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Propositions

accompanying the dissertation

Designing Health Indicators for Aerospace Structures by
Intelligent Information Fusion

by
Morteza Moradi

1. The primary outcome of your PhD is not your thesis (output); it is you (the trained model).

2. Failures teach (backpropagation), and successes are the fruits of failures. While the latter (output)
excites you temporarily, the former (learning ability) develops skills that last a lifetime.

3. Initial weights and biases have unavoidably an impact on a deep learning model’s performance,
much like the effect of where and when people are born in their lives. Nevertheless, robust
models must always perform well, regardless of their initial condition. [Generalizability]

4. Occupying a position in a prestigious institute does not mean that you are good (criteria given
solely for the test unit); rather, some of your predecessors were good, making the institute pres-
tigious (criteria given for all units, including training and test units). [Thesis]

5. When we claim we comprehend how a complex engineering system operates, then either we are
dishonest or the system is not complex. [Interpretability] [Thesis]

6. Unlimited resources may blind you to opportunities, whereas confronting constraints serves to
broaden your perspective. To flourish within constraints, you have to improve your skills and
become stronger.

7. There is no logical basis to assume that the true remaining useful life is piece-wise linear.

8. Competition is an essential ingredient of development, regardless of whether the effort is indi-
vidual or collaborative.

9. Striving to meet all criteria to an acceptable standard is more advantageous than achieving high
scores in some while neglecting others. [Thesis]

10. Reading a paper costs; writing one costs; and reviewers are not also paid. It has the ingredients
of a belief system that no one questions.

These propositions are regarded as opposable and defendable, and have been approved as such by the
promotor prof. dr. ir. R. Benedictus and copromotor dr. D. Zarouchas.
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“Interpretation: If you gain knowledge and wisdom, you can even control the sky (the
passage of time).”

Nasir Khusraw, 11th-century Persian poet and philosopher






Summary

Awareness of the health status of an engineering system holds significant importance
across multiple industries, such as aerospace, marine, and energy. This awareness can
take two primary forms—either detailed or comprehensive—each carrying its own dis-
tinct benefits. However, when it comes to pivotal decisions concerning the prediction of
remaining useful life (RUL), the initiation of shutdown procedures, and the identification
of maintenance requirements, the need for a comprehensive health indicator (HI) becomes
essential. Such a HI serves as a vital metric for predicting RUL, facilitating maintenance
decisions, and refining structural designs.

Composite structures play a pivotal role in aerospace and wind energy applications,
offering high performance, lightweight construction, and durability, which result in safety
enhancements and cost savings. However, unlike conventional structures, they are suscep-
tible to various forms of damage, such as matrix cracking, delamination, and fiber buckling,
leading to diverse failure scenarios. The HI should represent all these failure modes, acting
as an intermediary that connects data from structural health monitoring (SHM) techniques
with prognostic models for predicting RUL. Despite advancements in understanding ma-
terial deformation and fracture mechanisms through defect theory and crack mechanics,
predicting failures in composite structures at a macroscopic level remains challenging.

Highlighting the significance of HI as a macroscopic index for predicting RUL and
guiding maintenance decisions, this thesis aims to develop intelligent frameworks for HI
extraction tailored for aerospace composite structures. The literature review identifies
gaps in existing methodologies, including: limited applicability to composite structures;
the need for nonlinear HIs aligned with damage propagation physics to move beyond the
conventional linear assumptions; and the importance of generalizability and criteria eval-
uation, with a focus on test units. Additionally, the need for historical-independent HI,
addressing the common historical-dependency drawback in HI construction and prognos-
tic models; the fusion of passive and active SHM techniques to maximize the benefits of
both temporal and spatial information; and emphasizing the interpretability of a HI are
highlighted.

A new methodology is introduced for developing Hls, emphasizing the importance
of nonlinearity aligned with damage propagation physics. Prognostic criteria for evaluat-
ing HIs are highlighted and refined in terms of model stability and performance on test
units. The developed methodology integrates a nonlinear kernel within a semi-supervised
learning paradigm, serving as the foundation for subsequent frameworks designed to
address the other above-mentioned research gaps and specific case studies. To validate
the proposed methodology, different experimental data were employed, where two SHM
techniques—acoustic emission (AE) and guided wave (GW)—were utilized to monitor com-
posite structures.

The primary experimental campaign focused on T-stiffener composite panels subjected
to impact and compression-compression fatigue loadings (ReMAP dataset), highlighting
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viii Summary

the challenges of realistic and uncertain phenomena during experiments, resulting in a
wide range of end-of-life (EoL). Stiffened composite panels were monitored using various
SHM techniques, with AE and GW being the primary focus. Three data-driven frame-
works, leveraging signal processing and artificial intelligence (AI), were developed based
on AE data to construct HIs. Twelve units were employed for training, validation, and test-
ing, using leave-one-out cross-validation (LOOCV) to rigorously evaluate generalizability.

Regarding the GW monitoring technique, a data-driven framework employing signal
processing and deep learning was developed. Two distinct datasets—ReMAP and NASA—
were investigated, featuring stiffened composite panels and dogbone specimens subjected
to fatigue loading. The ReMAP dataset comprises five T-stiffener composite units mon-
itored by the GW technique, while the NASA dataset involves tension-tension fatigue
loading on dogbone composite specimens with three different layups (4, 3, and 4 units for
each, respectively). The LOOCYV process was used to evaluate the developed framework on
each dataset. Given the targeted GW datasets, the proposed GW-based framework should
be flexible in accommodating various sensor numbers, networks, excitation frequencies,
and setups. Moreover, the GW technique, as an active SHM technology, was selected as
a good candidate for exclusively utilizing current monitored data to address the historical
dependency drawback.

Furthermore, another key aspect of the thesis involves the fusion of information from
different SHM techniques. The ReMAP dataset was considered for the GW-AE fusion sce-
nario, where data from both AE and GW were integrated to formulate HIs for T-stiffener
composite panels. To showcase the effectiveness of the data-driven fusion approach in im-
proving the overall performance of SHM techniques, the LOOCV process was employed.

One aspect that contributes to interpretability is the presence of incremental steps
in the generated HIs, which may correspond to distinct damage states within composite
structures. These incremental steps can offer valuable insights for informing state-based
RUL prediction models. To address this, AE- and GW-based frameworks were designed
and investigated. Additionally, the development of an interpretable neural network (INN)
was aimed at designing HIs for commercial turbofan engines using the CMAPSS dataset.
The goal was to achieve optimal performance by condensing overly complex equations
into a more readable format. To achieve this, multiplicative neurons were developed to
complement additive neurons, with sparsity control applied to discretize weights. Despite
the shift in focus from composite structures to turbofan engines, which presents a more
straightforward dataset compared to those involving composite structures, INN success-
fully provides an interpretable HI for the CMAPSS dataset. This outcome further validates
the effectiveness of the semi-supervised method in extracting HIs.

Overall, the thesis contributes to advancing prognostics and health management (PHM)
in aerospace engineering by providing innovative methodologies and insights for design-
ing HIs tailored for composite structures. The research findings underscore the importance
of addressing challenges such as complexity, interpretability, historical data dependency,

and the fusion of SHM techniques, laying the groundwork for future advancements in the
field.



Samenvatting

Bewustzijn van de gezondheidstoestand van een technisch systeem heeft aanzienlijk be-
lang binnen meerdere industrieén, zoals de luchtvaart, maritieme, en energie-industrieén.
Dit bewustzijn kan twee primaire vormen aannemen—gedetailleerd of uitgebreid—die
elk hun eigen specifieke voordelen met zich meebrengen. Echter, wanneer het aankomt
op cruciale beslissingen met betrekking tot de voorspelling van de resterende bruikbare
levensduur (RUL), het starten van shutdown-procedures, en het identificeren van onder-
houdsvereisten, wordt de behoefte aan een uitgebreide gezondheidsindicator (HI) essen-
tieel. Zo’n HI fungeert als een vitaal meetinstrument voor het voorspellen van RUL, het
vergemakkelijken van onderhoudsbeslissingen, en het verfijnen van structurele ontwer-
pen.

Composiet structuren spelen een cruciale rol in luchtvaart- en windenergietoepassin-
gen, waarbij ze hoge prestaties, lichtgewicht constructie, en duurzaamheid bieden, wat
resulteert in verbeterde veiligheid en kostenbesparingen. Echter, in tegenstelling tot con-
ventionele structuren, zijn ze vatbaar voor verschillende vormen van schade, zoals ma-
trixscheuren, delaminatie, en vezel knik, wat leidt tot diverse faalscenario’s. De HI dient
al deze faalmodi te omvatten, fungerend als een tussenstap die gegevens van structurele
gezondheidsmonitoring (SHM) technieken verbindt met prognosemodellen voor het voor-
spellen van RUL. Ondanks vooruitgang in het begrip van materiaaldeformatie en breuk-
mechanismen via defectentheorie en mechanica, blijft het voorspellen van fouten in com-
posiet structuren op macroscopisch niveau uitdagend.

Met de nadruk op de betekenis van HI als macroscopische index voor het voorspellen
van RUL en het begeleiden van onderhoudsbeslissingen, heeft deze thesis tot doel intel-
ligente kaders te ontwikkelen voor HI-extractie op maat voor luchtvaartcomposietstruc-
turen. De literatuurstudie identificeert kloven in bestaande methodologieén, waaronder:
beperkte toepasbaarheid op composietstructuren; de behoefte aan niet-lineaire HI’s in
overeenstemming met de fysica van schadepropagatie om voorbij de conventionele lin-
eaire aannames te gaan; en het belang van generaliseerbaarheid en criteria-evaluatie,
met de nadruk op testeenheden. Bovendien worden de behoefte aan geschiedenis-
onafhankelijke HI, het aanpakken van het gemeenschappelijke geschiedenis athankeli-
jkheidsnadeel in HI-constructie en prognosemodellen; de fusie van passieve en actieve
SHM-technieken om de voordelen van zowel tijdelijke als ruimtelijke informatie te maxi-
maliseren; en het benadrukken van de interpretatiemogelijkheden van een HI zijn belicht.

Een nieuwe methodologie wordt geintroduceerd voor het ontwikkelen van HI's, waar-
bij de nadruk wordt gelegd op het belang van niet-lineariteit in overeenstemming met
de fysica van schadepropagatie. Prognostische criteria voor het evalueren van HI's wor-
den benadrukt en verfijnd qua modelstabiliteit en prestaties op testeenheden. De on-
twikkelde methodologie integreert een niet-lineaire kernel binnen een semi-supervised
learning-paradigma, als basis voor daaropvolgende kaders die zijn ontworpen om de an-
dere bovengenoemde onderzoekskloven en specifieke casestudies aan te pakken.
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Om de voorgestelde methodologie te valideren, werden verschillende experimentele
gegevens gebruikt, waarbij twee SHM-technieken—akoestische emissie (AE) en geleide
golven (GW)—werden gebruikt om composiet structuren te monitoren.

De primaire experimentele campagne richtte zich op T-stijve composietpanelen die
werden blootgesteld aan inslag- en compressie-compressie-vermoeidheidsbelastingen
(ReMAP-dataset), waarbij de uitdagingen van realistische en onzekere verschijnselen ti-
jdens de experimenten werden benadrukt, wat resulteerde in een breed scala aan einde
van het leven (EoL). Verstijfde composietpanelen werden gemonitord met verschillende
SHM-technieken, waarbij AE en GW de belangrijkste focus waren. Drie op gegevens
gebaseerde kaders, waarbij signaalverwerking en kunstmatige intelligentie (AI) werden
ingezet, werden ontwikkeld op basis van AE-gegevens om HI’s te construeren. Twaalf
eenheden werden gebruikt voor training, validatie en testen, waarbij leave-one-out cross-
validatie (LOOCV) werd toegepast om de generaliseerbaarheid grondig te evalueren.

Met betrekking tot de GW-monitoringtechniek werd een op-gegevens-gebaseerd kader
ontwikkeld waarbij signaalverwerking en diep leren werden toegepast. Twee verschil-
lende datasets—ReMAP en NASA—werden onderzocht, met verstijfde composietpane-
len en proefstuk met verjonging die aan vermoeidheidsbelasting werden onderworpen.
De ReMAP-dataset omvat vijf T-stijve composiete eenheden die door de GW-techniek
worden gemonitord, terwijl de NASA-dataset spannings-spanningsvermoeidheidstests op
composietspecimens (met verjonging) met drie verschillende legpatronen omvat (respec-
tievelijk 4, 3, en 4 eenheden). Het LOOCV-proces werd gebruikt om het ontwikkelde kader
op elke dataset te evalueren. Gezien de gerichte GW-datasets, zou het voorgestelde op GW
gebaseerde kader flexibel moeten zijn in het omgaan met verschillende sensoraantallen,
netwerken, excitatiefrequenties, en opstellingen. Bovendien werd de GW-techniek, als
een actieve SHM-technologie, geselecteerd als een goede kandidaat voor het uitsluitend ge-
bruiken van live gemonitorde gegevens om het geschiedenis-athankelijkheidsnadeel aan
te pakken.

Verder omvat een ander sleutelaspect van de thesis de fusie van informatie uit verschil-
lende SHM-technieken. De ReMAP-dataset werd overwogen voor het GW-AE fusiesce-
nario, waarbij gegevens van zowel AE als GW werden geintegreerd om HI's te formuleren
voor T-stijve composietpanelen. Om de effectiviteit van de op gegevens gebaseerde
fusiebenadering in het verbeteren van de algehele prestaties van SHM-technieken te laten
zien, werd het LOOCV-proces toegepast.

Een aspect dat bijdraagt aan de interpreteerbaarheid is de aanwezigheid van in-
crementele stappen in de gegenereerde HI's, die kunnen overeenkomen met verschil-
lende schadetoestanden binnen composiet structuren. Deze incrementele stappen kun-
nen waardevolle inzichten bieden voor het informeren van op staten gebaseerde RUL-
voorspellingsmodellen. Om dit aan te pakken, werden AE- en GW-gebaseerde kaders ont-
worpen en onderzocht. Bovendien was het ontwikkelen van een interpreteerbaar neuraal
netwerk (INN) gericht op het ontwerpen van HI’s voor commerciéle turbofanmotoren
met behulp van de CMAPSS-dataset. Het doel was om optimale prestaties te behalen
door overdreven complexe vergelijkingen om te zetten in een leesbaarder formaat. Om
dit te bereiken, werden multiplicatieve neuronen ontwikkeld om additieve neuronen aan
te vullen, met toepassing van spaarzaamheidscontrole om gewichten te discretiseren. On-
danks de verschuiving van de focus van samengestelde structuren naar turbofanmotoren,
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wat een eenvoudiger dataset oplevert vergeleken met die welke samengestelde structuren
omvatten, biedt INN met succes een interpreteerbare HI voor de CMAPSS-dataset. Dit re-
sultaat valideert verder de effectiviteit van de semi-supervised methode in het extraheren
van HI’s.

Al met al draagt de thesis bij aan het bevorderen van prognostiek en gezondheidsman-
agement (PHM) in de luchtvaarttechniek door innovatieve methodologieén en inzichten
te bieden voor het ontwerpen van HI’s op maat voor composietstructuren. De onderzoek-
sresultaten benadrukken het belang van het aanpakken van uitdagingen zoals complex-
iteit, interpreteerbaarheid, geschiedenis-gegevensafhankelijkheid, en de fusie van SHM-
technieken, wat de basis legt voor toekomstige vooruitgang op dit gebied.
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Introduction

In this introductory chapter, the definitions and motivation for a health indicator in compar-
ison to the remaining useful life of an engineering system are elucidated, and the essential
research objectives regarding the construction of health indicators are expounded upon.
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1.1 Health Indicator & Remaining Useful Life

wareness of an engineering system’s health status is paramount in a range of indus-

tries, including aerospace, marine, and energy. This awareness can manifest in two
forms—detailed or comprehensive—each offering its own set of advantages. For instance,
acquiring detailed knowledge of the composite structure’s damage—such as microcracks,
cracks, fiber breakages, voids, and delaminations—proves invaluable for delving into the
physics of damage mechanics and interactions. In this regard, based on Beaumont [1],
“There is a need to link experience at levels between the macroscopic size with under-
standing at the micro-structural scale of the material” By discerning the reasons for dam-
age initiation and its interactions with other forms of damage, materials can be refined
and structural designs improved for further applications.

However, when it comes to making decisions related to predicting the remaining use-
ful life (RUL), initiating shutdown procedures, and determining maintenance types, the
necessity of a comprehensive health indicator (HI) becomes evident. In fact, HI serves as
a macroscopic index. As stated in [1], *The macroscopic response of a composite material
system and component reflects responses at all levels beneath.” Thus, a HI should inher-
ently encompass all other damage indexes (DI) pertaining to a structure, including those
at microscopic and mesoscopic levels. However, despite advancements in understanding
material deformation and fracture mechanisms through defect theory and crack mechan-
ics, predicting failures in composite structures at a macroscopic level remains challenging
[1]. Nevertheless, since the HI plays a pivotal role in comprehensively representing the
structure’s health status, its comprehensiveness can be defined and mutually measured by
several criteria, which will be introduced in the subsequent chapters.

The HI serves as a valuable index, demonstrating the health level of an engineering
system or structure [2, 3]. It acts as an intermediary, connecting the raw data collected
through condition monitoring (CM) or structural health monitoring (SHM) techniques
with the prognostic models used for RUL prediction [4]. One might question why we do
not directly predict RUL from sensory data, bypassing the HI step. To answer this ques-
tion, we must consider the definition of true RUL, which, logically and philosophically,
follows a linearly decreasing pattern. It is natural to ponder the implications of uncer-
tainties, such as accidents for humans or impact loading for structures, which could lead
to a decline in the end-of-life (EoL) (see Figure 1.1(a)). However, in an ideal prognostic
framework, these uncertainties should be anticipated and factored in advance, with the
true RUL only definitively determined after the final failure and EoL. The same princi-
ple applies to maintenance and self-healing processes, which can extend the EoL. From
another perspective, the relation between relative running time and relative RUL is fixed
and linear. Tomorrow, in comparison to today, we will lose one day of our lives, regardless
of whether we experience an accident or maintain a healthy lifestyle (see Figure 1.1(b)).
It is crucial to emphasize that linking the consequences of these events to a decrease or
increase in RUL represents a misinterpretation, as it misleadingly mixes the concept of
RUL with health degradation (HI).

Consequently, uncertainties and progressive damage can only be continuously mon-
itored and observed through the pattern of a HI, rather than a linear RUL graph. This
establishes a tangible and interpretative connection between the HI and the engineering
system, making it not only a suitable candidate for diagnostic purposes but also a vital in-
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Figure 1.1: (a) RULs and HIs for two units with and without impact loading. (b) Relation between relative RUL
and relative running time.

put for prognostic models used to predict RUL. In contrast, a RUL model primarily serves
to determine the timing of maintenance rather than specifying the precise maintenance
actions and decisions.

1.2 HIs for Diagnostics & Prognostics

A HI should be extracted from CM/SHM data for both diagnostic and prognostic pur-
poses. Regarding diagnostics, a HI should be interpretable. This interpretability can
be defined in two main aspects (see Figure 1.2): The first aspect pertains to the HI hav-
ing a relation with the physical and mechanical behaviors of the engineering system or
structure (referred to as ’unit’ in this book). For example, attributes like stiffness of the
structure, crack density in the structure, or different damage states during fatigue loading
could be considered as attributes that a HI should possess. The second aspect involves un-
derstanding the relation between sensory monitoring data and the appropriate (based on
prognostic criteria) HI, assuming we already know the connection between the mechanics
of different damage types in the unit and monitoring data. In this context, as the moni-
toring data is interpretable thanks to its clear relationship with damage mechanisms, the
HI becomes interpretable as well. This aspect can be further divided into two categories:
I) interpreting the exact mathematical function between the HI and the monitoring data;
and II) finding a basic correlation between the HI and the monitoring data. We refer to the
first as an ’interpretable HI’, which carries a deeper meaning than the second, which we
label as an ’explainable HI'. With these definitions, an interpretable HI is inherently ex-
plainable, while an explainable HI may not necessarily be interpretable. In diagnostics, the
author argues that an explainable HI is sufficient to link with the unit’s physical behavior
for better maintenance decisions.

Regarding prognostics, HIs designed for a group of similar units should meet estab-
lished criteria as standard in the field of prognostics and health management (PHM), which
will be elaborated in the next chapter. Briefly, the quality and suitability of HIs are usually
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measured by three metrics: monotonicity (Mo), prognosability (Pr), and trendability (Tr)
[5, 6], each addressing a specific property of the HI. All three are crucial for enhancing
HI quality and increasing prognostic accuracy. However, extracting HIs that fulfill these
criteria is very challenging, even when assuming informative SHM data is available, due
to the inhomogeneous material characteristics, variable operational conditions, stochastic
activation and interaction of damage mechanisms, and uncertainties. These criteria are
formulated based on degradation physics and EoL fact.

15t aspect of
interpretability

Mechanics of different | ifknown . 2"d aspect of
damage types interpretability

HI

Engineerin, .
8 8 construction

system/structure

Monitoring
system

CM/SHM
data

ol -y\ model

(1) Interpretable HI

(1) explainable HI

Figure 1.2: Different aspects of the interpretability of a HI.

1.3 Which SHM Technique: Fusion of Multiple Tech-
niques?
hile various SHM techniques are available for structural monitoring, the crucial
W question is which technique can provide the most informative and reliable data for
creating HIs. Is a single SHM technique sufficient, or should multiple techniques be fused
together?

Prognostic and HI construction models commonly exhibit historical dependence (HD).
Considering the correlation between historical SHM data, from the healthy state to the
present, is essential to enhance HI and RUL prediction models [7-9]. This consideration
is particularly critical for passive SHM techniques like acoustic emission (AE), which cap-
tures temporary signals related to damage initiation and propagation, lacking explicit in-
formation about damage size, structural stiffness, or other historical-dependent factors.
Passive techniques inherently provide insights into how and when damages occur, but
the historical data requires processing to extract HD characteristics, such as structural
stiffness [10].

In contrast, active SHM techniques, like guided waves (GW), can estimate damage size,
location, and stiffness reduction in the structure from the most recent data’, covering the
progression of damages from the beginning up to the present [11, 12]. However, active
techniques do not capture information about damage initiation and propagation, includ-
ing propagation rates, as precisely as passive techniques [13]. Thus, there is a trade-off
between passive and active SHM techniques.

Incorporating HD information into a model for passive SHM techniques could be an ef-
fective solution, providing a comprehensive understanding of damage initiation and prop-

'Historical data is not required; possibly just one pristine inspection is required as the baseline (see Chapter 6).
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agation. Nevertheless, both RUL prediction and HI construction models have a common
drawback - they are historical-dependent. This necessitates the consideration of the tem-
poral relationship between historical data from the starting point to the present moment
to enhance their performance [6, 14, 15]. However, a lack of prior information, whether
due to operational issues or unavailable monitoring systems, can hamper these models’
efficiency. In this context, a robust SHM technique is required to extract informative
historical-independent evidence, while a suitable model is needed to create HIs from this
data.

In conclusion, the question remains: which SHM technique can provide the most in-
formative yet reliable data for building HIs? Beyond data- and feature-level fusion for
each specific technique, should different SHM techniques be fused? Can the fusion of a
passive SHM technique (e.g., AE), providing insights into damage initiation and propaga-
tion, and an active SHM technique (e.g., GW), offering information about final damage
characteristics, potentially lead to more robust and reliable HIs?

1.4 Research Goal & Scope

P rimary, secondary, and other objectives of this thesis are as follows:

Primary objectives: The primary objective of this research is to develop an inno-
vative framework for designing comprehensive HIs that meet prognostic requirements.
This framework leverages raw SHM data and places a specific focus on the fatigue life of
aerospace composite structures.

To enhance the accuracy of prognostic criteria in data-driven frameworks, this re-
search will refine the metrics. Instead of considering all HIs generated from both training
and testing phases, the revised metrics will primarily consider testing units. This adjust-
ment aims to prevent the undue influence of training units on final scores, ensuring a more
robust evaluation of the test unit’s performance and its deviation from the training units.

The framework itself consists of several key stages: data acquisition, pre-processing
(PP), signal processing (SP), feature extraction (FE), and feature fusion (FF). Feature fusion,
in particular, plays a pivotal role in implementing the prognostic criteria. To achieve this, a
novel semi-supervised learning paradigm is introduced for fusing features, with the goal
of achieving the quality necessary for prognostics. This developed paradigm has broad
applications, extending beyond composite structures to areas like commercial turbofan
engines.

Two SHM techniques, AE as a passive technique and GW as an active technique, are
employed to monitor composite structures, aiming to answer the central question raised
earlier: “which SHM technique? Fusion of multiple techniques?” For each technique, spe-
cific algorithms for PP, SP, FE, and FF are developed and put into practice. The FE and FF
processes primarily draw from elements of artificial intelligence (AI) and machine learning
(ML). The experimental composite specimens monitored by these techniques encounter
various uncertainties and unexpected phenomena during their operational service life.

Secondary objective: Furthermore, this research involves the development of a
historical-independent HI construction model based on the GW technique. This model
is tailored for aerospace composite structures under fatigue loading conditions, offering
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flexibility to accommodate different GW sensor configurations, networks, and setups to
address a variety of layups, geometries, and loading conditions.

Other objectives: In pursuit of interpretability, this research encompasses two initia-
tives:

1. The development of HIs that show incremental steps, potentially corresponding to
distinct damage states within the context of composite structures, where these in-
cremental steps can provide valuable insights for informing future state-based RUL
prediction models

2. The construction of interpretable HIs through the development of an interpretable
neural network designed for commercial turbofan engines

Expectations: It is anticipated that the outcomes of this thesis will contribute to ad-
vancing the field of PHM, with a specific focus on aerospace composite structures that
face challenges due to the stochastic nature of damage accumulation and the occurrence
of uncertain events, such as impacts, during operational conditions.

1.5 Thesis Outline
T his thesis is composed of 8 chapters and appendices, as follows:

- Chapter 2: Literature Review

Chapter 2 provides a review of the existing literature in the field of PHM. It delves
into the concepts of physical and virtual HIs and explores how prognostic criteria
have been utilized in prior works. The chapter particularly focuses on their imple-
mentation in the context of composite structures. Moreover, it opens an argument
about interpretability vs. explainability vs. accuracy in this context.

- Chapter 3: Methodology

In Chapter 3, prognostic criteria are first introduced for qualifying HIs, referred to
as HIs’ criteria. A refined version of these criteria is presented, considering only test
units. Then, the core methodology is outlined, featuring the introduction of a new
semi-supervised learning paradigm for SHM data fusion toward HI construction. In
the end, the chapter explores interpretability by drawing comparisons between com-
posite structures and commercial turbofan engines. Following these discussions, it
introduces a modified multiplicative neuron with the specific purpose of construct-
ing explainable HIs, primarily tailored for use in the domain of commercial turbofan
engines.

- Chapter 4: Data Analysis and Machine Learning

Chapter 4 provides essential background information on data analysis, processing,
and mining. It offers brief explanations of various data analysis operators, functions,
and algorithms that will be utilized in this thesis. The primary components of this
chapter include pre-processing (PP), signal processing (SP), dimension reduction
with a focus on principal component analysis (PCA)-based algorithms, statistical
features, and deep learning.



References 7

- Chapter 5: Designing HI for T-Stiffener Composite Panels using Acoustic
Emission

Chapter 5 demonstrates the proposed methodology for monitoring twelve single
T-stiffener carbon fiber-reinforced polymer (CFRP) specimens under compression-
compression fatigue loading using the AE technique. Three distinct frameworks
incorporating various pre-processing, signal processing, feature extraction, and fea-
ture fusion strategies are developed to generate qualified HIs. The chapter explores
the motivations behind designing these frameworks and presents the results of ab-
lation experiments, dataset divisions, and leave-one-out cross-validation to assess
the approaches’ generalizability.

- Chapter 6: Designing HI for T-Stiffener Composite Panels and Dogbone
Specimens using Guided Waves

The methodology for the GW monitoring technique is demonstrated in Chapter 6,
involving the monitoring of five single T-stiffener CFRP panels under compression-
fatigue loading as well as eleven dogbone CFRP specimens with three different
layups subjected to tension-fatigue loading. This chapter’s motivation goes beyond
answering the question, "which SHM technique: Fusion of multiple techniques?”
to include the design of qualified historical-independent Hls for aerospace compos-
ite structures. To make sure the method was generalizable, leave-one-out cross-
validation was also taken into consideration.

- Chapter 7: Fusion of Acoustic Emission and Guided Waves Techniques

Chapter 7 explores the fusion of AE and GW techniques. It combines the HI con-
struction models developed for single T-stiffener CFRP panels using each technique.
The chapter aims to answer the question, which SHM technique: Fusion of multi-
ple techniques?” by comparing Hls generated from AE, LW, and the fusion of both
techniques.

- Chapter 8: Conclusions and Recommendations
The thesis’s findings are outlined in Chapter 9, along with conclusions and sugges-
tions for future research.

- Appendices: Interpretable HIs for Commercial Turbofan Engines

Appendix A.1 presents the results of an interpretable neural network that was de-
veloped to construct interpretable HIs for commercial turbofan engines. It includes
newly modified multiplicative layers with discretized weights.
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Within the chapter, damage, SHM, and PHM in composite structures; physical and virtual
HIs; prognostic criteria implementation in HI design; and interpretability and explainability
trade-offs with accuracy are covered.
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2.1 Introduction

n this chapter, a review of composite structures and their associated damage is presented

(Section 2.2). Following this, the applications of SHM techniques in the realm of com-
posite structures are outlined in Section 2.3. The discussion then extends to the field of
PHM, with a specific emphasis on its application to composite structures. Subsequently, in
Section 2.4, Hls are introduced and categorized into two main types: physical and virtual.
The main part of this chapter (subsection 2.4.3) explores how prognostic criteria are inte-
grated into the design process of virtual HIs. Lastly, the chapter concludes with Section
2.5, which opens a discussion on the differences and trade-offs of interpretability versus
explainability versus accuracy within the context of HI design.

2.2 Failure Mechanisms in Composite Structures

omposite structures play a crucial role in industries such as aerospace, wind energy,
C and naval applications, serving as primary materials in high-performance structures.
Their increasing use is driven by unique mechanical performance, reduced weight, and
high durability, resulting in enhanced safety and cost savings, primarily through reduced
fuel consumption. However, composite structures are vulnerable to various forms of dam-
age during operation, leading to a diverse range of structural failure scenarios. Unlike
conventional structures, they may experience a broader spectrum of failure modes, includ-
ing tensile, compressive, or shear fracture of the matrix, bond failure of the fiber-matrix
interface, and tensile or compressive (buckling) failure of the fibers.

Categorized by the size of the damage and the affected region (fiber or matrix), Fig-
ure 2.1 illustrates different types of defects in composite structures [1, 2]. Among the
most common and critical damage types are those resulting from impact and cyclic fa-
tigue loading. The severity of damage, depending on its type and size, can significantly
reduce a composite structure’s residual strength [3], manifesting as defects in the fiber,
matrix, or their interface [4].

Assessing damage severity is crucial for determining a composite component’s remain-
ing service life and influencing the structure’s overall damage tolerance. While certain

Buckling of Delamination
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| Fiber level |

Coupled Fiber-Matrix level

(Transverse crack due to delamination )

1.Fibre/Fracture breaking
2. Fibre buckling or kinking
3. Fibre Bending
4. Fibre Splitting
5. Fibre Radial Cracking
=

Figure 2.1: Types of damage in composite structures (adopted from [2] and modified based on [1]).
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types of damage may have minimal immediate effects on residual strength, their impact
may worsen over time, especially when compounded by operational and environmental
influences [5, 6]. This highlights the importance of frequent and thorough monitoring
(SHM) to address the complexities associated with the multivariate damage process in
composite structures.

2.3 SHM for Composite Structures

A ccording to the SAE Standard ARP646, the definition of SHM is “the process of ac-
quiring and analyzing data from on-board sensors to evaluate the health of a structure”,
which is a consensus from the Aerospace Industry Steering Committee on SHM. Repre-
sentatives of the essential industries and universities active in the field of SHM composed
it. Three main principles of SHM systems are [7]:

1. To perform an automated inspection, several inspection systems permanently mon-
itor the structure/system. The inspection systems can be a network of sensors (such
as GW, AE, fiber Bragg grating (FBG), distributed fiber optic sensing (DFOS), etc.) at-
tached to the structure. This perspective is the basic difference from non-destructive
testing (NDT) procedures.

2. Since in SHM, a large amount of data has to be analyzed in real-time, on-board
computation and data handling facilities are needed.

3. To estimate the damage index (DI) and gain information about the existence, loca-
tions, types, propagation speed, and other attributes of damages, the current data is
compared with the previously stored data from the pristine structure.

The field of SHM plays a crucial role in diagnosing damage within various composite
structures. NDT is another field with a big overlap with SHM, which encompasses a range
of methods for identifying damage without causing harm to the structure being examined.
The reliability of NDT methods such as Ultrasonic, X-ray, and infrared thermography (IRT)
has been firmly proven. These techniques are particularly valuable for their cost and time-
saving benefits in system evaluation. While SHM techniques are often assumed as
techniques with sensors attached to the structure, the author suggests that any con-
tinuous monitoring technique qualifies as an SHM method, regardless of physical contact
with the structure. The primary distinguishing factor between SHM and NDT lies in the
inspection frequency. For instance, considering the inspection of an aircraft using GW
exclusively during an unloading condition (post-landing), the inspection frequency aligns
with that of using IRT via a drone in the same condition (post-landing). In this context,
if GW is categorized as an SHM technique, then IRT falls within the same classification.
Another scenario involves structures on the ground, such as wind turbines, which can be
continually monitored using optical techniques like IRT [8], even without attached sen-
sors to the structure. Thus, the final purpose of SHM, which is a continues monitoring,
itself defines a technique as an SHM or NDT method.

Despite differences between NDT and SHM, both can be considered under the um-
brella term non-destructive evaluation (NDE) [7], which their complementary informa-
tion in this regard can be studied in Ref. [9] and Ref. [10] as new surveys (from 2000 to
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2017) and (from 2000 to 2023), respectively. The ‘Handbook of Advanced Nondestructive
Evaluation’ [11] is strongly suggested as a unique outline of advanced NDE techniques.
Non-destructive testing and evaluation (NDTE) techniques are listed in Figure 2.2, along
with a list of subcategories [2]. As demonstrated in Figure 2.3, each of these methods can
be used to address a particular spectrum of damage in composite structures. One major
drawback of these methods is that it is hard to perform the evaluation process without
prior knowledge of the general location of the damage.

Advantages and disadvantages of different SHM techniques, including AE, GW, ultra-
sound, strain, vibration, eddy current testing, IRT, radioscopy/radiography testing, and
visual inspection, can be found in different sources, like Ref. [12] with a focus on diagno-
sis and prognosis of wind turbines and Ref. [13] with a focus on diagnosis of wind turbine

Visual Inspection

Dye Penetrant Liquid Penetrant Visual & Optic Testing

Acoustic Wave-based

// - ‘\\ Acoustic Emission Nonlinear Emission | Ultrasonic Testing Acoustic Ultrasonic
y Non-

[ destructive | Optical Techniques

| Testing & /

Infrared Thermography Terahertz testing Shearography Digital Image Correlation

Image Techniques

X-Ray radiography Neutron Radiography

Electromagnetic Field

Eddy-current testing Magnetic particle Inspection Remote Field testing Magnetic Flux leakage testing
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blades, which are mainly composite structures.

Among SHM methods, AE stands out as a popular technique for composite structures.
It involves capturing signals generated by various damage mechanisms, providing insights
into the progression of damage during the material’s lifetime [14, 15]. AE can distinguish
different damage mechanisms by studying various features, such as peak frequency, ampli-
tude, duration, and energy [16, 17]. However, challenges include susceptibility to external
noise, requiring careful parameter tuning and efficient post-processing [18, 19].

GWs are widely utilized in the aviation industry for thin-walled composite structures.
This method allows the interrogation of the entire structure with a low attenuation ratio,
detecting small-sized damages with high accuracy [20, 21]. Challenges include interfer-
ence from reflection and scattering phenomena due to structural boundaries, as well as
sensitivity to environmental conditions [22, 23].

Both AE and GW fall under the main category of acoustic wave-based methods [10],
which involve identifying and monitoring sonic and ultrasonic stress waves. Stress waves
can be actively imparted (as in GW) or passively emitted (as in AE). In order to identify
internal defects and characterize materials, they are usually carried out within the elastic
material range. While both AE and GW originate from the same physics, they measure
different characteristics of the structure. AE, a passive method, is capable of measuring
the initiation and propagation of damage, whereas GW, an active method, assesses the
state of damage (e.g., size). Although AE can be used to determine the location and size of
damage and GW may be employed to approximate the speed of propagation or initiation
of damage, it is essential to consider historical dependence (HD) or time dependence in
both SHM data from prior evaluations up to the current state to do so. This consideration,
along with the relevant advanced post-processing, is imperative for these purposes. Thus,
here, the assessment of each SHM method’s capability was meant based on their original
data, regardless of post-processing algorithms afterward.

2.3.1 Acoustic emission (AE)

As mentioned in the previous chapter, a common characteristic of prognostic and HI con-
struction models is their HD. It is crucial to consider the correlation between historical
SHM data, starting from a healthy state to the current time, in order to enhance the per-
formance of HI and RUL prediction models [24-26]. This issue is particularly essential
for passive SHM methods, such as AE, which capture temporary signals resulting from
damage initiation and propagation rather than specific information about the size of the
damage, structural stiffness, or other HD factors. Thus, a valuable solution could be in-
corporating HD into a model for passive SHM methods, allowing a more comprehensive
understanding of damage initiation and propagation, making it particularly suitable for
scenarios where such historical data is crucial for prognostic applications (refer to models
presented in Chapter 5).

2.3.2 Guided waves (GW)

Although considering HD into a model for passive SHM methods could be a solution,
the fact that RUL prediction and HI construction models are historical-dependent is a
common drawback. In other words, prognostic and HI construction models function less
efficiently when prior information, either entirely or partially from the beginning, is miss-
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ing. This might occur for various reasons during operation due to unavailable monitoring
systems, misfunctioned sensors, etc. In this regard, a robust SHM method is needed to
extract informative, historical-independent patterns. The GW technique can be a poten-
tial candidate that can generate such historical-independent patterns [27]. However, GWs
pose a challenge as they not only convey information about damage but also carry signals
that are susceptible to interference from reflection and scattering phenomena at struc-
tural boundaries. Environmental conditions can also further affect the reliability of GW
signals [28, 29]. Moreover, GWs are dispersive and have a multimodal nature, meaning
that many wave modes may exist in a recorded signal, and their characterization depends
on the frequency, material stiffness, density, and thickness of the structure [30]. Therefore,
the diagnosis and prognosis of composite structures via GWs is a hard task when it comes
to correlating the GW signals with the health state of the entire structure. In addition
to the previously discussed aspects, it is important to note that translating GW data to
the appropriate HI value at each time step when GW inspections are conducted is a chal-
lenging task. In fact, a model is needed to map thousands of data points (as can be seen
in experimental campaigns that generated extensive datasets—cite NASA and ReMAP in
Chapter 6) to a single HI value at the current time, regardless of the prior HIs. To address
this challenge, data-driven approaches, especially Al have drawn attention in diagnostic
[31-34] and prognostic [35, 36] applications thanks to their ability to discover complex
and nonlinear relationships between data (refer to the model presented in Chapter 6).

