
D
el
ft
U
ni
ve

rs
it
y
of

Te
ch

no
lo
gy

Tristan Dijkstra

MSc Thesis

Machine Learning-based Anomaly
Detection in XMM-Newton
Telemetry Data
Machine Learning-based Anomaly
Detection in XMM-Newton
Telemetry Data





MSc Thesis
Machine Learning-based Anomaly Detection in

XMM-Newton Instrument Telemetry Data

by

Tristan Dijkstra

to obtain the degree of

Master of Science in Aerospace Engineering

at the Delft University of Technology,

to be defended publicly on Monday May 12, 2025 at 14:00.

Student number: 4798139
Project duration: June, 2024 – March, 2025
Thesis committee: Dr. J. Guo, TU Delft, Committee Chair

Dr. Ir. R. Sabzevari, TU Delft, External Examiner
Dr. S. Speretta, TU Delft, Supervisor
Dr.-Ing. P. Gómez, ESA ESAC, Supervisor

Cover: Stylised illustration of XMM-Newton. Own work using 3D model obtained from
https://scifleet.esa.int/

Code: Once cleared, the code developed for this thesis will become available here:
https://github.com/tristandijkstra/xmm_anomaly_thesis

An electronic version of this thesis is available at http://repository.tudelft.nl/.

https://scifleet.esa.int/
https://github.com/tristandijkstra/xmm_anomaly_thesis
http://repository.tudelft.nl/


Preface

The completion of this thesis marks an end to my six-and-a-half-year journey at TU Delft as well as multiple
decades of studying. Looking back, I can still vividly remember the day I was accepted into the Aerospace
Bachelor’s, and I am reminded of the challenges, growth, and incredible memories that I have experienced
since then. I feel incredibly fortunate to be able to finish my studies with a thesis on a topic which I have been
interested in for some years, and I am thankful to a number of people who have supported me along the way.

I would like to start by extending my deepest gratitude to my two supervisors, Stefano Speretta and Pablo
Gómez, for the opportunity, for your guidance and for your patience. At times, it felt like the thesis was going
nowhere, yet you both kept kept optimistic outlook, and rightfully so. Beyond the technical knowledge you have
instilled in me, you have both significantly influenced my way of thinking, which I hope to carry with me in my
future endeavours.

From the XMM-Newton team at ESAC, I would like to thankMeeri Harkki, Landry Amiard, Pedro Calderón Riaño
and Peter Kretschmar for their invaluable support during the project. Special thanks go to Landry and Meeri for
regularly and enthusiastically assisting me with my many questions on XMM. From earlier in my studies at TU
Delft, I would also like to thank Junzi Sun for sparking my interest in data science in a way only few teachers
can.

I would like to thank my friends, both the old bunch, who have stuck with me since my final years in high school
as well as those I have met in Delft. You have all had a lasting impression on me, and have helped shape me
into the person I am today. A special thanks goes to my closest friend Rahim, who has been with me through
it all.

Last but not least, I would like to thankmy parents, my younger brother andmy grandmother for always believing
in me, for encouraging my education, and for their life-long and unwavering support, even from 8000 kilometres
away. This thesis is dedicated to you.

Tristan Dijkstra
Delft, March 2025

i



Summary

To ensure their long-term safety, spacecraft transmit telemetry data from thousands of onboard sensors to
Earth, which is then continuously monitored for anomalies. Ground operators are commonly supported by
alarming systems, which actively monitor if telemetry goes beyond pre-defined thresholds, as well as statistical
pattern matching systems to find recurring anomalies. However, anomaly detection remains an expensive,
time-consuming, and labour-intensive task. With the number of satellites expected to increase in the coming
years, a number of space agencies have been researching Machine Learning-based (ML) Time Series Anomaly
Detection (TSAD) methods to increase automation. Such methods have already been applied successfully for
cybersecurity and fraud detection. However, a shortage of quality spacecraft telemetry-related benchmark
datasets inhibits adoption in the spacecraft operations.

XMM-Newton is a space telescope operated by the European Space Agency (ESA), that studies high-energy
cosmic X-ray sources. The spacecraft was launched in 1999 and its ground operations have been significantly
automated since then. Operators are now implementing machine learning-based methods to further facilitate
operations as part of a broader push towards such methods at ESA. The spacecraft has been operational for
over 25 years, providing a large span of data for an eventual anomaly benchmark.

In collaboration with the XMM-Newton team and the Data Science Section at the European Space Astronomy
Centre (ESAC), this thesis explored machine learning-based anomaly detection methods applied to instrument
telemetry data from the XMM-Newton space telescope. The primary research question was:

What is a suitable approach to construct a dataset of anomalies in XMM-Newton instrument telemetry data
using ML-based TSAD techniques?

The project was focussed on two scientific instruments: the pn sensor of the European Photon Imaging Camera
(EPIC-PN or PN for short) and the Optical Monitor (OM). Beginning with a data exploration phase, XMM teleme-
try was found to contain a number of challenging features, including: seasonal eclipses, and a high volume
of missing data. The Darts Python library was chosen to simplify development, leading to a semi-supervised
forecasting approach. The steps used to go from raw telemetry data to a catalogue of anomalies are described
below:

1. From raw telemetry data to machine learning-ready data — To make it compatible with ML-based
TSAD algorithms, raw telemetry data is processed to account for varying sample rates, differing magni-
tudes across channels, status and mode channels. Auxiliary data, like eclipses and orbital data are also
added.

2. From machine learning-ready data to forecasted telemetry data — Semi-supervised forecasting
anomaly detection methods rely on autoregression to reproduce a version of the telemetry data with-
out anomalies. The forecasted telemetry data can then be compared to the original, revealing points with
high forecasting error to be anomalies. In addition to the target telemetry channel being forecasted, the
forecasting models are provided with a number of covariate channels containing real data, to provide ad-
ditional context. These covariates are always presented as true data, meaning the approach is not true
forecasting. Multiple forecasting models were tested, finding that more than one model has good perfor-
mance but that the best model depends on the channel, chosen preprocessing steps and the amount of
hyper-parameter tuning used. In the end, LSTM-based models were selected due to their relative simplic-
ity, compatibility with a number of target channels and fast runtimes. To exclude anomalous segments
from the training data, sample weights for these segments are set to zero.

3. From forecasted telemetry data to anomaly detections — The forecasting error can be modified in
various ways to obtain an anomaly score. Various scorers were compared, ranging from the basic ab-
solute forecasting error to unsupervised anomaly detection methods. A number of earlier detections as
well as some ground-truth anomalies provided by the XMM team were used as a benchmark to compare
scoring functions. None of the scorers tested could detect all of the benchmark anomalies, and in the
end, a combination of multiple unsupervised algorithms are used: two Isolation Forest scorers and one
Histogram-Based Outlier Scorer (HBOS), with window sizes, 75, 240 and 240 minutes respectively. A
static quantile threshold is then be applied to retrieve anomaly detections.

4. From anomaly detections to a catalogue of anomalies— A number of post-processing steps are ap-
plied to refine the detections, introduce supplemental metrics and convert them to a catalogue of anoma-
lies in tabular format.
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A data pipeline is implemented to automatically go through each of the four steps, using a number of configu-
ration files as input, and producing anomalies, metrics and intermediate data products as output. This pipeline
was successfully run to three temperature-related target channels yielding a total of 40 detections after filtering
out forecasting artefacts and recurring appearances of a recurring spike anomaly. Most of the detections ex-
tend prominently beyond the nominal behaviour of the channels, with only 2 inconspicuous detections. This can
partly be attributed to the scoring system: each scorer is only fed with the forecasting error and applying a static
quantile threshold yields only the anomalies with the largest forecasting error, thus exceeding furthest from the
nominal behaviour. At the same time, the channels analysed provide little opportunity to detect inconspicu-
ous anomalies: the first has a straight line as its nominal behaviour and the other two are highly discretised,
containing only three possible values in their nominal range.

The detections were compared to a collection of anomaly reports provided by the XMM team, finding that
only three detections have matching anomaly reports. At least one other relevant anomaly report yielded
no detection due to deficiencies in the pipeline. Of the remaining detections, only three could be discussed
with an instrument engineer, yet all three were found to be real anomalies, providing a positive indication of
the remaining results. Testing the pipeline on a larger number of target channels and comparing resulting
detections to a larger collection of existing anomalies would provide a better view of its performance.

A number of areas of improvement have been found throughout the thesis, both in the pipeline as well as the
overall approach. Some of the most significant ones are briefly listed below:

1. Anomaly scoring — The scoring system currently performs poorly on inconspicuous anomalies, relies
on static thresholding and is highly parametrised. The use of automated tuning can improve the system
in the short term, while the inclusion of additional context beyond just the forecasting error is required to
achieve major improvement.

2. Expansion of sample weights—Sample weights are currently used to remove eclipses and areas with
missing data from the training data. This should be expanded to include existing and newly discovered
anomalies.

3. Choosing better target and covariate channels — The thesis explored a wide variety of telemetry
channels, but not all are equally relevant for anomaly detection. Instrument engineers and spacecraft
operators could be consulted to select target channels and relevant covariates.

4. Collecting a larger initial set of anomalies— Improvements to the scoring system and sample weights
benefit from a larger collection of initial anomalies. Those retrieved from anomaly reports in this thesis
only cover a small number of events within XMM data and should be supplemented with other sources.
Alternatively, an unsupervised anomaly detection pass can be used to collect an initial set of anomalies.

Although not flawless, the implemented approach proved capable of finding anomalies in XMM telemetry data. A
refined approach that can be used to proceed towards an XMM-Newton anomaly benchmark has been created,
incorporating solutions for the flaws discussed above and others. Additionally, considerable progress has been
made in the development of software tools which can be adopted for use in anomaly detection by the XMM-
Newton team and for the continued development of a benchmark. Tools built for pre-processing raw telemetry
data as well as detection post-processing have a particularly high level of maturity.

Detecting an anomaly is only the first step in a longer process, and subsequent investigations may reveal a
cause and lead to actions for a resolution. A problem with black-box machine learning models is that they do
not provide insights into their decision-making. The thesis briefly explored how explainable artificial intelligence
methods can be used to better understand an anomaly and its origins. Time constraints meant this area could
not be explored fully, but the relevant background and intermediate findings focussed on the SHapley Additive
exPlanations (SHAP) method are included in the report to facilitate future research.
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1. Introduction

Satellites are complex interconnected systems that, upon launch, are beyond the reach of hardware-based
monitoring. Spacecraft often feature Fault Detection, Isolation, and Recovery (FDIR) systems to catch and
resolve common problems. However, the complexity of modern spacecraft means that not all scenarios are
accounted for. Additionally, the harsh temperature and radiation environment in space as well as software
and hardware issues, inevitably lead to unexpected and unwanted changes in behaviour. Failure to catch and
resolve these deviations may compromise the mission, or in the worst case, lead to catastrophic failure [1].
A prime example of this is the 2016 Hitomi breakup event [2], where an uncaught issue in the attitude deter-
mination system led to a complete loss. Such failures are costly, both economically and in terms of scientific
return. To prevent them, satellites transmit housekeeping telemetry data from sometimes thousands of onboard
sensors to ground stations on Earth, where it is continuously monitored for anomalies.

Monitoring telemetry for anomalies is an expensive and time-consuming endeavour, requiring specialised
ground operators with expert knowledge on the spacecraft and its systems. To aid operators, ground segments
commonly employ automatic monitoring systems, which raise out-of-limits warnings when telemetry signals go
beyond pre-defined thresholds. Operators also regularly perform trend analyses to monitor the health of the
spacecraft over time [3][4]. Some satellite operations setups are supplemented by statistical pattern-matching
methods to find recurring anomalies [5] [6]. Although these methods are usually sufficient to keep a spacecraft
safe, they require a significant amount of expert resources, cannot provide complete coverage over all telemetry
signals, and may fail to catch anomalies that remain within statistical boundaries or have a temporal component
[5]. With the number of operational satellites and their complexity expected to increase in the coming years,
improved and automated anomaly detection becomes a necessity.

The XMM-Newton (XMM) space telescope, operated by the European Space Agency (ESA), is dedicated to the
study of high-energy cosmic X-ray sources. Although more than 25 years old, the satellite still has considerable
significance to the astrophysics field, being one of the most powerful X-ray telescopes ever built. Over 8000
publications have been made using XMM and 400 are published each year [7]. As a result, the mission has
received a number of extensions well beyond its 10 year design life, with the potential to operate into the mid-
2030s when it is planned to be replaced [8][9]. Until then, the XMM science operations team at European
Space Astronomy Centre (ESAC) are tasked with keeping its instruments healthy and have been looking into
new methods to discover anomalies and anomalous trends in telemetry of the ageing satellite. The ground
segment of XMM was designed with continuous monitoring and command in mind but has been significantly
automated over the years. Most recently, the mission operations team at European Space Operations Centre
(ESOC) has automated XMM flight dynamics planning using Machine Learning (ML) [10], as part of ESA’s A2I
roadmap [11].

In recent years, several space actors, including ESA [11] [12], CNES [4] and NASA [13] have been researching
the application of machine learning in spacecraft anomaly detection. Machine learning algorithms are already
used for Time Series Anomaly Detection (TSAD) problems because of their ability to learn complex patterns
in large collections of multidimensional data. Consulting literature reveals a myriad of papers proposing novel
methods for TSAD problems, ranging from simple clustering methods to large deep learning models [14]. Re-
searchers rely on publicly available datasets to benchmark the performance of their TSAD algorithms. These
benchmark datasets as well as the metrics commonly used to evaluate algorithms have previously gained
considerable criticism [15] [16] [17], enabling significant progress towards improved methods in recent years.

Quality public benchmarks related to spacecraft telemetry remain rare, which hinders the adoption of ML-based
TSAD in spacecraft operations. Recent work by Kotowski et al. (2024) [18] introduced the European Space
Agency Benchmark for Anomaly Detection in Satellite Telemetry (ESA-ADB), which contains a combined 17.5
years of anonymised telemetry data from two ESA missions and accounts for the common flaws affecting
earlier work. Although this is a good start, more large datasets are required for an unbiased evaluation of
TSAD algorithms in spacecraft telemetry. Additionally, the anonymised nature of ESA-ADB’s telemetry prevents
researchers from applying physics-informed machine learning and anomaly detection.

Once detected, anomalies are investigated to find a cause and to develop a solution. A common issue with
black-box machine learning models is that they provide detections without insights into their decision-making.
The explainable AI research field is focussed on understanding a machine learning model’s reasoning behind
their predictions and decisions. The combination of explainable AI and anomalies in spacecraft telemetry is
relatively unexplored but has potential to help operators find the root-cause of an anomaly faster [19].
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As part of the ESA-wide push towards the adoption of modern machine learning tools, the XMM-Newton team
has recently developed Python interfaces for the retrieval and analysis of XMM-Newton instrument telemetry
data, making up to 25 years of telemetry data accessible to ML-based TSAD algorithms. The large volume
of telemetry data makes XMM an interesting target for the application of ML-based anomaly detection and a
potential source for a new anomaly benchmark. In turn, the development of ML-based TSAD techniques could
aid the XMM-Newton during continued operations of the mission. In collaboration with The XMM-Newton team
and Data Science Section at ESAC, this thesis explores the application of ML-Based anomaly detection on
XMM telemetry data. The project makes extensive use of the ESA Datalabs platform, which is used to access
the data and enables software to be developed and executed on ESA computing infrastructure.

1.1. Research objectives and questions
Using the background and motivations of the previous section, the following research objectives are derived:

OBJ1 — Find anomalies in XMM-Newton telemetry data by applying machine learning-based anomaly detec-
tion techniques.

OBJ2 — Facilitate research into spacecraft telemetry anomaly detection by initiating the construction of a
dataset of anomalies in XMM-Newton instrument telemetry data.

OBJ3 — Enable the use of machine learning-based anomaly detection techniques in XMM-Newtonn telemetry
by developing a set of software tools for processing and detecting anomalies in raw XMM telemetry
data.

These objectives have significant overlap. A toolset can be made to encompass the processing of telemetry
data, the detection of anomalies in said data and the subsequent compilation of a dataset. Additionally, any
anomalies found can be used in an eventual benchmark dataset. The choice was made to construct the toolset
in the form of a data pipeline. In such systems, input data is successively passed through a series of processes
which refine, manipulate, visualise and extract information using the input data. For this thesis, anomalies are
retrieved from raw telemetry data through an Anomaly Pipeline. The choice to construct this anomaly pipeline
was made for convenience, personal development and to facilitate continuation of the project beyond the thesis.

A number of topics relevant to TSAD and TSAD in spacecraft telemetry are not covered in this thesis. To start,
the emerging field of onboard fault and anomaly detection is not covered in this thesis. XMM has no capacity
to perform any machine learning onboard and limiting TSAD algorithms to the limited computational power
of edge computing devices is not useful to the discovery of anomalies. The thesis also does not deal with
streaming anomaly detection, where anomaly detection is applied live as data comes in. Instead the focus is
to look at (a part of) the historical telemetry data. Finally, the purpose of this thesis is not to develop an optimal
or state-of-the-art TSAD approach. The contribution of new datasets is of greater scientific significance.

It is important to note that a complete benchmark dataset, similar to ESA-ADB was not the expected end-result
as the required manpower and time required to produce such a result is well beyond the scope of a master’s
thesis.

To tackle the research objectives, the following research questions and sub-questions have been formulated:

RQ1 — What is a suitable approach to construct a dataset of anomalies in XMM-Newton instrument telemetry
data using ML-based TSAD techniques?

RQ1S1 — What are the unique or notable characteristics of XMM instrument telemetry data and how
do these affect the anomaly detection methodology?

RQ1S2 — Which preprocessing steps are required to transform unprocessed XMM Telemetry data
into a format that is digestible by machine learning anomaly detection techniques?

RQ1S3 — What format and data structure should a dataset of anomalies have to be used as a bench-
mark?

RQ1S4 — What anomalies can be found using existing ML-based TSAD techniques?
RQ1S5 — How do detected anomalies compare to existing anomalies reported by operators and in-

strument engineers?
RQ1S6 — What are the differences in approach compared to ESA-ADB?
RQ1S7 — What are the limitations and flaws of the approach used and what improvements can be

made?
RQ2 — How can explainable AI methods be applied to understand a detected anomaly and its origins?

RQ2S1 — Which types of explainable AI methods can be applied to TSAD?
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RQ2S2 — Which temporal and inter-channel dependencies can be uncovered when analysing XMM-
Newton anomalies with Explainable AI?

Here RQ1 is seen as the primary research question as Explainable AI can only be applied once anomalies are
found. Unfortunately, due to time constraints, the development of tools related to RQ2 could not be completed
and some of the questions are left unanswered. The unfinished methodology is still presented to facilitate future
work.

1.2. Report layout
The thesis report is divided into eight chapters and features one appendix. Chapter 2 provides essential back-
ground on the XMM-Newton mission, time series anomaly detection, explainable AI and the proprietary ESA
tools used to perform the thesis. Next, Chapter 3 explores the instrument telemetry data, investigating its
unique properties and their consequences for the methodology. Chapter 4 introduces the resources, tools and
approach used to detect anomalies by means of an anomaly detection pipeline. An overview of the planning
used to perform the thesis is also provided here. The implementation of the anomaly pipeline which takes raw
anomaly data as input and provides anomaly detections as output is detailed in Chapter 5. The unfinished
explainable AI implementation is also presented there. Chapter 6 presents and analyses the resulting anomaly
detections with additional context provided in Appendix A. In Chapter 7, the pipeline and its results are dis-
cussed and recommendations are provided to proceed towards a new anomaly benchmark. Finally, Chapter 8
revisits the research questions and provides conclusions on the thesis work.



2. Background

The work done for this thesis spans a number of research fields. This chapter provides an introduction to several
topics relevant to the completion of the project. Section 2.1 provides background on the XMM-Newton mission
and its instruments, environment and operations. Next, Section 2.2 introduces the topic of time series anomaly
detection. It covers the field in general, including existing algorithms, benchmarks and trends with a spotlight
on anomaly detection in the context of spacecraft telemetry. Section 2.3 introduces the topic of explainable AI.
Finally, Section 2.4 introduces the ESA-proprietary tools that will be used to perform the thesis work.

2.1. XMM-Newton
A good understanding of a spacecraft is vital when performing analysis of its telemetry. This section provides
an overview of the XMM-Newton mission. Section 2.1.1 introduces the mission including its relevance in the
field of X-ray astrophysics. Next, Section 2.1.2 provides an overview of the design of the spacecraft as well
as its instruments. The orbit and environment of the spacecraft are briefly described in Section 2.1.3. Finally,
Section 2.1.4 presents the operations of XMM-Newton.

2.1.1. The mission and its relevance
Cosmic X-ray sources can only be observed from space due to absorption in Earth’s atmosphere [20][21]. The
X-ray Multi-mirror Mission (XMM-Newton), (shown in Figure 2.1), is a space telescope operated by ESA that is
used to study high-energy cosmic X-ray sources, such as black holes, galaxies, and pulsars [22][23][24]. XMM-
Newton, often abbreviated to XMM and previously called the High Throughput X-ray Spectroscopy Mission, is a
cornerstone mission of the ESA Horizon 2000 programme. Proposed in the 1980s and launched in December
1999, XMM was designed for 10 years of operations with an initial mission of 2 years, but has since had
8 extensions, with a current extension up to December 2026 and an indicative extension up to 2029 [8][9].
Several life-extending measures have been implemented that allow operations into the 2030s, when hydrazine
reserves of the satellite will eventually be depleted [8][25] [26].

Figure 2.1: An artist rendition of XMM-Newton in orbit. Image by ESA / D. Ducros, retrieved from the ESA website [27].

After 25 years of operation, the spacecraft remains in good health and scientifically relevant, being among the
most powerful X-ray observatories ever built [23]. Over 8000 publications have been made using XMM and 400
more are published each year [7]. The total number of observation hours requested exceed available hours by
a factor of six [24]. Compared to other operational X-ray telescopes such as Chandra [28], launched by NASA
in 1999, and XRISM [29], launched by JAXA in 2023, XMM has a high sensitivity and field of view, making it
particularly capable at surveying and studying faint and extended (of large angular size, e.g. galaxies) X-ray
sources, while allowing simultaneous observation in the visible spectrum thanks to the auxiliary Optical Monitor
instrument [23][24].

The complete capabilities of XMM-Newton will only be replaced and exceeded by the planned Athena/NewA-
thena (Advanced Telescope for High Energy Astrophysics) mission which will launch no earlier than 2037 [30]
[31]. XMM’s most powerful counterpart, Chandra, is potentially under threat of premature cancellation due
to cuts in NASA’s budget [32]. Ceasing the operations of either mission would reduce our ability to perform
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high-energy and time-domain astrophysics, a failure of both would prove catastrophic for the field, creating a
potential multi-year gap in measurements. Thus, continued nominal operation of the ageing XMM-Newton is
crucial.

2.1.2. The spacecraft and its payload
A diagram of XMM-Newton is shown in Figure 2.2. The spacecraft has a length of 10.8 meters and hosts two
solar arrays spanning 16 meters in total. The spacecraft can be split into three sections [33]:

1. Service module and Mirror Support Platform (Shown at the bottom of Figure 2.2) — The service
module hosts the spacecraft’s main bus subsystems, as well as the Mirror Support Platform, which hosts
three X-ray Telescopes/ Mirror Assemblies and the Optical Monitor (OM) scientific instrument.

2. Focal Plane Assembly (Shown at the top of Figure 2.2) — The focal plane assembly hosts the remaining
scientific instruments: European Photon Imaging Camera (EPIC) and Reflection Grating Spectrometer
(RGS). The EPIC instrument contains two types of sensors: MOS (Metal–Oxide–Semiconductor) and PN
(not an abbreviation) which are explained further below.

3. Telescope Tube—A 7meter carbon tube connecting the two payload sections, providing the focal length
of the spacecraft.

