.7)

On the other hand, from the product formula in Eq. (6.4) it follows that for any 
ξ ∈ Vreg

C(sjξ)cj(ξ) = C(ξ)cj(−ξ) for all j ∈ {1, . . . , n}.

Hence, C(wξ) also satisfies the recurrence relation in Eq. (6.7). Finally, by downward 
induction with respect to the Bruhat order starting from the initial condition Cw0(ξ) =
C(w0ξ) (and using that cj(ξ) �= 0), we conclude that Cw(ξ) = C(wξ) for all w ∈ W0 and 
any ξ ∈ Vreg. �

Before stating the next results, let us recall that the nodes Pc are given by the unique 
global minima stemming from the strictly convex Morse functions Vμ (2.6), μ ∈ P̂c (2.5). 
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Given μ, the existence of the global minimum is guaranteed because Vμ(ξ) is smooth 
and Vμ(ξ) → +∞ for ξ → ∞. Since ξμ is a minimum of Vμ, it is a solution for ∇Vμ = 0:

cξμ + ρ̂v(ξμ) = 2π(ρ̂ + μ) where ρ̂v(ξ) :=
∑

α∈R+
0

vα(〈ξ, α〉)α̂. (6.8)

Lemma 6.2. The critical points ξμ, μ ∈ P̂c are all distinct and belong to the open alcove 
(with respect to the affine action of W0 � 2πQ∨ on V )

A = {ξ ∈ V | 0 < 〈ξ, α〉 < 2π, ∀α ∈ R+
0 }. (6.9)

Moreover, the position of ξμ depends analytically on the parameters tα ∈ (−1, 1).

Proof. From Eq. (6.8) it is clear that one can recover μ from the value of ξμ, thus ξμ �= ξλ
if μ �= λ. Also, for any β ∈ R+

0 we have that

c〈ξμ, β〉 + 〈ρ̂v(ξμ), β〉 = 2π〈ρ̂ + μ, β〉. (6.10a)

Since vα(x) is an odd function it follows moreover that

〈ρ̂v(ξμ), β〉 = 1
2

∑
α∈R0

〈α∨,β〉>0

(
vα(〈ξμ, α〉) − vα(〈sβ∨ξμ, α〉)

)
〈α̂, β〉. (6.10b)

From Eqs. (6.10a), (6.10b) one deduces that 〈ξμ, β〉 > 0 for μ ∈ P̂c. Here one exploits 
that vα(x) is strictly monotonously increasing and that

〈ξμ, α〉 − 〈sβ∨ξμ, α〉 = 〈ξμ, β〉〈α, β∨〉. (6.10c)

Moreover, from Eqs. (6.10b), (6.10c) with β = ϕ and the quasi-periodicity of the 
function vα(x) one deduces that for 〈ξμ, ϕ〉 ≥ 2π we would have

c〈ξμ, ϕ〉 + 〈ρ̂v(ξμ), ϕ〉 ≥ 2πc + π
∑

α∈R+
0

〈α,ϕ∨〉〈ϕ, α
∨

mα
〉=2π(1 + c + 〈ρ̂, ϕ〉), (6.10d)

where in the last connection we used that for any root multiplicity function t : R0 → C

and root β ∈ R0 we have

∑
α∈R+

0

tα〈β, α∨〉〈α, β∨〉 = 2
n

∑
α∈R0

tα (6.10e)

(which follows from the Schur’s lemma, cf. the proof of [15, Lem. 10.1] and [12, Rem. 7.4]) 
and that
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〈ρ̂, ϕ〉 + 1 = 1
n

∑
α∈R0

1
mα

.

Now by combining the Eq. (6.10d) with Eq. (6.10a) for β = ϕ, we would have

c + 〈ρ̂, ϕ〉 + 1 ≤ 〈ρ̂ + μ, ϕ〉 = 〈μ, ϕ〉 + 〈ρ̂, ϕ〉,

which contradicts our assumption that μ ∈ P̂c. Hence, one must have that 〈ξμ, ϕ〉 < 2π, 
i.e. ξμ ∈ A.

