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را" ਜ಻ߺࠊڣݠی රතخ آوری زߦߵ ً۬ ًܥଫଜد داฺྸ ً؇ر ா஫ ިّ "درۊب
ٞ؇زد۱ܾ ڢݠن ሏᇃاߦߵا ڣچܹފިف و ਵނ؇؜ ،ሏᇃ؇ٞڢٴ؇د ۊ๤ཏو ๤ཛྷ؇َ

”Interpretation: If you gain knowledge and wisdom, you can even control the sky (the
passage of time).”

Nasir Khusraw, 11th-century Persian poet and philosopher





Summary
Awareness of the health status of an engineering system holds signiॲcant importance
across multiple industries, such as aerospace, marine, and energy. ঒is awareness can
take two primary forms—either detailed or comprehensive—each carrying its own dis-
tinct beneॲts. However, when it comes to pivotal decisions concerning the prediction of
remaining useful life (RUL), the initiation of shutdown procedures, and the identiॲcation
of maintenance requirements, the need for a comprehensive health indicator (HI) becomes
essential. Such a HI serves as a vital metric for predicting RUL, facilitating maintenance
decisions, and reॲning structural designs.

Composite structures play a pivotal role in aerospace and wind energy applications,
oॱering high performance, lightweight construction, and durability, which result in safety
enhancements and cost savings. However, unlike conventional structures, they are suscep-
tible to various forms of damage, such as matrix cracking, delamination, and ॲber buckling,
leading to diverse failure scenarios. ঒e HI should represent all these failure modes, acting
as an intermediary that connects data from structural health monitoring (SHM) techniques
with prognostic models for predicting RUL. Despite advancements in understanding ma-
terial deformation and fracture mechanisms through defect theory and crack mechanics,
predicting failures in composite structures at a macroscopic level remains challenging.

Highlighting the signiॲcance of HI as a macroscopic index for predicting RUL and
guiding maintenance decisions, this thesis aims to develop intelligent frameworks for HI
extraction tailored for aerospace composite structures. ঒e literature review identiॲes
gaps in existing methodologies, including: limited applicability to composite structures;
the need for nonlinear HIs aligned with damage propagation physics to move beyond the
conventional linear assumptions; and the importance of generalizability and criteria eval-
uation, with a focus on test units. Additionally, the need for historical-independent HI,
addressing the common historical-dependency drawback in HI construction and prognos-
tic models; the fusion of passive and active SHM techniques to maximize the beneॲts of
both temporal and spatial information; and emphasizing the interpretability of a HI are
highlighted.

A new methodology is introduced for developing HIs, emphasizing the importance
of nonlinearity aligned with damage propagation physics. Prognostic criteria for evaluat-
ing HIs are highlighted and reॲned in terms of model stability and performance on test
units. ঒e developed methodology integrates a nonlinear kernel within a semi-supervised
learning paradigm, serving as the foundation for subsequent frameworks designed to
address the other above-mentioned research gaps and speciॲc case studies. To validate
the proposed methodology, diॱerent experimental data were employed, where two SHM
techniques—acoustic emission (AE) and guided wave (GW)—were utilized to monitor com-
posite structures.

঒e primary experimental campaign focused on T-stiॱener composite panels subjected
to impact and compression-compression fatigue loadings (ReMAP dataset), highlighting

vii



viii Summary

the challenges of realistic and uncertain phenomena during experiments, resulting in a
wide range of end-of-life (EoL). Stiॱened composite panels were monitored using various
SHM techniques, with AE and GW being the primary focus. ঒ree data-driven frame-
works, leveraging signal processing and artiॲcial intelligence (AI), were developed based
on AE data to construct HIs. Twelve units were employed for training, validation, and test-
ing, using leave-one-out cross-validation (LOOCV) to rigorously evaluate generalizability.

Regarding the GW monitoring technique, a data-driven framework employing signal
processing and deep learning was developed. Two distinct datasets—ReMAP and NASA—
were investigated, featuring stiॱened composite panels and dogbone specimens subjected
to fatigue loading. ঒e ReMAP dataset comprises ॲve T-stiॱener composite units mon-
itored by the GW technique, while the NASA dataset involves tension-tension fatigue
loading on dogbone composite specimens with three diॱerent layups (4, 3, and 4 units for
each, respectively). ঒e LOOCV process was used to evaluate the developed framework on
each dataset. Given the targeted GW datasets, the proposed GW-based framework should
be ॳexible in accommodating various sensor numbers, networks, excitation frequencies,
and setups. Moreover, the GW technique, as an active SHM technology, was selected as
a good candidate for exclusively utilizing current monitored data to address the historical
dependency drawback.

Furthermore, another key aspect of the thesis involves the fusion of information from
diॱerent SHM techniques. ঒e ReMAP dataset was considered for the GW-AE fusion sce-
nario, where data from both AE and GW were integrated to formulate HIs for T-stiॱener
composite panels. To showcase the eॱectiveness of the data-driven fusion approach in im-
proving the overall performance of SHM techniques, the LOOCV process was employed.

One aspect that contributes to interpretability is the presence of incremental steps
in the generated HIs, which may correspond to distinct damage states within composite
structures. ঒ese incremental steps can oॱer valuable insights for informing state-based
RUL prediction models. To address this, AE- and GW-based frameworks were designed
and investigated. Additionally, the development of an interpretable neural network (INN)
was aimed at designing HIs for commercial turbofan engines using the CMAPSS dataset.
঒e goal was to achieve optimal performance by condensing overly complex equations
into a more readable format. To achieve this, multiplicative neurons were developed to
complement additive neurons, with sparsity control applied to discretize weights. Despite
the shi঍ in focus from composite structures to turbofan engines, which presents a more
straightforward dataset compared to those involving composite structures, INN success-
fully provides an interpretable HI for the CMAPSS dataset. ঒is outcome further validates
the eॱectiveness of the semi-supervised method in extracting HIs.

Overall, the thesis contributes to advancing prognostics and health management (PHM)
in aerospace engineering by providing innovative methodologies and insights for design-
ing HIs tailored for composite structures. ঒e research ॲndings underscore the importance
of addressing challenges such as complexity, interpretability, historical data dependency,
and the fusion of SHM techniques, laying the groundwork for future advancements in the
ॲeld.



Samenva਄ing
Bewustzijn van de gezondheidstoestand van een technisch systeem hee঍ aanzienlijk be-
lang binnen meerdere industrieën, zoals de luchtvaart, maritieme, en energie-industrieën.
Dit bewustzijn kan twee primaire vormen aannemen—gedetailleerd of uitgebreid—die
elk hun eigen speciॲeke voordelen met zich meebrengen. Echter, wanneer het aankomt
op cruciale beslissingen met betrekking tot de voorspelling van de resterende bruikbare
levensduur (RUL), het starten van shutdown-procedures, en het identiॲceren van onder-
houdsvereisten, wordt de behoe঍e aan een uitgebreide gezondheidsindicator (HI) essen-
tieel. Zo’n HI fungeert als een vitaal meetinstrument voor het voorspellen van RUL, het
vergemakkelijken van onderhoudsbeslissingen, en het verॲjnen van structurele ontwer-
pen.

Composiet structuren spelen een cruciale rol in luchtvaart- en windenergietoepassin-
gen, waarbij ze hoge prestaties, lichtgewicht constructie, en duurzaamheid bieden, wat
resulteert in verbeterde veiligheid en kostenbesparingen. Echter, in tegenstelling tot con-
ventionele structuren, zijn ze vatbaar voor verschillende vormen van schade, zoals ma-
trixscheuren, delaminatie, en vezel knik, wat leidt tot diverse faalscenario’s. De HI dient
al deze faalmodi te omva਄en, fungerend als een tussenstap die gegevens van structurele
gezondheidsmonitoring (SHM) technieken verbindt met prognosemodellen voor het voor-
spellen van RUL. Ondanks vooruitgang in het begrip van materiaaldeformatie en breuk-
mechanismen via defectentheorie en mechanica, blij঍ het voorspellen van fouten in com-
posiet structuren op macroscopisch niveau uitdagend.

Met de nadruk op de betekenis van HI als macroscopische index voor het voorspellen
van RUL en het begeleiden van onderhoudsbeslissingen, hee঍ deze thesis tot doel intel-
ligente kaders te ontwikkelen voor HI-extractie op maat voor luchtvaartcomposietstruc-
turen. De literatuurstudie identiॲceert kloven in bestaande methodologieën, waaronder:
beperkte toepasbaarheid op composietstructuren; de behoe঍e aan niet-lineaire HI’s in
overeenstemming met de fysica van schadepropagatie om voorbij de conventionele lin-
eaire aannames te gaan; en het belang van generaliseerbaarheid en criteria-evaluatie,
met de nadruk op testeenheden. Bovendien worden de behoe঍e aan geschiedenis-
onaঊankelijke HI, het aanpakken van het gemeenschappelijke geschiedenis aঊankeli-
jkheidsnadeel in HI-constructie en prognosemodellen; de fusie van passieve en actieve
SHM-technieken om de voordelen van zowel tijdelijke als ruimtelijke informatie te maxi-
maliseren; en het benadrukken van de interpretatiemogelijkheden van een HI zijn belicht.

Een nieuwe methodologie wordt geïntroduceerd voor het ontwikkelen van HI’s, waar-
bij de nadruk wordt gelegd op het belang van niet-lineariteit in overeenstemming met
de fysica van schadepropagatie. Prognostische criteria voor het evalueren van HI’s wor-
den benadrukt en verॲjnd qua modelstabiliteit en prestaties op testeenheden. De on-
twikkelde methodologie integreert een niet-lineaire kernel binnen een semi-supervised
learning-paradigma, als basis voor daaropvolgende kaders die zijn ontworpen om de an-
dere bovengenoemde onderzoekskloven en speciॲeke casestudies aan te pakken.
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Om de voorgestelde methodologie te valideren, werden verschillende experimentele
gegevens gebruikt, waarbij twee SHM-technieken—akoestische emissie (AE) en geleide
golven (GW)—werden gebruikt om composiet structuren te monitoren.

De primaire experimentele campagne rich਄e zich op T-stijve composietpanelen die
werden blootgesteld aan inslag- en compressie-compressie-vermoeidheidsbelastingen
(ReMAP-dataset), waarbij de uitdagingen van realistische en onzekere verschijnselen ti-
jdens de experimenten werden benadrukt, wat resulteerde in een breed scala aan einde
van het leven (EoL). Verstijfde composietpanelen werden gemonitord met verschillende
SHM-technieken, waarbij AE en GW de belangrijkste focus waren. Drie op gegevens
gebaseerde kaders, waarbij signaalverwerking en kunstmatige intelligentie (AI) werden
ingezet, werden ontwikkeld op basis van AE-gegevens om HI’s te construeren. Twaalf
eenheden werden gebruikt voor training, validatie en testen, waarbij leave-one-out cross-
validatie (LOOCV) werd toegepast om de generaliseerbaarheid grondig te evalueren.

Met betrekking tot de GW-monitoringtechniek werd een op-gegevens-gebaseerd kader
ontwikkeld waarbij signaalverwerking en diep leren werden toegepast. Twee verschil-
lende datasets—ReMAP en NASA—werden onderzocht, met verstijfde composietpane-
len en proefstuk met verjonging die aan vermoeidheidsbelasting werden onderworpen.
De ReMAP-dataset omvat vijf T-stijve composiete eenheden die door de GW-techniek
worden gemonitord, terwijl de NASA-dataset spannings-spanningsvermoeidheidstests op
composietspecimens (met verjonging) met drie verschillende legpatronen omvat (respec-
tievelijk 4, 3, en 4 eenheden). Het LOOCV-proces werd gebruikt om het ontwikkelde kader
op elke dataset te evalueren. Gezien de gerichte GW-datasets, zou het voorgestelde op GW
gebaseerde kader ॳexibel moeten zijn in het omgaan met verschillende sensoraantallen,
netwerken, excitatiefrequenties, en opstellingen. Bovendien werd de GW-techniek, als
een actieve SHM-technologie, geselecteerd als een goede kandidaat voor het uitsluitend ge-
bruiken van live gemonitorde gegevens om het geschiedenis-aঊankelijkheidsnadeel aan
te pakken.

Verder omvat een ander sleutelaspect van de thesis de fusie van informatie uit verschil-
lende SHM-technieken. De ReMAP-dataset werd overwogen voor het GW-AE fusiesce-
nario, waarbij gegevens van zowel AE als GW werden geïntegreerd om HI’s te formuleren
voor T-stijve composietpanelen. Om de eॱectiviteit van de op gegevens gebaseerde
fusiebenadering in het verbeteren van de algehele prestaties van SHM-technieken te laten
zien, werd het LOOCV-proces toegepast.

Een aspect dat bijdraagt aan de interpreteerbaarheid is de aanwezigheid van in-
crementele stappen in de gegenereerde HI’s, die kunnen overeenkomen met verschil-
lende schadetoestanden binnen composiet structuren. Deze incrementele stappen kun-
nen waardevolle inzichten bieden voor het informeren van op staten gebaseerde RUL-
voorspellingsmodellen. Om dit aan te pakken, werden AE- en GW-gebaseerde kaders ont-
worpen en onderzocht. Bovendien was het ontwikkelen van een interpreteerbaar neuraal
netwerk (INN) gericht op het ontwerpen van HI’s voor commerciële turbofanmotoren
met behulp van de CMAPSS-dataset. Het doel was om optimale prestaties te behalen
door overdreven complexe vergelijkingen om te ze਄en in een leesbaarder formaat. Om
dit te bereiken, werden multiplicatieve neuronen ontwikkeld om additieve neuronen aan
te vullen, met toepassing van spaarzaamheidscontrole om gewichten te discretiseren. On-
danks de verschuiving van de focus van samengestelde structuren naar turbofanmotoren,
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wat een eenvoudiger dataset oplevert vergeleken met die welke samengestelde structuren
omva਄en, biedt INN met succes een interpreteerbare HI voor de CMAPSS-dataset. Dit re-
sultaat valideert verder de eॱectiviteit van de semi-supervised methode in het extraheren
van HI’s.

Al met al draagt de thesis bij aan het bevorderen van prognostiek en gezondheidsman-
agement (PHM) in de luchtvaar਄echniek door innovatieve methodologieën en inzichten
te bieden voor het ontwerpen van HI’s op maat voor composietstructuren. De onderzoek-
sresultaten benadrukken het belang van het aanpakken van uitdagingen zoals complex-
iteit, interpreteerbaarheid, geschiedenis-gegevensaঊankelijkheid, en de fusie van SHM-
technieken, wat de basis legt voor toekomstige vooruitgang op dit gebied.
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1
Introduction

In this introductory chapter, the de࠺nitions and motivation for a health indicator in compar-
ison to the remaining useful life of an engineering system are elucidated, and the essential
research objectives regarding the construction of health indicators are expounded upon.
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1.1 Health Indicator & Remaining Useful Life

Awareness of an engineering system’s health status is paramount in a range of indus-
tries, including aerospace, marine, and energy. ঒is awareness can manifest in two

forms—detailed or comprehensive—each oॱering its own set of advantages. For instance,
acquiring detailed knowledge of the composite structure’s damage—such as microcracks,
cracks, ॲber breakages, voids, and delaminations—proves invaluable for delving into the
physics of damage mechanics and interactions. In this regard, based on Beaumont [1],
”঒ere is a need to link experience at levels between the macroscopic size with under-
standing at the micro-structural scale of the material.” By discerning the reasons for dam-
age initiation and its interactions with other forms of damage, materials can be reॲned
and structural designs improved for further applications.

However, when it comes to making decisions related to predicting the remaining use-
ful life (RUL), initiating shutdown procedures, and determining maintenance types, the
necessity of a comprehensive health indicator (HI) becomes evident. In fact, HI serves as
a macroscopic index. As stated in [1], ”঒e macroscopic response of a composite material
system and component reॳects responses at all levels beneath.” ঒us, a HI should inher-
ently encompass all other damage indexes (DI) pertaining to a structure, including those
at microscopic and mesoscopic levels. However, despite advancements in understanding
material deformation and fracture mechanisms through defect theory and crack mechan-
ics, predicting failures in composite structures at a macroscopic level remains challenging
[1]. Nevertheless, since the HI plays a pivotal role in comprehensively representing the
structure’s health status, its comprehensiveness can be deॲned and mutually measured by
several criteria, which will be introduced in the subsequent chapters.

঒e HI serves as a valuable index, demonstrating the health level of an engineering
system or structure [2, 3]. It acts as an intermediary, connecting the raw data collected
through condition monitoring (CM) or structural health monitoring (SHM) techniques
with the prognostic models used for RUL prediction [4]. One might question why we do
not directly predict RUL from sensory data, bypassing the HI step. To answer this ques-
tion, we must consider the deॲnition of true RUL, which, logically and philosophically,
follows a linearly decreasing pa਄ern. It is natural to ponder the implications of uncer-
tainties, such as accidents for humans or impact loading for structures, which could lead
to a decline in the end-of-life (EoL) (see Figure 1.1(a)). However, in an ideal prognostic
framework, these uncertainties should be anticipated and factored in advance, with the
true RUL only deॲnitively determined a঍er the ॲnal failure and EoL. ঒e same princi-
ple applies to maintenance and self-healing processes, which can extend the EoL. From
another perspective, the relation between relative running time and relative RUL is ॲxed
and linear. Tomorrow, in comparison to today, we will lose one day of our lives, regardless
of whether we experience an accident or maintain a healthy lifestyle (see Figure 1.1(b)).
It is crucial to emphasize that linking the consequences of these events to a decrease or
increase in RUL represents a misinterpretation, as it misleadingly mixes the concept of
RUL with health degradation (HI).

Consequently, uncertainties and progressive damage can only be continuously mon-
itored and observed through the pa਄ern of a HI, rather than a linear RUL graph. ঒is
establishes a tangible and interpretative connection between the HI and the engineering
system, making it not only a suitable candidate for diagnostic purposes but also a vital in-
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Figure 1.1: (a) RULs and HIs for two units with and without impact loading. (b) Relation between relative RUL
and relative running time.

put for prognostic models used to predict RUL. In contrast, a RUL model primarily serves
to determine the timing of maintenance rather than specifying the precise maintenance
actions and decisions.

1.2 HIs for Diagnostics & Prognostics

AHI should be extracted from CM/SHM data for both diagnostic and prognostic pur-
poses. Regarding diagnostics, a HI should be interpretable. ঒is interpretability can

be deॲned in two main aspects (see Figure 1.2): ঒e ॲrst aspect pertains to the HI hav-
ing a relation with the physical and mechanical behaviors of the engineering system or
structure (referred to as ’unit’ in this book). For example, a਄ributes like stiॱness of the
structure, crack density in the structure, or diॱerent damage states during fatigue loading
could be considered as a਄ributes that a HI should possess. ঒e second aspect involves un-
derstanding the relation between sensory monitoring data and the appropriate (based on
prognostic criteria) HI, assuming we already know the connection between the mechanics
of diॱerent damage types in the unit and monitoring data. In this context, as the moni-
toring data is interpretable thanks to its clear relationship with damage mechanisms, the
HI becomes interpretable as well. ঒is aspect can be further divided into two categories:
I) interpreting the exact mathematical function between the HI and the monitoring data;
and II) ॲnding a basic correlation between the HI and the monitoring data. We refer to the
ॲrst as an ’interpretable HI’, which carries a deeper meaning than the second, which we
label as an ’explainable HI’. With these deॲnitions, an interpretable HI is inherently ex-
plainable, while an explainable HI may not necessarily be interpretable. In diagnostics, the
author argues that an explainable HI is suॴcient to link with the unit’s physical behavior
for be਄er maintenance decisions.

Regarding prognostics, HIs designed for a group of similar units should meet estab-
lished criteria as standard in the ॲeld of prognostics and health management (PHM), which
will be elaborated in the next chapter. Brieॳy, the quality and suitability of HIs are usually
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measured by three metrics: monotonicity (Mo), prognosability (Pr), and trendability (Tr)
[5, 6], each addressing a speciॲc property of the HI. All three are crucial for enhancing
HI quality and increasing prognostic accuracy. However, extracting HIs that fulॲll these
criteria is very challenging, even when assuming informative SHM data is available, due
to the inhomogeneous material characteristics, variable operational conditions, stochastic
activation and interaction of damage mechanisms, and uncertainties. ঒ese criteria are
formulated based on degradation physics and EoL fact.

Figure 1.2: Diॱerent aspects of the interpretability of a HI.

1.3 Which SHM Technique: Fusion of Multiple Tech-
niques?

W hile various SHM techniques are available for structural monitoring, the crucial
question is which technique can provide the most informative and reliable data for

creating HIs. Is a single SHM technique suॴcient, or should multiple techniques be fused
together?

Prognostic and HI construction models commonly exhibit historical dependence (HD).
Considering the correlation between historical SHM data, from the healthy state to the
present, is essential to enhance HI and RUL prediction models [7–9]. ঒is consideration
is particularly critical for passive SHM techniques like acoustic emission (AE), which cap-
tures temporary signals related to damage initiation and propagation, lacking explicit in-
formation about damage size, structural stiॱness, or other historical-dependent factors.
Passive techniques inherently provide insights into how and when damages occur, but
the historical data requires processing to extract HD characteristics, such as structural
stiॱness [10].

In contrast, active SHM techniques, like guided waves (GW), can estimate damage size,
location, and stiॱness reduction in the structure from the most recent data¹, covering the
progression of damages from the beginning up to the present [11, 12]. However, active
techniques do not capture information about damage initiation and propagation, includ-
ing propagation rates, as precisely as passive techniques [13]. ঒us, there is a trade-oॱ
between passive and active SHM techniques.

Incorporating HD information into a model for passive SHM techniques could be an ef-
fective solution, providing a comprehensive understanding of damage initiation and prop-
¹Historical data is not required; possibly just one pristine inspection is required as the baseline (see Chapter 6).
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agation. Nevertheless, both RUL prediction and HI construction models have a common
drawback - they are historical-dependent. ঒is necessitates the consideration of the tem-
poral relationship between historical data from the starting point to the present moment
to enhance their performance [6, 14, 15]. However, a lack of prior information, whether
due to operational issues or unavailable monitoring systems, can hamper these models’
eॴciency. In this context, a robust SHM technique is required to extract informative
historical-independent evidence, while a suitable model is needed to create HIs from this
data.

In conclusion, the question remains: which SHM technique can provide the most in-
formative yet reliable data for building HIs? Beyond data- and feature-level fusion for
each speciॲc technique, should diॱerent SHM techniques be fused? Can the fusion of a
passive SHM technique (e.g., AE), providing insights into damage initiation and propaga-
tion, and an active SHM technique (e.g., GW), oॱering information about ॲnal damage
characteristics, potentially lead to more robust and reliable HIs?