The service module contains the attitude control system. Absolute pointing reference is provided by two star
sensors and a fine sun sensor. Gyroscopes are used as backup during eclipses and when the star trackers
are blinded. Fine attitude control is provided by four reaction wheels [25]. Finally, 8 hydrazine reaction control
thrusters are used for orbit corrections, attitude control and reaction wheel desaturation. The spacecraft has a
pointing accuracy of 1 arcsecond over 2 minutes [24][34].

The three X-ray telescopes each containing 58 mirrors are the namesake for XMM. They focus incoming X-
rays into the instrument sensors and eliminate stray light. Two telescopes are capped with reflection grating
assemblies which split X-rays into the two EPIC-MOS sensors and the two RGS sensors. The final mirror
module has no gratings, directing all light to EPIC-PN [35].

XMM has three primary instruments consisting of a total of six independently operated camera sensors:

• European Photon Imaging Camera (EPIC) — EPIC is used for high-throughput, non-dispersive spec-
troscopy. It consists of three sensors, EPIC-PN (shortened to PN), EPIC-MOS1 and EPIC-MOS2 (short-
ened to MOS1 and MOS2). The terms ”PN” and ”MOS” refer to the type of Charged Coupling Device
(CCD) sensors used in each camera. The PN camera has a higher sensitivity and temporal resolution
than the MOS cameras [36] [37].

• Reflection Grating Spectrometer (RGS) — RGS is used for high-resolution dispersive spectroscopy.
It consists of two sensors, RGS1 and RGS2. The reflection grating assemblies mounted on the mirror
assemblies deflect and disperse light into the RGS sensors [38]

• Optical Monitor (OM) — The final camera, OM is used for optical and UV-range imaging. Unlike the
other instruments, OM is a self contained Ritchey–Chrétien telescope embedded in the mirror support
platform. [39].

All imaging sensors are cooled passively using radiators. EPIC also contains an auxiliary instrument, the
EPIC Radiation Monitor, which measures XMM’s radiation environment and supplies background radiation
information to the EPIC cameras.

Each instrument has its own operating modes which significantly alter both instrument behaviour and telemetry
appearance. Due to the time limited scope of the thesis, most of the project’s focus was put on PN and OM
which require further explanation. Additional background on MOS and RGS are omitted from this thesis report
and can be found in the works by Turner et al. (2001) [36] and den Herder et al. (2001) [38] respectively.

PN’s imaging sensor consists of twelve CCDs split into 4 quadrants, as illustrated in Figure 2.3a. The temper-
ature is measured for by the thermal subsystem for the whole CCD and also at each quadrant independently.
These CCDs are used differently in each operating mode. Table 2.1 lists the operating modes for PN and pro-
vides a brief description for the most important modes. Figure 2.3b shows how X-rays are readout depending
on the operating mode. Before reaching imaging sensor, X-rays pass through one of six filters on a filter wheel
which manipulates the incoming radiation. The filters are: open, closed, thin1, thin2, medium, and thick [37].

OM has six main operating modes, shown in Table 2.2. The filter wheel of OM contains 6 filters and enables
imaging in different spectral ranges of the optical and UV bands. OM has four heaters which enable control of
its secondary mirror for fine-tuned focussing [39].
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Figure 2.2: Diagram of XMM-Newton showing its most important components and instruments. Major sections are highlighted in bold.
Diagram retrieved from Schartel et al. (2024) [24] and modified to include annotations for the components and instruments (with
permission from the XMM team). Note that the annotations for EPIC and RGS point to the radiators at the back of the instruments.
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Table 2.1: Operating modes for PN. Science modes are shown in blue. Standby modes are shown in yellow. The remaining modes are
rarely used.

# Mode Description
0 FULL FRAME Most common science mode.
1 EXTENDED FULL FRAME For extended x-ray sources.
2 SMALL WINDOW For very bright targets, uses only a portion of CCD 4.
3 LARGE WINDOW For bright targets, uses a portion of all CCDs.
4 TIMING For bright, time variable targets. Reads CCD 4 row by row in a single dimen-

sion at a high temporal resolution.
5 BURST Similar to timing with an even faster readout at a lower quality.
6 UNKNOWN Applied to corrupted telemetry or when the true mode is not known.
7 SAFE STANDBY Applied during eclipses and major incidents.
8 IDLE Applied during low-risk downtime such as periapse passes.
9 OFFSET/NOISE
10 DIAGNOSTIC
11 EXTRAHEATING
12 INFLIGHTTEST

Table 2.2: Operating modes for OM.

# Mode Description
0 INITIAL
1 SAFE Used for eclipses and major incidents
2 IDLE
3 SCIENCE Science mode
4 ENGINEERING
5 INTER SAFE Used for periapse passes

(a) Diagram showing the twelve individual CCDs of PN. Overall CCD
numbering is shown in bold, non-bold numbers show the index of a CCD
within a quadrant. Figure is own work to showcase multiple numbering

schemes.

(b) A comparison of the readouts for PN’s science modes, highlighting how
the CCDs are utilised. Burst mode operates similarly to timing mode.

Retrieved from the XMM-Newton user’s handbook [40].

Figure 2.3: Overview of PN CCDs and modes.

2.1.3. Orbit and spacecraft environment
XMM is placed in a highly elliptical orbit with a 48 hour period, shown in Figure 2.4. Perturbations from the
Sun, Earth and Moon significantly alter the spacecraft’s orbit over time. XMM’s orbital period is critical to its
operation and is maintained without using additional fuel by utilising strategically timed momentum exchanges
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with the spacecraft’s reaction wheels to maintain the orbit’s semi-major axis. Orbit maintenance without the
use of fuel reserve is crucial to the longevity of the mission [26].

To protect the spacecraft’s instruments from Earth’s radiation belts, no observations are performed when pass-
ing near the pericentre. The spacecraft’s changing orbital plane affects the amount of available observation
time which is approximately 36 hours as of 2025, down from almost 40 hours at launch. The spacecraft orienta-
tion with respect to the Sun is also tightly controlled to ensure thermal stability, to fulfil power requirements and
to keep the instruments safe from direct exposure. There are similar avoidance angles in place for the Earth,
Moon and other bright planets [24].

XMM’s orbit makes it susceptible to eclipses when it passes behind the Moon and Earth which require special
operations. During an ”eclipse season”, usually lasting a few weeks, the spacecraft regularly experiences Earth-
induced eclipses during each periapse passing. The number of eclipses in a season, their duration as well as
the timing of the season within a year varies due to XMM’s changing orbit. Elsewhere, there are rare singular
occurrences where the Moon blocks the spacecraft [41].

Figure 2.4: Diagram of XMM’s orbit, highlighting its eccentricity and orientation towards the Sun. Image represents the situation at the
start of the mission. Retrieved from Barre et al. (1999) [42].

2.1.4. Operations
XMM is designed on an outdated operations concept which requires continuous contact with the ground seg-
ment for command and downlink. It depends on a 48 hour orbit to maintain a line of sight with 4 ground stations
in Argentina, Australia, Chile and French-Guyanna. Notably, XMM has no onboard mission timeline or data
storage capacity. This means all commands planned on the ground are transmitted directly to the spacecraft.
Data must be transmitted continuously and any loss in signal results in loss of both science and housekeep-
ing data. From mid-2014 to 2020, unfortunate geometry of the spacecraft’s orbit left short gaps its ground
connection at each periapse pass. The closure of a ground station in late 2015 caused additional data loss
[26].

The spacecraft has very little autonomy onboard and limited memory capacity has prevented the introduction of
significant onboard automation. Most of the automations onboard are related to the monitoring of the spacecraft
and critical safety measures such as heater control and recovery procedures during loss of signal. Instead, en-
gineers have focussed on automating the spacecraft’s operation from the ground as much as possible. Initially,
mission controllers had to manually upload command procedures to the spacecraft. Since 2008, many of these
procedures have slowly been automated from the ground to improve safety, improve efficiency, and reduce
cost. Major changes include the automatic handling of eclipse procedures and an automatic Fault Detection,
Isolation, and Recovery (FDIR) system that can handle known anomalies [41][43]. In total, these automation
efforts have reduced the number of manually uploaded procedures by almost 80% [44].
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2.2. Spacecraft anomaly detection
This section covers the topic of anomaly detection with a broad introduction in Section 2.2.1 followed by an
overview of algorithms in Section 2.2.2 and benchmarks in Section 2.2.3 and finally a focus on anomaly detec-
tion on spacecraft telemetry in Section 2.2.4.

2.2.1. Time series anomaly detection
Data generated in real-world environments often contain outliers or anomalies, data points which do not conform
to the expected behaviour of the system that generates the data. Depending on the context of the data, it may
be practical (or critical) to detect and understand the cause of anomalies. Anomaly detection is commonly
applied in fields such as cybersecurity (e.g. detecting anomalous computer network traffic), fraud detection
(e.g. fraudulent financial transactions) and bioinformatics (e.g. detecting abnormalities in medical data). For
each data point, anomaly detection algorithms present their output in one of two forms:

1. An anomaly score, which provides a numerical quantification of how anomalous a point is.
2. A binary label, which describes a point as anomalous or not anomalous.

Anomaly scores can be converted to anomaly scores bymeans of thresholding. Time Series Anomaly Detection
(TSAD) is the application of anomaly detection on time series data which contain data points that are measured
over time, either at regular or irregular time intervals. Individual points in time (point anomalies) or continuous
subsets of time (subsequence anomalies) may then be considered as anomalous events [45]. Figure 2.5 shows
example anomalies from datasets of various disciplines.

Figure 2.5: Annotated nomalies (in red) for various TSAD datasets. Annotations are made by the original benchmark authors. Retrieved
from the TSB-AD benchmark repository [46]

The field of TSAD has been studied for decades, resulting in a myriad of algorithms with various levels of
complexity. The simplest methods involve basic thresholding like the out-of-limits systems commonly used for
spacecraft telemetry. Methods like moving average models and Autoregressive Integrated Moving Average
(ARIMA) models rely on statistical methods like autocorrelations, and moving averages [45]. Due to success in
other fields, much of recent TSAD research involves machine learning or deep learning. Machine learning is a
broad field within data science that encompasses algorithms that can learn desirable patterns from input data
without explicit instruction and can apply these learned behaviours to unseen data. Deep learning is a subset
of machine learning that utilises a bio-inspired neural network architecture, replicating the function of neurons.
The border between statistical methods and machine learning is artificial and blurry as many machine learning
techniques are rooted in statistical tradition. Application of the machine learning label is often based on the
history of algorithm and the complexity of its learning mechanism.
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2.2.2. Time series anomaly detection algorithms
Varying taxonomy is used in literature to categorise the algorithms, those most useful to the project are dis-
cussed below:

Direct detection vs window-based detection vs pattern-based detection
In window-based detection, time series are split into multiple (overlapping or non-overlapping) windows, anoma-
lies are then scored per window. In direct detection, each data point is scored individually. Finally, pattern-
based detection is similar to window-based where the time series is cut into subsequences of the same pattern
and scored per subsequence [47]. Direct detection is most commonly found in literature.

Univariate vs multivariate methods
A system generating time series data may contain multiple sources of data that are interlinked. As an example,
satellites may contain multiple sensors that record different parts of the spacecraft at the same time. Each
sensor can be said to record a variable. Algorithms that can handle multiple variables concurrently are called
multivariate. Those that can handle only a single variable are called univariate. Because the term variable
may be ambiguous depending on the context, an alternative term channel is used henceforth. Other terms are
also used: feature (machine learning field) and parameter (satellite operations field). The terms univariate and
multivariate may also be used to describe the dataset.

A multivariate dataset may distinguish between target channels (those that are targetted for anomaly detection)
and covariate channels (which can be used by algorithms to retrieve additional context).

Supervised vs semi-supervised vs unsupervised learning methods
TSAD as well as machine learning methods are commonly distinguished by their level of supervision. Schmidl
et al. (2022) [14] provide the following definitions in the context of TSAD:

1. ”Unsupervised algorithms separate anomalous points from the normal part of the time series without
prior knowledge (no explicit training step is required)”

2. ”Supervised algorithms model normal and abnormal behaviour in the time series and require a training
step before they can be employed on a new time series. All points of the training time series must be
marked as either normal (usually 0) or anomalous (usually 1). These algorithms learn to distinguish be-
tween the normal and the anomalous behaviour of the training time series. Given an unseen test time
series, the algorithms can, then, mark the anomalous subsequences that match their internal representa-
tion of anomalous behaviour.”

3. ”Semi-supervised algorithms try to learn only the normal behaviour of a training time series. This means
that they should be trained on normal time series to build a model of the normal behaviour. When ap-
plied to a test time series, all subsequences that do not conform to the normal behaviour are marked as
anomalous.”

Readers with previous experience in machine learning may be familiar with a different definition of semi-
supervised learning. In other fields semi-supervised learning involves the use a partially labelled dataset. In
that sense, the definition above sets all training data to be singularly labelled as normal behaviour. It should
also be noted that supervised methods are rather unpopular for TSAD because of their limited ability in finding
new anomalies [14][45].

Both supervised and semi-supervised models require a separeted training and test set to avoid data leaks. An
optional validation set is often also used to aid in model selection and to prevent over-fitting.

Algorithm families
TSAD algorithms can be grouped by their method of marking subsequences as anomalous. In the review by
Schmidl et al. (2022) [14], which surveyed 158 algorithms and evaluated 71 of them, algorithms are grouped
in the following families:

1. Forecasting Methods — Forecasting methods rely on autoregression: using past values of a time se-
ries to construct its future values (with expected normal behaviour). These forecasted values are then
compared to the original values. Points with a high forecasting error may then be marked as having a
high anomaly score. Algorithms in this family include the unsupervised ARIMA method, semi-supervised
Recurrent Neural Networks (RNN) like Telemanom (which is based on a Long short-term memory (LSTM)
architecture) [13] and other machine learning regression methods like the semi-supervised tree ensemble-
based XGBoost [48].

2. ReconstructionMethods—Reconstruction methods encode the input data into a simplified latent space
and subsequently reconstruct that data, with the expected behaviour for comparison with the input. Similar
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to forecasting methods a reconstruction error is then used to produce an anomaly score. Methods in this
family include Auto Encoder (AE) and Variational Auto Encoder (VAE) like Donut [49].

3. Encoding Methods — Similar to reconstruction methods, encoding methods cast the input data into a
latent space but then proceed to produce an anomaly score from the latent space data directly.

4. Distance Methods — Distance methods compare data points or subsequences with each other and
assign higher anomaly scores to those that are most dissimilar to other points. Methods in this family are
often unsupervised methods like K-Means clustering and Histogram-Based Outlier Score (HBOS)[50].

5. Distribution Methods— Distribution methods use a generated distribution of the input data and assign
a score to a point or subsequence based how it conforms to the distribution. A notable distinction with
distance methods is the use of frequency.

6. Isolation TreeMethods—Isolation TreeMethods require a bit more background to understand. Decision
trees are used to classify data points into groups based on a set of decisions resembling a trees with
multiple levels of branches. A decision may be: ”channel exceeds 5, yes or no?”. In random trees,
the channel and decision value are set randomly. Every classification starts at the root of the tree and
ends in a leaf. Isolation forests employ a large number of random trees and for each tree calculate how
many decisions are required to isolate a data point or subsequence within one leaf of a tree. Anomalous
subsequences are expected to be easier to isolate and can be found by taking subsequences with a low
average number of decisions. Algorithms in this family include Isolation Forest [51] and its variants.

For forecasting and reconstruction methods, anomaly scores are derived from a forecasting or reconstruction
error, which is modified to retrieve an anomaly score. A simple and common solution is using the absolute
error, but more advanced scoring functions can be found, applying statistical formulas and even unsupervised
TSAD methods to the forecasting / reconstruction error [52][12]. Other families retrieve the anomaly score
directly. Most methods involving deep learning are semi-supervised forecasting or reconstruction methods.
These methods often also support the use of covariates in multivariate datasets.

Many machine learning methods, especially deep learning methods, require preprocessing. To start, almost
all TSAD methods require input data to have regular time steps. Deep learning and Distance-based methods
often use a euclidean distance and require scaling to prevent feature dominance (ensuring all features have
equal weight). Additionally, deep learning methods rely on gradient descent for optimisation, which requires
scaling to improve optimisation performance and stability[53] [54]. Finally, because many machine learning
methods have a statistical foundation, supervised and semi-supervised methods perform best on data that has
the same distribution across a dataset. Data that has this property is termed stationary.

2.2.3. Algorithm benchmarking
With so many TSAD algorithms and more created each year, researchers rely on publicly available benchmark
datasets to compare their algorithms to existing ones. At their core, TSAD benchmarks contain a continuous
length of time series data with one or multiple target channels, complemented by ground truth binary anomaly
labels at each point in time. Multivariate datasets may have an anomaly label per target channel. Datasets are
often split to accommodate supervised and semi-supervised models. A long stretch of time is split into two parts
to create a training and test set. Some datasets include covariate channels, which may be used by compatible
TSAD algorithms to provide additional context to reconstruct or target channel data. Researchers may then run
their algorithms on the benchmark, comparing the resultant labels to the ground truth using various metrics.

Since 2018 the spacecraft telemetry-related MSL (Mars Science Laboratory) and SMAP (Soil Moisture Active
Passive) benchmarks published by NASA [13] have been popular benchmarks used across TSAD research
with over 1500 citations. Up to 2024, they were the only publicly available anomaly detection datasets related
to spacecraft telemetry. Trends in spacecraft design make publication of telemetry data difficult, as this data is
usually proprietary to a spacecraft’s manufacturer.

Recently, multiple benchmarks including MSL and SMAP have been subject to criticism. Wu and Keogh (2021)
[15] argue that anomalies contained within these benchmarks are flawed and provide four main arguments:

F1. Triviality — A large portion of the anomalies found in the discussed benchmarks can be found using
trivial approaches, such as out of limits thresholding.

F2. Unrealistic Anomaly Density — Benchmark datasets contain an unusually high percentage of anoma-
lous data points and have many of their anomalies concentrated a few areas within the dataset.

F3. Mislabelled Ground Truth — The datasets contain anomalies that are mislabelled or inaccurately la-
belled. Resulting comparisons are thus flawed as an algorithm may mislabel subsequences or have
alternative start and end times, detrimentally affecting performance in comparison metrics.
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F4. Run-to-Failure Bias — Datasets like MSL and SMAP have anomalies placed at the end of their time
series segments allowing for dummy algorithms which simply detect the end of each segment.

Wagner et al. (2023) [16] add three additional arguments:

F5. Long anomalies — Many TSAD algorithms, rely on a windowed approach to score data. Very long
anomalies that extend beyond the window prevent these methods from accessing the normal behaviour
surrounding the anomaly, hampering their functioning. The benchmarks criticised contain a large number
of long anomalies.

F6. Distributional shift—also known as stationarity is a feature of a time series data meaning its behaviour
remains the same across the lifetime of the dataset. The datasets are criticised for showcasing different
behaviours across the their training and test sets.

F7. Constant features — Some datasets contain channels that remain constant across the dataset adding
unnecessary noise to the models.

Although these flaws (except F2 and F3, but especially F5, F6 and F7) can be attributed to the use of real-
world data and are sometimes impossible to correct, current academic consensus has marked these datasets
as unusable. In addition to the datasets, the metrics used to measure the performance of a benchmarked
algorithm has also received criticism [16][17]. Authors often use the ”Point-adjusted” F1 score, which marks
an entire anomalous subsequence as correctly detected if even one data point in the subsequence is detected.
The method may thus significantly overestimate the performance of a measured algorithm. As a result, much
of the literature related to novel anomaly detection techniques is rendered unreliable.

A few benchmark surveys acknowledge and account for the criticisms discussed above:

• Schmidl et al. (2022) [14] benchmark 71 algorithms of various families and conclude that no singular algo-
rithm or family of algorithms performs best across all benchmark datasets tested. Some families appear
to work best on specific types of anomalies but all families can work well across different benchmarks.
Extreme value anomalies are easiest to find while anomalies involving trends are the most difficult. Re-
construction methods in particular struggle with trend anomalies. The authors also write that current deep
learning methods are not competitive compared to other types of algorithms, although this result can be
seen as biased. A choice to set a low memory limit of 3 GB and a 3 hour runtime limit meant many com-
putationally intense deep learning methods were excluded from the results. Despite these conclusions,
aggregate metrics show forecasting methods slightly outperforming other multivariate algorithms while
distance-based methods perform best among univariate algorithms.

• Wagner et al. (2023) [16] compare a number of deep learning based algorithms on two datasets and
similarly conclude that no one algorithm performs best on either dataset. The authors use a grid search
to tune each model. Both auto encoder-based reconstruction methods and predominantly LSTM based
forecasting methods have promising results. Generative Adversarial Networks tested showed the worst
results.

• Herrmann et al. (2024) [17] benchmark a few popular TSAD algorithms on a proprietary spacecraft teleme-
try dataset finding LSTM-based methods to perform best.

• Liu et al. (2024) [55] evaluate 40 algorithms on 40 datasets, tuning each algorithm. The results are pre-
sented using various evaluation metrics. Here neural network based methods were found to perform best
in multivariate problems and simpler model architectures were again found to perform best. Conclusions
from this work are not taken into account for this review as it was released very late into the thesis (Nov
2024). It is included here as a useful resource for future readers.

The lack of a standard benchmark metric and the aggregate presentation of results make it difficult to compare
algorithms. Additionally, most methods have many adjustable parameters and the amount of tuning, whether
across datasets or on individual ones, may significantly affect measured performance. Ultimately, only two core
conclusions can be made: 1. No one algorithm performs best on all datasets and 2. simple algorithms may
perform as good or better than more intricate counterparts.

2.2.4. Anomaly detection for spacecraft telemetry
The identification of the issues mentioned in the previous section will enable more reliable research in the
coming years and researchers remain excited about the use of machine learning-based anomaly detection
for spacecraft telemetry applications. ESA has noted mission operations as an important machine learning
application in their A2I roadmap [11], highlighting how machine learning can be applied to anomaly detection
and root-cause analysis. Additionally, several institutions have been researching the use of machine learning
for on-board anomaly detection [56][57][58].
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To facilitate research into anomaly detection for spacecraft-telemetry, Kotowski et al. (2024) [18] have intro-
duced the European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry (ESA-ADB), which
is a collaboration between experts in spacecraft telemetry and machine learning and aims to solve the problems
presented in the previous section. The authors identify a number of aspects that make satellite telemetry an
especially challenging field within TSAD:

1. Telemetry has a high dimensionality (number of channels) and volume (duration / number of data points).
2. Telemetry channels are highly dependant on each other.
3. Raw telemetry data has channels with varying sampling rates, irregular acquisition times and a number

of missing data points related to communication gaps.
4. Telemetry data is seasonal and evolves with operational phases, operational modes, the orbit and com-

ponent degradation.
5. Telemetry data contains various types of channels, including mode channels, status flags, counters and

a number of different physical measurement units.
6. Telemetry data is affected by noise and measurement errors caused by the space environment.

The work contains two benchmark datasets, each constructed from anonymised telemetry data from an ESA
mission and named Mission1 and Mission2. These datasets are complemented with an evaluation pipeline
including metrics designed to meet the specific needs of satellite operators. The datasets feature a large
amount of data (14 + 3.5 years) with less then 2% annotated as anomalies. Anomalies are found using multiple
unsupervised and semi-supervised detection passes and ultimately hand-annotated per channel [59]. Each
mission is noted to have unique challenges for TSAD algorithms. A number of channel subsets and time
ranges are suggested to allow for a reduced challenge and intermediate testing. A third mission, Mission3 is
investigated but excluded as a benchmark dataset due to a large amount of communication gaps and a low
number of anomalies.

In addition to annotating anomalies, a number of rare nominal events and communication gaps are annotated.
Rare nominal events are described as atypical events that would typically be caught as anomalies by an algo-
rithm but are seen as expected or planned from the perspective of a satellite operator. Both anomalies and
rare nominal events are classified into groups described by satellite operators and have a number of categorisa-
tions to allow for a more detailed performance analysis. Additionally, the anomalies are assigned the following
attributes:

• Dimensionality— An anomaly is multivariate if there multiple channels affected at the same time by an
anomaly. They are univariate if the anomaly only affects one channel at that time.