Finally, it is clear that the critical equation (6.8) is analytic in the parameters tα ∈
(−1, 1). Since the Jacobian of the critical equation is invertible, the implicit function 
theorem now ensures that the dependence of the critical point ξμ is also analytic in these 
parameters. �
Proposition 6.3 (Periodic Macdonald Spherical Function). For every μ ∈ P̂c the function 
Φξμ belongs to the W -invariant subspace C(P )W .

Proof. Since Tjı0 = tjı0 for j = 1, . . . , n (see Eq. (6.6)), we have that

J TjJ−1Φξ = J Tjφξ = tjJ φξ = tjΦξ. (6.11)

Hence, by Lemma 5.5, we only need to prove that J T0J−1Φξ = t0Φξ, or equivalently 
T0φξ = t0φξ. For ξ ∈ Vreg, the decomposition in Eq. (6.3) together with the explicit 
action of T0 on eiξ (cf. Eqs. (5.3)–(5.4)) gives us that

T0φξ =
∑
v∈W0

t0 − 1
1 − ei〈vξ,α0〉

C(vξ)eivξ +
∑
v∈W0

1 − t0e
i〈vξ,−α0〉

1 − ei〈vξ,−α0〉
C(s′0vξ)eic〈vξ,α0〉eivξ.

Now, by comparing with the corresponding decomposition of t0φξ, we have that T0φξ =
t0φξ if for ξ ∈ Vreg

eic〈vξ,−α0〉 = C(s′0vξ)
C(vξ)

1 − t0e
i〈vξ,−α0〉

t0 − ei〈vξ,−α0〉
, ∀v ∈ W0.

By substituting the product expansion for C(·) over R+
0 (cf. Eq. (6.4)) we have

C(s′0ξ)
C(ξ) =

∏
α∈R+

0
〈−α0,α

∨〉>0

1 − tαe
i〈ξ,α〉

tα − ei〈ξ,α〉

= 1 − t0e
i〈ξ,−α0〉

t0 − ei〈ξ,−α0〉

∏
α∈R+

0 \{−α0}

(
1 − tαe

i〈ξ,α〉

tα − ei〈ξ,α〉

)〈−α0,α̂〉

,
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where we used that 〈−α0, α̂〉 ∈ {0, 1} for all α ∈ R+
0 \ {−α0}. The relation now may be 

written as

eic〈ξ,−vα0〉 =
∏

α∈R+
0

(
1 − tαe

i〈ξ,α〉

ei〈ξ,α〉 − tα

)〈−vα0,α̂〉

, ∀v ∈ W0, (6.12)

by using that an overall flip of the signs in the factors at the right-hand side cancels out 
because 

∏
α∈R̂+

0
(−1)〈β∨,α〉 = (−1)〈β∨,2ρ̂〉 = 1 for all β ∈ R̂0.

To finish this proof, let us observe that if we multiply Eq. (6.10a) by the imaginary 
unit and exponentiate both sides, using that

vα(x) = 2 arctan
(1 + tα

1 − tα
tan

(x
2

))
= i log

(1 − tαe
ix

eix − tα

)
,

then it follows that ξμ is indeed a solution for Eq. (6.12). �
Remark 6.4. In [11, Eqn. (5.12a)] a Macdonald spherical function Φξ ∈ C(P )W0 was 
introduced in terms of an intertwiner operator built up (essentially) from an integral-
reflection representation of the finite Hecke algebra H0. In contrast, the affine Macdonald 
spherical function Φξ ∈ C(P )W0 (6.1) is based on the affine intertwiner operator J (5.6), 
built up from the integral-reflection representation of the affine Hecke algebra H.

Remark 6.5. For y ∈ V , let us denote by τy : V → V the translation determined by the 
action τy(x) := x + y. Then the affine Weyl group admits the alternative presentation 
W = W0�τ(cQ̂∨) because sα∨sα∨+mαrc = τcrα̂∨ for α ∈ R0, r ∈ Z. Because of the above 
proposition it follows that Φξμ (μ ∈ P̂c) is W0-invariant and cQ̂∨-periodic, explaining 
the name periodic Macdonald spherical function for Φξμ .