1.4 Research Goal & Scope

P rimary, secondary, and other objectives of this thesis are as follows:

Primary objectives: ঒e primary objective of this research is to develop an inno-
vative framework for designing comprehensive HIs that meet prognostic requirements.
঒is framework leverages raw SHM data and places a speciॲc focus on the fatigue life of
aerospace composite structures.

To enhance the accuracy of prognostic criteria in data-driven frameworks, this re-
search will reॲne the metrics. Instead of considering all HIs generated from both training
and testing phases, the revised metrics will primarily consider testing units. ঒is adjust-
ment aims to prevent the undue inॳuence of training units on ॲnal scores, ensuring a more
robust evaluation of the test unit’s performance and its deviation from the training units.

঒e framework itself consists of several key stages: data acquisition, pre-processing
(PP), signal processing (SP), feature extraction (FE), and feature fusion (FF). Feature fusion,
in particular, plays a pivotal role in implementing the prognostic criteria. To achieve this, a
novel semi-supervised learning paradigm is introduced for fusing features, with the goal
of achieving the quality necessary for prognostics. ঒is developed paradigm has broad
applications, extending beyond composite structures to areas like commercial turbofan
engines.

Two SHM techniques, AE as a passive technique and GW as an active technique, are
employed to monitor composite structures, aiming to answer the central question raised
earlier: ”which SHM technique? Fusion of multiple techniques?” For each technique, spe-
ciॲc algorithms for PP, SP, FE, and FF are developed and put into practice. ঒e FE and FF
processes primarily draw from elements of artiॲcial intelligence (AI) and machine learning
(ML). ঒e experimental composite specimens monitored by these techniques encounter
various uncertainties and unexpected phenomena during their operational service life.

Secondary objective: Furthermore, this research involves the development of a
historical-independent HI construction model based on the GW technique. ঒is model
is tailored for aerospace composite structures under fatigue loading conditions, oॱering
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ॳexibility to accommodate diॱerent GW sensor conॲgurations, networks, and setups to
address a variety of layups, geometries, and loading conditions.

Other objectives: In pursuit of interpretability, this research encompasses two initia-
tives:

1. ঒e development of HIs that show incremental steps, potentially corresponding to
distinct damage states within the context of composite structures, where these in-
cremental steps can provide valuable insights for informing future state-based RUL
prediction models

2. ঒e construction of interpretable HIs through the development of an interpretable
neural network designed for commercial turbofan engines

Expectations: It is anticipated that the outcomes of this thesis will contribute to ad-
vancing the ॲeld of PHM, with a speciॲc focus on aerospace composite structures that
face challenges due to the stochastic nature of damage accumulation and the occurrence
of uncertain events, such as impacts, during operational conditions.

1.5 esisࢩ Outline

T his thesis is composed of 8 chapters and appendices, as follows:
• Chapter 2: Literature Review

Chapter 2 provides a review of the existing literature in the ॲeld of PHM. It delves
into the concepts of physical and virtual HIs and explores how prognostic criteria
have been utilized in prior works. ঒e chapter particularly focuses on their imple-
mentation in the context of composite structures. Moreover, it opens an argument
about interpretability vs. explainability vs. accuracy in this context.

• Chapter 3: Methodology
In Chapter 3, prognostic criteria are ॲrst introduced for qualifying HIs, referred to
as HIs’ criteria. A reॲned version of these criteria is presented, considering only test
units. ঒en, the core methodology is outlined, featuring the introduction of a new
semi-supervised learning paradigm for SHM data fusion toward HI construction. In
the end, the chapter explores interpretability by drawing comparisons between com-
posite structures and commercial turbofan engines. Following these discussions, it
introduces a modiॲed multiplicative neuron with the speciॲc purpose of construct-
ing explainable HIs, primarily tailored for use in the domain of commercial turbofan
engines.

• Chapter 4: Data Analysis and Machine Learning
Chapter 4 provides essential background information on data analysis, processing,
and mining. It oॱers brief explanations of various data analysis operators, functions,
and algorithms that will be utilized in this thesis. ঒e primary components of this
chapter include pre-processing (PP), signal processing (SP), dimension reduction
with a focus on principal component analysis (PCA)-based algorithms, statistical
features, and deep learning.
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• Chapter 5: Designing HI for T-Sti࢓ener Composite Panels using Acoustic
Emission
Chapter 5 demonstrates the proposed methodology for monitoring twelve single
T-stiॱener carbon ॲber-reinforced polymer (CFRP) specimens under compression-
compression fatigue loading using the AE technique. ঒ree distinct frameworks
incorporating various pre-processing, signal processing, feature extraction, and fea-
ture fusion strategies are developed to generate qualiॲed HIs. ঒e chapter explores
the motivations behind designing these frameworks and presents the results of ab-
lation experiments, dataset divisions, and leave-one-out cross-validation to assess
the approaches’ generalizability.

• Chapter 6: Designing HI for T-Sti࢓ener Composite Panels and Dogbone
Specimens using Guided Waves
঒e methodology for the GW monitoring technique is demonstrated in Chapter 6,
involving the monitoring of ॲve single T-stiॱener CFRP panels under compression-
fatigue loading as well as eleven dogbone CFRP specimens with three diॱerent
layups subjected to tension-fatigue loading. ঒is chapter’s motivation goes beyond
answering the question, ”which SHM technique: Fusion of multiple techniques?”
to include the design of qualiॲed historical-independent HIs for aerospace compos-
ite structures. To make sure the method was generalizable, leave-one-out cross-
validation was also taken into consideration.

• Chapter 7: Fusion of Acoustic Emission and Guided Waves Techniques
Chapter 7 explores the fusion of AE and GW techniques. It combines the HI con-
struction models developed for single T-stiॱener CFRP panels using each technique.
঒e chapter aims to answer the question, ”which SHM technique: Fusion of multi-
ple techniques?” by comparing HIs generated from AE, LW, and the fusion of both
techniques.

• Chapter 8: Conclusions and Recommendations
঒e thesis’s ॲndings are outlined in Chapter 9, along with conclusions and sugges-
tions for future research.

• Appendices: Interpretable HIs for Commercial Turbofan Engines
Appendix A.1 presents the results of an interpretable neural network that was de-
veloped to construct interpretable HIs for commercial turbofan engines. It includes
newly modiॲed multiplicative layers with discretized weights.
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Literature Review

Within the chapter, damage, SHM, and PHM in composite structures; physical and virtual
HIs; prognostic criteria implementation in HI design; and interpretability and explainability
trade-o࠹s with accuracy are covered.
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2.1 Introduction

I n this chapter, a review of composite structures and their associated damage is presented
(Section 2.2). Following this, the applications of SHM techniques in the realm of com-

posite structures are outlined in Section 2.3. ঒e discussion then extends to the ॲeld of
PHM, with a speciॲc emphasis on its application to composite structures. Subsequently, in
Section 2.4, HIs are introduced and categorized into two main types: physical and virtual.
঒e main part of this chapter (subsection 2.4.3) explores how prognostic criteria are inte-
grated into the design process of virtual HIs. Lastly, the chapter concludes with Section
2.5, which opens a discussion on the diॱerences and trade-oॱs of interpretability versus
explainability versus accuracy within the context of HI design.

2.2 Failure Mechanisms in Composite Structures

C omposite structures play a crucial role in industries such as aerospace, wind energy,
and naval applications, serving as primary materials in high-performance structures.

঒eir increasing use is driven by unique mechanical performance, reduced weight, and
high durability, resulting in enhanced safety and cost savings, primarily through reduced
fuel consumption. However, composite structures are vulnerable to various forms of dam-
age during operation, leading to a diverse range of structural failure scenarios. Unlike
conventional structures, they may experience a broader spectrum of failure modes, includ-
ing tensile, compressive, or shear fracture of the matrix, bond failure of the ॲber-matrix
interface, and tensile or compressive (buckling) failure of the ॲbers.

Categorized by the size of the damage and the aॱected region (ॲber or matrix), Fig-
ure 2.1 illustrates diॱerent types of defects in composite structures [1, 2]. Among the
most common and critical damage types are those resulting from impact and cyclic fa-
tigue loading. ঒e severity of damage, depending on its type and size, can signiॲcantly
reduce a composite structure’s residual strength [3], manifesting as defects in the ॲber,
matrix, or their interface [4].

Assessing damage severity is crucial for determining a composite component’s remain-
ing service life and inॳuencing the structure’s overall damage tolerance. While certain

Figure 2.1: Types of damage in composite structures (adopted from [2] and modiॲed based on [1]).
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types of damage may have minimal immediate eॱects on residual strength, their impact
may worsen over time, especially when compounded by operational and environmental
inॳuences [5, 6]. ঒is highlights the importance of frequent and thorough monitoring
(SHM) to address the complexities associated with the multivariate damage process in
composite structures.

2.3 SHM for Composite Structures

A ccording to the SAE Standard ARP646, the deॲnition of SHM is “the process of ac-
quiring and analyzing data from on-board sensors to evaluate the health of a structure”,

which is a consensus from the Aerospace Industry Steering Commi਄ee on SHM. Repre-
sentatives of the essential industries and universities active in the ॲeld of SHM composed
it. ঒ree main principles of SHM systems are [7]:

1. To perform an automated inspection, several inspection systems permanently mon-
itor the structure/system. ঒e inspection systems can be a network of sensors (such
as GW, AE, ॲber Bragg grating (FBG), distributed ॲber optic sensing (DFOS), etc.) at-
tached to the structure. ঒is perspective is the basic diॱerence from non-destructive
testing (NDT) procedures.

2. Since in SHM, a large amount of data has to be analyzed in real-time, on-board
computation and data handling facilities are needed.

3. To estimate the damage index (DI) and gain information about the existence, loca-
tions, types, propagation speed, and other a਄ributes of damages, the current data is
compared with the previously stored data from the pristine structure.

঒e ॲeld of SHM plays a crucial role in diagnosing damage within various composite 
structures. NDT is another ॲeld with a big overlap with SHM, which encompasses a range 
of methods for identifying damage without causing harm to the structure being examined. 
঒e reliability of NDT methods such as Ultrasonic, X-ray, and infrared thermography (IRT) 
has been firmly proven. These techniques are particularly valuable for their cost and time-
saving benefits in system evaluation. While SHM techniques are often assumed as 
techniques with sensors attached to the structure, the author suggests that any con-
tinuous monitoring technique qualiॲes as an SHM method, regardless of physical contact 
with the structure. ঒e primary distinguishing factor between SHM and NDT lies in the 
inspection frequency. For instance, considering the inspection of an aircra঍ using GW 
exclusively during an unloading condition (post-landing), the inspection frequency aligns 
with that of using IRT via a drone in the same condition (post-landing). In this context, 
if GW is categorized as an SHM technique, then IRT falls within the same classiॲcation. 
Another scenario involves structures on the ground, such as wind turbines, which can be 
continually monitored using optical techniques like IRT [8], even without a਄ached sen-
sors to the structure. ঒us, the ॲnal purpose of  SHM, which is  a continues monitoring, 
itself deॲnes a technique as an SHM or NDT method.

Despite diॱerences b etween NDT and SHM, b oth can b e considered under the um-
brella term non-destructive evaluation (NDE) [7], which their complementary informa-
tion in this regard can be studied in Ref. [9] and Ref. [10] as new surveys (from 2000 to
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2017) and (from 2000 to 2023), respectively. ঒e ‘Handbook of Advanced Nondestructive
Evaluation’ [11] is strongly suggested as a unique outline of advanced NDE techniques.
Non-destructive testing and evaluation (NDTE) techniques are listed in Figure 2.2, along
with a list of subcategories [2]. As demonstrated in Figure 2.3, each of these methods can
be used to address a particular spectrum of damage in composite structures. One major
drawback of these methods is that it is hard to perform the evaluation process without
prior knowledge of the general location of the damage.

Advantages and disadvantages of diॱerent SHM techniques, including AE, GW, ultra-
sound, strain, vibration, eddy current testing, IRT, radioscopy/radiography testing, and
visual inspection, can be found in diॱerent sources, like Ref. [12] with a focus on diagno-
sis and prognosis of wind turbines and Ref. [13] with a focus on diagnosis of wind turbine

Figure 2.2: Classiॲcations of various non-destructive testing and evaluation techniques (NDTE) (adopted from
[2]).

Figure 2.3: ঒e spectrum of damage to which various NDTE methods can be used (adopted from [2]).
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blades, which are mainly composite structures.
Among SHM methods, AE stands out as a popular technique for composite structures.

It involves capturing signals generated by various damage mechanisms, providing insights
into the progression of damage during the material’s lifetime [14, 15]. AE can distinguish
diॱerent damage mechanisms by studying various features, such as peak frequency, ampli-
tude, duration, and energy [16, 17]. However, challenges include susceptibility to external
noise, requiring careful parameter tuning and eॴcient post-processing [18, 19].

GWs are widely utilized in the aviation industry for thin-walled composite structures.
঒is method allows the interrogation of the entire structure with a low a਄enuation ratio,
detecting small-sized damages with high accuracy [20, 21]. Challenges include interfer-
ence from reॳection and sca਄ering phenomena due to structural boundaries, as well as
sensitivity to environmental conditions [22, 23].

Both AE and GW fall under the main category of acoustic wave-based methods [10],
which involve identifying and monitoring sonic and ultrasonic stress waves. Stress waves
can be actively imparted (as in GW) or passively emi਄ed (as in AE). In order to identify
internal defects and characterize materials, they are usually carried out within the elastic
material range. While both AE and GW originate from the same physics, they measure
diॱerent characteristics of the structure. AE, a passive method, is capable of measuring
the initiation and propagation of damage, whereas GW, an active method, assesses the
state of damage (e.g., size). Although AE can be used to determine the location and size of
damage and GW may be employed to approximate the speed of propagation or initiation
of damage, it is essential to consider historical dependence (HD) or time dependence in
both SHM data from prior evaluations up to the current state to do so. ঒is consideration,
along with the relevant advanced post-processing, is imperative for these purposes. ঒us,
here, the assessment of each SHM method’s capability was meant based on their original
data, regardless of post-processing algorithms a঍erward.

2.3.1 Acoustic emission (AE)
As mentioned in the previous chapter, a common characteristic of prognostic and HI con-
struction models is their HD. It is crucial to consider the correlation between historical
SHM data, starting from a healthy state to the current time, in order to enhance the per-
formance of HI and RUL prediction models [24–26]. ঒is issue is particularly essential
for passive SHM methods, such as AE, which capture temporary signals resulting from
damage initiation and propagation rather than speciॲc information about the size of the
damage, structural stiॱness, or other HD factors. ঒us, a valuable solution could be in-
corporating HD into a model for passive SHM methods, allowing a more comprehensive
understanding of damage initiation and propagation, making it particularly suitable for
scenarios where such historical data is crucial for prognostic applications (refer to models
presented in Chapter 5).

2.3.2 Guided waves (GW)
Although considering HD into a model for passive SHM methods could be a solution,
the fact that RUL prediction and HI construction models are historical-dependent is a
common drawback. In other words, prognostic and HI construction models function less
eॴciently when prior information, either entirely or partially from the beginning, is miss-
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ing. ঒is might occur for various reasons during operation due to unavailable monitoring
systems, misfunctioned sensors, etc. In this regard, a robust SHM method is needed to
extract informative, historical-independent pa਄erns. ঒e GW technique can be a poten-
tial candidate that can generate such historical-independent pa਄erns [27]. However, GWs
pose a challenge as they not only convey information about damage but also carry signals
that are susceptible to interference from reॳection and sca਄ering phenomena at struc-
tural boundaries. Environmental conditions can also further aॱect the reliability of GW
signals [28, 29]. Moreover, GWs are dispersive and have a multimodal nature, meaning
that many wave modes may exist in a recorded signal, and their characterization depends
on the frequency, material stiॱness, density, and thickness of the structure [30]. ঒erefore,
the diagnosis and prognosis of composite structures via GWs is a hard task when it comes
to correlating the GW signals with the health state of the entire structure. In addition
to the previously discussed aspects, it is important to note that translating GW data to
the appropriate HI value at each time step when GW inspections are conducted is a chal-
lenging task. In fact, a model is needed to map thousands of data points (as can be seen
in experimental campaigns that generated extensive datasets—cite NASA and ReMAP in
Chapter 6) to a single HI value at the current time, regardless of the prior HIs. To address
this challenge, data-driven approaches, especially AI, have drawn a਄ention in diagnostic
[31–34] and prognostic [35, 36] applications thanks to their ability to discover complex
and nonlinear relationships between data (refer to the model presented in Chapter 6).

2.3.3 Fusion of AE and GW
As mentioned earlier, there is a trade-oॱ between passive and active SHM methods. ঒e
former (e.g., AE) provides details about damage growth but requires historical data to be
post-processed for extracting HD characteristics, such as defect dimensions. Meanwhile,
the la਄er (e.g., GW) can estimate the ॲnal damage state but lacks information about dam-
age growth. While both AE and GW can be utilized with advanced data analysis algo-
rithms to oॱer both temporal (damage initiation and growth) and spatial (damage state,
location, and size) information, they cannot surpass each other’s optimum performance.
Despite applying the best ideal processing algorithms for each passive or active SHM tech-
nique, AE can achieve optimal performance regarding temporal information, and GW can
achieve optimal performance regarding spatial information. ঒is limitation arises from
the fact that each type of SHM data contains limited useful information, and data analy-
sis algorithms cannot perform miracles. Figure 2.4 illustrates this concept, assuming that
post-processing algorithms and fusion models have the best performances and function
perfectly. ঒erefore, the fusion of SHM techniques could be beneॲcial for optimally ex-
ploiting temporal and spatial information, preventing the loss of valuable information.

In this subsection, prevalent information fusion techniques are brieॳy reviewed, and
the classes and levels that will be used in this work are hinted at. ঒e information fusion
strategies can be conceptualized based on factors like sensor relations, input-output rela-
tions, and decision relations, as illustrated in Figure 2.5. Figure 2.6 outlines various classiॲ-
cations of data fusion, encompassing Whyte’s, Dasarathy’s, joint directors of laboratories
(JDL), architecture, and abstraction classiॲcations, considering diॱerent processing levels.
A comprehensive literature review on each data fusion category, focusing on types and
applications in SHM systems, is available in Ref. [10].
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Figure 2.4: Conceptual representation of temporal and spatial information exploitation from passive and active
SHM techniques and their fusion toward diagnosis and prognosis.

Figure 2.5: Information fusion classiॲcations based on diॱerent factors (adopted from [10]).

According to Figure 2.5, the present work will conduct fusion in the following classes:

– Based on input-output: fusion in classes of DAI-DAO, DAI-FEO, and FEI-FEO, con-
sidering that HI is a high-level feature

– Based on relationships among sources: complementary (among sensors of AE
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and/or GW), redundant (among sensors of AE and/or GW), and cooperative (besides
among sensors of each technique, between AE and GW techniques) fusion

– Based on levels of abstraction: low-level (raw data level fusion), medium-level (fea-
ture level fusion), and multi-level fusion

– Based on data type fusion: temporal, spatial, and spatial-temporal fusion, as men-
tioned earlier

– Based on data level fusion: raw data level and feature level
– Based on the user’s requirements: depending on how the area and sensory network

on the composite specimen would be considered

According to Figure 2.6, the present work will conduct fusion in the following classes:

– Based on Whyte’s classiॲcation: classes of Dtਲ ੐-Dtਸ੗੖ , Dtਲ ੐-Ftਸ੗੖ , and Ftਲ ੐-Ftਸ੗੖
– Based on Dasarathy’s classiॲcation: complementary, redundant, and cooperative

fusion, similar to Figure 2.5
– Based on JDL classiॲcation: source pre-processing (L0) and object reॲnement (L1)
– Based on architecture classiॲcation: distributed architecture
– Based on abstraction classiॲcation: the same as in Figure 2.5, at both single-level

and multi-level fusion



2.3. SHM for Composite Structures

2

17

Fi
gu

re
2.6

:C
la

ss
iॲ

ca
tio

ns
of

in
fo

rm
at

io
n

fu
sio

n
(a

do
pt

ed
fro

m
[1

0]
).



2

18 2. Literature Review

2.4 PHM for Composite Structures

SHM plays a pivotal role in the prognostics and health management (PHM) framework,
aiming to propel the industry toward condition-based maintenance (CBM) policies,

thereby boosting availability and curbing operational downtime and costs [37, 38]. ঒e
transition to a CBM paradigm within a PHM framework necessitates reliable and robust
SHM methodologies to facilitate informed decision-making.

PHM naturally extends from SHM by updating predictions of RUL in a timely manner
using sensor data. For accurate RUL predictions, a HI suitable for incorporation into a
prognostic model is essential [39, 40]. HI, a distinctive feature derived from SHM data,
reॳects the health (or damage) status of the monitored structure or system [41]. When
the HI surpasses a predeॲned threshold, the SHM system triggers alarms, prompting ac-
tions like system shutdown, maintenance, or replacement. Consequently, HI serves as a
crucial link and prominent feature between raw signals and the prognostic model, directly
inॳuencing RUL predictions.

Unlike RUL, which is o঍en assumed to follow a linear degradation model [42], HIs
are nonlinear due to the inherent nonlinear nature of damage propagation and accumula-
tion [36, 43, 44]. ঒is nonlinearity proves valuable for analyzing and connecting with the
mechanical behavior of the structure. However, it is important to note that HIs are not
exclusively sensitive to damage; they may also respond to abnormalities in environmental
conditions and operations.

2.5 Health Indicators

I n order to visualize data and continuously characterize the health state of the structure
over its entire life, HIs can be informative and helpful [45]. ঒e available data-driven

RUL prognostic methods, such as artiॲcial intelligence and statistical-based models, can
also be eॱectively integrated with the fusion-based HIs [46]. Depending upon whether
a HI has any physical senses, system performance data is typically divided into two cat-
egories: the physical health indicator (PHI) and the virtual health indicator (VHI) [47].
Before delving into the development of a framework for designing a HI, it is crucial to
outline the expectations—constraints derived from the physics of the problem—associated
with HIs. Subsequently, an exploration is undertaken to incorporate these constraints
eॱectively within the design framework.

2.5.1 Evaluation criteria (constraints)
If no maintenance and self-healing take place, a structure’s HI should decrease throughout
operational conditions due to damage accumulation. ঒is fact should be incorporated into
the design of a HI and examined using a metric known as monotonicity (Mo) [48, 49]. ঒e
comprehensive HIs of an ensemble of associated units (engineering systems or structures)
that have reached their end-of-life (EoL) should ideally arrive at the same value, signifying
the failure threshold. However, HIs at the EoL change and do not always end up with an
identical value; this discrepancy can be quantiॲed using a metric called prognosability (Pr)
[49]. Moreover, if the HIs demonstrate a consistent correlation with usage time, they are
deemed more predictable. ঒e trendability (Tr) criterion gauges the resemblance between
the trends of HIs [49–51]. While the ॲrst two assessment criteria (Mo and Pr) are consid-
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ered factual, achieving maximum Tr may be challenging due to stochastic events and the
uncertain nature of inॳuential factors. Nevertheless, striving for HIs with high Tr remains
a goal to improve the accuracy of RUL predictions. In the context of prognostics, which
is the main focus of this work, a HI should fulॲll these evaluation/prognostic criteria: Mo,
Pr, and Tr [52, 53].