• Locality— Channels have nominal minimum and maximum values. If the values of an anomalous sub-
sequence lay outside this nominal range, the anomaly is said to be global. Otherwise, it is said to be
local.

• Length—An anomaly is marked as a point anomaly if it consists of up to 3 data points. Longer anomalies
are termed as subsequence anomalies.

Finally, eight popular TSAD algorithms were benchmarked on the two datasets. Despite the use of powerful
desktop hardware (with high-performance CPUs and GPUs as well as more than 32 GB of RAM), some algo-
rithms could only be benchmarked after some modification. A number of popular models had to be discarded
completely. None of the algorithms tested on the complete dataset show remarkable results, highlighting the
difficulty posed by a realistic anomaly dataset. In datasets with a reduced set of channels, algorithms achieve
better results with versions of the LSTM-based Telemanom algorithm [13] and Isolation Forest [51] performing
best onMission1 andMission2 respectively. Multivariate algorithms like Telemanomwere found to be especially
useful for dealing with covariate channels like telecommands, statuses and modes.

ESA-ADB is the most expansive spacecraft telemetry dataset available to the public, and it has been used both
as a source of inspiration and comparison throughout the thesis.

2.3. Explainability in machine learning
Recent advances in computer hardware have enabled the development of increasingly complex and performant
machine learning and deep learning models. However, their inherent complexity prevents a direct derivation
their decision-making process. Such models, with known inputs and outputs but uninterpretable internal work-
ings, are termed opaque or black box models. Ethical and safety concerns in adoption areas such as medicine,
law and security, which require increased accountability and trust, have raised a growing interest in Explainable
Artificial Intelligence (Explainable AI / XAI) [60][61]. The topic covers the concepts of explainability; the ability to
understand the internal workings of a model and interpretability; the ability for humans to understand the cause
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of their decision-making or for an AI to explain its decision-making to humans [60]. The latter is particularly
interesting to spacecraft operations as an ideal implementation could potentially be used to explain the origin
of anomalies.

Transparent machine learning algorithms, such as decision trees and logistic regressors, exist but are rarely
able to achieve the same performance as their black-box counterparts [60]. Instead, research has largely been
focussed on methods that introduce interpretability to existing models. A number of those solutions exist with
both model-agnostic and model-specific flavours. As an example for the latter, a number of methods exist that
extract neural network weights or features like attention heads to interpret their output. These methods were
avoided in favour of model-agnostic methods, as the latter do not require the project to be tied to a specific
model. Depending on the method, Explainable AI can provide global interpretability, which provides insights on
an entire model, and local interpretability which provide insights on an individual prediction. Finally, methods
can be distinguished their supported data types, such images, text or tabular data.

In the context of this thesis, which is focussed on time series data, only methods that support tabular data are
considered. Additionally, as not all time steps are anomalous, a method should be able to interpret individual or
segments of time steps, requiring support for local interpretability. The two most popular methods that meets
these requirements are SHapley Additive exPlanations (SHAP) [62] and Local Interpretable Model-agnostic
Explanations (LIME) [63]. SHAP was preferred, because it is actively maintained, allows for consistent com-
parison between multiple local interpretations (useful for comparing anomalous vs nominal behaviour) and also
allows for global interpretation. The remainder of the section is used to explain the method and its properties.

For each individual prediction, SHAP assigns an importance value to all input features based on their contribu-
tion to the output. The resulting Shapley values are based on a game-theoretic approach to fairly split a pay-out
between collaborators. SHAP incorporates previous methods like LIME and can be applied to a variety of data
types, including images, tabular (including time-series) and text data. In these cases a feature may be a pixel,
a covariate’s value or a word in a sentence. Interpretability is then achieved by aggregating and visualising the
Shapely values in various ways. Figure 2.6 shows a clear example applied to image classification.

Figure 2.6: Example application of SHAP on an animal image classification dataset. Higher SHAP values denote a higher contribution of
those pixels to a particular choice in animal. In this case, the long bill of the dowitcher and distinct eyes of the meerkat are strong

contributors to their respective classifications. A red-backed sandpiper and mongoose would not have such body parts. Retrieved from
the SHAP GitHub repository [64]

Gomez et al. (2024) [12] apply SHAP to a spacecraft-telemetry TSAD problem, utilising it to understand rela-
tionship between telemetry channels and gain insight into the origin of anomalies in telemetry data from the
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Euclid space telescope. They retrieve a forecasting error by applying an XGboost model which is then modified
by applying K-means clustering to retrieve an anomaly score. Finally, a second XGboost model is trained to
predict the anomaly score, which is subsequently analysed using SHAP to see which covariates contribute
most to a subsequence with a high anomaly score.

SHAP has a number of noteworthy properties that must be considered during implementation:

1. Global and Local interpretability — As mentioned previously, SHAP supports both global and local
interpretability. In the context of time-series, SHAP values are calculated per covariate channel per time
step. The sum of these values will then always equal the difference between the local model output
and the global mean, allowing for consistent comparison and aggregation [61]. As an example, the sum
across all time steps can be used to show the global importance of each covariate.

2. A high SHAP value does not necessarily imply causation—SHAP assigns a value based on the con-
tribution of each covariate, but this does not imply causation [61]. In satellite telemetry, multiple channels
may be affected by a single anomaly and analysis on one channel will then yield high SHAP values on
other affected channels, even though the origin of the problem may lie elsewhere.

3. Interpreting SHAP visualisations is not always straightforward— The example shown in Figure 2.6
is quite easy to understand: positive SHAP values contribute to a likelihood of that class, while negative
values argue against that classification. Other examples, such as Figure 2.7 are more difficult to interpret.

4. Multiple SHAP explainers—The SHAP library contains interfaces that cater to various machine learning
architectures. The most notable ones are the DeepExplainer for neural networks, the TreeExplainer
for decision tree-based models like XGBoost and the KernelExplainer, which applies linear regression
internally to retrieve SHAP values for any model type. The TreeExplainer is generally the fastest version
and is most compatible with high amounts of data while KernelExplainer should be avoided in such cases.

Figure 2.7: Another example application of SHAP applied to housing market regression, highlighting a more difficult case to understand.
Each dot represents the median house price of a neighbourhood, with pink colours representing expensive ones. As an example, a high
neighbourhood median income (MedInc) is a strong indicator for a high housing price. Other properties like the longitude are even more

difficult to interpret. Retrieved from the SHAP GitHub repository [64].

2.4. ARES, ATAS and ESA Datalabs
As of early 2025, the European Space Operations Centre (ESOC) collects telemetry data from 21 active space-
craft. To store and analyse the immense volume of housekeeping data, ESOC uses the Analysis and Reporting
System (ARES). The system succeeds the previously used Mission Utility and Support Tools (MUST). ARES
Trend Analysis System (ATAS) is a proprietary python library created in the XMM team to retrieve data from
ARES and produce automatic instrument telemetry reports and analysis. ATAS is used as a starting point for
the data retrieval efforts of this thesis.

ESA Datalabs [65] (datalabs.esa.int) is an online Software as a Service (SaaS) platform developed at ESAC.
The platform is accessed through a web browser and provides user with direct access to various large data
caches maintained by ESA. Users can then readily exploit the data using the service’s compute capacity. In
the context of this thesis, Datalabs is used for all programming efforts. It is used to access ARES, develop the
anomaly detection toolset and analyse results.
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In the context of this thesis, Datalabs is used to access telemetry data from ARES and develop the entire toolset.
An example screenshot of the website is shown in Figure 2.8

Figure 2.8: Example screenshot of the ESA Datalabs platform, showing its coding interface.



3. Data Exploration

In order to produce a methodology for detecting anomalies in XMM-Newton, a core understanding of the teleme-
try is required. At the start of the thesis, a few weeks were spent on exploratory data analysis. The results of
that research phase as well as various later findings are summarised in this chapter and form the basis of the
methodology presented next in Chapter 4. The chapter is divided into three sections. Section 3.1 presents the
instrument telemetry data, focussing on OM and PN, the two instruments explored in this thesis, showing both
their general characteristics as well as quirks specific to XMM. Next, Section 3.2 presents a brief overview of
existing anomalies contained in reports generated by instrument engineers. Finally, Section 3.3 contextualises
the results of previous sections by comparing the telemetry to ESA-ADB and summarising the effects the data
has on the methodology.

The data used in this section spans the years 2014 to 2023, in line with limits discussed in Section 4.1.1.

3.1. Overview of telemetry
This section provides a broad overview of the instrument telemetry data. General characteristics, such as
the sample rates and a view of the telemetry data are provided in Section 3.1.1. An important quality for the
functioning of machine learning algorithms: stationarity is discussed in Section 3.1.2. The primary instrument
modes, which are strongly linked to the behaviour of telemetry are presented in Section 3.1.3. Eclipses, which
periodically affect XMM are shown in Section 3.1.4. Finally, Section 3.1.5 takes a closer look at the availability
of various channels.

3.1.1. General characteristics
Information from thousands of telemetry channels are downlinked from XMM-Newton but only few are stored
and analysed by instrument engineers at ESAC. Telemetry channels may contain a variety of information, such
as sensor data (e.g. temperatures currents and voltages) as well as instrument modes, counters and status
flags. A core collection of telemetry channels, commonly monitored by instrument engineers in instrument
reports was retrieved from ATAS and used throughout the thesis project. Platform related telemetry, such as
telecommands, are currently not stored in the system and thus not used. Telemetry channels are identified by
a five symbol code: often but not always, a letter denoting the subsystem and 4 numbers (e.g. H5120). For
some instruments, relevant channels from other subsystems such as thermal are also monitored. Table 3.1
provides the number of channels and their units and subsystems per instrument.

Table 3.1: Catagorisation of the various instrument channels used in instrument reports at ESAC. Square brackets [V] denote a unit,
parentheses (F) denote the subsystem prefix of a telemetry channel ID, eg. F0000 for PN and T0000 for the thermal subsystem.

PN (F) MOS1 (E) MOS2 (K) RGS1 (G) RGS2 (L) OM (H)
Number of channels 52 36 36 177 177 46
Mode channels 2 2 2 3 3 7
Instrument-specific 50 34 34 166 166 37
Thermal Subsystem (T) 2 2 2 7 7 7
Power Subsystem (P) 0 0 0 4 4 2
Temperature [°C] 8 14 14 15 15 14
Current [mA / μA / A] 29 0 0 29 29 10
Voltage [V / mV] 4 19 19 124 124 7
Power [W] 0 0 0 1 1 0
Other units / no unit / modes 11 3 3 8 8 15

Table 3.2 lists the approximate availability and ideal sample rate of the various channels of OM and PN. XMM
telemetry data is sampled and downlinked at varying rates and the ultimate acquisition times vary slightly ev-
ery time. Additionally, the data contains a number of gaps of varying durations and causes which are further
explored in Section 3.1.5. These properties are common to all spacecraft telemetry and have already been de-
scribed in the context of ESA-ADB in Section 2.2.4. The terms ’gap in data’, ’missing data’ and ’communication
gap’ are sometimes used interchangeably in this report.

The data processing required to modify the data into regular time steps and deal with gaps in data is discussed
in Section 5.1.1, but is already applied to most of the data shown in this chapter to facilitate the generation of
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aggregate data. The sample rates of Table 3.2 are retrieved from the raw data.

Table 3.2: Availability of the various channels of OM, PN and relevant thermal and power subsystem channels. Sample rate listed is
found by measuring the most common time distance between two samples for all samples in raw data between 2014 and 2023.

Percentage of data missing is calculated by collating data to 1 minute and calculating the percentage of minutes where no samples are
found for data between 2014 and 2023. [*] This number is slightly misleading due to the choice to collate data at 60 seconds which is

lower than the sample rate.

Instrument Channels Sampled every Data missing

PN

FDxxx (modes) 5 seconds 6.9%
F11xx, F12xx, F13xx, F14xx 7 seconds 6.7%
F15xx, F16xx, F17xx, F18xx (CCD quadrants) 63 seconds 13% *
T4004, T4005 (Thermal subsystem) 3 seconds 6.7%

OM Hxxxx 10 seconds 7.1%
Txxxx, Pxxxx (Thermal/ Power subsystem) 3 seconds 6.4% - 7.5%

Telemetry data itself has varying appearances, as shown in Figure 3.1 for OM and Figure 3.2 for PN. Some
channels, especially those of OM (e.g. T0004 and H5120), show clear repeating patterns while others do not.
Many of them, most notably voltages, are heavily discretised, showing few possible values across their lifetime.
It can also be observed how localised channels, such as those related to the quadrants and individual CCDs of
PN (e.g. F1571 and F1576) have a higher level of discretisation than channels that are more globally relevant
(e.g. F1193 and F1128). Finally, some temperatures have seasonal relationships with the orbit of XMM around
the Earth (e.g. T4004 and F1193) and by extension the orbit of Earth around the Sun (not visualised).
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Figure 3.1: A selection of telemetry channels for OM over a single orbit, highlighting varying the discretisation, seasonalities, and varying
appearances of the parameters. Values are scaled.
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Figure 3.2: A selection of telemetry channels for PN over a single orbit, highlighting the discretisation, seasonalities, and varying
appearances of the parameters. Values are scaled.
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3.1.2. Stationarity
As described in Section 2.2.2, machine learning algorithms work best when presented with stationary data:
data that retains the same statistical properties across its lifetime. Unfortunately the reality is far from this ideal.
The nominal operational regime of a satellite is frequently updated, especially in the case of XMM which has
seen a number modifications to improve its efficiency, improve automation and combat degradation. A few
major examples have already been noted in Section 2.1.4. Additionally, external factors such as the orbit of
the spacecraft affect how the satellite has to operate. Figure 3.3 shows how the values of various channels
in OM and PN change over time by aggregating mean values each quarter. Some channels remain relatively
stable, occasionally displaying small seasonalities over a year. Others display significant drift over time. The
stationarity of a channel affects its ability to be predicted over long periods of time and this property is taken
into account when selecting channels for analysis in subsequent sections.
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Figure 3.3: Quarterly aggregated mean values for various telemetry channels in OM and PN, showcasing various level of stationarity
and some mildly visible yearly seasonalities. It should be noted that the mean value can be skewed by outliers, but better captures the

extremes of a channel than the median.

3.1.3. Instrument modes
Both OM and PN have a primary mode channel which gives the active operating mode of an instrument (previ-
ously described in Section 2.1.2). The frequency of use for each mode is shown in Figure 3.4. Both instruments
operate in science modes (modes 0-5 for PN and mode 3 for OM) for over 60% of the time but are not oper-
ational during periapse passes to protect its instruments from the Van Allen radiation belts. This property is
not shared with telecommunications or navigation satellites, which may continue to operate their instruments
throughout their orbit. The primary operating modes can significantly influence the behaviour of telemetry chan-
nels as shown in Figure 3.5. A number of auxiliary modes and statuses are also present, such as the filter wheel
setting described in Section 2.1.2. Figure 3.6 shows the connection between a temperature channel of OM and
the status of its four heaters. As telecommands are not available in this thesis, modes and status channels
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become extra important for this project as they are the only ”human-in-the-loop” input.
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Figure 3.4: Mode usage frequencies for the primary mode channels of PN and OM. Aggregation is performed over all data between
2014 and 2023. Modes with less than 0.1% usage are not shown.
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Figure 3.5: A PN temperature channel F1129 over two orbits showing its connection to the primary instrument channel FD126. The
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Figure 3.6: An OM related temperature channel T0004 over 12 hours, showing its relationship with the encoded heater status H5240.
The H5240 encodes the whether each of the four heaters are ON or OFF.
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3.1.4. Eclipses
Figure 3.7 presents all eclipses recorded between January 2014 and July 2024 and illustrates how they are clus-
tered into ”eclipse seasons” of varying lengths (previously described in Section 2.1.3). Due to a cooler thermal
environment and a lower power input, eclipses require special operations to keep the spacecraft and its instru-
ments safe. This can be seen directly in Figure 3.8, which shows several channels reaching or approaching
their global maxima and minima. A number of subsystems are pre-emptively heated to accommodate uncon-
trolled cooling during the eclipse. Although the eclipse itself is brief, its effects are observable for hours before
and after the event.

The often extreme behaviour of telemetry channels during an eclipse ultimately has a large impact on the
anomaly detection methodology and the topic is dealt with extensively in subsequent chapters. In any other
context the observed behaviour would be marked anomalous, but because they are known and planned, they
should be described as rare nominal events by the definition from ESA-ADB (see Section 2.2.4).

Figure 3.7: Eclipse events between 2014 and July 2024 highlighting the frequency and varying length of eclipse seasons. Bars are
exaggerated for clarity.

Figure 3.8: An example eclipse event showing the behaviour of various OM and PN channels. The actual recorded eclipse event is
highlighted purple. The approximate area of effect is highlighted grey.

3.1.5. Availability of telemetry data
While telemetry data commonly contains gaps due to communication or issues within a satellite, the proportion
of missing data is higher in XMM-Newton due to a requirement for continuous communication and a lack of
onboardmass storage capacity. Figure 3.9 shows the extent of data gaps and how there is an increased number
of gaps between 2016 and 2019, due to a lack of complete ground coverage in this period (see Section 2.1.4).

A closer look in Figure 3.10 shows how instrument specific channels (e.g. H for OM) have more missing data
than channels of other subsystems (e.g. Thermal (T) and Power (P)) and this can also be seen directly in
Table 3.2. At a later point in the project it was realised that problems affecting the spacecraft as a whole, most
prominently those related to the spacecraft command module, occasionally affect the recording or transmission
of instrument related channels. Similarly, problems that affect an instrument at a higher level are sometimes
also manifested as missing data in more localised telemetry channels, as can be seen in Figure 3.11.

The volume of missing data is far larger than that of ESA-ADB Mission1 and Mission2, which count a total
of 4 communication gaps across both missions. The situation in XMM is much closer to that of the discarded
Mission3 which includes a total of 553 communication gaps and invalid segments over an 8 year period. Similar
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to eclipses, segments of missing data are treated as rare nominal events and pose a significant challenge for
the remainder of the project.
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Figure 3.11: The effect of an OM Latching Current Limiter (LCL) trip, showing various effects across OM related channels. Event is
retrieved from anomaly report SC-143

3.2. Existing anomalies
Access was provided to anomaly reports related to the spacecraft bus (marked SC) and its instruments (marked
IOPS), both shown in Figure 3.12. These reports, discussed further in Section 4.1.3, only contain the most
serious anomalies. The IOPS collection, started in 2019, shows that OM has the most recorded anomalies
while PN has among the fewest. Each event was checked manually, finding that only few (4 for IOPS, 8
for SC) that directly or indirectly affect channels analysed during the project (primarily temperatures). For
example, a large portion of OM related issues were found to be related to processing and memory issues. One
particular anomaly: SC-143, a Latching Current Limiter (LCL) trip already shown in Figure 3.11, was found to
be particularly useful as a benchmark example and is used throughout this report. The remaining events will
be compared to the results in Section 6.2.1.
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3.3. Consequences for methodology
The findings presented in this chapter have varying consequences for the methodology. To start, the appear-
ance of channels, their availability and stationarity are used to select targets for anomaly detection. Additionally,
the discovery of the properties shown in Figure 3.11, lead to analysis on channels of the thermal subsystem (T),
ultimately leading to positive results. Instrument modes contain many non-ordinal encodings which must be
processed in a special way before being ingested into machine learning models. The volume of missing data
and eclipses, which can be considered rare nominal events also require special attention. All these properties
are covered in the data preprocessing stage in Section 5.1.

Finally, the high volume of missing data and the lack telecommands in XMM data are all characteristics shared
with ESA-ADB Mission3. That dataset was ultimately discarded as a benchmark due to having only a small
number of trivial anomalies and due to its high volume of communication gaps and invalid segments. Addi-
tionally, the regular recurrence of eclipses, which can be considered rare nominal events pose a challenge for
TSAD algorithms. This all indicates that XMM telemetry data could be considered a potentially challenging
case for anomaly detection and for the generation of an anomaly benchmark. As other satellites might share
similar traits, the existence of a challenging anomaly benchmark could foster innovation in ML-based TSAD
methods, which may benefit XMM and other satellite operations.



4. Methodology

This chapter provides an overview of the resources, tools, methods and planning used to perform this thesis
project. Where relevant, arguments are provided for the chosen method, leaving finer details for subsequent
chapters that explain the construction of the proposed anomaly pipeline. Section 4.1 provides the resources
provided by the XMM Team, including an overview of data sources, and describes the software tools and
computational resources used. Section 4.2 provides a definition of what is considered an anomaly, the approach
used to detect them, and an indication of which telemetry channels are considered best for the search. Finally,
Section 4.3 gives an overview of how the project was managed and planned.

4.1. Resources and tools
This section presents the resources and tools used to perform the thesis, with an overview of telemetry data in
Section 4.1.1, the software tools and computational resources presented in Section 4.1.2 and the support and
existing anomalies provided by the XMM Team at ESAC in Section 4.1.3.

4.1.1. Telemetry data
This thesis project is fundamentally a data science and engineering project and is made possible by XMM
Newton telemetry data, newly accessible through ARES and ATAS. This telemetry data forms the prime re-
source for this thesis. Some auxiliary data sources are used to generate additional covariates, for pre- and
post-processing and for visual analysis. An overview of the various data sources is given in Table 4.1.

Table 4.1: Overview of data sources used in the thesis. Sources of the public XMM spice kernels and its prerequisites are provided in
Section 5.1.2.

Data source Availability Information provided Format
ARES Private XMM Telemetry data, retrieved through

ATAS.
Pandas DataFrames

ATAS configs Private Which channels belong to each Instru-
ment, mode definitions, channel descrip-
tions and units.

.yaml configs, excel
spreadsheets

XMM SPICE Kernels Public Orbital data. .spk files
XMM eclipse record Private Eclipse umbra and penumbra times. Fixed-width formatted

table files
XMM revolution numbers Private Beginning and end times of each revolu-

tion.
Fixed-width formatted
table files

XMM out-of-limits data Private Out of limits events. Fixed-width formatted
table files

Many of the telemetry channels used are available from the early 2000s up to now, potentially allowing for over
20 years of raw data. There are however some soft limits to how much data can be used. As an example,
the operational regimes of several instruments had been changed between the launch and 2004. Additionally,
the automation efforts beginning in 2008 have significantly improved the operational efficiency of the mission,
reducing scientific down time. Ultimately, the most significant limitations arise from the use of auxiliary data
sources. As explained in Section 2.1.3 and shown in Section 3.1.4, eclipses have a considerable effect on
the satellite’s functioning, requiring special operations. Eclipses affecting XMM are not recorded in ARES and
have been provided in a separate archive, with eclipse events from January 2014 to July 2024 (thesis start).
As their inclusion to project, both as a covariate and a resource to filter out rare events is crucial, January 2014
has been set as a hard lower limit on the data.

Similarly, orbital data in the form of SPICE kernels (SPK) define the upper limit. ESAC publicly offers two SPKs:
one derived from measurements, spanning January 2017 to February 2023, and another constructed from JPL
Horizons ephemeris data, covering December 1999 and February 2023. The latter, which provides a broader
range was ultimately selected. The resulting 9-year span of data from the 1st of January 2014 to the 1st of
February 2023 was considered to be sufficient for the thesis and is comparable to ESA-ADB (14 and 3.5 years)
in size. The inclusion of more recent orbital data can be considered in future work.

As of the start of the thesis, the ARES archive for XMM primarily focussed on instrument telemetry data for
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interpretation and analysis by the instrument engineers. Telecommands used to control the spacecraft, along
with platform related telemetry such as pointing and radiation monitor data was not available. Their inclusion
could be considered in future work.