2.3.3 Fusion of AE and GW

As mentioned earlier, there is a trade-off between passive and active SHM methods. The
former (e.g., AE) provides details about damage growth but requires historical data to be
post-processed for extracting HD characteristics, such as defect dimensions. Meanwhile,
the latter (e.g., GW) can estimate the final damage state but lacks information about dam-
age growth. While both AE and GW can be utilized with advanced data analysis algo-
rithms to offer both temporal (damage initiation and growth) and spatial (damage state,
location, and size) information, they cannot surpass each other’s optimum performance.
Despite applying the best ideal processing algorithms for each passive or active SHM tech-
nique, AE can achieve optimal performance regarding temporal information, and GW can
achieve optimal performance regarding spatial information. This limitation arises from
the fact that each type of SHM data contains limited useful information, and data analy-
sis algorithms cannot perform miracles. Figure 2.4 illustrates this concept, assuming that
post-processing algorithms and fusion models have the best performances and function
perfectly. Therefore, the fusion of SHM techniques could be beneficial for optimally ex-
ploiting temporal and spatial information, preventing the loss of valuable information.

In this subsection, prevalent information fusion techniques are briefly reviewed, and
the classes and levels that will be used in this work are hinted at. The information fusion
strategies can be conceptualized based on factors like sensor relations, input-output rela-
tions, and decision relations, as illustrated in Figure 2.5. Figure 2.6 outlines various classifi-
cations of data fusion, encompassing Whyte’s, Dasarathy’s, joint directors of laboratories
(JDL), architecture, and abstraction classifications, considering different processing levels.
A comprehensive literature review on each data fusion category, focusing on types and
applications in SHM systems, is available in Ref. [10].
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Figure 2.4: Conceptual representation of temporal and spatial information exploitation from passive and active
SHM techniques and their fusion toward diagnosis and prognosis.
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Figure 2.5: Information fusion classifications based on different factors (adopted from [10]).

According to Figure 2.5, the present work will conduct fusion in the following classes:

- Based on input-output: fusion in classes of DAI-DAO, DAI-FEO, and FEI-FEO, con-
sidering that HI is a high-level feature

- Based on relationships among sources: complementary (among sensors of AE
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and/or GW), redundant (among sensors of AE and/or GW), and cooperative (besides
among sensors of each technique, between AE and GW techniques) fusion

Based on levels of abstraction: low-level (raw data level fusion), medium-level (fea-
ture level fusion), and multi-level fusion

Based on data type fusion: temporal, spatial, and spatial-temporal fusion, as men-
tioned earlier

Based on data level fusion: raw data level and feature level

Based on the user’s requirements: depending on how the area and sensory network
on the composite specimen would be considered

According to Figure 2.6, the present work will conduct fusion in the following classes:

Based on Whyte’s classification: classes of Dt;,-Dtoy;, Dtr,-Ftoys, and Fty,-Fto,,

Based on Dasarathy’s classification: complementary, redundant, and cooperative
fusion, similar to Figure 2.5

Based on JDL classification: source pre-processing (L0) and object refinement (L1)
Based on architecture classification: distributed architecture

Based on abstraction classification: the same as in Figure 2.5, at both single-level
and multi-level fusion
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2.4 PHM for Composite Structures

HM plays a pivotal role in the prognostics and health management (PHM) framework,
S aiming to propel the industry toward condition-based maintenance (CBM) policies,
thereby boosting availability and curbing operational downtime and costs [37, 38]. The
transition to a CBM paradigm within a PHM framework necessitates reliable and robust
SHM methodologies to facilitate informed decision-making.

PHM naturally extends from SHM by updating predictions of RUL in a timely manner
using sensor data. For accurate RUL predictions, a HI suitable for incorporation into a
prognostic model is essential [39, 40]. HI, a distinctive feature derived from SHM data,
reflects the health (or damage) status of the monitored structure or system [41]. When
the HI surpasses a predefined threshold, the SHM system triggers alarms, prompting ac-
tions like system shutdown, maintenance, or replacement. Consequently, HI serves as a
crucial link and prominent feature between raw signals and the prognostic model, directly
influencing RUL predictions.

Unlike RUL, which is often assumed to follow a linear degradation model [42], Hls
are nonlinear due to the inherent nonlinear nature of damage propagation and accumula-
tion [36, 43, 44]. This nonlinearity proves valuable for analyzing and connecting with the
mechanical behavior of the structure. However, it is important to note that HIs are not
exclusively sensitive to damage; they may also respond to abnormalities in environmental
conditions and operations.

2.5 Health Indicators

I n order to visualize data and continuously characterize the health state of the structure
over its entire life, HIs can be informative and helpful [45]. The available data-driven
RUL prognostic methods, such as artificial intelligence and statistical-based models, can
also be effectively integrated with the fusion-based HIs [46]. Depending upon whether
a HI has any physical senses, system performance data is typically divided into two cat-
egories: the physical health indicator (PHI) and the virtual health indicator (VHI) [47].
Before delving into the development of a framework for designing a HI, it is crucial to
outline the expectations—constraints derived from the physics of the problem—associated
with HIs. Subsequently, an exploration is undertaken to incorporate these constraints
effectively within the design framework.

2.5.1 Evaluation criteria (constraints)

If no maintenance and self-healing take place, a structure’s HI should decrease throughout
operational conditions due to damage accumulation. This fact should be incorporated into
the design of a HI and examined using a metric known as monotonicity (Mo) [48, 49]. The
comprehensive Hls of an ensemble of associated units (engineering systems or structures)
that have reached their end-of-life (EoL) should ideally arrive at the same value, signifying
the failure threshold. However, HIs at the EoL change and do not always end up with an
identical value; this discrepancy can be quantified using a metric called prognosability (Pr)
[49]. Moreover, if the HIs demonstrate a consistent correlation with usage time, they are
deemed more predictable. The trendability (Tr) criterion gauges the resemblance between
the trends of HIs [49-51]. While the first two assessment criteria (Mo and Pr) are consid-
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ered factual, achieving maximum Tr may be challenging due to stochastic events and the
uncertain nature of influential factors. Nevertheless, striving for HIs with high Tr remains
a goal to improve the accuracy of RUL predictions. In the context of prognostics, which
is the main focus of this work, a HI should fulfill these evaluation/prognostic criteria: Mo,
Pr, and Tr [52, 53].

2.5.2 Physical health indicators (PHI)

Since health management has been given more attention and begun earlier for some par-
ticular industrial components, such as batteries and rotating machinery equipment, PHIs
are relatively well known and helpful. In other words, the long-term and vital use of such
components, as well as their history in the industry, in turn results in providing more
datasets as well as more solid physical, analytical backgrounds [36]. For instance, accord-
ing to physical knowledge about batteries, the capacity data of lithium-ion batteries can
be considered as a proper HI [54]. It was recently said that, “To the best of our knowl-
edge, the capacity is a typical performance indicator to monitor the health status of the
battery and determine whether the battery requires replacement; thus, we adopt such in-
dicator for the RUL prediction” [55]. For rolling element bearings, Ref. [56] utilized root
mean square (RMS) as “a simple and practical HI, which is widely used in bearings resid-
ual life prediction”. Also, relative RMS (RRMS) could be more robust to characterize the
degradation process of bearings [57]. However, to the best of the author’s knowledge, no
certain and promising PHI has yet been developed for composite structures, especially for
structures subjected to cyclic fatigue loading, which is one of the most critical conditions
for composite structures. This can be due to complex scenarios of progressive damage
and different types of damage, which in turn are dependent on the type of fibers, matrix,
fabrication, curing, boundary and environmental conditions, loading, etc.

Despite the fact that various articles have introduced PHIs (axial strain) utilizing DIC
data [58], or the size or number of cracks have been considered as PHIs [59], they are not
appropriate for genuine SHM and implementations. Concerning the first subject, methods
like DIC are not yet considered SHM because of their numerous drawbacks, including the
necessity of painting, particular illumination requirements, problematic calibration, etc.
The DIC method is also limited to measuring the strain or deformation at the surface
of the structure in the field of view of the camera, making it more effective for plates
due to the lack of access to the rear of the surface. Such methods are usually used to
validate other aspects of research, such as finite element modeling [60] or other NDT/SHM
techniques [61]. For the latter subject, it may be possible to correctly monitor and take into
account the number or size of fractures as a HI in isotropic materials such as aluminum
[59], but this is not easily practical for composite materials and complicated structures. In
reality, a variety of impactful micro- and macro-damages will emerge, such as cracks and
delaminations, which not only emerge randomly throughout the structure [62] but are
also concealed in various quantities among the various layers of the composite material
[63].

2.5.3 Virtual health indicators (VHI)
In contrast to PHI, VHI cannot be easily interpreted and realized in order to make an un-
derstandable connection to the physical implications. However, VHI can be designed and
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optimized based on the intended purposes, such as prognostics. For example, if a mono-
tonic, trendable, and prognosable behavior can be embedded into an objective function
[64] which is supposed to be used within a data-driven model, the resulted VHI is suited
to the next step, the prognostic model.

Linear-based feature extraction and selection methods are suitable enough to provide
an acceptable HI for some applications. For instance, principal component analysis (PCA)
applied to gear vibration signals was able to extract a proper HI [65]. This method was
also used to successfully construct the HI for the CMAPSS dataset (the turbofan engine
degradation dataset), the PHMO08 dataset (Prognostics Data Challenge Dataset), and the
N-CMAPSS dataset (the new CMAPSS dataset) [66]. However, the PCA method does
not generate suitable HIs for the ReMAP" dataset (single-stiffener composite panels under
compression-compression fatigue loading studied in this work). Figure 2.7 demonstrates
the 1 principal component (PC) obtained by the PCA model on the CMAPSS dataset in
comparison with the ReMAP dataset. It is clear that, in accordance with monotonicity,
trendability, and prognosability (the three main intended evaluation criteria in PHM and
this work), this method is ineffective for building HI utilizing either AE low-level features
(amplitude, rise time, duration, energy, counts, and RMS) or AE high-level features (the
features that have been extracted after signal processing and will be discussed in the cur-
rent study).

PCA, which is built on a linear reform of the original data, reveals its limitations when-
ever faced with inhomogeneity and time-varying correlations of component degradations.
To address this shortcoming in the case of nonlinear data, a number of PCA modifications
have been developed, including kernel PCA (KPCA), greedy KPCA (GKPCA)[67], PCA-
based K-nearest neighbors, and PCA-based Gaussian mixture models [68]. However, the
computational cost of these methods can be high, particularly when dealing with large
datasets [69, 70]. For instance, KPCA necessitates computing the kernel matrix for ev-
ery pair of input features given a single kernel, assuming that the right kernel has been
selected in theory. Also, the potential degradation characteristics may not be effectively
mined using the majority of the above conventional techniques, which are only applicable
to datasets with a clear degradation trend [71].

In applications with massive amounts of data, artificial neural networks (ANNs) and
deep learning (DL) algorithms can be utilized to build HIs without requiring a lot of do-
main knowledge. On the other hand, DL is a promising solution if enough labeled data
is available. For some cases, like the current work, not only is enough data unavailable,
but they are also unlabeled. In this regard, the limited available data should be efficiently
processed and fit to the logical pattern according to the physics of the problem under eval-
uation. Thus, by taking advantage of FE on the input side (which leads to providing
informative and labelable inputs) and inducing the intended desirable behavior, inspired
by the physics of HI and its relation with the RUL of a structure, on the output side of the
model (which leads to simulating labels), we try to approach the problem in this work.

'ReMAP: Real-time Condition-based Maintenance for Adaptive Aircraft Maintenance Planning. https://h2020-
remap.eu/.
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Figure 2.7: First principal component calculated using PCA on (a) raw data in the CMAPSS dataset, (b) acoustic
emission low-level features in the ReMAP dataset, and (c) acoustic emission high-level features the in ReMAP
dataset [36].

Common & traditional procedures to extract HIs
The common procedure to extract a HI that can be employed to predict the RUL of a unit
is to select the best features (after FE) in accordance with prognostic criteria as the HI
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or the main constitutive components of the HI [72]. In this scenario, some features will
be overlooked since they do not meet the criteria, while they might be useful since their
fusion may comply with the intended specifications. To overcome this shortcoming, the
prognostic criteria can play a supervising role in the construction process of HI rather
than being only a measurement tool of HI's quality. For example, a predefined function
with a set of polynomial components [64] can be considered to fuse features, in which the
coefficients of the polynomial components are unknown and have to be determined. In
this regard, combining the prognostic criteria into a “fitness” function could be consid-
ered as an objective function for an optimization problem [73]. In this approach, although
a polynomial series might construct a proper HI function, the other components, e.g., loga-
rithmic and exponential ones, might construct a function with more monotonic, trendable,
and prognosable behavior. In fact, the fusion function is limited to only polynomial ker-
nels in this approach, whereas other mathematical kernels and combinations may produce
better HI. Also, a significant and critical point in the predefined function scenario to fuse
features that should be seriously noted is the computation time. Since the extracted fea-
tures might be more than hundreds (like features extracted from acoustic emission in the
current work), this model is very time-consuming. Thus, a fusion paradigm based on an
ANN rather than predefined functions is proposed in this thesis.

Al-based procedures to extract HIs

ANN and especially deep neural networks (DNN) are applicable in the field of PHM [74-
76] and are powerful mathematical methods, having potential for approaching the HI con-
struction problem. In 2003, the introduction of the minimum quantization error (MQE)
index, derived from the self-organizing map (SOM) approach [77], marked a novel degra-
dation indicator for bearings. The results showcased its superiority over the commonly
used RMS as the typical HI for bearings. However, a quantitative comparison based on
evaluation criteria was not provided since these criteria were not introduced until 2010
[50] for prognostic purposes. Nonetheless, based on their plots for three bearings, high
criteria scores were not expected for all Mo, Pr, and Tr. It is worth noting that, as explained
in the PHI subsection, RMS and RRMS are still acceptable Hls for bearings, as RMS was
used as the comparison basis in that study to be outperformed. The prognostics of compos-
ite structures pose even greater challenges, lacking a foundational basis for comparison.

Later, the MQE index was further utilized and improved in subsequent works [78]. In
2017, this index, named ”a self-organizing map-based HI (SOM-HI),” was used as the ba-
sis for comparison with a recurrent neural network-based health indicator (RNN-HI) for
the RUL prediction of bearings in the most cited work regarding HI construction. The
authors assumed a linearly increasing trend for the HI to feed targets into their model.
Correlation and Mo were used as the evaluation criteria, resulting in an average score
([Mo+ Correlation]/2) of 0.6871 for SOM-HI and 0.7471 for RNN-HI. The best feature in-
put from the frequency domain had an average score of 0.5411. The results highlighted
two key findings: (1) SOM-HI showed limited promise, with only ~14% improvement com-
pared to the input feature, evaluated based on Mo and Tr criteria (assuming that Corre-
lation is equivalent to Tr, which is not). Note that Tr measures the relevance between the
degradation trends of HIs for a set of related units (e.g., bearings or composite structures)
[36, 64, 79, 80], whereas the Correlation metric measures the relevance between a HI'’s degrada-
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tion trend and the unit’s operating time, which implies an expectation of a linear relationship
between the HI and operation time. (2) Neither SOM-HI nor RNN-HI demonstrated a linear
trend. Thus, the assumption of a linear trend for the HI to generate model targets is ques-
tionable. Moreover, a nonlinear behavior is expected for HIs due to the stochastic nature
of damage propagation and accumulation in any isotropic material—let alone in compos-
ite structures. Although Pr was not quantitatively reported and compared, the displayed
figures indicated a significantly better Pr score for RNN-HI compared to SOM-HL. It is es-
sential to note that the reported evaluation criteria were based on six "training” bearings,
raising questions about the validity of the work to some extent. Another limitation was
the selection of the best features based on criteria before subsequent steps.

Motivated by RNN-HI, additional works were conducted following the linear trend for
the HI. In 2018, a convolutional neural network (CNN) was employed to formulate a HI
(CNN-HI) with an outlier removal step [81]. Three criteria, named "Monotonicity, Trend-
ability, and Scales,” were utilized, where the first one was Mo, and the second one was the
Correlation metric instead of Tr. The Scales metric was likely intended to represent Pr, but
it might be misleading, as it considered the maximum HI value throughout the entire oper-
ational period instead of focusing on the HI value at EoL. The scores for Mo, Correlation,
and Scales were reported as 0.406, 0.897, and 0.904, respectively. Considering the aver-
age score ([Mo+ Correlation]/2) of 0.651, the results did not surpass RNN-HLI. This could
be attributed to the higher significance of temporal information than spatial information
in the HI construction process. Building upon this, in another study conducted in 2020, a
convolutional recurrent neural network (CRNN-HI) was created to construct a HI aligning
with the linear trend [80]. The evaluation focused solely on Mo and Correlation metrics.
The CRNN-HI demonstrated a slight enhancement compared to RNN-HI, attributed to the
exploitation of spatial information in addition to temporal information. However, there
was only a modest improvement, and the Mo scores remained relatively low.

The application of autoencoder has proven successful in diagnosing faults in rotating
equipment [82, 83]. Chen et al. [82] introduced fused feature vectors as machine HIs
for further classification using a deep belief network (DBN). It is important to note that
their HI does not precisely align with the intended HI in this study; rather, it is just a
fault indicator for damage classification and not for RUL prediction. Also, they employed
max-min normalization, an unacceptable step in prognostics due to the unavailability of
entire historical data up to the EoL. Similarly, a contractive autoencoder (CAE) was applied
for gearbox diagnosis [83]. To enhance the capabilities of a stacked sparse autoencoder
(SSAE), Qi et al. [84] integrated ensemble empirical mode decomposition (EEMD) and au-
toregression to preprocess the original vibration signal, selecting intrinsic mode function
components (IMFs) from EEMD as inputs for SSAE in fault diagnosis.

In 2018, Yang et al. [85] utilized sparse autoencoders to construct HIs for bearings,
considering only Mann-Kendall (MK) monotonicity, which provides a score not within
the [0, 1] range, which makes it difficult for comparison. In 2019, Lin et al. [86] de-
veloped an ensemble stacked autoencoder (ESA) to construct HIs with linear targets.
They extracted features from vibration frequency spectra using four stacked activation-
diverse autoencoders, then fed these features into a DNN to reduce the dimensionality to
one. Based on Mo, Correlation, and Robustness criteria, they achieved a weighted score
(0.35x Mo+0.35 x Correlation+0.3 x Robustness) of 0.674 for one bearing, slightly lower
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than EMDCNN-HI, a multi-channel deep convolutional neural network with an exponen-
tially decaying learning rate [87], which scored 0.718. She et al. [88] applied a sparse
autoencoder with a regularization network (SAEwR-HI) to compress raw features, con-
structing a HI for rolling bearings based on features with high Correlation. They obtained
scores of 0.2826, 0.9940, and 0.9274 for Mo, Correlation, and Robustness, respectively, re-
sulting in a weighted score (0.35 x Mo+ 0.35 x Correlation+0.3 x Robustness) of 0.7250 for
three bearings, surpassing autoencoder-HI (AE-HI), variational autoencoder-HI (VAE-HI),
and PCA-HI. Xu et al. [89] employed stacked autoencoders to detect the initial degra-
dation process through the frequency spectra of bearings. They improved Mo using an
exponential function on the extracted HI from the stacked autoencoder curve. Unfortu-
nately, they normalized inputs using max-min normalization, an unacceptable step for
prognostic purposes.
The literature review highlights several research gaps and noteworthy observations:

- Limited Applicability to Composite Structures: The discussed works primar-
ily focus on rotating mechanical equipment, particularly bearings, while a research
gap has been identified in the field of structural applications, particularly in the
construction of HIs for composite structures. This distinction is noteworthy, as the
rotational dynamics inherent in rotating machinery act as an activator, accentuat-
ing defects in signals from faulty units compared to a healthy condition. In contrast,
composite structures operate in a more quasi-static mode for micro- and macro-scale
damage due to their loading frequency in comparison to rotating machinery appli-
cations. This quasi-static nature renders them more passive in monitoring, present-
ing a challenge for diagnosis and prognosis, particularly when using passive SHM
methods like acoustic emission. Moreover, the inhomogeneous nature of composite
structures introduces added complexity and stochasticity in damage initiation and
growth.

- Nonlinear Nature of Damage Propagation: All of the studies cited above con-
sidered a linear function for HIs, while not only were nonlinear HIs obtained after
training the models in all the cited studies, but also PHIs have so far been nonlin-
ear. Thus, the assumption of a linear trend for Hls to generate targets for models is
deemed questionable based on the physics of the problem, which involves nonlinear
damage propagation and accumulation.

- Limited Generalizability and Model Stability: The lack of evaluation regarding
generalizability is a noteworthy gap. The studies often investigate a small number
of units (one to three), with limited reports on the stability of models considering
cross-validation and enough replications. Particularly, DNNs, known for their ran-
domness and strong sensitivity to initial weights and biases, face challenges for sta-
bility checks.

+ Unclear Criteria Evaluation: The criteria used for evaluation are not consistently
reported. It remains unclear whether criteria calculations were based on training
units only, a combination of training and test units, or solely on test units. Addi-
tionally, there is a lack of criteria specifically evaluating HIs, considering only the
test unit.
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Addressing these gaps is crucial for advancing the understanding and applicability
of HIs in diverse contexts, especially in composite structures which are different from
rotating machinery equipment.

2.6 Interpretability vs. Explainability vs. Accuracy
T he ML field commonly faces criticism for the lack of a clear definition of "interpretabil-
ity” Furthermore, instead of a single ground-truth explanation, multiple quantifiable
dimensions of interpretability are emerging [90]. The domain of interpretable ML (IML),
often also referred to as explainable AI (XAI), has experienced significant growth in recent
years [90]. Approaches to ML interpretability can be categorized based on various crite-
ria: intrinsic or post-hoc. This classification distinguishes between methods achieving
interpretability by constraining the complexity of the ML model (intrinsic) and those an-
alyzing the model after training (post hoc) [91]. In this study, the focus lies on HI models
and their application rather than general ML. Accordingly, keywords such as interpretabil-
ity and explainability are redefined to better present different aspects of interpretability
in HI construction models.

Although a HI is employed by a prognostic model to forecast the RUL, it can bring
further value, such as interpretability and a closer connection to the component’s health
(damage) status. One aspect that cannot be addressed using prognostic criteria is the inter-
pretability of a HI. In recent years, a number of data-driven models have been developed
to extract HI [92, 93]. However, the HI functions produced by data-driven models are
so complicated that they are almost beyond comprehension, i.e., they lose their physical
meanings [94]. Even in the case of linear-based models, such as PCA-based techniques
mentioned earlier, the PCs they produce cannot be straightforwardly interpreted as phys-
ical characteristics of the unit. This lack of interpretability can be a drawback in certain
scenarios. In other words, each PC contains all of the inputs (which may not be needed),
which are activated by a kernel (in the case of KPCA) and multiplied by different weights,
causing complexity, and each PC has different coefficients compared to the others.

Sometimes it is even challenging to translate the raw data from a sensor into a phys-
ical phenomenon, let alone interpret the output of a complex data-driven model run on
a network of various sensors. Thus, the first step towards understanding the physics of
a unit could be made if the interpretability of the fusion model of the sensory inputs-i.e.,
understanding which sensors were used and how they formed the output (HI)-is possible.

As discussed in Chapter 1 (section 1.2), interpretability can be approached in two ways:

1. Physics-based relationship with HI: Finding a HI that exhibits a meaningful re-
lationship with the physical and mechanical behaviors of the unit.

2. Relationship between HI and SHM Data: Understanding the relationship be-
tween the constructed HI and SHM data, assuming a prior comprehension of the
relationship between various damage mechanisms in composite materials and SHM
data, which can be categorized into two levels of understanding:

- Interpretable HI: Grasping the precise mathematical function between the HI
and SHM data.
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« Explainable HI: Comprehending the correlation between the HI and SHM
data.

The construction of HIs for composite structures is a new area compared to rotating ma-
chinery, demanding further research and development to reach maturity. Additionally,
there is currently no established, promising PHI that serves as a benchmark meeting all
prognostic criteria, posing a challenge for the first approach. Moreover, understanding
the intricate connection between SHM data and diverse damage mechanisms in compos-
ite materials is a complex and evolving task [95-98], posing a challenge for the second
approach. Nevertheless, as demonstrated in Appendix A.1, a methodology has been de-
vised to design an interpretable HI (in the second approach) for commercial turbofan en-
gines (CMAPSS dataset), which is more straightforward compared to datasets involving
composite structures under cyclic fatigue loading. The developed model belongs to the
intrinsic IML category. It should be noted that interpretability is not among the primary
or secondary objectives of this thesis but other objectives, as outlined in Section 1.4.

In applications with massive amounts of data, DL algorithms can be utilized to auto-
matically build HIs without requiring a lot of domain knowledge. On the other hand, due
to the thousands or even millions of parameters required by an applicable ANN for gen-
erating HIs, the features produced by DL are complex to interpret and cannot be treated
as physical characteristics of the unit under monitoring. In fact, data-driven approaches
(such as ANN, reinforcement learning, etc.) offer little insight into the relation between the
inputs of captured sensory data and the outputs (either HI or RUL) of the model (black-box)
[99]. One of the main causes is that DL models typically have thousands of parameters
[100], e.g., when generating a HI, which makes them less generalized and very compli-
cated (the formula behind the DL model is not readable). This renders them inefficient in
terms of interpretability.

Typical ANNs employ additive neurons, which multiply inputs by weights before sum-
ming the outputs. As a consequence, the option to multiply the inputs together is missing,
particularly in situations where numerous inputs are involved, such as CM sensory data.
Instead of only taking additive neurons into account, the multiplicative operator may pro-
duce a simpler, more inclusive, and more understandable equation. In fact, a multiplicative
operator can supply multiple summation operators, resulting in a shorter length for the
output equation. For instance, the HI function developed by [52], for the CMAPSS dataset,
uses just the multiplication and division operators between the features—there is no use
of the summing operator. In order to simulate multiplication and division operations us-
ing purely summing operators (assuming this is doable), it is most likely necessary to use
more weighted summation operators, which would make the HI function more compli-
cated to comprehend. Also, retaining continuous weights for each neuron still results in
a complex and non-understandable equation, potentially containing many unnecessary
terms that need removal. Given this, an approach is required to tackle these challenges in
the context of interpretability.

In addition to the explanations provided above, achieving accurate results and high
performance (e.g., meeting prognostic criteria in this book) for complex units requires
not only continuous weights and different neurons, including additive and multiplicative
ones alongside each other, but also deep layers to uncover the relationship between in-
puts and outputs. Consequently, even with applying all the aforementioned procedures
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to a model, obtaining an interpretable yet accurate model seems impossible. For example,
many researchers assert that all physics-based models of damage mechanics in composite
materials are interpretable since they are derived from other basic, well-known physics-
based equations, laws, models, etc., while the author argues with that notion.

For instance, considering Ladeveze’s damage modeling for laminated composites [101],
Ladeveze and Dantec introduced their theoretical modeling of the elementary ply, incorpo-
rating various physical concepts such as damage kinematics of the elementary ply, plastic-
ity modeling, damage-plasticity coupling, and fiber-direction behavior modeling. While
each physical concept and its equations may be understood, comprehending the entire
model, including all these concepts and their interactions at the same time, is challenging.
Moreover, this model is a 2D model, assuming a plane-stress state. Expanding it to a full
3D structure and incorporating other nonlinear factors for improved accuracy makes it
even more complex. As shown in Figure 1.2, this physics-based damage model may not
be deemed an end-to-end interpretable model, similar to a DNN model, where the equa-
tion of each neuron (its weights and activation function) is known, but the DNN model is
considered a black box in the end-to-end view. Thus, two questions remain:

1. Is interpretability needed, and does it help? If yes, to what level of interpretability
is needed?

2. What holds higher priority for a complicated engineering system or structure: in-
terpretability, explainability, or accuracy?

2.7 Conclusions

he literature review has shed light on research gaps and challenges in the landscape
T of HIs, especially for composite structures. The upcoming chapters of the book will
actively address these gaps, focusing on:

- Limited Applicability to Composite Structures: The thesis will explore and pro-
pose methodologies toward HI design specifically for composite structures.

- Nonlinear HI: Recognizing the nonlinear nature of damage propagation and health
degradation, the thesis will advocate for and provide solutions to move beyond the
conventional linear assumptions in constructing HIs.

- Generalizability and Criteria Evaluation: Through rigorous methodologies, the
thesis will enhance the generalizability of models, employing thorough stability
checks and transparent criteria evaluation procedures, especially focusing on test
units.

- Need for Historical-Independent HI: Acknowledging the common historical-
dependency drawback in HI construction and prognostic models, this work will
propose a strategy to mitigate this drawback and create HIs for composite struc-
tures that are not reliant on historical SHM data.

- Fusion of AE and GW: The thesis will delve into fusing passive and active SHM
methods, maximizing the benefits of both temporal and spatial information.
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Interpretability: AE- and GW-based frameworks were investigated in terms of in-
terpretability, where the presence of incremental steps in the generated HIs may
correspond to distinct damage states within composite structures. Additionally, a
methodology for designing interpretable Hls for commercial turbofan engines (the
CMAPSS dataset) will be developed in this research, making HIs more understand-
able as well as transparent and contributing to the interpretability aspect of HIs.

In summary, the upcoming chapters strive to address these gaps while also introducing
innovative methodologies and insights, contributing to the progression of the field of HIs
for composite structures.
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Methodology

The chapter enhances HIs’ evaluation criteria for test units in PHM, introduces a nonlinear HI
design more aligned with damage physics, and concludes with an interpretable model for HI
insights.
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3.1 Introduction

s discussed in Chapter 2, developing a nonlinear HI is imperative to align with the
A physics of damage propagation and accumulation. Furthermore, the HIs’ criteria (Mo,
Pr, and Tr) are envisioned to play a supervising role, guiding the construction process
rather than merely serving as a measurement tool for HI’s quality. The upcoming chapter
introduces and delves into these criteria, emphasizing their importance in evaluating HIs.

To enhance generalizability and criteria evaluation, we refine the approach by updat-
ing the criteria to specifically assess the performance on test units, which are crucial for
real-world applications. The narrative then transitions to proposing a scenario for embed-
ding the criteria in the fusion model. A novel semi-supervised (SS) paradigm is proposed
to consider the HIs’ criteria as supervisors. This paradigm, as detailed in subsequent chap-
ters, exhibits versatility across various applications and model architectures, leveraging
nonlinear kernels during the learning process.

Moreover, the HIs’ criteria are explicitly implemented to optimize hyperparameters of
the aforementioned SS models and in the ensemble learning step. The specifics of these
implementations and developments will be elucidated in the next chapters, where each
will be used.

Finally, the chapter ventures into the development of an interpretable model, aiming
to contribute valuable insights into the interpretability aspect of HIs.

3.2 HIs’ Criteria

ue to the high importance of HIs’ evaluation metrics amongst different stages of the
D methodology, they are introduced at the outset. This section begins by introducing
the prognostic metrics, which will be modified in the present work for consideration of
only test units rather than both training and test units.

3.2.1 HIs’ criteria given all units
The evaluation standard of HIs is based upon three established criteria, namely Mo, Pr,
and Tr [1, 2]:

- The general increasing or decreasing pattern of a feature or generally a signal over
time is expressed by Mo.

- The distribution of a parameter’s failure (final) value is measured by Pr.

« The term Tr refers to whether a parameter’s decay histories (degradation) have the
same underlying pattern for different samples or systems under monitoring,.

These metrics are defined as follows:

Mo = 1 f: 1 ijgipri (tp_ ) Sgn(x(tp)_x(ti)) 1

=— 00% (3.1)
M= |N;-1iH Zp Lpsi (tp tl-)
Pr=exp _\/ X l‘x] [ Y- 1xl(N)” (3.2)
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cov(xj,xk)

Oy, O,

Tr=minj , k=12, ..M (3.3)

where x(t,) and x(t;) denote the measurements (HIs in the context) at the times of ¢, and
t;, respectively. The sgn() function represents the signum function. cov(xj, x) signifies
the covariance, where x; and x; are vectors of measurements for the jth and k' unit (out
of M units - engineering systems or structures) with N; and Nj measurements, respec-
tively. The standard deviations of x; and x are denoted by Oy, and oy, , respectively. The
evaluation metric selected for Mo in Eq. 3.1 is the Modified Mann-Kendall (MMK) metric.
In comparison to the Sign and Mann-Kendall versions, MMK is more resilient to noise and
considers the correlation between data points with time gaps exceeding one unit [1, 3]. All
three HIs metrics (Mo, Pr, and Tr) are rated on a scale ranging from 0 to 1, where a score
of 1 signifies optimal HI performance.
With consideration to these criteria, the Fitness metric is formulated as follows:

Fitness = a-Mogy+b-Pryr+c-Tryg (3.4)

Assuming the control constants a, b, and ¢ each equal 1, the Fitness metric spans from 0
(indicating minimal quality) to 3 (indicating maximal quality) for the evaluated HIs.

3.2.2 HIs’ criteria given test units

It is important to emphasize that the HIs’ evaluation metrics mentioned above are devised
to encompass all units under monitoring, specifically from their healthy state to their
final failure status within the context of PHM. Without access to complete trajectories
of HIs across all units, the assessment of HIs’ quality lacks implication. Consequently,
whether during the training or testing phase of ML-based models, the inclusion of all
units becomes crucial to accurately measuring Fitness. However, a potential challenge
arises due to the possibility of highly matched HIs during the training phase, which might
result in a misleadingly high Fitness score when confronted with an unmatched (outlier)
HI from a specific unit during the testing phase. Therefore, it is essential to evaluate HI
metrics solely based on the test unit.

The choice of using the singular noun "test unit” instead of the plural "test units” is a
reflection of the specific context within this work. In this study, we are focused on a single
unit (composite specimen) designated for testing the model. This decision is dictated by
the limited number of units available, with only 12 units (3 to 5 units for GW datasets
used in Chapter 6) allocated for training and testing in the sequence-to-sequence (seq2seq)
problem. However, it is noteworthy that similar functions, as will be briefly explained for
each, could be readily extended to accommodate multiple test units.

In this study, the HIs’ metrics, particularly Pr, are refined to focus more on the test units
rather than incorporating the entire set (train/validation/test) of units. This adjustment is
aimed at preventing the false positive influence of training units on final scores, which
might overshadow the low scores of the test unit. By primarily considering the test unit,
these updated metrics aim to determine if it deviates significantly from the training units
and to what extent. It is noteworthy that if the metrics yield higher values for only the
test unit while remaining lower for the training units, the methodology could be rendered
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ineffective. This is because the models are trained on the training units, and if their HIs
are not monotonic or if their Pr is low, high Mo and Pr for test units are not beneficial
in the models’ discrimination because the models have already observed other patterns.
Conversely, if the metrics are consistently high for the training units, then achieving high
scores for the test unit becomes meaningful.

The definition of Mo remains consistent, and its computation for a single unit follows
a straightforward process involving the internal summation of Eq. 3.1:

3 B )
N -14 zﬁgl’p” (tp-1;)

.100% (3.5)

where the symbol 7 represents the test unit. In cases where multiple units are being con-
sidered for testing, Eq. 3.5 will be similar to Eq. 3.1, with the difference being the inclusion
of an averaging procedure across only the test units.

However, Pr requires redefinition. In this adaptation, rather than considering the stan-
dard deviation of HIs at EoL across all units in the numerator, the deviation of the HI at
EoL for the test unit from the deviation basis (i.e., its corresponding value averaged over
the training units) is computed:

deviation basis

x; (N;) - [ﬁ Zfﬂ X; (Ni)]

Pr’ = exp| -

(3.6)
X i (0 - (V)

scaling factor

where 7’ represents all units set except for the test ones and M” signifies the count of those
units, including the training ones (or even the validation ones). It should be noted that
x;j(1) and x; (N J-) denote the HI values of the jth unit at the initiation and EoL, respectively.
The denominator serves as a scaling factor, which in this case corresponds to the mean
value of the difference between HIs at the beginning and EoL across all units (7 u 7’) or the
training units (). After evaluating both options within this study, the mean value over
all units is considered, as symbolized in Eq. 3.6. When dealing with multiple units (M%)
under consideration for testing, the deviation basis of EoL could be established based on
the training set (z”), the test set (7), or a combination of both (ru z’), among which the
latest with M units is advisable:
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deviation basis

a Zo b () - [ 2w v

Pr’ =exp| - (3.7)

ﬁzﬁl e (- x; (V)]

scaling factor

Regarding Tr, it is crucial to note that the minimum correlation of HIs should be com-
puted between two distinct units, which is not feasible when considering only a single
test unit while excluding the training units. Additionally, if the correlation between the
HI of the test unit and the HIs of the training units is calculated in a pairwise manner,
followed by selecting the minimum as Tr, this value might surpass the correlation com-
puted when considering all units’ HIs pairwise. Consequently, to ensure a more stringent
evaluation, the same formula as Eq. 3.3 is again applied to the test units. This approach is
more rigorous and maintains consistency.

With considering the updated metrics, the Fitness metric for the test unit is as follows:

Fitness® = a-Mof+b-Prip+c-Tryy (3.8)
where Try is the same as before.

3.3 Deviation from Simulated Ideal HIs

n addition to the evaluation criteria for Hls, a supplementary metric can be employed
I to gauge the deviation from the ideal HIs simulated under the semi-supervised learning
(SSL) paradigm, as elucidated in the upcoming subsection. The root mean square error
(RMSE) stands out as a suitable measure in this context:

N

1 J

FZ(T,-—HI,-)Z, JEM, pel, 2 (3.9)
j izl

RMSE =

In this formula, N; is the length of the sequence (HI), T; represents the target value (simu-
lated HI under SSL paradigm), and HI; is the network’s output for time step i. The RMSE
provides a single score for each unit’s constructed HI, with a primary focus on reporting
the test unit’s HI score, excluding training or validation data.

3.4 Semi-Supervised Criteria-based Fusion Paradigm

n order to embed the Fitness function representing the criteria, different overall scenar-
I ios can be proposed. The simplest way is to rank the features according to their Fitness
values. Although the feature with the highest rank can be considered as the HI, a thresh-
old for the Fitness value can be set to accept more than one feature, and then, they can be
considered as a set of HIs which are imported into a prognostic model. Otherwise, some
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simple methods such as a weighted averaging can be applied to the features filtered by the
threshold, and finally, only one HI can be exported. Nevertheless, such approach might
result in the overlooking of useful features since they do not fit the criteria. However, their
combination may fulfil the intended specifications. Thus, as earlier mentioned, a fusion
model based on DNN and SSL, rather than the predefined functions, is proposed in the
current study.