2.5.2 Physical health indicators (PHI)
Since health management has been given more a਄ention and begun earlier for some par-
ticular industrial components, such as ba਄eries and rotating machinery equipment, PHIs
are relatively well known and helpful. In other words, the long-term and vital use of such
components, as well as their history in the industry, in turn results in providing more
datasets as well as more solid physical, analytical backgrounds [36]. For instance, accord-
ing to physical knowledge about ba਄eries, the capacity data of lithium-ion ba਄eries can
be considered as a proper HI [54]. It was recently said that, ‘‘To the best of our knowl-
edge, the capacity is a typical performance indicator to monitor the health status of the
ba਄ery and determine whether the ba਄ery requires replacement; thus, we adopt such in-
dicator for the RUL prediction’’ [55]. For rolling element bearings, Ref. [56] utilized root
mean square (RMS) as ‘‘a simple and practical HI, which is widely used in bearings resid-
ual life prediction’’. Also, relative RMS (RRMS) could be more robust to characterize the
degradation process of bearings [57]. However, to the best of the author’s knowledge, no
certain and promising PHI has yet been developed for composite structures, especially for
structures subjected to cyclic fatigue loading, which is one of the most critical conditions
for composite structures. ঒is can be due to complex scenarios of progressive damage
and diॱerent types of damage, which in turn are dependent on the type of ॲbers, matrix,
fabrication, curing, boundary and environmental conditions, loading, etc.

Despite the fact that various articles have introduced PHIs (axial strain) utilizing DIC
data [58], or the size or number of cracks have been considered as PHIs [59], they are not
appropriate for genuine SHM and implementations. Concerning the ॲrst subject, methods
like DIC are not yet considered SHM because of their numerous drawbacks, including the
necessity of painting, particular illumination requirements, problematic calibration, etc.
঒e DIC method is also limited to measuring the strain or deformation at the surface
of the structure in the ॲeld of view of the camera, making it more eॱective for plates
due to the lack of access to the rear of the surface. Such methods are usually used to
validate other aspects of research, such as ॲnite element modeling [60] or other NDT/SHM
techniques [61]. For the la਄er subject, it may be possible to correctly monitor and take into
account the number or size of fractures as a HI in isotropic materials such as aluminum
[59], but this is not easily practical for composite materials and complicated structures. In
reality, a variety of impactful micro- and macro-damages will emerge, such as cracks and
delaminations, which not only emerge randomly throughout the structure [62] but are
also concealed in various quantities among the various layers of the composite material
[63].

2.5.3 Virtual health indicators (VHI)
In contrast to PHI, VHI cannot be easily interpreted and realized in order to make an un-
derstandable connection to the physical implications. However, VHI can be designed and
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optimized based on the intended purposes, such as prognostics. For example, if a mono-
tonic, trendable, and prognosable behavior can be embedded into an objective function
[64] which is supposed to be used within a data-driven model, the resulted VHI is suited
to the next step, the prognostic model.

Linear-based feature extraction and selection methods are suitable enough to provide
an acceptable HI for some applications. For instance, principal component analysis (PCA)
applied to gear vibration signals was able to extract a proper HI [65]. ঒is method was
also used to successfully construct the HI for the CMAPSS dataset (the turbofan engine
degradation dataset), the PHM08 dataset (Prognostics Data Challenge Dataset), and the
N-CMAPSS dataset (the new CMAPSS dataset) [66]. However, the PCA method does
not generate suitable HIs for the ReMAP¹ dataset (single-stiॱener composite panels under
compression-compression fatigue loading studied in this work). Figure 2.7 demonstrates
the 1੕੖ principal component (PC) obtained by the PCA model on the CMAPSS dataset in
comparison with the ReMAP dataset. It is clear that, in accordance with monotonicity,
trendability, and prognosability (the three main intended evaluation criteria in PHM and
this work), this method is ineॱective for building HI utilizing either AE low-level features
(amplitude, rise time, duration, energy, counts, and RMS) or AE high-level features (the
features that have been extracted a঍er signal processing and will be discussed in the cur-
rent study).

PCA, which is built on a linear reform of the original data, reveals its limitations when-
ever faced with inhomogeneity and time-varying correlations of component degradations.
To address this shortcoming in the case of nonlinear data, a number of PCA modiॲcations
have been developed, including kernel PCA (KPCA), greedy KPCA (GKPCA)[67], PCA-
based K-nearest neighbors, and PCA-based Gaussian mixture models [68]. However, the
computational cost of these methods can be high, particularly when dealing with large
datasets [69, 70]. For instance, KPCA necessitates computing the kernel matrix for ev-
ery pair of input features given a single kernel, assuming that the right kernel has been
selected in theory. Also, the potential degradation characteristics may not be eॱectively
mined using the majority of the above conventional techniques, which are only applicable
to datasets with a clear degradation trend [71].

In applications with massive amounts of data, artiॲcial neural networks (ANNs) and
deep learning (DL) algorithms can be utilized to build HIs without requiring a lot of do-
main knowledge. On the other hand, DL is a promising solution if enough labeled data
is available. For some cases, like the current work, not only is enough data unavailable,
but they are also unlabeled. In this regard, the limited available data should be eॴciently
processed and ॲt to the logical pa਄ern according to the physics of the problem under eval-
uation. ঒us, by taking advantage of FE on the input side (which leads to providing
informative and labelable inputs) and inducing the intended desirable behavior, inspired
by the physics of HI and its relation with the RUL of a structure, on the output side of the
model (which leads to simulating labels), we try to approach the problem in this work.

¹ReMAP: Real-time Condition-based Maintenance for Adaptive Aircra঍ Maintenance Planning. h਄ps://h2020-
remap.eu/.
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Figure 2.7: First principal component calculated using PCA on (a) raw data in the CMAPSS dataset, (b) acoustic
emission low-level features in the ReMAP dataset, and (c) acoustic emission high-level features the in ReMAP
dataset [36].

Common & traditional procedures to extract HIs
঒e common procedure to extract a HI that can be employed to predict the RUL of a unit
is to select the best features (a঍er FE) in accordance with prognostic criteria as the HI
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or the main constitutive components of the HI [72]. In this scenario, some features will
be overlooked since they do not meet the criteria, while they might be useful since their
fusion may comply with the intended speciॲcations. To overcome this shortcoming, the
prognostic criteria can play a supervising role in the construction process of HI rather
than being only a measurement tool of HI’s quality. For example, a predeॲned function
with a set of polynomial components [64] can be considered to fuse features, in which the
coeॴcients of the polynomial components are unknown and have to be determined. In
this regard, combining the prognostic criteria into a ‘‘ॲtness’’ function could be consid-
ered as an objective function for an optimization problem [73]. In this approach, although
a polynomial series might construct a proper HI function, the other components, e.g., loga-
rithmic and exponential ones, might construct a function with more monotonic, trendable,
and prognosable behavior. In fact, the fusion function is limited to only polynomial ker-
nels in this approach, whereas other mathematical kernels and combinations may produce
be਄er HI. Also, a signiॲcant and critical point in the predeॲned function scenario to fuse
features that should be seriously noted is the computation time. Since the extracted fea-
tures might be more than hundreds (like features extracted from acoustic emission in the
current work), this model is very time-consuming. ঒us, a fusion paradigm based on an
ANN rather than predeॲned functions is proposed in this thesis.

AI-based procedures to extract HIs
ANN and especially deep neural networks (DNN) are applicable in the ॲeld of PHM [74–
76] and are powerful mathematical methods, having potential for approaching the HI con-
struction problem. In 2003, the introduction of the minimum quantization error (MQE)
index, derived from the self-organizing map (SOM) approach [77], marked a novel degra-
dation indicator for bearings. ঒e results showcased its superiority over the commonly
used RMS as the typical HI for bearings. However, a quantitative comparison based on
evaluation criteria was not provided since these criteria were not introduced until 2010
[50] for prognostic purposes. Nonetheless, based on their plots for three bearings, high
criteria scores were not expected for all Mo, Pr, and Tr. It is worth noting that, as explained
in the PHI subsection, RMS and RRMS are still acceptable HIs for bearings, as RMS was
used as the comparison basis in that study to be outperformed. ঒e prognostics of compos-
ite structures pose even greater challenges, lacking a foundational basis for comparison.

Later, the MQE index was further utilized and improved in subsequent works [78]. In
2017, this index, named ”a self-organizing map-based HI (SOM-HI),” was used as the ba-
sis for comparison with a recurrent neural network-based health indicator (RNN-HI) for
the RUL prediction of bearings in the most cited work regarding HI construction. ঒e
authors assumed a linearly increasing trend for the HI to feed targets into their model.
Correlation and Mo were used as the evaluation criteria, resulting in an average score
([ਸ਼ੑ + ਬੑ੔੔ੈ੎੄੖ੋੑ੐]/2) of 0.6871 for SOM-HI and 0.7471 for RNN-HI. ঒e best feature in-
put from the frequency domain had an average score of 0.5411. ঒e results highlighted
two key ॲndings: (1) SOM-HI showed limited promise, with only ≈14% improvement com-
pared to the input feature, evaluated based on Mo and Tr criteria (assuming that Corre-
lation is equivalent to Tr, which is not). Note that Tr measures the relevance between the
degradation trends of HIs for a set of related units (e.g., bearings or composite structures)
[36, 64, 79, 80], whereas the Correlationmetric measures the relevance between a HI’s degrada-
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tion trend and the unit’s operating time, which implies an expectation of a linear relationship
between the HI and operation time. (2) Neither SOM-HI nor RNN-HI demonstrated a linear
trend. ঒us, the assumption of a linear trend for the HI to generate model targets is ques-
tionable. Moreover, a nonlinear behavior is expected for HIs due to the stochastic nature
of damage propagation and accumulation in any isotropic material—let alone in compos-
ite structures. Although Pr was not quantitatively reported and compared, the displayed
ॲgures indicated a signiॲcantly be਄er Pr score for RNN-HI compared to SOM-HI. It is es-
sential to note that the reported evaluation criteria were based on six ”training” bearings,
raising questions about the validity of the work to some extent. Another limitation was
the selection of the best features based on criteria before subsequent steps.

Motivated by RNN-HI, additional works were conducted following the linear trend for
the HI. In 2018, a convolutional neural network (CNN) was employed to formulate a HI
(CNN-HI) with an outlier removal step [81]. ঒ree criteria, named ”Monotonicity, Trend-
ability, and Scales,” were utilized, where the ॲrst one was Mo, and the second one was the
Correlation metric instead of Tr. ঒e Scales metric was likely intended to represent Pr, but
it might be misleading, as it considered the maximum HI value throughout the entire oper-
ational period instead of focusing on the HI value at EoL. ঒e scores for Mo, Correlation,
and Scales were reported as 0.406, 0.897, and 0.904, respectively. Considering the aver-
age score ([ਸ਼ੑ + ਬੑ੔੔ੈ੎੄੖ੋੑ੐]/2) of 0.651, the results did not surpass RNN-HI. ঒is could
be a਄ributed to the higher signiॲcance of temporal information than spatial information
in the HI construction process. Building upon this, in another study conducted in 2020, a
convolutional recurrent neural network (CRNN-HI) was created to construct a HI aligning
with the linear trend [80]. ঒e evaluation focused solely on Mo and Correlation metrics.
঒e CRNN-HI demonstrated a slight enhancement compared to RNN-HI, a਄ributed to the
exploitation of spatial information in addition to temporal information. However, there
was only a modest improvement, and the Mo scores remained relatively low.

঒e application of autoencoder has proven successful in diagnosing faults in rotating
equipment [82, 83]. Chen et al. [82] introduced fused feature vectors as machine HIs
for further classiॲcation using a deep belief network (DBN). It is important to note that
their HI does not precisely align with the intended HI in this study; rather, it is just a
fault indicator for damage classiॲcation and not for RUL prediction. Also, they employed
max-min normalization, an unacceptable step in prognostics due to the unavailability of
entire historical data up to the EoL. Similarly, a contractive autoencoder (CAE) was applied
for gearbox diagnosis [83]. To enhance the capabilities of a stacked sparse autoencoder
(SSAE), Qi et al. [84] integrated ensemble empirical mode decomposition (EEMD) and au-
toregression to preprocess the original vibration signal, selecting intrinsic mode function
components (IMFs) from EEMD as inputs for SSAE in fault diagnosis.

In 2018, Yang et al. [85] utilized sparse autoencoders to construct HIs for bearings,
considering only Mann-Kendall (MK) monotonicity, which provides a score not within
the [0, 1] range, which makes it diॴcult for comparison. In 2019, Lin et al. [86] de-
veloped an ensemble stacked autoencoder (ESA) to construct HIs with linear targets.
঒ey extracted features from vibration frequency spectra using four stacked activation-
diverse autoencoders, then fed these features into a DNN to reduce the dimensionality to
one. Based on Mo, Correlation, and Robustness criteria, they achieved a weighted score
(0.35 × ਸ਼ੑ + 0.35 × ਬੑ੔੔ੈ੎੄੖ੋੑ੐ + 0.3 × ਻ੑ੅੗੕੖੐ੈ੕੕) of 0.674 for one bearing, slightly lower
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than EMDCNN-HI, a multi-channel deep convolutional neural network with an exponen-
tially decaying learning rate [87], which scored 0.718. She et al. [88] applied a sparse
autoencoder with a regularization network (SAEwR-HI) to compress raw features, con-
structing a HI for rolling bearings based on features with high Correlation. ঒ey obtained
scores of 0.2826, 0.9940, and 0.9274 for Mo, Correlation, and Robustness, respectively, re-
sulting in a weighted score (0.35 × ਸ਼ੑ + 0.35 × ਬੑ੔੔ੈ੎੄੖ੋੑ੐ + 0.3 × ਻ੑ੅੗੕੖੐ੈ੕੕) of 0.7250 for
three bearings, surpassing autoencoder-HI (AE-HI), variational autoencoder-HI (VAE-HI),
and PCA-HI. Xu et al. [89] employed stacked autoencoders to detect the initial degra-
dation process through the frequency spectra of bearings. ঒ey improved Mo using an
exponential function on the extracted HI from the stacked autoencoder curve. Unfortu-
nately, they normalized inputs using max-min normalization, an unacceptable step for
prognostic purposes.

঒e literature review highlights several research gaps and noteworthy observations:

• Limited Applicability to Composite Structures: ঒e discussed works primar-
ily focus on rotating mechanical equipment, particularly bearings, while a research
gap has been identiॲed in the ॲeld of structural applications, particularly in the
construction of HIs for composite structures. ঒is distinction is noteworthy, as the
rotational dynamics inherent in rotating machinery act as an activator, accentuat-
ing defects in signals from faulty units compared to a healthy condition. In contrast,
composite structures operate in a more quasi-static mode for micro- and macro-scale
damage due to their loading frequency in comparison to rotating machinery appli-
cations. ঒is quasi-static nature renders them more passive in monitoring, present-
ing a challenge for diagnosis and prognosis, particularly when using passive SHM
methods like acoustic emission. Moreover, the inhomogeneous nature of composite
structures introduces added complexity and stochasticity in damage initiation and
growth.

• Nonlinear Nature of Damage Propagation: All of the studies cited above con-
sidered a linear function for HIs, while not only were nonlinear HIs obtained a঍er
training the models in all the cited studies, but also PHIs have so far been nonlin-
ear. ঒us, the assumption of a linear trend for HIs to generate targets for models is
deemed questionable based on the physics of the problem, which involves nonlinear
damage propagation and accumulation.

• Limited Generalizability and Model Stability: ঒e lack of evaluation regarding
generalizability is a noteworthy gap. ঒e studies o঍en investigate a small number
of units (one to three), with limited reports on the stability of models considering
cross-validation and enough replications. Particularly, DNNs, known for their ran-
domness and strong sensitivity to initial weights and biases, face challenges for sta-
bility checks.

• Unclear Criteria Evaluation: ঒e criteria used for evaluation are not consistently
reported. It remains unclear whether criteria calculations were based on training
units only, a combination of training and test units, or solely on test units. Addi-
tionally, there is a lack of criteria speciॲcally evaluating HIs, considering only the
test unit.
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Addressing these gaps is crucial for advancing the understanding and applicability
of HIs in diverse contexts, especially in composite structures which are diॱerent from
rotating machinery equipment.

2.6 Interpretability vs. Explainability vs. Accuracy

T he ML ॲeld commonly faces criticism for the lack of a clear deॲnition of ”interpretabil-
ity.” Furthermore, instead of a single ground-truth explanation, multiple quantiॲable

dimensions of interpretability are emerging [90]. ঒e domain of interpretable ML (IML),
o঍en also referred to as explainable AI (XAI), has experienced signiॲcant growth in recent
years [90]. Approaches to ML interpretability can be categorized based on various crite-
ria: intrinsic or post-hoc. ঒is classiॲcation distinguishes between methods achieving
interpretability by constraining the complexity of the ML model (intrinsic) and those an-
alyzing the model a঍er training (post hoc) [91]. In this study, the focus lies on HI models
and their application rather than general ML. Accordingly, keywords such as interpretabil-
ity and explainability are redeॲned to be਄er present diॱerent aspects of interpretability
in HI construction models.

Although a HI is employed by a prognostic model to forecast the RUL, it can bring
further value, such as interpretability and a closer connection to the component’s health
(damage) status. One aspect that cannot be addressed using prognostic criteria is the inter-
pretability of a HI. In recent years, a number of data-driven models have been developed
to extract HI [92, 93]. However, the HI functions produced by data-driven models are
so complicated that they are almost beyond comprehension, i.e., they lose their physical
meanings [94]. Even in the case of linear-based models, such as PCA-based techniques
mentioned earlier, the PCs they produce cannot be straightforwardly interpreted as phys-
ical characteristics of the unit. ঒is lack of interpretability can be a drawback in certain
scenarios. In other words, each PC contains all of the inputs (which may not be needed),
which are activated by a kernel (in the case of KPCA) and multiplied by diॱerent weights,
causing complexity, and each PC has diॱerent coeॴcients compared to the others.

Sometimes it is even challenging to translate the raw data from a sensor into a phys-
ical phenomenon, let alone interpret the output of a complex data-driven model run on
a network of various sensors. ঒us, the ॲrst step towards understanding the physics of
a unit could be made if the interpretability of the fusion model of the sensory inputs–i.e.,
understanding which sensors were used and how they formed the output (HI)–is possible.

As discussed in Chapter 1 (section 1.2), interpretability can be approached in two ways:

1. Physics-based relationship with HI: Finding a HI that exhibits a meaningful re-
lationship with the physical and mechanical behaviors of the unit.

2. Relationship between HI and SHM Data: Understanding the relationship be-
tween the constructed HI and SHM data, assuming a prior comprehension of the
relationship between various damage mechanisms in composite materials and SHM
data, which can be categorized into two levels of understanding:

• Interpretable HI: Grasping the precise mathematical function between the HI
and SHM data.
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• Explainable HI: Comprehending the correlation between the HI and SHM
data.

঒e construction of HIs for composite structures is a new area compared to rotating ma-
chinery, demanding further research and development to reach maturity. Additionally,
there is currently no established, promising PHI that serves as a benchmark meeting all
prognostic criteria, posing a challenge for the ॲrst approach. Moreover, understanding
the intricate connection between SHM data and diverse damage mechanisms in compos-
ite materials is a complex and evolving task [95–98], posing a challenge for the second
approach. Nevertheless, as demonstrated in Appendix A.1, a methodology has been de-
vised to design an interpretable HI (in the second approach) for commercial turbofan en-
gines (CMAPSS dataset), which is more straightforward compared to datasets involving
composite structures under cyclic fatigue loading. ঒e developed model belongs to the
intrinsic IML category. It should be noted that interpretability is not among the primary
or secondary objectives of this thesis but other objectives, as outlined in Section 1.4.

In applications with massive amounts of data, DL algorithms can be utilized to auto-
matically build HIs without requiring a lot of domain knowledge. On the other hand, due
to the thousands or even millions of parameters required by an applicable ANN for gen-
erating HIs, the features produced by DL are complex to interpret and cannot be treated
as physical characteristics of the unit under monitoring. In fact, data-driven approaches
(such as ANN, reinforcement learning, etc.) oॱer li਄le insight into the relation between the
inputs of captured sensory data and the outputs (either HI or RUL) of the model (black-box)
[99]. One of the main causes is that DL models typically have thousands of parameters
[100], e.g., when generating a HI, which makes them less generalized and very compli-
cated (the formula behind the DL model is not readable). ঒is renders them ineॴcient in
terms of interpretability.

Typical ANNs employ additive neurons, which multiply inputs by weights before sum-
ming the outputs. As a consequence, the option to multiply the inputs together is missing,
particularly in situations where numerous inputs are involved, such as CM sensory data.
Instead of only taking additive neurons into account, the multiplicative operator may pro-
duce a simpler, more inclusive, and more understandable equation. In fact, a multiplicative
operator can supply multiple summation operators, resulting in a shorter length for the
output equation. For instance, the HI function developed by [52], for the CMAPSS dataset,
uses just the multiplication and division operators between the features—there is no use
of the summing operator. In order to simulate multiplication and division operations us-
ing purely summing operators (assuming this is doable), it is most likely necessary to use
more weighted summation operators, which would make the HI function more compli-
cated to comprehend. Also, retaining continuous weights for each neuron still results in
a complex and non-understandable equation, potentially containing many unnecessary
terms that need removal. Given this, an approach is required to tackle these challenges in
the context of interpretability.

In addition to the explanations provided above, achieving accurate results and high
performance (e.g., meeting prognostic criteria in this book) for complex units requires
not only continuous weights and diॱerent neurons, including additive and multiplicative
ones alongside each other, but also deep layers to uncover the relationship between in-
puts and outputs. Consequently, even with applying all the aforementioned procedures
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to a model, obtaining an interpretable yet accurate model seems impossible. For example,
many researchers assert that all physics-based models of damage mechanics in composite
materials are interpretable since they are derived from other basic, well-known physics-
based equations, laws, models, etc., while the author argues with that notion.