4.1.2. Software tools and computational resources
As discussed in Section 2.4, the bulk amount of software development is performed on the ESA Datalabs plat-
form: this enables access to ATAS and XMM telemetry data and provides access to computational resources.
Datalab’s cloud computing architecture means the total computational resources have varied throughout the
project. Generally, at least 16 compute cores, over 64 GB of RAM and a shared Nvidia L4 GPU were available
for use. In replication, a reader should use a device with a modern CPU, at least 64 GB of RAM. The use of a
modern GPU is recommended to reduce training times of deep learning models.

Software development starts at the ATAS Python library. Python is commonly used for data science applications
and has been widely adopted by the anomaly detection field with many authors open-sourcing the code for their
TSAD algorithms in Python. However, instead of collecting and applying existing TSAD algorithms, the choice
was made to use an anomaly detection framework. Because there is currently no ’industry standard’ anomaly
detection framework, Darts [66] was chosen as it is currently used by the ESA Science Directorate. Its use
comes with a number of advantages and disadvantages:

• Advantage—Darts is compatible with the Pandas library used for data preprocessing and post-processing.
• Advantage— Darts has extensive support for multivariate data and covariate time series. This is useful
for the inclusion of data like instrument modes and eclipses. Darts also supports per channel anomaly
detection.

• Advantage—Darts handles the much of the data validation and data manipulation required for forecast-
ing algorithms. Covariate and target channels as well as the different time-lagged transformations for
input data are handled automatically.

• Advantage — The process to apply forecasting and anomaly detection is syntactically the same for all
algorithms.

• Advantage— Darts has some built-in compatibility with SHAP, used for explainability analyses.
• Disadvantage — Darts is largely a forecasting framework. While an interface with PyOD [67] exists
that allows for the use of a large number of algorithms mentioned in Section 2.2.2, deep reconstruction
methods are largely unavailable.

• Disadvantage — Despite being designed for forecasting and TSAD anomaly detection, Darts does not
include implementations for a number of popular forecasting algorithms available in literature. Manual
implementation of these algorithms is possible at the expense of the user but was avoided due to time
constraints. The framework does include many of the common underlying architectures used in published
algorithms, such as XGBoost and LSTMs.

The compatibility with multivariate data and covariate channels is a big benefit in the context of this thesis.
Additionally, conclusions from Section 2.2.2 hint at an approach that applies simpler algorithms instead of
models with ”many moving parts” such as complicated graph neural networks and generative models.

4.1.3. Support and existing anomalies provided by the XMM team
An all-encompassing manual of information on the telemetry data was not available, instead instrument engi-
neers were consulted on occasion to provide deeper insight on the meaning of specific channels.

The first part of the thesis (up to the midterm) was carried out without the use of existing anomalies. This left
the possibility of a blank-sheet design of the anomaly detection systems and forced an exploratory approach
that covered a large amount of data with minimal experience. A subsequent change in strategy enabled the
heavily parametrised systems developed in the thesis to be refined and completed through comparison with
existing anomalies.

Existing anomalies were provided in the form of reports from the Anomaly Report Tracking System (ARTS).
Basic information such as the number of reports and their distributions have already been shown in Section 3.2.
Only a small portion of anomalies are documented in the system, as it was only adopted relatively recently for
XMM instrument telemetry. It primarily contains the most serious events, while spacecraft operators record
occurrences of well-known anomalies and other minor issues elsewhere. These additional sources were not
directly available for a number of reasons. Nevertheless, the small number of relevant reports proved suffi-
cient to tune detection systems and also allowed for a comparison with anomalies detected during the thesis.
Discussion with instrument engineers near the end of the thesis allowed for further confirmation of detection
results.
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4.2. Approach
This section provides a global overview of the approach used to solve the research questions presented in
Chapter 1. In Section 4.2.1 the chosen anomaly detection method is presented. Section 4.2.2 then presents
the definition of an anomaly. Finally, Section 4.2.3 discusses where these anomalies can be found.

4.2.1. Anomaly detection method
The primary research question RQ1 of this thesis is to find a suitable approach to construct a dataset of anoma-
lies in XMM. A lack of previous experience with XMM’s telemetry and spacecraft telemetry as a whole as well
as the limited time frame of this thesis makes finding the optimal approach unlikely. Additionally, there are
multiple approaches that may achieve a desirable result. Instead, it was chosen to develop an initial approach
and subsequently discuss its efficacy afterwards. That discussion is provided in Chapter 7.

The use of the Darts framework lends itself to a semi-supervised forecasting approach. A benefit of many such
approaches is the native ability to utilise covariate channels, such as modes, telecommands and statuses,
which are common in spacecraft telemetry. ESA-ADB authors note this as a should-have feature for any TSAD
algorithm applied to spacecraft telemetry [18]. The anomaly detection features in Darts also best support a
direct-detection approach, the most popular method found in literature. The anomaly detection features in
Darts are built around providing detections per channel, an important property of the ESA-ADB dataset.

The process to go from raw telemetry data to a preliminary dataset of anomalies using forecasting methods
can be divided into four stages, broadly described below:

1. From raw telemetry and auxiliary data to machine learning-ready data — As described in Sec-
tion 2.2.2, preprocessing is required to convert raw telemetry data into a format that is digestible for
machine learning algorithms. Additionally, auxiliary data like eclipses and orbital data must be incorpo-
rated.

2. From machine learning-ready data to forecasted telemetry data — Once ready, the processed data
can be fed to the forecasting algorithms. One of the conclusions from the benchmark review in Sec-
tion 2.2.3 is that no one TSAD algorithm performs best on all anomaly datasets. Therefore multiple
models will be trained to select the best algorithm.

3. From forecasted telemetry data to anomaly detections—An accurate reproduction from the forecast-
ing model can then be used to find a forecasting error, which can then be modified using one of several
existing scoring functions to produce an anomaly score. A threshold can be applied to retrieve anomaly
detections.

4. From anomaly detections to a dataset—Post-processing may be done to add supplementary informa-
tion to each detection. The anomalies must then be stored in a format which can be used for an anomaly
benchmark.

The method used for forecasting, shown in Figure 4.1, involves target and covariate channels. Target channels
are those that are forecasted and subsequently scored for anomalies. Covariate channels are used by the
forecasting model for additional context to improve performance. It should be noted that this method is not true
forecasting: while the autoregression performed uses predicted target channels to build subsequent predictions,
the covariates provided to the model are always the true values. While this is a sensible approach when
ingesting human-in-the-loop channels like modes and system-independent channels like orbital data, other
subsystem telemetry channels require more thought. Introducing those channels as covariates may allow the
forecasting model to perform better over various seasons but they may also aid the model to an extent that
it is able to predict all behaviours too well, including anomalies. As such, special care was taken to avoid
providing quasi-duplicate channels as covariates. Additionally, forecasting models perform worse when trained
with irrelevant data which may introduce additional noise.

In initial plans, the detected anomalies would subsequently be analysed using explainable AI as part of RQ2with
the aim of understanding the anomaly and its cause. As mentioned in Chapter 1, work related to explainable
AI could not be completed. A number of implementations using SHAP have been documented in Section 5.5
to facilitate future work. Similarly, the plans included discussions with engineers for feedback and confirmation
of the anomalies. Unfortunately, their limited availability meant this was only done to a limited extent at the end
of the thesis, which prevented iterative improvement.

A combined overview of the steps discussed is shown in Figure 4.2. The methodology shown was implemented
in the form of an anomaly pipeline, which is detailed extensively in Chapter 5.
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Figure 4.1: The forecasting method applied with the Darts framework. Meta channels include revolution numbers and dates, used to
visualise and analyse results.
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As discussed in Section 2.2.2, semi-supervised models require training data to be free of anomalies. While
some known anomalous segments are removed from the data (see Section 5.1.5), a larger number of initial
anomalies could have been collected (e.g. using unsupervised methods) before proceeding to semi-supervised
learning. Such a step is recommended for future work in and discussed further in Chapter 7.

4.2.2. Anomaly definition
Similar to ESA-ADB, events detected by TSAD algorithms in XMM may be considered anomalies or rare nomi-
nal events. As an example, XMM’s behaviour is clearly and significantly affected when experiencing an eclipse.
The occurrence of an eclipse is known and planned for however, making the label rare nominal event more
appropriate. Because these events are known and recorded, detections that overlap with an eclipse can be
annotated automatically. Similarly, out of limits events are recorded and communication losses can be inferred
from the telemetry data. Marking other detections as rare nominal events is more difficult however, as they may
not be recorded or may not be directly discernable from accompanying commands or covariates. Instruments
may for example be tested or calibrated occasionally.

Additionally, it should be noted that not all anomalies are equally interesting to an instrument engineer or ground
operator. Events like brief spikes are commonly either glitches in data acquisition or are swiftly dealt with by
the automatic FDIR system. Over time, procedures are implemented to automatically deal with common and
well-known anomalies. Recording every inconsequential anomaly is time consuming and anomaly reports are
often only created for serious or novel anomalies.

Ultimately, only an instrument engineer can derive whether an event is truly a rare nominal event or an anomaly.
Because discussion with the instrument engineers was limited during the thesis, the choice was made to mark
all desirable detections as anomaly candidates. Not all of those are useful however, as a model may falsely
mark a section as anomalous or fail to detect some anomalies entirely.Table 4.2 shows a matrix of possible
detections states and their desireability. A TSAD algorithm is not perfect and in practice, a sizeable portion
of detections are false positives. Some of these false positives may be easy to spot, such as when they are
caused by bad forecasting. Others require the experienced eye of an instrument engineer to be confirmed.

Table 4.2: Matrix of possible anomaly detections.

Anomalous Not Anomalous

D
et
ec
te
d True positive

— Anomaly or rare nominal event
— To be confirmed by engineer
— Add to dataset

False Positive
— Bad prediction or badly scored
— To be confirmed by engineer
— Remove from dataset

N
ot

D
et
ec
te
d

False Negative
— Anomaly is not found
— Forecaster predicts anomaly / scorer misses anomaly
— May be added in future versions of catalogue

True Negative
— Normal behaviour
— 99% of data

False negatives also require special attention. Consider the following hypothetical scenarios that yield false
negatives:

• Training data for the forecasting model includes a known common anomaly type that is not filtered out.
The forecaster might then be able to predict the anomaly, leading to a missed detection. In such cases,
iteration in the training method is required to successfully detect these anomalies.

• Multiple anomalies of the same type exist. Some are detected but others are not. In such cases, the
undiscovered events may then be found using pattern-matching techniques and an improvement in the
anomaly detection method would be required.

Each case requires iteration and/or expert knowledge to confirm, which is not possible due to the time-limited
scope of the thesis. Additionally, a larger collection of anomalies would be required to accurately check false
negative performance. As such, these events can only be treated to a limited degree within this thesis.

4.2.3. Where to look for anomalies
Channels accessed by ATAS to generate reports number in the hundreds. While the XMM team did not directly
recommend specific channels to look at, they did suggest to look at telemetry for PN because it is the most
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important, and OM because it is most error prone. The latter feature was also found to be true in Chapter 3.

Beyond recommendations, important factors to look at are the availability of data, how fast their values change
over time and resolution of the measurements (e.g. a temperature sensor that only has two recorded values).
As an example many channels that measure current in PN have a very noisy and fast moving signal. In those
channels it becomes more difficult to detect an anomaly. Ultimately it was chosen to first look a temperatures,
since these channels usually change very slowly over time, often have a common periodicity (especially in
the case of thermistors) and are critical enough to have widespread availability. Unlike instrument-specific
channels, those related to the thermal subsystem are often still available even during a malfunction in the
instrument, providing full coverage.

The XMM team explicitly stated a disinterest in short, spike type point anomalies as these usually indicate a
glitch and can be caught easily by existing out-of-limits systems.

4.3. Planning
Near the start of the thesis, a long-term plan was devised to keep the project on track. A rigid waterfall-style
approach was avoided due to the exploratory nature of the subject as well as iterative nature of software
development. For example, new discoveries made while exploring the data and feedback from instrument
engineers were expected to drive iterations of the software tools and methodology. Instead, the project was
divided into five successive research phases, each with a number of Work Packages (WP):

Phase 1: Literature review, data exploration, and research definition

WP1 - Literature review — Exploration of relevant topics in literature. Chapter 2 presents a con-
densed version of the findings.

WP2 - Develop data tools — Early development of a data tool to facilitate data exploration.
WP3 - Early data exploration — Completed to inform the design of the initial methodology and the

pipeline. The results form the basis of Chapter 3.
WP4 - Research definition— Includes the definition of initial research questions and project planning
WP5 - Development of initial methodology— Includes the design of the anomaly detection approach

presented in this chapter, as well as early testing of the Darts library.
Phase 2: Anomaly detection

WP6 - Anomaly detection implementation—Develop and test the tools required to perform anomaly
detection as described by the methodology in this section.

WP7 - Formalise anomaly pipeline — Combine the individual tools into a pipeline.
WP8 - Perform anomaly detection— Use the pipeline to detect anomalies in XMM telemetry data.
WP9 - Analyse results—Analyse the total collection of detections, discussing them with instrument

engineers, and comparing them to existing anomalies.
Phase 3: Explainable AI and writing

WP9 - Implement Explainable AI methodology — Develop the tools required to perform analysis
with SHAP.

WP10 - Perform analysis with explainable AI— Analyse detected anomalies with SHAP.
Phase 4: Completion of results and thesis report
Phase 5: Finalisation of the thesis (All steps after the green-light review)

An informal scrum-inspired method was then used for day-to-day planning. New actions discovered during
research, software development, and from supervisor or instrument engineer feedback were added to a backlog.
Each item was then assigned a maximum completion date of either one or two weeks into the future, in line
with the weekly progress meetings. This method proved effective and was used up to the final thesis writing
stage.

The planned duration for each phase was chosen based on the expected difficulty of the work packages as
well as personal strengths (e.g. experience with data science and software development) and weaknesses
(e.g. slow writing, inexperience with spacecraft telemetry and operations). Individual work packages did not
receive precise duration estimates as many were expected to be performed in parallel. Figure 4.3 compares the
planned and true durations of each research phase. Although phase 1 and early stages of phase 2 progressed
quicker than expected, inexperience with telemetry data as well as unforeseen constraints on expert support
delayed the initial discovery of anomalies. The introduction of ARTS reports enabled the first real detections
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to be made which subsequently allowed for the completion of the pipeline. The unexpected delays with phase
two also resulted in much of the work related to phase 3 (and thus RQ2) being cut.
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Figure 4.3: Thesis timeline with the planned and true durations of each research phase. Days off and holidays are not included.



5. From data to anomaly: The Anomaly
Pipeline

Section 4.2 outlined a broad list of steps to go from raw telemetry data to anomaly detections. This chapter
presents their implementation as integrated into an automatic anomaly pipeline, shown in Figure 5.1. Sec-
tion 5.1 presents the various preprocessing measures used to convert raw telemetry data into a final format
that is ingestible by machine learning models. Next, Section 5.2 shows how this data is ingested into forecast-
ing models yielding a forecasting error used for anomaly detection. Comparisons are then made to analyse
the performance of various forecasting models and how the configuration of a dataset can affect model output.
In Section 5.3, a number of scoring functions are applied to the raw forecasting error to analyse the potential
benefits. A threshold is then applied to the chosen scorer to retrieve anomaly detections, which are then post-
processed in Section 5.4. Although an interpretability analysis with SHAP was originally intended to form part
of the pipeline, the development of this segment could not be completed due to time constraints, as mentioned
in the introduction. The incomplete SHAP implementation is documented in Section 5.5.

The pipeline is able to perform forecasting model benchmarks. Its many settings are controlled through config-
uration files, which are split into four abstractions:

1. Dataset configuration — controls how the dataset is processed. Most settings are discussed in Sec-
tion 5.1.

2. Model configuration— controls how the forecasting model is created and trained, including its hyperpa-
rameters. Multiple models can be passed to be trained in a single run.

3. Scorer configuration— holds parameters for the scoring functions and the quantile thresholds.
4. Pipeline schedule— collects the above configurations and provides them to the pipeline.
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Figure 5.1: Simplified overview of the anomaly pipeline.
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5.1. Telemetry data preprocessing
As found in Section 2.2.4, raw telemetry data is innately incompatible with machine learning models. To retrieve
and process the data into a format that is digestible by machine learning, a telemetry ’dataset tool’ has been
developed. The following informal requirements were identified at various points in the thesis:

D1. Dataset splitting — To avoid over-fitting, semi-supervised models should be provided with separate
training and testing datasets and ideally also a validation set, as described in Section 2.2.2. The tool
should be able to split the data into a training, validation and test dataset.

D2. Collation — Telemetry data has varying sample sizes and irregular acquisition times which must be
converted to regular time intervals by the tool. Discussed in Section 5.1.1.

D3. Adding auxiliary data — Some auxiliary data sources such as eclipse dates and orbital data must be
combined with the telemetry data by the tool to improve forecasting and allow for a complete picture in
analysis. Discussed in Section 5.1.2.

D4. Scaling — Telemetry channels have varying units and magnitudes and must be scaled by the tool to
ensure compatibility with deep learning based models. Discussed in Section 5.1.3.

D5. Handling modes — Some machine learning models are incompatible with categorical data such as
modes, which must be converted to a friendly format by the tool. Discussed in Section 5.1.4.

D6. Removing anomalies from training data — Semi-supervised models, such as the forecasters used
in this thesis, nominally require training data to be free of anomalies. Thus, the tool should eliminate
anomalies from the training data. Discussed in Section 5.1.5.

D7. Future-proofing—The results of the thesis may be carried over by the XMM team or eventually be used
to create a new anomaly benchmark. The tool should be designed for use beyond the thesis. Discussed
in Section 5.1.6, the minor remaining limitations are provided here as well.

Point D1 is trivial, and ultimately solved by implementing functionality that allows the tool to retrieve data for
a train, validation and a test set using a provided start and end date for each set. Choosing the actual size
for each set is described in Section 5.2.1. The remaining points require additional explanation, provided in the
subsequent sections.

5.1.1. Collating telemetry data to regular intervals
As shown in Table 3.2, channels have different sample rates and have portions of missing data. Additionally,
data points have imperfect acquisition times. A ’collation’ step to cast the data to a regular time steps follows
these steps:

1. The user selects a start time and a collation period, e.g. 60 seconds. Sample times are set from the start
time, with each subsequent 60 seconds marked as a sample time.

2. For each sample time, a sample period is set between the previous sample time and the current sample
time. All points in this sample period are aggregated with the value of the last point being set as the value
for the current sample time.

3. Sample times where the sample period is empty, receive the value of the last sample time with a value.
4. Sample times that precede the first data point receive the value of that first available data point.

The process is similar to the ”zero-order hold resampling” method used for ESA-ADB [18] and is best understood
by looking at Figure 5.2. The difference with ESA-ADB is the use of a varying collation period and start time,
ESA-ADB utilises the ideal acquisition times as a collation period and sets the start at the first ideal collation
period. A variable collation period is useful to optionally reduce the amount of data to be forecasted, thus
reducing TSAD algorithm computation times, but the same result as ESA-ADB can be achieved by carefully
selecting the collation period and start times.

An unfortunate consequence of this method is that large periods of missing data will receive the value of the
last raw data point. Situations where data is missing may occasionally be caused by errors, where the final
value passed on to subsequent missing data points is unrepresentative of normal behaviour. Large sections
of missing data, such as communication gaps are marked as rare anomalous events in ESA-ADB. As such,
sections which are found to have missing data as are collected into a ’missing data’ mask in the collation step.
This mask is then used in Section 5.1.5 to limit the influence of missing data in forecasting, in Section 5.3 to
reduce the number of missing data points detected, and in Section 5.4 to annotate detections that overlap with
missing data.

Instead of aggregating by the last value in a sample period, the data may also be aggregated using a different
method, such as the mean, or median. The dataset tool has been implemented to allow for choosing the ag-
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gregation method per channel processed. The use of the mean as an aggregation method was briefly explored
and has potential to deal with channels that have a low measurement resolution (highly discretised) but was
ultimately not used for the final results. The use of a mean aggregation method comes at the cost of unrealistic,
’in-between’ values being present in the data.

00:00:00 00:00:30 00:01:00 00:01:30 00:02:00

Raw channel 1

Raw channel 2

Collated channel 1

Collated channel 2

ADB channel 1

Ideal acquisition times Collated sample times

Figure 5.2: Diagram of the collation process performed on two channels with an ideal acquisition time every 13 seconds, starting at 4
seconds. The start time is set at 00:00:00 with a collation period of 60 seconds. The similar method used by ESA-ADB is shown in

comparison.

5.1.2. Adding auxiliary data
Eclipse data, revolution numbers and orbital data are not stored and ARES and had to be added separately.
As shown in Figure 3.8, eclipses have a significant anomaly-like effect on telemetry data. Some telemetry
channels are strongly correlated with the position of the spacecraft relative to the Sun and Earth, as shown in
Figure 3.2. Revolution numbers are used for visualisation and the process to add them to the data is trivial.

Eclipse data is presented in the form of start and end times of umbra and penumbra. The satellite is in penumbra
when the Sun is partially blocked by the Moon or Earth, in umbra the Sun is completely blocked. These events
are added to the telemetry data as an ordinal ’eclipse level’ channel. As seen in Figure 3.8, eclipse-related
operations precede and exceed far beyond the actual umbra and penumbra events. Ideally, these operations
should also be marked in the eclipse channel, but the exact time varies per channel and such data is contained
in telecommands which are unavailable for this project. As a compromise, a static buffer is added with points 3
hours before and 15 hours after each eclipse also marked. In the eclipse level channel, points with no eclipse
are marked 0, the buffer zones are marked 1 and penumbra and umbra are marked 2 and 3 respectively.

Orbital data is added in 3 forms, distance to the Sun, distance to Earth and the beta angle. The distance to the
Sun and Earth are interpolated using the following SPICE kernels:

• xmm_horizons_19991210_20230223_v01— XMM Newton kernel based on JPL Horizons — Obtained
from ESA ESAC [68].

• de432s— JPL Horizons ephemerides kernel used for the XMM kernel — Obtained from NAIF [69].
• naif0012— Leap second kernel — Obtained from NAIF [70].
• naif0012— Earth kernel — Obtained from IMCCE [71].

The interpolated positions of XMM relative to the Sun and Earth are retrieved every minute in the ECLIPJ2000
reference frame and are converted to magnitude distances. The beta angle β can be retrieved using Equa-
tion (5.1), where r⃗⊙/⊕ is the position of the Sun w.r.t. Earth, r⃗s/⊕ the position of the spacecraft w.r.t. Earth and
v⃗s/⊕ the relative velocity of the spacecraft w.r.t. Earth. [72]. These magnitudes are then smoothened using a
1st order Savgol filter with a window size of 30 minutes to achieve smooth values for lower collation periods
and to remove potential interpolation errors.

β = arccos(r⃗⊙/⊕ · (r⃗s/⊕ × v⃗s/⊕)) (5.1)

Higher-quality and more complete orbital data may be achieved by using measurement data directly and should
be added in the future with support from the XMM flight dynamics team. However, the data retrieved through
Horizons ephemerides is more than sufficient to provide seasonality information to the forecasters.
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5.1.3. Scaling data
As discussed in Section 2.2.2 scaling the data is required for a number of machine learning models. Several
popular scaling methods, implemented in the Sci-Kit Learn Python library [73] were tested in default settings:

1. MinMaxScaler—Proportionally scales and translates each channel to values between 0 and 1. Teleme-
try in ESA-ADB is provided using this scaler. The scaled channel Xminmax can be retrieved using the
following formula, where X is a time series of a single channel:

Xminmax = (X −min(X))/(max(X)−min(X)) (5.2)

2. StandardScaler—Standardises each channel by translating using the mean and scaling using the stan-
dard deviation with the formula:

Xstandard = (X −mean(X))/stdev(X) (5.3)

3. RobustScaler — StandardScaler is sensitive to outliers, such as the point anomalies commonly found
in telemetry data. RobustScaler attempts to avoid outliers by instead employing the median to translate
and Inter-Quantile-Range (IQR) to scale the data. The scaler uses the following formula:

Xrobust = (X −median(X))/IQR(X) (5.4)

Figure 5.3 shows how data is transformed by the three scalers. Applying a MinMaxScaler after applying a
Robust or StandardScaler has no effect as all three methods apply a linear transformation. Attempts were also
made to reduce magnitude of outliers by clipping their values within 2 or more standard deviations, however this
approach was ultimately abandoned as changes in operations sometimes meant the nominal range of channel
moved outside two or more standard deviations. The effects of the three scalers on the training of forecasting
models is compared in Section 5.2.3.
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Figure 5.3: The effect of the three scalers on a section of OM telemetry data. The right plot shows the linear nature of each of the
transformations, by applying a MinMaxScaler to the remaining scalers.