SSL enables enormous volumes of unlabeled data to be exploited in conjunction with
normally smaller labeled data sets [4]. Unlabeled data can contribute to the formulation of
a superior classifier or regressor, provided enough unlabeled data is available and certain
assumptions about the distribution of the data are adopted. Semi-supervised classification
(SSC) and semi-supervised regression (SSR) are the key components of SSL [5], depending
upon the type of the output variable.

In SSL, there are several assumptions that define the forms of intended interaction [6].
The most widely adopted assumptions are as follows [4]:

- Smoothness assumption: two samples close to each other in the input space should
result in close labels in the output space as well.

- Low-density assumption: the decision margin should not intersect across densely
populated portions of the input space.

« Manifold assumption: the labels for sample points on the same low-dimensional
manifold should be the same.

Most, if not all, SSL algorithms are built on one or more of these assumptions. These
assumptions are different definitions of the similarity between data points and their pat-
terns [4]. They guide how SSL algorithms perceive relationships within the dataset. For
instance, the smoothness assumption suggests that neighboring data points in the input
space should have similar labels, reflecting a continuous pattern within the data.

The two most prevalent divisions in SSL are transductive and inductive, which are
founded on the purpose of the training process. The former is merely concerned with
providing labels for unlabeled data (not providing a model), whereas the latter constructs
a classification or regression model that can be used to predict the label of unseen data
points.

As adaptations of preexisting supervised algorithms, inductive learning algorithms
that are called intrinsically semi-supervised [4] allow unlabeled data to be included in
the objective function. They do not use any intermediary stages or supervised base learn-
ers, rather they directly optimize an objective function with components for labelled and
unlabeled data. In general, these algorithms rely on one of the SSL assumptions, either
explicitly or implicitly, and most SS neural networks rely on the smoothness assumption.

In the present work, a SS deep neural network (SSDNN), by implicitly implementing
the HIs’ criteria as well as using the available EoL, has been proposed to construct HI by
feature fusion. First, a hypothetical ideal HI kernel function following the HIs’ criteria is
proposed and then used as a target for a supervised ANN to approximate the HI function
(see Figure 3.1). In this regard, two main questions arise:

1. How to select a suitable function to make an ideal HI conforming to the prognostic
(HIs’) criteria?



3.4. Semi-Supervised Criteria-based Fusion Paradigm 43

2. What variable should be considered as the main variable of the ideal HI function?

which are discussed in the following.

T L by S PP
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Figure 3.1: Semi-supervised criteria-based NN Fusion to construct the HI from the features.

Selecting hypothetical kernel function to simulate ideal HI
To create targets of the NN to predict HI, three aspects have been considered:

- The ideal HI function should best conform to all the criteria (Mo, Tr, and Pr).

« The simpler the ideal HI function, the simpler the NN model, and the faster its con-
vergence.

- The ideal HI function should take into account the nonlinear behavior of damage
propagation and accumulation in an engineering system or structure.

The smoothness assumption of SSL is already taken into account when using an ideal HI
function as a label generator that fulfils the HIs’ criteria, i.e., if two bunches of extracted
features at two different time steps are close to each other in the input space, their HIs
(labels) are close to each other as well. Inversely, increasing the dissimilarity between two
groups of extracted features at two separate time steps in the input space causes their HIs
to move apart. In other words, the relative RUL between the former (¢ -1) and current
(¢) time windows, from which the features are extracted, is known. As a result, a direct
relationship between the relative RUL (SRUL) and the relative HI variation (degradation)
(8HI) can be used to reconstruct the relative HI. By using the last relative RUL at the
last time window before EoL (which is the only labeled data point concerning RUL for
each sample) and considering a threshold as the maximum HI at EoL, all HI labels are
recursively provided from the final failure at the EoL to the healthy state at the onset,
yielding simultaneously prognosable behavior in HIs as the labels (see Figure 3.2).
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Figure 3.2: Recursive reconstruction of the HI labels based on the relative RUL (6RUL) and the maximum HI at
EoL to implement SSL.

With the abovementioned hypotheses in mind, four basic kernel functions having high
compatibility with the criteria are proposed and studied to select the best one: linear
(HI, = t), quadratic polynomial (HI, = t?), natural logarithm (HI, = In(t)), and exponen-
tial functions (HI; = exp(t)). These functions should be expressed in terms of usage time,
which in this case is fatigue cycles. The functions should be normalized using the max-min
normalization to adapt Pr as a recursive reconstruction process of HI. This normalization
process is acceptable for hypothetical targets. In order to investigate the HIs’ criteria,
three different artificial units with variable lifetimes of 7, 4, and 10 time units (time step
is 0.05) are considered, as shown in Figure 3.3. All functions best match to Mo and Pr ac-
cording to the calculated criteria shown in Figure 3.4, however only linear and quadratic
polynomial functions have the highest value (1) of Tr. As a result, the quadratic polyno-
mial kernel function is used to construct the targets since it takes into account damage
propagation and accumulation nonlinearity. Therefore, the equation of ideal hypothetical
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HI for generating the targets is:
t? —HI pin t2-12 =0 t?

= HIt ==
HImax_HImin tgaL_tg @ t]%oL

HI(;y = normalize(t*) = (3.10)
where 1 and tg,; are the operational times in terms of cycles at the beginning and the
EoL, respectively. HI,,;, and HI,,, are the minimum and maximum values of HI. The
key point is that t,; is not available before the final failure. Using the simulated labels, a
loss function at the output layer can be defined.

‘—Linear: Sample 1 —Linear: Sample 2 ——Linear: Sample 3
el i Sample 1 = i ial: Sample 2 = -Quadratic polynomial: Sample 3’
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Figure 3.3: Hypothetical HI functions for three artificial units with different lifetimes.
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Figure 3.4: Prognostic criteria of four hypothetical HI functions shown in Figure 3.3.

3.4.1 Validation
The proposed SSL paradigm will serve as the core within newly developed frameworks,
demonstrating its practicality in various case studies [1, 7-9]:

- Chapter 5: Designing HI for T-Stiffener Composite Panels using Acoustic
Emission: implemented within three new frameworks.
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- Chapter 6: Designing HI for T-Stiffener Composite Panels and Dogbone
Specimens using Guided Waves: utilized within one new framework.

- Chapter 7: Fusion of Acoustic Emission and Guided Waves Techniques: in-
tegration of the new frameworks developed for AE and GW in Chapters 5 and 6
using SSL.

- Appendix A.1: Interpretable HIs for Commercial Turbofan Engines: imple-
mented within one new framework containing the techniques developed for inter-
pretability, elaborated in the next section.

These chapters collectively showcase the practical application and versatility of the pro-
posed SSL paradigm across different applications, datasets, and frameworks.

3.5 Interpretability

n the pursuit of interpretable HIs, this section introduces a novel methodology with
Ia focus on enhancing interpretability metrics, particularly the readability of the HI's
equation—a direct correlation of its length. Recent studies have demonstrated the via-
bility of constructing HIs through operations like addition and multiplication on derived
features from sensory data [10]. The unique contribution here lies in the automatic integra-
tion of these mathematical operators within the ANN, facilitating the creation of efficient
HIs while maintaining the inherent accuracy of deep learning. It is crucial to note that,
rather than producing the equation as an output, the ANN inherently encapsulates the
equation [9].

Diverging from conventional ANN:S, this section first introduces a modified multiplica-
tive neuron, marking a paradigm shift by incorporating multiplicative neurons alongside
standard additive ones. The aim is to simplify the equation structure for a more inclusive
and understandable model. This departure is exemplified through the design of HIs tai-
lored for the commercial turbofan engine dataset (CMAPSS), showcasing the utilization
of multiplication and division operators.

The significance of sparse weights is underscored, drawing inspiration from the ac-
knowledgment that continuous weights for each neuron may lead to complex and non-
understandable equations. Although an exploration ensues, introducing the development
of a multiplicative neuron to complement conventional additive neurons, it becomes evi-
dent that this modification alone is insufficient for deriving a compact HI's equation from
the ANN.

To address this limitation, a strategic approach is employed—discretizing continuous
weights using a ternary set, coupled with sparsity control to guide convergence towards
values -1, 0, 1 while controlling the number of zeroes. This results in an ANN comprising
both additive and multiplicative neurons with discrete weights, aiming for simplicity and
interpretability in the equation structure. The specific model designed based on these in-
novations will be investigated for the CMAPSS dataset in Appendix A.1, adding a practical
dimension to these theoretical foundations.



3.5. Interpretability 47

3.5.1 Modified multiplicative layer

A limited number of neurons and layers should be employed in order to derive an effec-
tive equation that could characterize a HI. An ANN’s compact size depends on the subject
under examination. It is presumed that even a basic network of two 8-neuron layers could
result in an outsized, physically unexplainable equation representing a HI. At first, it can
seem extremely difficult for an ANN to be trained with just a few parameters and deliver
correct results. A probable underfitting of the data is foreseen, even for small datasets. A
straightforward HI equation can be derived from the ANN itself by including the physical
parameters in it and zeroing out some weights in the training step. In the current work, it
is regarded that physical properties could be basic multiplications and summations among
features (like CMAPSS dataset [10]), which can be done by the combination of the multi-
plicative and additive layers, as will be seen in the next subsections. By discretizing the
weights into a ternary shape and regulating the number of weights that should be zero, it is
technically feasible to automatically decrease the number of neurons and further simplify
the HI formula.

Introspecting ANN - additive neuron

Artificial neurons, which are coupled together and organized into layers, are the building
blocks of an ANN. Each layer receives input from signals. One layer’s output feeds into
the subsequent layer’s input. The basic equation of the typical ANN for each neuron
individually given certain inputs xg from the preceding layer is:

K
N; = Z[wjl-ixi]+bl (3.11)
i=1

where Nj is the initial output of neuron and w}i is the weight relevant to the connection

between the j*" neuron at the It layer to the (I - th layer’s it" neuron. The neuron also

contains b’ to consider the bias. By using a nonlinearity through an activation function
F(N), which has the only restriction of being differentiable to the points of interest, the
final output of the neuron is computed. While the ANN is being trained, the weights and
biases of each neuron, which stand in for the learnable parameters of the network, are
attempting to modify their values by backpropagating the error through the derivatives.
A differentiable loss function must also be formulated at the points of interest. Due to the
fact that this neuron sums the weighted inputs, it is termed additive.

Introspecting ANN — multiplicative neuron

The basic equation of the neuron Eq. 3.11 should be modified in order to induce the layers
to generate multiplication operators. Accordingly, as stated in [11], we can construct a
multiplicative neuron instead of a typical additive neuron by changing the summation step
(Zil[wﬁxi]) to a multiplication one (Hil[xiw ), with the weights acting as exponents
in a product rather than weights in a sum. Unfortunately, as mentioned in [12], an ANN
with typical multiplicative layers makes the training more complex and slower due to the
derivatives that are needed for backpropagation. This is the main reason that these layers
have not been applied extensively in the literature. To mitigate this pitfall, a modified
multiplicative neuron is developed by converting the additive neuron via a specific pair of
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continuous activation functions. In particular, the inputs must get a logarithmic activation
before being fed into Eq. 3.11 and an exponential activation afterward. The following
equation can be used to update an additive neuron into a multiplicative one after the
above-mentioned adjustments:

N, = T [Whin(e)]+b!
wh,
U AN IEONA!

wh.
_ o @I D (3.12)
LS
= eb H[xl‘ jl]
i=1

The transition from additive to multiplicative neurons is shown in 3.5. An ANN can avoid
adding further nonlinearities that might result in a complex equation by only employing
these two types of activation functions. A key point to highlight is that by constraining the
neurons to perform these particular activation functions, their ability to scale is confined
by the requirement that the inputs be positive in order to apply the logarithm. Nonetheless,
as the inputs could be simply rescaled to a desirable positive range, this is not a limitation
in the current research. Furthermore, the convergence principles of neural networks are
fulfilled given that the logarithm exists because the proposed multiplicative neuron derives
naturally from the additive one by adjusting the activation functions.

3.5.2 Discretized weights

Learning the weights in continuous spaces is very favorable since the training process is
stable and the optimal solution can be properly found. Nevertheless, because the ANN de-
sign is typically complex with vast numbers of weights, this is not effective in developing
concise equations. This is particularly important in the case of HI construction, where the
objective is to recognize the pattern and reconstruct a HI that offers high criteria scores
(Mo, Tr, and Pr) rather than merely exact target values [1]. Incorporating continuous val-
ues with multiple decimal digits provides a complex model, even in extreme situations
where only a small number of weights are non-zero. An ANN cannot be trained with
discontinuous weights because there are no gradients for back-propagation; hence, learn-
ing in a continuous space is ultimately inevitable. Rounding the weights to the desired
decimal during testing could be an easy way to achieve a compact formula, yet it would
adversely affect the outputs and most likely result in the ANN being ineffective.

The weights should preferably be discrete to particular decimal values or even integers
without compromising precision. Ternary weights have lately been developed to help with
this challenge [13]. The objective is to train an ANN by converging the weights to specified
values instead of rounding them to particular decimal digits. They are known as “ternary”
values if the provided values are {-1, 0, 1}. There are undoubtedly scenarios where we
require weights to fall within the range of those integers. This approach only induces a
portion of the weights, which is controllable, to be integers rather than forcing all.
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Figure 3.5: Additive and multiplicative neurons.

According to Ref. [13], the full-precision weight space is too vast to identify an ac-
ceptable ternary solution, thereby the continuous weight spaces need to be constrained

by tanh(w):

w’ = tanh(w) (3.13)

The weights are now bounded to the chosen [-1, 1], hyperbolic tangent range. Adding
just one more term to the loss function (E) enables this transition work:

E=Ec(y,3)+AEg(w’) (3.14)
1 n
Ec(y,3) == > (=97’ (3.15)
j=1
L |w!|
Er(w') = Eg(tanh(w)) = Y. 3" [(a - tanh®(w))tanh®(w!)] (3.16)
=1 Wiji

where Ec(y,y) is the mean-squared loss (MSE) between labels y; and predicted outputs
yj over n data points (as an example loss function for the regression task), and Eg(w’) is
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Figure 3.6: Gradients’ flow of the discretizing loss function Ep during training for different shape controller
parameters a. The desired local minima exist when 0 < & < 2.

the discretizing loss for converging the weights towards the ternary values. A is a regular-
ization parameter, L is the number of layers, |wl| denotes the total number of weights for

the [t layer (the summation is over all wj; which is the weight relevant to the connection

between the j* neuron at the %" layer to the (I- )t layer’s i'" neuron), and « is the

shape controller of Eg(.). A and « are supplementary hyperparameters that should be ad-
justed for training the ANN; the first can be seen as a trade-off between the importance of
reducing the MSE and ternarizing more weights effectively, and the latter softly controls
the number of weights to become zero. The gradients exist and are proven to be minimal
at tanh(w) = -1, tanh(w) = 0 and tanh(w) = 1 when 0 < & < 2 using the aforementioned
modifications and loss functions (the proof in [13]). The Ep(w”) for different « values is
shown in Figure 3.6. The number of zeros in the trained weights, which can be monitored
to have more or fewer parameters, is the sparsity control key property of Eq. 3.16. This
is especially helpful in situations where larger ANN architectures were obtained, yet we
still want to have concise formulations for HIs by zeroing (raising «) more weights. By
maintaining the weights as close to their ternary shape as appropriate and regulating the
proportion of them that should be identical to zero, the ANN is able to generate precise
predictions, which is a benefit of the adjustment to the weights and the incorporation of
the term to the total loss function E.

3.5.3 Validation

The proposed techniques, namely the incorporation of multiplicative neurons and spar-
sity control, undergo rigorous testing using the NASA Ames Prognostics Data Repository
dataset for turbofan engine degradation simulation (CMAPSS) in Appendix A.1. The de-
veloped model makes substantial contributions by introducing a novel type of neuron,
constructing a network with a synergy of additive and multiplicative neurons, and har-
nessing the advantages of multiplicative neurons and sparsity control through discretized
weights. The resulting HIs exhibit concise and easy-to-understand equations, all while
satisfying essential evaluation criteria (Mo, Pr, and Tr). Appendix A.1 will delve into a
comparative analysis with PCA, KPCA, and two-stage genetic programming (GP) outputs,
shedding light on the effectiveness and interpretability of the proposed methodologies.

3.6 Conclusions

I n conclusion, this chapter presented methodologies for the development and evalua-
tion of HIs, emphasizing the necessity of a nonlinear approach aligned with the physics
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of damage propagation and accumulation. Key criteria for HIs, including Mo, Tr, and
Pr, were introduced as pivotal elements for assessing HIs’ quality. A significant shift to-
wards evaluating HIs specifically on test units, crucial for real-world applications, was
highlighted to enhance generalizability.

The chapter introduced a novel SSL paradigm, leveraging HIs’ criteria as supervisors
across various applications and model architectures. Furthermore, the chapter delved into
the development of interpretable models, providing valuable insights into the interpretabil-
ity aspect of Hls. The emphasis was placed on the readability of the HI’s equation, intro-
ducing a modified multiplicative layer alongside discretized weights to achieve concise
and interpretable formulas for turbofan engines.

In summary, the chapter laid the foundation for a robust and versatile methodology
for HI development, incorporating nonlinearities, emphasizing criteria-based evaluations,
and introducing innovations in interpretability. Subsequent chapters are anticipated to
validate and extend these methodologies through practical applications and comparative
assessments.
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Data Analysis and Machine
Learning

In this foundational chapter, key operations essential for subsequent frameworks in the the-
sis are introduced, covering preprocessing techniques, signal processing methods, statistical
features, dimension reduction, and an overview of deep learning. They equip readers with
essential knowledge for designing frameworks across diverse applications and datasets in the

following chapters.
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4.1 Introduction
I n this chapter, the groundwork for data analysis is laid, introducing essential operations
pivotal for subsequent frameworks developed in this thesis. The chapter begins with fun-
damental preprocessing techniques, encompassing normalization, standardization, and
a newly developed adaptive standardization. Following this, signal processing methods
such as fast Fourier transform (FFT), Hilbert transform (HT), and complete ensemble em-
pirical mode decomposition with adaptive noise (CEEMDAN) are explored to cater to di-
verse data handling needs. Statistical features, offering insights into temporal and spectral
characteristics in both time and frequency domains, are outlined. Additionally, dimension
reduction through principal component analysis (PCA)-based algorithms for simplifying
complex datasets is presented. The chapter concludes with an overview of deep learning,
exploring architectures like multilayer perceptron (MLP), convolutional neural network
(CNN), long short-term memory (LSTM), and bidirectional LSTM (BiLSTM), along with
insights into hyperparameter tuning and ensemble learning (EL) strategies. Serving as
an instructive guide, this chapter equips readers with the essential understanding of data
analysis techniques crucially employed in designing new frameworks across various ap-
plications and datasets in the subsequent chapters.

4.2 Preprocessing
ata transformation involves transforming the data into formats that are suitable for

D mining. Normalization is a primary category of transformation in which the attribute
data is scaled to fall into a narrow range, like -1.0 to 1.0 or 0.0 to 1.0 [1, 2]. Algorithms ben-
efit from normalization, especially neural networks. Normalizing input values in training
sets for every attribute speeds up the learning process in classification mining using the
backpropagation algorithm. It also contributes to distance-based techniques by keeping
attributes with broad ranges from outweighing those with narrower ranges [1].

Normalization (referring to min-max normalization) or standardization (referring to
zero-mean normalization) are commonly applied preprocessing techniques for inputs be-
fore being fed into a model. These advantageous preprocessing techniques are also em-
ployed between the hidden layers of an ANN model. However, they should be utilized
with caution in the field of prognostics or other fields with a similar objective because fu-
ture data is not accessible to the model, especially during its testing phase. In fact, whether
the input data are normalized or standardized given the entire trajectory, the input data
distribution is already placed into a known distribution. In this manner, the problem has
somehow been turned into an interpolation task for the data-driven model when it is in
fact an extrapolation task, which is more difficult for ML models. This point is crucial for
assessing prognostic-relevant methods, such as HI construction or RUL prediction models.
As aresult, an adaptive standardization technique needs to be developed. After outlining
the normalization and standardization relationships, this section will introduce the adap-
tive standardization technique.
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4.2.1 Normalization (min-max)
The original data is transformed linearly by min-max normalization:

x; — min(X)
norm _
! max(X) - min(X)

X where X =x.5 (4.1)
where x; is the i'" data at the i*" time step (1;), and i basically refers to the current (data
or time step). X indicates the entire historical data from the beginning to the end N (EoL).

4.2.2 Standardization (zero-mean)

The value of an input feature is standardized using the mean p and standard deviation o of
all the data for that feature when using zero-mean normalization, also known as z-score
normalization:

(4.2)

When the input data has a Guassian distribution, this method performs better.

4.2.3 Adaptive standardization

According to the explanations above, the plausible standardization technique can be used
for both training and test data based on the mean value and standard deviation derived ex-
clusively from the training data [3]. However, because the same technique was employed
and noticed its misleading impacts on results, this may not be useful for new unseen data
(validation or test portions). As a result, an adaptive standardizing technique is being de-
veloped. Assuming that y; and o; are the mean value and standard deviation of the data
(x1.;) up to the present (time step ¢;), the data are standardized as follows:

X
Xj——— — X —
1 1

xiast _ 1 = (4.3)

pi=———— (4.4)

i-1 z
o= 2_[:1 (x]('m _ll.i> + (o= i) (45)
i

It is important to note that the data preceding the current time step (x;.;_1) is not stan-
dardized at the current time step (t;), but has been standardized in previous time steps
(t1,t9, .., ti_1). Only the current data (x;) undergoes the standardization process at the cur-
rent time step (t;), rather than the preceding data. This procedure is carried out for the
extracted features of each unit independently, which is acceptable and applicable from the
prognostics standpoint.
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4.3 Signal Processing

A signal, conveying essential information, is a crucial element in various applications.
As signals acquired during tests often contain noise and bootless components, “signal

processing” (SP) methods become imperative. SP aids in extracting system fault-related

information, enhancing the signal-to-noise ratio (SNR). It has risen to the top of the man-

ufacturing and operation of modern equipment, accounting for 50-70% of the total cost of

the facility [10].

Three domains, namely time, frequency, and time-frequency, categorize SP methods.
Three fundamental SP methods—fast Fourier transform (FFT), Hilbert transform (HT), and
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)—are
very helpful to process data. These methods will be employed in subsequent chapters
within newly developed frameworks for diverse applications. FFT efficiently transforms
signals from the time domain to the frequency domain, offering insights into various fre-
quency components. The HT is instrumental in analyzing instantaneous frequency and
phase. CEEMDAN, being versatile, allows adaptive decomposition of signals into intrinsic
mode functions, facilitating a detailed exploration of signal components. The utilization of
these methods within the upcoming frameworks aims to enhance information extraction
from signals across a range of scenarios. Thus, FFT, HT, and CEEMDAN will be briefly
introduced in the next subsections.

4.3.1FFT

FFT is a potent signal processing method for effectively analyzing signals in the frequency
domain [4]. By converting a signal from the time domain to the frequency domain, the
signal’s frequency components are perceived. Due to its faster computational speed than
other methods, the discrete Fourier transform (DFT) can be computed using the FFT algo-
rithm, which is highly valuable.

The mathematical representation of the FFT can be expressed as follows:

N-1 .
X(k) = % Z x(n)exp (— ]ngn) (4.6)
n=0

where, x(n) indicates the discrete input signal at the time index n, and X (k) represents
the corresponding frequency component at the frequency index k. The exponential term,
which involves complex numbers, contributes in capturing the signal’s phase and ampli-
tude information in the frequency domain.

FFT is helpful in many applications, including image analysis, communications, and
audio signal processing, because of its capacity to effectively explore the spectral character-
istics of signals. Its use in the frameworks developed in the upcoming chapters highlights
how crucial it is to extracting valuable features from input data.

4.3.2HT
HT for a signal x(¢), which denotes x (1), is expressed as [5]:

oo x(t)
—daT
£(0) = H[x(0)] = =50 = x(). — (47)
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In Eq. 4.7, the symbol of » depicts the convolution operation. By assuming;:

j=+-1; a(t) = x(t)2 +fc(t)2; 0(t) = arctan (%) (4.8)
the analytic signal can be expressed as:
z(t) = x () + jx (1) = a(t) expl jO(1)] (4.9)

where instantaneous amplitude and phase have been depicted by a(t) and 6(t), respec-
tively. In addition, the instantaneous frequency of the signal x(#) can be obtained from

w(t) = de(t) . The Hilbert envelope spectrum is also defined as:

o oo '[oo &d’[

h(f)= -[ a(t)exp (-j2nft)dt = J x()?+ | =2 | exp (-jexft)pdt

—00 —o0 T

(4.10)

The vibration signals obtained by a monitoring system are usually modulated when a me-

chanical fault happens. To demodulate a signal, HT is a popular technique to distinguish

carrier component and modulation component in which the fault features are mostly con-

cealed. It is particularly a useful SP method to process GW signals for damage detection
and monitoring in composite structures [6].

4.3.3 CEEMDAN

Empirical mode decomposition (EMD) is an algorithm capable of decomposing non-linear,
non-stationary signals into a set of orthogonal components. The basis of EMD is the
Hilbert-Huang transform [7], which decomposes the original signal into simple intrinsic
mode functions called IMFs. Each IMF needs to fulfill two conditions:

1. The number of extrema and zero crossings must be equal or differ by no more than
one.

2. The mean value of the upper and lower envelopes is zero everywhere.

The basic steps of the EMD algorithms are explained in the following.

First, the local extrema of the data are identified. By employing cubic splines, an upper
and lower signal envelope are created, containing the entirety of the signal data. Then,
the mean of the upper and lower envelopes is calculated. In the next step, the difference
between the mean (m;) and the data (X (1)) is calculated, which corresponds to the first
IMF component hq:

X(t)—ml :hl (411)

In case the two conditions mentioned above are not validated, the previous steps are re-
peated until h; complies with those criteria (sifting process). h; now corresponds to the
new data, i.e., X (¢) = hy, and the previous steps are repeated to extract the next IMF as:

hy-myy =hyy (4.12)
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After k siftings, the IMF that adheres to the criteria is designated as ¢; = hyg. Then, ¢; is
the first IMF and is subtracted from the original data:

X(t)-c =1 (4.13)

where r; is the first residual and is treated as the new data in Eq. 4.11. The subsequent
steps are to extract the nth IMF (c,,) until r,, is a monotonic function. When a monotonic
function is reached, all IMFs are extracted, and the process is completed. To reconstruct
the original data after extracting the n'" IMF and leaving the residual r,, Eq. 4.15 is used:

X(t) = Zci+rn (4.14)

i=1

Despite the advantages EMD provides in signal decomposition, it suffers from a major
drawback referred to as mode mixing. A solution to this drawback is ensemble EMD
(EEMD) [8], which adds Gaussian white noise to the data with the appropriate scale. The
steps of EEMD are the same as regular EMD, with the addition of white Gaussian noise to
the original data. Then the extracted IMFs are averaged. However, the addition of white
noise creates new issues, such as the independence of the decomposition process due to
the residual noise in the IMF and deficiencies in the decomposition process. Also, the
EEMD makes it difficult to average different numbers of IMFs. These newfound issues
are addressed by the complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) [9]. The CEEMDAN process, unlike the EEMD, adds particular noise
E;[w;(t)] at each step of the decomposition. The main process of CEEMDAN is described
in the following steps:

x; (£) = X (8) + fo By [w; (1)] (4.15)

where E; [w; (¢)] is added to the original signal X (t) for i = 1,2, ..., N. The parameters w;,
B, and N indicate the added Gaussian noise, the noise amplitude, and the ensemble size,
respectively. The first IMF (¢;) is calculated through the first residual r; as:

1 N
= X(t)-r, where r = EZM(xi(t)) (4.16)
i=1

where M(+) is the operator representing local means of data. The second IMF (c,) is ob-
tained through Eq. 4.17:

1 N
cp=r -1y, where ry= N ZM(rl +BrEy [w; (D)]) (4.17)
i=1
Here E, [w; (1)] is the second IMF of EEMD. The n'" IMF of CEEMDAN is obtained through:

N
1
Cp=Ty1-Tn where r,= N ZM(rn_l +Bn_1Ey, [wl-(t)]) (4.18)
i=1

where f8, = gystd (r,) is the signal-to-noise ratio (SNR).
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4.4 Statistical Features

n this step, features are extracted from multiple domains, including time and frequency
Idomain. FE can also be carried out based on physical models which imply physical
meaning but these model-based features are limited. As a result, statistical parameters are
extracted as features from various domains and employed in the following step (fusion).

The popular features in the time domain have been listed in Table 4.1. However, as
previously explained, the time domain is not sufficient to extract features as a HI or an
element of HI, and additional statistical features should be extracted from the frequency
domain. Furthermore, since an incomprehensible variation, especially in high frequency
fluctuations, may not be detected in the time domain and instead it simply causes a spec-
trum line in the frequency domain, the frequency spectrum is more susceptible to incip-
ient damages. This case is widely used in fault detection. The common features in the
frequency domain have been listed in Table 4.2.

Table 4.1: Common statistical features in time domain.

No Equation Specific name No Equation Specific name
N
Xpea
1 Xon = w Mean Value 9 Xerest = ;( k Crest factor [60]
N
_X Kpeak
2 Xsd 2":‘(3;5"1 Standard Deviation 10 X jearance = X" A Clearance factor
- root
5 e
3 Xoaps = (W) Root Amplitude 11 Xpape = % Shape factor
3 Znealx(n
N 2
Xpeal
4 Xrms = Z"”l(% Root Mean Square (RMS) | 12 Xjmpulse = 12,\‘,’7‘&)' Impulse factor
[61] 3 Zn-tlx(n
5 Xrss = A 211 \x(n)\2 l[locjt(—;}lim}-{éfs-slqualres l(RSS) 13 Xpp = max(x(n)) - min(x(n)) lf\/[aximum to Minimum dif-
61 e evel is also re- erence
ferred to as the 2-norm.)
N k
_X .
6 Xpeak = max |x(n)| Peak 14, Xppm= E":‘(X(% Central moment for k" or-
15, der (In this context, the 3”1,
16, 4th 5th and 6" are consid-
17 ered the features of 14, 15,
16, and 17, tively.
5 s’ . an respectively.)
7 Kskewness = ————="—  Skewness 18 Xppg = —F FM4 (close to Kurtosis)
y N-DXa , X
2 (x(m)-X,) . X H) .
8 Xkurtosis = W Kurtosis 19 Xpeq = ‘T Median

x(n), N, and t(n) denote the signal sequence for n=1,2,..., N, the number of data points, and time instances when x (n) occurs.

Table 4.2: Common statistical features in frequency domain.

No Equation Specific name No Equation Specific name
K K 4
20 pr= me = w Mean Frequency (may indicate the vi- | 27 pg= \/M
bration energy in the frequency domain, e fie” (k)

which represents the average of the am-
plitudes of all the frequencies.)

_ T 6®-p)’ T sk

21 py (same as variance) 28 po=
o SO i)
K
22 p3= M (same as Skewness) 29
K .
23 4= W (similar to Kurtosis) 30 pyy = W
2 6
_x,, = Zigheot® _ 2 Uieps)'s®)
24 p5=Xp = r (k) 31 pp= Kt
5 (feops)'s(h) Ties [Gips)sth)
B pe= 32 p3= — ka

_ TG B Gep) s
26 P7*ersf’ Zles(k) 33 pu= ):‘,f:,s(k)

s(k), K, and f; denote the spectrum for n=1,2,...,K, the number of spectrum lines, and the frequency value of the kth spectrum

line.
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4.5 Dimension Reduction - PCA-based Algorithms

D ue to the large number of features obtained from SHM techniques, like AE data, the
subsequent models become more complex. To address this issue, it is necessary to
reduce the feature dimensionality. To accomplish this, PCA-based methods can be em-
ployed [10-13]. The aim is to decrease the number of features from more than a hundred
to a few (e.g., 201 statistical features to 10 principal components (PCs) for AE data in Chap-
ter 5). While additional PCs could be extracted and used as inputs for subsequent models,
it is deemed acceptable to retain the reconstructed variance (90%) of features in order to
maintain simplicity in the following models.

The application of PCA in the context of prognostics poses a challenge, as it is essen-
tial to avoid utilizing future data during the decomposition of eigenvectors (coefficients),
especially when testing the model. In this thesis, two primary approaches are explored to
applying PCA:

1. Approach A: The coefficients of PCs are extracted solely from the training units.
Subsequently, these coefficients are utilized to construct PCs for the test units. There
are two variations in this approach: A.1, where all data from the training units is
concatenated (making a bigger matrix), and the coefficients are then extracted; and
A.2, where coefficients are individually extracted from each training unit, and the
mean value of the coefficients is used for testing.

Approach B: Coefficients are independently extracted for each unit, regardless of
whether they are from the training or test units. However, this approach is subject
to two limitations. Firstly, the number of time steps during which measurements
are collected must exceed the required number of PCs, due to matrix size require-
ments. Secondly, when considering the overall prognostics problem for each unit
individually, the usage of future data (beyond the current time step) is prohibited,
particularly during the test phase, due to the unavailability of future SHM measure-
ments in practical scenarios.

Based on the authors’ knowledge, approach B of estimating PCs yields higher performance
when all data from the beginning until the EoL is considered. However, as mentioned ear-
lier, the use of future data is impossible for prognostics. To address TD data, several exten-
sions to PCA methods have been introduced, including dynamic PCA (DPCA), recursive
PCA (RPCA), and moving-window PCA (MWPCA) [14]. While DPCA was developed to
handle autocorrelation, RPCA and MWPCA are more suitable for dealing with nonstation-
ary data. Among them, MWPCA forgets the older data (before window) entirely, which is
not appropriate for the current prognostics purpose, especially when using passive SHM
techniques like acoustic emission. To overcome this limitation, RPCA can be employed to
incorporate all historical SHM data from the beginning of monitoring up to the current
time. The approach B with all historical data till EoL is denoted as code B.1 (which is not
acceptable in prognostics) and RPCA is coded as B.2, which is described in more detail in
the following. As the dimension reduction stage inside the suggested framework, all ap-
proaches A.1, A.2, B.1, and B.2 are used and compared in one framework developed based
acoustic emission data (Chapter 5). Although B.1 is not feasible in real-world applications,
it is still used to demonstrate false positive performance and compare it with others.
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In RPCA, assuming that the mean and covariance of all adaptively standardized ob-
servations x5! up to the present (time step ;) are ji; and S;, respectively, the updated
mean [i;,; and the updated covariance matrix S;,; given the new adaptively standardized

observation x{2 (at time step ;,1) can be calculated by:

i i
liv1 = (1= —n)x%t+ —np; 4.19
His1 ( i+ln)xl+1 1 (4.19)
Siv1 = (1 L ’7) (x5 = fi) (x4 —ﬁi+1)T + = nS; (4.20)
i+1 " " i+1

where 0 < 1< 1 is a forgetting factor. In the context of a geometric progression, this is
comparable to calculating a weighted mean and covariance of x5!, |, where earlier values
are down weighted exponentially. Older observations in RPCA are faster forgotten when
using a forgetting factor of 5 < 1, whereas they are slower forgotten by applying a forget-
ting factor of n — 1. If it is desired to maintain all prior observations, which is appropriate
for the current study, = 1 should be adopted. By adopting RPCA, the proposed approach
retains adaptability and compatibility with new incoming data while still maintaining the
integrity of historical information critical for prognostics applications.

4.6 Deep Learning

hile the primary objective of this research is not to identify the best and most uni-
errsally optimal ANN’s architecture for fusing SHM data, it is essential to provide
and develop a suitable ANN architecture to showcase the feasibility of the suggested SSL
paradigm. Given the novelty of the dataset for the examined composite structures and
the absence of prior studies based on DL, various types of layers and architectures were
explored. The approach began with basic shallow architectures like the multi-layer per-
ceptron (MLP) to construct HI before progressing to more complex networks. Each layer
was incrementally added, adjusting the number of neurons and introducing different layer
types, including fully connected (FC) or dense layers, long short-term memory (LSTM),
bidirectional LSTM (BiLSTM), and convolutional layers to enhance results. Considering
diverse datasets, such as acoustic emissions (AE) and guided waves (GW), requires testing
various layers and architectures. This section introduces key standard elements for the
subsequent chapters, including FC, dropout, rectified linear units (ReLU), LSTM, BiLSTM,
and CNN layers in the section on deep learning architectures and components. Addition-
ally, a brief overview of hyperparameter tuning using the Bayesian optimization (BO)
algorithm, frequently employed in the developed frameworks in the following chapters,
is provided. Finally, ensemble learning (EL) methods, beneficial for reducing randomness
and improving the performance of DNN models, are presented.

4.6.1 Deep learning architectures and components

Fully connected layer - FC

In FC layers, the neuron uses a weights matrix to apply a linear transformation to the
input vector, which is called generalized linear layer (z]l» =2 w}l. ka,l(’1 + b}). A non-linear
activation function o is then used to apply a non-linear transformation to the product
according to Eq. 4.21. If w]l-k can be considered the weight for the link between the [ - 1th




62 4. Data Analysis and Machine Learning

layer’s k" neuron to the I*" layer’s j th neuron, for a FC layer we have:

a=0(z)= (Z wheal” ) (4.21)

where z]l~ and a§ denotes input and output of a desired FC layer [, respectively.
Dropout

Dropout is a regularization strategy that prevents complicated co-adaptations on training
data, thereby decreasing overfitting in ANNs [15]. The following equation is considered
for the dropout layer:

.| 0 with P(c) (4.22)
Wi = wj : otherwise :

where w; is the diluted row and P(c) is the probability ¢ to remove a row in the weight
matrix.

Rectified linear unit - ReLU
ReLU is a type of activation function with a strong biological and mathematical foundation
[16]. It consists of setting a threshold at 0:

ReLU(z) = z* = max(0,z) (4.23)

Long short-term memory - LSTM

A memory cell (g), an input gate (i), an output gate (0), and a forget gate (f) compose an
LSTM unit, which was developed to maintain a long-term record of sequential inputs by
using the memory unit [17]. As illustrated in Figure 4.1, one input (x;) and the previous
hidden state (h;_;) as well as the previous cell state (c;_;) are used to formulate the hidden
state (h;) in the tth step in retaining information from the past as follows:

fr=o(Wpxy +Uphy_y + by) (4.24)
iy = o(Wix; + Uphy_1 + b;) (4.25)

gt = tanh(Wgx; + Ugh;_y + by) (4.26)
0; = o(Wyx; + Uyhy_1 + by) (4.27)
Ct =ft®ct—1+it®gt (4.28)
h; = ot®tanh(ct) (4.29)

where W, and b, stand for learnable weights and bias parameters, respectively. o is sig-
moid activation function and (¢) is the element-wise product. The hidden state h; influ-
ences the production of the final output at any step ¢ by accumulating information from
previously processed features [18], which could be referred to as damage accumulation
and health degradation in the current study.
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Figure 4.1: LSTM cell’s architecture.