For instance, considering Ladeveze’s damage modeling for laminated composites [101],
Ladeveze and Dantec introduced their theoretical modeling of the elementary ply, incorpo-
rating various physical concepts such as damage kinematics of the elementary ply, plastic-
ity modeling, damage-plasticity coupling, and ॲber-direction behavior modeling. While
each physical concept and its equations may be understood, comprehending the entire
model, including all these concepts and their interactions at the same time, is challenging.
Moreover, this model is a 2D model, assuming a plane-stress state. Expanding it to a full
3D structure and incorporating other nonlinear factors for improved accuracy makes it
even more complex. As shown in Figure 1.2, this physics-based damage model may not
be deemed an end-to-end interpretable model, similar to a DNN model, where the equa-
tion of each neuron (its weights and activation function) is known, but the DNN model is
considered a black box in the end-to-end view. ঒us, two questions remain:

1. Is interpretability needed, and does it help? If yes, to what level of interpretability
is needed?

2. What holds higher priority for a complicated engineering system or structure: in-
terpretability, explainability, or accuracy?

2.7 Conclusions

T he literature review has shed light on research gaps and challenges in the landscape
of HIs, especially for composite structures. ঒e upcoming chapters of the book will

actively address these gaps, focusing on:

• Limited Applicability to Composite Structures: ঒e thesis will explore and pro-
pose methodologies toward HI design speciॲcally for composite structures.

• NonlinearHI: Recognizing the nonlinear nature of damage propagation and health
degradation, the thesis will advocate for and provide solutions to move beyond the
conventional linear assumptions in constructing HIs.

• Generalizability and Criteria Evaluation: ঒rough rigorous methodologies, the
thesis will enhance the generalizability of models, employing thorough stability
checks and transparent criteria evaluation procedures, especially focusing on test
units.

• Need for Historical-Independent HI: Acknowledging the common historical-
dependency drawback in HI construction and prognostic models, this work will
propose a strategy to mitigate this drawback and create HIs for composite struc-
tures that are not reliant on historical SHM data.

• Fusion of AE and GW: ঒e thesis will delve into fusing passive and active SHM
methods, maximizing the beneॲts of both temporal and spatial information.
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• Interpretability: AE- and GW-based frameworks were investigated in terms of in-
terpretability, where the presence of incremental steps in the generated HIs may
correspond to distinct damage states within composite structures. Additionally, a
methodology for designing interpretable HIs for commercial turbofan engines (the
CMAPSS dataset) will be developed in this research, making HIs more understand-
able as well as transparent and contributing to the interpretability aspect of HIs.

In summary, the upcoming chapters strive to address these gaps while also introducing
innovative methodologies and insights, contributing to the progression of the ॲeld of HIs
for composite structures.
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3
Methodology

e࡞ chapter enhances HIs’ evaluation criteria for test units in PHM, introduces a nonlinear HI
design more aligned with damage physics, and concludes with an interpretable model for HI
insights.
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3.1 Introduction

A s discussed in Chapter 2, developing a nonlinear HI is imperative to align with the
physics of damage propagation and accumulation. Furthermore, the HIs’ criteria (Mo,

Pr, and Tr) are envisioned to play a supervising role, guiding the construction process
rather than merely serving as a measurement tool for HI’s quality. ঒e upcoming chapter
introduces and delves into these criteria, emphasizing their importance in evaluating HIs.

To enhance generalizability and criteria evaluation, we reॲne the approach by updat-
ing the criteria to speciॲcally assess the performance on test units, which are crucial for
real-world applications. ঒e narrative then transitions to proposing a scenario for embed-
ding the criteria in the fusion model. A novel semi-supervised (SS) paradigm is proposed
to consider the HIs’ criteria as supervisors. ঒is paradigm, as detailed in subsequent chap-
ters, exhibits versatility across various applications and model architectures, leveraging
nonlinear kernels during the learning process.

Moreover, the HIs’ criteria are explicitly implemented to optimize hyperparameters of
the aforementioned SS models and in the ensemble learning step. ঒e speciॲcs of these
implementations and developments will be elucidated in the next chapters, where each
will be used.

Finally, the chapter ventures into the development of an interpretable model, aiming
to contribute valuable insights into the interpretability aspect of HIs.

3.2 HIs’ Criteria

D ue to the high importance of HIs’ evaluation metrics amongst diॱerent stages of the
methodology, they are introduced at the outset. ঒is section begins by introducing

the prognostic metrics, which will be modiॲed in the present work for consideration of
only test units rather than both training and test units.

3.2.1 HIs’ criteria given all units
঒e evaluation standard of HIs is based upon three established criteria, namely Mo, Pr,
and Tr [1, 2]:

• ঒e general increasing or decreasing pa਄ern of a feature or generally a signal over
time is expressed by Mo.

• ঒e distribution of a parameter’s failure (ॲnal) value is measured by Pr.

• ঒e term Tr refers to whether a parameter’s decay histories (degradation) have the
same underlying pa਄ern for diॱerent samples or systems under monitoring.

঒ese metrics are deॲned as follows:ਸ਼ੑ = 1ਸ਼ ਸ਼∑ੌ=1 |||| 1਷ੌ − 1 ਷∑ੋੌ=1 ∑਷ੌ੒=1,੒>ੋ (੖੒ − ੖ੋ) .੕੊੐ (ਗ਼(੖੒) − ਗ਼(੖ੋ))∑਷ੌ੒=1,੒>ੋ (੖੒ − ੖ੋ) |||| .100% (3.1)

ਹ੔ = ੈਗ਼੒ ⎛⎜⎜⎝− √ 1ਸ਼ ∑ਸ਼ੌ=1 ||ਗ਼ੌ (਷ੌ) − [ 1ਸ਼ ∑ਸ਼ੋ=1 ਗ਼ੋ (਷ੋ)]||21ਸ਼ ∑ਸ਼ੌ=1 ||ਗ਼ੌ (1) − ਗ਼ੌ (਷ੌ)|| ⎞⎟⎟⎠ (3.2)
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਽ ੔ = ੏ੋ੐ੌ,੍ |||| ੆ੑ੘ (ਗ਼ੌ , ਗ਼੍)ಇਗ਼ੌ ಇਗ਼੍ ||||, ੌ, ੍ = 1, 2, …,ਸ਼ (3.3)

where ਗ਼(੖੒) and ਗ਼(੖ੋ) denote the measurements (HIs in the context) at the times of ੖੒ and੖ੋ , respectively. ঒e ੕੊੐(•) function represents the signum function. ੆ੑ੘(ਗ਼ੌ , ਗ਼੍) signiॲes
the covariance, where ਗ਼ੌ and ਗ਼੍ are vectors of measurements for the j੖ℎ and k੖ℎ unit (out
of M units – engineering systems or structures) with ਷ੌ and ਷੍ measurements, respec-
tively. ঒e standard deviations of ਗ਼ੌ and ਗ਼੍ are denoted by ಇਗ਼ੌ and ಇਗ਼੍ , respectively. ঒e
evaluation metric selected for Mo in Eq. 3.1 is the Modiॲed Mann-Kendall (MMK) metric.
In comparison to the Sign and Mann-Kendall versions, MMK is more resilient to noise and
considers the correlation between data points with time gaps exceeding one unit [1, 3]. All
three HIs metrics (Mo, Pr, and Tr) are rated on a scale ranging from 0 to 1, where a score
of 1 signiॲes optimal HI performance.

With consideration to these criteria, the Fitness metric is formulated as follows:ਯ ੋ੖੐ੈ੕੕ = ੄ ⋅ ਸ਼ੑ਱ਲ + ੅ ⋅ ਹ੔਱ਲ + ੆ ⋅ ਽ ੔਱ਲ (3.4)

Assuming the control constants a, b, and c each equal 1, the Fitness metric spans from 0
(indicating minimal quality) to 3 (indicating maximal quality) for the evaluated HIs.

3.2.2 HIs’ criteria given test units
It is important to emphasize that the HIs’ evaluation metrics mentioned above are devised
to encompass all units under monitoring, speciॲcally from their healthy state to their
ॲnal failure status within the context of PHM. Without access to complete trajectories
of HIs across all units, the assessment of HIs’ quality lacks implication. Consequently,
whether during the training or testing phase of ML-based models, the inclusion of all
units becomes crucial to accurately measuring Fitness. However, a potential challenge
arises due to the possibility of highly matched HIs during the training phase, which might
result in a misleadingly high Fitness score when confronted with an unmatched (outlier)
HI from a speciॲc unit during the testing phase. ঒erefore, it is essential to evaluate HI
metrics solely based on the test unit.

঒e choice of using the singular noun ”test unit” instead of the plural ”test units” is a
reॳection of the speciॲc context within this work. In this study, we are focused on a single
unit (composite specimen) designated for testing the model. ঒is decision is dictated by
the limited number of units available, with only 12 units (3 to 5 units for GW datasets
used in Chapter 6) allocated for training and testing in the sequence-to-sequence (seq2seq)
problem. However, it is noteworthy that similar functions, as will be brieॳy explained for
each, could be readily extended to accommodate multiple test units.

In this study, the HIs’ metrics, particularly Pr, are reॲned to focus more on the test units
rather than incorporating the entire set (train/validation/test) of units. ঒is adjustment is
aimed at preventing the false positive inॳuence of training units on ॲnal scores, which
might overshadow the low scores of the test unit. By primarily considering the test unit,
these updated metrics aim to determine if it deviates signiॲcantly from the training units
and to what extent. It is noteworthy that if the metrics yield higher values for only the
test unit while remaining lower for the training units, the methodology could be rendered
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ineॱective. ঒is is because the models are trained on the training units, and if their HIs
are not monotonic or if their Pr is low, high Mo and Pr for test units are not beneॲcial
in the models’ discrimination because the models have already observed other pa਄erns.
Conversely, if the metrics are consistently high for the training units, then achieving high
scores for the test unit becomes meaningful.

঒e deॲnition of Mo remains consistent, and its computation for a single unit follows
a straightforward process involving the internal summation of Eq. 3.1:

ਸ਼ੑಈ = |||| 1਷ಈ − 1 ਷ಈ∑ੋ=1 ∑਷ಈ੒=1,੒>ੋ (੖੒ − ੖ੋ) .੕੊੐ (ਗ਼ (੖੒) − ਗ਼ (੖ੋ))∑਷ಈ੒=1,੒>ੋ (੖੒ − ੖ੋ) |||| .100% (3.5)

where the symbol ಈ represents the test unit. In cases where multiple units are being con-
sidered for testing, Eq. 3.5 will be similar to Eq. 3.1, with the diॱerence being the inclusion
of an averaging procedure across only the test units.

However, Pr requires redeॲnition. In this adaptation, rather than considering the stan-
dard deviation of HIs at EoL across all units in the numerator, the deviation of the HI at
EoL for the test unit from the deviation basis (i.e., its corresponding value averaged over
the training units) is computed:

ਹ੔ಈ = ੈਗ਼੒ ⎛⎜⎜⎜⎜⎜⎜⎝
−

||||||ਗ਼ಈ (਷ಈ ) − deviation basis⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[ 1ਸ਼ಈ′ ∑ਸ਼ಈ′ੋ=1 ਗ਼ੋ (਷ੋ)]||||||1ਸ਼ ∑ਸ਼ੌ=1 ||ਗ਼ੌ (1) − ਗ਼ੌ (਷ੌ)||⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
scaling factor

⎞⎟⎟⎟⎟⎟⎟⎠
(3.6)

where ಈ ′ represents all units set except for the test ones and ਸ਼ಈ ′ signiॲes the count of those
units, including the training ones (or even the validation ones). It should be noted thatਗ਼ੌ (1) and ਗ਼ੌ (਷ੌ) denote the HI values of the j੖ℎ unit at the initiation and EoL, respectively.
঒e denominator serves as a scaling factor, which in this case corresponds to the mean
value of the diॱerence between HIs at the beginning and EoL across all units (ಈ ∪ ಈ ′) or the
training units (ಈ ′). A঍er evaluating both options within this study, the mean value over
all units is considered, as symbolized in Eq. 3.6. When dealing with multiple units (ਸ਼ಈ )
under consideration for testing, the deviation basis of EoL could be established based on
the training set (ಈ ′), the test set (ಈ ), or a combination of both (ಈ ∪ ಈ ′), among which the
latest with M units is advisable:
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ਹ੔ಈ = ੈਗ਼੒
⎛⎜⎜⎜⎜⎜⎜⎜⎝
−

√√√√√√√√√√ 1ਸ਼ಈ ∑ਸ਼ಈੌ=1 |||||ਗ਼ੌ (਷ੌ) − deviation basis⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[ 1ਸ਼ ∑ਸ਼ੋ=1 ਗ਼ੋ (਷ੋ)]|||||
2

1ਸ਼ ∑ਸ਼ੌ=1 ||ਗ਼ੌ (1) − ਗ਼ੌ (਷ੌ)||⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
scaling factor

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.7)

Regarding Tr, it is crucial to note that the minimum correlation of HIs should be com-
puted between two distinct units, which is not feasible when considering only a single
test unit while excluding the training units. Additionally, if the correlation between the
HI of the test unit and the HIs of the training units is calculated in a pairwise manner,
followed by selecting the minimum as Tr, this value might surpass the correlation com-
puted when considering all units’ HIs pairwise. Consequently, to ensure a more stringent
evaluation, the same formula as Eq. 3.3 is again applied to the test units. ঒is approach is
more rigorous and maintains consistency.

With considering the updated metrics, the Fitness metric for the test unit is as follows:ਯ ੋ੖੐ੈ੕੕ಈ = ੄ ⋅ ਸ਼ੑಈ਱ ਲ + ੅ ⋅ ਹ੔ಈ਱ਲ + ੆ ⋅ ਽ ੔਱ਲ (3.8)

where ਽ ੔਱ਲ is the same as before.

3.3 Deviation from Simulated Ideal HIs

I n addition to the evaluation criteria for HIs, a supplementary metric can be employed
to gauge the deviation from the ideal HIs simulated under the semi-supervised learning

(SSL) paradigm, as elucidated in the upcoming subsection. ঒e root mean square error
(RMSE) stands out as a suitable measure in this context:਻ਸ਼਼ਮ = √ 1਷ੌ ਷∑ੋੌ=1 (਽ੋ − ਱ਲ ੋ)2, ੌ ∈ ਸ਼ , ੒ ∈ 1, 2 (3.9)

In this formula, ਷ੌ is the length of the sequence (HI), ਽ੋ represents the target value (simu-
lated HI under SSL paradigm), and ਱ਲ ੋ is the network’s output for time step ੋ. ঒e RMSE
provides a single score for each unit’s constructed HI, with a primary focus on reporting
the test unit’s HI score, excluding training or validation data.

3.4 Semi-Supervised Criteria-based Fusion Paradigm

I n order to embed the Fitness function representing the criteria, diॱerent overall scenar-
ios can be proposed. ঒e simplest way is to rank the features according to their Fitness

values. Although the feature with the highest rank can be considered as the HI, a thresh-
old for the Fitness value can be set to accept more than one feature, and then, they can be
considered as a set of HIs which are imported into a prognostic model. Otherwise, some
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simple methods such as a weighted averaging can be applied to the features ॲltered by the
threshold, and ॲnally, only one HI can be exported. Nevertheless, such approach might
result in the overlooking of useful features since they do not ॲt the criteria. However, their
combination may fulॲl the intended speciॲcations. ঒us, as earlier mentioned, a fusion
model based on DNN and SSL, rather than the predeॲned functions, is proposed in the
current study.

SSL enables enormous volumes of unlabeled data to be exploited in conjunction with
normally smaller labeled data sets [4]. Unlabeled data can contribute to the formulation of
a superior classiॲer or regressor, provided enough unlabeled data is available and certain
assumptions about the distribution of the data are adopted. Semi-supervised classiॲcation
(SSC) and semi-supervised regression (SSR) are the key components of SSL [5], depending
upon the type of the output variable.

In SSL, there are several assumptions that deॲne the forms of intended interaction [6].
঒e most widely adopted assumptions are as follows [4]:

• Smoothness assumption: two samples close to each other in the input space should
result in close labels in the output space as well.

• Low-density assumption: the decision margin should not intersect across densely
populated portions of the input space.

• Manifold assumption: the labels for sample points on the same low-dimensional
manifold should be the same.

Most, if not all, SSL algorithms are built on one or more of these assumptions. ঒ese
assumptions are diॱerent deॲnitions of the similarity between data points and their pat-
terns [4]. ঒ey guide how SSL algorithms perceive relationships within the dataset. For
instance, the smoothness assumption suggests that neighboring data points in the input
space should have similar labels, reॳecting a continuous pa਄ern within the data.

঒e two most prevalent divisions in SSL are transductive and inductive, which are
founded on the purpose of the training process. ঒e former is merely concerned with
providing labels for unlabeled data (not providing a model), whereas the la਄er constructs
a classiॲcation or regression model that can be used to predict the label of unseen data
points.

As adaptations of preexisting supervised algorithms, inductive learning algorithms
that are called intrinsically semi-supervised [4] allow unlabeled data to be included in
the objective function. ঒ey do not use any intermediary stages or supervised base learn-
ers, rather they directly optimize an objective function with components for labelled and
unlabeled data. In general, these algorithms rely on one of the SSL assumptions, either
explicitly or implicitly, and most SS neural networks rely on the smoothness assumption.

In the present work, a SS deep neural network (SSDNN), by implicitly implementing
the HIs’ criteria as well as using the available EoL, has been proposed to construct HI by
feature fusion. First, a hypothetical ideal HI kernel function following the HIs’ criteria is
proposed and then used as a target for a supervised ANN to approximate the HI function
(see Figure 3.1). In this regard, two main questions arise:

1. How to select a suitable function to make an ideal HI conforming to the prognostic
(HIs’) criteria?
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2. What variable should be considered as the main variable of the ideal HI function?

which are discussed in the following.

Figure 3.1: Semi-supervised criteria-based NN Fusion to construct the HI from the features.

Selecting hypothetical kernel function to simulate ideal HI
To create targets of the NN to predict HI, three aspects have been considered:

• ঒e ideal HI function should best conform to all the criteria (Mo, Tr, and Pr).

• ঒e simpler the ideal HI function, the simpler the NN model, and the faster its con-
vergence.

• ঒e ideal HI function should take into account the nonlinear behavior of damage
propagation and accumulation in an engineering system or structure.

঒e smoothness assumption of SSL is already taken into account when using an ideal HI
function as a label generator that fulॲls the HIs’ criteria, i.e., if two bunches of extracted
features at two diॱerent time steps are close to each other in the input space, their HIs
(labels) are close to each other as well. Inversely, increasing the dissimilarity between two
groups of extracted features at two separate time steps in the input space causes their HIs
to move apart. In other words, the relative RUL between the former (੖ − 1) and current
(੖) time windows, from which the features are extracted, is known. As a result, a direct
relationship between the relative RUL (౸਻ਾ ਵ) and the relative HI variation (degradation)
(౸਱ਲ ) can be used to reconstruct the relative HI. By using the last relative RUL at the
last time window before EoL (which is the only labeled data point concerning RUL for
each sample) and considering a threshold as the maximum HI at EoL, all HI labels are
recursively provided from the ॲnal failure at the EoL to the healthy state at the onset,
yielding simultaneously prognosable behavior in HIs as the labels (see Figure 3.2).
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Figure 3.2: Recursive reconstruction of the HI labels based on the relative RUL (౸਻ਾ ਵ) and the maximum HI at
EoL to implement SSL.

With the abovementioned hypotheses in mind, four basic kernel functions having high
compatibility with the criteria are proposed and studied to select the best one: linear
(਱ਲ ੖ = ੖), quadratic polynomial (਱ਲ ੖ = ੖2), natural logarithm (਱ਲ ੖ = ln (੖)), and exponen-
tial functions (਱ਲ ੖ = exp(੖)). ঒ese functions should be expressed in terms of usage time,
which in this case is fatigue cycles. ঒e functions should be normalized using the max-min
normalization to adapt Pr as a recursive reconstruction process of HI. ঒is normalization
process is acceptable for hypothetical targets. In order to investigate the HIs’ criteria,
three diॱerent artiॲcial units with variable lifetimes of 7, 4, and 10 time units (time step
is 0.05) are considered, as shown in Figure 3.3. All functions best match to Mo and Pr ac-
cording to the calculated criteria shown in Figure 3.4, however only linear and quadratic
polynomial functions have the highest value (1) of Tr. As a result, the quadratic polyno-
mial kernel function is used to construct the targets since it takes into account damage
propagation and accumulation nonlinearity. ঒erefore, the equation of ideal hypothetical
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HI for generating the targets is:਱ਲ (੖) = ੐ੑ੔੏੄੎ੋੜੈ (੖2) = ੖2 − ਱ਲ ੏ੋ੐਱ਲ ੏੄ਗ਼ − ਱ਲ ੏ੋ੐ = ੖2 − ੖20੖2ਮੑਵ − ੖20 ੖0=0−−−−→ ਱ਲ (੖) = ੖2੖2ਮੑਵ (3.10)

where ੖0 and ੖ਮੑਵ are the operational times in terms of cycles at the beginning and the
EoL, respectively. ਱ਲ ੏ੋ੐ and ਱ਲ ੏੄ਗ਼ are the minimum and maximum values of HI. ঒e
key point is that ੖ਮੑਵ is not available before the ॲnal failure. Using the simulated labels, a
loss function at the output layer can be deॲned.

Figure 3.3: Hypothetical HI functions for three artiॲcial units with diॱerent lifetimes.

Figure 3.4: Prognostic criteria of four hypothetical HI functions shown in Figure 3.3.

3.4.1 Validation
঒e proposed SSL paradigm will serve as the core within newly developed frameworks,
demonstrating its practicality in various case studies [1, 7–9]:

• Chapter 5: Designing HI for T-Sti࢓ener Composite Panels using Acoustic
Emission: implemented within three new frameworks.
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• Chapter 6: Designing HI for T-Sti࢓ener Composite Panels and Dogbone
Specimens using Guided Waves: utilized within one new framework.

• Chapter 7: Fusion of Acoustic Emission and Guided Waves Techniques: in-
tegration of the new frameworks developed for AE and GW in Chapters 5 and 6
using SSL.

• Appendix A.1: Interpretable HIs for Commercial Turbofan Engines: imple-
mented within one new framework containing the techniques developed for inter-
pretability, elaborated in the next section.

঒ese chapters collectively showcase the practical application and versatility of the pro-
posed SSL paradigm across diॱerent applications, datasets, and frameworks.

3.5 Interpretability

I n the pursuit of interpretable HIs, this section introduces a novel methodology with
a focus on enhancing interpretability metrics, particularly the readability of the HI’s

equation—a direct correlation of its length. Recent studies have demonstrated the via-
bility of constructing HIs through operations like addition and multiplication on derived
features from sensory data [10]. ঒e unique contribution here lies in the automatic integra-
tion of these mathematical operators within the ANN, facilitating the creation of eॴcient
HIs while maintaining the inherent accuracy of deep learning. It is crucial to note that,
rather than producing the equation as an output, the ANN inherently encapsulates the
equation [9].