5.1.4. Handling modes
Modes and statuses such as the primary instrument modes described in Table 2.1 and Table 2.2 are stored as
non-ordinal numbers in ARES. Many machine learning models, with the exception of tree-based models like
XGBoost [48], can not recognise modes from such channels. A popular method to preprocess categorical data
for machine learning models involves using one-hot encoding, where a single channel with multiple modes gets
converted to multiple channels each denoting if the a category is active or not. A consequence of this method
is that many additional channels are created, which increases the computational cost and may increase over-
fitting when many categories are present. To process instrument modes in XMM data, multiple modes have
been combined to reduce the number of one-hot channels. Table 5.1 list the mode reductions used. As an
example, the multiple imaging modes of PN (full frame, small window, etc.) and the temporal imaging modes
(timing and burst) have been merged. Rare or unused modes have also merged in singular channels. Not
all mode reduction methods are perfect and deeper analysis should be performed to find better combinations
based on the resulting physics of each mode.
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Table 5.1: Reduction of various modes and statuses to one-hot channels. Groupings are determined by the behaviour of analysed
channels. The OM heater status is presented with encodings like 8 = ONOFFOFFOFF, where the on/off status of each of the four heaters
is given in a single encoding. Multiple mode reductions for H5240 were used throughout the thesis, based on Figure 3.6, the alternative

version might be best, although the original provided better results.

Mode/Status Reduction Original # Reduced #

FD126 (PN primary mode)

imaging (0, 1, 2, 3)
timing (4, 5)
safe (7)
idle (8)
other (6, 9, 10, 11, 12)

13 4

FD130 (Filter wheel status)
calibration (1, 3, 5, 7, 9, 11, 15)
moving (0)
science (2, 4, 6, 8, 10, 12)

16 3

H5120 (OM primary mode)
science (3)
idle (2, 4)
safe (0, 1, 5)

6 3

H5240 (OM Heater status)

nheaters_on_0 (0)
nheaters_on_1 (1, 2, 4, 8)
nheaters_on_2 (5, 6, 9, 10, 12)
nheaters_on_3 (13, 14)
other (3, 7, 11, 15)

16 5

H5240 alternative

all heaters_off (0)
heater_1_on (8, 9, 10, 12, 13, 14)
heater_2_on (4, 5, 6, 12, 13, 14)
heater_3_on (2, 6, 10, 14)
heater_4_on (1, 5, 9, 13)
other (3, 7, 11, 15)

16 6

HD013 (OM safe/unsafe) safe (0)
unsafe (1) 2 2

5.1.5. Removing anomalous data from training data
As mentioned in Section 2.2.2, semi-supervised models nominally require training data to be anomaly-free.
This leads to a paradoxical situation: the algorithm to find anomalies requires anomaly-free training data but
they cannot be removed because the algorithm has not found the anomalies yet. The creators of ESA-ADB first
ran a number of unsupervised algorithms on the telemetry data to retrieve an initial set of anomalies. These
anomalous sections were then removed from a training set provided to a semi-supervised model which found
more anomalies which were discussed with satellite operators and removed from a new iteration of training
data. This processes was repeated for multiple iterations until no more anomalies needed to be removed [59].

Not collecting a larger initial set of anomalies has already been recommended as an area for improvement
in Section 4.2, and is discussed further in Section 7.1. As the ARTS anomalies were only retrieved late into
the thesis, they were not removed from the data. This means the only sources for anomalous sequences are:
eclipse data, out-of-limits events and missing data. Two methods were considered for removing them from the
training data:

1. Interpolation — The first method attempted was the removal of sections that contain anomalous se-
quences and interpolating the resulting gaps. Unfortunately, when considering only simple interpolation
methods, the complex repeating patterns of many XMM channels become difficult to interpolate. Addi-
tionally, the use of interpolation potentially introduces unrealistic values to the dataset. Finally, training
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on interpolated data potentially forces the model to associate synthetic responses to real anomalous
behaviour in covariate data. For these reasons a the interpolation approach was abandoned.

2. Training with Sample Weights — When training a semi-supervised model, the sample weight is multi-
plied with the loss function to increase or decrease the effect of specific subsequences in the training set.
As such, setting the sample weight to zero in areas with anomalies will effectively make the model blind
to anomalous events. This solution is elegant as it allows the whole training data to be passed without
cuts.

For now, sample weights are set to 0 in areas with an eclipse, out-of-limit events or missing data and to 1
elsewhere. Future work should incorporate found anomalies into the sample weights, iteratively cleaning up
the training data. The use of sample weights also has clear benefits if the anomaly pipeline is applied in a
streaming anomaly detection context where the pipeline detects anomalies as new telemetry data comes in.
Sample weights can then be used to perform incremental learning, with newer telemetry being provided a higher
sample weight.

5.1.6. Future proofing and limitations
Because of the desire to eventually use the results of this thesis to release XMM telemetry data as a benchmark,
extra care was made to create a high quality data processing tool. The dataset tool has the following main
features:

• Fast loading and processing times — The dataset tool makes extensive use of vectorised math and
multiple layers of caching to ensure low processing and loading times. Once the raw data is retrieved
from ARES, the dataset only takes a few minutes to process years of data and, once processed, the
data subsequently can be retrieved almost instantly. For comparison, ESA-ADB notes a time to collate
the data of 1.5 hours. While this is acceptable when the data is only processed once (as is the case for
ESA-ADB), a user may want to experiment with the data their models run on.

• High amount of customisation — A high number of variables, such as the start and end dates, the
covariate and target channels as well as the the scaling method and collation settings can selected when
processing anomalies into a dataset. All these settings can be set by creating configuration files which
set each of these variables in a traceable format.

• Independent of any existing anomaly detection frameworks— Section 4.1.2 has listed a number of
disadvantages of the Darts framework. To ensure the use of Darts does not limit future work, the dataset
tool is made completely independent of Darts, only using the most common data science libraries to
produce its data. The dataset tool can effectively be used stand-alone, allowing future users to directly
and easily use other anomaly detection frameworks.

The use of ATAS also means that the tool can potentially be used for telemetry of other spacecraft hosted in
ARES with minimal modification. A final overview of the dataset tool is provided in Figure 5.4.

Limitations and future improvements
Four functional limitations have been identified which could be resolved to improve the dataset tool in the future:

• Improved sample weights — Sample weights should also zero out known anomalies. In addition to
those of the anomaly reports, additional anomalies found through the use of the pipeline and others
which are known but not included in anomaly reports should also be added.

• Orbital data— The dataset tool should be modified to allow for the inclusion of more recent orbital data.
• Scaling — The scaling is currently performed locally on the date ranges provided, meaning that data
produced for just 2022 might have different scale than a dataset between 2014 and 2022. ESA-ADB
handle this by storing the relevant global information (e.g. the min, max, median, etc.) and using those to
provide a consistent scaling throughout the dataset. A similar method could be implemented in the future.

• Hardcoded XMM elements — While the system is built on ATAS and ARES, potentially allowing ex-
pansion to other satellites, some current features, such as the retrieval of auxiliary data and channel
information are specifically designed around XMM and require modification to be used for other satellites.
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Figure 5.4: Simplified overview of the dataset tool, showing how various data sources are used, how intermediate data is cached and
how the final data is retrieved by the user.

5.2. Telemetry forecasting and dataset configuration
This section discusses the steps taken to produce a forecasting error using data generated by the dataset tool.
Section 5.2.1 discusses the selection of dataset parameters. Section 5.2.2 goes into detail on the forecasting
setup previously presented in Section 4.2. Finally, Section 5.2.3 compares the performance of various models
and the effects of various dataset parameters on the forecasting result.

5.2.1. Selecting dataset parameters
The dataset system showcased in Section 5.1 features many processing steps which may be adjusted on a
case-by-case basis to improve forecasting performance. This section discusses various considerations made
when designing datasets to be run.

Start/end times and training/test cut
Supervised and Semi-supervised machine learning models require a training, test and optionally a validation
set, which are often cut into 70%/20%/10% splits (or similar) by practitioners. Training sets often receive the
largest cut as machine learning models often require a significant amount of training data to perform well. In
the case of this project, the sheer volume of data available and the fact that only the test set may be used for
subsequent anomaly detection led to a different approach.
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For the large final datasets used to create the results in Chapter 6, the full 9-year range (2014-1-1 to 2023-1-1)
is split into two years for training (2014 + 2015), the next half year for validation and the remaining six-and-a-
half years as test data. The idea is that the model receives a large set of data, doubly covering the seasonality
caused by the orbit of the Earth while still providing a large range of data to perform anomaly detection on.
Older data was preferred for training, as instrument anomaly reports only cover events after 2019. For smaller
datasets, such as those used for benchmarks in the next section, more recent dates were preferred (2020
onwards) and with at least one year of training data. As a reference, ESA-ADB Mission1 uses an 81-month/3-
month/84-month split.

The approach used in this project does not allow for the training data to be used for anomaly detection. Other
publications solve this problem by performing two forecasting runs, e.g. Run A with a first half set as training
data and Run B with the second half, ultimately retrieving a forecasting error for the full range [59]. Such a
modification is trivial to implement and should be considered in future work.

Collation period
The collation period is a critical parameter in the dataset tool, which should be set to balance the following
aspects:

• Signal detail — As shown in Section 3.1.1, telemetry channels have varying rates of change, levels
of discretisation and periodicities, with voltages rapidly changing each minute and some temperatures
slowly changing over minutes or even hours. For voltages, having a small collation period near the ideal
sample rate would be best as a large amount of information would be lost otherwise. For channels with
slow movement and high discretisation, a higher collation period yields almost no difference.

• Forecasting model train and run times — As an example, raising the collation period of a channel
with a three-second sample rate to one minute lowers the final number of data points by 20 times. Low
runtimes are ideal when experimenting with other settings and for model tuning.

• Forecasting model context window — Autoregressive forecasters have a look-back parameter which
controls how many time steps of past data are presented to the model to form a prediction. With a higher
collation period, a model has a larger context window for the same number of look-back.

The combination of a higher collation period and the ’last’ aggregation method discussed in Section 5.1.1
reduces the number of spike-type point anomalies present in a dataset, which is fortunately not a significant
loss as these anomalies were deemed as uninteresting by instrument engineers anyway (see Section 4.2.3).
Early experimentation on temperature channels found no other detrimental effects when using collation periods
of one minute and as such this value was used as default for the remainder of the thesis.

Choosing covariates
Covariates may be selected to improve the forecasting performance on a dataset. By default, the orbital and
eclipse data introduced in Section 5.1.2 as well as the primary and auxiliary modes of the relevant instrument
are added. Often, other relevant telemetry channels are added as covariates to ensure the model is able
to keep up with changing operational regimes. The selection is performed carefully, as the use of ’duplicate
channels’ that are too similar to the target will result in data leaks and should instead be used as additional
target channels.

Multiple target channels can be forecasted at the same time, although those selected are almost always dupli-
cate channels or those that have very similar underlying physics. The loss function used to train the models
does not account for the individual performance of channels and will thus perform worse if one or more are
harder to forecast.

Initially, all non-duplicate channels were selected for forecasting but later experimentation found that removing
those that are irrelevant can greatly improve performance while reducing computational time. The final choice
of covariates is found by iteration: channels are removed in batches until model performance starts decreasing
significantly. This method is extremely time consuming and would ideally be replaced by applying existing
knowledge about the physical links between the channels to improve selection. The stability of autoregression
with and without covariates is tested in Section 5.2.3

5.2.2. Forecasting setup
Figure 5.5 provides a simplified overview of the forecasting setup (itself a slightly more detailed version of
Figure 4.1). Each model in Darts contains a number of hyperparameters which may be used to optimise the
performance of a model. To simplify the whole training process, a robust training setup was created which
allows any Darts model to be created, trained and stored using a unified model configuration file containing
all hyperparameters. The seed of all relevant random number generators is also set to be constant across a
comparison.
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Model training algorithms (e.g. gradient-descent) utilise a loss function to perform their optimisation, with the
Mean Square Error (MSE) most commonly applied by practitioners. The Mean Absolute Error (MAE) was
chosen for this project instead because it is less sensitive to outliers and thus better suited to learning the
healthy behaviour of a model. Once sample weights include a larger number of rare nominal events and
anomalies, MSE may again be considered by comparing the two loss functions in a benchmark comparison.
Sample weights, introduced in Section 5.1.5 are provided to the model in the training step. At points where
there is missing data or an eclipse, the sample weight of zero causes the loss at those points to also be set to
zero, preventing their them from being learned.

During forecasting, the model is provided with a portion of true target data to start the autoregression: 20000
time steps are used before the autoregression starts using forecasted data. These ’warm-up’ time steps are
not used when measuring the performance of a model.

Once trained, model performance is measured with a number of metrics such as the MAE, MSE and the Sym-
metric Mean Absolute Percentage Error (SMAPE) which are all aggregate derivations of the forecasting error.
The coefficient of determination (R2 score), is another popular measure, which ranges in value from 1 (perfect),
0 (as good as predicting the mean) and any negative value (worse than predicting the mean). It can also be
used to compare forecasters that are run on different scales. In addition to applying metrics on the full time
scale, they are also calculated per orbit to provide for a more robust perspective on the training data. As the
sample weights are not used when calculating metrics, some sections of the data may contain large outliers
which may skew the results.
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Figure 5.5: Simplified overview of the forecasting setup, including sample weights and metrics.

5.2.3. Training, comparing and selecting forecasting models
In this section various models and dataset parameters are tested to show their performance. Because of their
widespread popularity, forecasting was primarily done using various iterations of XGBoost and Long short-
term memory (LSTM)-based models. To provide a balanced overview, a large number of compatible models
available in Darts are compared to check how they perform on XMM data. For each benchmark model listed in
Table 5.2, all hyperparameters are set to default except for the batch size (set to 32), number of epochs (set to
10) and look-back parameter (set to 12 time steps) (lags or input_chunk_length depending on the model). The
XGBoost implementation in Darts uniquely allows for models to be created with spaced-out look-backs (e.g. 1,
5, 15, 60 instead of 1, 2, 3, 4, ...) and an additional model is added to compare the efficacy of this property.
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Table 5.2: Benchmark forecasting models. Unless stated otherwise, all models use default settings (as set in Darts version 0.32) with 10
epochs, a batch size of 32 and a look-back of 12 time steps. XGBoost models do not use gradient descent and as such do not have the

parameters batch size and epochs.

ID Darts Model Name Architecture Unique parameters Original
BM_dlinear DLinearModel Transformer [74]
BM_lstm BlockRNNModel Long Short-Term Memory model: ”LSTM” [75]
BM_nbeats NBEATSModel Feed-Forward Neural Net [76]
BM_nhits NHiTSModel Feed-Forward Neural Net [77]
BM_nlinear NLinearModel Transformer [74]
BM_tcn TCNModel Convolutional Neural Net [78]
BM_tide TiDEModel Encoder/Decoder [79]
BM_transformer TransformerModel Transformer [80]
BM_tsmixer TSMixerModel Feed-Forward Neural Net [81]
BM_xgb XGBModel Gradient Boosting [48]
BM_xgb2 XGBModel Gradient Boosting lags (lookback): [-1, -2, -3,

-4, -5, -15, -30, -60]
[48]

These models are run on variations of three different benchmarks to compare the models, check their stabil-
ity over long sets of time and test the data tool scaling options and collation parameter. The benchmarks,
elaborated further below, use the channels shown in Figure 5.6.
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Figure 5.6: Channels used to benchmark the performance of the various models and dataset tool parameters.

Comparison 1: general model comparison
The first benchmark with the parameters shown in Table 5.3, tests all forecasters on a relatively simple problem:
a short forecast on easy to predict, stationary channels with a number of covariates. Figure 5.7 shows the
results: models BM_lstm, BM_nbeats, BM_nhits, BM_tide and BM_transformer all show similar performance,
with BM_lstm performing best overall. In the context of this benchmark data, which is scaled between 0 and
1, an MAE of 0.05 indicates a 5% error. Creating a dummy model that constantly predicts the median gives
an MAE of 0.29. The presence of anomalous segments in the data mean no model can produce a perfect
reproduction. Visual inspection is used to judge the reproduction of the true signal, and metrics can only be
used for relative comparison. The XGBoost model using spaced lags (BM_xgb2) appears to perform slightly
worse than the version that uses the past 12 lags, although it is possible that newer data is more useful to the
model for this specific case.

Figure 5.8 shows training and forecasting times, with the XGB models performing best and transformer-based
BM_nbeats and BM_transformer taking the longest to run. The runtime performance of XGB does not carry
over to larger datasets, occasionally taking hours to predict the full dataset, as shown in Figure 5.9. Deep
learning-based models scaled much better. Models with short run/training times are preferred, as they speed
up manual and automatic tuning.
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Table 5.3: Benchmark 1, set to be a relatively easy forecasting problem. All OM temperatures are provided as covariate channels.

Benchmark 1: OM_T0004_T0005_benchmark
train range 2021-1-1 to 2022-1-1
validation range 2020-6-1 to 2021-1-1
test range 2022-1-1 to 2023-1-1
target channels: T0004, T0005
covariate channels: H5110, H5115, H5120, H5125, H5130, H5135, P1035,

T2009, T2013, T2017, T2028, T2041, P1135
engineered covariates: eclipse, distance_earth, distance_sun, beta_angle
mode_channels: H5395, H5240, HD013
collation period: 60 seconds
col. agg. method: last
global seed: 3
scaling: minmax
sample weights: on
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Figure 5.7: Model performance for benchmark 1. Metrics are calculated per channel and per orbit. Channels T0004 and T0005 are very
similar and were deemed suitable to be grouped together for comparison.
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Figure 5.8: Training and forecasting times for each model in benchmark 1.
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Figure 5.9: Training and forecasting times for select models for a larger dataset with equivalent settings to benchmark 1.

Comparison 2: data scaling
Section 5.1.3 presented three scalers, MinMaxScaler, RobustScaler and StandardScaler which are compared
in Figure 5.10. The previous benchmark dataset is ran twice (seeds 1 and 2) for each scaler using model
BM_lstm. While the performance is not significantly different across scalers, RobustScaler does provide con-
sistently better results across over the full collection orbits, indicating that it can be used for marginal benefit.
This also matches literature [82]. That being said, the channels tested (T0004 and T0005) have a somewhat
Gaussian distribution and a similar performance increase may not be possible on telemetry with a different
distribution. As this result was found quite late into the thesis, most of the final results are still generated with
the MinMaxScaler.
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Figure 5.10: Comparison of scalers. Metric R2 is used to allow for comparison in different scales.

Comparison 3: Use of covariates and forecasting quality over time
To test the robustness of a forecaster in autoregression for a longer time, Comparison 3 tests the ability of a
forecaster to robustly perform autoregression for a longer period of time. Table 5.4 lists the parameters for
benchmark 2, which covers 5 thermistor channels of OM over the full 9 years of data. Two versions of the
dataset are run (again with BM_lstm), one without covariates and the other with two power related covariates,
with the idea that the power covariates could serve as crutches to ensure stable autoregression. Figure 5.11
yields a surprising result: the versions without covariates appear to perform better. Figure 5.12 shows each
model performing well until a first eclipse season is reached. At that point, both models on seed 4 fail to return
to normal autoregression. The bad performance here can be attributed to a failed initialisation or conversion
during training. On seed 1, the version with covariates fails at a later eclipse before recovering after some
time. The reason for this jump was not analysed but it might potentially be caused by an over-reliance on the
P1135 channel, even though the modes provide sufficient information for a successful forecast. Nevertheless,
earlier experimentation found that some channels cannot rely on just the modes and as such, the addition of
covariates should be considered on a case by case basis.
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Table 5.4: Benchmark 2 used to check the robustness of autoregression over long periods of time in comparison 3. Two options for
covariate channels are used.

Benchmark 2 :OM_Thermistor_benchmark
train range 2014-1-1 to 2016-1-1
validation range 2016-1-1 to 2016-7-1
test range 2016-7-1 to 2023-2-1
target channels: H5110, H5115, H5120, H5125, H5130
covariate channels: None or P1135, P1035
engineered covariates: eclipse, distance_earth, distance_sun, beta_angle
mode_channels: H5395, H5240, HD013
collation period: 60 seconds
col. agg. method: last
global seed: 1, 2, 4
scaling: minmax
sample weights: on
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Figure 5.11: MAE results for comparison 3. Three runs show significantly worse performance.
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Figure 5.12: MAE per orbit over time for the various runs.

Comparison 4: Different collation periods
The collation period (discussed in Sections 5.1.1 and 5.2.1) is a key parameter in the dataset tool. This compar-
ison tests its effect on the forecasting model’s context window. A new benchmark dataset, shown in Table 5.5,
focusses on T4004, the radiator temperature for PN which only displays a large fluctuation near the periapse
before slowly lowering to a constant temperature for the rest of the orbit. The channel proved difficult to forecast
on the standard 1 minute collation period (12 min look-back) and is therefore compared to a longer period of 15
minutes (3 hour look-back) and 30 minutes (6 hour look-back) in Figure 5.13. The results show a clear benefit in
using a longer collation period to provide a wider context window. As an alternative to a larger collation period,
a larger look-back can also be used, at the cost of significant increases in runtime. An XGBoost forecaster can
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be configured to use wider spacing in its look-back to achieve similar results (not tested here). It can also be
seen that BM_xgb generally performs better on this problem than BM_lstm indicating that the best performing
model varies per channel.

Table 5.5: Benchmark dataset 3 to compare various collation periods. Sample weights are disabled as a bug in the XGBoost
implementation in Darts did not support them for a single target channel.

Benchmark 3 :PN_T4004_benchmark
train range 2021-1-1 to 2022-1-1
validation range 2020-6-1 to 2021-1-1
test range 2022-1-1 to 2023-1-1
target channels: T4004
covariate channels: F1122, F1198, F1199, F1201, F1189, F1190, F1192, F1257,

F1258, F1259, F1260, F1191, ’F1193
engineered covariates: eclipse, distance_earth, distance_sun, beta_angle
mode_channels: FD126, FD130,
collation period: 1 minute / 15 minutes / 30 minutes
col. agg. method: last
global seed: 1
scaling: minmax
sample weights: off
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Figure 5.13: Comparison for collation periods for comparison 4. The R2 score is chosen as a metric here as T4004 is flat for most of the
orbit (see Figure 5.6).

Key takeaways
The comparisons shown in this section cover a very small part of the picture. The large number of parameters
made available by the dataset tool as well as the large number of models and their hyperparamters, each with
potential yields in performance result in an overwhelming amount of choices. As an example, each model
may perform better when tuned to accommodate the data presented. Various versions of XGB were found to
outperform LSTM models for certain target channels. While not conclusively proven in this thesis, it appears
that no one model performs best for all channels, which echos the findings of many publications in Section 2.2.3
on a much smaller scale.

The abundance of parameters does not matter much in the well-behaving data shown in comparisons 1, 2 and
3, but are sometimes paralysing in cases where an initial good forecast is hard to find. This issue was partially
solved by running multiple variations of multiple models on each new target channel. Usually, one family would
then perform best.