Remark 6.6. From the proof of Proposition 6.3, it is clear that for every μ ∈ P̂ the vector 
ξ = ξμ solves the following algebraic system of equations of Bethe type

eic〈ξ,β
∨〉 =

∏
α∈R+

0

(1 − tαe
i〈ξ,α〉

ei〈ξ,α〉 − tα

)〈α̂,β∨〉
, ∀β ∈ R̂0.

Indeed, at ξ = ξμ Eq. (6.12) is satisfied and the short roots of R̂∨
0 generate R̂∨

0 over Z.

7. Proof of Theorem 2.2 (basis)

For any ω ∈ P+ we consider the free operator Lω;1 : C(P ) → C(P ) given by

(Lω;1f)(λ) :=
∑

f(λ + ν) (7.1)

ν∈W0ω



22 J.F. van Diejen et al. / Advances in Mathematics 392 (2021) 108027
and the operator Lω : C(P ) → C(P ) given by

Lω = JLω;1J−1. (7.2)

For the isotropy group Wλ of λ ∈ Pc in W , Macdonald’s product formula for the 
generalized Poincaré series of the Coxeter group associated with the length multiplicative 
function t [35] tells us that

Wλ(t) =
∑

w∈Wλ

tw =
∏

α∈R̂+
0

〈λ,α〉=0

1 − tαêt(α)
1 − êt(α)

∏
α∈R̂+

0
〈λ,α〉=c

1 − tαĥtêt(−α)
1 − ĥtêt(−α)

, (7.3)

with ĥt and êt given by (2.8), (2.9). Armed with this identity, we can readily infer that for 
any μ ∈ P̂c the function Φξμ is nonzero in C(Pc) ∼= C(P )W . Indeed, from Proposition 6.1, 
Lemma 6.2, Proposition 6.3 and the trivial action of J on C(Pc), it follows that

Φξ(λ) = Mλ(ξ) = M
(c)
λ (ξ) for any ξ ∈ Pc and λ ∈ Pc. (7.4)

In particular, at λ = 0 this yields that

Φξ(0) =
∑
v∈W0

C(vξ) =
∑
v∈W0

∏
α∈R+

0

1 − tαe
−i〈vξ,α〉

1 − e−i〈vξ,α〉

�=
∑
v∈W0

tv =
∏

α∈R+
0

1 − tαet(α)
1 − et(α) > 0,

where we used Macdonald’s identity from Ref. [35, Thm. (2.8)] for the � equality.

Proposition 7.1 (Completeness of the periodic Macdonald spherical functions). The re-
striction of the functions Φξμ , μ ∈ P̂c, constitutes a basis for C(Pc) that diagonalizes the 
commuting operators Lω simultaneously:

LωΦξμ = mω(eiξμ)Φξμ (ω ∈ P+, μ ∈ P̂c). (7.5)

Proof. For any ω ∈ P+ the action of Lω;1 on a plane wave yields

Lω;1e
ivξ = mω(eiξ)eivξ (v ∈ W0).

Hence, given μ ∈ P̂c it follows that at ξ = ξμ:

LωΦξ = JLω;1J−1J φξ = JLω;1φξ = mω(eiξ)Φξ.

The upshot is that the nontrivial eigensolutions Φξμ , μ ∈ P̂c in Eq. (7.5) must be lin-
early independent in C(Pc), in view of Lemma 6.2 and the well-known fact that the 
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W0-invariant trigonometric polynomials mω(eiξ), ω ∈ P+, separate the points of the 
fundamental alcove A.

To finish the proof, it suffices to verify that dim C(Pc) = |Pc| = |P̂c|, for this con-
firms that the eigenfunctions Φξμ (μ ∈ P̂c) form a basis of C(Pc). To this end we first 
observe that Pc consists of all nonnegative integral combinations c1ω1 + · · · + cnωn of 
the fundamental weights of R0 satisfying c1m1 + · · · + cnmn ≤ c, where the positive 
integers m1, . . . , mn refer to the coefficients of the highest root −α∨

0 of R̂0 in the simple 
basis α∨

1 , . . . , α
∨
n of R∨

0 . Similarly, P̂c consists of all nonnegative integral combinations 
c1ω̂1 + · · ·+ cnω̂n of the fundamental weights of R̂0 satisfying c1m̂1 + · · ·+ cnm̂n ≤ c and 
where the positive integers m̂1, . . . , m̂n now refer to the coefficients of ϕ in the simple 
basis α̂∨

1 , . . . , α̂
∨
n of R̂∨

0 . If R̂0 = uϕR0 then clearly m̂j = mj for all j and if R̂0 = R∨
0

then the m̂1, . . . , m̂n are a permutation of the m1, . . . , mn. So in both cases |Pc| = |P̂c|, 
which completes the proof of the proposition. �

Proposition 7.1 guarantees that the square matrix 
[
M

(c)
λ (ξμ)

]
λ∈Pc,μ∈P̂c

is of full rank, 
which finishes the proof of Theorem 2.2.