Diverging from conventional ANNs, this section ॲrst introduces a modiॲed multiplica-
tive neuron, marking a paradigm shi঍ by incorporating multiplicative neurons alongside
standard additive ones. ঒e aim is to simplify the equation structure for a more inclusive
and understandable model. ঒is departure is exempliॲed through the design of HIs tai-
lored for the commercial turbofan engine dataset (CMAPSS), showcasing the utilization
of multiplication and division operators.

঒e signiॲcance of sparse weights is underscored, drawing inspiration from the ac-
knowledgment that continuous weights for each neuron may lead to complex and non-
understandable equations. Although an exploration ensues, introducing the development
of a multiplicative neuron to complement conventional additive neurons, it becomes evi-
dent that this modiॲcation alone is insuॴcient for deriving a compact HI’s equation from
the ANN.

To address this limitation, a strategic approach is employed—discretizing continuous
weights using a ternary set, coupled with sparsity control to guide convergence towards
values -1, 0, 1 while controlling the number of zeroes. ঒is results in an ANN comprising
both additive and multiplicative neurons with discrete weights, aiming for simplicity and
interpretability in the equation structure. ঒e speciॲc model designed based on these in-
novations will be investigated for the CMAPSS dataset in Appendix A.1, adding a practical
dimension to these theoretical foundations.
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3.5.1 Modi࢔ed multiplicative layer
A limited number of neurons and layers should be employed in order to derive an eॱec-
tive equation that could characterize a HI. An ANN’s compact size depends on the subject
under examination. It is presumed that even a basic network of two 8-neuron layers could
result in an outsized, physically unexplainable equation representing a HI. At ॲrst, it can
seem extremely diॴcult for an ANN to be trained with just a few parameters and deliver
correct results. A probable underॲ਄ing of the data is foreseen, even for small datasets. A
straightforward HI equation can be derived from the ANN itself by including the physical
parameters in it and zeroing out some weights in the training step. In the current work, it
is regarded that physical properties could be basic multiplications and summations among
features (like CMAPSS dataset [10]), which can be done by the combination of the multi-
plicative and additive layers, as will be seen in the next subsections. By discretizing the
weights into a ternary shape and regulating the number of weights that should be zero, it is
technically feasible to automatically decrease the number of neurons and further simplify
the HI formula.

Introspecting ANN – additive neuron
Artiॲcial neurons, which are coupled together and organized into layers, are the building
blocks of an ANN. Each layer receives input from signals. One layer’s output feeds into
the subsequent layer’s input. ঒e basic equation of the typical ANN for each neuron
individually given certain inputs ਗ਼਴ from the preceding layer is:਷ੌ = ਴∑ੋ=1[ਖ਼ ੎ੌ ੋਗ਼ੋ] + ੅੎ (3.11)

where ਷ੌ is the initial output of neuron and ਖ਼ ੎ੌ ੋ is the weight relevant to the connection
between the ੌ੖ℎ neuron at the ੎੖ℎ layer to the (੎ − 1)੖ℎ layer’s ੋ੖ℎ neuron. ঒e neuron also
contains ੅੎ to consider the bias. By using a nonlinearity through an activation functionਯ(਷ ), which has the only restriction of being diॱerentiable to the points of interest, the
ॲnal output of the neuron is computed. While the ANN is being trained, the weights and
biases of each neuron, which stand in for the learnable parameters of the network, are
a਄empting to modify their values by backpropagating the error through the derivatives.
A diॱerentiable loss function must also be formulated at the points of interest. Due to the
fact that this neuron sums the weighted inputs, it is termed additive.

Introspecting ANN – multiplicative neuron
঒e basic equation of the neuron Eq. 3.11 should be modiॲed in order to induce the layers
to generate multiplication operators. Accordingly, as stated in [11], we can construct a
multiplicative neuron instead of a typical additive neuron by changing the summation step
(∑਴ੋ=1[ਖ਼ੌੋਗ਼ੋ]) to a multiplication one (∏਴ੋ=1[ਗ਼ਖ਼ੌੋੋ ]), with the weights acting as exponents
in a product rather than weights in a sum. Unfortunately, as mentioned in [12], an ANN
with typical multiplicative layers makes the training more complex and slower due to the
derivatives that are needed for backpropagation. ঒is is the main reason that these layers
have not been applied extensively in the literature. To mitigate this pitfall, a modiॲed
multiplicative neuron is developed by converting the additive neuron via a speciॲc pair of
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continuous activation functions. In particular, the inputs must get a logarithmic activation
before being fed into Eq. 3.11 and an exponential activation a঍erward. ঒e following
equation can be used to update an additive neuron into a multiplicative one a঍er the
above-mentioned adjustments:

਷ੌ = ੈ∑਴ੋ=1[ਖ਼ ੎ੌ ੋ ੎੐(ਗ਼ੋ)]+੅੎= ੈ੅੎ .ੈ∑਴ੋ=1[੎੐(ਗ਼ੋ)ਖ਼੎ੌੋ ]= ੈ੅੎ .ੈ੎੐(∏਴ੋ=1[ਗ਼ਖ਼੎ੌੋੋ ])= ੈ੅੎ ਴∏ੋ=1 [ਗ਼ਖ਼ ੎ੌ ੋੋ ] (3.12)

঒e transition from additive to multiplicative neurons is shown in 3.5. An ANN can avoid
adding further nonlinearities that might result in a complex equation by only employing
these two types of activation functions. A key point to highlight is that by constraining the
neurons to perform these particular activation functions, their ability to scale is conॲned
by the requirement that the inputs be positive in order to apply the logarithm. Nonetheless,
as the inputs could be simply rescaled to a desirable positive range, this is not a limitation
in the current research. Furthermore, the convergence principles of neural networks are
fulॲlled given that the logarithm exists because the proposed multiplicative neuron derives
naturally from the additive one by adjusting the activation functions.

3.5.2 Discretized weights
Learning the weights in continuous spaces is very favorable since the training process is
stable and the optimal solution can be properly found. Nevertheless, because the ANN de-
sign is typically complex with vast numbers of weights, this is not eॱective in developing
concise equations. ঒is is particularly important in the case of HI construction, where the
objective is to recognize the pa਄ern and reconstruct a HI that oॱers high criteria scores
(Mo, Tr, and Pr) rather than merely exact target values [1]. Incorporating continuous val-
ues with multiple decimal digits provides a complex model, even in extreme situations
where only a small number of weights are non-zero. An ANN cannot be trained with
discontinuous weights because there are no gradients for back-propagation; hence, learn-
ing in a continuous space is ultimately inevitable. Rounding the weights to the desired
decimal during testing could be an easy way to achieve a compact formula, yet it would
adversely aॱect the outputs and most likely result in the ANN being ineॱective.

঒e weights should preferably be discrete to particular decimal values or even integers
without compromising precision. Ternary weights have lately been developed to help with
this challenge [13]. ঒e objective is to train an ANN by converging the weights to speciॲed
values instead of rounding them to particular decimal digits. ঒ey are known as ”ternary”
values if the provided values are {-1, 0, 1}. ঒ere are undoubtedly scenarios where we
require weights to fall within the range of those integers. ঒is approach only induces a
portion of the weights, which is controllable, to be integers rather than forcing all.
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Figure 3.5: Additive and multiplicative neurons.

According to Ref. [13], the full-precision weight space is too vast to identify an ac-
ceptable ternary solution, thereby the continuous weight spaces need to be constrained
by ੖੄੐ℎ(ਖ਼): ਖ਼′ = ੖੄੐ℎ(ਖ਼) (3.13)

঒e weights are now bounded to the chosen [-1, 1], hyperbolic tangent range. Adding
just one more term to the loss function (ਮ) enables this transition work:ਮ = ਮਬ (ਜ਼, ਜ਼̂) + ౿ਮ਻(ਖ਼′) (3.14)ਮਬ (ਜ਼, ਜ਼̂) = 1੐ ੐∑ੌ=1(ਜ਼ੌ − ਜ਼̂ੌ)2 (3.15)

ਮ਻(ਖ਼′) = ਮ਻(੖੄੐ℎ(ਖ਼)) = ਵ∑੎=1 |ਖ਼ ੎ |∑ਖ਼ੌੋ [(౵ − ੖੄੐ℎ2(ਖ਼ ੎ੌ ੋ))੖੄੐ℎ2(ਖ਼ ੎ੌ ੋ)] (3.16)

where ਮਬ (ਜ਼, ਜ਼̂) is the mean-squared loss (MSE) between labels ਜ਼ੌ and predicted outputsਜ਼̂ੌ over ੐ data points (as an example loss function for the regression task), and ਮ਻(ਖ਼′) is
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Figure 3.6: Gradients’ ॳow of the discretizing loss function ਮ਻ during training for diॱerent shape controller
parameters ౵ . ঒e desired local minima exist when 0 < ౵ < 2.

the discretizing loss for converging the weights towards the ternary values. ౿ is a regular-
ization parameter, ਵ is the number of layers, |ਖ਼ ੎ | denotes the total number of weights for
the ੎੖ℎ layer (the summation is over all ਖ਼ੌੋ which is the weight relevant to the connection
between the ੌ੖ℎ neuron at the ੎੖ℎ layer to the (੎ − 1)੖ℎ layer’s ੋ੖ℎ neuron), and ౵ is the
shape controller of ਮ਻(.). ౿ and ౵ are supplementary hyperparameters that should be ad-
justed for training the ANN; the ॲrst can be seen as a trade-oॱ between the importance of
reducing the MSE and ternarizing more weights eॱectively, and the la਄er so঍ly controls
the number of weights to become zero. ঒e gradients exist and are proven to be minimal
at ੖੄੐ℎ(ਖ਼) = −1, ੖੄੐ℎ(ਖ਼) = 0 and ੖੄੐ℎ(ਖ਼) = 1 when 0 < ౵ < 2 using the aforementioned
modiॲcations and loss functions (the proof in [13]). ঒e ਮ਻(ਖ਼′) for diॱerent ౵ values is
shown in Figure 3.6. ঒e number of zeros in the trained weights, which can be monitored
to have more or fewer parameters, is the sparsity control key property of Eq. 3.16. ঒is
is especially helpful in situations where larger ANN architectures were obtained, yet we
still want to have concise formulations for HIs by zeroing (raising ౵) more weights. By
maintaining the weights as close to their ternary shape as appropriate and regulating the
proportion of them that should be identical to zero, the ANN is able to generate precise
predictions, which is a beneॲt of the adjustment to the weights and the incorporation of
the term to the total loss function ਮ.

3.5.3 Validation
঒e proposed techniques, namely the incorporation of multiplicative neurons and spar-
sity control, undergo rigorous testing using the NASA Ames Prognostics Data Repository
dataset for turbofan engine degradation simulation (CMAPSS) in Appendix A.1. ঒e de-
veloped model makes substantial contributions by introducing a novel type of neuron,
constructing a network with a synergy of additive and multiplicative neurons, and har-
nessing the advantages of multiplicative neurons and sparsity control through discretized
weights. ঒e resulting HIs exhibit concise and easy-to-understand equations, all while
satisfying essential evaluation criteria (Mo, Pr, and Tr). Appendix A.1 will delve into a
comparative analysis with PCA, KPCA, and two-stage genetic programming (GP) outputs,
shedding light on the eॱectiveness and interpretability of the proposed methodologies.

3.6 Conclusions

I n conclusion, this chapter presented methodologies for the development and evalua-
tion of HIs, emphasizing the necessity of a nonlinear approach aligned with the physics
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of damage propagation and accumulation. Key criteria for HIs, including Mo, Tr, and
Pr, were introduced as pivotal elements for assessing HIs’ quality. A signiॲcant shi঍ to-
wards evaluating HIs speciॲcally on test units, crucial for real-world applications, was
highlighted to enhance generalizability.

঒e chapter introduced a novel SSL paradigm, leveraging HIs’ criteria as supervisors
across various applications and model architectures. Furthermore, the chapter delved into
the development of interpretable models, providing valuable insights into the interpretabil-
ity aspect of HIs. ঒e emphasis was placed on the readability of the HI’s equation, intro-
ducing a modiॲed multiplicative layer alongside discretized weights to achieve concise
and interpretable formulas for turbofan engines.

In summary, the chapter laid the foundation for a robust and versatile methodology
for HI development, incorporating nonlinearities, emphasizing criteria-based evaluations,
and introducing innovations in interpretability. Subsequent chapters are anticipated to
validate and extend these methodologies through practical applications and comparative
assessments.
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4
Data Analysis and Machine

Learning
In this foundational chapter, key operations essential for subsequent frameworks in the the-
sis are introduced, covering preprocessing techniques, signal processing methods, statistical
features, dimension reduction, and an overview of deep learning. ey࡞ equip readers with
essential knowledge for designing frameworks across diverse applications and datasets in the
following chapters.
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4.1 Introduction

I n this chapter, the groundwork for data analysis is laid, introducing essential operations
pivotal for subsequent frameworks developed in this thesis. ঒e chapter begins with fun-

damental preprocessing techniques, encompassing normalization, standardization, and
a newly developed adaptive standardization. Following this, signal processing methods
such as fast Fourier transform (FFT), Hilbert transform (HT), and complete ensemble em-
pirical mode decomposition with adaptive noise (CEEMDAN) are explored to cater to di-
verse data handling needs. Statistical features, oॱering insights into temporal and spectral
characteristics in both time and frequency domains, are outlined. Additionally, dimension
reduction through principal component analysis (PCA)-based algorithms for simplifying
complex datasets is presented. ঒e chapter concludes with an overview of deep learning,
exploring architectures like multilayer perceptron (MLP), convolutional neural network
(CNN), long short-term memory (LSTM), and bidirectional LSTM (BiLSTM), along with
insights into hyperparameter tuning and ensemble learning (EL) strategies. Serving as
an instructive guide, this chapter equips readers with the essential understanding of data
analysis techniques crucially employed in designing new frameworks across various ap-
plications and datasets in the subsequent chapters.

4.2 Preprocessing

D ata transformation involves transforming the data into formats that are suitable for
mining. Normalization is a primary category of transformation in which the a਄ribute

data is scaled to fall into a narrow range, like -1.0 to 1.0 or 0.0 to 1.0 [1, 2]. Algorithms ben-
eॲt from normalization, especially neural networks. Normalizing input values in training
sets for every a਄ribute speeds up the learning process in classiॲcation mining using the
backpropagation algorithm. It also contributes to distance-based techniques by keeping
a਄ributes with broad ranges from outweighing those with narrower ranges [1].

Normalization (referring to min-max normalization) or standardization (referring to
zero-mean normalization) are commonly applied preprocessing techniques for inputs be-
fore being fed into a model. ঒ese advantageous preprocessing techniques are also em-
ployed between the hidden layers of an ANN model. However, they should be utilized
with caution in the ॲeld of prognostics or other ॲelds with a similar objective because fu-
ture data is not accessible to the model, especially during its testing phase. In fact, whether
the input data are normalized or standardized given the entire trajectory, the input data
distribution is already placed into a known distribution. In this manner, the problem has
somehow been turned into an interpolation task for the data-driven model when it is in
fact an extrapolation task, which is more diॴcult for ML models. ঒is point is crucial for
assessing prognostic-relevant methods, such as HI construction or RUL prediction models.
As a result, an adaptive standardization technique needs to be developed. A঍er outlining
the normalization and standardization relationships, this section will introduce the adap-
tive standardization technique.
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4.2.1 Normalization (min-max)
঒e original data is transformed linearly by min-max normalization:ਗ਼੐ੑ੔੏ੋ = ਗ਼ੋ − ੏ੋ੐(ੁ)੏੄ਗ਼(ੁ) − ੏ੋ੐(ੁ) where ੁ = ਗ਼1∶਷ (4.1)

where ਗ਼ੋ is the ੋ੖ℎ data at the ੋ੖ℎ time step (੖ੋ), and ੋ basically refers to the current (data
or time step). ੁ indicates the entire historical data from the beginning to the end ਷ (EoL).

4.2.2 Standardization (zero-mean)
঒e value of an input feature is standardized using the mean ಀ and standard deviation ಇ of
all the data for that feature when using zero-mean normalization, also known as z-score
normalization:ਗ਼੕੖ੋ = ਗ਼ੋ − ಀಇ where ಀ = ∑਷ੌ=1 ਗ਼ੌ਷ ; ಇ = √∑਷ੌ=1 (ਗ਼ੌ − ಀ)2਷ (4.2)

When the input data has a Guassian distribution, this method performs be਄er.

4.2.3 Adaptive standardization
According to the explanations above, the plausible standardization technique can be used
for both training and test data based on the mean value and standard deviation derived ex-
clusively from the training data [3]. However, because the same technique was employed
and noticed its misleading impacts on results, this may not be useful for new unseen data
(validation or test portions). As a result, an adaptive standardizing technique is being de-
veloped. Assuming that ಀੋ and ಇੋ are the mean value and standard deviation of the data
(ਗ਼1∶ੋ) up to the present (time step ੖ੋ), the data are standardized as follows:

ਗ਼੄੕੖ੋ = ਗ਼ੋ − ∑ੋ−1ੌ=1 ਗ਼੄੕੖ੌ +ਗ਼ੋੋ
√ ∑ੋ−1ੌ=1(ਗ਼੄੕੖ੌ − ∑ੋ−1ੌ=1 ਗ਼੄੕੖ੌ +ਗ਼ੋੋ )2+(ਗ਼ੋ− ∑ੋ−1ੌ=1 ਗ਼੄੕੖ੌ +ਗ਼ੋੋ )ੋ

= ਗ਼ੋ − ಀੋಇੋ (4.3)

ಀੋ = ∑ੋ−1ੌ=1 ਗ਼੄੕੖ੌ + ਗ਼ੋੋ (4.4)

ಇੋ = √∑ੋ−1ੌ=1 (ਗ਼੄੕੖ੌ − ಀੋ)2 + (ਗ਼ੋ − ಀੋ)ੋ (4.5)

It is important to note that the data preceding the current time step (ਗ਼1∶ੋ−1) is not stan-
dardized at the current time step (੖ੋ), but has been standardized in previous time steps
(੖1, ੖2,…, ੖ੋ−1). Only the current data (ਗ਼ੋ) undergoes the standardization process at the cur-
rent time step (੖ੋ), rather than the preceding data. ঒is procedure is carried out for the
extracted features of each unit independently, which is acceptable and applicable from the
prognostics standpoint.
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4.3 Signal Processing

A signal, conveying essential information, is a crucial element in various applications.
As signals acquired during tests o঍en contain noise and bootless components, ”signal

processing” (SP) methods become imperative. SP aids in extracting system fault-related
information, enhancing the signal-to-noise ratio (SNR). It has risen to the top of the man-
ufacturing and operation of modern equipment, accounting for 50–70% of the total cost of
the facility [10].

঒ree domains, namely time, frequency, and time-frequency, categorize SP methods.
঒ree fundamental SP methods—fast Fourier transform (FFT), Hilbert transform (HT), and
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)—are
very helpful to process data. ঒ese methods will be employed in subsequent chapters
within newly developed frameworks for diverse applications. FFT eॴciently transforms
signals from the time domain to the frequency domain, oॱering insights into various fre-
quency components. ঒e HT is instrumental in analyzing instantaneous frequency and
phase. CEEMDAN, being versatile, allows adaptive decomposition of signals into intrinsic
mode functions, facilitating a detailed exploration of signal components. ঒e utilization of
these methods within the upcoming frameworks aims to enhance information extraction
from signals across a range of scenarios. ঒us, FFT, HT, and CEEMDAN will be brieॳy
introduced in the next subsections.

4.3.1 FFT
FFT is a potent signal processing method for eॱectively analyzing signals in the frequency
domain [4]. By converting a signal from the time domain to the frequency domain, the
signal’s frequency components are perceived. Due to its faster computational speed than
other methods, the discrete Fourier transform (DFT) can be computed using the FFT algo-
rithm, which is highly valuable.

঒e mathematical representation of the FFT can be expressed as follows:ੁ(੍) = 1਷ ਷ −1∑੐=0 ਗ਼ (੐)exp(−ੌ2಄੍੐਷ ) (4.6)

where, ਗ਼(੐) indicates the discrete input signal at the time index ੐, and ੁ(੍) represents
the corresponding frequency component at the frequency index ੍. ঒e exponential term,
which involves complex numbers, contributes in capturing the signal’s phase and ampli-
tude information in the frequency domain.

FFT is helpful in many applications, including image analysis, communications, and
audio signal processing, because of its capacity to eॱectively explore the spectral character-
istics of signals. Its use in the frameworks developed in the upcoming chapters highlights
how crucial it is to extracting valuable features from input data.

4.3.2 HT
HT for a signal ਗ਼(੖), which denotes ਗ਼̂ (੖), is expressed as [5]:ਗ਼̂ (੖) = ਱ [ਗ਼(੖)] = ∫∞−∞ ਗ਼(੖)੖−ಈ ੇಈ಄ = ਗ਼ (੖) ∗ 1಄੖ (4.7)
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In Eq. 4.7, the symbol of ∗ depicts the convolution operation. By assuming:ੌ = √−1 ; ੄ (੖) = √ਗ਼(੖)2 + ਗ਼̂ (੖)2; ౼ (੖) = ੄੔੆੖੄੐ ( ਗ਼̂ (੖)ਗ਼ (੖) ) (4.8)

the analytic signal can be expressed as:ੜ (੖) = ਗ਼ (੖) + ੌਗ਼̂ (੖) = ੄ (੖)ੈਗ਼੒[ੌ౼(੖)] (4.9)

where instantaneous amplitude and phase have been depicted by ੄ (੖) and ౼ (੖), respec-
tively. In addition, the instantaneous frequency of the signal ਗ਼(੖) can be obtained from಍ (੖) = ੇ౼(੖)ੇ੖ . ঒e Hilbert envelope spectrum is also deॲned as:

ℎ(੉ ) = ∫∞−∞ ੄ (੖)exp(−ੌ2಄੉ ੖)ੇ੖ = ∫∞−∞ ⎧⎪⎨⎪⎩
√√√√√√√√√ਗ਼(੖)2 + [∫∞−∞ ਗ਼(੖)੖−ಈ ੇಈ಄ ]2

exp(−ੌ2಄੉ ੖)⎫⎪⎬⎪⎭ੇ੖
(4.10)

঒e vibration signals obtained by a monitoring system are usually modulated when a me-
chanical fault happens. To demodulate a signal, HT is a popular technique to distinguish
carrier component and modulation component in which the fault features are mostly con-
cealed. It is particularly a useful SP method to process GW signals for damage detection
and monitoring in composite structures [6].