Bidirectional long short-term memory - BiLSTM
BiLSTM, a variant of recurrent neural networks (RNNs) primarily employed in natural
language processing (NLP), stands out for its bidirectional information flow. Unlike stan-
dard LSTM, BiLSTM processes input sequences in both directions, allowing it to capture
sequential dependencies from both ends [19]. This bidirectional capability is especially
advantageous for modeling intricate relationships within sequences, such as words and
phrases in NLP, and can be inspired to uncover hidden degradation patterns in SHM data.

In essence, BiLSTM introduces an additional LSTM layer that reverses the direction of
information flow, as depicted in Figure 4.2. This implies that the input sequence is pro-
cessed backward in this extra layer. The outputs from both LSTM layers are then combined
through operations like average, sum, multiplication, or concatenation. It is important to
note that, despite its advantages, BILSTM comes with drawbacks, notably being a slower
model that requires more training time compared to LSTM. Therefore, it is advisable to
opt for BiLSTM only when its bidirectional capabilities are essential for the specific task
at hand.

If we denote Eqs. 4.24-4.29 as representing forward LSTM operations, the correspond-
ing equations for backward LSTM operations are:

f = o(Wxy+ Ughi_y +b%) (4.30)
il = o(W!x,+ Ul )y + b)) (4.31)
gt = tanh(Wyx; + Ughj_y + bg) (4.32)
0} = o(Wjx, + UL, + b)) (4.33)
¢ = ff e+ it (Dt (439)
ht = of (+) tanh(cf) (4.35)

BiLSTM combines the outcomes of both forward and backward LSTMs, enhancing the
representation of the input sequence by incorporating insights from both past and future
contexts.
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Figure 4.2: BiLSTM cell’s architecture.

Convolutional neural network - CNN
A CNN is a type of neural network architecture designed for tasks involving grid-like data,
such as images [20]. The basic components of a CNN include convolutional layers, pooling
layers, and fully connected layers. For a 2D-CNN, considering a!~! as the input coming
from layer [ - 1, the equation is as follows:

F, K K
Zilj =f Z Z Z W’l”npaézllm—l)(ﬁp—l) + bllj (4.36)

m=1n=1p=1
Here,

. Zilj is the activation at position (i, j) in layer /,
« Fj is the number of filters in layer [,

. W,l,mp is the weight of the connection between the m" filter at position (n,p) in
layer I and the input from layer [ -1,

. aé;}m_l)(ﬁp_l) is the activation from position (i+ m-1, j+p-1) in layer I -1,
. bl! ; 1s the bias term for the activation at position (i, j), and
+ f() is the activation function.

In the following of the convolution layer, a pooling layer can be applied, like the 2D max-

pooling as follows:

1 1
Pl] = max Z(i+m—1)(j+n—1) (437)

(m,n)€pooling region

Here,



4.6. Deep Learning 65

. Pilj is the result of max-pooling at position (i, j) in layer ,
. Z(li+m_1)(j+n_1) is the activation from position (i+ m-1, j+ n-1) in layer [,
- The max operation is applied over the defined pooling region.
Finally, the outputs of the pooling layer should be flattened using a flattening layer:
Flatten(P') = [P, Pl,,..., L] (4.38)

where Flatten(P?) represents the flattened vector of the max-pooled activations.

4.6.2 Hyperparameters tuning

Hyperparameters are external model configuration settings used in ML [21]. Hyperparam-
eters need to be set before the training process starts, in contrast to parameters, which are
learned from data during training. Because hyperparameter selection directly affects the
model’s performance, it is essential. In order to maximize the accuracy, generalizability,
and overall performance of the model, hyperparameter tuning entails a methodical inves-
tigation of various hyperparameter values. Methods like Bayesian optimization (BO) are
frequently used to find the optimal hyperparameter configurations quickly. By improving
the model’s resilience and flexibility for different datasets, this procedure seeks to increase
its predictive power.

A popular method for hyperparameter tuning is BO [22], a probabilistic model-based
optimization technique, which will be used in this thesis. The fundamental BO process
uses a probabilistic model, usually a Gaussian process (GP), to represent the objective
function and direct the hunt for the best hyperparameters (see Figure 4.3). The following
is a condensed version of the steps and equations used in BO.

Gaussian Process (GP) estimate of the function
— — confidence interval
[

110 N Oberved values
GP mean
\ True function

value

2 3 4 5 6 7 8
hyperparameter

Figure 4.3: Bayesian optimization of a function with the Gaussian process.

Gaussian process model - GP
The objective function f(x) is modeled by the GP as a distribution over functions. The GP
predicts the distribution of the objective function for a set of observed data points (x, y),
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where x represents the hyperparameter configurations and y represents the corresponding
model performance (e.g., validation accuracy or loss):

f(x) ~ GP(u(x), o?(x)) (4.39)

Acquisition function

The next configuration to be evaluated for hyperparameters is found using the acquisition
function a(x). The probability of improvement (PI), expected improvement (EI), and upper
confidence bound (UCB) are examples of common acquisition functions:

Xpext = arg max ya(x) (4.40)

Updating the Gaussian process
After evaluating the objective function at the chosen hyperparameter configuration, the
GP is updated with the new observation:

Update GP with (Xpexts Vnext) (4.41)

Sequential model-based optimization - SMBO

The overall BO procedure, called sequential model-based optimization (SMBO), assesses
the objective function, updates the GP, and iteratively chooses hyperparameter configura-
tions based on the acquisition function:

Xnext = ArgMax a(x)

Evaluate f(xpext) (4.42)
Update GP with (Xpext> f (Xpext))

The fundamental steps in BO for hyperparameter tuning are represented by these equa-
tions. The particulars and formulas can change depending on which probabilistic model
and acquisition function are selected during the optimization procedure.

4.6.3 Ensemble learning - EL
After constructing HIs based on individual DL models, an ensemble learning (EL) tech-
nique can be employed to create a meta-model capable of addressing inherent random-
ness in ML models and uncertainties in model structure. This is particularly crucial when
the sample size is limited, as in this study. Combining various single prediction models
into an EL model (ELM) can effectively leverage the strengths of different base models,
thereby enhancing reliability and accuracy [23, 24]. There are three main categories of EL
techniques: bagging [25], boosting [26], and stacking [27]. Bagging (e.g., random forest
(RF) [28]) involves bootstrapping (random sampling) and aggregation (averaging the base
learners’ outputs). Boosting (e.g., adaptive boosting (AdaBoost) [29] and extreme gradient
boosting (XGB) [30]) combines sequentially arranged base learners. In contrast to the for-
mer methods, which use homogenous base models, stacking utilizes heterogeneous base
learners and integrates them through training a meta-model (blender).

From another perspective, ELMs based on averaging can be broadly categorized into
two types: simple averaging ensemble (SAE) [31] and weighted averaging ensemble
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(WAE) [32], with the former being a specific case of the latter. In SAE, the ELM com-
bines predictions from multiple base models. However, a limitation is that each model
contributes equally to the ensemble prediction, regardless of its performance. In contrast,
WAE assigns weights to ensemble members based on trust in their predictive capabilities,
allowing for a more sophisticated contribution.

Despite the fact that a variety of EL methods and models (including RF, least squares
linear, support vector machine (SVM), boosting (LSBoost), Bayesian linear regression, GP
regression, and Gaussian kernel regression) were investigated, the presented work con-
centrates on averaging ensemble models using various weighting techniques and DL en-
semble models. The decision to use these models over others was made based on their
superior performance and effectiveness.

Initially, leave-one-out cross-validation (LOOCV) [33] is employed, where a single unit
(composite specimen) is designated for testing, leaving the rest units for subsequent pro-
cessing. With this in mind, three main dataset divisions can be made:

+ (A) considering one test unit without validation (training with a fixed number of
epochs);

« (B) considering the test unit itself as validation (intended to prevent overfitting); and

« (C) considering another unit other than the test unit as validation.

Given the small number of specimens available in this study, case B is less generalized yet
nonetheless partially valid. In the case of (c), the validation unit is randomly chosen from
the left units after taking the test unit out. All three cases are investigated in this work.
The base learner models are trained iteratively, typically for 100 repetitions in this study.
For case C, the validation set is randomly selected 10 times, and each time, the learning
process is conducted with 10 different random seed numbers [34] to initialize weights and
biases. Subsequently, the predictions of the 100 HIs generated by the base learner models
are ensembled using a process that involves SAE, WAE, and, finally, DL models.
The general WAE can be expressed as follows:

K
fwae =, @k fi (4.43)
k=1

where f; represents the k" individual base learner model and @y, 1s its normalized influ-
ential weight:
Wi
K
)y k=1 Pk

Here, wy represents the weight of the k" individual model, which can be determined
based on various error metrics. These metrics encompass the mean square deviation (MSE)
between the predictions of the kth model (HI k(E), where (E) denotes the ensemble HI)
and the simulated HIs (Tk), the model’s Fitness (prognostic criteria - Mo, Pr, and Tr), or a
combination of both metrics:

1 1

B k grFBY T 1 1N k(E)\?
MSE( T HI"P) Zje(wp)[yjziil(Tik—Hli( ) ]

[vuD|

o = (4.44)

6()M SE

. ke(vuD) (4.45)
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a){it”e” =a-Mogy+b-Pryr+c-Tryr; k€ (vuD) (4.46)
a)llzitness _ min(w}:itness) wQ/ISE _ mjn(a)j-\/ISE)
i J J
oy M Fit Fit * MSE wseys ke J€(vuD)
o O L O o e e
J J J J
(4.47)

where |vu D] is the size of the set. It is important to mention that the units are divided into
three portions: training (D), validation (v), and test (7) sets. Additionally, the training data
of D itself is further split into training (D) and validation (v’) subsets specifically for the
base learner model. In the combined form Eq.4.47, each weight is first scaled in a range
[0,1] to avoid compromising the effectiveness of its scale. If all @ values are uniformly set
to one, the SAE approach is adopted. After computing weights using Eqs. 4.45-4.47, one
can find a subset of superior models by using the weight rankings to increase efficiency
and guarantee improved result robustness. The remaining weights are then reset to zero.

In this work, the top 10 base learners are kept using Eqs. 4.45 and 4.46, and afterwards,

wr ness MSE g @ are calculated.

In addition to averaging ensemble models, another approach involves using a subse-
quent ML-based model to fuse the predictions, with the goal of reducing the inherent ran-
domness in the base learner models. This ML-based EL model can be implemented using
ANN or DL networks. For future reference in the subsequent chapters, relevant archi-
tectures and information will be provided if these models are employed in the developed
frameworks.

4.7 Conclusions

his chapter has equipped readers with essential knowledge for developing frameworks
T across diverse applications. Preprocessing techniques, signal processing methods, sta-
tistical feature extraction, dimension reduction through PCA-based algorithms, and an
overview of deep learning architectures were covered. The introduction of adaptive stan-
dardization addressed challenges with conventional techniques. Signal processing meth-
ods like FFT, HT, and CEEMDAN were explored for information extraction. Statistical
features enriched datasets, and PCA-based algorithms addressed high-dimensional spaces.
The deep learning section introduced key architectures, and hyperparameter tuning was
discussed. Ensemble learning techniques were presented to enhance prediction robust-
ness. This comprehensive overview lays the groundwork for subsequent chapters.
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Designing HI for T-Stiftener
Composite Panels using Acoustic
Emission

This chapter presents three frameworks integrating Al and signal processing to formulate
health indicators (HIs) for T-Stiffener composite panels using the acoustic emission technique.
The frameworks leverage the SSL paradigm, two-stage machine learning for spatial and tem-
poral information extraction, physics-based Bayesian optimization, and SS ensemble deep
learning.
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5.1 Introduction

I n this chapter, three frameworks are introduce for designing Hls tailored to T-Stiffener
composite panels through the utilization of acoustic emissions (AE). The frameworks

are as follows:

1. FFT-SSLSTM: Semi-Supervised Long Short-Term Memory (fed by time’s and fre-
quency’s features)

2. FFT-PCA-28-ML-PBO: Two-Stage Machine Learning Approach with Physics-
based Bayesian Optimization (following PCA-based dimension reduction upon
time’s and frequency’s features)

3. CEEMDAN-SSEDL: Semi-Supervised Ensemble Deep Learning (fed by intrinsic
mode functions of CEEMDAN)

AE data were collected from twelve single-stiffener composite panels under compression-
compression (C-C) fatigue loading [1-3]. This chapter details the experimental cam-
paigns, followed by a dedicated exploration of the specialized data acquisition and pre-
processing techniques tailored for the AE technique in Section AE Data Acquisition and
Pre-processing” Subsequently, the three frameworks are expounded upon in detail, with
their results comprehensively presented in their respective sections. A comparative anal-
ysis of the main results from each framework is conducted and discussed in Section ”Dis-
cussion.” To conclude, a summary of the findings is presented in the concluding remarks
within the "Conclusions” section.

5.2 Experimental Campaigns
As part of the H2020 ReMAP project, two test campaigns were held at the Delft
Aerospace Structures and Materials Laboratory (DASML) in 2019 and 2020, in which
twelve composite skin-stiffener panels were tested under C-C fatigue loading. The panels
are made up of a skin panel and a single T-stiffener according to an Embraer design (see
Figure 5.1). The skin and stiffener are all made of IM7/8552 carbon fiber-reinforced epoxy
unidirectional prepreg with layups of [45/ - 45/0/45/90/ - 45/0]s and [45/ — 45/0/45/ — 45] s,
respectively [3]. Two resin blocks for each single-stiffened composite panel (SSP) were
also included to ensure that the load was distributed evenly. The dimensions of one panel
are shown in Figure 5.1. An initial damage in the form of an artificial disbond (Teflon
insert during manufacturing) in the skin//stiffener interface with different sizes or an im-
pact damage of around 10 J located on the stiffener area is introduced to some panels. This
was done in order to create a damaged area and monitor its growth over the course of
the experiments. For the panels that do not experience impact prior to testing, after 5000
cycles, the impact is performed, even for the panels with artificial disbond defects. These
factors simulate various realistic and uncertain phenomena in the experiments, resulting
in a wide range of EoL from 48.7K to 756.3K cycles, which will make it more challenging
to perform HI construction and RUL prediction (more information in Table 5.1).
The damage growth in the panel was monitored using six different techniques: (1)
AE, (2) distributed fiber optic sensing (DFOS), (3) fiber Bragg gratings (FBG) (only for
the campaign 2019), (4) lamb wave (LW) (the last two were only available in the first
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Section A-A
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Figure 5.1: Single stiffener panel: (a) 3D view, (b) stiffener side, (c) sensor coordinates, where the four AE sensors
shown as blue circles, impact and disbond locations shown as a movable orange circle and yellow rectangle for
different panels (all dimensions in [mmy]).

Table 5.1: The information of the composite specimens tested under C-C fatigue loading.

Year Campaign 2019 Campaign 2020
Name L1-03 L1-05 L1-09 |L1-49 L1-50 L1-51 L1-52 L1-54 L1-55 L1-56 L1-59 L1-60
Composite Specimen 1 2 3 4 5 6 7 8 9 10 11 12
X-location of impact (mm) | 50 115 82.5 50 50 50 50 50 115 50 50 115
Y-location of impact (mm) 80 160 140 160 160 160 160 160 80 160 160 80
at at at after after after at at after  after  after  after
Time of Impact 0 0 0 5000 5000 5000 0 0 5000 5000 5000 5000
cycles cycles cycles |cycles cycles cycles cycles cycles cycles cycles cycles cycles
Size of disbond (mm) 15%x20 20x20 20x25
y-location of disbond (mm) 60 60 60
Min Load (kN) -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5
Max Load (kN) -65 -65 -65 -65 -65 -65 -65 -65 -65 -65 -65 -65
Cycles (MTS) 152,458 144,969 133,281|48,702 65,500 94,431 368,558 510,961 226,356 756,226 110,137 170,884
Labeled Cycles 152,457 144,970 133,282 | 48,703 65,502 94,437 368,590 510,982 226,361 756,264 110,185 170,898
Error in cycles labeling =il 1 1 1 2 6 32 21 5 38 48 14

campaign), (5) digital image correlation (DIC), and (6) camera. Only data from the AE
technique is analyzed for the purposes of this chapter.

The panels were loaded in C-C fatigue loading using an MTS machine with a frequency
of 2 Hz and an R-ratio of 10 which means that the fatigue load was set in a compression load
range of [6.5, 65.0] kN. Although the R-ratio was intended to hold invariant, the panels
experienced a loss in load-bearing capacity. The fatigue load was disrupted at regular
intervals of 500 cycles to allow the SHM systems to take measurements. All data are
publicly available in [1, 2]. Table 5.1 summarizes the aforementioned explanations and
provides additional details.

5.3 AE Data Acquisition and Pre-processing

T he AE sensors used are Vallen Systeme GmbH VS900-M broadband sensors with a
frequency range of 100-900 kHz. The AE hits were recorded using an AMSY-6 Vallen



76 5. Designing HI for T-Stiffener Composite Panels using Acoustic Emission

acquisition system. Moreover, Vallen preamplifiers with a gain of 34 dB were used. Four
AF sensors were clamped in various positions on the skin of the panels to create a paral-
lelogram, enabling to localize damage and to obtain a quantification of the location uncer-
tainty. The AE Sensors 1, 2, 3, and 4 had [x, y] locations of [145.0, 190.0], [145.0, 20.0], [20.0,
50.0], and [20.0, 220.0] mm, respectively, as seen in Figure 5.1(right). As multiple sensing
techniques were employed for damage monitoring in the SSP, the AE sensor positions
were selected through a trade-off with those sensor positions of the other techniques, in
particular to maximize the monitoring region of both the AE and LWDS techniques. An
amplitude threshold of 60 dB was set for capturing the hits to avoid the recording of noise
signals. Only events localized within the AE sensor area are taken into account. The in-
ternal Vallen processor for planar positioning, which is based on Geiger’s model [4], was
used for localization. A filter was also used to exclude events with a position uncertainty
greater than 50 mm. More detailed information for the applied localization method to
AE data are described in subsection of Localizing data. Six variables (low-level features)
containing amplitude (A), rise time (R), energy (E), counts (CNTS), duration (D), and RMS
have been extracted and recorded from AE events (see Figure 5.2(a)).

In the following, this section describes the pre-processing procedures, which include
labeling cycles, localizing data, windowing, and missing values. Another pre-processing
step that should be conducted after feature extraction is a standardization (zero-mean)
technique.

5.3.1 Labeling cycles

Labeling cycles on AE data is required for this study since a SSL with some hypothetical
HIs as targets is proposed in order to construct HI, and the time (cycle) of each acquired
AF event must be known in order to generate these targets. Due to the constraints of the
MTS machine’s output channels and the AE system’s input channels and software, the
AF system is unable to directly record cycles from the MTS machine. Nonetheless, since
the AE system and MTS machine have been synchronized, and the AE system can import
displacement and load values from MTS machine next to the other six variables from
AF sensors, signal processing methods can approximate the cycle number of each hit, in
which (cycle) that hit plus possibly more other hits occurred. Table 5.1 shows the number
of cycles reported by the MTS machine (exact) and of the labeled cycles through the load
signal (approximate), as well as the error between them. Given that the maximum error
percentage is 0.044% (48/110137 for specimen 11), the estimated labeled cycles provided
with the AE variables can be used.

5.3.2 Localizing data

Geiger’s method [4] was used to localize the AE data (Figure 5.2(b)), and it allowed for pla-
nar localization of the AE events throughout the fatigue testing. This method assumes a
constant wave velocity in all directions, which was determined using Hsu-Nielsen sources
on pristine specimens [5]. The wave speed was determined in both the x-direction (4423
m/s) and y-direction (6107 m/s), and the mean wave speed was then calculated as 5265 m/s.
This was used as an input to Geiger’s method to determine the planar location of the AE
events. Since Geiger’s method is a time-of-arrival approach, its application in anisotropic
composite specimens can lead to errors in the AE event localization. The application of
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Figure 5.2: Data reduction during (a) pre-processing (initial feature extraction), (b) localization, (c) windowing,

and (d) signal processing.

four AE sensors allows for the calculation of this position error, and a filter was imple-
mented to exclude events with a position uncertainty larger than 50 mm. Lastly, events

outside the AE sensor region are filtered.

5.3.3 Windowing

In the third step of pre-processing, as can be seen in Figure 5.2(c), the signals (AE vari-
ables extracted from waveforms, including amplitude, rise time, duration, energy, counts,
and RMS) are windowed for two reasons: one is that memorizing and analyzing all data
from the beginning to the current time costs a tremendous computation time; another is
that analyzing and comparing data at a single instant without taking into account nearby
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Figure 5.3: Six time windows resulted by windowing process on artificial data with a constant length and interval.

time steps is insufficient, especially for nonstationary signals. It should be noted that
some SHM techniques, like AE, do not record data points at a constant rate since they
are passive techniques and depend on the number of events occurring in the structure.
For example, AE might measure 50 events in the first 10 seconds while it might measure
1000 events in the next 10 seconds. As can be seen in Figure 5.3, the two main factors in
the windowing process are the length of each window and the interval between two se-
quential windows, which are essential and important since they influence the final results
and decisions. These factors might also be considered in a dynamic way rather than the
static one and can be optimized as such. The windowing process for the current study was
cycle-based, with a static length and interval of 500 cycles due to the natural interval of
QS loads.

5.3.4 Missing values

Since no events might have been recorded in a few intervals of 500 cycles due to the applied
filters, there are missing values for those time windows. Because missing values have an
impact on subsequent phases of the HI construction process, they should be eliminated or
filled in, with the first option being taken for the windowed signals. Also, after the feature
extraction step, some statistical features may be missed. For this step, linear interpolation
is used to fill in the missing values.

5.4 1%! framework: FFT-SSLSTM

T he 1%! framework developed upon AE data is shown in Figure 5.4, where the first block
is already explained in the previous section. The second and third blocks—SP by FFT
and FE by statistical features—are also explained in the former chapter.

1. AE Data Acquisition 2. Signal Processing 3. Feature Extraction (statistical features 4. Standardization 5. Features Fusion i
and Pre-processin; (FFT) from time and frequency domains) Zero-mean SSLSTM i

Signals without transformation

15t framework on AE

v

-+ Prognostic Model

Figure 5.4: Workflow of the 1% framework developed upon AE data, including SSLSTM as the feature fusion
step.

Feature extraction:The statistical features in the time and frequency domains have
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been extracted based on Tables 4.1 and 4.2. As a result, 33 features are extracted from
each of the 6 windowed signals (low-level features) of the AE data, including amplitude,
rise-time, energy, counts, duration, and RMS. The broad features field has been expanded
to include three additional possible useful features: cumulative Rise-time/Amplitude ra-
tio, cumulative energy, and cumulative counts [6]. The AE dataset yielded a total of 201
features (6x33 + 3). It should be noted that FE procedure may also be regarded as a dimen-
sion reduction step (Figure 5.2), as raw signals with thousands of data points within each
window have been reduced to 201 data points. In fact, data with billions of records has
been reduced to thousands.

Standardization (zero-mean):The input features are standardized before being input
into the network using a zero-mean normalization technique (Chapter 4) that used only
the training dataset’s mean value and standard deviation.

5.4.1 Feature fusion: semi-supervised LSTM (SSLSTM)

Built upon the SSL paradigm, which serves as the central concept elucidated in Chapter
3, an ANN architecture named SSLSTM has been developed. SSLSTM is designed to fuse
features and is composed of four key types of layers: FC, dropout, ReLU, LSTM, and re-
gression layers (refer to Figure 5.5). Notably, the training data underwent a sequence
length-based sorting process to minimize the need for excessive padding in the batches.

by
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Figure 5.5: Multi-layers LSTM network proposed for feature fusion.

5.4.2 Hyperparameters optimization and model validation
After fixing an acceptable configuration of the neural network layers (Figure 5.5), a BO
algorithm was used to set the hyperparameters, including the number of neurons at each
layer, batch size, and dropout.

For this framework, two main and trustworthy validation methods in the ML fields,
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which are LOOCV and holdout validation methods [7], are employed. First, using the
holdout method with 10, 1, and 1 units as training, validation, and test datasets, respec-
tively, the BO algorithm was used to find the top hyperparameters’ sets and models (with
the maximum RMSE over all units as the objective function which must be minimized).
It should be noted that by considering the maximum RMSE of all units rather than other
statistical parameters like the mean value of RMSE of them, the optimization algorithm at-
tempts to simultaneously decrease the mean value and standard deviation of RMSE, which
is more desirable. Then, the LOOCV method, having 11 and 1 units as training and val-
idation dataset, respectively, was applied to the top 10 models obtained by the holdout
validation and BO to check models’ performance for the other folds, with 10 replications.
Finally, the performance of these models will be described as a distribution with a mean
expected error and a standard deviation.

5.4.3 Results

The deep learning framework and signal processing parts were developed using MATLAB
R2021a; a high performance computing cluster (Beowulf style) with 12 processors on one
node for the BO algorithm, and a laptop with an Intel Core i7-8665U CPU and 16 GB
RAM for training the DL networks and the other parts (such as pre-processing and signal
processing) were used. In this section, following the results of the holdout validation
and the LOOCYV, the best-proposed model will be discussed in comparison to the relevant
literature in the subsection Discussion.

Holdout validation
First, the holdout method has been used to validate the model, with the first ten SSPs for
training, the 11t" SSP for validation, and the 12t SSP for the test dataset.

An Adam optimizer [8] was used to learn the DL model, with an initial learning rate
of 0.005, a learning rate drop factor of 0.2, a learning rate drop period of 5, and a gradi-
ent threshold of 1, which all have been selected after trial and error. Before each epoch,
the training dataset was shuffled. Despite the fact that the maximum number of training
epochs was set to 500, the network’s output is based on the best validation loss, with the
validation check frequency set to 30 iterations (number of trained batches) and validation
check patience set to 6.

The BO algorithm was given 120 trials in parallel computing to optimize the hyperpa-
rameters. The number of neurons in the FC layer 1 and FC layer 2 as well as the number
of units in the LSTM layer 1 have been allocated [1,201], [1,50], and [1,256], respectively,
based on trial and error. It is worth noting that the LSTM layer 2 only contains one unit.
For dropout, the interval [0,0.5] quantized to 0.1 was also examined. Since the training
dataset comprises ten units, the interval [1,5] quantized to one has been explored for batch
size. Since each set of BO final results is also dependent on the initial start points, the en-
tire procedure was repeated several times. The top 10 hyperparameter sets (models) are
presented in Table 5.2. As can be seen, the varied configurations have resulted in quite
close RMSE ranged [0.08-0.11], which is the maximum RMSE over all units as the objective
function of the BO algorithm.

Figure 5.6(a) shows (merely as a case chosen to display the intuitive results) the con-
structed HIs by model 1, which is the first ranked, and their RMSE can be seen in Fig-
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Table 5.2: The top 10 hyperparameter sets (models) obtained by the BO algorithm and holdout validation with
the 11" unit as the validation and the 12" unit as the test dataset. RMSE is the maximum one over all units.

Model (rank) Batch Size Dropout FCL1 LSTM1 FCL2 RMSE

1 4 0.3 110 154 50 0.0829
2 5 0.4 124 83 48 0.0884
3 5 0.5 201 79 36 0.0983
4 5 0.4 152 81 27 0.1013
5 5 0.5 41 142 43 0.1026
6 2 0 30 256 45 0.1052
7 5 0.4 124 56 48 0.1055
8 5 0.1 137 20 39 0.1067
9 5 0.4 161 92 48 0.1084
10 5 0.4 53 120 50 0.1110

ure 5.6(b). The RMSE for SSPs 1, 11, and 12 slightly diverged from the mean value of
RMSE for all units, which is 4%. Since comparing the quality of the constructed HIs based
solely on RMSE could not provide completely applicable information from a prognostic
standpoint, the prognostic criteria Mo, Tr, and Pr, as well as their sum given all units (Fit-
ness by Eq. 3.4), are shown in Figure 5.7 for all the individual input extracted features
as well as the HIs constructed by the model 1. The top four features with a Fitness score
higher than 1.5 are features 185, 184, 88, and 183, respectively.As can be seen, the high
Fitness score of 2.891 for HIs, which is 77.3% higher than the best feature (1.630), demon-
strates the high efficiency of the model 1 to construct HIs following the prognostic criteria.
In fact, this Fitness improvement represents the performance of the proposed scenario and
the whole developed algorithm because the model, the proposed DNN architecture, might
still be enhanced by adding and/or changing characteristics such as the other types of lay-
ers, units, neurons, activation functions, and hyperparameters. However, as previously
discussed, the main focus in the current research is how to implement the prognostic cri-
teria in the process of HI construction. When the overall implementation methodology of
the prognostic criteria has been validated, other enhancements like various optimization
methods or DNN architectures can be studied in the main proposed roadmap. Neverthe-
less, the models are investigated in accordance with LOOCYV in the next subsection, due
to the shortcomings of the holdout validation in evaluating the generalization of the DNN
models.

LOOCV

The ten models listed in Table 5.2 are tested with 10 repetitions on the 12 folds of LOOCV.
It should be noted that the fold i refers to the fact that the i*” unit is the validation and
the rest are training datasets. Figure 5.8 shows the mean value and standard deviation of
RMSE calculated over these repetitions for only the test dataset (e.g. for fold 1, unit 1 is
the test dataset). In other words, the training (SSPs) datasets were not taken into account
during calculation of the mean value and standard deviation. For example, in the first
fold of LOOCYV, the 1st unit was considered the test, and units 2-12 were considered for
training, and when one model had completed training, the network was tested on the 1°¢
unit. The mean value and standard deviation for that model and that fold (only for the test
dataset which in this example is the 15 SSP) were then calculated over ten repeats. This
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Figure 5.6: (a) HIs constructed by model 1 and (b) their RMSE. The SSP 11 and 12 are the validation and test
datasets, and the rest are the training dataset. Dot lines are the target Hls.

process has been performed for each of the 12 folds and each of the 10 best models from
Table 5.2.

Figure 5.8 demonstrates that some SSPs, such as 3, 5, 7, 8, and 12, have better per-
formance for all models; however, some, such as 1 and 6, suffer from randomness in the
DNN algorithm, which is owing to the stochastic nature of ANN and randomness in the
experimental data. Figure 5.9 depicts a line plot of the mean value of RMSE with error
(standard deviation) bars for all folds, illustrating a measurement of the generalization of
the models. According to this figure, models 8, 2, and 7 are the best generalized ones with
mean RMSE value of 0.121£0.090, 0.133+0.082, and 0.139+0.085, respectively.

As previously stated, the Fitness scores could be more appropriate to report due to the
deficiency in RMSE from a prognosis aspect. This can be performed in two ways:
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top ten models.

The Fitness score of the constructed Hls is measured for each replication; next, it

is averaged across all replications; and finally, the findings for various models and
folds are presented (Table 5.3 and Figure 5.10).

After all replications have been completed, the constructed Hls for each SSP are
averaged across all replications, and the Fitness score of the averaged Hls is calcu-
lated. Finally, the outcomes for various models and folds are provided (Table 5.4
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Figure 5.9: Mean value of RMSE over all folds’ tests (LOOCV) and after 10 replications, with error (Std) bars for
the top ten models.

and Figure 5.12). This could be a case of models making ensemble predictions.

Each approach is discussed in more detail next. It should be noted that the Fitness scores
for all extracted features remain unchanged and are identical to those in Figure 5.7.

According to Table 5.3, the most challenging fold for the models to learn is the first
one, with a mean Fitness value of 1.550+0.216, and the other two worse folds are 10 and 2,
with mean Fitness values of 1.780+0.212 and 1.871+0.139, respectively, and the rest have
mean Fitness values of more than 2. The best generalized models are 2, 7, and 1 in order,
with mean Fitness values of 2.360+0.415, 2.342+0.425, and 2.337£0.427, respectively. To
better compare different models and folds, the distribution of the average Fitness value of
HIs for various folds and models can be seen in Figure 5.10.

Table 5.3: Averaged Fitness scores over 10 repetitions of the constructing HI.

x::s Fold1 Fold2 Fold3 Folda Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Fold1l Fold 12
1 1.3715 1.9550 2.7984 2.0050 2.7291 2.2615 2.7084 2.5093 2.5791 2.0477 2.1968 2.8804
2 1.3663 2.0114 2.7561 2.4697 2.6075 2.1736 2.7587 2.5961 2.5629 1.9182 2.2626 2.8402
3 1.2923 1.8778 2.7210 1.9112 2.6438 2.5747 2.5844 2.6227 2.5624 1.5305 1.8487 2.7557
4 1.3048 1.9465 2.7622 1.8872 2.7150 2.3718 2.7805 2.7565 2.6879 1.7061 1.8616 2.7874
5 1.7903 1.5186 2.7209 2.5297 2.6217 1.7716 2.6271 2.6974 2.4861 1.6657 1.8323 2.7910
6 1.8221 1.7951 2.6852 1.9317 2.5055 1.9714 2.4565 2.4090 2.6288 2.0745 1.7897 2.6872
7 1.3730 1.9365 2.7382 2.3269 2.6166 2.1636 2.5459 2.5989 2.6861 1.7844 2.5063 2.8254
8 1.8142 1.9864 2.7427 2.4059 2.5146 1.7729 2.7520 2.6329 2.6575 2.0011 1.9362 2.6690
9 1.6320 1.9206 2.8524 2.1958 2.7016 2.2784 2.7852 2.7099 2.5107 1.4313 1.8569 2.7445
10 1.7323 1.7640 2.7064 2.4361 2.7218 1.6098 2.7767 2.7301 2.3921 1.6370 2.0289 2.8285

* “Green color — Red color” equalizes “Best result — Worst result” | 0 1.5 3 ‘

Figure 5.10(a) demonstrates that the models can appropriately construct Hls for folds
3,5,7,8,9, and 12 with a Fitness value greater than 2.575+0.090 (fold 9). The remaining
folds are affected by the model’s low mean value or/and high variance. Model 6 has the
lowest Fitness value averaged over all folds (2.230+0.349), but it has the lowest variance
(see Figure 5.10(b)). The highest average Fitness value pertains to model 2 by which the
constructed HIs in iteration 8 (best one) can be seen in Figure 5.11 It is worth noting that
the HIs for all units shown in this figure are from test datasets corresponding to relevant
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Figure 5.10: The distribution of the averaged (across all replications) Fitness value of HIs for various (a) folds and
(b) models.

folds, and there are no constructed HIs from training datasets. Model 2 has not adequately
learned SSP 1, and also SSPs 6, 10, 2, and 9 are not as qualified as the rest which have
considerably good agreement.

So far, the prognostic criteria were averaged over Hls constructed by ten iterations.
Hereinafter, the Hls constructed by ten iterations are averaged, and then, the HIs after
simple averaging ensemble (SAE) are investigated to report the prognostic criteria (Fitness
by Eq. 3.4).

Table 5.4 shows that the first fold is again the most challenging for the models to learn,
with a mean Fitness value of 2.019+0.366, which is substantially better than what was
reported in the previous state (Table 5.3), while the remainder have mean Fitness values
of higher than 2.5. The best generalized models are 7, 8, and 5 in order, with mean Fitness
values of 2.786+0.144, 2.747+0.146, and 2.729+0.199, respectively. The average (ensemble)
HIs obviously conform better to the prognostic criteria.

The distribution of the Fitness value of the ensemble HIs by SAE can be seen in Fig-
ure 5.12 to better compare various models and folds. Figure 5.12(a) indicates that the
models can construct HIs quite effectively for all folds except 1, 10, 6, and 2 when com-
pared to the rest, in which the first fold with the lowest mean value and highest variance of
Fitness is severe and distinguishable. The best Fitness value distribution pertains to model
7 by which the constructed ensemble HIs (by SAE over all iterations) can be seen in Fig-
ure 5.13(a). The discrepancy in deviation between the target, which is the ideal hypothet-
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ical HI, and the average constructed HI for the first fold (SSP 1) is remarkable. Therefore,
this fold containing its training dataset (SSPs 2 to 12) has been shown in Figure 5.13(b).
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Table 5.4: Fitness scores of the ensemble HIs by SAE over 10 repetitions.

z_[::;; Fold1 Fold2 Fold3 Fold4 Fold5 Foldé Fold7 Fold8 Fold9 Fold10 Fold11 Fold 12

1 2.0168

2 1.4873

3 1.5642

4 1.7976

5 2.2435

6 2.3191 2.1449

7

8

9

* “Green color — Red color” equalizes “Best result — Worst result”
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Figure 5.12: The distribution of the Fitness value of ensemble HIs by SAE (across all replications) for various (a)

folds and (b) models.

Model 7 has obviously not learned the other SSPs in the training dataset, let alone the test
one, SSP 1. It is possible that this is due to inappropriate training progress adjustments
for this fold (e.g. validation check patience set to 6), demonstrating the limitations of the
proposed DNN models, which can be improved in future frameworks aimed at developing
more generalized models and training progress for all folds. Nonetheless, Figure 5.13(b)
indicates that all units have comparable patterns to some extent, resulting in a fair Fitness
value (2.453). With this in mind, while model 7 could not create HIs following the targets
for the first fold (i.e., high RMSE), it could intelligently fuse the input features to produce
an average HI that relatively matched the prognostic criteria (i.e., high Fitness), including
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Mo (almost increasing), Tr (almost same pattern), and Pr (almost from 0.1 to 0.4). In other
words, the model could have discovered how to relate and fuse the features to create a HI
with relatively the same pattern for all units.
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Figure 5.13: Ensemble HIs by SAE across all replications constructed by model 7 for (a) all folds (all units are test
datasets obtained from the relevant folds) and (b) fold 1 (only unit 1 is the test dataset (averaged), and the rest
are the training ones (averaged)). Dot lines are the ideal HIs.

5.5 2" framework: FFT-PCA-2S-ML-PBO

The current section presents an ML approach that combines a dimension reduction
(PCA-based technique), a historical- or time-independent (TIM), and a historical- or
time-dependent (TDM) sub-model after up-sampling the time series in each batch. The
overall framework, as depicted in Figure 5.14, encompasses the entire process, from raw
AE data to the final HI (the 2"? level HI), including the new proposed approach different
from the 15! framework (stages f to j). In addition, after stage j, EL techniques are applied.

The steps of the framework, from adaptive standardization (stage f) through TDM
(stage j), establish the primary contributions of the 2"? framework. The steps of adap-
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tive standardization (stage f) and dimension reduction using four PCA-based algorithms
(stage g) were already explained in Chapter 4. The remaining steps of the framework will
be described in this section. It is important to mention that the units (SSPs) are divided
into three portions: training (D), validation (v), and test (7) sets. Additionally, the training
data of D itself is further split into training (D’) and validation (v’) subsets specifically for
TIM. This division strategy ensures that TIM is adequately trained and validated before its
application to the overall HI construction process.