8. Proof of Theorem 2.4 (affine Pieri rule)

For any function f ∈ C(P )W , ω ∈ P+ (quasi)-minuscule and λ ∈ Pc we have that

(Lωf)(λ)=(JLω;1J−1f)(λ)=(Lω;1J−1f)(λ)

=
∑

ν∈W0ω

(J−1f)(λ + ν)

=
∑

ν∈W0ω

t[λ + ν]f(λ + ν) + dλ,ν(1 − t−1
ϑ )f(λ).

The last equality hinges on the following lemma (whose proof is delayed until subsection 
8.2):

Lemma 8.1. For any f ∈ C(P ), λ ∈ Pc and ν ∈ P �
ϑ := {wη | w ∈ W0 and η ∈

P is a minuscule or quasi-minuscule weight}, one has that

(J−1f)(λ + ν) = t[λ + ν]f(λ + ν) + dλ,ν(1 − t−1
ϑ )f(λ),

where dλ,ν is taken from (4.2a).

Since f is W -invariant, it follows that

(Lωf)(λ) =

⎛⎜⎜⎝ ∑
ν∈W0ω

t[λ + ν] + (1 − t−1
ϑ )

∑
ν∈W0ω

dλ,ν

⎞⎟⎟⎠ f(λ) (8.1)
(λ+ν)+=λ
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+
∑

ν∈W0ω
λ+ν∈Pc

∑
η∈W0ω

(λ+η)+=λ+ν

t[λ + η] f(λ + ν).

The action of Lω on f is therefore of the form

(Lωf)(λ) = Uλ,ω(t)f(λ) +
∑

ν∈W0ω
λ+ν∈Pc

Vλ,ν(t)f(λ + ν).

The computation of the coefficients Uλ,ω(t) and Vλ,ν(t) hinges on the following lemma 
(whose proof is relegated in turn to subsection 8.1):

Lemma 8.2. For λ ∈ Pc and ν ∈ P �
ϑ , we are in either one of the following two situations: 

i) When (λ + ν)+ = λ, then w′
λ+νν = αj for some j ∈ {0, . . . , n} with tj = t0 and 

θ(λ + ν) = 0.
ii) When (λ + ν)+ �= λ, then wλ+ν ∈ Wλ and θ(λ + ν) = 1 if ν ∈ R−

0 ∩ W0ϑ and 
〈λ, ̂ν〉 = 0, or if ν ∈ R+

0 ∩W0ϑ and 〈λ, ̂ν〉 = c, while θ(λ + ν) = 0 otherwise.

Indeed, the asserted expression for Uλ,ω in (4.1) is immediate from Eq. (8.1) and the 
lemma, while the coefficient Vλ,ν(t) of f(λ + ν) in Eq. (2.11) is retrieved after a short 
computation:∑

η∈W0ω
(λ+η)+=λ+ν

t[λ + η] =
∑

μ∈Wλ(λ+ν)

t[μ] = Wλ(t)/(Wλ ∩Wλ+ν)(t) = Vλ,ν(t),

where in the last step Macdonald’s product formula (7.3) was used.
Upon combining with Eq. (7.5) and recalling that for λ ∈ Pc and μ ∈ P̂c: Φξμ(λ) =

Mλ(ξμ) = M c
λ(ξμ) (cf. Eq. (7.4)), the Pieri formula in Eq. (2.10) readily follows.