Throughout the project, LSTM-based models were found to be simple, fast, and broadly compatible with many
target channels and they are used to generate the final results in Chapter 6.
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5.3. Anomaly scoring and detection
A suitable forecasting model can be run to find a forecasting error, which can then be processed in various
ways to find an anomaly score. The most common scoring method simply uses the absolute forecasting error.
A quantile threshold can then be applied to mark anomaly detections and to avoid small forecasting errors.
Figure 5.14 shows an example anomaly detected using an absolute error anomaly score and quantile threshold
of 97%. In experimentation, the use of the raw forecasting error yielded many point detections caused by small
mistakes in forecasting. Say a telemetry channel makes a large jump, if a forecaster predicts this jump one
time step too early or to late, the forecasting error is left with a single data point with very high error which may
be caught by the thresholding as an unwanted detection. Additionally, a forecasted prediction may intersect
with the true value, leading to multiple small detections instead of a single large one (also seen in Figure 5.14).
Literature has shown that processing the absolute error with an anomaly scoring function may significantly
improve anomaly detection performance [52]. A number of published forecasting-based algorithms even have
their own built in scoring method [13][83]. In Section 5.3.1 a number of scorers are explored and compared,
demonstrating their consequential effect on the detection of anomalies. The limitations and efficacy of the
scoring method is discussed in Section 5.3.2.
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Figure 5.14: An example detection with the absolute error as the anomaly score and a quantile detection threshold of q = 0.97 (top 3%
highest anomaly scores). The green area is the visually perceived anomaly, the red area shows the area that is detected by the scorer +
detection threshold combination. The event would in this case be caught in two separate detections, as the forecasting error goes to zero

in the middle. The use of a quantile threshold prevent the detection of the many small forecasting errors surrounding the event.

5.3.1. Comparing scorers
Once ground truth anomalies were provided in the form of the anomaly reports shown in Section 3.2, the
following steps were used to select a scorer:

1. Forecasting was performed on channels with known anomalies. The resulting forecasting error was used
as an anomaly score directly and thresholding was used to find an initial set of anomaly candidates.

2. Anomaly candidates were screened to find a set of ’benchmark candidates’ that seemed most unique and
interesting. Not all candidates were clear or confirmed anomalies. Some clear forecasting errors were
included to check how the scorers would behave under interesting conditions, others were included as
examples of events which should not be detected.

3. The start and end time of the benchmark candidates was manually adjusted to cover what is visually
perceived as an anomaly.

4. A number of scorers are selected and applied to the forecasting error, then detections across all scorers
are made using the same quantile.

5. For each benchmark candidate, the marked start and end times of the candidate are visually compared
to what would have been detected by a scorer. Figure 5.14 shows the visual process for a single scorer.

Initial success was found on OM temperature channels T0004 and T0005 with a diverse sample set of bench-
mark candidates shown in Figure 5.15. The relevant processed telemetry data, resulting forecast and bench-
mark candidates shown in the remainder of the section were stored to provide consistent analysis, but are oth-
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erwise outdated and may appear different in other sections. Two dedicated scorers from literature, the Gauss
Static and Gauss Dynamic scorers [52] were reimplemented for comparison. Unsupervised TSAD algorithms
have also successfully been used as scoring functions [12]. Darts allows for a number of unsupervised TSAD
methods to be applied on the forecasting error to find an anomaly score. The unsupervised distance-based
algorithms Histogram-Based Outlier Score (HBOS) and K-means, as well as Isolation Forest, all previously
described in Section 2.2.2, are also applied with varying parameters.
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Figure 5.15: Example benchmark anomaly candidates used for selecting anomaly scorers. Marked anomaly is highlighted in green.

Each unsupervised model has a unique method of fitting to the data. In K-means clustering, the complete
forecasting error sequence of length L is divided using a moving window method of stride 1, creating L−W +1
window vectors of size W which are then grouped into K clusters. Because the method is performed per
channel, each ingested vector is one-dimensional with lengthW . Vectors are then compared by calculating the
difference at each index of the vector and combined into a euclidean distance, which is used as the clustering
metric. Effectively, the vectors are clustered by their shape. For HBOS, the vectors are binned forming a
histogram with the vectors in the short bins marked as the most anomalous. The core Isolation Forest method
is explained more extensively in Section 2.2.2. Here, anomalous vectors are expected to be rare and easy to
isolate. Once fit, these models can then be applied to score the window vectors. At each point in time, the
score of each window which includes this data point is aggregated to achieve a final anomaly score for each
point in time. The process is repeated independently for each target channel.

The formula for the static Gauss scoreGs at time t is shown in Equation (5.5), with Φ the cumulative distribution
function for the standard normal distribution, E the forecasting error, µE the mean of the forecasting error and
σE the standard deviation of the error. An infinitesimal ϵ is added to prevent discontinuities. The dynamic
Gauss score Gd, is similar to the static version with the mean and standard deviation calculated over a window
W preceding the current time t, instead of the whole timespan. Note that the window used for the dynamic
Gauss score is different from that of the unsupervised algorithms and is used to provide seasonal context to
the scorer. A third Gauss score with a smoothing function is not replicated as its performance did not appear to
have significant improvement over the unsmoothened dynamic Gauss score Gd [52]. Instead, some iterations
of the Gauss score with a moving average-smoothened forecasting error were tested.
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Gs(t) = − log

(
1− Φ

(
E(t)− µE

σE

)
+ ϵ

)
(5.5)

For each scorer, various parameter configurations, most notably varying in window size, were tested and com-
pared. A sample of the comparisons is shown in Figure 5.16. The full comparison yielded the following obser-
vations and interpretations:

1. Subsequences where the prediction deviates significantly from the measured signal for extended periods
(e.g. BC_1, BC_2 and BC_5 in Figure 5.15) — All scoring methods are able to detect these anomalies,
however Isolation Forest and HBOS appear to cover the perceived anomaly best. Although these anoma-
lies are usually also detected by the raw absolute error, HBOS, moving average smoothing and Isolation
Forest do a better job at capturing the full anomaly.

2. Noisy subsequences where there are extended periods of small forecasting error (e.g. BC_3 and BC_4
in Figure 5.15)— Most scorers tend to miss these anomalies as their absolute error may be really small.
BC_4 proved particularly challenging. Scorers are able to detect the anomalies but their detection covers
only a small section of the perceived anomaly.

3. Subsequences where the there is a steady-state error between the prediction and measured signal (e.g.
BC_7 in Figure 5.15)— These are detected best by Isolation Forest.

4. Brief spikes (e.g. BC_6 in Figure 5.15) — These are best caught by the the raw absolute error, the
gauss scorer or variants of K-Means. Scorers with a high window size smoothen out the spikes. As per
Section 4.2.3, these anomalies are less interesting for this project as anomalies can already be caught
by out-of-limits systems.

5. Brief, clear forecasting errors (e.g. BC_8 in Figure 5.15) — K-means, Gauss and the raw absolute error
are prone to catching common forecasting errors. The example presented at the start of this section,
where a large jump is predicted one time step too soon or too late is frequently caught by these scorers.
The Gauss scorer and absolute error are obviously most susceptible to such events as A possible expla-
nation for K-means is that these types of event are more common and different enough from healthy data
to warrant their inclusion in the anomalous cluster. The use of more than 2 clusters and the modification
of other parameters may improve the performance of K-means. The fact that these events are relatively
common makes them less likely to be marked as anomalous by HBOS and Isolation Forest.

6. Intersections between the true telemetry signal and the prediction (e.g. BC_5 in Figure 5.15) — Here
larger anomalies are split in two or more detections as the forecasting error becomes zero at intersections
between the predicted and measured telemetry signal. Such detections are better captured by scorers
with higher window sizes but have not been fully captured by any of the scorers tested. As a workaround,
a post-processing step introduced in Section 5.4 merges detections that are very close to each other.

Ultimately no single scorer tested was able to completely cover all benchmark anomaly candidates. The window
size is a particularly important parameter, small window sizes are unable to contextualise anomalies with a
longer duration and long windows smoothen out shorter anomalies. To cover both, multiple scorers were
ultimately used with their detections combined. Some candidates, such as BC_4 were not adequately covered
by any tested scorer. Table 5.6 shows the scorers tested (all with a 97% threshold) and those chosen, with
their final quantile thresholds. While 3 combinations of HBOS and Isolation forest were ultimately chosen, it
should be noted that their performance is only somewhat better than simpler approaches such as the moving
average. The smoothing effect provided by the window parameter of each scorer has a far greater effect than
the underlying technique.

Eclipses often cause the most extreme values for a telemetry channel (as shown in Section 3.1.4), resulting
in a high forecasting error for a relatively long period of time. While events like eclipses and missing data
can be considered rare nominal events which should be annotated in an anomaly benchmark, their presence
significantly alters the distribution of the anomaly score, affecting the quantile detection system. Figure 5.17
shows BC_3 in a broader context, between two eclipse events. At a later state of the project an additional
processing step was introduced (shown in Figure 5.18), setting the forecasting error to zero at points where
there is an eclipse or missing data, curbing their influence. This step also lead to higher quantile detection
thresholds, which is reflected in the final scorer selection in Table 5.6. Further improvements in the detection
post-processing discussed in Section 5.4 and implemented after this comparison also alter the ultimate efficacy
of the scoring and detection, potentially altering the final choice made in this section. Ideally, the whole scorer
analysis provided in this section should have been repeated, potentially yielding a different outcome, but this
was not done due to time constraints.
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Table 5.6: The various scoring function configurations that were teste. Scorers used for final results are highlighted with their respective
quantile thresholds. All unlisted settings are set to the defaults of Darts version 0.32 and PyOD version 2.0.2.

Scorer Configuration Selected
Raw absolute error -

window = 10
window = 75Moving Average
window = 120
-Gauss static With moving average (window=10) applied to raw error
window=6000
window=12000Gauss dynamic
window=20 orbits (57600)
window = 30
window = 60
window = 75 Yes (threshold q=0.998)
window = 120
window = 240 Yes (threshold q=0.995)

Isolation Forest

window = 600
K = 4, window = 30
K = 2, window = 30
K = 2, window = 60
K = 2, window = 75
K = 2, window = 120
K = 2, window = 240

K-Means

K = 2, window = 600
window=60, n_bins=10, tol=0.5, alpha=0.2
window=70, n_bins=10, tol=0.5, alpha=0.2
window=120, n_bins=10, tol=0.5, alpha=0.2
window=240, n_bins=10, tol=0.5, alpha=0.2 Yes (threshold q=0.995)
window=240, n_bins=5, tol=0.5, alpha=0.2
window=240, n_bins=15, tol=0.5, alpha=0.2
window=240, n_bins=10, tol=0.5, alpha=0.3
window=240, n_bins=10, tol=0.5, alpha=0.1

HBOS

window=600, n_bins=5, tol=0.5, alpha=0.2
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Figure 5.17: An expanded view of BC_3, showing how the two eclipses on each side are more prominently caught by the scorers.
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Figure 5.18: Scoring for an eclipse event, comparing the original scoring and the modified version which removes eclipses.

5.3.2. Scorer method limitations
The modification of the raw absolute anomaly score has clear benefit in anomaly detection, reflecting earlier
results by Garg et al. (2021) [52] and Gomez et al. (2024) [12]. Even the application of a simple moving
average removes the large number of small forecasting mistakes as can be seen in Figure 5.17. While the
application of unsupervised anomaly detection algorithms as scoring functions were perceived to yield slightly
better results than the simpler moving average and gauss scoring functions, their use comes at the cost of a
higher runtime and computational cost.

All of the methods tested were only supplied with the absolute forecasting error, which does not provide the
complete context of an anomaly. The value and pattern of a telemetry channel as well as its distribution can
be useful in determining whether a section of telemetry data is anomalous or not. Future attempts at using
unsupervised models such as HBOS and Isolation Forest may try to include such additional context. While
scorers such as Gaussian Mixture Models (GMM) exist that focus specifically on the distribution of the data
presented, limited experimentation with these models did not achieve desirable results when supplied with the
absolute forecasting error alone. Additionally, the potential for a forecaster to predict perceived anomalous
behaviour, thus lowering the forecasting error, has an influence on the detectability of an anomaly. This issue
is clearly seen for BC_5 in Figure 5.16, where the first half of the anomaly is much more difficult to detect even
though the telemetry channel reaches its highest value in the dataset at 1.0. The additional context that the
telemetry channel reaches its maximum would be a clear reason to mark the event as an anomaly. While the
step to include additional context to the anomaly detection process, either as pure statistical values or in the
context of physics-based anomaly detection is some steps removed from the work done in this thesis project,
and a thesis-sized project in its own right, an eventual implementation could yield excellent results.

The use of the absolute forecasting error as the only input for each of the scorers combined with the use of
quantile thresholding introduce a major blind spot. As each anomaly score is ultimately a modification of the
absolute error, events with a high forecasting error (BC_1, BC_2 and BC_5) are often easily caught, while
events with a low, but sustained forecasting error such as BC_4 are more difficult to detect. While anomalies
with large forecasting error are of clear concern to ground operators and instrument engineer they are also
the easiest to catch. An automatic system should ideally also excel at detecting these smaller, inconspicuous
anomalies, which may be missed by engineers [5]. Unfortunately, this aspect was not completely solved with
the scoring system developed in this thesis.

The static quantile scoring method also brings its own issues. In the case where the forecasting is near perfect
(e.g. there are no anomalies), the quantile threshold will still produce anomaly detections. In fact, such cases
produce an even higher number of detections since every small little error is marked as an anomaly. Filtering
detections by their anomaly score is difficult, as smaller detections may sometimes be as interesting as larger
ones. In the future, a method should be developed to better account for such cases. This could take inspiration
from a dynamic thresholding algorithm, such as the one used in Telemanom [13].

Manually selecting the parameters of the scorer and the subsequent quantile threshold to make detections is
a very labour intensive task. The process could be automated in the future once a large set of benchmark
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anomalies is available. A number of scorer, parameter and quantile threshold combinations may be initialised
and run, each producing detections. These detections may then be compared to the benchmark anomalies
using a classification metric like the F1-score or the Area Under the Receiver Operating Characteristic Curve
(ROC AUC). A subsequent step could be to then tune or optimise a set of scorers using the F1-score or ROC
AUC as a fitness value. Implementation of such systems without a sufficient and varied number benchmark
anomalies may yield inadequate results as such a process is highly susceptible to over-fitting.

Ultimately, the scorer comparison was performed on a limited set of candidate anomalies found on two channels.
While there is clear benefit to modifying the forecasting error, there is significant room for improvement in the
scoring system presented in this section. Additionally, a more robust and analytical comparison of scoring
functions on a wider set of telemetry channels and benchmark anomalies is required to reach a more concrete
conclusion on the efficacy of each scoring function.

5.4. Anomaly post-processing and cataloguing
The preceding anomaly scoring and detection step yields a detection mask where columns are the target chan-
nels and each row is a point in time. Anomaly detections are marked 1 for each anomalous data point and
0 where no anomaly is detected. This format is particularly useful for an eventual anomaly benchmark as it
can be directly used to compare the performance of various TSAD algorithms tested. Nevertheless, anomalies
can be analysed to find a number of additional metrics which cannot be stored in a mask format, such as the
dimensionality, locality and length metrics used by ESA-ADB. As an alternative, anomalies can be stored in
a tabular format, where each row represents an anomaly. The most basic format would include a start time,
end time and channel name for as columns for each anomaly. Additional columns could include any required
metrics and a unique identifier such that each anomaly may be referenced individually.

ESA-ADB use a tabular format that is expanded into two tables in the form of a relational database. A first table
provides an event per row, with the start time, end time and channel. Events may happen concurrently across
different channels and concurrent events across all channels are provided with a single ID. A second table then
provides additional context and metrics per ID. For this project, a simpler method has been developed to make
the data directly accessible. To start, a unique id is provided to each event per channel and concurrent events
are collectively provided a group number. Metrics are then provided for each event per channel, resulting in a
single table with all the information. The table format is more accessible to humans, allowing for easy manual
adjustment and filtering. As anomaly start and times may require manual modification, it is useful provide
translation back to the mask format. This functionality has not implemented in this thesis but can easily be
replicated from similar processing steps used for the eclipses and out-of-limits data. The storage of anomalies
in tabular format also allows for finer start and end times which can be rounded to the chosen collation time
when converted to a mask.

In addition to the conversion from a mask to a basic tabular format, the following additional processing steps
are performed to achieve a final catalogue in tabular format:

• Merging detections across different scorers — As discussed in Section 5.3, multiple scorers were
required to cover the wide range of different anomalies present in the data and each scorer yields its
own detection mask which is then converted to a tabular format. In this first post-processing step, the
collection of tabular detections is merged into a single table. For each channel, overlapping detections
across the different scorers are merged into a single detection. Figure 5.19 shows this processing step
combined with the next processing step.

• Merging nearby detections — As discussed in Section 5.3.1, limitations of the scoring system imple-
mented for this thesis cause a single anomaly to sometimes be captured in more than one detections.
This is undesirable as it produces additional detections to be investigated. In this processing step, nearby
anomalies with a space of less than four hours between them are grouped into a single anomaly. The 4
hour buffer is adjustable but was found suitable in experimentation. Anomalies are usually sparse and
interesting anomalies often required a larger buffer to be captured. Figure 5.19 shows this processing
step combined with the previous processing step.

• Grouping concurrent detections across telemetry channels—In this project, forecasting and anomaly
detection has been performed on multiple target channels concurrently. To simplify manual analysis, de-
tections that occur concurrently across channels are collected into groups such that they may be analysed
together.

• Adding metrics to the detections— To aid in analysis, detections are provided with a number of cate-
gories and metrics. The In addition to an ID, the start time, end time and channel, the following metrics
are assigned to each detection, here described by their name in the toolset:
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– multivariate—Marked true if there is any concurrent detection in another channel. This is the same
as dimensionality parameter used in ESA-ADB.

– duration — The time duration of the detection, calculated from its start and end times. ESA-ADB
marks the length of an anomaly as a point anomaly if the length of the event is 3 data points or less,
and marks it as a subsequence anomaly otherwise. Because such definitions may be perceived as
arbitrary, the numerical time duration is provided instead.

– has_nan — Marked true if there are any missing data points within the bounds of the detection, as
marked by the missing data mask discussed in Section 5.1.1.

– has_ool — Marked true if any point in time with the detection overlaps with an Out-Of-Limits (OOL)
event.

– has_eclipse— Marked true if any points in time within the detection overlaps with an eclipse event.
– origin— Provides a list of all scorers that formed the detection.
– revno— Provides a list of revolution numbers that this detection spans. The revolution is commonly
used by instrument engineers and ground operators to describe anomalies.

– mean_anomaly_score and max_anomaly_score — Provides the mean / max value of the anomaly
score within the bounds of a detection. This is calculated at the initial conversion from mask to
table and is lost when combining tables for multiple scorers. Unavailable in the final version of the
post-processing step, but may be reimplemented as a list similar to the origin metric in the future.

• Clustering anomaly detections (Experimental) — In an attempt to further simplify analysis, similar
anomalies were grouped into clusters. The method is inspired by a window-based anomaly detection
method applied by Ruszczak et al. (2023) [57] to find anomalies in telemetry data of the OPS-SAT satellite.
In this case, a K-Means clustering model is provided the detect metrics above as well as some statistical
information such as the mean and variance of the telemetry data and anomaly score in and around the
detected segment. The method yielded promising results but was not perfected due to time constraints.
While similar anomalies were sometimes clustered together, the method occasionally failed to group the
same event across channels, even when both channels are similar in nominal behaviour (e.g. T0004 and
T0005) and showed a similar behaviour in the detection. In the future, the method may be improved to
further reduce manual analysis time.

• Filtering by metric (Abandoned)— The metrics introduced a few points earlier can be used to filter out
unwanted anomalies. Over the course of the project two types of filters were considered but ultimately
abandoned:

– Filtering out events with has_nan, has_eclipse and has_ool — These events are known anomalies
and rare nominal events and can be added back more precisely in a subsequent step. As such
events are frequent and commonly detected, thus adding significant clutter when analysing anomaly
detection output, they were originally filtered out of detection tables. An undesireable consequence
of such a filtering step is that large anomalies that may briefly overlap with eclipses or cause missing
data are then cut. Thus, this filtering step was later abandoned. A preprocessing step for the scor-
ing and detection system discussed in Section 5.3.1 ultimately meant that areas with eclipses and
missing data points were unscored anyway, almost completely removing the clutter they introduced.

– Filtering out events with low mean anomaly score — This filtering step was used very early on but
was quickly abandoned. As discussed in Section 5.3.2, the anomaly score is closely tied to the
forecasting error and detections with low forecasting error are often also interesting.
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The locality attribute, used in ESA-ADB to denote whether the values of an anomalous event are within the
nominal values of an anomaly, is not represented in the metrics for this project. The nominal values for each
channel may vary over time and true nominal values are not provided with the data.

The final set of values stored for each detection is shown in Figure 5.20. If eventually used to publish an
anomaly benchmark, the anomalies found should be manually vetted in collaboration with instrument engineers.
Additionally, start and end times precisely adjusted to match the actual anomalies, avoiding the common ”F3:
Mislabelled Ground Truth” flaw discussed in Section 2.2.3. Finally, known rare nominal events and anomalies
should be added back to a complete anomaly table and should be distinguished using an additional column
such as ”class” and ”subclass” used by ESA-ADB. In mask format, rare nominal events could be stored in
separate masks to facilitate better model performance metrics.
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Figure 5.20: Full format of anomalies in tabular format for this project compared to ESA-ADB.

5.5. SHAP analysis
As described in Section 2.3, SHAP can be used to interpret which covariate channels contribute most to anoma-
lous behaviour. Time constraints meant that the developed SHAP methodology could not be fully realised or
used to analyse detected anomaly candidates. Instead, this section documents the methods explored as well
as an incomplete implementation to facilitate future work.

The usefulness of a SHAP explanation is dependant on how anomalies are encoded into the machine learning
model. Three implementations were considered throughout the thesis:

S1. Direct application on the forecaster— In initial experimentation, SHAP was applied to the forecasting
model directly. Interpretation is focussed on describing the contribution of each covariate to a certain
forecasted telemetry value. The SHAP values of an anomalous range of telemetry data may then be
compared to the nominal behaviour to find a potential cause. The problem with this method is that an ideal
semi-supervised model always predicts nominal behaviour, resulting in an approach that is unsuitable for
interpreting anomalies. Nevertheless, this implementation can still be used to get an indication of which
covariates drive forecaster behaviour the most.

S2. Indirect application 1: Second model for predicting anomaly scores — This method is developed by
Gomez et al. (2024) [12] and was shown to be useful for finding which covariates influence temperature
anomalies in the Euclid space telescope. An anomaly score is retrieved from the forecasting error and
an XGBoost model is trained to predict the anomaly score. As input, covariates are provided at three
time lags (30 minutes, 4 hours and 24 hours). The target channel itself is not provided to force the model
to learn relationships between the anomaly score and other channels. Assuming an accurate anomaly
score, SHAP values then directly describe a covariate’s contribution to the anomaly. Unfortunately, the
use of XGBoost autoregression means the method does not scale well to larger datasets (as found in
Section 5.2.3). To account for the time constraint in the thesis some modifications were made to improve
computation times.

S3. Indirect application 2: Second model for classifying anomaly detections — This is the proposed evo-
lution of the previous method. The previous implementation is converted from an autoregression to a
supervised classification problem to better utilise the detections made using the pipeline. Covariates are
supplied to an XGBoost classifier, which is trained to mark time steps as anomalous or not anomalous.
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The use of XGBoost is maintained to utilise the fast TreeExplainer, discussed in Section 2.3. To account
for an imbalanced dataset, anomalous segments are provided with a sample weight that is equal to the ra-
tio of anomalous vs nominal instances, encouraging the model to focus on anomalous sequences equally.
Using XGBoost directly instead of relying on the Darts autoregression system allows the total computa-
tion time to be reduced to minutes instead of an hour. Additionally, the simplified encoding allows for
straightforward aggregation: SHAP values can be filtered for areas where a pipeline detection is present.

The three SHAP encodings and their connection to the intermediate pipeline outputs are shown in Figure 5.21
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Figure 5.21: Connections between the forecasting model derivatives and the various SHAP models explored.