4ty tn

size = 17 x 10° - — |>damplitude

{—>4 rise time

TorTiiae

8y

uopcznmo’]l

=+ >¢RMS

Time windowing | ¢

\h""WMNFW'WWV"‘ f‘f‘”‘““‘*‘f\ﬂ’Nl'lmtll"'”'*""'”"‘W’MW’“*J‘WJM’M@; o

-
[_signal processing | d

az1s

Feature extraction | @
™, TW, Wy

Amplitude

0.2

Energy: area under the

squared signal envelope

50T X 05
T
1

F201

ZW T3 Wy, LSTM unit

@ FCneuron

[m®]

Activation function

Time-based
resampling
Regression | Regression

N i Adam
optimizer

PC10

Simulated labels

Ti depend: Time-dependent
model (TIM) model (TDM)

Figure 5.14: Workflow of the 2" framework developed upon AE data: (a) pre-processing (initial feature extrac-
tion), (b) localization, (c) windowing, (d) signal processing, (e) feature extraction, (f) adaptive standardization, (g)
dimension reduction, (h) time-independent model, (i) time-based resampling, and (e) time-dependent model

5.5.1 Feature fusion: two-stage ML approach with physics-based
Bayesian optimization (2S-ML-PBO)

Constructed on the foundation of the SSL paradigm, the focal concept detailed in Chapter

3, a two-stage ANN architecture named 25-ML-PBO has been developed. This architecture

fundamentally incorporates three components: TIM, time-based resampling, and TDM.




90 5. Designing HI for T-Stiffener Composite Panels using Acoustic Emission

Time-independent model (TIM)

TIM, a historical- or time-independent model, is exclusively focused on the extraction of
spatial information. In this context, an initial neural network architecture is established
through a trial-and-error process. Following this, the PBO algorithm is employed to opti-
mize the relevant constructive hyperparameters and network architecture, as illustrated
in Figure 5.15. Given the dimension reduction resulting in only ten features (PCs), a DNN
with a few layers serves as a suitable starting point for the optimizable ANN designated
for the regression task. This involves fitting the 10 PCs to a corresponding value (HI). De-
tailed information about the initial network, including its loss function, hyperparameters,
and more, as well as the PBO and its objective function, is provided in the following.

h @ FCneuron W, TW;, Wy,
Time-independent A tivation functi P |Hl(l)‘ ‘ ‘ ‘ | | | |
model (TIM) | ctivation function N

TW,, TW,, TWy,

PC1
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Figure 5.15: Time-independent model (TIM) fed by ten principal components (PCs) and yielding the 1% level HL.

Optimizable neural network architecture of TIM:

A DNN with four layers, including a linear transfer function as the output layer, is designed
to fit the 10 PCs to the ideal simulated HI. The loss function used for comparing predictions
and targets is a modified mean absolute error (MMAE), given by Eq. 5.1:

R N,

1 w
LTIM=(1_a)EZ)Ti_HI$1)(+aZW/% , 1€D G.1)

i=1 k=1

where R represents the number of responses chosen among the training data points
(Rc[1, Ny]ul1, Ny]u... [1, Nj] ...u[1, Nj]), Nj representing the number of responses for

the j*" unit and M representing the number of units). T; and HI El) denote target value
and the network’s output for response i, respectively. N,, denotes the number of learnable
weights of TIM. The regularization parameter « is introduced to enhance generalization
by modifying the performance function. The use of this performance function reinforces
the NN to have smaller weights and biases, resulting in smoother responses and reducing
overfitting. For the current framework, « is set to 1.
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The DNN model is trained and validated using only the training units (i € D). 30% of
the training data is reserved for validation purposes (v < D). While the maximum number
of training epochs is set to 1000, the DNN’s output is based on the best validation loss,
with the validation check patience set to 10. According to the optimizers and their default
values in the MATLAB R2022a framework, the remaining hyperparameters are determined
through the utilization of the PBO algorithm, which will be further elaborated on in the
following subsection.

Physics-based Bayesian optimization (PBO):

The hyperparameters optimized by the BO algorithm include training optimizer algo-
rithms, the number of neurons in each FC layer, and the activation function for all hidden
layers. The TIM’s weights and biases can be trained using a variety of optimizers. The
three types of optimizer algorithms Levenberg-Marquardt (LM) [9-11], Bayesian regular-
ization (BR) [12, 13], and resilient backpropagation (RB) [11, 14] are considered as the
search space of the first optimizable variable that can be tuned by BO. The number of
neurons allocated for FC layers 1, 2, 3, and 4 are within the ranges [1,50], [1,50], [1,50],
and [1,10], respectively. The activation function is the last optimizable variable, and it is
assigned the same type for all hidden layers. It is selected from a categorical space accord-
ing to MATLAB terminology. The aforementioned hyperparameters and their respective
search spaces are provided in Table 5.5.

A new objective function inspired by the physics of the problem and prognostics for the
BO algorithm is introduced, which considers the evaluation metrics of the HI. Accordingly,
the BO algorithm will hereinafter be referred to as "Physics-based BO (PBO)”. The PBO
objective function comprises two components: regression and criteria loss functions. The
regression loss function is based on RMSE between the SS-based simulated labels and
predictions, calculated solely on the validation (composite panels) set (i € v). The criteria
loss function includes Mo, Pr, and Tr, which are computed using all datasets, including
both training and validation portions (i € vu D). Since the BO algorithm does not initially
have a clue about the optimal solutions’ space, this can lead to a wide range of responses.
It results in slower convergence and increased time consumption. The regression loss
function serves as a guide for the model by providing a general pattern. On the other hand,
the criteria loss function strengthens the significance of prognostic metrics to prevent the
algorithm from merely adhering to the simulated labels, allowing it to explore other viable
and meaningful solutions. This strategy drives the BO algorithm to seek out diverse and
potentially superior solutions, improving its capacity to adapt and converge towards better
outcomes.

The equations of the regression and criteria loss functions that constitute the PBO
objective function are as follows:

RMSE (T, HI{V) ) \/Ni] DI (T, -HIED)Z

max(T;) N 100
1

,i€v, jJEM (5.2

Lregression =

max(Fitness) - Fitness 3-(Mo+Pr+Tr)

max(Fitness) - 3

Leriteria = , i€(vuD) (5.3)

Lppo = Lregression +,BLCriteria (5.4)
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Table 5.5: The hyperparameters of TIM and their search spaces for optimization by PBO.

Hyperparameter Search space Type
Levenberg-Marquardt (LM)
Optimizer | Bayesian regularization (BR) categorical
Resilient backpropagation (RB)
Number of neurons at FC layer 1 | [1,50] integer
Number of neurons at FC layer 2 | [1,50] integer
Number of neurons at FC layer 3 | [1,50] integer
Number of neurons at FC layer 4 | [1,10] integer
Name function
Linear o(z)=z
0 : 0
Rectified linear units (ReLU) o (z) = Z=
z z>0
0 z<0
Saturating linear o(z)= 2 Ve ze il
1 :z=1
=il zs-1
Symmetric saturating linear o (z) = 2 Aezai
1 z=1
0 :2z<0
Hard-limit o(z) =
1 z=20
-1 z<0
Symmetric hard-limit o(z)=
1 z20
L 1
Log-sigmoid o(z)= Treom(D)
Hyperbolic tangent sigmoid o (z) = Hexpﬁ -1
Elliot symmetric sigmoid o(z)= l%hl
Radial basis a(z) = exp(-2%)
.
Normalized radial basis o(z)= 7“1)(#)2, i=1,2,3,..,]
X exp(-z5)
Softmax o(z)= exp(z) s i=1,2,3,...,]
o1 exp(z))
g 3 gl categorical
Activation functions
Triangular basis o(z)={ 1-lz| : -1=<z=<1
0 e mell
Inverse o(2)= E
1 : j=argmax;(z;), i=1,..,]
Clpeiilitie a(z)= 0 : j#argmax;(z), i=1,..,J

The parameter f§ determines the significance of Leyjreriq in relation to Lyegression- Lcriteria
is normalized using the maximum fitness score, resulting in a range of [0, 1]. On the
other hand, L;¢gression is normalized based on the maximum target value, which is 100. It
should be noted that the ideal HI values are simulated within a range from 0 (representing
a healthy state) to 100 (indicating a failure state) for this framework. The PBO algorithm
was given 100 trials with an exploration ratio of 0.8 in parallel computing to optimize the
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hyperparameters.

Time-based resampling

After the TIM step, the 1% level predicted HI can serve as a prognostic parameter to be
imported into a prognostic model for predicting RUL. Despite the undeniable historical de-
pendence in SHM data, rooted in the physics of fatigue, progressive damage, and the pas-
sive nature of the AE technique, this aspect has been overlooked in the current framework.
Therefore, a historical- or time-dependent model, TDM, should be designed to extract the
temporal information. Prior to designing the TDM, the input data needs to undergo re-
sampling to ensure that all sequences of input HI @ within a batch have the same length.
Conventional padding techniques like zero padding are unsuitable in this context, as the
HI values with respect to the percentage of lifetime should exhibit similarities. For ex-
ample, if the batch size is 2 and the lengths of the two intended HIs are 100 and 1000,
extending the first HI with 900 zero values to match the length of the second HI would in-
correctly set the HI at the EoL for the first unit as 0 instead of its actual (compatible) value,
which should be 100, as in the second HI. Likewise, conventional interpolation methods
are not viable due to the non-linear correlation between the number of data points in HI
and the EoL. Due to the varying recording rate of the passive AE system depending on the
predetermined amplitude threshold value and uncertain progressive damage, the length
(number of data points) of HI for a unit with a bigger EoL may be shorter than that with
a smaller EoL.

To address these challenges, the current study adopts a technique for up-sampling
referred to as “time-based resampling” (see Figure 5.16). The first step is to convert the
time vectors of Hls into percent lifespans, with values in the range of [0%, 100%]. The
shorter HI vectors (in terms of the quantity of data points) in each batch are then up-
sampled (based on the associated time vectors) to match the length of the longest HI vector.
For every batch separately, this procedure is performed. It is crucial to remember that in
such a scenario, the batch size cannot be the same as the total number of training datasets.
This is due to the TIM’s tendency to just learn the position of data, disregarding its value,
leading it to predict from 0 (healthy) at the beginning to 100 (failure) at the EoL based
exclusively on the position of the incoming data. For instance, if HIs of equal lengths of
1000 are employed, the TIM model would learn that, regardless of the input value, position
1 should result in a zero value and position 1000 should result in a hundred. As the test
set should not logically be resampled, training a model in this way would result in much
worse performance on the test set. As a result, the batch size should be less than all of the
training data. In the current investigation, 10 units are kept for training, and one panel is
designated for testing and another for validation in all scenarios. Consequently, a batch
size of 2 or 5 appears more reasonable, with 2 being the preferred choice. Lastly, it should
be noted that if a batch size of 1 is chosen, time-based resampling becomes irrelevant.

Time-dependent model (TDM)

In this subsection, a seq2seq regression model called TDM is introduced to address the
historical dependence (HD) among AE data. Prior to this, using the previous regression
model, TIM, 10 high-level extracted features are mapped to the 1% level HI without con-
sidering the HD among AE data. The TDM model takes into account the temporal rela-
tionship between data points, which is crucial for accurate prognostic applications.
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Figure 5.16: Sequence length synchronization and time-based resampling.

To maintain a long-term record of sequential inputs, the LSTM layer [15] is a suitable
candidate and serves as a key component in the TDM (see Figure 5.17). The LSTM layer
consists of 10 units, initialized with zero values for hidden and cell states. The pseudo-
Huber loss function, which is a smooth approximation of the Huber loss function [16], is
used for the seq2seq regression task [14, 17]:

(5.5)

Here, 6 controls the steepness at extreme values and is set to 20 in our work after trial
and error (20% of the maximum target value, considering that max(T;) = 100). An Adam
1

optimizer [8] is employed to train the TDM, with an initial learning rate of 0.01, a learning
rate drop factor of 0.1, a learning rate drop period of 10, and a gradient threshold of 1, all
determined through trial and error. The network’s output is based on the best validation
loss (j € v), with the validation check frequency set to 50 iterations (the number of learned
batches) and the validation check patience set to 50, despite the fact that the maximum
number of training epochs was set to 2000. Since the sequences in each batch are already
identical in length, a batch size of 2 was chosen, as described in the preceding section.

LSTM unit
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Figure 5.17: Time-dependent model (TDM) fed by the 1% level HI and yielding the 2"¢ level HL.
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Ensemble learning (EL)

After building HIs with TIM-TDM models, EL techniques can address randomness and un-
certainties by creating a meta-model. While exploring several EL techniques, the second
framework employs averaging EL techniques with distinct weighting methods discussed
in the previous chapter. Unlike the fixed architecture of TDM, it is important to highlight
that the TIM component of the base models, involving architecture optimization through
PBO, dictates whether the base learners are homogeneous or heterogeneous. When TIM
is executed individually for each validation index-based combination, the resulting TIM
architectures, optimizers, and other hyperparameters are likely to differ. However, to miti-
gate resource-intensive processes, TIM’s hyperparameters are optimized using PBO solely
for the first validation index-based combination in the set (vu D). For the remaining com-
binations, the same hyperparameters are retained, resulting in homogeneous TIMs across
the 110 base learners.

5.5.2 Results
To comprehensively assess various combinations and ascertain the effectiveness, validity,
and stability of the proposed framework, all 12 folds were examined. Within each fold, a
single stiffener composite panel was designated as the test set, while the remaining panels
served as training and validation data. Since there are 11 alternatives that can be used
as validation and this choice is effective, this process was repeated across 11 different
validation index-based combinations, iterated 10 times using distinct random seed num-
bers. Essentially, this approach emulates the LOOCV methodology, wherein a holdout
validation strategy is adopted within each fold. This strategy affirms the evaluation of the
model’s generalizability. These 1320 runs (12 x 11 x 10) were conducted for all four types
of PCA-based data reduction techniques to facilitate a comprehensive comparison.

In this section, the results of the proposed methodology up to the ensemble stage,
termed base learner models, are first presented. Subsequently, the outcomes of the ensem-
ble learner models are explored.

Base learner models
Figure 5.18 displays the simulated ideal HIs alongside a selection of promising candidates
from the outcomes of HIVs (TIM outputs) and HI @ (TDM outputs) for different PCA-
based techniques. Each case represents a holdout validation scenario. The error depicted
in Figure 5.18 illustrates the RMSE between the simulated ideal HIs and the constructed
HIs. Notably, HI OF generated by TIM exhibit significant fluctuations, whereas TDM
yields smoother HI 2)s. There have been some noteworthy observations, highlighting the
limitations of TIM, such as cases where HI (D exhibit a declining trend. On the other
hand, TDM successfully corrects such patterns. Concerning the behavior of HI @s, mul-
tiple incremental steps were observed over the fatigue life in many instances (e.g., A.1 in
Figure 5.18. These steps can potentially signify distinct damage states, offering insights
for subsequent prognostic models in RUL prediction. However, linking these steps with
physical damage states in a stable and meaningful manner necessitates substantial effort
and future experiments.

Table 5.6 presents the evaluation metrics for the HIs shown in Figure 5.18. Notably,
due to its HD nature, all scores for HI®)s surpass those for HIVs. The proposed model not
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only provides a streamlined and faster approach but also yields elevated Fitness scores in
comparison to the 1°! framework. Worth highlighting is that the DL model in the 1 frame-
work incorporates 193,418 learnable parameters, while the proposed method employs only
between 662 and 4,924 learnable parameters, averaging around 1,731 (approximately 0.9%).
Out of this total, 491 parameters are allocated to TDM, and the quantity varies for TIM
depending on its optimized architecture.

Table 5.6: The desirable candidate outcomes of each model run individually for various PCA methods.

PCA  Test Validation Mo Pr Tr Fitness RMSE of test Learnable
type specimen specimen HID HI@[HID HI@[THID HI@[H[D HIPD[HID HIP parameters
A1l 6 1 0.98 1.00 | 0.82 0.90 | 0.66 0.94 | 2.46 2.84 |13.72 6.19 704
A.2 11 1 0.99 1.00 | 0.72 0.76 | 0.63 0.92 | 2.34 2.68 |13.48 6.54 1217
B.1 4 3 0.98 1.00 | 0.92 1.00 | 0.43 091 | 2.32 290 |2849 9.73 1662
B.2 3 7 0.95 1.00 | 0.71 0.92 | 0.40 0.90 | 2.06 2.82 |[32.47 14.03 2794

Furthermore, it is essential to emphasize that in the 1% framework, the LOOCV pro-
cedure employed 11 units for training and 1 unit for validation. That approach yielded
results based on the network’s output with the best validation loss, which was also the
same as the test unit. In contrast, in the 2" framework, the LOOCV process employs
different units for validation and testing, thus achieving a higher degree of generalization.

The comprehensive outcomes of TIM-TDM across various subsets and PCA-based tech-
niques are depicted in Figures 5.19 and 5.20, illustrating the RMSE and Fitness scores, re-
spectively. The results indicate the mean values (displayed on the right y-axis) over ten
replications (shown on the x-axis) for each subset (validation index-based combinations
displayed on the left y-axis), with error (standard deviation) bars.

Figure 5.19 shows the RMSE between the simulated ideal HIs and the constructed Hls
by the developed model (HI(Z)). With the exception of specimen 9, the B.1 PCA-based
technique generally yields a lower average RMSE compared to others, notably evident in
specimens 2, 4, and 5. Following B.1, A.2 (observed in specimens 5 and 10) and B.2 (seen
in specimens 8 and 9) demonstrate better RMSE results on average. Yet, it is important
to note that RMSE outcomes vary based first on the test unit and then on the validation
unit. For instance, B.1 is consistently the best choice for test specimen 5, regardless of the
chosen validation specimen. However, this trend might not hold true for test specimen 6,
as its superiority depends on the selection of the validation specimen.

Given that the primary objective is to provide qualified HIs based on prognostic cri-
teria, Figure 5.20 holds greater significance than Figure 5.19. The outcomes presented in
Figure 5.20, showcasing Fitness scores, exhibit a higher degree of stability compared to
the RMSE results in Figure 5.19. Across various units (except for 2, 3, and 8), the B.1
PCA-based technique consistently yields higher Fitness scores, while the A.2 PCA version
displays the lowest average Fitness score. The test unit that poses the greatest challenge
for acceptable PCA versions is 5, where the discrepancy with the impractical version B.1
is substantial. Unit 8 presents challenges across all PCA versions. Notably, in the excep-
tional case of unit 3, the B.2 PCA version stands out as the most effective. The key point
is that the choice of a suitable validation unit can significantly influence the score. For in-
stance, in test unit 11 with the best validation unit 1, the score becomes highly acceptable,
even for the A.2 PCA version.
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Ensemble learner models

In this subsection, the outcomes of ELMs are presented, covering both SAE and WAE.

Various wy values are explored for WAE, encompassing wkMSE , a),f itness and wi’t"ess—MSE

as defined in Eqs. 4.45, 4.46, and 4.47, respectively. For w{ itness yarious sets of coefficients

{a, b, c} are considered, including {1,1,1}, {1,1,0}, {1,0,0}, and {1,0.5,0.25}, to assess the
impact of diverse prognostic metrics. As for wilmess*MSE, the coefficient set {1,1,1} is
exclusively taken.

Figure 5.21 depicts the distributions of the Fitness score across 110 subsets (resulting
from 11 validation-index-based combinations x 10 replications) for each fold. The x-axis
represents the fold, or, in other words, the single-stiffener composite panel chosen as the
test unit for the model. This figure offers insights into the various versions of PCA and
ELMs employed. Additionally, Appendices (A.2) contains figures showcasing all the con-
structed HIs post-EL for different versions of PCA.

As observed in Figure 5.21, the EL step, regardless of its type, consistently enhances the
score in comparison to the mean value across all cases. This improvement is particularly
notable for the A.2 PCA version, while it has a relatively smaller impact on the B.1 PCA
version. Specifically, the B.1 PCA version yields a more consistent distribution of highly
qualified HIs with less variance, as indicated by the box plot. However, it is crucial to note
that this PCA version is unsuitable for prognostics, as previously discussed.

Certain folds present greater challenges for different PCA versions. For instance, spec-
imens 5, 3, and 1 are more challenging for the A.1 PCA version, while specimens 3, 2, 4,
and 1 pose challenges for the A.2 PCA version. The B.1 PCA version encounters difficul-
ties with specimens 8 and 3, while the B.2 PCA version struggles with specimens 2 and
5.

While examining various applied EL techniques, it is notable that WAE-MSE does not
necessarily outperform SAE. However, WAE-Fitness and WAE-FitnessMSE consistently
yield better outcomes than SAE. Focusing on WAE-Fitness, it is evident that the prognostic
metrics can sometimes oppose each other. For instance, taking composite panel 6 for
the A.2 PCA version (refer to Figure A.7), considering the metrics coefficient set {1,1,0}
achieves the desired Pr, an important aspect. Conversely, when the Tr coefficient increases
(in cases of {1,1,1} or {1,0.5,0.25}), Pr decreases. When Pr is achieved, the challenge of
extrapolation in RUL prediction can be transformed into an interpolation problem, and as
is well known, an extrapolation problem still poses a significant challenge in the field of
ML.
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Figure 5.21: Distribution of Fitness for the 2™ framework over various subsets (train, validation, and test com-
binations) and versions of PCA (A.1, A.2, B.1, and B.2). The box plot and the mean value (represented by a dark
blue-filled circle) pertain to results before EL, while the other markers depict the scores of the Hls after EL.

5.6 3" framework: CEEMDAN-SSEDL

he 3”4 new Al-based approach, as illustrated in Figure 5.22, incorporates CEEMDAN
T for feature extraction and semi-supervised base deep learner models made of LSTM
layers for information fusion. Ensemble learning, especially using a SS network built with
BiLSTM, improves HI quality while reducing deep learning randomness.

Feature extraction: As mentioned in Section, six low-level features are obtained
from each AE event, i.e., A, R, E, CNTS, D and RMS. For the ith unit, there are k; time win-
dows. The CEEMDAN methodology is applied to each time window in order to extract
the IMFs. Arbitrarily, four IMFs are extracted for each time window. Since the time win-
dows have different numbers of data points and occasionally not enough data is available
to decompose into IMFs, linear interpolation between the previous and next time windows
is performed.

For each low-level feature, four IMFs are extracted, providing 24 new features. For
each time window, 21 statistical quantities are calculated, which are listed in Table 5.7. In
total, 504 (6x4x21) new features are obtained, which are going to be the input to the DL
algorithm that creates the HI.

Standardization (zero-mean): Using a zero-mean normalization technique (Chap-
ter 4) that solely uses the mean value and standard deviation of the training dataset, the
network’s input features are standardized.
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Figure 5.22: The overall 3¢ proposed framework: (a) AE monitoring and low-level feature extraction; (b) local-
ization; (c) windowing; (d) signal processing (CEEMDAN); (e) statistical feature extraction; (f) semi-supervised
base learner model; (g) semi-supervised ensemble learner model.

Table 5.7: Statistical features extracted from IMFs.

No. Name No. Name No. Name

1 Mean 8 Kurtosis 15  Central moment for 4th order
2 Standard Deviation 9 Crest Factor 16 Central moment for 5th order
3 Root Amplitude 10  Clearance factor 17  Central moment for 6th order
4 Root Mean Square 11 Shape factor 18  FM4

5 Root sum of Squares 12 Impulse factor 19  Median value

6 Peak 13 Maximum to minimum difference 20 Signal Power

7 Skewness 14  Central moment for 3rd order 21 Entropy

5.6.1 Feature fusion: semi-supervised ensemble deep learning (SS-
EDL)

The same multi-layer LSTM network architecture proposed for the 1°* framework (Fig-

ure 5.5) is used to perform the feature fusion task in the 37 framework. The half-mean-

squared error is regarded as the loss function of the seq2seq regression network. The same

1St
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ten top models (Table 5.2) obtained by BO, given the statistical features extracted from the
time and frequency domains in the 1! framework, are considered the base learners in
the 374 framework, where the new features extracted from the IMFs of CEEMDAN are
imported. Although the process of optimizing the hyperparameters based on the new fea-
ture inputs could be repeated, this step is skipped to save time. It should be noted that this
section can be viewed as a type of transfer learning designed to cut down on time.

Ensemble learning (EL)

Once HIs are constructed using base deep learner models, ensemble learner models can
handle uncertainties and randomness. Initially, LOOCV is employed, reserving a single
unit for testing and utilizing the remaining 11 specimens for subsequent processing. Three
main dataset divisions, as explained in Chapter 4, Section 4.6.3, guide this process. For the
third framework, Cases B and C are investigated, with Case C involving the random se-
lection of the validation SSP from the remaining 11 SSPs. The base learner models are
trained a total of 100 times. In Case C, the validation unit is randomly selected 10 times,
and the learning process is conducted with 10 different random seed numbers for initial-
izing weights and biases. Subsequently, the 100 Hls predicted by the base learner models
are ensembled using a process involving SAE, WAE, and finally DL models.

Beyond averaging ensemble models, this framework assesses 12 networks with various
types of layers, including FC, LSTM, and BiLSTM layers. The architectures (hidden layers)
of these EL models are summarized in Table 5.8, with values in parentheses indicating the
number of neurons, units, or dropout percentages. An example of the ensemble learner,
Model 16— Net(12), is illustrated in Figure 5.23.

Table 5.8: Ensemble learner models used in the 3" framework.

Model num. Model name Architecture (hidden layers)

1 SAE

2 WAE-MSE

3 WAE-RMSE

4 WAE-Fitness

5 Net(1) FC(10) D(0.5) ReLU FC(1)

6 Net(2) FC(100) D(0.5) ReLU FC(1)

7 Net(3) FC(10) D(0.5) ReLU FC(5) D(05) ReLU FC(1)
8 Net(4) FC(100) D(0.5) ReLU FC(5) D(0.5) ReLU FC(1)
9 Net(5) LSTM(5) D(0.5) FC(5) D(0.5) ReLU EC(1)

10 Net(6) LSTM(10)  D(0.5) FC(5) D(0.5) ReLU FC(1)

11 Net(7) FC(10) D(0.5) ReLU LSTM(5)  D(0.5) ReLU FEC(1)
12 Net(8) FC(10) D(0.5) ReLU BiLSTM(5) D(0.5) ReLU FC(1)
13 Net(9) BiLSTM(5)  D(0.5) BiLSTM(1) D(0.5) FC(1)

14 Net(10) BiLSTM(10) D(0.5) BiLSTM(1) D(0.5) FC(1)

15 Net(11) BiLSTM(5)  D(0.5) FC(5) D(0.5) ReLU FC(1)

16 Net(12) D(0.5) BiLSTM(5)  D(0.5) FC(5) D(0.5) ReLU FC(1)

5.6.2 Results
Base learner models
To demonstrate the effectiveness of the CEEMDAN features as input to the base learner

models, the average Fitness values (and standard deviation) over the 100 repetitions are
presented in Table 5.9. The best obtained value is 2.82 (+0.24) for the Fold 12 and the
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Figure 5.23: The architecture of the semi-supervised ensemble learner Model 16 — Net(12).

base learner Model 10. It is also important to evaluate the prognostic metrics specifically
for the test units (Eq. 3.8) to check how well they adhere to these metrics and how well
the methodology generalizes to unknown input data. Table 5.10 summarizes these results
over the 100 repetitions. The best result is observed for Model 10, Fold 12, with a Fitness
2.75 (¢0.21). In Figure 5.24, a visual representation of Tables 5.9 and 5.10 for Model 10 is
displayed for easier comparison between the two. What is observed is that Mo and Pr, and
consequently Fitness, display slightly lower values. To clarify, the test unit is not able to
follow the ideal HI functions with the same proficiency as the training units, and hence,
when calculating these prognostic metrics, excluding the training units results in reduced
overall values.

A drawback of the original methodology’s evaluation via LOOCV, also presented in
Ref. [3], is the use of the test unit as validation during training (Case B). This way;, it is in-
corporated into the training step, and consequently, it is not hidden during the application
step. Although this provides high Fitness results, its applicability in real-world scenarios
is limited due to its dependence on validating using unknown data. To overcome the lim-
itation and enable exploring the possibility of applying the methodology in real time, a
random SSP from the training set is used for model validation (Case C). By employing this
methodology, the dependency on the test unit is eliminated, thus enabling the possibility
of real-time implementation.

The average Fitness over the 100 repetitions for both the entire dataset and the test
units are shown in Tables 5.11 and 5.12, while Figure 5.25 presents both cases for the
base learner Model 9. In comparison with the methodology using the test unit for early
stopping and validation, it is evident that the values obtained are lower, which is expected
given that the test unit is now unknown. However, the values remain high, providing HIs
with great prognostic potential. The best values are observed for Fold 12 and Model 9 at
2.51 (+0.43) for the entire set and 2.44 (+0.4) for the test unit.

The best HI obtained by Model 10 at iteration 96 and Model 9 at iteration 97 for data
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Table 5.9: Fitness values for base learner models of the 3" framework averaged over the 100 repetitions using
Eq. 3.4 and data division Case B.

Fold1 Fold2 Fold3 Fold 4

Fold5 Fold6 Fold7 Fold8 Fold9 Fold 10 Fold 11 Fold 12

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Model 7

Model 8

Model 9

Model 10

2.07
(£0.67)
2.35
(£0.6)
2.58
(£0.41)
2.22
(£0.6)
2.56
(0.65)
2.07
(+0.65)
2.38
(£0.65)
2.23
(0.6)
2.34
(+0.62)
2.36
(+0.76)

2.21
(£0.61)
2.24
(+0.64)
2.12
(+0.68)
2.09
(£0.66)
1.71
(£0.62)
1.82
(+0.58)
2.12
(£0.7)
2.12
(£0.58)
2.31
(£0.61)
1.95
(£0.69)

1.82
(£0.65)
1.66
(£0.63)
1.67
(£0.61)
1.61
(£0.64)
2.35
(£0.57)
2.1
(£0.55)
1.72
(£0.63)
1.74
(£0.54)
1.7
(£0.67)
1.98
(+0.7)

2.75
(£0.26)
2.74
(£0.26)
2.68
(£0.28)
2.71
(x0.31)
2.7
(£0.27)
2.39
(0.5)
2.75
(£0.21)
2.53
(£0.53)
2.72
(£0.24)
2.75
(+0.19)

2.58
(+0.48)
2.59
(+0.45)
2.43
(+0.47)
2.5
(+0.45)
2.75
(£0.3)
2.33
(£0.55)
2.54
(+0.54)
2.46
(+0.53)
2.46
(+0.54)
2.74
(+0.35)

281 245
(£0.17)  (£0.5)
269 249
(£0.35) (+0.44)
265 256
(£0.31) (+0.35)
272 254
(+0.38) (+0.43)
259 248
(£0.38) (+0.46)
267 231
(£0.26) (+0.51)
276 233
(£0.28) (£0.59)
263 224
(£0.47) (+0.59)
27 251
(£0.34) (+0.41)
264 247
(£0.38) (+0.49)

1.98
(0.35)
2.07
(+0.38)
2.16
(£0.38)
2.1
(+0.37)
1.93
(£0.33)
1.82
(£0.34)
2.17
(+0.36)
2.13
(£0.49)
2.17
(+0.37)
1.98
(+0.26)

2.26
(+0.57)
2.25
(+0.62)
1.97
(£0.71)
2.17
(+0.62)
2.5
(+0.44)
2.06
(+0.61)
2.01
(£0.69)
1.91
(+0.68)
2.33
(+0.54)
2.56
(+0.36)

1.26
(0.3)
1.34
(+0.35)
1.47
(£0.48)
1.42
(£0.43)
1.32
(£0.27)
1.39
(£0.28)
1.39
(+0.41)
1.75
(+0.51)
1.34
(£0.42)
1.35
(+0.3)

2.48
(+0.48)
2.48
(£0.54)
2.49
(£0.49)
2.32
(£0.58)
2.42
(£0.56)
1.93
(+0.58)
2.53
(£0.47)
2.24
(£0.5)
2.58
(+0.4)
2.48
(0.5)

2.71
(+0.23)
2.6
(+0.38)
2.54
(£0.33)
2.58
(£0.32)
2.78
(+0.25)
2.51
(£0.39)
2.6
(+0.31)
2.51
(+0.38)
2.61
(£0.33)
2.82
(£0.24)

Table 5.10: Fitness values for base learner models of the 3" framework averaged over the 100 repetitions using
Eq. 3.8 and data division Case B.

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold 10 Fold 11 Fold 12
1.82 1.82 1.51 2.51 2.53 2.63 2.33 1.61 1.9 1.26 2.2 2.66
Model 1 | .) o) (:0.52) (£0.56) (£037) (£039) (£0.26) (£0.45) (:0.31) (:0.51) (£0.25) (£0.39) (:0.2)
2.13 1.93 1.5 2.56 2.54 2.53 2.34 1.65 1.99 1.28 2.32 2.58
Model 2 | (.)¢6) (:059) (:049) (:0.3) (£038) (£0.44) (:0.43) (:0.35) (:048) (£0.24) (£0.45) (£0.34)
2.44 1.89 1.42 2.48 2.46 2.54 2.46 1.81 1.82 1.39 2.35 2.55
Model 3 | (.(45) (:0.57) (£0.55) (£034) (£037) (£0.34) (£0.35) (:0.38) (:0.61) (:0.31) (£047) (:0.3)
1.96 1.79 1.44 2.49 2.45 2.56 2.41 1.7 1.88 1.3 2.11 2.55
Model 4 |, 63 (:05) (:054) (£0.39) (:0.44) (£037) (:0.4) (:0.33) (£049) (£0.27) (0.49) (£0.28)
Model 5 2.51 1.46 2.03 2.48 2.7 243 2.25 1.59 2.07 1.26 2.19 2.72
(£0.7) (£0.47) (205) (£0.35) (£0.24) (£0.42) (£0.44) (0.29) (0.36) (:0.21) (£0.45) (£0.22)
1.84 1.49 1.86 2.1 2.37 2.45 2.2 1.48 1.75 1.27 1.79 2.43
Model 6 | .71y (:047) (:046) (+0.54) (:0.46) (£0.27) (£0.45) (:0.28) (£049) (£0.26) (0.43) (0.37)
Model 7 2.2 1.86 1.52 2.57 2.49 2.64 2.23 1.76 1.8 1.27 2.33 2.59
(£0.69) (£0.54) (£0.5) (£0.29) (£0.45) (0.29) (£0.51) (£0.33) (£0.56) (£0.25) (£0.42) (+0.28)
1.86 1.66 1.33 2.24 2.41 2.44 2.06 1.69 1.7 1.43 2.05 2.48
Model 8 |, 56) (:051) (:046) (20.5) (:0.45) (:0.4) (£0.5) (:0.42) (£0.54) (:0.38) (£0.44) (0.34)
Model 9 2.19 2.03 1.48 2.51 2.45 2.55 2.38 1.75 2.06 1.3 2.37 2.6
(£0.64) (£0.52) (£0.53) (£0.29) (£0.45) (£0.38) (0.42) (£0.36) (:0.48) (£0.25) (£0.38) (+0.3)
2.26 1.7 1.76 2.52 2.68 2.41 2.24 1.63 2.08 1.34 2.21 2.75
Model 10 | 76\ (1054) (£0.58) (:0.31) (£031) (£042) (:0.46) (£0.22) (:0.4) (£022) (:04) (20.21)

division Case B and Case C can be seen in Figure 5.26(a) and (b), respectively. The bright
green line represents the ideal HI, the dotted blue lines are the training SSPs, and the black
line is the test SSP. At first glance, it is observed that not every fold is able to create a HI
close to the ideal. For instance, in Fold 3, not even the training units are able to fit the
ideal HI, although the different units display a similar trend. On the other hand, for Fold
10, the training SSPs display a behavior close to the ideal one; however, the test unit fails
to reproduce this trend. Contrary to Figure 5.26(a) and data division Case B, the test unit
deviates from the training units quite significantly and in more Folds in Figure 5.26(b)
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Figure 5.24: The prognostic metrics distribution based on all and test units for the base learner Model 10 of the
37 framework, considering Case B for the dataset division (the test SSP itself as validation).
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Table 5.11: Fitness values for base learner models of the 3™ framework averaged over the 100 repetitions using
Eq. 3.4 and data division Case C.

Fold 1 Fold 2

Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold 10

Fold 11 Fold 12

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Model 7

Model 8

Model 9

Model 10

1.8 2

(£0.55) (+0.59)
1.72 2

(+0.56)  (£0.6)
2.07 2.03
(£0.49) (+0.54)
1.97 1.96
(£0.46) (+0.64)
1.6 2.17
(£0.52) (*0.5)
1.71 1.88
(£0.4) (£0.53)
2.09 2.15
(£0.51) (+0.58)
1.8 2.02
(£0.45) (+0.55)
1.95 222
(£0.55) (+0.51)
1.97 2.18

(£0.56) (0.51)

2.08
(x0.61)
2.07
(£0.55)
2.12
(£0.54)
1.86
(£0.55)
2.01
(£0.6)
1.84
(+0.51)
2.05
(£0.52)
1.7
(£0.45)
2.12
(£0.56)
2.05
(£0.5)

2.51
(£0.38)
2
(£0.67)
2.19
(£0.55)
2.19
(£0.55)
2.17
(£0.59)
2.02
(£0.53)
2.26
(+0.57)
2.21
(£0.51)
2.27
(+0.56)
1.93
(£0.55)

2.18
(£0.62)
2.21
(0.55)
2.19
(£0.59)
1.98
(£0.67)
2.2
(£0.61)
2.11
(£0.52)
2.35
(£0.53)
2.01
(£0.59)
2.36
(0.5)
2.1
(£0.65)

2.03 1.67 1.93 2.02
(£0.65) (*0.5) (+0.54) (+0.49)
2.09 1.85 2.21 2.2
(£0.6) (£0.57) (+0.49) (+0.41)
2.08 1.95 1.65 2.1
(£0.65) (+0.59) (+0.52) (+0.5)
2.21 1.85 1.99 2.03
(£0.69) (£0.61) (+0.55) (+0.45)
2.04 1.56 2.02 1.95
(£0.55) (+0.4) (+0.37) (+0.58)
1.92 1.73 1.79 1.87
(£0.48) (£0.4) (£0.41) (+0.4)
2.3 1.75 2.2 1.97
(£0.57) (+0.53) (+0.53) (+0.54)
2.17 1.75 2.11 1.97
(£0.56) (£0.48) (+0.49) (+0.47)
2.21 1.91 1.86 2.03
(£0.67) (+0.53) (£0.62) (+0.51)
2.1 1.78 1.92 1.92
(£0.58)  (+0.5) (+0.47) (+0.45)

1.96
(+0.36)
1.94
(+0.45)
1.99
(+0.45)
1.83
(+0.47)
1.8
(+0.42)
1.86
(+0.41)
2.1
(+0.39)
1.82
(+0.39)
1.93
(£0.5)
1.8
(+0.42)

2.06 2.43
(£0.51)  (+0.46)
1.92 2.38
(£0.57)  (%0.56)
2.09 2.18
(£0.53)  (%0.61)
2.02 2.27
(£0.53)  (%0.55)

2 2.07
(£0.54)  (%0.55)
1.83 1.92
(£0.42)  (%0.57)
2.08 2.33
(£0.53)  (%0.55)
1.94 2.17
(£0.51)  (+0.58)
2.15 2.51
(£0.56)  (+0.43)
1.96 2.25

(£0.48)  (£0.57)

Table 5.12: Fitness values for base learner models of the 3" framework averaged over the 100 repetitions using
Eq. 3.8 and data division Case C.

Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold 10 Fold 11 Fold 12
159 162 168 215 2 1.91 15 149 147 133 1.75 238
Model 1 (£0.54) (£0.52) (£0.55) (#0.55) (£0.59) (£0.55) (+0.41) (+0.52) (£0.53) (£0.26) (£0.43) (+0.46)
145 168 157 181 203 194 158 175 158 143 17 2.32
Model 2 | (. 56) (:053) (£0.6) (£0.64) (£0.57) (£0.6) (£0.51) (£05) (0.65) (0.34) (£05)  (£0.55)
177 163 164 185 208 194 179 137 162 145 1.84 2.16
Model 3 | ;) 63) (£051) (20.57) (£0.6) (+0.54) (£0.61) (+0.58) (+0.48) (£0.6) (+0.32) (+0.49)  (+0.6)
1.58 1.6 141 189 189 212 164 159 15 1.37 1.69 2.2
Model4 | (.56 (:057) (£052) (£058) (:0.6) (£0.62) (£0.59) (£0.5) (:0.57) (:0.28) (£0.46) (£0.55)
138 177 163 189 205 178 1.3 133 152 13 1.73 1.99
Model 5 (£0.5) (£0.41) (£0.54) (£0.62) (£0.6) (+0.53) (£0.28) (+0.53) (£0.53) (+0.29) (£0.46) (+0.55)
138 147 142 162 205 167 15 131 131 1.36 1.49 1.8
Model 6 | (.( 49) (:048) (:0.54) (£055) (£0.51) (£0.49) (£0.37) (:0.39) (:0.48) (£0.37) (£0.35) (£0.55)
1.76 1.8 152 195 212 207 149 181 148 1.53 1.79 2.25
Model 7 (£0.59) (£0.55) (£0.58) (+0.64) (£0.55) (+0.53) (+0.47) (+0.52) (+0.57) (+0.38) (£0.52) (+0.52)
129 159 115 176 185 194 148 162  1.46 1.23 1.63 2.03
Model 8 | () 45) (:05) (:044) (£054) (£0.52) (£0.56) (:0.44) (:0.48) (:0.54) (£0.33) (£05)  (£0.64)
167 177 162 198 212 206 164 15 1.49 1.46 1.84 2.44
Model 9 | (.) 5, (:0.55) (£0.65) (£0.59) (£0.54) (20.63) (£0.51) (:0.58) (20.6) (20.3) (£0.54) (0.4)
168 175 158 159 194 189 149 137  1.29 1.25 1.63 2.19
Model 10| (o ¢y (:046) (:0.54) (£0.59) (£0.65) (£0.51) (£0.42) (:0.46) (:0.51) (£0.25) (£0.41) (£0.57)

(data division Case C). This is also observed by the drop in average Fitness values in Table
5.12. This comments that the base learners are struggling to generalize the good results of
training with unseen data.
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Figure 5.25: The prognostic metrics distribution based on all and test units for the base learner Model 10 of the
37 framework, considering Case C for the dataset division (another SSP other than the test SSP as validation).
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Figure 5.26: (a) The HIs constructed by the base Model 10 of the 3"? framework, considering Case B for the dataset
division (the test SSP itself as validation), with Fitness 2.42 (+0.52) based on Eq. 3.8; (b) The HIs constructed by
the base Model 9 of the 3"¢ framework, considering Case C for the dataset division (another SSP other than the
test SSP as validation), with Fitness 2.21 (+0.39) based on Eq. 3.8.
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Ensemble learner models

In Table 5.13, the ensemble models’ Fitness averaged over the 12 Folds is presented for the
different ensemble methodologies, where the base learner is trained with Case B (test unit
as validation). When considering the entire set (training and test) it is observed that Fitness
is mostly over 2.6. What is surprising is the performance of WAE-MSE and WAE-RMSE,
which are underperforming even compared to SAE. The best Fitness result is obtained
using the 16" EL model, Net(12), which is one of the more complex networks, where the
Fitness value is 2.84 (+0.13) and is obtained for base learner Model 9, while base learner
Model 3 also achieves a similar value of 2.84 (+0.15).

As it was previously mentioned, it is important to calculate the prognostic metrics for
the test unit and evaluate the performance of the models only on unknown data. Table
5.14 demonstrates the Fitness values calculated using Eq. 3.8. The overall values have
decreased, which is expected since the test unit does not fit the ideal behavior perfectly
and diverges from the average behavior of the training units. The best Fitness is again
obtained for the Net(12) ensemble upon Model 3, with a value of 2.74 (£0.33). The results
of Tables 5.13 and 5.14 are also visually summarized in Figure 5.27 for Model 3. It is
evident that the overall Fitness has only slightly reduced when only considering the test
units, which demonstrates the effectiveness of the methodology.

Table 5.13: Fitness values for ensemble learner models of the 3" framework averaged over the 12 Folds using
Eq. 3.4 and data division Case B.

‘WAE ‘ DL-based: Net
SAE MSE RMSE Fitness| (1) 2) 3) (4) (5) (6) (7) 8) © (@) (a1 (12)
2.69 2.37 2.61 2.7 2.39 2.75 2.68 2.72 2.72 2.74 2.71 2.63 2.66 2.7 2.76 2.78
(£0.26) (£0.38) (+0.29) (£0.24) (+0.39) (£0.19) (+0.13) (£0.24) (+0.31) (£0.22) (+0.25) (+0.18) (£0.17) (+0.18) (£0.22) (+0.24)
255 2.52 2.68 275 2.49 2.76 2.74 272 2.79 2.75 2.73 2.57 2.66 2.72 2.78 2.81
(£0.19) (£0.27) (x0.21) (£0.18) (+0.34) (£0.18) (+0.12) (£0.14) (+0.17) (£0.2) (£0.19) (£0.23) (£0.13) (£0.13) (£0.19) (+0.18)
275 251 267 276 253 278 263 268 282 279 267 265 27 275 281 284
(£0.14) (£0.34) (£0.2) (£0.13) (£0.39) (£0.12) (£0.19) (£0.17) (+0.11) (£0.13) (£0.19) (£0.13) (£0.09) (£0.11) (£0.14) (+0.15)
2.73 2.44 2.64 2.73 2.69 2.79 2.7 2.72 2.78 2.77 2.72 2.64 2.67 2.72 2.71 2.82
(£0.17) (£0.27) (£0.22) (£0.16) (£0.21) (+0.12) (£0.15) (£0.12) (£0.13) (+0.14) (+0.14) (£0.11) (£0.11) (+0.11) (+0.32) (+0.14)
2.74 2.57 2.7 2.74 2.57 2.76 2.63 2.71 2.8 2.77 2.76 2.63 2.64 2.74 2.78 2.8
(£0.22) (£0.24) (+0.21) (£0.22) (£0.2) (+0.17) (+0.18) (£0.22) (£0.14) (+0.17) (£0.17) (£0.16) (£0.15) (+0.09) (+0.2) (+0.19)
2.62 2.32 2.47 2.63 2.41 2.73 2.46 2.66 2.74 2.74 2.7 2.54 2.63 2.7 2.77 2.77
(£0.27) (£0.31) (x0.27) (£0.26) (+0.38) (£0.24) (+0.34) (£0.28) (+0.21) (0.23) (+0.21) (+0.25) (£0.18) (+0.14) (£0.13) (+0.17)
2.75 2.41 2.64 2.76 2.66 2.78 2.58 2.66 2.77 2.81 2.74 2.62 2.68 2.73 2.81 2.84
(£0.2) (+0.38) (£0.26) (£0.17) (+0.15) (+0.13) (+0.22) (+0.37) (+0.14) (+0.14) (+0.18) (+0.12) (+0.09) (+0.11) (+0.14) (+0.14)
2.74 2.15 2.59 2.74 2.63 2.75 2.68 2.72 2.77 2.75 2.7 2.66 2.65 2.72 2.77 2.77
(£0.13) (£0.28) (£0.15) (£0.13) (£0.23) (£0.14) (£0.15) (£0.14) (£0.13) (£0.15) (£0.21) (£0.16) (£0.12) (£0.09) (£0.15) (+0.17)
2.76 2.6 2.71 2.76 2.47 2.75 2.62 2.62 2.79 2.75 2.71 2.62 2.66 2.72 2.76 2.84
(£0.15) (£0.19) (£0.15) (+0.15) (0.38) (+0.17) (£0.23) (£0.34) (£0.13) (+0.16) (+0.2) (+0.18) (£0.15) (+0.13) (+0.19) (0.13)
2.75 2.53 2.7 2.75 2.64 2.77 2.61 2.63 2.77 2.76 2.7 2.61 2.67 2.72 2.8 2.79
(£0.24) (+0.24) (+0.23) (+0.23) (£0.26) (£0.15) (£0.21) (£0.36) (£0.15) (£0.14) (+0.3) (£0.17) (£0.13) (+0.1) (%0.15) (£0.21)

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Model 7

Model 8

Model 9

Model 10

Using a random SSP as the validation unit (data division case C) slightly affects the
Fitness values of the HIs. Tables 5.15 and 5.16 show the average Fitness values (and stan-
dard deviation) averaged over the 12 Folds, calculated for the entire set (using Eq. 3.4) and
only for the test unit (using Eq. 3.8) respectively. The highest Fitness value is obtained by
Net(12) upon Model 9 in both cases with values 2.74 (+0.19) and 2.59 (£0.24), respectively.
As expected, the Fitness value is lower than in the respective cases where the test unit is
used in the training, since in this case the test unit is unknown. This case, however, is more
representative of the potential real-world application of the methodology. In Figure 5.28,
the results of Tables 5.15 and 5.16 for base learner Model 9 are visually summarized and
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Figure 5.27: The prognostic metrics distribution based on all and test units for ensemble learner models upon
the base learner Model 3 of the 37 framework, considering Case B for the dataset division (the test SSP itself as

validation).
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Table 5.14: Fitness values for ensemble learner models of the 3" framework averaged over the 12 Folds using
Eq. 3.8 and data division Case B.

‘WAE DL-based: Net
SAE MSE RMSE Fitness| (1) () 3) (4) (5) (6) (7) 8) © (@) (a1 (12)
2.44 2.21 2.39 2.45 2.09 2.44 2.42 2.44 2.48 2.47 2.41 2.33 2.43 2.5 2.5 2.6
(£0.39) (£0.43) (£0.41) (£0.38) (£0.66) (£0.41) (£0.29) (+0.44) (£0.51) (£0.44) (+0.52) (£0.37) (£0.3) (+0.37) (£0.45) (+0.44)
2.53 2.39 2.49 2.53 22 2.48 2.51 2.47 2.55 2.51 2.48 23 2.44 2.56 2.54 2.67
(+0.33) (£0.34) (£0.34) (+0.33) (£0.53) (£0.4) (£0.31) (£0.26) (£0.4) (+0.4) (+0.45) (£0.41) (0.31) (+0.29) (£0.39) (+0.37)
2.58 2.38 2.51 2.58 23 2.56 2.44 2.42 2.63 2.57 2.47 2.48 2.52 2.59 2.62 2.74
(£0.29) (£0.42) (£0.33) (£0.29) (0.62) (£0.32) (¥0.33) (+0.4) (£0.32) (+0.33) (+0.36) (£0.27) (+0.25) (+0.28) (£0.33) (+0.33)
2.5 2.29 2.44 2.49 2.44 2.49 2.35 2.44 2.5 2.5 2.45 2.4 2.44 2.53 2.4 2.71
(£0.32) (£0.35) (+0.34) (+0.31) (+£0.4) (+0.32) (£0.39) (£0.35) (£0.36) (£0.36) (£0.36) (£0.28) (£0.29) (£0.29) (+0.63) (£0.21)
2.5 2.39 2.48 2.5 2.24 2.44 2.27 2.41 2.52 2.48 2.46 2.37 2.39 2.55 2.54 2.61
(£0.36) (£0.33) (+0.36) (£0.37) (+0.47) (£0.43) (+0.41) (£0.47) (+0.4) (+0.42) (+0.43) (£0.34) (£0.36) (+0.23) (£0.44) (+0.35)
2.39 2.15 2.27 2.4 2.16 241 2.05 2.38 2.45 2.47 2.4 2325 2.39 2.52 2.55 2.66
(+0.38) (£0.35) (£0.34) (+0.37) (£0.41) (£0.43) (£0.65) (+0.41) (£0.46) (£0.45) (+0.4) (£0.32) (0.36) (+0.23) (£0.25) (+0.26)
2.54 2.29 2.47 2.55 2.42 2.51 2.33 2.45 2.55 2.61 2.51 2.36 2.5 2.55 2.59 2.72
(£0.37) (£0.43) (£0.41) (x0.36) (£0.31) (£0.35) (£0.39) (+0.47) (£0.4) (+0.33) (+0.41) (£0.27) (0.21) (+0.29) (£0.32) (+0.29)
2.46 2.1 2.4 2.46 23 2.39 2.32 2.48 2.5 2.46 2.44 2.36 2.42 2.52 2.48 2.57
(£0.27) (£0.28) (£0.25) (+0.27) (£0.39) (£0.35) (+0.33) (+0.28) (£0.32) (+0.33) (+0.43) (£0.28) (+0.25) (+0.2) (£0.34) (+0.33)
2.55 2.46 2.52 2.54 2.19 2.47 2.34 2.37 2.56 2.51 2.46 2.37 2.45 2.54 2.53 2.69
(£0.3) (20.25) (£0.27) (£0.32) (+0.38) (+0.42) (+0.45) (+0.49) (+0.37) (£0.37) (£0.43) (£0.32) (+0.36) (+0.31) (+0.43) (+0.3)
2.51 2.37 2.48 2.51 2.34 2.47 2.3 2.34 2.55 2.51 2.46 2.33 2.44 2.52 2.57 2.61
(£0.36) (£0.34) (£0.35) (£0.36) (+0.46) (£0.37) (+0.42) (£0.52) (+0.34) (£0.34) (+0.5) (£0.37) (+0.3) (£0.27) (£0.36) (+0.38)

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Model 7

Model 8

Model 9

Model 10

compared. The values of the test-only-based Fitness are slightly lower than those for the
entire set, and especially for Net(12) ensemble, which displays promising results.

Table 5.15: Fitness values for ensemble learner models of the 3" framework averaged over the 12 Folds using
Eq. 3.4 and data division Case C.

WAE \ DL-based: Net
SAE MSE RMSE Fitness| (1) (2) 3) 4 5) (6) 7) 8) © @0 @11 (12
262 242 254 262 243 261 252 256 264 259 252 241 25 256 264 263
(£0.2) (£0.22) (£0.2) (%0.19) (+0.35) (+0.19) (+0.28) (+0.19) (+0.2) (+0.19) (+0.28) (+0.34) (+0.21) (+0.2) (+0.19) (*0.2)
263 248 258 263 235 265 25 255 263 258 261 248 252 259 261 267
(£0.17) (£0.23) (£0.19) (£0.17) (+0.28) (£0.16) (+0.15) (£0.24) (+0.19) (£0.2) (£0.18) (+0.19) (£0.21) (£0.17) (£0.19) (+0.27)
2.67 2.53 2.62 2.67 2.25 2.69 2.5 2.6 2.69 2.62 2.6 2.58 2.58 2.62 2.67 2.7
(£0.12) (£0.11) (+0.12) (+0.12) (+0.49) (+0.11) (+0.34) (£0.19) (£0.14) (£0.17) (£0.18) (£0.13) (£0.13) (+0.15) (+0.18) (+0.17)
2.64 241 2.55 2.64 2.24 2.64 2.52 2.54 2.62 2.6 2.53 2.42 2.54 2.59 2.59 2.64
(£0.17) (£0.24) (£0.19) (+0.17) (£0.42) (£0.16) (£0.23) (£0.21) (+0.21) (+0.22) (+0.35) (+0.33) (+0.16) (£0.16) (£0.23) (£0.31)
2.55 2.47 2.5 2.54 2.37 2.52 2.34 2.44 2.55 2.51 2.52 2.44 2.47 2.52 2.58 2.59
(£0.3) (£0.18) (£0.24) (£0.3) (0.36) (£0.31) (£0.29) (£0.34) (£0.3) (+0.29) (£0.27) (+0.3) (+0.32) (+0.29) (+0.28) (£0.26)
243 218 228 244 194 253 231 236 254 251 236 232 243 249 26 2.61
(£0.24) (£0.24) (x0.25) (£0.24) (+0.41) (£0.23) (+0.28) (£0.3) (+0.27) (0.23) (+0.39) (£0.29) (£0.29) (+0.25) (£0.23) (+0.21)
2,65 242 257 265 242 266 237 253 264 263 256 249 254 2.6 267 269
(£0.15) (£0.23) (+0.18) (£0.16) (+0.38) (£0.16) (+0.25) (£0.26) (+0.21) (£0.17) (£0.19) (+0.28) (£0.17) (+0.16) (£0.18) (+0.16)
2.56 2.17 2.44 2.56 2.4 2.57 2.37 2.45 2.57 2.56 2.45 2.52 2.47 2.56 2.59 2.61
(£0.22) (£0.27) (£0.25) (+0.21) (+0.29) (+0.25) (£0.37) (£0.24) (£0.24) (£0.23) (£0.34) (£0.23) (£0.24) (+0.2) (+0.22) (+0.34)
2.67 2.47 2.6 2.67 2.55 2.67 2.53 2.6 2.64 2.6 2.61 243 2.53 2.62 2.62 2.74
(£0.15) (£0.24) (£0.17) (+0.15) (£0.22) (£0.16) (£0.23) (£0.23) (+0.19) (+0.21) +0.22) (+0.35) (+0.19) (£0.16) (£0.25) (+0.19)
2.52 241 2.45 2.52 2.38 2.56 2.31 2.49 2.58 2.54 2.53 2.4 2.46 2.51 2.53 2.63
(£0.26) (£0.23) (+0.25) (£0.26) (+0.31) (£0.26) (+0.37) (£0.29) (+0.22) (£0.26) (+0.27) (£0.3) (£0.28) (+0.24) (£0.27) (+0.22)

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Model 7

Model 8

Model 9

Model 10

Figure 5.29(a) displays the HIs for the different Folds using base learner Model 9 and
data division case B. Each Fold denotes the respective unit as the test. The solid gray line
represents the ideal HI and the dotted colored lines represent the training unit results for
each ensemble model. The solid-colored lines denote the test unit. It is observed that in
some Folds, like Folds 2, 3, 9, and 10, the test unit demonstrates a different behavior than
the training units and diverges from both the constructed HIs of the training units and the
ideal HI. In the other Folds, the test units display a similar trend to the training. When
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Figure 5.28: The prognostic metrics distribution based on all and test units for ensemble learner models upon
the base learner Model 9 of the 3" framework, considering Case C for the dataset division (another SSP other
than the test SSP as validation).
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Table 5.16: Fitness values for ensemble learner models of the 3" framework averaged over the 12 Folds using
Eq. 3.8 and data division Case C.

‘WAE DL-based: Net
SAE MSE RMSE Fitness| (1) (2) 3) (4) (5) (6) (7) (8) 9 (o) a1 (12)
222 2.05 2.16 2.23 2.03 218 2.04 213 233 2.25 212 2.02 2.2 2.27 2.3 2.43
(£0.41) (£0.44) (x0.38) (£0.4) (+0.54) (£0.41) (+0.6) (£0.39) (+0.35) (£0.35) (+0.47) (+0.55) (£0.34) (+0.34) (£0.37) (+0.31)
223 2.09 2.16 2:22 1.86 2.26 2:12 28172 2.23 2122 2.28 2.13 2122 2.33 2.26 2.43
(£0.34) (£0.46) (+0.4) (£0.34) (+0.51) (£0.33) (+0.34) (£0.45) (+0.36) (£0.37) (+0.35) (+0.26) (£0.34) (+0.32) (£0.37) (+0.51)
2.32 2.18 2.27 2.32 1.84 2.38 2.07 2.23 242 2.32 2.32 2.23 2.34 241 242 2.56
(£0.33) (£0.33) (£0.34) (£0.33) (£0.64) (£0.28) (+0.68) (£0.41) (+0.23) (£0.32) (£0.32) (£0.3) (£0.24) (£0.26) (£0.31) (+0.29)
224 2.07 2.18 2.23 1.77 223 2.02 217 2.22 2.2 2.07  2.06 2.21 229 223 2.4
(+0.39) (£0.48) (£0.4) (+0.39) (0.55) (£0.38) (+0.5) (£0.47) (£0.43) (+0.41) (£0.69) (£0.4) (+0.35) (+0.36) (£0.43) (+0.48)
2.1 2.12 2.09 2.09 1.86 2 1.67 1.93  2.06 2.02 2.04 201 2.09 215 213 2.3
(£0.5) (+0.36) (£0.42) (+0.51) (+0.67) (£0.54) (£0.54) (+0.56) (+£0.52) (£0.52) (£0.53) (+0.46) (£0.52) (£0.47) (+0.52) (+0.48)
1.97 1.83 1.89 1.98 1.56 2 1.73 1.81 2.07 2.05 1.84 1.83 2.05 2.08 218 2.29
(£0.45) (£0.42) (+0.43) (£0.44) (+0.49) (£0.44) (+0.56) (£0.57) (+0.47) (£0.42) (+0.7) (*0.5) (£0.46) (+0.43) (£0.46) (+0.43)
2.27 2.07 2.19 2.27 1.95 2.27 1.92 2.06 2.33 2.32 2.23 2.07 2.25 2.36 2.36 2.49
(£0.3) (£0.42) (£0.35) (£0.31) (£0.56) (¥0.31) (£0.4) (+0.55) (£0.35) (+0.29) (£0.32) (+0.46) (£0.31) (+0.19) (+0.32) (£0.23)
2.08 1.85 2.02 2.08 1.97 2.06 1.9 1.97 2.13 2.08 191 2.07 2.06 2.23 2.16 2.28
(£0.44) (£0.46) (£0.47) (£0.44) (£0.49) (£0.49) (£0.6) (£0.4) (+0.47) (£0.47) (+0.7) (+0.47) (£0.45) (+0.38) (£0.47) (+0.61)
2.3 21 2.22 2.3 222 231 2.13 223 231 229 223 203 2.25 2.36 2.3 2.59
(£0.32) (£0.47) (£0.36) (+0.32) (+0.31) (£0.32) (+0.44) (£0.41) (£0.33) (£0.36) (£0.41) (£0.54) (£0.28) (£0.29) (+0.4) (+0.24)
2.02 2 199 2.02 1.94  2.08 1.68 199 214 209 211 1.96 2.07 211 2.04 2.25
(£0.5) (£0.46) (+0.5) (+0.49) (£0.6) (£0.51) (+0.73) (£0.54) (£0.46) (+0.52) (+0.53) (£0.49) (£0.48) (+0.43) (+0.57) (+0.49)

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Model 7

Model 8

Model 9

Model 10

data division Case C is applied, the difference between training and test units increases,
diverging from the ideal HI in most Folds, as displayed in Figure 5.29(b). Diverging from
the ideal HI is not necessarily a negative attribute as long as training and test units display
similar overall trends. The ideal HI is mostly used as a baseline for the training and not
a panacea for the HIs to follow. However, there are Folds, like Folds 1 and 12 where the
constructed HIs are similar between test and training as well as the ideal HI.
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Figure 5.29: (a) The HIs constructed by the ensemble Net(12) upon the base Model 3, considering Case B for the
dataset division (the test SSP itself as validation), with best average Fitness 2.74 (+0.33) based on Eq. 3.8; (b)
The HIs constructed by the ensemble Net(12) upon the base Model 9, considering Case C for the dataset division
(another SSP other than the test SSP as validation), with best average Fitness 2.59 (+0.24) based on Eq. 3.8. Dotted
lines are related to the training units.
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5.7 Discussion

t is important to note that an identified HI and its corresponding preprocessing tech-
Inique are closely relevant to the engineering system/structure under monitoring [18],
as well as the type of SHM system that produces signals, and as a result, they cannot be
applied to other objects directly. This marks the first challenge in comparing the current
work, which focuses on a new experiment, to earlier research. In several works, only Mo
was reported for the utilized Hls [19-21], while only one work [22] provided all the criteria.
The prognostic criteria have therefore infrequently been quantified for the reported HIs,
especially for composite structures, which adds another challenge when comparing the
current study with existing work. Yue et al. [22] employed the GW monitoring technique
in the ReMAP project to predict the stiffness of composite panels, which is a mechani-
cal characteristic of the structure, and then they reported the criteria for predictions and
stiffness. In contrast to this chapter, they only considered five units out of twelve, and it
should be highlighted that the more units used, the lower the Fitness score of HIs. One sig-
nificant and critical point in the HI construction or RUL prediction frameworks, which is
directly related to the Pr, is that input data must not be normalized in accordance with the
mean and standard deviation of the entire dataset (training and test) [23, 24], as test data
are unavailable in reality in the upcoming timeframes. A max-min normalization tech-
nique using the full dataset has similar or even more concerns [25, 26]. Several features
extracted from AE data, which were considered as HI of the composite structure based
on the literature (including 1/A [19, 20], energy [27], and Rise-time/Amplitude ratio (RA)
[28] cumulated in the time window), will be compared with the proposed Hls. Also, the
criteria for the proposed AE-based HI will be compared with the HIs extracted from GW
data and mechanical properties (stiffness) of the ReMAP dataset [22]. The summarized
results are presented in Table 5.17.

As can be seen, the proposed frameworks outperform the others proposed in the litera-
ture. The prognostic criteria for the windowed AE features, particularly Tr, are extremely
low. The maximum Mo is for the weighted HI derived from GW data. Pr, on the other
hand, is not as qualified as the proposed frameworks in the current chapter. It should also

Table 5.17: HIs’ criteria (from Eqs. 3.1 — 3.4 ) for composite structures.

5 ity i f
12 composite specimens of ReMAP composhe specimens o

ReMAP
Present work ‘According to Refs. N
i i . [22 . [19, 20
Criteria Framework 1 ‘ Framework 2 ‘ Framework 3 ‘[1‘), 20] [27] [28] Ref. [22] Refs. [19, 20]
i DIC AE DIC
AE data L-D GW data data data & AE
Base Ensemble| Base Ensemble| Base Ensemble 1 E RA |stiff 100 125 150 ichted axial 1 Fusi
model model |model model |model model A SUINESS |\ Hz kHz kHz Vo8 strain 2~ "
0.87 0.99 0.80 0.97 0.80 0.97
Mo 0.57 0.5 0.59 0.66 1 1 092 1 094 091 098

(£0.15) (£0.01) |(20.17) (£0.01) |(20.25) (0.05)
0.88 0.93 0.75 0.84 0.85 0.93
(£0.05) (+0.03) |(£0.12) (+0.05) |(£0.07) (0.08)
0.59 0.86 0.42 0.88 0.48 0.85
(£0.25) (£0.14) [(£0.20) (%0.07) [(+0.34) (*0.16)
2.34 2.79 1.99 2.69 2.13 2.74
(£0.45) (£0.14) |(+0.31) (£0.07) |(£0.57) (£0.19)

* Different experiments to the current one

** The stiffness values measured from load-displacement data.
Framework 1: Model (7) as the base model and SAE as the ensemble model

Framework 2: A.2 PCA-TIM-TDM as the base model and WAE-FitnessMSE as the ensemble model
Framework 3: Model (9) as the base model and Net(12) as the ensemble model

Pr 0.27 0.17 0.26| 0.84 06 05 045 0.55 - - -

Tr 0 0 0 0.56 095 0.88 0.97 0.97 - - -

Fitness 0.84 0.67 0.85| 2.06 255 238 2.3¢ 252 - - -
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be highlighted that, even though both the AE and GW systems rely on acoustic and elastic
waves within the structure, one is passive and the other is active. As a result, they mea-
sure different structural characteristics, resulting in a variety of data spaces. Therefore,
the GW system may provide more informative data, whereas the physical model utilized
in Ref. [22] may not have been able to build its best HI. As a result, Table 5.17 compares
the data’s informativity as well as the proposed models for constructing HIs. Although
only Mo has been quantitatively reported for the HIs obtained from DIC data, AE data,
and the predefined function fusing DIC and AE data in Refs. [19, 20], not only is Mo of the
HIs developed in the current work slightly higher, but Tr and Pr are also superior based
on qualitative comparison.

During the project leading to this thesis, a primary workflow was established for ana-
lyzing AE data, leading to the development of three frameworks in a typical evolutionary
journey of PhD research. Each framework was tailored to explore distinct pathways and
address specific challenges encountered during the research process.

Framework 1, while showcasing superior performance, relied on the test unit for vali-
dation in the LOOCV process, potentially limiting its applicability to real-world scenarios
where test units are new and unknown. Subsequent frameworks were devised to mitigate
this limitation while maintaining overall performance.

Framework 2 was developed to address the validation issue and achieved comparable
performance to Framework 1, while exhibiting greater stability with a standard deviation
of £0.07. Following this, Framework 3 was introduced, demonstrating further improve-
ments in fitness compared to Framework 2. In general, the EL step improved the criteria
in terms of both Fitness scores and stability

5.8 Conclusions

hree novel frameworks have been developed in this chapter for designing HIs using
TAE data regarding composite structures. These frameworks integrate advanced tech-
niques for feature extraction, deep learning, and ensemble learning, aiming to enhance
prognostic capabilities. Each framework introduces innovative approaches, contributing
to the field of SHM. While Framework 1 shows exceptional performance, its dependency
on the test unit for validation limits its applicability. Frameworks 2 and 3 address this limi-
tation, with Framework 3 demonstrating higher Fitness scores and Framework 2 showing
higher stability. Ensemble learning enhances prognostic criteria, emphasizing practical
implementation potential. The results underscore the effectiveness of data-driven and
artificial approaches, providing valuable insights for advancing health monitoring appli-
cations in composite structures.
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Designing HI for T-Stiftener
Composite Panels and Dogbone
Specimens using Guided Waves

This chapter presents an Al-driven solution leveraging signal processing to design reliable
HIs for composite structures without the need for historical data. Utilizing GW data, the
methodology demonstrates high performance in HIs for T-single stiffener CFRP panels and
dogbone CFRP specimens.
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6.1 Introduction

D eveloping comprehensive HIs for composite structures encompassing various dam-
age types is challenging due to the stochastic nature of damage accumulation and un-
certain events (like impact) during operation. This complexity is amplified when striving
for HIs independent of historical data. This chapter introduces an Al-driven framework,
the Hilbert transform-convolutional neural network under the semi-supervised learning
paradigm (HT-SSCNN), for designing reliable HIs. It exclusively utilizes current GW
data, eliminating the need for historical information. EL techniques were also used to
enhance HI quality while reducing deep learning randomness. The methodology is vali-
dated through investigations on T-single stiffener CFRP panels under compression-fatigue
and dogbone CFRP specimens under tension-fatigue loadings, showing high performance
of up to 93% and 81%, respectively, in prognostic criteria.

6.2 Experimental Campaigns

or the HT-SSCNN framework fed by GW data, two different datasets are investigated:

ReMAP and NASA

ReMAP: The first dataset, ReMAP which already explained in Chapter 5, Section 5.2,
contains five composite skin-stiffener panels that were subjected to C-C fatigue loading
(see Figure 6.1(right) and Table 6.1). GW data collection is carried out with eight surface-
attached PZT sensors, where four sensors are located on the skin panel, two sensors are
located on top of the stiffener-skin bondline, and two sensors are attached on the stiffener
web. The GW system operates with one PZT serving as the actuator with six excitation
frequencies (50 kHz, 100 kHz, 125 kHz, 150 kHz, 200 kHz, and 250 kHz) and the remaining
seven PZTs functioning as sensors, rotating through all eight PZTs.
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Figure 6.1: Composite dogbone specimens under T-T fatigue (left) and single T-stiffener CFRP panel under C-C
fatigue (right) being monitored by PZT sensors (red circles) (dimensions in [mm]).
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NASA: The second dataset, NASA, has three different layups, Layup1, Layup2, Layup3,
with the ply orientation, [0,/904]s, [0/905/ +45/90], and [90,/ + 45],s, respectively [1-3].
Torayca T700G unidirectional carbon-prepreg material has been used to manufacture the
dogbone geometry coupons. The coupons with a notch have been submitted to tension-
tension (T-T) fatigue load. GW acquisition has been performed through a surface-attached
PZT network. The network contains one actuator and one sensor array with six linearly
distributed PZT transducers in each, as shown in Figure 6.1(left). GW acquisition is re-
alized between the linear arrays, which makes 36 actuator-sensor paths in total. Seven
excitation frequencies have been applied in the range of 150 to 450 kHz with 50 kHz in-
crementation with a 5-cycle Hanning modulated tone-burst signal with an average input
voltage of 50 V and a gain of 20 dB. Information regarding the mechanical test parameters
can be found in Table 6.2. Further information regarding the mechanical experiment, GW
data acquisition, etc. can be found in Refs. [1-3].

Table 6.1: Information of single T-stiffener CFRP panels tested under C-C fatigue loading (ReMAP dataset) mon-
itored by guided waves.

Name L1-03 L1-04 L1-05 L1-09 L1-23
Name index SSP1 SSP2 SSP3 SSP4 SSP5
X-location of impact (mm) 50 25 115 82.5 -
Y-location of impact (mm) 80 80 160 140 -
Time of Impact at 0 cycles at 0 cycles atOcycles at0 cycles -

Size of disbond (mm) - - - - 30x30
y-location of disbond (mm) - - - - 60
Min Load (kN) -6.5 -6.5 -6.5 -6.5 -5 and -6
Max Load (kN) -65 -65 -65 -65 -50 and -60
Cycles 152,458 280,098 144,969 133,281 438,000

Table 6.2: Information of dogbone CFRP plates tested under T-T fatigue loading (NASA dataset) monitored by
guided waves.

Ply orientation Layup 1: [0,/904] Layup 2: [0/90,/ +45/90] Layup 3: [90,/ £45],5
Name index S1 S2 S3 S4 S1 S2 S3 S1 S2 S3 S4
Static Failure (Mpa) | 133.8 133.8 133.8 133.8 | 147.5 1475 147.5 104.8 104.8 104.8 104.8
Max Load (kN) 111.7 1117 1117 111.7 | 127.5 127.5 127.5 89.6 89.6 89.6 89.6
Load Ratio 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13
Cycles (x1000) 227 100 1650 125 207 900 1250 150 300 895 7500

6.3 Framework: HT-SSCNN

A framework called HT-SSCNN is introduced to construct Hls fulfilling evaluation cri-
teria based on historical-independent GW data. First, the GW signals recorded from
the network of sensors and their envelopes are extracted using the Hilbert transform (HT).
Then, these envelopes are integrated to reshape a 3D form input to feed the subsequent
DL model. Convolutional neural network (CNN) architectures are designed to fuse the
3D inputs trained by a SSL paradigm, and their inherent randomness and uncertainty are
mitigated by EL. All GW data generated from different triggering frequencies is also fused
during the EL step. Six methods, including four average-based and two DL networks, are
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considered for EL. In this section, the framework and step-by-step process are introduced
as can be seen in Figure 6.2.
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Figure 6.2: The overall proposed framework: (a) guided wave (GW) monitoring; (b) signal processing (Hilbert
transformy); (c) base learner model (SSCNN); (d) ensemble learner model;(e) extracted health indicator.

Signal processing and 3D input preparation: Prior to using DL networks, sig-
nal processing techniques with explicit and fast solutions can improve performance and
simplify following DL modeling. An effective method involves extracting GW signal en-
velopes using the magnitude of their analytic signals, which is achieved through the HT
(Chapter 4, Section 4.3.2). HT is replaced by a finite impulse response (FIR) filter in discrete-
time signal processing to reduce computational complexity [4]. This specific FIR filter is
termed the Hilbert transform FIR (HT-FIR) filter, with its length determined by the excita-
tion frequency in the current work. For example, a 400 kHz frequency corresponds to an
HT-FIR filter length of 400. The filter is created by applying a Kaiser window with a shape
parameter 8 = 8 to an ideal brick-wall filter. Similar processing generates upper and lower
envelopes for all GW signals.

A 3D form of [paths between actuators and sensors] x [signal length] x [upper and lower
envelopes in two states—baseline and current time] is implemented to prepare inputs
for the subsequent SSCNN model. Accordingly, the input dimensions are 36x2000x4 or
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56x2000x4 for the NASA and ReMAP datasets, respectively. Figure 6.3 shows, for the
NASA dataset (layup 1), the GW signals excited by one frequency (150 kHz), the extracted
envelopes for all paths, and the pertinent 3D input of SSCNN at cycle 60000.
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Figure 6.3: Right column: (a) Sensed GW signals excited by 150 kHz and (b) their envelopes for all 36 paths of

the NASA dataset (layup 1) at baseline and cycle 60000, as well as the relevant (c) 3D input of SSCNN at cycle

60000. Left column: Their 2D display for only one path.

Sampling points

6.3.1 Feature fusion: semi-supervised convolutional neural net-

work (SSCNN)

A CNN architecture, illustrated in Figure 6.4, has been designed to map GW inputs
to the simulated ideal HI. The inputs, as previously described, take the 3D shape of
(N, x Ng) x 2000 x 4, where N, and N represent the number of actuators and sensors, re-
spectively. The leakage coefficient for all Leaky ReLU functions is set at 0.01. To calculate
the loss function between predictions and targets, an MSE is employed. An Adam op-
timizer was utilized to train the SSCNN with 38400 and 28800 learnable parameters for
ReMAP and NASA setups, employing an initial learning rate of 0.001. SSCNN is consid-
ered the base learner model in the entire framework developed upon GW.
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Figure 6.4: The architecture of the semi-supervised convolutional neural network (SSCNN) as the base learner
to construct HIs using GW data.

Ensemble learning (EL)

Once HIs are constructed using the base learner model, ensemble learner models can han-
dle uncertainties and randomness. The initial step involves LOOCV. Here, one unit (com-
posite specimen) is set aside for testing, another for validation, and the rest are used for
training. The validation unit rotates through all available options, and the base learner
model (SSCNN) is trained ten times with different random seed numbers for weight and
bias initialization.

Beyond averaging ensemble models, different networks with various layer types were
explored, among which the two best ones are presented. The DL architectures are summa-
rized in Table 6.3, with the number of neurons, units, or dropout (D) percentages indicated
in parentheses.

Table 6.3: Ensemble learner models used on top of SSCNN.
Architecture (hidden layers)

Model name
SAE
WAE-MSE
WAE-RMSE
WAE-Fitness

Model num.