8.1. Proof of Lemma 8.2

Let μ ∈ P \Pc and j ∈ {0, . . . , n} such that aj ∈ R[μ] (recall (3.6)). Then wμ = wsjμsj
with 
(wμ) = 
(wsjμ) + 1, and thus R[μ] = sjR[sjμ] ∪ {aj} (cf. [38, (2.2.4)], although 
it is only stated for non-twisted types, it is actually true also for twisted types). From 
(4.2c) it follows that

θ(μ) =
{
θ(sjμ) + 1 if aj(μ) = −2,
θ(sjμ) if aj(μ) �= −2.

(8.2)

Let us consider the situation λ ∈ Pc, ν ∈ P �
ϑ and λ +ν �∈ Pc. If for any j ∈ {0, . . . , n} such 

that aj ∈ R[λ + ν] we define ν̃ := sj(λ + ν) − λ (having sj(λ + ν) = λ + ν̃), then we are 
in one of the following cases and thanks to (8.2) we have the corresponding expressions 
for θ(λ + ν)
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(A) aj(λ) = 0 and 〈ν, α∨
j 〉 = −1 (so aj(λ + ν) = −1). Then sj ∈ Wλ, so ν̃ = s′jν and 

θ(λ + ν)=θ(λ + s′jν).
(B) aj(λ) = 0 and 〈ν, α∨

j 〉 = −2 (so aj(λ + ν) = −2). Then sj ∈ Wλ and ν = −αj , so 
ν̃ = s′jν = αj and θ(λ + ν)=θ(λ + s′jν) + 1.

(C) aj(λ) = 1 and 〈ν, α∨
j 〉 = −2 (so aj(λ + ν) = −1). Then ν = −αj and ν̃ = 0, so 

wλ+ν = sj and θ(λ + ν)=θ(λ) = 0.

Cases (B) and (C) only occur when ν ∈ W0ϑ. If furthermore j = 0, then also α0 = −ϑ

(so we are necessarily in the untwisted case R̂0 = R∨
0 ).

When λ + ν ∈ Pc the lemma is trivial. Let λ + ν �∈ Pc and a decomposition wλ+ν =
sj� · · · sj1 with 
 = 
(wλ+ν) ≥ 1, we define ν0 := ν, νk := s′jkνk−1 (for k = 1, . . . , 
), 
b0 := aj1 and bk = β∨

k + rkmβc := sj1 · · · sjkajk+1 (for k = 1, . . . , 
 − 1). This means that 
R[λ + ν] = {b0, . . . , b�−1} (cf. [38, (2.2.9)]). By considering the three aforementioned 
possible cases we have

λ + ν = λ + ν0
sj1−→ λ + ν1

sj2−→ · · ·
sj�−1−→ λ + ν�−1,

where all these steps involve only (A) or (B), while (C) can only occur at the final step

λ + ν�−1
sj�−→ λ = (λ + ν)+, (8.3)

or does not occur at all

λ + ν�−1
sj�−→ λ + ν� = (λ + ν)+. (8.4)

In situation (8.3) we have that sj�wλ+ν = sj�−1 · · · sj1 ∈ Wλ, (λ + ν)+ = λ, and tj� = t0. 
Even more, we have s′j�w

′
λ+νν = ν�−1 = −αj� , which implies −ν = (s′j�w

′
λ+ν)−1αj� =

(s′j1 · · · s′j�−1
αj�) = β�−1, thus

− 〈λ, ν∨〉 + r�−1mνc = b�−1(λ) = ((sj�wλ+ν)−1aj�)(λ)

= aj�(sj�−1 · · · sj1λ) = aj�(λ) = 1,

hence

−ν∨ + (1 + 〈λ, ν∨〉) =b�−1 ∈ R[λ + ν]. (8.5)

On the other hand, in situation (8.4) we have that wλ+ν ∈ Wλ and (λ + ν)+ �= λ.
In order to compute θ(λ + ν) let us notice that it has to be the number of times that 

the case (B) occurs in the steps above, since θ((λ +ν)+) = 0. In other words, the number 
of times that 〈νk, α∨

jk+1
〉 = −2 for k = 0, . . . , 
′ − 1, with 
′ = 
 − 1 in situation (8.3) and 


′ = 
 in situation (8.4). Since for k = 0, . . . , 
′ − 1:

〈νk, α∨
j 〉 = −2 ⇔ 〈ν, β∨

k 〉 = −2 ⇔ ν = −βk,
k+1
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and

〈λ, β∨
k 〉 + mβk

rkc = bk(λ) = (sj1 · · · sjkajk+1)(λ)

= ajk+1(sjk · · · sj1λ) = ajk+1(λ) = 0,

then

β∨
k − 〈λ, β∨

k 〉 = bk ∈ R[λ + ν].