4.3.3 CEEMDAN
Empirical mode decomposition (EMD) is an algorithm capable of decomposing non-linear,
non-stationary signals into a set of orthogonal components. ঒e basis of EMD is the
Hilbert-Huang transform [7], which decomposes the original signal into simple intrinsic
mode functions called IMFs. Each IMF needs to fulॲll two conditions:

1. ঒e number of extrema and zero crossings must be equal or diॱer by no more than
one.

2. ঒e mean value of the upper and lower envelopes is zero everywhere.

঒e basic steps of the EMD algorithms are explained in the following.
First, the local extrema of the data are identiॲed. By employing cubic splines, an upper

and lower signal envelope are created, containing the entirety of the signal data. ঒en,
the mean of the upper and lower envelopes is calculated. In the next step, the diॱerence
between the mean (੏1) and the data (ੁ (੖)) is calculated, which corresponds to the ॲrst
IMF component ℎ1: ੁ (੖) − ੏1 = ℎ1 (4.11)

In case the two conditions mentioned above are not validated, the previous steps are re-
peated until ℎ1 complies with those criteria (si঍ing process). ℎ1 now corresponds to the
new data, i.e., ੁ (੖) = ℎ1, and the previous steps are repeated to extract the next IMF as:ℎ1 − ੏11 = ℎ11 (4.12)
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A঍er ੍ si঍ings, the IMF that adheres to the criteria is designated as ੆1 = ℎ1੍ . ঒en, ੆1 is
the ॲrst IMF and is subtracted from the original data:ੁ (੖) − ੆1 = ੔1 (4.13)

where ੔1 is the ॲrst residual and is treated as the new data in Eq. 4.11. ঒e subsequent
steps are to extract the ੐੖ℎ IMF (੆੐) until ੔੐ is a monotonic function. When a monotonic
function is reached, all IMFs are extracted, and the process is completed. To reconstruct
the original data a঍er extracting the ੐੖ℎ IMF and leaving the residual ੔੐ , Eq. 4.15 is used:ੁ (੖) = ੐∑ੋ=1 ੆ੋ + ੔੐ (4.14)

Despite the advantages EMD provides in signal decomposition, it suॱers from a major
drawback referred to as mode mixing. A solution to this drawback is ensemble EMD
(EEMD) [8], which adds Gaussian white noise to the data with the appropriate scale. ঒e
steps of EEMD are the same as regular EMD, with the addition of white Gaussian noise to
the original data. ঒en the extracted IMFs are averaged. However, the addition of white
noise creates new issues, such as the independence of the decomposition process due to
the residual noise in the IMF and deॲciencies in the decomposition process. Also, the
EEMD makes it diॴcult to average diॱerent numbers of IMFs. ঒ese newfound issues
are addressed by the complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) [9]. ঒e CEEMDAN process, unlike the EEMD, adds particular noiseਮੌ [ਖ਼ੋ (੖)] at each step of the decomposition. ঒e main process of CEEMDAN is described
in the following steps: ਗ਼ੋ (੖) = ੁ (੖) + ౶0ਮ1 [ਖ਼ੋ (੖)] (4.15)

where ਮ1 [ਖ਼ੋ (੖)] is added to the original signal ੁ (੖) for ੋ = 1,2, …,਷ . ঒e parameters ਖ਼ੋ ,౶ , and ਷ indicate the added Gaussian noise, the noise amplitude, and the ensemble size,
respectively. ঒e ॲrst IMF (੆1) is calculated through the ॲrst residual ੔1 as:੆1 = ੁ (੖) − ੔1, ਖ਼ℎੈ੔ੈ ੔1 = 1਷ ਷∑ੋ=1 ਸ਼ (ਗ਼ੋ (੖)) (4.16)

where ਸ਼(•) is the operator representing local means of data. ঒e second IMF (੆2) is ob-
tained through Eq. 4.17:੆2 = ੔1 − ੔2, ਖ਼ℎੈ੔ੈ ੔2 = 1਷ ਷∑ੋ=1 ਸ਼ (੔1 + ౶1ਮ2 [ਖ਼ੋ (੖)]) (4.17)

Here ਮ2 [ਖ਼ੋ (੖)] is the second IMF of EEMD. ঒e ੐੖ℎ IMF of CEEMDAN is obtained through:੆੐ = ੔੐−1 − ੔੐ , ਖ਼ℎੈ੔ੈ ੔੐ = 1਷ ਷∑ੋ=1 ਸ਼ (੔੐−1 + ౶੐−1ਮ੐ [ਖ਼ੋ (੖)]) (4.18)

where ౶੐ = ౹0੕੖ੇ (੔੐) is the signal-to-noise ratio (SNR).
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4.4 Statistical Features

I n this step, features are extracted from multiple domains, including time and frequency
domain. FE can also be carried out based on physical models which imply physical

meaning but these model-based features are limited. As a result, statistical parameters are
extracted as features from various domains and employed in the following step (fusion).

঒e popular features in the time domain have been listed in Table 4.1. However, as
previously explained, the time domain is not suॴcient to extract features as a HI or an
element of HI, and additional statistical features should be extracted from the frequency
domain. Furthermore, since an incomprehensible variation, especially in high frequency
ॳuctuations, may not be detected in the time domain and instead it simply causes a spec-
trum line in the frequency domain, the frequency spectrum is more susceptible to incip-
ient damages. ঒is case is widely used in fault detection. ঒e common features in the
frequency domain have been listed in Table 4.2.

Table 4.1: Common statistical features in time domain.
No Equation Speci࢔c name No Equation Speci࢔c name

1 ੁ੏ = ∑਷੐=1 ਗ਼(੐)਷ Mean Value 9 ੁ੆੔ੈ੕੖ = ੁ੒ੈ੄੍ੁ੔੏੕ Crest factor [60]

2 ੁ੕ੇ = √ ∑਷੐=1(ਗ਼(੐)−ੁ੏)2਷ −1 Standard Deviation 10 ੁ੆੎ੈ੄੔੄੐੆ੈ = ੁ੒ੈ੄੍ੁ੔ੑੑ੖ Clearance factor

3 ੁ੔ੑੑ੖ = ( ∑਷੐=1 √|ਗ਼(੐)|਷ )2
Root Amplitude 11 ੁ੕ℎ੄੒ੈ = ੁ੔੏੕1਷ ∑਷੐=1 |ਗ਼(੐)| Shape factor

4 ੁ੔੏੕ = √ ∑਷੐=1(ਗ਼(੐))2਷ Root Mean Square (RMS)
[61]

12 ੁੋ੏੒੗੎੕ੈ = ੁ੒ੈ੄੍1਷ ∑਷੐=1 |ਗ਼(੐)| Impulse factor

5 ੁ੔੕੕ = √∑਷੐=1 |ਗ਼ (੐)|2 Root-sum-of-squares (RSS)
[61] (঒e RSS level is also re-
ferred to as the 2-norm.)

13 ੁ੒2੒ = max (ਗ਼(੐)) − min (ਗ਼(੐)) Maximum to Minimum dif-
ference

6 ੁ੒ੈ੄੍ = ੏੄ਗ਼ |ਗ਼(੐)| Peak 14,
15,
16,
17

ੁ੍੆੏ = ∑਷੐=1(ਗ਼(੐)−ੁ੏)੍਷ Central moment for k੖ℎ or-
der (In this context, the 3੔ੇ ,
4੖ℎ, 5੖ℎ, and 6੖ℎ are consid-
ered the features of 14, 15,
16, and 17, respectively.)

7 ੁ੕੍ੈਖ਼੐ੈ੕੕ = ∑਷੐=1(ਗ਼(੐)−ੁ੏)3(਷ −1)ੁ੕ੇ 3 Skewness 18 ੁਯਸ਼4 = ੁ4_੆੏ੁ੕ੇ 4 FM4 (close to Kurtosis)

8 ੁ੍੗੔੖ੑ੕ੋ੕ = ∑਷੐=1(ਗ਼(੐)−ੁ੏)4(਷ −1)ੁ੕ੇ 4 Kurtosis 19 ੁ੏ੈੇ = ∑਷੐=1 ੖(੐)਷ Medianਗ਼ (੐), ਷ , and ੖(੐) denote the signal sequence for ੐= 1,2,…,਷ , the number of data points, and time instances when ਗ਼ (੐) occurs.

Table 4.2: Common statistical features in frequency domain.
No Equation Speci࢔c name No Equation Speci࢔c name

20 ੒1 = ੁ ੏੉ = ∑਴੍=1 ੕(੍)਴ Mean Frequency (may indicate the vi-
bration energy in the frequency domain,
which represents the average of the am-
plitudes of all the frequencies.)

27 ੒8 = √ ∑਴੍=1 ੉੍ 4੕(੍)∑਴੍=1 ੉੍ 2੕(੍)
21 ੒2 = ∑਴੍=1(੕(੍)−੒1)2਴−1 (same as variance) 28 ੒9 = ∑਴੍=1 ੉੍ 2੕(੍)√∑਴੍=1 ੕(੍)∑਴੍=1 ੉੍ 4੕(੍)
22 ੒3 = ∑਴੍=1(੕(੍)−੒1)3਴( √੒2)3 (same as Skewness) 29 ੒10 = ੒6੒5
23 ੒4 = ∑਴੍=1(੕(੍)−੒1)4਴੒22 (similar to Kurtosis) 30 ੒11 = ∑਴੍=1 (੉੍−੒5)3੕(੍)਴੒63
24 ੒5 = ੁ ੉ ੆ = ∑਴੍=1 ੉੍੕(੍)∑਴੍=1 ੕(੍) 31 ੒12 = ∑਴੍=1 (੉੍−੒5)4੕(੍)਴੒64
25 ੒6 = √ ∑਴੍=1 (੉੍−੒5)2੕(੍)਴ 32 ੒13 = ∑਴੍=1 √(੉੍−੒5)੕(੍)਴ √੒6
26 ੒7 = ੁ ੔੏੕੉ = √ ∑਴੍=1 ੉੍ 2੕(੍)∑਴੍=1 ੕(੍) 33 ੒14 = √ ∑਴੍=1 (੉੍−੒5)2੕(੍)∑਴੍=1 ੕(੍)੕ (੍), ਴ , and ੉੍ denote the spectrum for ੐= 1,2,…,਴ , the number of spectrum lines, and the frequency value of the ੍੖ℎ spectrum

line.
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4.5 Dimension Reduction – PCA-based Algorithms

D ue to the large number of features obtained from SHM techniques, like AE data, the
subsequent models become more complex. To address this issue, it is necessary to

reduce the feature dimensionality. To accomplish this, PCA-based methods can be em-
ployed [10–13]. ঒e aim is to decrease the number of features from more than a hundred
to a few (e.g., 201 statistical features to 10 principal components (PCs) for AE data in Chap-
ter 5). While additional PCs could be extracted and used as inputs for subsequent models,
it is deemed acceptable to retain the reconstructed variance (90%) of features in order to
maintain simplicity in the following models.

঒e application of PCA in the context of prognostics poses a challenge, as it is essen-
tial to avoid utilizing future data during the decomposition of eigenvectors (coeॴcients),
especially when testing the model. In this thesis, two primary approaches are explored to
applying PCA:

1. Approach A: ঒e coeॴcients of PCs are extracted solely from the training units.
Subsequently, these coeॴcients are utilized to construct PCs for the test units. ঒ere
are two variations in this approach: A.1, where all data from the training units is
concatenated (making a bigger matrix), and the coeॴcients are then extracted; and
A.2, where coeॴcients are individually extracted from each training unit, and the
mean value of the coeॴcients is used for testing.

Approach B: Coeॴcients are independently extracted for each unit, regardless of
whether they are from the training or test units. However, this approach is subject
to two limitations. Firstly, the number of time steps during which measurements
are collected must exceed the required number of PCs, due to matrix size require-
ments. Secondly, when considering the overall prognostics problem for each unit
individually, the usage of future data (beyond the current time step) is prohibited,
particularly during the test phase, due to the unavailability of future SHM measure-
ments in practical scenarios.

Based on the authors’ knowledge, approach B of estimating PCs yields higher performance
when all data from the beginning until the EoL is considered. However, as mentioned ear-
lier, the use of future data is impossible for prognostics. To address TD data, several exten-
sions to PCA methods have been introduced, including dynamic PCA (DPCA), recursive
PCA (RPCA), and moving-window PCA (MWPCA) [14]. While DPCA was developed to
handle autocorrelation, RPCA and MWPCA are more suitable for dealing with nonstation-
ary data. Among them, MWPCA forgets the older data (before window) entirely, which is
not appropriate for the current prognostics purpose, especially when using passive SHM
techniques like acoustic emission. To overcome this limitation, RPCA can be employed to
incorporate all historical SHM data from the beginning of monitoring up to the current
time. ঒e approach B with all historical data till EoL is denoted as code B.1 (which is not
acceptable in prognostics) and RPCA is coded as B.2, which is described in more detail in
the following. As the dimension reduction stage inside the suggested framework, all ap-
proaches A.1, A.2, B.1, and B.2 are used and compared in one framework developed based
acoustic emission data (Chapter 5). Although B.1 is not feasible in real-world applications,
it is still used to demonstrate false positive performance and compare it with others.
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In RPCA, assuming that the mean and covariance of all adaptively standardized ob-
servations ਗ਼੄੕੖1∶ੋ up to the present (time step ੖ੋ) are ಀ̂ੋ and ਼ੋ , respectively, the updated
mean ಀ̂ੋ+1 and the updated covariance matrix ਼ੋ+1 given the new adaptively standardized
observation ਗ਼੄੕੖ੋ+1 (at time step ੖ੋ+1) can be calculated by:ಀ̂ੋ+1 = (1 − ੋੋ + 1౻)ਗ਼੄੕੖ੋ+1 + ੋੋ + 1౻ಀ̂ੋ (4.19)਼ੋ+1 = (1 − ੋੋ + 1౻)(ਗ਼੄੕੖ੋ+1 − ಀ̂ੋ+1)(ਗ਼੄੕੖ੋ+1 − ಀ̂ੋ+1)਽ + ੋੋ + 1౻਼ੋ (4.20)

where 0 ≤ ౻ ≤ 1 is a forge਄ing factor. In the context of a geometric progression, this is
comparable to calculating a weighted mean and covariance of ਗ਼੄੕੖1∶ੋ+1, where earlier values
are down weighted exponentially. Older observations in RPCA are faster forgo਄en when
using a forge਄ing factor of ౻ < 1, whereas they are slower forgo਄en by applying a forget-
ting factor of ౻ → 1. If it is desired to maintain all prior observations, which is appropriate
for the current study, ౻ = 1 should be adopted. By adopting RPCA, the proposed approach
retains adaptability and compatibility with new incoming data while still maintaining the
integrity of historical information critical for prognostics applications.

4.6 Deep Learning

W hile the primary objective of this research is not to identify the best and most uni-
versally optimal ANN’s architecture for fusing SHM data, it is essential to provide

and develop a suitable ANN architecture to showcase the feasibility of the suggested SSL
paradigm. Given the novelty of the dataset for the examined composite structures and
the absence of prior studies based on DL, various types of layers and architectures were
explored. ঒e approach began with basic shallow architectures like the multi-layer per-
ceptron (MLP) to construct HI before progressing to more complex networks. Each layer
was incrementally added, adjusting the number of neurons and introducing diॱerent layer
types, including fully connected (FC) or dense layers, long short-term memory (LSTM),
bidirectional LSTM (BiLSTM), and convolutional layers to enhance results. Considering
diverse datasets, such as acoustic emissions (AE) and guided waves (GW), requires testing
various layers and architectures. ঒is section introduces key standard elements for the
subsequent chapters, including FC, dropout, rectiॲed linear units (ReLU), LSTM, BiLSTM,
and CNN layers in the section on deep learning architectures and components. Addition-
ally, a brief overview of hyperparameter tuning using the Bayesian optimization (BO)
algorithm, frequently employed in the developed frameworks in the following chapters,
is provided. Finally, ensemble learning (EL) methods, beneॲcial for reducing randomness
and improving the performance of DNN models, are presented.

4.6.1 Deep learning architectures and components
Fully connected layer - FC
In FC layers, the neuron uses a weights matrix to apply a linear transformation to the
input vector, which is called generalized linear layer (ੜ ੎ੌ = ∑੍ ਖ਼ ੎ੌ੍੄੎−1੍ + ੅ ੎ੌ ). A non-linear
activation function ಇ is then used to apply a non-linear transformation to the product
according to Eq. 4.21. If ਖ਼ ੎ੌ੍ can be considered the weight for the link between the ੎ − 1੖ℎ
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layer’s ੍੖ℎ neuron to the ੎੖ℎ layer’s ੌ੖ℎ neuron, for a FC layer we have:੄੎ੌ = ಇ (ੜ ੎ੌ ) = ಇ (∑੍ਖ਼ ੎ੌ੍੄੎−1੍ + ੅ ੎ੌ ) (4.21)

where ੜ ੎ੌ and ੄੎ੌ denotes input and output of a desired FC layer ੎, respectively.

Dropout
Dropout is a regularization strategy that prevents complicated co-adaptations on training
data, thereby decreasing overॲ਄ing in ANNs [15]. ঒e following equation is considered
for the dropout layer: ਖ਼̂ੌ = { 0 ∶ ਖ਼ੋ੖ℎ ਹ(੆)ਖ਼ੌ ∶ ੑ੖ℎੈ੔ਖ਼ੋ੕ੈ (4.22)

where ਖ਼̂ੌ is the diluted row and ਹ(੆) is the probability ੆ to remove a row in the weight
matrix.

Recti࢔ed linear unit - ReLU
ReLU is a type of activation function with a strong biological and mathematical foundation
[16]. It consists of se਄ing a threshold at 0:਻ੈਵਾ (ੜ) = ੜ+ = ੏੄ਗ਼(0,ੜ) (4.23)

Long short-term memory - LSTM
A memory cell (੊), an input gate (ੋ), an output gate (ੑ), and a forget gate (੉ ) compose an
LSTM unit, which was developed to maintain a long-term record of sequential inputs by
using the memory unit [17]. As illustrated in Figure 4.1, one input (ਗ਼੖ ) and the previous
hidden state (ℎ੖−1) as well as the previous cell state (੆੖−1) are used to formulate the hidden
state (ℎ੖ ) in the ੖ ੖ℎ step in retaining information from the past as follows:੉੖ = ಇ(ੀ੉ ਗ਼੖ + ਾ੉ ℎ੖−1 + ੅੉ ) (4.24)ੋ੖ = ಇ(ੀੋਗ਼੖ + ਾੋℎ੖−1 + ੅ੋ) (4.25)੊੖ = ੖੄੐ℎ(ੀ੊ਗ਼੖ + ਾ੊ℎ੖−1 + ੅੊) (4.26)ੑ੖ = ಇ(ੀੑਗ਼੖ + ਾੑℎ੖−1 + ੅ੑ) (4.27)੆੖ = ੉੖ ⨀੆੖−1 + ੋ੖ ⨀੊੖ (4.28)ℎ੖ = ੑ੖ ⨀੖੄੐ℎ(੆੖ ) (4.29)

where ੀ∗ and ੅∗ stand for learnable weights and bias parameters, respectively. ಇ is sig-
moid activation function and ⨀ is the element-wise product. ঒e hidden state ℎ੖ inॳu-
ences the production of the ॲnal output at any step ੖ by accumulating information from
previously processed features [18], which could be referred to as damage accumulation
and health degradation in the current study.
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Figure 4.1: LSTM cell’s architecture.

Bidirectional long short-term memory - BiLSTM
BiLSTM, a variant of recurrent neural networks (RNNs) primarily employed in natural
language processing (NLP), stands out for its bidirectional information ॳow. Unlike stan-
dard LSTM, BiLSTM processes input sequences in both directions, allowing it to capture
sequential dependencies from both ends [19]. ঒is bidirectional capability is especially
advantageous for modeling intricate relationships within sequences, such as words and
phrases in NLP, and can be inspired to uncover hidden degradation pa਄erns in SHM data.

In essence, BiLSTM introduces an additional LSTM layer that reverses the direction of
information ॳow, as depicted in Figure 4.2. ঒is implies that the input sequence is pro-
cessed backward in this extra layer. ঒e outputs from both LSTM layers are then combined
through operations like average, sum, multiplication, or concatenation. It is important to
note that, despite its advantages, BiLSTM comes with drawbacks, notably being a slower
model that requires more training time compared to LSTM. ঒erefore, it is advisable to
opt for BiLSTM only when its bidirectional capabilities are essential for the speciॲc task
at hand.

If we denote Eqs. 4.24-4.29 as representing forward LSTM operations, the correspond-
ing equations for backward LSTM operations are:੉ ′੖ = ಇ(ੀ ′੉ ਗ਼੖ + ਾ ′੉ ℎ′੖−1 + ੅′੉ ) (4.30)ੋ′੖ = ಇ(ੀ ′ੋਗ਼੖ + ਾ ′ੋℎ′੖−1 + ੅′ੋ) (4.31)੊′੖ = tanh(ੀ ′੊ ਗ਼੖ + ਾ ′੊ ℎ′੖−1 + ੅′੊) (4.32)ੑ′੖ = ಇ(ੀ ′ੑਗ਼੖ + ਾ ′ੑℎ′੖−1 + ੅′ੑ) (4.33)੆′੖ = ੉ ′੖ ⨀੆′੖−1 + ੋ′੖ ⨀੊′੖ (4.34)ℎ′੖ = ੑ′੖ ⨀ tanh(੆′੖ ) (4.35)
BiLSTM combines the outcomes of both forward and backward LSTMs, enhancing the
representation of the input sequence by incorporating insights from both past and future
contexts.
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Figure 4.2: BiLSTM cell’s architecture.

Convolutional neural network - CNN
A CNN is a type of neural network architecture designed for tasks involving grid-like data,
such as images [20]. ঒e basic components of a CNN include convolutional layers, pooling
layers, and fully connected layers. For a 2D-CNN, considering ੄੎−1 as the input coming
from layer ੎ − 1, the equation is as follows:੃ ੎ੋੌ = ੉ ( ਯ੎∑੏=1 ਴∑੐=1 ਴∑੒=1 ੀ ੎੏੐੒੄੎−1(ੋ+੏−1)(ੌ+੒−1) + ੅ ੎ੋੌ) (4.36)

Here,

• ੃ ੎ੋੌ is the activation at position (ੋ, ੌ) in layer ੎,
• ਯ੎ is the number of ॲlters in layer ੎,
• ੀ ੎੏੐੒ is the weight of the connection between the ੏੖ℎ ॲlter at position (੐,੒) in

layer ੎ and the input from layer ੎ − 1,
• ੄੎−1(ੋ+੏−1)(ੌ+੒−1) is the activation from position (ੋ + ੏ − 1, ੌ + ੒ − 1) in layer ੎ − 1,

• ੅ ੎ੋੌ is the bias term for the activation at position (ੋ, ੌ), and
• ੉ (•) is the activation function.