QG W N =

FC-Net
BiLSTM-Net

FC(100)
D(0.5)

D(0.5)
BiLSTM(5)

ReLU FC(5)
D(0.5) FC(5)

D(0.5)
D(0.5)

ReLU FC(1)
ReLU FC(1)
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6.3.2 Results

To thoroughly evaluate various combinations and confirm the effectiveness, validity, and
stability of the proposed framework, all potential dataset folds were examined. In each
fold, one specimen served as the test set, while the remaining composite specimens were
used for training and validation. For both the ReMAP and NASA datasets, which offered
four and three-two alternatives for validation, respectively, the process was repeated with
10 iterations using distinct random seed numbers. This approach essentially mirrors the
LOOCYV, employing a holdout validation strategy within each fold to assess the model’s
generalizability. In this section, the results of the HT-SSCNN up to the ensemble stage,
referred to as the base learner models, are initially presented before delving into the out-
comes of the ensemble learner models.

Base learner models

The comprehensive results of HT-SSCNN across various subsets and excitation frequencies
for ReMAP dataset are presented in Figure 6.5. The results display fitness scores (based on
Eq. 3.4) across different replications and their mean values (indicated on the right y-axis)
over ten replications (shown on the x-axis) for each subset (validation index-based combi-
nations displayed on the left y-axis), with error bars representing the standard deviation.
The impact of the choice of the validation unit varies depending on the specific test unit
and frequency. For instance, in fold 5, where the test unit is specimen 5, unit 1 does not
serve as a suitable validation case for GW signals at the excitation frequency of 50 kHz.
This is either because it leads to the exclusion of unit 1 information during the training
phase or it proves to be an unsuitable validation specimen for terminating the training pro-
cess. Referring to Figure 6.5, it becomes evident that frequencies of 150 kHz and 200 kHz
led to more consistent high fitness scores, whereas 100 kHz and 250 kHz exhibit unstable
performance. Appendices (A.3) also include analogous illustrations for the NASA dataset,
highlighting the influence of validation unit selection and GW excitation frequency. Ta-
bles 6.4, 6.5, 6.6, and 6.7 present averaged fitness values (+standard deviation) across all
repetitions, irrespective of the validation unit chosen, for various folds. F-All corresponds
to the fitness scores obtained from Eq. 3.4 considering all units, while F-Test relates to the
fitness scores obtained from Eq. 3.8 focusing solely on the test unit.

The highest-scoring frequency is 150 kHz for the ReMAP dataset, with an average
of 2.53 for all units and 2.26 for test units across all folds. In the NASA datasets, the
top-performing frequencies are 250 kHz, 300 kHz, and 350 kHz for layups 1, 2, and 3,
respectively. The average scores across all folds are 2.37, 2.19, and 2.32 when considering
all units, and 2.04, 1.97, and 2.04 when considering test units, as highlighted in green in
the tables. Layup 2 yields lower scores because it has limited training data from only one
unit.

The results vary across different folds, with the folds showing the highest fitness scores
highlighted in bold in the tables. The HIs generated from HT-SSCNN for the optimal fre-
quencies in different datasets are displayed in Figure 6.6. These Hls represent the averages
across all repetitions, irrespective of the validation unit selection (SAE method). However,
showcasing the HIs from a single repetition could yield more promising results.

For T-single stiffener CFRP panels, the results are highly promising despite the pres-
ence of uncertainties such as broken sensors, impacts, and disbond. In the NASA dataset,
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Table 6.4: Fitness values for base learner models averaged over the 40 repetitions for ReMAP dataset.
Frequency Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
F-All  F-Test F-All F-Test F-All F-Test F-All  F-Test F-All F-Test
k 2.23 1.55 2.31 2.12 2.46 2.22 241 2.17 2.49 2.28
30 kHz (£0.15)  (£0.34) | (£0.37) (20.45) | (£0.25) (£0.48) | (£0.42) (#0.35) | (20.5)  (%0.5)
2.44 2.25 2.03 1.55 2.5 2.23 2.57 241 2.28 2
100kHz | \(1035) (£049) | (:0.26) (£0.3) | (£0.23) (£0.23) | (£0.23) (0.38) | (:0.33) (:0.37)
2.54 2.4 2.21 1.93 2.52 2.11 2.55 2.36 2.55 2.21
125 kHz (:031)  (£0.44) | (£0.29) (x0.24) | (£0.21) (0.35) | (£0.33) (£0.43) | (£02)  (0.31)
150 kHz 2.59 2.43 2.19 2.01 2.72 2.43 2.54 2.14 2.6 2.3
(20.45)  (£0.48) | (£0.34) (20.44) | (£0.14) (x0.3) | (20.19) (£0.33) | (£0.22) (20.29)
200 kHz 245 2.21 2.16 1.91 2.5 2.09 2.63 2.44 2.62 2.55
(£0.3)  (20.45) | (£0.31) (£0.33) | (£0.09) (£0.24) | (£0.14) (£0.46) | (20.32) (+0.39)
250 kHz 2.51 2.38 2.21 1.93 2.35 1.96 2820) 2.09 2.45 1.89
(£0.51)  (£0.52) | (0.26) (£0.24) | (#0.2) (£0.35) | (£0.4) (20.55) | (£0.25) (£0.21)
2.55 2.4 2.19 1.84 2.62 242 2.64 2.48 2.53 2.33
All (£0.32)  (£0.46) | (£0.37) (£0.38) | (£0.2)  (20.3) | (£0.25) (£0.37) | (£0.49) (20.55)

Table 6.5: Fitness values for base learner models averaged over the 30 repetitions for NASA dataset (layup 1).

Frequency Fold 1 Fold 2 Fold 3 Fold 4
F-All F-Test F-All F-Test F-All F-Test F-All F-Test

150 kHz 1.86 (£0.36) 1.16 (£0.47) | 2.18 (£0.42) 2.08 (x0.47) | 1.67 (£0.29) 1.21 (£0.38) | 2.32 (£0.12)  2.18 (*0.16)
200kHz | 1.99 (0.4) 1.4 (+0.49) |2.49 (x0.32) 2.21 (x0.36) | 1.52 (+0.32) 0.86 (£0.51) | 2.4 (£0.22)  2.12 (£0.45)
250 kHz | 2.41(+0.24) 2.03 (+0.31) | 2.3 (+0.35) 1.87 (+0.32) | 2.22 (+0.16) 1.92 (0.22) | 2.54 (0.26) 2.32 (+0.32)
300 kHz | 247 (£0.2) 2.1 (£0.24) | 2.56 (x0.15) 2.14 (0.27) | 1.98 (£0.22) 1.61 (£0.28) | 2.52 (+0.2)  2.13 (£0.33)
350 kHz 2.12 (£0.35) 1.71 (£0.39) | 1.9 (+0.39)  1.43 (0.52) | 1.84 (+0.25) 1.45 (+0.25) | 2.11 (£0.41) 1.57 (+0.75)
400kHz | 2.02 (£0.29) 1.52 (£0.58) | 1.85 (£0.46) 1.24 (+0.51) | 1.73 (£0.28) 1.18 (20.42) | 2.12 (£0.34)  1.91 (+0.53)
450 kHz | 2.35 (£0.38) 2.05 (£0.44) | 2 (£0.42)  1.59 (0.55) | 1.71 (£0.36) 1.25 (£0.47) | 2.26 (+0.35)  1.87 (£0.64)
All 2.23 (£0.35) 1.86 (£0.48) | 2.36 (0.3)  2.06 (£0.28) | 2.07 (x0.4)  1.65 (0.43) | 2.37 (¥0.32)  2.28 (+0.48)

Table 6.6: Fitness values for base learner models averaged over the 20 repetitions for NASA dataset (layup 2).

Frequency Fold 1 Fold 2 Fold 3

F-All F-Test F-All F-Test F-All F-Test
150 kHz 1.47 (£0.56) 1.1 (£0.76) | 1.72 (£0.39) 1.36 (£0.65) | 1.6 (0.24)  1.37 (£0.24)
200 kHz 1.92 (£0.54)  1.55 (0.83) | 1.84 (+0.48) 1.64 (+0.55) | 1.8 (+0.33)  1.54 (£0.27)
250 kHz 1.67 (£0.45) 147 (£0.54) | 2.02 (£0.46) 1.75 (£0.62) | 1.89 (£0.3)  1.69 (+0.4)
300 kHz 2.1 (£0.34)  1.96 (£0.43) | 2.21(£0.34) 1.79 (£0.55) | 2.27 (+0.26) 2.17 (+0.29)
350 kHz 1.6 (£0.54)  1.37 (£0.62) | 1.78 (£0.52) 1.42 (£0.62) | 1.89 (£0.34) 1.7 (0.27)
400 kHz 1.6 (£0.42)  1.14 (x0.57) | 1.43 (x0.35) 0.92 (+0.44) | 1.68 (+0.45)  1.53 (+0.49)
450 kHz 175 (£0.45)  1.46 (£0.64) | 1.6 (£0.4)  1.16 (£0.5) | 1.91(£0.3)  1.64 (0.31)
All 2.05 (£0.58) 1.91 (£0.59) | 2.07 (£0.53) 1.79 (£0.68) | 2.08 (x0.46)  1.98 (£0.35)

Table 6.7: Fitness values for base learner models averaged over the 30 repetitions for NASA dataset (layup 3).

Frequency Fold 1 Fold 2 Fold 3 Fold 4
F-All F-Test F-All F-Test F-All F-Test F-All F-Test

150 kHz 1.78 (£0.42) 1.22 (£0.64) | 2.28 (£0.23) 2.13 (x0.4) | 2.32 (20.19) 1.97 (0.23) | 1.83 (£0.34) 1.26 (+0.46)
200kHz | 237 (£0.33) 2.1 (£0.55) |2.46 (£0.31) 2.43 (0.4) | 2.6 (£0.14)  2.31(£0.25) | 1.83 (£0.32) 1.29 (+0.39)
250 kHz | 237 (£0.33) 2.16 (£0.6) | 2.59 (£0.19) 2.5 (+0.14) | 2.25(£0.27) 1.89 (x0.44) | 1.91 (£0.39) 1.45 (£0.53)
300kHz | 2.27 (£0.34) 1.91 (£0.55) | 2.47 (£0.44) 2.33 (£0.57) | 2.44 (£0.22) 2.18 (£0.4) | 1.87 (0.34) 1.33 (+0.45)
350 kHz | 2.46 (£0.25) 2.24 (+0.4) |2.28 (£0.33) 2.06 (£0.45) | 2.55 (+0.21) 2.38 (+0.3) | 1.99 (£0.36) 1.49 (+0.49)
400 kHz | 231 (20.39) 1.98 (0.57) | 2.28 (£0.24) 1.93 (+0.45) | 2.52 (£0.18) 2.31 (20.24) | 1.91 (£0.35) 1.46 (+£0.49)
450 kHz 2.5(£0.2)  2.23 (£0.32) | 2.25 (+0.44) 2.02 (£0.63) | 2.57 (£0.18)  2.22 (+0.26) | 1.98 (¥0.37) 1.51 (+0.51)
All 2.22 (£0.47) 2.03 (£0.56) | 2.54 (£0.17) 2.41 (20.22) | 2.46 (£0.34) 2.25 (+0.34) | 1.82 (£0.33) 1.24 (+0.37)
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Figure 6.6: HIs obtained by the proposed framework (with SAE) for different datasets, given single frequency
input. The actuating GW frequencies were selected based on the best fitness scores (Tables 6.4, 6.5, 6.6, and 6.7).

Layup 2 is hindered by a lack of training data, while the HIs for Layup 1 (except for unit
2) and Layup 3 (except for units 1 and 4) outperform others.
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Ensemble learner models

Tables 6.8, 6.9, 6.10, and 6.11 present the ensemble models’ fitness scores averaged across
all folds for various ensemble techniques. EL models can be applied to the HIs generated by
HT-SSCNN using a single excitation GW frequency or a fusion of all frequencies (labeled
’Fused (all)’ in Tables 6.8-6.11).

For the ReMAP dataset, the WAE-Fitness model using the fusion of all GW excitation
frequencies achieved the best fitness scores whether considering all or only test units, with
F-All of 2.78 and F-Test of 2.67. Additionally, SAE and the FC network (FC-EL) models
using the fusion of frequencies also resulted in high scores. Aside from the fusion of all
frequencies, the 150 kHz frequency, when employed with SAE and WAE-Fitness, yielded
high fitness scores (exceeding 2.6, meeting 87% of evaluation criteria).

In the NASA dataset, for Layup 1, the BiLSTM network (BiLSTM-EL using the fusion
of all frequencies obtained the highest fitness scores (F-All of 2.68 and F-Test of 2.31). How-
ever, it is important to note that the HI construction model for Layup 1 is not historical-
independent as it uses prior information in the EL step. WAE-Fitness with GW signals
generated from the 250 kHz frequency achieved better fitness scores in second place. The
WAE-Fitness using the fused frequencies for this layup generates acceptable scores (F-All
of 2.41 and F-Test of 2.03). For Layup 2, EL models on the GW excitation frequency of 300
kHz provided higher scores than others, but the fitness scores are not yet highly proper
as this dataset, as previously mentioned, suffers from the limited data needed to train the
models. In Layup 3, WAE-Fitness on the fusion of all frequencies achieved the highest
fitness scores (F-All of 2.42 and F-Test of 2.23).

Table 6.8: Fitness values for ensemble learner models averaged over the 5 Folds for ReMAP dataset.

WAE Deep learning

(Fkr;‘i) SAE MSE RMSE Fitness FC BiLSTM
F-All  F-Test | F-All F-Test | F-All F-Test | F-All F-Test | F-All F-Test | F-All F-Test

2.58 2.32 2.58 2.33 2.58 2.32 2.58 2.32 2.6 2.29 2 1.64
30 (£0.24) (£0.6) | (£0.21) (£0.56) | (£0.23) (£0.59)| (+0.24) (£0.6) | (£0.16) (+0.44) |(£0.22) (20.16)
2.45 2.13 2.25 2.04 2.34 2.08 2.46 2.12 2.62 2.33 2.31 1.97
100 1(10.26) (£0.52) | (£0.44) (£0.53)|(£0.37) (£0.51) | (£0.26) (£0.52) | (£0.26) (+0.47) |(£0.34) (+0.52)
2.69 2.52 2.66 2.5 2.68 2.51 2.69 2.52 2.68 2.5 2.24 1.75
125 1(2012) (£0.26) | (£0.12) (0.26) | (£0.12) (0.27) | (£0.12) (£0.27) | (+0.13) (£0.22) | (+0.22) (£0.2)

2.73 2.6 2.7 2.58 2.72 2.59 2.73 2.6 2.71 2.45 2.43 2
B0 1(20.12) (20.11) | (£0.11) (£0.09) | (£0.12) (£0.1) |(£0.12) (£0.11)| (+0.14) (£035) | (£0.39) (+0.36)
2.6 2.51 2.57 2.47 2.57 2.48 2.6 2.51 2.6 2.49 2.49 2.18
2001 (10.14) (£0.38) | (£0.16) (£0.41)|(£0.17) (£0.41) | (£0.14) (£0.38) | (:0.15) (£0.37) | (0.24) (+0.52)
2.54 2.25 2.49 2.27 2.52 2.26 2.54 2.25 2.49 2.1 2.59 2.26
250 1 (10.14) (£0.35) | (£0.12) (£0.31)|(£0.13) (£0.34) | (£0.14) (£0.32) | (:0.18) (£0.32) | (£0.12) (+0.46)
Fused (all) 2.77 2.66 2.71 2.57 2.75 2.64 2.78 2.67 2.76 2.62 2.38 2.01
(£0.15) (£0.22) [ (£0.23) (£0.4) | (£0.18) (£0.26) | (£0.15) (20.2) | (£0.14) (£0.22)|(+0.37) (£0.43)

On average, WAE-Fitness using the fusion of all GW excitation frequencies resulted in

higher fitness scores, and the related constructed Hls using this model (i.e., the end-to-end
model made of HT-SSCNN-WAEFg;;,,.ss) can be seen in Figure 6.7. Considering the scores
reported in Table 8 and the generated Hls in Figure 6.7 for T-single CFRP panels under C-C
fatigue loading, the performance is highly satisfactory, achieving 93% (2.78 / 3.00) given
all units and 89% (2.67 / 3.00) given test units. The Hls exhibit monotonic, prognostic, and
trendable behavior, making them suitable for predicting the RUL of composite structures.

For dogbone CFRP specimens under T-T fatigue loading, layups with four units (Layup
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Table 6.9: Fitness values for ensemble learner models averaged over the 4 Folds for NASA dataset (layup 1).

WAE Deep learning
ZI‘;Z) SAE MSE RMSE Fitness FC BiLSTM
F-All F-Test | F-All  F-Test | F-All F-Test | F-All F-Test | F-All F-Test | F-All F-Test
150 214 171 | 205 173 | 209 173 | 215 172 | 178 143 | 2.23 187
(£0.37) (£0.59 | (£0.28) (£0.51) | (£0.31) (£0.53) | (£0.37) (£0.59) | (£0.54) (+0.92)|(+0.41) (£0.23)
200 224 18 | 222 186 | 223 185 | 225 179 | 212 154 | 214 177
(£0.52) (£0.71) | (£0.47) (£0.71) | (£0.48) (£0.7) | (£0.52) (£0.7) |(£0.53) (£0.9) |(£0.56) (+0.91)
250 252 212 | 25 212 | 25 212 | 252 213 | 245 21 | 233 189
(£0.23) (£0.26) | (£0.22) (£0.26) | (+0.23) (£0.25)|(£0.21) (£0.23) | (+0.24) (£0.39)|(£0.21) (+0.33)
247 206 | 241 206 | 244 207 | 248 208 | 236 196 | 234 184
3001 (£036) (032) | (£035) (£036) | (£0.35) (£0.33) | (£0.36) (£0.32) | (0.37) (£0.33) | (£0.44) (0.52)
219 182 | 216 185 | 218 185 | 22 182 | 193 126 | 178 124
350 1 (+041) (£052) | (:038) (£0.51) | (:0.39) (£0.49) | (:0.4) (£0.52) |(£0.44) (£0.51)|(0.42) (+0.41)
211 17 | 206 173 | 209 173 | 211 169 | 189 126 | 173 118
400 1(1038) (2052) | (:0.32) (£0.46) | (:035) (£0.48) | (£036) (£0.51) |(£0.41) (£0.75)|(£0.18) (£0.31)
237 195 | 233 199 | 2.37 2 236 193 | 201 158 | 204 173
501 (1045) (20.62) | (:045) (£0.68) | (:0.45) (£0.68) | (:0.45) (£0.57) |(£0.56) (£0.63)|(£0.46) (£0.74)
2.39 2.02 2.35 2.01 2.36 2.03 241 2.03 2.29 1.92 2.68 2.31
Fused (all) (£0.44) (£0.64) | (£0.39) (+0.57) | (+0.41) (£0.61) |(£0.43) (£0.63)| (£0.5) (0.6) | (+0.2) (+0.36)
Table 6.10: Fitness values for ensemble learner models averaged over the 3 Folds for NASA dataset (layup 2).
WAE Deep learning

;::I‘i) SAE MSE RMSE Fitness FC BiLSTM
F-All F-Test | F-All F-Test | F-All F-Test | F-All F-Test | F-All F-Test | F-All F-Test

162 124 | 148 119 | 163 13 | 167 138 | 143 09 | 158 13
150 | (£055) (£0.87) | (£0.29) (0.68) |(£0.51) (£0.89) | (£0.56) (£0.98) | (£0.1) (£0.52)|(+0.45) (0.39)
16 133 | 157 129 | 157 126 | 158 135 | 142 084 | 207 172
2001 (2037) (0.8) | (:0.23) (20.64) | (£0.3) (£0.74) | (£0.29) (£0.6) | (£0.28) (£0.51)| (£0.09) (+0.15)
225 212 | 228 215 | 227 216 | 225 211 | 197 173 | 194 179
250 | (+025) (£0.42) | (£0.28) (:0.33)|(£0.27) (£0.39) | (£0.26) (£0.47) | (£0.21) (£0.35)|(2039) (0.47)
231 225 | 233 225 | 232 227 | 23 225 | 208 17 | 167 115
300 1 (20.12) (£0.14)| (£0.08) (£0.13)| (20.1) (£0.16) | (£0.12) (£0.14) | (£0.24) (£0.54)| (£0.28) (+0.46)
179 155 | 182 162 | 1.81 159 | 1.8 153 | 13 095 | 18 168
30| (2031) (£0.24) | (:0.31) (£0.28) | (£0.31) (£0.26) | (£0.34) (£0.33) | (£0.31) (£0.41)|(£0.77) (+0.64)
400 158 108 | 161 117 | 1.62 119 | 169 121 | 132 101 | 154 132
(£0.17) (£0.5) | (£0.13) (£0.41) | (£0.14) (£0.42) | (£0.23) (£0.51) | (£0.23) (£0.47) | (£0.79) (£0.94)

173 133 | 172 144 | 176 139 | 176 139 | 127 091 | 179 167
B0 1 (2032) (£043) | (£0.26) (£0.37) | (£0.33) (£0.38) | (:0.35) (£0.41) | (£0.29) (0.52)|(+0.35) (+0.46)
1.87 1.75 1.76 1.61 1.84 1.72 1.92 1.83 1.46 1.66 1.53 1.5
Fused (all) (£0.43) (£0.53) | (+0.43) (£0.56) | (+0.44) (+0.6) | (£0.4) (+0.53) | (£0.59) (£0.37)|(+0.76) (0.83)

1 and Layup 3), which have 2 units for training and 1 unit for validation, yield better results
compared to Layup 2, which has only one unit for training and another for validation. This
can be observed in Figure 6.7, particularly for coupon 4 of Layup 1 and coupons 1, 2, and
3 of Layup 3.

HIs constructed by BILSTM-EL upon HT-SSCNN are displayed in Figure 6.8. These Hls
interestingly exhibit multiple incremental steps over the fatigue life in the ReMAP dataset
and Layup 1 of the NASA dataset. These steps may signify distinct damage states, provid-
ing valuable insights for subsequent prognostic models, especially state-based ones, for
RUL prediction. However, establishing a meaningful link between these steps and physi-
cal damage states requires further research and experimentation. The Hls constructed by
FC-EL after the HT-SSCNN model can be found in Appendices (A.3).

In general, higher fitness scores for HIs could have been attained for the ReMAP
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Table 6.11: Fitness values for Ensemble learner models averaged over the 4 Folds for NASA dataset (layup 3).

WAE Deep learning

5:1813) SAE MSE RMSE Fitness FC BiLSTM
F-All F-Test F-All F-Test | F-All F-Test | F-All F-Test | F-All F-Test | F-All F-Test

50 223 oey| 22 197 | 221 197 (223 194 | 19 142 | 217 173
(+0.45) ~7U N (£0.43) (£0.62) | (£0.44) (£0.62) | (£0.45) (+0.62) | (+0.41) (+0.66) |(+0.41) (£0.57)

2.35 2.22 228 217 | 23 218 | 236 223 | 237 214 | 232 191
200 1 (+053) (£0.82) |(£0.48) (£0.78)|(£0.49) (£0.79)| (:0.54) (£0.82) | (£0.52) (:0.83)|(:0.47) (:0.39)
250 2.26 2.16 211 205 | 218 21 | 23 218 | 232 199 | 237 193
(£0.45)  (£0.75) |(£0.36) (£0.66)|(£0.41) (£0.7) | (+0.48) (£0.77) | (+0.56) (£0.73)|(0.25) (£0.54)

2.38 2.2 218 208 | 226 213 | 241 222 | 233 2 | 222 179
300 1 ro54)  (20.82) |(£0.42) (£0.74) | (£0.47) (£0.77)| (£0.56) (:0.83) | (£0.56) (£0.82) |(£0.35) (£0.6)
24 2.2 224 209 | 232 215 | 241 221 | 241 208 | 23 214
350 | (1052)  (2075) |(£0.42) (£0.68)(£0.47) (£0.71)| (0.53) (£0.76) | (£0.5) (£0.71) | (£0.5) (£0.54)
2.25 2.05 219 206 | 22 203 | 228 207 | 228 185 | 21 169
400 1(1047)  (068) |(£0.42) (£0.68)|(£0.43) (£0.66)| (£0.48) (£0.69) | (£0.44) (+0.64) | (£0.5) (£0.67)
450 2.36 2.15 23 211 | 232 212 | 237 216 | 239 209 | 227 183
(£0.48)  (0.72) | (+0.44) (£0.69)|(£0.46) (£0.7) | (05) (£0.73) | (+0.52) (+0.72) | (£0.41) (+0.56)

24 2.22 229 217 | 233 22 | 242 223 | 243 216 | 209 158
Fused (all)| (0 50)  (£0.77) |(£0.46) (£0.75) | (:0.48) (£0.76) | (20.54) (20.78)|(20.59) (+0.82)|(0.45) (:0.63)

datasets compared to the NASA dataset. This can be attributed to several factors, includ-
ing the larger number of training specimens (only one unit more) and a greater number
of time steps for GW inspections, which provide more training data for the DL models.
This difference in performance seems to be less related to the structural type, loading con-
ditions, layups, or types of damage, as the T-single stiffener panels are inherently more
complex in various aspects. Moreover, the ReMAP structures were monitored using a
more intertwined GW network with 56 paths, while the NASA structures used 36 paths.
This richer, intertwined GW network offers more information to leverage for model train-
ing. In essence, the model’s performance is less affected by issues encountered during
the monitoring process, such as the presence of broken or debonded PZT sensors, which

occurred during ReMAP experiments.
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Figure 6.7: HIs obtained by the proposed framework with WAE-Fitness for different datasets, given all frequency
inputs.
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Figure 6.8: HIs obtained by the proposed framework with BILSTM-EL for different datasets, given all frequency

inputs.
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6.4 Conclusions

n this chapter, an innovative approach was introduced to construct comprehensive HIs
Ifor composite structures, addressing the challenges posed by the stochastic nature of
damage accumulation during operational conditions and the need for HIs independent
of historical data. Leveraging the power of Al, a Hilbert transform-convolutional neural
network (HT-SSCNN) was developed within the SSL paradigm. The approach exclusively
utilizes current GW data, eliminating the reliance on historical information. It flexibly
accommodates different GW sensor numbers, networks, and setups. The results demon-
strate the effectiveness and validity of the approach. To assess various combinations and
ensure robustness, rigorous evaluations were conducted, considering different datasets
under various conditions.

The findings indicate that certain frequencies, such as 150 kHz for the ReMAP dataset
and 250 kHz for NASA Layup 1, consistently outperformed others, resulting in more stable
and reliable HIs. The use of EL techniques, specifically WAE-Fitness, led to significant im-
provements in HIs’ performance. For the ReMAP dataset, the WAE-Fitness model, fusing
all GW excitation frequencies, yielded the best fitness scores, with 93% accuracy consider-
ing all units and 89% given test units. While ReMAP experiments are more complex than
the NASA ones, HIs with higher performance could be extracted from the ReMAP dataset
than the NASA dataset, which can be attributed to the availability of one more training
unit and a greater number of time steps for GW inspections. Additionally, ReMAP struc-
tures were monitored using a more intertwined GW sensory network, which provided a
wealth of data for model training.

The produced HIs exhibit desirable properties for RUL prediction. They are monotonic,
prognostable, and exhibit correlated trends, which are essential characteristics for accu-
rate predictions in PHM. The incremental steps observed in the HIs may potentially corre-
spond to distinct damage states, which can be used to inform state-based RUL prediction
models. In conclusion, the framework offers a promising solution to the challenging task
of constructing reliable and historical-independent HIs for composite structures. A high
level of performance was achieved by combining Al with SP techniques, demonstrating
the applicability of the method across different datasets.
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Fusion of Acoustic Emission and
Guided Waves Techniques

In this chapter, AE and GW monitoring techniques are integrated to formulate HIs for T-
stiffener composite panels using the fusion of three AE frameworks with one GW framework
developed in Chapters 5 and 6, respectively. The fusion approach demonstrates the potential
of combining AE and GW data for SHM applications.
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7.1 Introduction

I n this chapter, data from two SHM techniques—acoustic emission (AE) and guided wave
(GW)—are integrated to formulate HIs for T-stiffener composite panels. The frameworks

developed based on AE and GW data are combined to enhance the quality of HIs by lever-

aging complementary information. For this purpose, three frameworks developed using

AF data (as presented in Chapter 5) and one framework developed using GW data (as

provided in Chapter 6) are employed.

After detailing the experimental campaigns considered for the GW-AE fusion scenario,
this chapter introduces the fusion framework, which encompasses resampling and syn-
chronization, followed by the fusion models. The results of fusing different AE frame-
works and the GW framework are presented, demonstrating high performance of up to
97%, 93%, and 94% for fusion models fed by AE frameworks 1, 2, and 3, respectively, based
on HIs’ criteria given all units. When focusing exclusively on test units for the calculation
of HIs’ criteria, the fusion framework continues to exhibit strong performance, achieving
up to 97%, 87%, and 89%, respectively. These results underscore the effectiveness of the
fusion approach in enhancing the overall performance of SHM techniques.

7.2 Experimental Campaigns
A s mentioned earlier, the ReMAP dataset includes T-stiffener composite panels mon-
itored by AE (Chapter 5) and GW (Chapter 6). However, both monitoring systems
were not available for all units, reflecting a common scenario in real-world situations. In
total, 14 units underwent run-to-failure fatigue loading, with proper, available AE data for
12 units and 5 units monitored using the GW system. Among these units, only 3 were com-
mon to both AE and GW. Consequently, training GW-AE fusion models with this limited
number of units is very challenging.

Reserving one unit for the testing phase of the fusion models leaves only 2 units for
the training (and validation) phase. To address this constraint, as illustrated in Figure 7.1,
the AE frameworks are trained on (12-1=) 11 available units with AE data (excluding the
unit selected to test the fusion model), while the GW framework is trained on (5-1=) 4
available units monitored by the GW system (excluding the unit chosen for testing the
fusion model, which remains the same as before). Subsequently, the trained AE and GW
frameworks, along with the (3-1=) 2 available units for training that include both AE and
GW data, are fed into the fusion framework.
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7.3 Fusion Framework

T he fusion framework is depicted in Figure 7.2. As AE is a passive monitoring technique
and GW is an active one, with different sampling frequencies and windowing rates,

the HIs produced by the developed frameworks for each must undergo resampling and

synchronization before being inputted into the GW-AE fusion step.

7.3.1 Resampling and synchronization

The AE data were windowed with lengths and intervals of either 500 cycles (1 and 2" AE
frameworks) or 1000 cycles (3" AE framework). In contrast, GW data were collected at
intervals of 5000 cycles. Consequently, the number of time windows (HI quantities) for AE
exceeds those for GW. To address this discrepancy, GW data are resampled and synchro-
nized based on the time vector of AE windowed data. This process involves copying GW
data from the nearest preceding neighbor, which is practical in real-world applications.
The results of this resampling and synchronization step for the fusion of AE (Framework
1) and GW data across three available folds (units) are illustrated in Figure 7.3.

7.3.2 Fusion models

Various regression models, including Gaussian process regression (GPR) [1], least-squares
boosting (LSBoost) [2], binary decision tree (Tree) [3], linear model using stepwise regres-
sion (LRg) [4], robust linear regression using the bisquare weight function (LRg) [5], SVM
[6], an MLP network, and an LSTM network, are employed to integrate the HIs obtained
from AE and GW. The subsequent subsections will detail the adjusted (hy)parameters for
each fusion model.
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Figure 7.2: Fusion framework of AE and GW SHM monitoring systems.

GP
A squared exponential kernel function with a constant basis function is employed for GPR.
Optimization of GPR is conducted with respect to the noise standard deviation ¢ using BO
within a 5-fold cross-validation, considering 2 units for training. The five folds are divided
based on the number of data points (time steps) of the two units after shuffling. Parameters
of BO include an exploration ratio of 0.5, 4 seed points, and a maximum of 30 objective eval-
uations. The tuned hyperparameter for noise standard deviation o, determined through
the MSE loss function, is found to be 0.6750.

=

LSBoost

The hyperparameters of the ensemble learning (EL) fusion model, encompassing the
choice of EL method between two options—Bagging and LSBoost—as well as the num-
ber of EL cycles (search range: [10, 500]), learning rate (search range: [0.001, 1]), and the
minimum leaf size of the tree as the specified learner, are tuned using BO within a 5-fold
cross-validation, with consideration for 2 units during training. The folds are distributed
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Figure 7.3: HIs derived from AE (Framework 1) and GW data, both before and after undergoing the resampling
and synchronization process, for three folds (units) designated for GW-AE fusion.

based on the number of data points (time steps) of the two units after shuffling. BO pa-
rameters include an exploration ratio of 0.5, 4 seed points, and a maximum of 30 objective
evaluations. The optimized hyperparameters for the EL method were determined through
the MSE loss function, resulting in LSBoost, 457 cycles, a 0.1383 learning rate, and a mini-

mum leaf size of 4.
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Tree

The minimum leaf size of the binary decision tree, considered its hyperparameter with a
search range of [1, 149], is tuned using BO within a 5-fold cross-validation, following the
same procedure as the other fusion models. The optimized minimum leaf size is found to
be one, and the resulting binary decision tree has 99 nodes with node sizes ranging from
1 to 298.

LRy

Stepwise linear regression (LR) utilizes the p-value from an F-statistic to assess models by
adding or removing potential terms at each step. When a term is absent in the model, the
null hypothesis assumes that the term would have a zero coefficient if included. If there
is enough evidence to reject this null hypothesis, the function incorporates the term into
the model. Conversely, when a term is already present in the model, the null hypothesis
assumes a zero coefficient for that term. If there is inadequate evidence to reject this null
hypothesis, the function removes the term. The p-value, derived from an F-test assessing
the change in sum of squared error resulting from adding or removing the term, is used
to train LRg. The criteria thresholds for adding or removing a term are set at 0.05 and 0.1,
respectively. With a maximum of 1000 steps, the LRg fusion model undergoes training
within a 5-fold cross-validation.

LRy

A robust linear regression model, denoted as LRp, is fitted using a bisquare weight function.
In this study, the model is trained within a 5-fold cross-validation to fuse AE-HIs with GW-
HIs, aligning with the ideal simulated HIs.

SVM

An SVM regression model with a linear kernel, € set to 3.727, and utilizing sequential
minimal optimization, is trained within a 5-fold cross-validation to regress the inputs to
the ideal simulated Hls.

MLP

An MLP with three hidden layers, comprising 5, 3, and 1 neurons, is trained using
Levenberg-Marquardt backpropagation. The activation function log-sigmoid is employed
for the hidden layers, while the linear activation function is used for the output layer.
With a loss function of MSE and allocating 30% of the total number of data points from
the two units considered for training as validation, the MLP model is trained to fuse HIs.

LSTM

An LSTM model, as depicted in Figure 7.4, is specifically designed to integrate GW-HIs
with AE-HIs. Through iterative trials and adjustments, the configuration and hyperpa-
rameters have been fine-tuned. The model utilizes the Adam optimizer with an initial
learning rate of 0.1. To mitigate overfitting, a regularization term, known as weight decay
or L2 regularization, is introduced with a set value of 0.001. Despite a maximum training
epoch of 2000, the network’s output is determined based on the best validation loss, with
a validation check frequency set at 30 iterations and a validation check patience set to 50.
Data shuffling occurs at each epoch, with a mini-batch size of 20 ensuring robust training
and fusion performance within the LSTM architecture.
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Figure 7.4: LSTM model designed for GW-AE fusion.

7.4 Results

o comprehensively assess various combinations and validate the effectiveness and sta-

bility of the proposed framework, all potential dataset folds were examined. In each
fold, one unit was designated as the test set, while the remaining two composite panels
were utilized for training (and validation). The HIs constructed through the fusion of the
15¢, Z"d, and 3”9 AE frameworks with the GW framework are illustrated in Figures 7.5
to 7.7, respectively.

Regarding the fusion of the 1% AE framework with the GW framework, it is notable
that except for Unit 1, where GW produces superior HIs, AE data yields higher fitness
scores for the other two units. Specifically, when considering fitness scores exclusively
for test units, the LSTM model outperforms others. However, in the case of fitness given
all units, LRz, MLP, and LSTM demonstrate the highest fitness scores for Units 1, 2, and 3,
respectively.

Concerning the fusion of the 2" AE framework with the GW framework, noteworthy
observations include the superior Hls produced by GW on average compared to AE data.
In terms of fitness scores across all units, MLP achieves a higher score for fold 1 (Test SSP
1). However, it is evident that the HIs for the training units are overfitted, and the HI for
test unit 1 deviates. This situation poses a challenge for prediction. Conversely, based on
fitness scores given the test unit, LRy attains a higher score for fold 1. Notably, the HIs
are not overfitted, and all represent a distinctive jump with a consistent increasing pattern
afterward. This pattern may potentially signify different damage states during the fatigue
loading of composite structures. This underscores the importance of using refined criteria
specifically designed for test units. While LRy provides better scores for the test unit in
folds 1 and 2, it does not for fold 3. Consequently, LSTM is preferred, as its scores for
folds 1 and 2 are not significantly lower, and it outperforms others for fold 3. This choice

reflects the adaptability and effectiveness of LSTM in capturing the varying patterns across
different folds.
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Figure 7.5: HIs obtained through the fusion framework combining the 1" AE framework and the GW framework.
Columns correspond to specific folds labeled at the top, while rows represent the same SHM inputs (AE or GW)
or fusion models, labeled on the right. Green-colored values highlight the maximum fitness score obtained given
all (F-All) or test (F-Test) units for the fold indicated at the top.
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Figure 7.6: Hls obtained through the fusion framework combining the 2"¢ AE framework and the GW framework.
Columns correspond to specific folds labeled at the top, while rows represent the same SHM inputs (AE or GW)
or fusion models, labeled on the right. Green-colored values highlight the maximum fitness score obtained given
all (F-All) or test (F-Test) units for the fold indicated at the top.
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Figure 7.7: Hls obtained through the fusion framework combining the 3'¢ AE framework and the GW framework.
Columns correspond to specific folds labeled at the top, while rows represent the same SHM inputs (AE or GW)
or fusion models, labeled on the right. Green-colored values highlight the maximum fitness score obtained given
all (F-All) or test (F-Test) units for the fold indicated at the top.
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Concerning the fusion of the 3" d AE framework with the GW framework, several ob-
servations emerge. For the first fold, the fusion of AE and GW does not outperform the
GW-HI, but the LSTM fusion model stands out as the best for fold 3. In fold 2, the high F-
Test score of MLP is attributed to the high Pr compared to GW. The HIs of fold 1 obtained
from LSTM are particularly interesting. Initially, the Hls do not exhibit any increase, rep-
resenting a healthy state. Subsequently, after a distinctive jump, they demonstrate a non-
linear increasing pattern with fluctuations, indicative of a middle damage state. The final
damage state includes a consistent, slightly increasing pattern leading up to the eventual
failure. Notably, the duration of the middle damage state lasts around 40-50% of the EoL.