Hence, θ(λ + ν) is equal to 1 or 0 when −ν∨ + 〈λ, ν∨〉 ∈ R[λ + ν] or −ν∨ + 〈λ, ν∨〉 �∈
R[λ + ν], respectively. In situation (8.3) we have that θ(λ + ν) = 0, because by Eq. (8.5)
we have 〈λ, ν∨〉 + 1 ∈ mνcZ and if −ν∨ + 〈λ, ν∨〉 ∈ R[λ + ν] ⊂ R then 〈λ, ν∨〉 ∈ mνcZ, 
this would contradict that c > 1.

For θ(λ + ν) = 1 we have −ν∨ + 〈λ, ν∨〉 ∈ R+, and therefore ν ∈ R0 ∩P �
ϑ = W0ϑ and 

〈λ, ν∨〉 ∈ mϑcZ. On the other hand we have that |〈λ, ν∨〉| = |〈λ, mν ν̂〉| ≤ mϑc for all 
λ ∈ Pc, proving mϑ〈λ, ̂ν〉 = 〈λ, ν∨〉 ∈ {mϑc, 0} if θ(λ + ν) > 0, and this concludes the 
proof of the lemma.

8.2. Proof of Lemma 8.1

It will be more useful to use the following reformulation:

(Twλ+ν
f)((λ + ν)+) = f(λ + ν) − dλ,ν(1 − t−1

ϑ )f(λ).

For f ∈ C(P ), μ ∈ P , j = 0, . . . , n with 0 ≤ aj(μ) ≤ 2 the action of Tj is given 
explicitly by

(Tjf)(μ) =

⎧⎪⎪⎨⎪⎪⎩
tjf(μ) if aj(μ) = 0
f(sjμ) = f(μ− αj) if aj(μ) = 1
f(μ− 2αj) − (tj − 1)f(μ− αj) if aj(μ) = 2

. (8.6)

Now we proceed by induction on 
(wλ+ν). For λ +ν ∈ Pc the result is trivial. Let assume 
that 
(wλ+ν) > 1 and sj (0 ≤ j ≤ n) such that aj ∈ R[λ + ν], then 
(wλ+νsj) =

(wλ+ν) − 1. By the observations made at the beginning of Section 8.1 we have that 
wλ+νsj = wsj(λ+ν) with either sj(λ + ν) = λ + s′jν (cases (A) and (B)) or sj(λ + ν) =
λ(∈ Pc) (case (C)). In the case (C) we have wλ+ν = sj and the statement to prove is 
just the case aj(μ) = 1 of Eq. (8.6) with μ = λ. Furthermore, for the cases (A) and (B)
we have

(Twλ+ν
f)((λ + ν)+) = (Twλ+s′jν

Tjf)((λ + s′jν)+)

= (Tjf)(λ + s′jν) − dλ,s′jν(1 − t−1
ϑ )(Tjf)(λ)
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by the induction hypothesis and the fact (λ + s′jν)+ = (λ + ν)+.
If we are in the case (A) then we have (Tjf)(λ +s′jν) = f(λ +ν) and (Tjf)(λ) = tjf(λ)

by the situations aj(μ) = 1 and aj(μ) = 0 of Eq. (8.6), respectively. This finishes the 
induction step since dλ,s′jν = dλ,νt

−1
j . For ν ∈ P �

ϑ\W0ϑ this follows from dλ,s′jν = dλ,ν =
0, while for ν ∈ W0ϑ it follows from θ(λ + s′jν) = θ(λ + ν) and that for j > 0 we have 
et(sjν) = et(ν)tj and 〈λ, sj ν̂〉 = 〈sjλ, ̂ν〉 = 〈λ, ̂ν〉, while on the other hand, for j = 0 we 
have et(s′0ν) = et(ν + α0) = et(ν)h−1

t tϑ and (if θ(λ + ν) > 0) also 〈λ, s′0ν̂〉 = 〈s′0λ, ̂ν〉 =
〈λ + cα0, ̂ν〉 = 〈λ, ̂ν〉 + c〈α0, ̂ν〉 = 〈λ, ̂ν〉 − c and therefore sign(〈λ, s′0ν̂〉) = sign(〈λ, ̂ν〉) − 1
(cf. Lemma. 8.2).