A singular attempt to apply method S3 on the PN CCD temperature (F1129) yielded limited success. A number
of PN channels of various units were selected, avoiding those that are localised to PN’s quadrants. The time
lags used were 15 minutes and 60 minutes. As before with the forecasters, the XGBoost classifier requires a
training and test set. To allow complete coverage of the detections but still avoid data leaks, the dataset was
split and trained on two models, following the scheme of Figure 5.22. Unfortunately, this meant that the models
have differing classification performances as well as differing SHAP values. Methods to correct for these issues
were not investigated during this thesis and should be considered in future work.

Training range Test range

Test range Training range

SHAP model 1:

Training range
Validation 

RangeForecasting model:

SHAP model 2:

Test range

Anomaly detections

SHAP values for complete range

Figure 5.22: Training scheme to retrieve SHAP values for the complete range of detections using two models.

The resulting SHAP values can be visualised in various ways to interpret anomalies. Aggregated box plots, like
the example shown in Figure 5.23, indicate which covariates contribute most across all classified anomalies.
In this case covariates are aggregated per channel across all time for all points where the data is marked
anomalous. Heatmap plots, such as Figure 5.24, show the contribution of each covariate in a localised manner.
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The resulting plots are easy to understand: channels with extreme positive SHAP values contribute the most
to an anomalous classification, while those with values close to zero contribute the least.

Interpretations can only be trusted if the underlying model is accurate. The ROC AUC can be used to measure
the performance of the two models. Values range between 1 for a perfect classification performance, to 0.5
if the performance is as good as random, and finally below 0.5 if worse than random. Brief experimentation
yielded ROC AUC scores between 0.5 and 0.8, with a large number of pipeline detections classified incorrectly.
Thus, while run times are improved, some work is required to make the method usable. Unfortunately, the
incomplete state of the method makes it difficult to provide concrete suggestions for improvement. Initial efforts
could focus on a more careful selection of covariates and time lags as well as refining anomaly detection start
and end times to improve the supervised labels. Ultimately, a return to the anomaly score regression method
(S2) may yield improved results with less effort.
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Figure 5.23: SHAP values aggregated by channel across all time lags. Instances with nominal values are filtered out, allowing for easy
determination of which channels contribute most to an anomalous classification. Aggregation is performed per half.

Figure 5.24: Heat map showing covariate SHAP values over time for an anomaly detected with the pipeline. The pipeline and XGBoost
classifier detections are highlighted.



6. Results

In this chapter, the anomaly detection output of the thesis project is presented and analysed. Comparisons with
existing anomalies allowed for refinement of the scoring system, facilitating its completion and integration into
the pipeline. Because it was only completed late into the thesis, relatively few channels were analysed. Sec-
tion 6.1 provides an overview of the detections. Recurring events and likely forecasting artifacts are filtered out
allowing for a high level analysis of all remaining detections.Section 6.2 compares the findings to the anomaly
reports presented earlier in Section 3.2 and takes a closer look at a small selection of anomalies.

A complete understanding of a detection requires a significant amount of additional information, such as a view
of the active modes, the anomaly score and relevant covariates. This is provided in the form of anomaly plots in
Appendix A to keep this chapter concise. Additionally, the multiple months spent looking at XMM telemetry data
still pale in comparison to the rigorous training and years of experience which satellite operators and instrument
engineers use to analyse anomalies. As such, any interpretations provided in this chapter should be considered
with limited credibility.

6.1. A global overview of pipeline detections
The anomaly pipeline was run on a number temperature channels of OM and PN, shown in Table 6.1, with
varying outcomes. The following observations can be made about the results:

• T0004 and T0005 — These are the first channels that yielded some success on the pipeline. The dis-
covery that local OM channels (e.g. H51XX) may occasionally become unavailable while the spacecraft
has an issue (see Section 3.1.5), led to a shift in focus to thermal subsystem channels. The channels are
stationary over many years and show nearly identical behaviour. As such they will be treated as jointly in
subsequent analysis.

• OM thermistors (H51XX) — All these channels have a cyclical pattern, similar to T0004 & T0005. For
months, these were the focus of the project with no success. The discovery of the previously mentioned
unavailability property ultimately led to focus being shifted elsewhere. Reapplying the finalised pipeline
found very few events with high forecasting error, leading to hundreds of small forecasting error-related
detections which were difficult to sift through.

• T2009, T2013, T2017, T2028 — Similar to T0004 & T0005, but containing features that require a wider
context window. Only a brief attempt was made at running these through the pipeline and a second try
(especially on T2013 and T2028) could yield better results.

• T4004, T4005 — These channels only change over long periods of time and may require an alternative
preprocessing approach such as discussed in Section 5.2.3.

• F1128 and F1129—A second set of anomalies was found in these channels very late in the thesis. Both
are related to the PN CCD and are also very stationary. The results of F1129 are not included because
of time constraints.

• PN Quadrant temperatures (F1X76)—These channels are related to the CCD quadrants of PN and are
highly discretised, which may be the reason why they are difficult to forecast. Many early attempts, using
various preprocessing steps, focussed on these channels with limited result. Once anomaly reports were
provided, these were abandoned in favour of OM related channels.

A table with settings and models used for channels with successful detections can be found in Appendix A.
The inability to forecast certain channels with the techniques applied in this thesis should not be interpreted as
definite proof against their forecastability. In fact, due to the late arrival of initial results meant some of the listed
channels only received a cursory attempt at anomaly detection. Ideally, these channels should be revisited
once the method is improved further.

56
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Table 6.1: Channels analysed and whether the pipeline applied was able to forecast the telemetry and find anomalies or not. Anomalies
were found in F1129, but there was no time to analyse the results.

Instrument: OM Instrument: PN
Channel Forecastable? Anomalies? Channel Forecastable? Anomalies?
T2028 no - T4005 no -
T2017 no - T4004 no -
T2013 no - F1129 yes yes
T2009 no - F1128 yes yes
T0005 yes yes F1576 no -
T0004 yes yes F1676 no -
H5135 yes no F1776 no -
H5130 yes no F1876 no -
H5125 yes no
H5120 yes no
H5115 yes no
H5110 yes no
H5105 yes no

The overview in Figure 6.1 shows all detections made. For F1128, two large concentrations are present in the
middle of 2016 and 2017. Most of these detections (57/74) were found to be of the same variety as the examples
shown in Figure 6.2, appearing right after a communication loss after a periapse pass. These ’periapse spikes’
could be related to incomplete ground coverage during this period (discussed in Section 2.1.4 and Section 3.1.5)
and amended later, although this has not been confirmed with the instrument engineer.
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Figure 6.1: Barcode plot showing the unfiltered set of detections.

F1128_1 | 2016-07-10 18:29:00
Truth Prediction

F1128_2 | 2016-07-14 18:35:00 F1128_3 | 2016-07-16 17:58:00 F1128_5 | 2016-07-20 17:27:00

F1128_6 | 2016-07-22 17:32:00 F1128_19 | 2017-05-09 21:07:00 F1128_20 | 2017-05-11 20:31:00 F1128_21 | 2017-05-13 20:57:00

F1128_22 | 2017-05-15 20:23:00 F1128_23 | 2017-05-17 20:52:00 F1128_52 | 2017-07-24 16:38:00 F1128_63 | 2017-08-23 13:25:00

12/57 periapse spikes found in F1128 (PN)

Figure 6.2: Various examples of periapse spike detections found for F1128. The alternating green and red bars at the top indicate
different orbits, red bars indicate missing data.

Not every detection is an anomaly: T0004 and T0005 contain a number of forecasting artifacts where the
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autoregression becomes noisy, Figure 6.3 shows some examples. At those events, themeasured data does not
show any anomalous change in behaviour. The removal of these artifacts along with the previously mentioned
periapse peaks, yields a much more manageable number of candidate anomalies shown in Figure 6.4. The
resulting anomaly candidates for T0004 and F1128 are shown in Figure 6.5 and Figure 6.6 respectively.

T0004_2 | 2017-01-15 06:22:00
Truth Prediction

T0004_3 | 2017-01-15 04:08:00 T0004_5 | 2017-11-24 13:25:00

T0004_6 | 2017-12-28 19:48:00 T0004_13 | 2018-12-16 07:38:00 T0004_14 | 2018-12-16 02:59:00

T0004_17 | 2019-01-04 10:35:00 T0004_18 | 2019-01-08 12:01:00 T0004_20 | 2019-12-05 19:56:00

Figure 6.3: Various examples of forecasting artefacts found among the detections of T0004. The ed bars at the top indicate missing data,
alternating green and brown bars indicate different orbits.
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Figure 6.4: Barcode plot showing the filtered set of detections, without forecasting artefacts and the periapse peaks.

T0004_1 | 2016-09-01 09:52:00
Truth Prediction

T0004_7 | 2018-07-22 07:53:00 T0004_8 | 2018-07-23 12:35:00 T0004_9 | 2018-09-13 04:19:00

T0004_10 | 2018-09-13 14:14:00 T0004_12 | 2018-10-15 10:51:00 T0004_15 | 2018-12-24 10:50:00 T0004_21 | 2020-01-17 11:53:00

T0004_23 | 2020-07-13 18:23:00 T0004_28 | 2021-05-31 19:06:00 T0004_29 | 2021-06-15 18:01:00 T0004_30 | 2021-09-17 17:26:00

T0004_31 | 2022-03-08 23:01:00

Filtered anomaly detections for T0004 (OM)

Figure 6.5: Simplified overview of the filtered set of detections for channel T0004. The purple bars at the top indicate an eclipse.
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F1128_13 | 2016-08-18 14:59:00
Truth Prediction

F1128_16 | 2016-10-28 04:29:00 F1128_17 | 2016-12-15 00:15:00 F1128_26 | 2017-05-25 19:31:00

F1128_33 | 2017-06-10 11:10:00 F1128_34 | 2017-06-10 19:38:00 F1128_64 | 2018-01-16 00:41:00 F1128_65 | 2018-08-15 08:48:00

F1128_66 | 2018-08-19 06:54:00 F1128_67 | 2018-08-19 04:15:00 F1128_68 | 2020-01-27 15:11:00 F1128_69 | 2020-07-01 13:45:00

F1128_70 | 2020-08-09 08:45:00 F1128_71 | 2021-03-02 08:56:00 F1128_72 | 2021-07-18 01:33:00 F1128_73 | 2022-08-31 18:35:00

Filtered anomaly detections for F1128 (PN)

Figure 6.6: Simplified overview of the filtered set of detections for channel F1128. The purple bars at the top indicate an eclipse, red bars
indicate missing data.

Even when reduced, the number is too extensive to cover each one individually and instead, some general
observations are made:

O1. Detections over time— In Figure 6.4, the number of detections over time does not appear increase or
decrease over time.

O2. Unmerged anomalies— A number of large nearby detections (e.g T0004_9/10 in Figure 6.5 and
F1128_65/66/67 in Figure 6.6) are not combined. In fact, F1128_66 and 67 overlap each other. A clearer
look at T0004_9 is shown in Figure A.2.

O3. Similar behaviour of T0004 and T0005 — All but one detection (T0004_29 in Figure 6.5) in T0004 is
shared with T0005, reflecting their similar behaviour. A closer look reveals that this ’unshared’ detection
is also present in the second channel, but that its flatter signal makes it more difficult to detect.

O4. Measures against eclipses may cause anomalies to be missed — The area before right before
T0004_9 (seen in Figure 6.5) is not included the detection because the forecasting error presented to
the scorer is set to zero in an eclipse.

O5. Hallucinations caused by covariates — F1128 (detections shown in Figure 6.6) is run with a number
of additional covariate channels. Detections F1128_69 and F1128_71 occur during the rare appearance
of the ’UNKNOWN’ instrument mode and the unlearned behaviour causes the forecaster to behave errat-
ically. F1128_64 (see Figure A.3) and F1128_73 (see Figure A.6) show a pattern similar to the eclipse
procedure (seen occurring after the detection of F1128_26) even though no eclipse is recorded at these
times.

O6. Mostly large events — Almost all detections have long durations and clear prominence beyond the
nominal behaviour of the channel. By the taxonomy of ESA-ADB discussed in Section 2.2.4, these can
be described as global anomalies. Some notable exceptions are T0004_28 and T0004_29 (all shown in
Figure 6.5). T0004_1, and T0004_21 feature very short events but still go beyond nominal temperatures.

For O1, concluding that the number of anomalies over time remains constant would be incorrect as not all
detections are confirmed as actual anomalies. Furthermore, the limited number of channels analysed prevents
a broader conclusion on the health of the instruments over time.

For O2, a closer look revealed a bug in the merging step introduced in Section 5.4, causing some cases to be
handled incorrectly. The threshold to combine detections could also be increased. Observation O3 is caused
by deficiencies with the scoring system, which is discussed extensively in Section 5.3.2. Similarly, O4 can be
seen as an unfortunate side-effect of the current scoring system, which sets the anomaly score to zero for
eclipses and missing data. To keep manual analysis time low, eclipses must be filtered out in some way. The
old technique that filtered out detections that are coincident with eclipses would have removed the detection



6.2. A closer look at pipeline detections 60

completely. Ultimately, neither solution is ideal, and an optimal solution would require the forecaster to correctly
predict the eclipse sequence for each channel.

The first part of O5, regarding the appearance of the rare UNKNOWN instrument mode (see Figure A.4 and
Figure A.5) and can be mended by removing appearances of this mode from the training data using sample
weights. The second part is more interesting. To start, even though the model is trained with sample weights
on, it is still able to predict the behaviour of an eclipse signal quite well. It may be that one or more eclipse
procedure tests are present in the training data and that the model is able memorise the behaviour through
the covariates, with F1128_73 then being another such test. Indeed, a closer look found that the behaviour is
mirrored in F1129 for F1128_73 (see Figure A.6) while F1128_64 (see Figure A.3) contains a voltage spike in
F1198 which also occurs during eclipse events. This sparks an interesting point about the use of covariates,
which will be discussed further in Section 7.1.4.

Finally and most importantly is observation O6. As the anomaly pipeline presented in this thesis and all other
machine learning-based anomaly detection algorithms effectively compete with existing systems like out-of-
limits, it would have been more interesting to find a larger number of inconspicuous anomalies. While this
is not entirely unexpected given the discussion on the limitations of the scorer in Section 5.3.2, the type of
anomalies found are also partly attributable to the channels analysed. For F1128, no other anomaly type is
possible as its nominal behaviour is essentially a constant temperature. T0004 and T0005 played a prominent
part in this thesis (see Section 5.3.1) and manual analysis of their forecasts yielded no other significant events
similar to T0004_28 and T0004_29. The high amount of discretisation in these channels means there is very
little opportunity for anomalies to occur within nominal bounds. In other words, while this type of anomaly is
definitely a weakness of the pipeline, they are also simply less common in the channels analysed.

In Section 6.2, a closer look is taken at F1128_16, F1128_65/66/67, T0004_12 and T0004_29.

6.2. A closer look at pipeline detections
In this section, a selection of anomalies are considered individually. In Section 6.2.1, the output of the pipeline is
compared to reported anomalies from ARTS. Section 6.2.2 presents the anomalies discussed with instrument
engineers. Finally, some additional recurring anomalies are discussed in Section 6.2.3 .

6.2.1. Comparison with anomaly reports
Figure 6.7 compares the detections from the previous section to the anomaly reports, showing that only three
events (plus one duplicate) overlap. As described in Section 3.2 however, only twelve reports show behaviour
in the channels analysed, with only seven (plus the duplicate) in the test set range between 2016 and 2023. Of
those events, shown in Figure 6.8 only three resulted in an actual detection.

A more detailed view of the anomalies is required to provide real interpretations on the missed detections and a
curious reader may consult Appendix A.3 for a closer look. Although IOPS-35 and IOPS-36 are directly linked
to PN, the effect of the anomaly is much more pronounced in other channels. Similarly, report SC-108 is related
to an event in the AOCS system and the spike and subsequent missing data may be indirect consequences
in the rest of the system. These three anomalies are not caught for two reasons: the forecaster predicts the
spikes because they are also present in the covariate channels and the anomaly score is not prominent enough
to be detected. It can be debated whether, SC-108 and IOPS-36 as manifested in F1128 should be considered
anomalous at all. Nearby spikes of similar appearance did not require a report for example. Nevertheless,
it again sparks the question of whether covariates provide too much information to the forecasting process,
which is discussed further in Section 7.1.4. Finally, SC-145 again shows the property where a channel returns
missing data if there is a problem deeper in the satellite. The scoring and detection thresholding could again
be improved to yield a better result here.
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Figure 6.7: Barcode plot comparing detections of the pipeline to the anomaly reports. For the three analysed channels, legend colours
denote whether detections have a corresponding anomaly report.
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XMM_IOPS-35 | 2021-05-20 22:23:00 | (PN/F1128)

XMM_SC-139 | 2021-07-18 00:02:00 | (PN/F1128) XMM_IOPS-36 | 2021-08-26 17:55:00 | (PN/F1128)

XMM_IOPS-37 | 2021-09-17 12:29:00 | (OM/T0004) XMM_IOPS-44 / XMM_SC-143 | 2022-03-08 20:47:00 | (OM/T0004)

XMM_SC-145 | 2022-08-30 21:05:00 | (PN/F1128)

Figure 6.8: Comparison between reported anomalies and their detection by the pipeline. The centre of the blue bar marks the reported
start time of an anomaly event while the green marks a detection. Same as previously: red and purple bars indicate missing data and

eclipses.
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6.2.2. Anomalies discussed with engineers
As discussed in Section 4.1.3, anomaly reports in ARTS do not contain all the anomalies encountered by
spacecraft operators. To check whether the other detections could be considered as anomalies, a few of the
more striking ones related to PN were discussed with the instrument engineer:

1. F1128_16— Is related to an unexpected activation of CCD heaters caused by a radiation event elsewhere
in the system. The detection is shown in detail in Figure 6.9.

2. F1128_65/66/67 — Is related to an incorrectly passed command set to test a new eclipse procedure.
The CCD is heated to eclipse temperatures but could not be returned to ideal until the next eclipse. The
forecaster is able to predict the jump due to the addition of covariates, but cannot find the right temperature
as the commanded temperature and heater channels are not provided as covariates.

Although not all detections could be discussed, both of the detections presented can be seen as anomalies and
serve as an indication for the validity of the results of the pipeline.
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Figure 6.9: The full anomaly plot for detection F1128_16 showing information related to the scoring, detection and additional covariates.

6.2.3. Recurring anomalies
Two recurring detections are shown in Figure 6.10 and Figure 6.11. Both events coincide with a switch to safe
mode and/or effects related to the power channels (P1035 and P1135). In fact, almost all detections related
to OM contain either an LCL trip (P1035) or some abnormal readings in the current sensor (P1135), which
leads to questions whether a check for those channels might be a more efficient way to detect problems in OM.
Because widespread access to platform-related channels is currently unavailable through ARES, it is currently
not really possible to see whether the event is caused by factors within the rest of the spacecraft, or if they start
at OM. The addition of platform-related data might thus be beneficial in continued anomaly detection efforts.

The coincident switch to safe mode does spark the question whether these detections are actual anomalies or
just planned events. Confirming such cases, requires them to be presented to the instrument engineers but in
worst case, they can be marked as rare nominal events.
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Figure 6.10: The full anomaly plot for T0004_12.
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Figure 6.11: The full anomaly plot for T0004_29.



7. Discussion and Future Work

The results of the previous chapter demonstrate that the pipeline and the overall methodology are capable
of detecting anomalies. However, the approach still contains a number of limitations and flaws discovered
throughout the thesis. A collection of these themes are discussed in Section 7.1 and, where relevant, sugges-
tions are presented for improvement. In Section 7.2, the initial approach is updated to streamline development
towards an eventual XMM anomaly benchmark.

7.1. Areas for discussion and improvement
This section covers a number of areas for discussion and improvement, grouped into a series of themes. Where
relevant, comparisons aremade to themethods used by ESA-ADB [59][18]. Related to the pipeline are Sections
7.1.1 on data retrieval and preprocessing, 7.1.2 on sample weights, 7.1.3 on the overabundance of parameters,
7.1.4 on covariates, 7.1.5 on scoring and 7.1.6 on detection post-processing. Section 7.1.7 discusses the
anomalies found using the pipeline. Lastly, focussing on future additions, are Sections 7.1.8 on SHAP, 7.1.9
on manual refinement and iterative improvement, and finally 7.1.10 on the use and collection of additional
anomalies.

7.1.1. Data retrieval and pre-processing
As identified in Chapter 3, XMM-Newton telemetry data contains a number of challenging features, such as
eclipses, a high amount of missing data and a number of non-ordinal mode channels. All of these were discov-
ered incrementally throughout the thesis andmended through various pre-processing steps which are combined
into a telemetry dataset tool presented in Section 5.1. Developed with continued use after the thesis in mind,
the tool is efficient, well-documented and highly customisable. It is already being used experimentally at ESAC
and is ready to be used as part of an anomaly benchmark.

A few very small improvements are suggested in Section 5.1.6. The addition of other data sources like platform-
related telemetry, recent orbital data, telecommands and more could be considered in future work. Much of this
data is currently not stored in ARES or at ESAC, as it is not directly relevant to instrument health / science data,
and would potentially have to be obtained from the operations team at ESOC. The addition of telecommands
would be especially useful, as discussed in Section 7.1.4.

7.1.2. The use of sample weights
The semi-supervised forecasting models used in this thesis nominally require anomaly-free training data and
the use of sample weights were found to be a good method to achieve this. In comparison, ESA-ADB removes
anomalous segments entirely. Applied to XMM, with its frequent missing data points and eclipse events, would
result in a highly fragmented training set. Very small segments of training data would have to be discarded,
as they could not provide sufficient lookback data. While the sample weight method allows for the models
to be supplied with a single continuous segment of training data, it could also introduce compatibility issues.
Common deep learning frameworks such as Tensorflow and PyTorch (which Darts uses) as well as a number of
other machine learning libraries like XGBoost support sample weights natively. For semi-supervised algorithms
that do not require lookback, anomalous data could simply be removed as done in ESA-ADB. Other algorithms
without sample weight support would require another solution to be made compatible.

Currently, timestamps containing eclipses and missing data are weighted zero, but this should be expanded
to include known and newly detected anomalies as well. The iterative addition of newly found anomalies is
a method which was already used to create ESA-ADB and could serve to significantly improve forecasting
performance in a continuation of this project. To facilitate this, anomaly detection should also be performed
on the span of data currently used for training. In the future, the forecasting error for the full dataset could
be retrieved by splitting the full set in two, and training and forecasting using two separate models. A similar
scheme was already presented in Figure 5.22 for the implementation of SHAP.

7.1.3. The overabundance of channels, variables and hyperparameters
Applying forecasting models yielded usable reproductions on a number of channels. Nevertheless, the abun-
dance in choice in targets, covariates, preprocessing settings, models and their hyperparameters made the
process a time-consuming endeavour. The hyperparameters can be fixed by applying model tuning but the
others are a bit more difficult. To start, the possibility to configure the dataset tool, most notably through the
collation period, provides additional methods of improving a forecast, as shown in Section 5.2.3. However, the
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lack of a single best preprocessing recipe for all channels creates a significant amount of additional work to set
up a forecast. Additionally, due to varying levels of availability and discretisation, not all channels are easy to
forecast and arguably, not all should/need to be analysed. As an example, PN contains a number of channels
that collect individualised information on each of its four CCD quadrants. If the channel that measures the ’par-
ent’ power line shows an anomaly then the issue will likely be visible in the quadrant lines that it feeds as well.
The parent line should then be preferred for analysis if it is easier to forecast, especially since the more localised
telemetry channels often lack data when there is a problem elsewhere in the satellite (see Section 3.1.5). A
similar case was found in Section 6.2.3, where a number of OM-related detections were found to be related to
power fluctuations and LCL trips.