A detailed breakdown of the HIs’ criteria averaged over three folds is presented in
Table 7.1. According to the Fitness-Test metric, the LSTM fusion model emerges as the
most effective across all three AE frameworks. However, it is worth noting that the scores
for the 15! AE framework are higher than the other two due to the use of the test unit for
validation, as explained in Chapter 5. This limitation hinders the generalizability of the
developed framework.

The Mo-Test scores for GW-based HI differ for Framework 3 compared to the other
two, indicating a discrepancy that should be addressed. This inconsistency is attributed
to the resampling process, highlighting the need for improvement in this metric in future
work because the criteria should not be affected by the number of time steps.

In summary, GW-based Hls outperform AE-based Hls, even though they were trained
on fewer units (11 units for AE and 4 for GW). Nevertheless, AE, as a passive SHM tech-
nique, offers higher temporal resolution.

The overall results indicate that the GW-AE fusion step enhances Fitness scores com-
pared to using only one SHM technique. However, considering that this improvement,
compared to the best single SHM input, is less than 10% (9%, 6%, and 2% for AE frame-
works 1, 2, and 3, respectively), the justifiability of this improvement must be assessed in
the context of the cost of monitoring systems and computational complexity. It prompts
consideration of whether using only the GW technique, but with a more intricate network
of sensors and a greater number of time steps for inspection conditions, might compensate
for this improvement. Thus, these findings raise new questions in the field.
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Table 7.1: Distribution of HIs’ criteria values across three folds for the fusion framework fed by the GW model and
AE models (three frameworks) for the ReMAP dataset. The values are computed from Egs. 3.1 - 3.4, encompassing
all units denoted as ’-All; and Egs. 3.5 - 3.8, focusing solely on test units labeled as ’-Test’

Inputs .
AE Criteria (after resampling) Fusion models
model AE GW GPR  LSBoost Tree LRg LRy SVM MLP LSTM
0.99 1 0.99 1 1 1 1 1 1 1
- Mo-All 100y (x0) | (z001)  (x0) (£0)  (x0)  (£0)  (¥0)  (x0)  (x0)
- Mo Test 0.81 0.7 0.65 0.88 0.85 0.9 0.92 0.92 0.93 0.97
g (£0.18)  (£0.28) | (£0.2)  (£0.07)  (20.03) (£0.02) (£0.01) (£0.02) (£0.02)  (+0.05)
g ProAl 0.95 0.87 0.89 0.9 0.93 0.91 0.94 0.94 0.95 0.95
g r (£0.01)  (£0.11) | (£0.17)  (£0.07)  (£0.08) (£0.01) (£0.02) (£0.02) (£0.02)  (+0.05)
= 0.94 0.85 0.84 0.85 0.89 0.94 0.94 0.94 0.96 0.98
Pr-Test (£0.01)  (x0.2) | (x0.26)  (#0.13)  (x0.13) (£0.06) (£0.07) (£0.06) (£0.06) (+0.01)
0.92 0.94 0.9 0.95 0.94 0.97 0.97 0.97 0.96 0.96
Tr (+0.12) (£0.03) (+0.05)  (+0.04)  (+0.04) (%0.03) (*0.03) (+0.03) (+0.04) (+0.05)
[ 7Fi7tr:esis-7Aili 285 2 28 | 277 285 287 288 291 291 29 291
(£0.15)  (£0.09) | (¥0.17)  (£0.04)  (£0.05) (+0.04) (£0.02) (+0.02) (+0.04) (0.06)
FitnessTest | 267 2.48 238 2.68 2.69 2.81 2.83 2.84 2.84 2.91
(203)  (£0.32) | (x0.46)  (£0.15)  (#0.13) (£0.06) (£0.06) (+0.05) (+0.05) (+0.05)
1 1 0.98 0.99 0.98 1 1 0.99 1 1
N Mo-all (£0) (£0) | (£002)  (£0.01)  (£0.02) (£0.01) (£0.01) (£0.01)  (¥0)  (x0)
- Mo Test 0.93 0.7 0.59 0.67 0.58 0.79 0.81 0.78 0.91 0.95
¢ (£0.04)  (£0.28) | (£0.37)  (£0.22)  (x0.37) (£0.28) (+0.24) (x0.3)  (£0.08) (+0.05)
g ProAl 0.67 0.87 0.72 0.73 0.74 0.76 0.82 0.78 0.79 0.85
g (£0.16)  (£0.11) | (£0.23)  (£0.18)  (20.16) (£0.19) (*0.14) (£0.17) (£0.19)  (x0.2)
o 0.71 0.85 0.59 0.59 0.61 0.65 0.73 0.68 0.68 0.79
Pr-Test (£0.28)  (+0.2) | (x033)  (20.27) (x0.23) (£0.27) (£0.21) (0.25) (£0.27) (+0.29)
0.76 0.94 0.76 0.81 0.81 0.91 0.95 0.92 0.94 0.88
T 00y 003 | (03) (020 (:028) (0.01) (009 (001  (:0) _ (s0)
FimessAl | 243 2.3 247 253 253 2.67 2.77 2.60 2773 273
(+0.09) (+0.09) (+0.46)  (£0.37)  (+0.39) (+0.19) (*0.12) (+0.18) (+0.19) (+0.14)
) 24 2.48 1.94 2.07 1.99 234 2.49 2.37 253 2.62
Fitness-Test | . 008)  (:0.32) | (£0.87) (0.64)  (£0.8) (:048) (£0.39) (048) (:0.3) (20.28)
MoAll 0.99 1 0.99 1 0.99 1 1 1 0.99 0.99
- (£0) (0) (£0.01)  (x0)  (£0.01)  (x0) (0) (£0)  (£0.01)  (0)
- Mo Test 0.93 0.82 0.75 0.97 0.81 0.95 0.95 0.95 0.76 0.92
g (£0.09)  (£0.12) | (0.23)  (£0.02)  (£0.13) ($0.06) (¥0.06) (+0.06) (£0.24)  (+0.08)
g PrAll 0.7 0.87 0.73 0.72 0.71 0.75 0.76 0.77 0.93 0.92
z (£0.25)  (20.11) | (£0.2)  (£0.24)  (¥0.21) (#0.2) (0.19) (+0.18) (£0.06) (+0.09)
o Pr-Test 0.58 0.85 0.6 0.59 0.59 0.63 0.65 0.66 0.9 0.88
(£036)  (0.2) (203)  (£0.35)  (20.33) (:0.31) (£0.3) (£0.29) (20.08) (£0.14)
- 0.86 0.94 0.85 0.91 0.83 0.91 0.91 0.91 0.89 0.87
(£0.18)  (£0.03) | (£0.14)  (£0.03)  (x0.11) (£0.11) (£0.12) (£0.12) (£0.04) (+0.07)
[ 7Fi7tr:esis-7Aili T 256 281 | 257 262 252 266 267 268 281 279
(£0.07)  (£0.08) | (¥0.26)  (£0.23)  (¥0.24) (*0.1) (£0.08) (+0.07) (0.05) (+0.02)
FitnessTest | 237 2.61 2.21 2.46 2.22 25 252 252 2.55 2.67
(£0.1)  (£0.23) | (+0.49)  (£033)  (¥036) (+0.15) (0.13) (+0.12) (+0.28) (+0.14)

7.5 Conclusions
In summary, the fusion of AE and GW data using various regression models, partic-
ularly the LSTM model, demonstrates promise for T-stiffener composite panel health
monitoring. Synchronization and resampling of GW data based on AE windowed data
were required for fusion. Despite marginal improvements in Fitness scores, questions
arise about the cost-effectiveness of the fusion approach compared to using only the GW
technique with a more intricate sensor network. The study provides valuable insights into
the challenges and potential trade-offs associated with AE-GW fusion in SHM.
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8.1 Conclusions

This research embarked on a comprehensive exploration of HI design for SHM and
prognostics, focusing primarily on composite structures. The investigation spanned

various methodologies, incorporating Al, SP, and innovative fusion approaches. By focus-

ing on key evaluation criteria such as Mo, Pr, and Tr and identifying critical gaps like the

need for nonlinear HIs, generalizability, and historical-independent HIs, the groundwork

was laid for targeted investigations.

In response to these challenges, novel approaches were introduced to enhance Hls.
The emphasis on test units for modifying evaluation criteria and the introduction of a SSL
paradigm derived from nonlinear HIs, aligned with the physics of damage propagation,
marked notable methodological contributions. Additionally, the integration of a modified
multiplicative neuron with sparsity control for discretizing weights aimed at designing
interpretable HIs with concise equations, particularly beneficial for turbofan engines.

The main conclusion of the thesis can be listed as follows:

- Three frameworks integrating Al and SP were developed to formulate HIs for T-
stiffener composite panels using AE data. The frameworks demonstrated superior
performance, 93%, 90%, and 91% based on HIs’ criteria given all units, respectively,
outperforming existing literature models. Emphasis on improved feature extraction
by advanced SP methods, optimizing the ANN architectures and hyperparameters
by BO and PBO, implementing the HIs’ criteria into the learning and optimizing
process, separating the tasks of temporal and spatial information extraction during
the learning process, and ensemble learning showcased advancements in HI design.

+ The implementation of a HT-SSCNN fed by GW data followed by ensemble learn-
ing demonstrated high performance and highlighted the potential of data-driven
and Al approaches in health monitoring applications for composite structures. The
methodology is validated through investigations on T-single stiffener CFRP pan-
els under compression-fatigue and dogbone CFRP specimens under tension-fatigue
loadings, showing high performance of up to 93% and 81% based on HIs’ criteria
given all units, respectively. The proposed GW approach exclusively utilizes current
GW data, eliminating the reliance on historical information. It flexibly accommo-
dates different GW sensor numbers, networks, and setups. The incremental steps
observed in some HIs may potentially correspond to distinct damage states, repre-
senting another aspect of interpretability that can be used to inform state-based RUL
prediction models.

« The fusion framework of AE and GW techniques demonstrated the potential of com-
bining these techniques for SHM applications. The results of fusing different devel-
oped AE frameworks and the GW framework are presented, demonstrating high
performance of up to 97%, 93%, and 94% for fusion models fed by AE frameworks 1,
2, and 3, respectively, based on HIs’ criteria given all units. When focusing exclu-
sively on test units for the calculation of HIs’ criteria, the fusion framework contin-
ues to exhibit strong performance, achieving up to 97%, 87%, and 89%, respectively.
These results underscore the effectiveness of the fusion approach in enhancing the
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overall performance of SHM techniques. However, questions arose about the cost-
effectiveness of the fusion approach compared to using only the GW technique.

- Lastly, INN was developed for designing HIs for commercial turbofan engines. The
introduction of modified multiplicative layers alongside discretizing weights by
sparsity control provided a breakthrough in creating concise equations. The per-
formance of the INN surpassed that of alternative methods while maintaining inter-
pretability in HI design.

8.2 Recommendations
While the research has made significant strides in addressing gaps in HI design and

application, several areas for future exploration and improvement are identified:

Cost-effectiveness and computational complexity analysis

Given the potential trade-offs of using fusion approaches, a detailed cost-effectiveness
analysis is recommended. Comparing the performance gains with the cost and complex-
ity of monitoring systems will provide valuable insights for decision-making in practical
applications. Also, while the fusion of AE and GW techniques showcased improvements
in performance, the computational complexity of fusion approaches warrants further in-
vestigation. Evaluating the trade-offs between enhanced performance and computational
efficiency would provide valuable insights for practical implementation. Additionally, the
comparison should be fair, meaning that the same (enough) number of units without miss-
ing information should be available to train the AE-HI and GW-HI construction frame-
works.

Adaptive-active fusion scenario

An efficient fusion scenario, considering a cost-effective combination of SHM techniques,
could be an adaptive-active monitoring system. This system activates the active SHM
technique (e.g., guided wave) when the passive SHM technique (e.g., acoustic emission) de-
tects a noticeable variation due to health degradation. This adaptive-active fusion scenario
leverages temporal information recorded from the passive SHM technique efficiently, min-
imizing the number of active SHM technique assessments and reducing operational shut-
down times.

Criteria improvement

As observed in Chapter 7, the resampling process affected Mo, highlighting the need for
improvement in this metric in future work to ensure that criteria are not influenced by the
number of time steps.

Optimizing the weight of Tr that contributes to Fitness would enhance the flexibility
of learning algorithms. The rationale behind this lies in the author’s belief that Tr directly
correlates with uncertainty and may not always achieve its maximum value in a compre-
hensive health indicator.

Additionally, criteria should be interconnected in a conditional manner, ensuring that
HIs not only meet the requirements of Pr and Tr but also incorporate health degrada-
tion, thereby enhancing their overall utility. For instance, if HIs exhibit purely horizontal
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patterns without any increase or decrease, they may meet the criteria of Pr and Tr with
maximum scores. However, such HIs might lack practical significance since they do not
indicate any health degradation. In this context, Mo should be conditional to confirm Pr
and Tr. The author believes that further enhancement of the criteria is possible.

Integration of uncertainty

Future work should explore methods to capture and integrate uncertainty within models
towards better decision-making. Differentiating noise or uncertainty components and
incorporating them into the frameworks can enhance stability and reliability, contributing
to the development of more robust Hls.

8.3 Final Remarks

n conclusion, this thesis has advanced the field of prognostics and health management,
Iwith a specific focus on health indicator design, particularly within the domain of com-
posite structures. The innovative methodologies, which span artificial intelligence, signal
processing, and fusion techniques, have consistently demonstrated superior performance.
This research has also initiated discussions and taken important steps towards achieving
interpretability in health indicator design.

The methodologies, frameworks, and insights presented in this thesis lay a solid foun-
dation for further research, contributing to the ongoing innovation in health monitoring
applications. The recommendations provided offer valuable guidance for future research
directions, with the aim of refining and extending the proposed frameworks for broader
applications in engineering systems.

The journey undertaken, from exploring critical gaps in the literature to proposing ad-
vanced methodologies, has played a pivotal role in the continuous evolution of prognostics
and health management. As technology and methodologies continue to evolve, the explo-
ration of reliable and interpretable health indicators will remain crucial to ensuring the
safety and efficiency of complex engineering systems, such as composite structures.
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A.1 Interpretable HIs for Commercial Turbofan Engines
T his section aims to develop an interpretable ANN with the capability for automatic

feature selection and fusion targeting optimal HIs with considerably lower complex-
ity. As explained in Chapter 3 (Section 3.5), this architecture is made up of additive and
new modified multiplicative layers that combine features to better represent the system’s
physical characteristics. To extract a compact HI equation—making the neural network
mathematically interpretable—the number of parameters is further reduced by discretizing
the weights via a ternary set. This weight discretization simplifies the extracted equation
while softly controlling the number of weights that should be overlooked.

The proposed design is tested using the NASA Ames Prognostics Data Repository
dataset for turbofan engine degradation simulation, which is widely used in the PHM
field [1]. The findings will be discussed in comparison with PCA, KPCA, and two-stage
genetic programming (GP) outputs. This methodology makes several key contributions,
including:

1. Introducing a new type of neuron that operates multiplicatively, in addition to the
commonly used additive neurons.

2. Building a network that combines both additive and multiplicative neurons to gen-
erate accurate and robust hybrid HIL

3. Utilizing the benefits of both multiplicative neurons and sparsity control by imple-
menting discretized (ternary) weights, resulting in concise and efficient equations.

4. Developing HI models with concise and easy-to-understand equations, while ensur-
ing they meet the evaluation criteria of Mo, Pr, and Tr.

In this section, a concise overview of pre-processing, de-noising, and data division into
training and test sets is presented in Section A.1.1. Subsequently, the interpretable HI con-
struction framework, which incorporates newly modified multiplicative layers alongside
additive ones and utilizes discretized weights, is outlined. Finally, the criteria for HIs will
be presented and discussed.

A.1.1 Dataset
T he present section focuses on the NASA Ames Prognostics Data Repository dataset
for commercial turbofan engines (CMAPSS) [1]. This dataset is generated using the C-
MAPSS tool, which models various engine fleet deterioration scenarios—from a baseline
condition to the point of final failure in the training data and a time period prior to the EoL
in the test data. Two sets of data are investigated in this section: first, engines degrading
with one failure mode (FD001); and second, engines degrading with two failure modes
(FD003). Each engine’s ID and deterioration time steps are given in the first and second
columns, respectively. The next three columns provide the engine’s operational charac-
teristics, and the final 21 columns list the signals from 21 sensors. Both subsets FD001 and
FD003 consist of 200 turbofan engine units each, with 100 designated for model training
and the remaining 100 for testing RUL prediction models. However, the 100 units allo-
cated for RUL model testing lack sensory data up to the EoL. Consequently, these units
cannot be utilized for evaluating the HI construction model using the HIs’ criteria (Mo, Tr,
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and Pr). As aresult, a test fraction equivalent to 20% of the first 100 turbofan engines with
complete input sensory data until EoL in each subset is reserved for testing.

Data processing can suffer from signals that are constant throughout all measurement
points. As a result, data that have identical upper and lower boundaries is first found
and removed. Accordingly, out of the 21 sensors, the 15¢, Sth, 10”1, 16”1, 18”1, and 19" are
removed, leaving 15 in place for the subset FD001. The same sensors are removed from sub-
set FD003 with the exception of sensor 10, leaving 16 in place. As a result, the remaining
sensors are denoted in the following as 1 through 16, among which the 16" sensor refers
to the different sensor used in subset FD003 (i.e., sensor 10), and the other sensors have
the same index. Data have been standardized using a zero-mean normalization technique
that used only the training samples’ mean value and standard deviation. Additionally, to
improve the quality of the resulting features and HI, the signals can be de-noised. In this
case, a polynomial function of order four is used to perform a regression. The resulting
de-noised signals (features) can then be chosen as HIs or retrieved (feature extraction) and
combined (feature fusion) to create an appropriate HIL

A.1.2 Building Interpretable ANN (INN)

y definition, an ANN is a function approximator that integrates input data into the
B expected output using a complicated equation. Since an ANN needs large numbers
of weights to build acceptable HIs, retrieving the equation is not practical. The number
of variables should be dropped while ensuring high levels of performance to achieve an
interpretable network that could be transformed into an intuitive and condensed equa-
tion expressing a HI. The proposed methodology will demonstrate that combining the
weights’ discretization—the regulation of their sparsity—and the simultaneous use of both
multiplicative and additive neurons results in an interpretability that is satisfactory. The
abovementioned ANN can also take into account the physical characteristics that invisi-
bly underlie the components that make up a HI. As a result, the proposed approach may
now uncover the ANN’s underlying formula, the HI, which properly represents the feature
selection and fusion steps.

An additive layer is composed of several typical additive neurons, whereas a multi-
plicative layer is made up of several multiplicative neurons. Figure A.1 illustrates the
proposed framework. First, a multiplicative layer receives the inputs which are either raw
sensory data or de-noised ones. Each neuron at this layer is a multiplication of the inputs
with various weights and a bias in accordance with Eq. 3.12. There are several multipli-
cation combinations between the inputs when there are plenty of neurons. The output of
the multiplicative layer is then added to a subsequent additive layer with a single additive
neuron to create the final output. The ANN becomes increasingly complex when more
neurons are added to the additive layer, and it is quite probable to overuse a portion of
the inputs. Terms that correspond to a single input instead of a combination of them are
typically evident once a HI's formula is obtained. For example, if the inputs are xq, x,,
and x3, we might get the equation x;x;x3 +x;. It is difficult to establish such an equa-
tion utilizing purely the multiplicative layer’s outputs to be imported into the subsequent
additive layer. Hence, utilizing the inputs of the network in both additive and multiplica-
tive layers is the most applicable architecture. Accordingly, the inputs and outputs from
the multiplicative layer are concatenated before being passed into the additive layer. It
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is clear that using additive layers and then multiplicative layers results in more complex
equations, and the option to multiply the inputs together is missing. For instance, consid-
ering four inputs (two by two separated (zero weights) for simplification), the simplified
combination of additive+multiplicative yields (x; + x5)(%3 + X4) = X1 X3 + X1 Xg + X X3 + X X4
while the simplified combination of multiplicative+additive yields x;x; + x3x4, wWhich is
less complex. This is due to the ability of the multiplication operation to capture more
complex dynamics than the addition one. Consequently, the model should first create all
the necessary complex combinations between the features and then decide which of them
are important to be added together. It should also be noted that, as mentioned, the option
to directly multiply the inputs in the additive+multiplicative configuration, i.e., x; and x;,
as well as x3 and x4, is missing.

A stream of raw sensor data, a de-noised format, or some extracted features could all
be used as the model’s inputs. The trained INN serves as the equation for generating the
outputs, which are a series of points that make the HI. Before importing the data into the
model, a preprocessing step including resampling is required due to the different sequence
lengths for each unit. The time-series data points will all be the same length thanks to this
step. To do this, there are two techniques. The easier method involves upsampling with
interpolation, which involves increasing the number of time-series samples until each se-
quence is equal to the largest one. Based on the interpolation method selected, those data
points are estimated. The second technique involves extending each sequence by adding
pseudo-data points since it meets the maximum length needed. This can be performed by
padding with an irrelevant value. The padded inputs can then be used to train the model,
which outputs the results. This method’s sensitive aspect is when it calculates losses. To
prevent these pseudo-values from biasing errors through backpropagation, the padded
lengths should be perfectly deleted. To continue the next forward pass following the up-
dating of the parameters, the lengths should be padded again. This method eliminates the
need for any estimation steps, unlike the first technique. Nevertheless, training time rises
remarkably. It was found that both techniques in the present work produce outcomes that
are equal, and the first one has been adopted thanks to its simplicity and speed.

So far, the equation for formulating the HI was not completely expressive because the
weights could have any real value. Thanks to Eqs. 3.13 to 3.16 for training the INN, the
majority of the weights, if not all, shift in the direction of the integers -1, 0, or 1. Weights
can converge to the intended values in practice, but they may not always coincide. With
this in mind, it is safe to appropriately round the values during validation without compro-
mising accuracy in these circumstances. Utilizing a de-noised version of the sensor data
enables all the weights to become ternary (see subsection A.1.3); however, using their raw
version does not cause this to happen. As long as the majority of the weights are within
the ternary form, a few weights in this last scenario could range from [-1, 1], which
could be smoothly rounded to the first decimal point with a trivial accuracy loss. Follow-
ing training, several non-ternary weights are a result of the noisy raw data. Hence, there
is indeed a trade-off between ternarizing the weights and minimizing the E loss, which
can be controlled by the regularization hyperparameter A. A large value for A indicates
that more ternary weights have been preferred (better Ez minimization), leading to a more
concise equation rather than optimally predicted results (not ideal E- minimization). For-
tunately, the intention is to construct a HI that delivers high criteria scores (Mo, Pr, and
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Figure A.2: First principal component of the PCA and KPCA applied to the raw (first row) and de-noised (second
row) entire dataset of subset FD001 given 100 engine units.

Tr) rather than relying solely on simulated label values, thus placing greater emphasis on
developing concise formulas.

A.1.3 Results and Discussions

In this section, the HIs constructed using the introduced approach are compared and
discussed with the outputs of the PCA, KPCA, and GP models for subsets FD001 and

FD003, respectively.

Subset FD001

Since the first principal component of the PCA and KPCA covers the largest portion of
variations in data, it can be regarded as HI. These PCs were extracted through models
applied to the whole dataset including 100 units, which are shown in Figure A.2. Sensor 8
has the highest fitness score for raw inputs, 2.58, which has been improved using the PCA
model to 2.85 (10.47%). This value for de-noised inputs increased from 2.91 (sensor 8) to
2.94 (1%). On the other hand, the KPCA model was unable to improve the HI with regard
to neither raw nor de-noised inputs, demonstrating that the CMAPSS dataset (especially,
subset FD001) has a linear rather than a nonlinear correlation among inputs. As a result,
PCA can produce a reasonably appropriate HI for this dataset, and the results argue that
complex models for CMAPSS, including DNNs, are unnecessary and redundant. This is
also valid for RUL prediction because a better HI results in a more precise RUL forecast.
This viewpoint could be supported by the fact that the dataset is an output of a simulation
model instead of realistic cases, and that the simulation tool most probably used a number
of existing equations in addition to typical noise [2].

The inability to interpret the generated principal components is one of the HI-related
drawbacks of the PCA and KPCA methods, as was previously mentioned. Thus, effective
solutions to cope with this issue should be introduced and substituted. The following
paragraphs provide an overview of the proposed methodology’s outcomes.



A.1. Interpretable HIs for Commercial Turbofan Engines 161

The developed method constructed the following formula after training with 80% of
the de-noised dataset (80 turbofan engines):

HI = —0.14X5X15 +X8—X9—X10—X14—0.2 (Al)

where X; denotes the de-noised data from sensor i. Zero weights have been given to the
sensors that had no component in the equation, whereas {-1, +1} have been applied
to the others. The existence of only one multiplication occurring between the de-noised
data shows that only one multiplicative neuron with a bias of e’ = 0.14 contributes to the
additive layer. The bias of the additive neuron is b = -0.2. The INN hyperparameters are
listed in Table A.1. It is worth mentioning that all of the hyperparameters were selected
via a grid search technique applied to the subset FD001 only, and then the same values
were also applied to the subset FD003. The potential values for each hyperparameter are
shown in Table A.2. Since a combination of activation functions converts the additive
neuron into a multiplicative one, the computational complexity is similar to a vanilla feed-
forward NN, i.e. O(LxN2), where L is the number of layers and N is the number of neurons
on each layer.

Table A.1: The INN model’s hyperparameters.

Dataset  Alpha(x¢) Lambda(4) Batches Epochs Multiplicative  Additive  Learning

Neurons Neurons Rate
de-noised 1.6 107 4 200 32 1 0.01
raw 1.8 1073 4 200 64 1 0.01
Table A.2: The hyperparameters’ spaces for grid search.
Alpha (o) [1.1,13,...,19] Multiplicative Neurons [1, 16, 32, 64, 128]
Lambda (1) [107,107%, ..., 107%] Additive Neurons [1, 16, 32, 64, 128]
Batches [4, 8, 16] Learning Rate [10'4, 1073,1072,1071]
Epochs [100, 200, 300]

The created HIs for each sample of the test data are displayed in Figure A.3(bottom
left), demonstrating successful performance for all three metrics (Mo, Pr, and Tr). The
overall fitness score is 2.9461, as depicted in Table A.3, demonstrating that the INN effec-
tively combined the de-noised data to produce a greater score for criteria. Whereas the
multiplicative layer has a large number of multiplicative neurons (32) in order to obtain a
concise formula, as expected, only one multiplicative neuron—the one that multiplies the
features X5 and X;s—contributes to the output after implementing weight regularization
with sparsity control.

Given directly unprocessed raw data as input, the suggested model produces the fol-
lowing equation:

006 XXX Xy 01 (A2)
=0U. 02303902 — X5+ Xg —Xg+ X717 +0. 1 .
X5 X14 XIS

where X; denotes the raw data from sensor i. Since it is more challenging to achieve an
effective equation given raw noisy data than de-noised ones if only the ternary format
of the weights is employed, the HI equation contains more terms, as expected. In order
to construct Eq. A.2, some weights of the multiplication layer had to be float values that
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Figure A.3: HIs constructed by the proposed (INN) and two-stage GP (GP) models, utilizing raw (first row) and
de-noised (second row) data for 20 test engine units of subset FD001.

were rounded to the closest first decimal point. Figure A.3(top left) displays the created
HIs for each test unit. As can be seen in Table A.3, the fitness score for the raw data
is 2.7407, which is lower than the de-noised form. Once more, the proposed INN was
able to effectively combine the raw data to generate a better HI in terms of criteria and
interpretability. The number of neurons in the multiplicative layer was doubled (Table A.1)

Table A.3: Scores for HI evaluation criteria of PCA, KPCA, GP, and the proposed model (INN), all trained on 80
engine units from subset FD001, calculated considering the 20 test engine units.

PCA KPCA GP Proposed model  Best Sensor (S 8)
Monotonicity DeI::J‘;Ze l
Trendability De}::)‘i)‘;e l
Prognosability Deiize d
Fitness De}:lize d
* “Green color — Red color” equalizes “Best result — Worst result”

Table A.4: Scores for HI evaluation criteria of PCA, KPCA, GP, and the proposed model (INN), all trained on 80
engine units from subset FD001, calculated considering both the 80 training and 20 test units.
PCA KPCA GP

Proposed model  Best Sensor (S 8)

Monotonicity Deiz‘ize d
Trendability Deiz‘i;:e d
Prognosability Deljl?)‘i;:e q
Fitness Deljl?)‘i’:e d

<

Green color — Red color” equalizes “Best result — Worst result”
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since processing raw data is more complicated. This makes training more complex, but
the sparsity control once again eliminates the unneeded weights to still generate a simple
formula. The hyperparameters « and A have to be raised to increase the zeroed weights
and emphasize this process more, respectively, so that this doubling of the neurons can be
compensated. For comparison, the outputs of the most recent study (a two-stage GP model
[3]) are shown in Figure A.3(right), along with the outputs of the proposed approach. It
should be emphasized that although the equation produced from the two-stage GP model
was only applied to and resulted from de-noised data, the same constructed equation was
also used to generate HIs given the raw data in order to make a comparison. Tables A.3
and A.4 present, respectively, the evaluation criteria scores for the test set and for the
whole dataset (100 units). The latter is because the prognostic model, which also needs to
be trained on only the training portion, could achieve more accurate RUL predictions for
the test portion when the criteria scores for the entire HIs, including the training and test
portions, are high, rather than only for the test Hls.

The developed model using the de-noised data has the best fitness score of all (2.95).
PCA-based HI has a close fitness score (2.94), but the derived HI equation is complicated
to comprehend. The GP model similarly achieves a high score (2.93); however, the authors
[3]) only took into account the highest-quality inputs (based on the feature extractor in
the first stage) in the second stage (which has been dedicated to the feature fusion pro-
cess). It should be emphasized that a larger INN including more layers and neurons with
decreasing a could have produced even higher fitness scores, but with less interpretability
and more complex functions. The results show that the developed methodology is supe-
rior for the subset FD001 as a result of the highest fitness score and, in the meantime, good
interpretability.

Subset FD003
The PCA- and KPCA-based HIs for subset FD003, considering the whole dataset, are shown
in Figure A.4. Similar to the subset FD001, sensor 8 has the highest fitness score for raw
inputs, 2.56, which has been diminished using the PCA model to 2.29 (-10.55%). This value
for de-noised inputs decreased from 2.80 (sensor 8) to 2.47 (-11.79%). In contrast to the
subset FD001, the KPCA model provides slightly better HIs compared to the PCA model,
with scores of 2.37 and 2.49 for raw and de-noised inputs, respectively. However, they are
still less than the best input (sensor 8).

The INN model constructed the following equation after training with 80% of the de-
noised dataset:

X5 Xg Xo X0 X
HI = —3.04——22710716 4 o4 (A.3)
X14X15

where X; denotes the de-noised data from sensor i. In comparison to Eq. A.1 for the subset
FD001, although the equation format has changed, the same sensors are involved, except
for sensor 16 (X;4) which was the different sensor used in subset FD003. Although the
same sensors were included because the objects (engines) are of a special model, the new
sensor 16 was also included in the formula, possibly because the subset FD003 contains
engines that have two failure modes (rather than one), and thus this sensor likely carries
the information related to the failure modes. As can be seen, mainly multiplication neu-
rons contribute to a bias of the additive neuron, which is b = —-1.51. It should be mentioned
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Figure A.4: First principal component of the PCA and KPCA applied to the raw (first row) and de-noised (second
row) entire dataset of subset FD003 given 100 engine units
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Figure A.5: HIs constructed by the proposed (INN) and two-stage GP (GP) models, utilizing raw (first row) and
de-noised (second row) data for 20 test engine units of subset FD003.

that the INN hyperparameters for the subset FD003 are the same as the FD001 (Table A.1)
since the purpose is also the interpretability rather than purely the high criteria scores.
The created HIs for each sample of the test data are displayed in Figure A.5(bottom left),
demonstrating successful performance for all three metrics. The overall fitness score is
2.8624, as depicted in Table A.5, confirming the INN’s performance.
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Table A.5: Scores for HI evaluation criteria of PCA, KPCA, GP, and the proposed model (INN), all trained on 80
engine units from subset FD003, calculated considering the 20 test engine units.

PCA KPCA GP Proposed model  Best Sensor (S 8)
Trendability Del:l?)‘ih;e q 0.20 088 058 .
. Raw 0.59 0.63
Prognosability . ised 059 0.63 0.60
Fitness Raw 2.47 2.50 2.15
Denoised | 2.57 2.60 2.52

* “Green color — Red color” equalizes “Best result — Worst result”

Table A.6: Scores for HI evaluation criteria of PCA, KPCA, GP, and the proposed model (INN), all trained on 80
engine units from subset FD003, calculated considering both the 80 training and 20 test units.

PCA KPCA GP Proposed model  Best Sensor (S 8)
- Raw

s Raw 0.75 0.75 0.43 0.86 0.68
Trendability o ied 0920 087 0.73 0.83 0.86
Prognosabilit Raw 0.56 0.63 0.60 0.89 0.90

BB penised 056 052 o061 w0 o
Fitness Raw 2.29 2.37 1.99 2.56

Denoised | 2.47 2.49 233
* “Green color — Red color” equalizes “Best result — Worst result”

Given directly unprocessed raw data of the subset FD003 as input, the suggested model
produces the following formula:

0.23/0.2 /0.1 0.3 -0.2 3/0.2 3/0.3 /0.1 0.3 4-0.3 4-0.2
Xl XZ XS XG X7 X8 X9 Xll X12 Xl4 X16
Xig' Xs' (A9)

HI=-0.024
- Ol(Xl +X2 _XG) -3.29

where X; denotes the raw data from sensor i. Similar to the subset FD001, to construct Eq.
A4 for the noisy data, some weights of the multiplication layer had to be float values that
were rounded to the closest first decimal point. Figure A.5(top left) displays the created
HIs for each test unit. As can be seen in Table A.5, the fitness score for the raw data is
2.7893, which is lower than the de-noised form. Again, the suggested INN was successful
in combining the raw data to produce a better HI in terms of criteria and interpretabil-
ity. Training becomes more complicated as a result, but the sparsity control once more
excludes the extra weights to produce a straightforward equation.

In Figure A.5, the outputs of the INN and the two-stage GP model [3] are displayed
for comparison. It is important to note that, even though the equation generated by the
two-stage GP model was the result of applying to only the de-noised data of the subset
FDO001, the same built equation was also used to obtain HIs for the subset FD003 in order to
compare results. Tables A.5 and A.6 present, respectively, the evaluation metrics scores for
the test set and for the whole dataset. Regarding the latter, it should be again emphasized
that if the criteria scores for the complete set of HIs (both the training and test) are high,
it will increase the accuracy of RUL predictions for the test portion.

The INN model using the de-noised data has the highest fitness score (2.86) compared
to the other models. PCA and KPCA models generated HIs with lower fitness scores,
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and the extracted HI formula is also complicated to understand. The GP model achieves
the lowest score; however, the used equation has been extracted from only the subset
FDO001. The findings demonstrate that the INN model performs better because of its high
fitness score and, concurrently, its high interpretability, i.e., the equation of the built HI
can be interpreted and is readable in terms of the inputs. In contrast to the thousands of
parameters in typical DL models, the number of parameters in HI equations of INN, given
de-noised inputs, is 8 and 9, and given raw inputs, it is 14 and 18, for subsets FD001 and
FDO003, respectively.

Health indicator threshold

Since the HI labels were simulated according to a SSL framework with an initial range of
[0-1] [4], which can be scaled in any desired range, like [0-10], the end limit was already
considered as the threshold of HI for the simulated labels. However, the true threshold of
the designed HI for the Time-To-Failure should be selected (or calculated) after the training
phase, considering the constructed Hls rather than the simulated Hls. With this in mind,
the mean value of the constructed Hls at the EoL or at a predefined level based on the
intended reliability and safety as well as uncertainty could be selected as the threshold.
For example, the range of the simulated labels has been scaled to [0-10] for the subset
FD001, while the range for subset FD003 is [0-1] without any scaling, which proves that
the employed SSL model is insensitive to the range of labels and only the pattern of targets
is important. However, as explained, the constructed HIs are the basis for determining
the threshold. With this in mind, for subset FD001, the threshold considering the raw
data-based constructed HI is 8.56 and the threshold considering the de-noised data-based
constructed HI is -24.04 according to the mean value of the predicted HIs in the training
phase. Similarly, these thresholds for subset FD001 considering a higher safety confidence,
5% earlier than the EoL, are 6.09 and -26.56 for the raw data-based and de-nosied data-
based constructed HIs, respectively. These threshold values for both subsets in comparison
with the testing phase in order to calculate the error between them are shown in Table A.7.
The error is calculated as (Thresholdr,giping - Thresholdr,;)/Threshold g, to consider
the test as the basis. The negative errors indicate safer thresholds, while positive ones
indicate earlier failures. It should be noted that the true thresholds (at 100% x EoL) for the
test units are always greater (later) than the thresholds at 95% x EoL based on the training
units, which in turn shows that with a 5% interval, the determined threshold is almost
safe.

Table A.7: Mean value of the constructed HIs at the EoL (100% x EoL) and 5% earlier than the EoL (95% x EoL)
to determine the threshold for the Time-To-Failure, which should be based on the training phase.

Inputs Threshold at 95% x EoL Threshold at 100% x EoL
P Training  Test  Error (%) Training  Test Error (%)
Raw data 6.09 570 6.84 8.56 855 0.12
Subset FDOOL ) '\ ised data  -26.56  -26.68  -0.45 2404 -23.95 0.38
Raw data 0.84 0.85 118 0.88 0.90 222
Subset FDOO3 1\ vised data 0.97 0.99 2.02 0.98 0.99 -1.01

The INN’s ability to directly convolve inputs together is the main reason why it out-
performs other compared methods, which lack the ability to multiply inputs, in terms of
both higher evaluation scores for HIs and interpretability. Furthermore, sparsity control
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through the use of discretized (ternary) weights has improved interpretability by making
the neural network more compact, resulting in more concise output equations.

A.1.4 Conclusions
D esigning an appropriate HI that satisfies the evaluation requirements of Mo, Pr, and
Tr for prognostics while also being interpretable for an engineering system or struc-
ture in PHM is a challenging task. The proposed methodology in this section, INN, has
the potential to combine the sensory data and create the intended HI. This section showed
the potential of the INNs to achieve ultimate performances by making their prohibitively
large equations compact and readable. As such, the HI function has also been simpli-
fied by combining the multiplicative and additive neurons with the discretized weights
employing sparsity control. It was shown that even when increasing the number of neu-
rons, the extracted equation is still constructed only by the contributions of a bunch of
neurons by controlling the hyperparameters @ and A. The results demonstrated that the
proposed methodology in this section is superior based on its combined highest score and
interpretability.
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A A.3 HIs using Guided Waves
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Figure A.13: Hls obtained by the proposed framework upon GW data with FC-EL for different datasets, given
all frequency inputs.
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