If we are in the case (B) then we have that ν ∈ W0ϑ, tj = tϑ and (Tjf)(λ + s′jν) =
f(λ +ν) − tϑ(1 − t−1

ϑ )f(λ) because of the case aj(μ) = 2 of Eq. (8.6) for μ = λ + s′jν. We 
also have dλ,s′jν = 0 because 0 ≤ θ(λ +s′jν) < θ(λ +ν) ≤ 1. To complete the induction it 
remains to prove that dλ,ν = tϑ. For this observe that θ(λ + ν) = 1 and when j > 0 we 

have et(−ν) = et(αj) = tj = tϑ (as et(αj) = et(sjαj)t
〈αj ,α

∨
j 〉

j = et(−αj)t2j = t2j/et(αj)) 
and 〈λ, ̂ν〉 = −〈λ, α̂j〉 = 0, while for j = 0 we have et(ν) = et(−α0) = et(ϑ) = ht/tϑ
(since in this case α0 = −ϑ, cf. Lemma 8.2) and 〈λ, ̂ν〉 = −〈λ, α̂0〉 = −〈λ, α∨

0 〉 =
−a0(λ) + c = c > 0.

9. The structure constants revisited

The computation in the previous section produces the coefficients of the Pieri rule 
from the action of Lω (7.2) in C(Pc). In principle the same strategy can be followed to 
compute the structure constants cν,(c)λ,μ (t) (λ, μ, ν ∈ Pc) more generally. To this end one 
starts with the monomial expansion of the Macdonald spherical function Mλ(ξ), λ ∈ P+:

Mλ(ξ) =
∑

μ∈P+, μ≤λ

nλ,μ(t)mμ(eiξ), (9.1)

where we have employed the dominance partial order on P+: μ ≤ λ iff λ −μ ∈ Q+. With 
the aid of the expansion coefficients nλ,μ(t) one defines the following operator-valued 
Macdonald spherical function Mλ(L) : C(P ) → C(P ) via the formula:

Mλ(L) =
∑

μ∈P+, μ≤λ

nλ,μ(t)Lμ (9.2)

(cf. Eqs. (7.1), (7.2)). For λ ∈ Pc, the operator-valued Macdonald spherical function 
Mλ(L) (9.2) acts as a linear difference operator in the invariant subspace C(P )W ∼= C(Pc)
with coefficients given by the structure constants cν,(c)λ,μ (t) (μ, ν ∈ Pc).

Theorem 9.1 (Structure constants). For any λ ∈ Pc, the action of Mλ(L) on f ∈ C(Pc)
is given by

(Mλ(L)f)(μ) =
∑

cν,(c)λ,μ (t)f(ν), (9.3)

ν∈Pc
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with cν,(c)λ,μ (t) as defined in Eq. (2.7).

Proof. By linearity, it suffices to verify Eq. (9.3) on the basis of Macdonald spherical 
functions Φξ, ξ ∈ Pc. To this end we compute for ξ ∈ Pc:

Mλ(L)Φξ
Eq.(9.2)=

∑
μ∈P+, μ≤λ

nλ,μ(t)LμΦξ
Prop.7.1=

∑
μ∈P+, μ≤λ

nλ,μ(t)mμ(eiξ)Φξ

Eq.(9.1)= Mλ(ξ)Φξ = M
(c)
λ (ξ)Φξ.

Evaluation of this identity at μ ∈ Pc with the aid of Eq. (7.4) entails the desired formula 
for f = Φξ:

(Mλ(L)Φξ)(μ) = M
(c)
λ (ξ)Φξ(μ) = M

(c)
λ (ξ)M (c)

μ (ξ) =
∑
ν∈Pc

cν,(c)λ,μ M (c)
ν (ξ)

=
∑
ν∈Pc

cν,(c)λ,μ Φξ(ν). �
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