To streamline the process in the future, channels should be selected based on discussion with instrument
engineers and/or spacecraft operators, focussing on their importance to the instrument and likelihood to display
anomalies. Additional instruments as well as platform related telemetry connected to the instruments could
also be considered. These channels should then be tested on their ability to be forecasted using a standard
pipeline setup. Those that can’t, should be discarded until a desirable number of benchmark target channels
are collected (around 50 in the case of ESA-ADB). Specific setups can then optionally be created for batches
of target channels to improve individual detection performance. A set of existing anomalies for each case could
then be used to tune hyperparameters and other values.

7.1.4. The use of covariates
In Section 5.2.3, covariates were shown to have profound effects on forecasting capabilities, but not all chan-
nels provide desirable effects. The usefulness of modes is clear, as some patterned channels, like T0004 and
T0005, can be predicted using the primary instrument mode and the heater status alone. The use of other
channels had mixed effects. Initial experimentation used all non-target channels of an instrument as covari-
ates. The assumption being that the forecaster would not be able to learn complex and seasonal behaviours
without additional context. The discovery that an overabundance of covariates produced additional noise and
thus worsened forecasting resulted in a change of doctrine: only the covariates that were shown to improve
forecasting performance were kept. This still resulted in a different problem shown in Chapter 6: models were
able to partially predict anomalous events due to their presence in other channels.

Preventing this can be done by choosing covariates based on their physical connection to the target, limiting
what is learned by the forecaster using sample weights, or where possible, avoiding the use of covariates
entirely. Eventually, a replacement with telecommands, which provide context without an additional anomalous
component (barring human error) would be optimal.

7.1.5. Anomaly scoring and thresholding
The anomaly scoring and detection system of the pipeline is seen as the weakest point in the thesis and its
limitations are discussed extensively in Section 5.3.2. The primary issue is that the methods used are exclu-
sively reliant on the forecasting error, which naturally reduces the chance that small, inconspicuous anomalies
are caught. This is also evidenced in the detections shown in Chapter 6. Secondly, the unsupervised machine
learning algorithms used for scoring are highly parametrised requiring tuning to reach optimal results. Lastly,
the use of a static threshold to extract detections from the anomaly score requires additional tuning and pro-
duces detections even when only small forecasting errors are present. Thus, while applying a scoring function
showed a clear benefit over a plain forecasting error, matching earlier findings [52], the implementation could
use some improvement.

The use of automatic tuning could help with the selection of parameters for the scoring function and method to
do this has been provided in Section 5.3.2. This would require a larger set of pre-labelled anomalies to serve as
ground truth. For thresholding, the implementation of dynamic thresholding methods such as those used in the
Telemanom algorithm [13], would reduce the amount of tuning required. This would have to be accompanied
by some type of minimum threshold to reduce the detection of points with very small forecasting errors. Lastly,
the removal of eclipses from anomaly scoring should be revisited to ensure that no detections are missed as
seen in O4 in Section 6.1.

It should be noted that the use of unsupervised TSAD algorithms to retrieve an anomaly score from the forecast-
ing error is a fairly uncommon practice. In fact, many existing TSAD algorithms simply use the plain forecasting
error or feature a custom scoring system. Even though a scoring function can be seen as a modular compo-
nent that can be ’attached’ to any forecasting or reconstruction model, there has been very little focus on the
development of model-independent scoring functions [52]. In the long term, the development of such functions
that can also account for the local context of the telemetry signal as well as its physical and statistical properties
could be of great benefit to the TSAD field.

Improvements to the scoring system would be the fastest way to increase the performance of the pipeline.
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7.1.6. Detection post-processing and cataloguing
The detection post-processing tools introduced in Section 5.4 create metrics for each detection and allow for
the merger, grouping, and storage of anomalies. The system is inspired by ESA-ADB and should be nearly
ready for the use in an anomaly benchmark.

A software bug that results in a failed merger of overlapping detections was identified in Section 6.1 and should
be fixed before future use. Additionally, the inclusion of eclipses and sections of missing data in a future
benchmark will require an additional metric (e.g. ’type’ or ’class’) to distinguish them. Finally, a tool should be
created to convert between mask and tabular anomaly formats.

7.1.7. The quantity and type of anomalies found with the pipeline
The results in Section 6.1 prove the ability of the pipeline to detect anomalies in XMM telemetry data. Never-
theless, time constraints meant that the pipeline was only run successfully on a few target channels. Almost all
of the resulting detections extended prominently beyond the nominal behaviour of the channels. Although this
can partly be attributed to the types of channels analysed, which all featured little opportunity for inconspicuous
anomalies to occur, many of the detections could also be caught using simple out of limits systems and would
not make for an interesting anomaly detection benchmark (per flaw F1: Triviality, discussed in Section 2.2.3).

Unfortunately, additional non-trivial anomalies can only be found by spending more time on improving the
pipeline and running it on more target channels. Further feedback and suggestions by instrument engineers
and/or satellite operators could be used to find better target channels.

7.1.8. The use of explainable AI
Multiple implementations of the explainable AI method SHAP were explored during the thesis. Unfortunately,
time constraints meant a final implementation could not be fully realised. Nevertheless, it is believed that a more
rigorous attempt at applying SHAP to interpreting anomalies could yield beneficial results and the methods
explored are documented in Section 5.5 to facilitate future work.

7.1.9. Manual refinement and iteration
Compared to the work performed performed in this thesis, the creation of ESA-ADB involved much more iter-
ation to produce its dataset of anomalies. Authors combined an initial set of anomalies from ARTS and other
sources with a second set obtained by a first detection pass using unsupervised TSAD algorithms. The anoma-
lies in this collection were then refined manually in collaboration with spacecraft operators to assign the correct
start and end dates, as well as the correct target channels. This initial collection allowed for the generation of
anomaly-free training data, which was fed to the semi-supervised Telemanom algorithm [13] to find additional
anomalies. This final step using semi-supervised models was repeated a number of times with refinements
and discussion with operators at each step until the training data was anomaly-free and no more detections
could be found.

The extensive amount of iteration and discussion with spacecraft operators / instrument engineers was not
possible in this thesis, but should be pursued when proceeding with an XMM benchmark. While a number of
anomalies can be confirmed by accessing additional anomaly sources, only a the experts can confirm whether
a previously undocumented anomaly is real or not. Lastly, manual refinement is required to ensure that a bench-
mark of telemetry anomalies meets benchmark flaw F3: mislabelled ground truth, discussed in Section 2.2.3.
Manual refinement could also be done using a purpose-built annotation tool such as OXI [84].

7.1.10. The use and collection of existing anomalies
The ARTS reports provided a key source of ground truth used to tune the anomaly scoring system shown
in Section 5.3 and enabled comparison of pipeline output. As mentioned previously, the existing anomalies
should be removed from training data and it is beneficial to collect as many existing anomalies as possible
before starting with semi-supervised anomaly detection. This can be done in a number of ways:

1. Existing anomalies stored outside ARTS could be collected and refined.
2. As performed by ESA-ADB, an initial unsupervised pass (e.g. using HBOS, isolation forest, etc.) can be

used to retrieve an additional set of anomalies.
3. While direct detectionmethods used in this thesis aremost popular and allow for amore precise annotation

of anomalies, a window-based detection method could also be used. Ruszczak et al. (2023) [57] present
such an approach to create an anomaly dataset in OPS-SAT telemetry data. A very simple approach could
window the dataset by orbit and collect various statistical features for each. An unsupervised clustering
algorithm like K-means could then be applied to find the most anomalous orbits. Such a method would
still require significant additional manual refinement to yield usable anomalies.
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7.2. Proceeding towards an anomaly benchmark
The primary research question of the thesis (RQ1) focussed on finding an approach to construct a dataset of
anomalies in XMM instrument telemetry data. Section 4.2 presented the initial version implemented during the
thesis (visualised in Figure 4.2). The lessons learned, which are documented in the previous section, can be
used to update the approach in order to proceed towards the creation of an XMM anomaly detection benchmark.
This new version is shown in Figure 7.1 and features a number of new additions:

• Choosing targets and covariates — As discussed in Section 7.1.3 and Section 7.1.4, discussion with
engineers based on the lessons learned in this thesis can help streamline the selection of target channels
and their covariates.

• Finding and refining existing anomalies — An extended set of existing anomalies can be used to
refine the scoring system and improve semi-supervised forecasting performance (see Section 7.1.2 and
Section 7.1.5). Three methods to perform this step have been provided in Section 7.1.10.

• Manual refinement and Iteration—Manual refinement is necessary for the detections to have correctly
labelled start and end times as discussed in Section 7.1.9. Some iteration was already included in the
original chart but could not be performed in this thesis. The importance of this step to improve pipeline
performance is discussed in Section 7.1.9 as well.

The addition of these steps and other improvements discussed in Section 7.1 should serve to streamline the
creation of a benchmark. Nevertheless, it is necessary to acknowledge that this time-consuming endeavour
will undoubtedly require further refinement in the methodology in the future.
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8. Conclusion

In this chapter, the conclusions of the project are presented by providing answers to the research questions and
sub-questions first introduced in Chapter 1. This is done in Section 8.1. Some final remarks on the objectives
of the thesis are then provided in Section 8.2.

8.1. Answers to the research questions
Research Question 1 (RQ1)

What is a suitable approach to construct a dataset of anomalies in XMM-Newton instrument telemetry data
using ML-based TSAD techniques?

An initial methodology to address this question was introduced in Section 4.2, focussing on a direct detection-
based semi-supervised forecasting approach. The software portion of the methodology was implemented
through an Anomaly Pipeline, presented in Chapter 5, which has four primary components:

1. Data pre-processing—Telemetry and auxiliary data is combined into a format that is digestible to machine
learning models. Further explained below in RSQ2 and at large in Section 5.1.

2. Telemetry forecasting — Pre-processed telemetry data is passed to forecasting models like XGBoost and
LSTM. Multiple forecasting models were tested, finding that more than one model has good performance
but that the best model depends on the channel, preprocessing and the amount of hyper-parameter tuning
used. In the end, LSTM-based models were selected due to their simplicity, broad compatibility and fast
runtimes. Presented at large in Section 5.2.

3. Anomaly scoring and thresholding — The resulting forecasting error is modified through various anomaly
scorers. A threshold is subsequently applied to retrieve detections. The implementation is presented in
Section 5.3 and features one of the major limitations of the pipeline, which is discussed further below in
RQ1S7.

4. Detection post-processing and cataloguing — Detections are post-processed to include supplemental
information. Further discussed in RQ1S4 and at large in Section 5.4.

This approach successfully yielded a number of detections but also contained a number of flaws, which were
subsequently addressed in an updated methodology presented in Section 7.2. Although it is likely that there
are still improvements to be made, this approach could serve as a starting point for the creation of an anomaly
benchmark in the future.

Additional conclusions are provided through the sub-questions below.

RQ1 sub-question 1 (RQ1S1)

What are the unique or notable characteristics of XMM instrument telemetry data and how do these affect the
anomaly detection methodology?

Based on literature presented in Section 2.2.4, spacecraft telemetry in general is known to have a number of
challenging properties such as:

• A high number of telemetry channels with many interdependent features. They may contain a variety of
information such as sensor data (e.g. temperatures and voltages), operating modes, status flags and
counters.

• Varying sampling rates, irregular acquisition times, invalid segments, and communication gaps.
• Seasonal features related to operational modes and phases, the orbit and component degradation.

Data exploration in Chapter 3 found that all these properties are present in the telemetry data of XMM as well
and are dealt with by the data pre-processing step, discussed in RQ1S2.

Two properties that make XMM a particularly challenging case for anomaly detection are the occurrence of
seasonal eclipses (see Section 3.1.4), which require special operations, and a high volume of missing data
(see Section 3.1.5). The ground operations architecture of XMM requires continuous contact with the ground for
downlink and command. A lack of mass onboard storage means that a loss in signal means a loss of telemetry
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data. These issues, which may be considered non-nominal telemetry behaviour, needed to be removed from
training data in line with the requirements of semi-supervised anomaly detection algorithms. In the end, the
best solution found utilises sample weights, which force forecasting training algorithms to ignore missing data
and eclipses in the training data.

A final interesting property discovered while exploring the data is that the downlink of channels can be affected
by problems elsewhere in the satellite. An example provided in Section 3.1.5 shows how an existing anomaly
related to OM is measured in related thermal subsystem telemetry but contains missing data in telemetry of
the instrument itself. This led to channels related to the thermal subsystem being prioritised in the search for
anomalies.

RQ1 sub-question 2 (RQ1S2)

Which preprocessing steps are required to transform unprocessed XMM Telemetry data into a format that is
digestible by machine learning anomaly detection techniques?

In Section 5.1 six key pre-processing steps were implemented in a dataset tool:

D1. Dataset splitting — The full span of data was split into separate, training, validation and test sets.
D2. Collation — The varying sample sizes and irregular acquisition times, as well as missing data mentioned

in RQS1 are converted to regular time intervals.
D3. Adding auxiliary data — Auxiliary data sources such as eclipses and orbital data were combined with the

primary source for telemetry data.
D4. Scaling — The varying magnitudes of the telemetry data require rescaling to ensure compatibility with

deep learning-based forecasting models.
D5. Handling modes — Modes are transformed to a one-hot encoding to ensure compatibility with machine

learning models.
D6. Removing anomalies from training data — Semi-supervised models, such as the forecasters used in

this thesis, nominally require training data to be free of anomalies. Two methods: interpolation and
sample weights were considered, with the latter ultimately chosen. The anomalies themselves were not
incorporated into the sample weights, which is marked as an area for improvement in RQ1S7.

RQ1 sub-question 3 (RQ1S3)

What format and data structure should a dataset of anomalies have to be used as a benchmark?

As discussed in Section 5.4, the anomalies should be stored in two formats:

• A mask format with the dimensions of the telemetry data (time, channels) and a true or false value de-
pending on if there is an anomaly at that time and in that channel.

• A tabular format where each row is an anomaly with an id, start and end times, and a number of metrics
such as whether an anomaly is multivariate or contains missing data.

Additional masks should be created for eclipses, missing data and other rare nominal events. The table and
masks should then be accompanied by the telemetry data, completing the benchmark.

RQ1 sub-question 4 (RQ1S4)

What anomalies can be found using existing ML-based TSAD techniques?

The pipeline was run on a number of target channels and successfully obtained detections on three of them.
Most of the 40 total detections, presented in Section 6.1, are large anomalies that prominently extend beyond
the nominal regime of their respective channels. Such detections are less interesting than the few inconspic-
uous ones discovered, which would otherwise not be detected using out-of-limits techniques. The result can
partly be attributed to the channels analysed: the first has a straight line as its nominal behaviour and the other
two are discretised, providing little opportunity for such anomalies. At the same time, the scoring system used
to perform the detections is inherently better at finding larger anomalies. More channels should be analysed
with the pipeline to confirm its capabilities.
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RQ1 sub-question 5 (RQ1S5)

How do detected anomalies compare to existing anomalies reported by operators and instrument engineers?

A collection of anomaly reports was analysed manually, finding seven that coincide with a change in behaviour
in the telemetry channels analysed. The subsequent comparison in Section 6.2.1, found that three of these
were detected using the pipeline, with the remaining being undetected for various reasons. In discussion with
an instrument engineer, two other detections were confirmed to be anomalies. Even though the remaining
detections could not be discussed, the two confirmations serve as a good indication of the validity of the results
found with the pipeline.

RQ1 sub-question 6 (RQ1S6)

What are the differences in approach compared to ESA-ADB?

The approach presented in this thesis has many similarities in the areas of telemetry data pre-processing,
detection post-processing and in the use of semi-supervised forecasting. There are three major differences:
the curation of a larger set of initial anomalies before running switching to semi-supervised detection, a greater
focus on iteration based on discussion with spacecraft operators, and the manual refinement of detections to
ensure correct ground truth. All three aspects are recommended in the updated approach in Section 7.2 and
are discussed further in Section 7.1.9 and Section 7.1.10.

RQ1 sub-question 7 (RQ1S7)

What are the limitations and flaws of the approach used and what improvements can be made?

Both the pipeline and methodology developed in this thesis are the first step to a few larger goals and many
areas of improvement have been discussed in Section 7.1. These range from small bugfixes to major additions
to the approach. For brevity, only the most pressing items are repeated below.

Chief amongst these is the scoring and detection system, discussed in Section 7.1.5, which currently performs
poorly on small inconspicuous anomalies, is highly parametrised, and uses a static thresholding system. Im-
provements could be made by performing automated tuning with a larger collection of pre-labelled anomalies
and by implementing a dynamic scoring method as is performed by other works in the field. Alternatively, an
improved approach that takes the physical and statistical context of channel analysed could also be considered.

Sample weights were found to be an effective way to ignore anomalous data in forecaster training. Currently
eclipses and missing data are weighted zero, but this should be expanded to include known and newly detected
anomalies in the future.

Tuning the scoring system and improved use of sample weights requires a larger set of anomalies to be curated.
The collection of anomaly reports used in this thesis only contain the most serious anomalies and the addition of
other sources should be considered. Alternatively, a first pass with unsupervised anomaly detection methods,
which do not require anomaly-free training data, could also yield results. Two such options are described in
Section 7.1.7.

More thought should be given to the choice of target and covariate channels which are currently selected with-
out an effective systematic approach. Additionally, the process of applying semi-supervised learning requires
iteration to catch and remove all anomalies from training data. Collaboration with instrument engineers or
spacecraft operators can significantly accelerate both processes.

To proceed towards an XMM-Newton Anomaly benchmark, an updated approach has been presented in Sec-
tion 7.2.

Second research question (RQ2)

RQ2 - How can explainable AI methods be applied to understand a detected anomaly and its origins?

As explained in the introduction, time constraints meant that these questions were not fully answered. Only
an answer to RQ2S1 is provided here as it was explored while reviewing literature. Nevertheless, multiple
approaches are explored in Section 5.5, which can serve to facilitate future work.

RQ2 sub-question 1 (RQ2S1)

Which types of explainable AI methods can be applied to TSAD?
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As explained in Section 2.3, Explainable AI comes in three main forms:

1. Interpretable machine learning models — These are models where the internal workings can be under-
stood directly, such as decision trees and linear regression.

2. Model-specific methods — Here efforts are focussed on making a specific model interpretable by access-
ing its internals.

3. Model-agnostic methods — These are methods that can be applied to any model.

Only model-agnostic methods were considered, as they do not require efforts to be tied to a single model.
Explainable AI can provide global interpretability, which provide insights on an entire model, and local inter-
pretability which provide insights on an individual prediction. Finally, methods can be distinguished by the
types of data they can be applied on, such as images, text or tabular data.

In the context of time series anomaly detection a method should be used that can explain individual predic-
tions (e.g. time steps) within tabular data. The two most popular methods that meet these requirements are
SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME). Of these
methods, SHAP was selected because it is actively maintained, due to its compatibility for both local and global
interpretation, and due to its stability in comparing nearby predictions.

RQ2 sub-question 2 (RQ2S2)

Which temporal and inter-channel dependencies can be uncovered when analysing XMM-Newton anomalies
with Explainable AI?

This question remains unanswered as the methods developed were not complete enough to be applied in
analysis.

8.2. Final remarks
This thesis marked the first exploration into XMM-Newton instrument telemetry data with machine learning-
based anomaly detection techniques. The introduction presented three primary objectives:

OBJ1 — Find anomalies in XMM-Newton telemetry data by applying machine learning-based anomaly detec-
tion techniques.

OBJ2 — Facilitate research into spacecraft telemetry anomaly detection by initiating the construction of a
dataset of anomalies in XMM-Newton instrument telemetry data.

OBJ3 — Enable the use of machine learning-based anomaly detection techniques in XMM-Newton telemetry
by developing a set of software tools for processing and detecting anomalies in raw XMM telemetry
data.

Although fully accomplishing each objective proved challenging, significant strides were made in all three areas.
The anomaly pipeline successfully found 40 detections on three target channels and number of these were
confirmed to be real anomalies. Investigating XMM telemetry has revealed a number of particularly challenging
features, and solutions for these have been partially implemented or suggested in the updated approach shown
in Section 7.2. Additionally, considerable progress has been made in the development of software tools which
can be adopted for continued use in anomaly detection and the development of a benchmark. Tools built for
pre-processing raw telemetry data as well as those for cataloguing detected anomalies have a particularly high
level of maturity.

Time constraints meant that the second research question related to Explainable AI for interpreting anomalies,
could not be pursued fully. Ultimately, a comprehensive study on the subject applied to spacecraft telemetry
could be considered for its own thesis-sized research project. Finally, while a number of areas have been
found for improvement within the pipeline and methodology, the development of high-quality general-purpose
scoring functions could have significant benefits to anomaly detection field in its entirety. Methods could be
explored that can be paired to any forecasting model and potentially account for local context and incorporate
physics-informed techniques.
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A. Additional anomaly context

This appendix presents companion tables, pipeline settings and additional anomaly plots to support Chapter 6.
Each of the final targets were run with two LSTM-based models, LSTM14 and BM_LSTM. Their settings are
shown in Table A.1. The main parameters of the final dataset configurations are shown in Table A.2, this also
includes the final selected model for each run. T0004 and T0005 use a MinMaxScaler to match more closely
with earlier images shown in Chapter 5, while F1128 uses RobustScaler, in line with the findings of Section 5.2.3.
Test set metrics are shown in Figure A.1, with the model with the lowest median test-set MAE being selected.

The remaining sections present additional anomaly plots for detections shown in Chapter 6. Appendix A.1
shows an additional anomaly plot for T0004, Appendix A.2 shows multiple for F1128. Finally, the anomaly
reports that were not detected in Section 6.2.1, are shown in Appendix A.3.

Table A.1: Hyperparameters for the two forecasting models used to achieve the detections in the results section. All unlisted parameters
are set to the defaults as of Darts version 0.32

BM_LSTM LSTM14
lookback (input_chunk_length) 12 12
darts model BlockRNNModel BlockRNNModel
model LSTM LSTM
n_epochs 10 25
n_rnn_layers 1 2
hidden_dim 25 64
batch_size 32 32
dropout 0 0.3
learning rate 0.001 0.0001
loss function MAE MAE

Table A.2: Pipeline settings used to achieve the detections shown in the results.

T0004, T0005 F1128 F1129
train range: 2014-1-1 to 2016-1-1
validation range: 2016-1-1 to 2016-7-1
test range: 2016-7-1 to 2023-2-1 2016-7-1 to 2023-1-1
target channels: T0004, T0005 F1128 F1129
covariate channels: None F1122, F1198, F1199,

F1201, F1190, F1192,
F1257, F1258, F1259,
F1260, F1191, F1193,
F1129

F1122, F1198, F1199,
F1201, F1190, F1192,
F1257, F1258, F1259,
F1260, F1191, F1193,
F1128

engineered covariates: eclipse, distance_earth, distance_sun, beta_angle
mode_channels: H5395, H5240, HD013 FD126, FD130
collation period: 60 seconds
col. agg. method: last
global seed: 1
scaling: minmax robust
sample weights: on
name of model used: LSTM14 BM_lstm
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(a) T0004 and T0005 (MinMaxScaler) (b) F1128 (RobustScaler)

Figure A.1: Training metrics for the final two runs. Note that the difference in MAE is due to a difference in scalers used.
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Figure A.2: Full anomaly plot for T0004_73. Related to O2 in Section 6.1.
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Figure A.3: Full anomaly plot for F1128_64. Related to O5 in Section 6.1.
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Figure A.4: Full anomaly plot for F1128_69. Related to O5 in Section 6.1.
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Figure A.5: Full anomaly plot for F1128_71. Related to O5 in Section 6.1.
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Figure A.6: Full anomaly plot for F1128_73. Related to O5 in Section 6.1.
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Figure A.7: XMM_SC-108 as represented in F1128. Discussed in Section 6.2.1.
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Figure A.8: XMM_IOPS-35 as represented in F1128. Discussed in Section 6.2.1. The problem appears more prominently in other
channels.
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Figure A.9: XMM_IOPS-36 as represented in F1128. Discussed in Section 6.2.1. Surrounding spikes have a greater magnitude than the
reported anomaly area.
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