In the following of the convolution layer, a pooling layer can be applied, like the 2D max-
pooling as follows: ਹ ੎ੋੌ = max(੏,੐)∈pooling region

੃ ੎(ੋ+੏−1)(ੌ+੐−1) (4.37)

Here,
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• ਹ ੎ੋੌ is the result of max-pooling at position (ੋ, ੌ) in layer ੎,
• ੃ ੎(ੋ+੏−1)(ੌ+੐−1) is the activation from position (ੋ + ੏ − 1, ੌ + ੐ − 1) in layer ੎,
• ঒e max operation is applied over the deॲned pooling region.

Finally, the outputs of the pooling layer should be ॳa਄ened using a ॳa਄ening layer:

Fla਄en(ਹ ੎) = [ਹ ੎11, ਹ ੎12,… ,ਹ ੎੏੐] (4.38)

where Fla਄en(ਹ ੎) represents the ॳa਄ened vector of the max-pooled activations.

4.6.2 Hyperparameters tuning
Hyperparameters are external model conॲguration se਄ings used in ML [21]. Hyperparam-
eters need to be set before the training process starts, in contrast to parameters, which are
learned from data during training. Because hyperparameter selection directly aॱects the
model’s performance, it is essential. In order to maximize the accuracy, generalizability,
and overall performance of the model, hyperparameter tuning entails a methodical inves-
tigation of various hyperparameter values. Methods like Bayesian optimization (BO) are
frequently used to ॲnd the optimal hyperparameter conॲgurations quickly. By improving
the model’s resilience and ॳexibility for diॱerent datasets, this procedure seeks to increase
its predictive power.

A popular method for hyperparameter tuning is BO [22], a probabilistic model-based
optimization technique, which will be used in this thesis. ঒e fundamental BO process
uses a probabilistic model, usually a Gaussian process (GP), to represent the objective
function and direct the hunt for the best hyperparameters (see Figure 4.3). ঒e following
is a condensed version of the steps and equations used in BO.

Figure 4.3: Bayesian optimization of a function with the Gaussian process.

Gaussian process model - GP
঒e objective function ੉ (ਗ਼) is modeled by the GP as a distribution over functions. ঒e GP
predicts the distribution of the objective function for a set of observed data points (ਗ਼,ਜ਼),
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where ਗ਼ represents the hyperparameter conॲgurations and ਜ਼ represents the corresponding
model performance (e.g., validation accuracy or loss):੉ (ਗ਼) ∼ ਰਹ(ಀ(ਗ਼),ಇ2(ਗ਼)) (4.39)

Acquisition function
঒e next conॲguration to be evaluated for hyperparameters is found using the acquisition
function ੄(ਗ਼). ঒e probability of improvement (PI), expected improvement (EI), and upper
conॲdence bound (UCB) are examples of common acquisition functions:ਗ਼੐ੈਗ਼੖ = arg  max  ਗ਼ ੄(ਗ਼) (4.40)

Updating the Gaussian process
A঍er evaluating the objective function at the chosen hyperparameter conॲguration, the
GP is updated with the new observation:ਾ ੒ੇ੄੖ੈ ਰਹ ਖ਼ੋ੖ℎ (ਗ਼੐ੈਗ਼੖ , ਜ਼੐ੈਗ਼੖ ) (4.41)

Sequential model-based optimization - SMBO
঒e overall BO procedure, called sequential model-based optimization (SMBO), assesses
the objective function, updates the GP, and iteratively chooses hyperparameter conॲgura-
tions based on the acquisition function: ਗ਼next = argmaxਗ਼ ੄(ਗ਼)ਮ੘੄੎੗੄੖ੈ ੉ (ਗ਼next)ਾ ੒ੇ੄੖ੈ ਰਹ ਖ਼ੋ੖ℎ (ਗ਼next, ੉ (ਗ਼next)) (4.42)

঒e fundamental steps in BO for hyperparameter tuning are represented by these equa-
tions. ঒e particulars and formulas can change depending on which probabilistic model
and acquisition function are selected during the optimization procedure.

4.6.3 Ensemble learning - EL
A঍er constructing HIs based on individual DL models, an ensemble learning (EL) tech-
nique can be employed to create a meta-model capable of addressing inherent random-
ness in ML models and uncertainties in model structure. ঒is is particularly crucial when
the sample size is limited, as in this study. Combining various single prediction models
into an EL model (ELM) can eॱectively leverage the strengths of diॱerent base models,
thereby enhancing reliability and accuracy [23, 24]. ঒ere are three main categories of EL
techniques: bagging [25], boosting [26], and stacking [27]. Bagging (e.g., random forest
(RF) [28]) involves bootstrapping (random sampling) and aggregation (averaging the base
learners’ outputs). Boosting (e.g., adaptive boosting (AdaBoost) [29] and extreme gradient
boosting (XGB) [30]) combines sequentially arranged base learners. In contrast to the for-
mer methods, which use homogenous base models, stacking utilizes heterogeneous base
learners and integrates them through training a meta-model (blender).

From another perspective, ELMs based on averaging can be broadly categorized into
two types: simple averaging ensemble (SAE) [31] and weighted averaging ensemble
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(WAE) [32], with the former being a speciॲc case of the la਄er. In SAE, the ELM com-
bines predictions from multiple base models. However, a limitation is that each model
contributes equally to the ensemble prediction, regardless of its performance. In contrast,
WAE assigns weights to ensemble members based on trust in their predictive capabilities,
allowing for a more sophisticated contribution.

Despite the fact that a variety of EL methods and models (including RF, least squares
linear, support vector machine (SVM), boosting (LSBoost), Bayesian linear regression, GP
regression, and Gaussian kernel regression) were investigated, the presented work con-
centrates on averaging ensemble models using various weighting techniques and DL en-
semble models. ঒e decision to use these models over others was made based on their
superior performance and eॱectiveness.

Initially, leave-one-out cross-validation (LOOCV) [33] is employed, where a single unit
(composite specimen) is designated for testing, leaving the rest units for subsequent pro-
cessing. With this in mind, three main dataset divisions can be made:

• (A) considering one test unit without validation (training with a ॲxed number of
epochs);

• (B) considering the test unit itself as validation (intended to prevent overॲ਄ing); and
• (C) considering another unit other than the test unit as validation.

Given the small number of specimens available in this study, case B is less generalized yet
nonetheless partially valid. In the case of (c), the validation unit is randomly chosen from
the le঍ units a঍er taking the test unit out. All three cases are investigated in this work.
঒e base learner models are trained iteratively, typically for 100 repetitions in this study.
For case C, the validation set is randomly selected 10 times, and each time, the learning
process is conducted with 10 diॱerent random seed numbers [34] to initialize weights and
biases. Subsequently, the predictions of the 100 HIs generated by the base learner models
are ensembled using a process that involves SAE, WAE, and, ॲnally, DL models.

঒e general WAE can be expressed as follows:੉ੀ ਪਮ = ਴∑੍=1 ಍੍̄੉੍ (4.43)

where ੉੍ represents the ੍੖ℎ individual base learner model and ಍੍̄ is its normalized inॳu-
ential weight: ಍੍̄ = ಍੍∑਴੍=1 ಍੍ (4.44)

Here, ಍੍ represents the weight of the ੍੖ℎ individual model, which can be determined
based on various error metrics. ঒ese metrics encompass the mean square deviation (MSE)
between the predictions of the ੍੖ℎ model (਱ਲ ੍(ਮ), where (ਮ) denotes the ensemble HI)
and the simulated HIs (਽ ੍ ), the model’s Fitness (prognostic criteria - Mo, Pr, and Tr), or a
combination of both metrics:಍ਸ਼਼ਮ੍ = 1ਸ਼਼ਮ (਽ ੍ ,਱ ਲ ੍(ਮ)) = 11|੘∪ਭ| ∑ੌ∈(੘∪ਭ) [ 1਷ੌ ∑਷ੌੋ=1 (਽ ੍ੋ − ਱ਲ ੍(ਮ)ੋ )2] ; ੍ ∈ (੘ ∪ ਭ) (4.45)
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maxੌ (಍ਯ ੋ੖੐ੈ੕੕ੌ ) − minੌ (಍ਯ ੋ੖੐ੈ੕੕ੌ ) + ಍ਸ਼਼ਮ੍ − minੌ (಍ਸ਼਼ਮੌ )

maxੌ (಍ਸ਼਼ਮੌ ) − minੌ (಍ਸ਼਼ਮੌ ) ; ੍, ੌ ∈ (੘ ∪ ਭ)
(4.47)

where |੘ ∪ ਭ| is the size of the set. It is important to mention that the units are divided into
three portions: training (ਭ), validation (੘), and test (ಈ ) sets. Additionally, the training data
of ਭ itself is further split into training (ਭ′) and validation (੘′) subsets speciॲcally for the
base learner model. In the combined form Eq.4.47, each weight is ॲrst scaled in a range[0,1] to avoid compromising the eॱectiveness of its scale. If all ಍੍̄ values are uniformly set
to one, the SAE approach is adopted. A঍er computing weights using Eqs. 4.45-4.47, one
can ॲnd a subset of superior models by using the weight rankings to increase eॴciency
and guarantee improved result robustness. ঒e remaining weights are then reset to zero.
In this work, the top 10 base learners are kept using Eqs. 4.45 and 4.46, and a঍erwards,಍ਯ ੋ੖੐ੈ੕੕_ਸ਼਼ਮ੍ and ಍੍̄ are calculated.

In addition to averaging ensemble models, another approach involves using a subse-
quent ML-based model to fuse the predictions, with the goal of reducing the inherent ran-
domness in the base learner models. ঒is ML-based EL model can be implemented using
ANN or DL networks. For future reference in the subsequent chapters, relevant archi-
tectures and information will be provided if these models are employed in the developed
frameworks.

4.7 Conclusions

T his chapter has equipped readers with essential knowledge for developing frameworks
across diverse applications. Preprocessing techniques, signal processing methods, sta-

tistical feature extraction, dimension reduction through PCA-based algorithms, and an
overview of deep learning architectures were covered. ঒e introduction of adaptive stan-
dardization addressed challenges with conventional techniques. Signal processing meth-
ods like FFT, HT, and CEEMDAN were explored for information extraction. Statistical
features enriched datasets, and PCA-based algorithms addressed high-dimensional spaces.
঒e deep learning section introduced key architectures, and hyperparameter tuning was
discussed. Ensemble learning techniques were presented to enhance prediction robust-
ness. ঒is comprehensive overview lays the groundwork for subsequent chapters.
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5
Designing HI for T-Stiॱener

Composite Panels using Acoustic
Emission

is࡞ chapter presents three frameworks integrating AI and signal processing to formulate
health indicators (HIs) for T-Sti࠹ener composite panels using the acoustic emission technique.
e࡞ frameworks leverage the SSL paradigm, two-stage machine learning for spatial and tem-
poral information extraction, physics-based Bayesian optimization, and SS ensemble deep
learning.
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5.1 Introduction

I n this chapter, three frameworks are introduce for designing HIs tailored to T-Stiॱener
composite panels through the utilization of acoustic emissions (AE). ঒e frameworks

are as follows:

1. FFT-SSLSTM: Semi-Supervised Long Short-Term Memory (fed by time’s and fre-
quency’s features)

2. FFT-PCA-2S-ML-PBO: Two-Stage Machine Learning Approach with Physics-
based Bayesian Optimization (following PCA-based dimension reduction upon
time’s and frequency’s features)

3. CEEMDAN-SSEDL: Semi-Supervised Ensemble Deep Learning (fed by intrinsic
mode functions of CEEMDAN)

AE data were collected from twelve single-stiॱener composite panels under compression-
compression (C-C) fatigue loading [1–3]. ঒is chapter details the experimental cam-
paigns, followed by a dedicated exploration of the specialized data acquisition and pre-
processing techniques tailored for the AE technique in Section ”AE Data Acquisition and
Pre-processing.” Subsequently, the three frameworks are expounded upon in detail, with
their results comprehensively presented in their respective sections. A comparative anal-
ysis of the main results from each framework is conducted and discussed in Section ”Dis-
cussion.” To conclude, a summary of the ॲndings is presented in the concluding remarks
within the ”Conclusions” section.

5.2 Experimental Campaigns

A s part of the H2020 ReMAP project, two test campaigns were held at the Del঍
Aerospace Structures and Materials Laboratory (DASML) in 2019 and 2020, in which

twelve composite skin-stiॱener panels were tested under C-C fatigue loading. ঒e panels
are made up of a skin panel and a single T-stiॱener according to an Embraer design (see
Figure 5.1). ঒e skin and stiॱener are all made of IM7/8552 carbon ॲber-reinforced epoxy
unidirectional prepreg with layups of [45/ − 45/0/45/90/ − 45/0]਼ and [45/ − 45/0/45/ − 45]਼ ,
respectively [3]. Two resin blocks for each single-stiॱened composite panel (SSP) were
also included to ensure that the load was distributed evenly. ঒e dimensions of one panel
are shown in Figure 5.1. An initial damage in the form of an artiॲcial disbond (Teॳon
insert during manufacturing) in the skin//stiॱener interface with diॱerent sizes or an im-
pact damage of around 10 J located on the stiॱener area is introduced to some panels. ঒is
was done in order to create a damaged area and monitor its growth over the course of
the experiments. For the panels that do not experience impact prior to testing, a঍er 5000
cycles, the impact is performed, even for the panels with artiॲcial disbond defects. ঒ese
factors simulate various realistic and uncertain phenomena in the experiments, resulting
in a wide range of EoL from 48.7K to 756.3K cycles, which will make it more challenging
to perform HI construction and RUL prediction (more information in Table 5.1).

঒e damage growth in the panel was monitored using six diॱerent techniques: (1)
AE, (2) distributed ॲber optic sensing (DFOS), (3) ॲber Bragg gratings (FBG) (only for
the campaign 2019), (4) lamb wave (LW) (the last two were only available in the ॲrst
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Figure 5.1: Single stiॱener panel: (a) 3D view, (b) stiॱener side, (c) sensor coordinates, where the four AE sensors
shown as blue circles, impact and disbond locations shown as a movable orange circle and yellow rectangle for
diॱerent panels (all dimensions in [mm]).

Table 5.1: ঒e information of the composite specimens tested under C-C fatigue loading.
Year Campaign 2019 Campaign 2020
Name L1-03 L1-05 L1-09 L1-49 L1-50 L1-51 L1-52 L1-54 L1-55 L1-56 L1-59 L1-60

Composite Specimen 1 2 3 4 5 6 7 8 9 10 11 12
X-location of impact (mm) 50 115 82.5 50 50 50 50 50 115 50 50 115
Y-location of impact (mm) 80 160 140 160 160 160 160 160 80 160 160 80

Time of Impact
at
0

cycles

at
0

cycles

at
0

cycles

a঍er
5000

cycles

a঍er
5000

cycles

a঍er
5000

cycles

at
0

cycles

at
0

cycles

a঍er
5000

cycles

a঍er
5000

cycles

a঍er
5000

cycles

a঍er
5000

cycles
Size of disbond (mm) 15×20 20×20 20×25

y-location of disbond (mm) 60 60 60
Min Load (kN) -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5
Max Load (kN) -65 -65 -65 -65 -65 -65 -65 -65 -65 -65 -65 -65
Cycles (MTS) 152,458 144,969 133,281 48,702 65,500 94,431 368,558 510,961 226,356 756,226 110,137 170,884
Labeled Cycles 152,457 144,970 133,282 48,703 65,502 94,437 368,590 510,982 226,361 756,264 110,185 170,898

Error in cycles labeling -1 1 1 1 2 6 32 21 5 38 48 14

campaign), (5) digital image correlation (DIC), and (6) camera. Only data from the AE
technique is analyzed for the purposes of this chapter.

঒e panels were loaded in C-C fatigue loading using an MTS machine with a frequency
of 2 Hz and an R-ratio of 10 which means that the fatigue load was set in a compression load
range of [6.5, 65.0] kN. Although the R-ratio was intended to hold invariant, the panels
experienced a loss in load-bearing capacity. ঒e fatigue load was disrupted at regular
intervals of 500 cycles to allow the SHM systems to take measurements. All data are
publicly available in [1, 2]. Table 5.1 summarizes the aforementioned explanations and
provides additional details.

5.3 AE Data Acquisition and Pre-processing

T he AE sensors used are Vallen Systeme GmbH VS900-M broadband sensors with a
frequency range of 100–900 kHz. ঒e AE hits were recorded using an AMSY-6 Vallen
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acquisition system. Moreover, Vallen preampliॲers with a gain of 34 dB were used. Four
AE sensors were clamped in various positions on the skin of the panels to create a paral-
lelogram, enabling to localize damage and to obtain a quantiॲcation of the location uncer-
tainty. ঒e AE Sensors 1, 2, 3, and 4 had [x, y] locations of [145.0, 190.0], [145.0, 20.0], [20.0,
50.0], and [20.0, 220.0] mm, respectively, as seen in Figure 5.1(right). As multiple sensing
techniques were employed for damage monitoring in the SSP, the AE sensor positions
were selected through a trade-oॱ with those sensor positions of the other techniques, in
particular to maximize the monitoring region of both the AE and LWDS techniques. An
amplitude threshold of 60 dB was set for capturing the hits to avoid the recording of noise
signals. Only events localized within the AE sensor area are taken into account. ঒e in-
ternal Vallen processor for planar positioning, which is based on Geiger’s model [4], was
used for localization. A ॲlter was also used to exclude events with a position uncertainty
greater than 50 mm. More detailed information for the applied localization method to
AE data are described in subsection of Localizing data. Six variables (low-level features)
containing amplitude (A), rise time (R), energy (E), counts (CNTS), duration (D), and RMS
have been extracted and recorded from AE events (see Figure 5.2(a)).

In the following, this section describes the pre-processing procedures, which include
labeling cycles, localizing data, windowing, and missing values. Another pre-processing
step that should be conducted a঍er feature extraction is a standardization (zero-mean)
technique.

5.3.1 Labeling cycles
Labeling cycles on AE data is required for this study since a SSL with some hypothetical
HIs as targets is proposed in order to construct HI, and the time (cycle) of each acquired
AE event must be known in order to generate these targets. Due to the constraints of the
MTS machine’s output channels and the AE system’s input channels and so঍ware, the
AE system is unable to directly record cycles from the MTS machine. Nonetheless, since
the AE system and MTS machine have been synchronized, and the AE system can import
displacement and load values from MTS machine next to the other six variables from
AE sensors, signal processing methods can approximate the cycle number of each hit, in
which (cycle) that hit plus possibly more other hits occurred. Table 5.1 shows the number
of cycles reported by the MTS machine (exact) and of the labeled cycles through the load
signal (approximate), as well as the error between them. Given that the maximum error
percentage is 0.044% (48/110137 for specimen 11), the estimated labeled cycles provided
with the AE variables can be used.

5.3.2 Localizing data
Geiger’s method [4] was used to localize the AE data (Figure 5.2(b)), and it allowed for pla-
nar localization of the AE events throughout the fatigue testing. ঒is method assumes a
constant wave velocity in all directions, which was determined using Hsu-Nielsen sources
on pristine specimens [5]. ঒e wave speed was determined in both the x-direction (4423
m/s) and y-direction (6107 m/s), and the mean wave speed was then calculated as 5265 m/s.
঒is was used as an input to Geiger’s method to determine the planar location of the AE
events. Since Geiger’s method is a time-of-arrival approach, its application in anisotropic
composite specimens can lead to errors in the AE event localization. ঒e application of
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Figure 5.2: Data reduction during (a) pre-processing (initial feature extraction), (b) localization, (c) windowing,
and (d) signal processing.

four AE sensors allows for the calculation of this position error, and a ॲlter was imple-
mented to exclude events with a position uncertainty larger than 50 mm. Lastly, events
outside the AE sensor region are ॲltered.

5.3.3 Windowing
In the third step of pre-processing, as can be seen in Figure 5.2(c), the signals (AE vari-
ables extracted from waveforms, including amplitude, rise time, duration, energy, counts,
and RMS) are windowed for two reasons: one is that memorizing and analyzing all data
from the beginning to the current time costs a tremendous computation time; another is
that analyzing and comparing data at a single instant without taking into account nearby
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Figure 5.3: Six time windows resulted by windowing process on artiॲcial data with a constant length and interval.

time steps is insuॴcient, especially for nonstationary signals. It should be noted that
some SHM techniques, like AE, do not record data points at a constant rate since they
are passive techniques and depend on the number of events occurring in the structure.
For example, AE might measure 50 events in the ॲrst 10 seconds while it might measure
1000 events in the next 10 seconds. As can be seen in Figure 5.3, the two main factors in
the windowing process are the length of each window and the interval between two se-
quential windows, which are essential and important since they inॳuence the ॲnal results
and decisions. ঒ese factors might also be considered in a dynamic way rather than the
static one and can be optimized as such. ঒e windowing process for the current study was
cycle-based, with a static length and interval of 500 cycles due to the natural interval of
QS loads.

5.3.4 Missing values
Since no events might have been recorded in a few intervals of 500 cycles due to the applied
ॲlters, there are missing values for those time windows. Because missing values have an
impact on subsequent phases of the HI construction process, they should be eliminated or
ॲlled in, with the ॲrst option being taken for the windowed signals. Also, a঍er the feature
extraction step, some statistical features may be missed. For this step, linear interpolation
is used to ॲll in the missing values.

5.4 1੕੖ framework: FFT-SSLSTM

T he 1੕੖ framework developed upon AE data is shown in Figure 5.4, where the ॲrst block
is already explained in the previous section. ঒e second and third blocks—SP by FFT

and FE by statistical features—are also explained in the former chapter.

Figure 5.4: Workॳow of the 1੕੖ framework developed upon AE data, including SSLSTM as the feature fusion
step.

Feature extraction:঒e statistical features in the time and frequency domains have
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been extracted based on Tables 4.1 and 4.2. As a result, 33 features are extracted from
each of the 6 windowed signals (low-level features) of the AE data, including amplitude,
rise-time, energy, counts, duration, and RMS. ঒e broad features ॲeld has been expanded
to include three additional possible useful features: cumulative Rise-time/Amplitude ra-
tio, cumulative energy, and cumulative counts [6]. ঒e AE dataset yielded a total of 201
features (6×33 + 3). It should be noted that FE procedure may also be regarded as a dimen-
sion reduction step (Figure 5.2), as raw signals with thousands of data points within each
window have been reduced to 201 data points. In fact, data with billions of records has
been reduced to thousands.

Standardization (zero-mean):঒e input features are standardized before being input
into the network using a zero-mean normalization technique (Chapter 4) that used only
the training dataset’s mean value and standard deviation.

5.4.1 Feature fusion: semi-supervised LSTM (SSLSTM)
Built upon the SSL paradigm, which serves as the central concept elucidated in Chapter
3, an ANN architecture named SSLSTM has been developed. SSLSTM is designed to fuse
features and is composed of four key types of layers: FC, dropout, ReLU, LSTM, and re-
gression layers (refer to Figure 5.5). Notably, the training data underwent a sequence
length-based sorting process to minimize the need for excessive padding in the batches.

Figure 5.5: Multi-layers LSTM network proposed for feature fusion.

5.4.2 Hyperparameters optimization and model validation
A঍er ॲxing an acceptable conॲguration of the neural network layers (Figure 5.5), a BO
algorithm was used to set the hyperparameters, including the number of neurons at each
layer, batch size, and dropout.

For this framework, two main and trustworthy validation methods in the ML ॲelds,
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which are LOOCV and holdout validation methods [7], are employed. First, using the
holdout method with 10, 1, and 1 units as training, validation, and test datasets, respec-
tively, the BO algorithm was used to ॲnd the top hyperparameters’ sets and models (with
the maximum RMSE over all units as the objective function which must be minimized).
It should be noted that by considering the maximum RMSE of all units rather than other
statistical parameters like the mean value of RMSE of them, the optimization algorithm at-
tempts to simultaneously decrease the mean value and standard deviation of RMSE, which
is more desirable. ঒en, the LOOCV method, having 11 and 1 units as training and val-
idation dataset, respectively, was applied to the top 10 models obtained by the holdout
validation and BO to check models’ performance for the other folds, with 10 replications.
Finally, the performance of these models will be described as a distribution with a mean
expected error and a standard deviation.

5.4.3 Results
঒e deep learning framework and signal processing parts were developed using MATLAB
R2021a; a high performance computing cluster (Beowulf style) with 12 processors on one
node for the BO algorithm, and a laptop with an Intel Core i7-8665U CPU and 16 GB
RAM for training the DL networks and the other parts (such as pre-processing and signal
processing) were used. In this section, following the results of the holdout validation
and the LOOCV, the best-proposed model will be discussed in comparison to the relevant
literature in the subsection Discussion.

Holdout validation
First, the holdout method has been used to validate the model, with the ॲrst ten SSPs for
training, the 11੖ℎ SSP for validation, and the 12੖ℎ SSP for the test dataset.

An Adam optimizer [8] was used to learn the DL model, with an initial learning rate
of 0.005, a learning rate drop factor of 0.2, a learning rate drop period of 5, and a gradi-
ent threshold of 1, which all have been selected a঍er trial and error. Before each epoch,
the training dataset was shuॵed. Despite the fact that the maximum number of training
epochs was set to 500, the network’s output is based on the best validation loss, with the
validation check frequency set to 30 iterations (number of trained batches) and validation
check patience set to 6.

঒e BO algorithm was given 120 trials in parallel computing to optimize the hyperpa-
rameters. ঒e number of neurons in the FC layer 1 and FC layer 2 as well as the number
of units in the LSTM layer 1 have been allocated [1,201], [1,50], and [1,256], respectively,
based on trial and error. It is worth noting that the LSTM layer 2 only contains one unit.
For dropout, the interval [0,0.5] quantized to 0.1 was also examined. Since the training
dataset comprises ten units, the interval [1,5] quantized to one has been explored for batch
size. Since each set of BO ॲnal results is also dependent on the initial start points, the en-
tire procedure was repeated several times. ঒e top 10 hyperparameter sets (models) are
presented in Table 5.2. As can be seen, the varied conॲgurations have resulted in quite
close RMSE ranged [0.08-0.11], which is the maximum RMSE over all units as the objective
function of the BO algorithm.

Figure 5.6(a) shows (merely as a case chosen to display the intuitive results) the con-
structed HIs by model 1, which is the ॲrst ranked, and their RMSE can be seen in Fig-
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Table 5.2: ঒e top 10 hyperparameter sets (models) obtained by the BO algorithm and holdout validation with
the 11੖ℎ unit as the validation and the 12੖ℎ unit as the test dataset. RMSE is the maximum one over all units.

Model (rank) Batch Size Dropout FCL1 LSTM1 FCL2 RMSE
1 4 0.3 110 154 50 0.0829
2 5 0.4 124 83 48 0.0884
3 5 0.5 201 79 36 0.0983
4 5 0.4 152 81 27 0.1013
5 5 0.5 41 142 43 0.1026
6 2 0 30 256 45 0.1052
7 5 0.4 124 56 48 0.1055
8 5 0.1 137 20 39 0.1067
9 5 0.4 161 92 48 0.1084
10 5 0.4 53 120 50 0.1110

ure 5.6(b). ঒e RMSE for SSPs 1, 11, and 12 slightly diverged from the mean value of
RMSE for all units, which is 4%. Since comparing the quality of the constructed HIs based
solely on RMSE could not provide completely applicable information from a prognostic
standpoint, the prognostic criteria Mo, Tr, and Pr, as well as their sum given all units (Fit-
ness by Eq. 3.4), are shown in Figure 5.7 for all the individual input extracted features
as well as the HIs constructed by the model 1. ঒e top four features with a Fitness score
higher than 1.5 are features 185, 184, 88, and 183, respectively.As can be seen, the high
Fitness score of 2.891 for HIs, which is 77.3% higher than the best feature (1.630), demon-
strates the high eॴciency of the model 1 to construct HIs following the prognostic criteria.
In fact, this Fitness improvement represents the performance of the proposed scenario and
the whole developed algorithm because the model, the proposed DNN architecture, might
still be enhanced by adding and/or changing characteristics such as the other types of lay-
ers, units, neurons, activation functions, and hyperparameters. However, as previously
discussed, the main focus in the current research is how to implement the prognostic cri-
teria in the process of HI construction. When the overall implementation methodology of
the prognostic criteria has been validated, other enhancements like various optimization
methods or DNN architectures can be studied in the main proposed roadmap. Neverthe-
less, the models are investigated in accordance with LOOCV in the next subsection, due
to the shortcomings of the holdout validation in evaluating the generalization of the DNN
models.

LOOCV
঒e ten models listed in Table 5.2 are tested with 10 repetitions on the 12 folds of LOOCV.
It should be noted that the fold i refers to the fact that the i੖ℎ unit is the validation and
the rest are training datasets. Figure 5.8 shows the mean value and standard deviation of
RMSE calculated over these repetitions for only the test dataset (e.g. for fold 1, unit 1 is
the test dataset). In other words, the training (SSPs) datasets were not taken into account
during calculation of the mean value and standard deviation. For example, in the ॲrst
fold of LOOCV, the 1st unit was considered the test, and units 2-12 were considered for
training, and when one model had completed training, the network was tested on the 1੕੖
unit. ঒e mean value and standard deviation for that model and that fold (only for the test
dataset which in this example is the 1੕੖ SSP) were then calculated over ten repeats. ঒is
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Figure 5.6: (a) HIs constructed by model 1 and (b) their RMSE. ঒e SSP 11 and 12 are the validation and test
datasets, and the rest are the training dataset. Dot lines are the target HIs.

process has been performed for each of the 12 folds and each of the 10 best models from
Table 5.2.

Figure 5.8 demonstrates that some SSPs, such as 3, 5, 7, 8, and 12, have be਄er per-
formance for all models; however, some, such as 1 and 6, suॱer from randomness in the
DNN algorithm, which is owing to the stochastic nature of ANN and randomness in the
experimental data. Figure 5.9 depicts a line plot of the mean value of RMSE with error
(standard deviation) bars for all folds, illustrating a measurement of the generalization of
the models. According to this ॲgure, models 8, 2, and 7 are the best generalized ones with
mean RMSE value of 0.121±0.090, 0.133±0.082, and 0.139±0.085, respectively.

As previously stated, the Fitness scores could be more appropriate to report due to the
deॲciency in RMSE from a prognosis aspect. ঒is can be performed in two ways:
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Figure 5.7: ঒e prognostic criteria for all 201 extracted features and the constructed HIs for model 1.

Figure 5.8: (a) Mean value and (b) standard deviation of RMSE of test datasets (SSP 1 to SSP 12) over 10 repetitions
for the top ten models.

1. ঒e Fitness score of the constructed HIs is measured for each replication; next, it
is averaged across all replications; and ॲnally, the ॲndings for various models and
folds are presented (Table 5.3 and Figure 5.10).

2. A঍er all replications have been completed, the constructed HIs for each SSP are
averaged across all replications, and the Fitness score of the averaged HIs is calcu-
lated. Finally, the outcomes for various models and folds are provided (Table 5.4
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Figure 5.9: Mean value of RMSE over all folds’ tests (LOOCV) and a঍er 10 replications, with error (Std) bars for
the top ten models.

and Figure 5.12). ঒is could be a case of models making ensemble predictions.

Each approach is discussed in more detail next. It should be noted that the Fitness scores
for all extracted features remain unchanged and are identical to those in Figure 5.7.

According to Table 5.3, the most challenging fold for the models to learn is the ॲrst
one, with a mean Fitness value of 1.550±0.216, and the other two worse folds are 10 and 2,
with mean Fitness values of 1.780±0.212 and 1.871±0.139, respectively, and the rest have
mean Fitness values of more than 2. ঒e best generalized models are 2, 7, and 1 in order,
with mean Fitness values of 2.360±0.415, 2.342±0.425, and 2.337±0.427, respectively. To
be਄er compare diॱerent models and folds, the distribution of the average Fitness value of
HIs for various folds and models can be seen in Figure 5.10.

Table 5.3: Averaged Fitness scores over 10 repetitions of the constructing HI.
Model
(rank) Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Fold 11 Fold 12

1 1.3715 1.9550 2.7984 2.0050 2.7291 2.2615 2.7084 2.5093 2.5791 2.0477 2.1968 2.8804
2 1.3663 2.0114 2.7561 2.4697 2.6075 2.1736 2.7587 2.5961 2.5629 1.9182 2.2626 2.8402
3 1.2923 1.8778 2.7210 1.9112 2.6438 2.5747 2.5844 2.6227 2.5624 1.5305 1.8487 2.7557
4 1.3048 1.9465 2.7622 1.8872 2.7150 2.3718 2.7805 2.7565 2.6879 1.7061 1.8616 2.7874
5 1.7903 1.5186 2.7209 2.5297 2.6217 1.7716 2.6271 2.6974 2.4861 1.6657 1.8323 2.7910
6 1.8221 1.7951 2.6852 1.9317 2.5055 1.9714 2.4565 2.4090 2.6288 2.0745 1.7897 2.6872
7 1.3730 1.9365 2.7382 2.3269 2.6166 2.1636 2.5459 2.5989 2.6861 1.7844 2.5063 2.8254
8 1.8142 1.9864 2.7427 2.4059 2.5146 1.7729 2.7520 2.6329 2.6575 2.0011 1.9362 2.6690
9 1.6320 1.9206 2.8524 2.1958 2.7016 2.2784 2.7852 2.7099 2.5107 1.4313 1.8569 2.7445
10 1.7323 1.7640 2.7064 2.4361 2.7218 1.6098 2.7767 2.7301 2.3921 1.6370 2.0289 2.8285

* “Green color → Red color” equalizes “Best result → Worst result” 0 1.5 3

Figure 5.10(a) demonstrates that the models can appropriately construct HIs for folds
3, 5, 7, 8, 9, and 12 with a Fitness value greater than 2.575±0.090 (fold 9). ঒e remaining
folds are aॱected by the model’s low mean value or/and high variance. Model 6 has the
lowest Fitness value averaged over all folds (2.230±0.349), but it has the lowest variance
(see Figure 5.10(b)). ঒e highest average Fitness value pertains to model 2 by which the
constructed HIs in iteration 8 (best one) can be seen in Figure 5.11 It is worth noting that
the HIs for all units shown in this ॲgure are from test datasets corresponding to relevant
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Figure 5.10: ঒e distribution of the averaged (across all replications) Fitness value of HIs for various (a) folds and
(b) models.

folds, and there are no constructed HIs from training datasets. Model 2 has not adequately
learned SSP 1, and also SSPs 6, 10, 2, and 9 are not as qualiॲed as the rest which have
considerably good agreement.

So far, the prognostic criteria were averaged over HIs constructed by ten iterations.
Hereina঍er, the HIs constructed by ten iterations are averaged, and then, the HIs a঍er
simple averaging ensemble (SAE) are investigated to report the prognostic criteria (Fitness
by Eq. 3.4).

Table 5.4 shows that the ॲrst fold is again the most challenging for the models to learn,
with a mean Fitness value of 2.019±0.366, which is substantially be਄er than what was
reported in the previous state (Table 5.3), while the remainder have mean Fitness values
of higher than 2.5. ঒e best generalized models are 7, 8, and 5 in order, with mean Fitness
values of 2.786±0.144, 2.747±0.146, and 2.729±0.199, respectively. ঒e average (ensemble)
HIs obviously conform be਄er to the prognostic criteria.

঒e distribution of the Fitness value of the ensemble HIs by SAE can be seen in Fig-
ure 5.12 to be਄er compare various models and folds. Figure 5.12(a) indicates that the
models can construct HIs quite eॱectively for all folds except 1, 10, 6, and 2 when com-
pared to the rest, in which the ॲrst fold with the lowest mean value and highest variance of
Fitness is severe and distinguishable. ঒e best Fitness value distribution pertains to model
7 by which the constructed ensemble HIs (by SAE over all iterations) can be seen in Fig-
ure 5.13(a). ঒e discrepancy in deviation between the target, which is the ideal hypothet-
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Figure 5.11: HIs constructed by model 2 (in iteration 8 - best one). All shown HIs derive from test datasets
matching to relevant folds, not training datasets, for all samples. Dot lines are the ideal HIs.

ical HI, and the average constructed HI for the ॲrst fold (SSP 1) is remarkable. ঒erefore,
this fold containing its training dataset (SSPs 2 to 12) has been shown in Figure 5.13(b).
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Table 5.4: Fitness scores of the ensemble HIs by SAE over 10 repetitions.
Model
(rank) Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Fold 11 Fold 12

1 2.0168 2.6074 2.9163 2.6504 2.8916 2.6407 2.8842 2.8194 2.8263 2.5998 2.8319 2.9233
2 1.4873 2.5428 2.9121 2.6661 2.8726 2.7153 2.8846 2.8594 2.8183 2.4931 2.8123 2.9051
3 1.5642 2.6752 2.9008 2.6609 2.8954 2.8413 2.8313 2.8513 2.8179 2.3088 2.7547 2.8882
4 1.7976 2.6279 2.9028 2.6517 2.8873 2.7437 2.8780 2.8416 2.8779 2.3911 2.7961 2.8702
5 2.6360 2.4077 2.8646 2.7460 2.8905 2.2435 2.9076 2.8856 2.7256 2.7750 2.8147 2.8545
6 2.3191 2.3126 2.8680 2.6015 2.8450 2.1449 2.7264 2.7789 2.8675 2.3156 2.6388 2.8118
7 2.4530 2.6766 2.9243 2.7039 2.8622 2.8455 2.8835 2.8528 2.8922 2.5723 2.8713 2.8924
8 2.4212 2.5125 2.8775 2.6465 2.8054 2.7307 2.8569 2.7969 2.8903 2.7093 2.8188 2.9009
9 2.2075 2.5598 2.9236 2.6181 2.8567 2.8423 2.8830 2.8545 2.7954 2.2688 2.8567 2.8252
10 2.1895 2.5205 2.8712 2.6471 2.8925 2.3005 2.8860 2.8649 2.6801 2.5750 2.8102 2.8892

* “Green color → Red color” equalizes “Best result → Worst result” 0 1.5 3

Figure 5.12: ঒e distribution of the Fitness value of ensemble HIs by SAE (across all replications) for various (a)
folds and (b) models.

Model 7 has obviously not learned the other SSPs in the training dataset, let alone the test
one, SSP 1. It is possible that this is due to inappropriate training progress adjustments
for this fold (e.g. validation check patience set to 6), demonstrating the limitations of the
proposed DNN models, which can be improved in future frameworks aimed at developing
more generalized models and training progress for all folds. Nonetheless, Figure 5.13(b)
indicates that all units have comparable pa਄erns to some extent, resulting in a fair Fitness
value (2.453). With this in mind, while model 7 could not create HIs following the targets
for the ॲrst fold (i.e., high RMSE), it could intelligently fuse the input features to produce
an average HI that relatively matched the prognostic criteria (i.e., high Fitness), including
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Mo (almost increasing), Tr (almost same pa਄ern), and Pr (almost from 0.1 to 0.4). In other
words, the model could have discovered how to relate and fuse the features to create a HI
with relatively the same pa਄ern for all units.

Figure 5.13: Ensemble HIs by SAE across all replications constructed by model 7 for (a) all folds (all units are test
datasets obtained from the relevant folds) and (b) fold 1 (only unit 1 is the test dataset (averaged), and the rest
are the training ones (averaged)). Dot lines are the ideal HIs.

5.5 2੐ੇ framework: FFT-PCA-2S-ML-PBO

T he current section presents an ML approach that combines a dimension reduction
(PCA-based technique), a historical- or time-independent (TIM), and a historical- or

time-dependent (TDM) sub-model a঍er up-sampling the time series in each batch. ঒e
overall framework, as depicted in Figure 5.14, encompasses the entire process, from raw
AE data to the ॲnal HI (the 2੐ੇ level HI), including the new proposed approach diॱerent
from the 1੕੖ framework (stages f to j). In addition, a঍er stage j, EL techniques are applied.

঒e steps of the framework, from adaptive standardization (stage f) through TDM
(stage j), establish the primary contributions of the 2੐ੇ framework. ঒e steps of adap-
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tive standardization (stage f) and dimension reduction using four PCA-based algorithms
(stage g) were already explained in Chapter 4. ঒e remaining steps of the framework will
be described in this section. It is important to mention that the units (SSPs) are divided
into three portions: training (ਭ), validation (੘), and test (ಈ ) sets. Additionally, the training
data of ਭ itself is further split into training (ਭ′) and validation (੘′) subsets speciॲcally for
TIM. ঒is division strategy ensures that TIM is adequately trained and validated before its
application to the overall HI construction process.

Figure 5.14: Workॳow of the 2੐ੇ framework developed upon AE data: (a) pre-processing (initial feature extrac-
tion), (b) localization, (c) windowing, (d) signal processing, (e) feature extraction, (f) adaptive standardization, (g)
dimension reduction, (h) time-independent model, (i) time-based resampling, and (e) time-dependent model

5.5.1 Feature fusion: two-stage ML approach with physics-based
Bayesian optimization (2S-ML-PBO)

Constructed on the foundation of the SSL paradigm, the focal concept detailed in Chapter
3, a two-stage ANN architecture named 2S-ML-PBO has been developed. ঒is architecture
fundamentally incorporates three components: TIM, time-based resampling, and TDM.
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Time-independent model (TIM)
TIM, a historical- or time-independent model, is exclusively focused on the extraction of
spatial information. In this context, an initial neural network architecture is established
through a trial-and-error process. Following this, the PBO algorithm is employed to opti-
mize the relevant constructive hyperparameters and network architecture, as illustrated
in Figure 5.15. Given the dimension reduction resulting in only ten features (PCs), a DNN
with a few layers serves as a suitable starting point for the optimizable ANN designated
for the regression task. ঒is involves ॲ਄ing the 10 PCs to a corresponding value (HI). De-
tailed information about the initial network, including its loss function, hyperparameters,
and more, as well as the PBO and its objective function, is provided in the following.

Figure 5.15: Time-independent model (TIM) fed by ten principal components (PCs) and yielding the 1੕੖ level HI.

Optimizable neural network architecture of TIM:
A DNN with four layers, including a linear transfer function as the output layer, is designed
to ॲt the 10 PCs to the ideal simulated HI. ঒e loss function used for comparing predictions
and targets is a modiॲed mean absolute error (MMAE), given by Eq. 5.1:ਵ਽ ਲ ਸ਼ = (1 − ౵) 1਻ ਻∑ੋ=1 ||਽ੋ − ਱ਲ (1)ੋ || + ౵ ਷ਖ਼∑੍=1ਖ਼ 2੍ , ੋ ∈ ਭ′ (5.1)

where ਻ represents the number of responses chosen among the training data points
(਻ ⊂ [1, ਷1] ∪ [1, ਷2] ∪ …[1, ਷ੌ]… ∪ [1, ਷ਸ਼ ]), ਷ੌ representing the number of responses for
the ੌ੖ℎ unit and M representing the number of units). ਽ੋ and ਱ਲ (1)ੋ denote target value
and the network’s output for response ੋ, respectively. ਷ਖ਼ denotes the number of learnable
weights of TIM. ঒e regularization parameter ౵ is introduced to enhance generalization
by modifying the performance function. ঒e use of this performance function reinforces
the NN to have smaller weights and biases, resulting in smoother responses and reducing
overॲ਄ing. For the current framework, ౵ is set to 1.
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঒e DNN model is trained and validated using only the training units (ੋ ∈ ਭ). 30% of
the training data is reserved for validation purposes (੘′ ⊂ ਭ). While the maximum number
of training epochs is set to 1000, the DNN’s output is based on the best validation loss,
with the validation check patience set to 10. According to the optimizers and their default
values in the MATLAB R2022a framework, the remaining hyperparameters are determined
through the utilization of the PBO algorithm, which will be further elaborated on in the
following subsection.
Physics-based Bayesian optimization (PBO):
঒e hyperparameters optimized by the BO algorithm include training optimizer algo-
rithms, the number of neurons in each FC layer, and the activation function for all hidden
layers. ঒e TIM’s weights and biases can be trained using a variety of optimizers. ঒e
three types of optimizer algorithms Levenberg-Marquardt (LM) [9–11], Bayesian regular-
ization (BR) [12, 13], and resilient backpropagation (RB) [11, 14] are considered as the
search space of the ॲrst optimizable variable that can be tuned by BO. ঒e number of
neurons allocated for FC layers 1, 2, 3, and 4 are within the ranges [1,50], [1,50], [1,50],
and [1,10], respectively. ঒e activation function is the last optimizable variable, and it is
assigned the same type for all hidden layers. It is selected from a categorical space accord-
ing to MATLAB terminology. ঒e aforementioned hyperparameters and their respective
search spaces are provided in Table 5.5.

A new objective function inspired by the physics of the problem and prognostics for the
BO algorithm is introduced, which considers the evaluation metrics of the HI. Accordingly,
the BO algorithm will hereina঍er be referred to as ”Physics-based BO (PBO)”. ঒e PBO
objective function comprises two components: regression and criteria loss functions. ঒e
regression loss function is based on RMSE between the SS-based simulated labels and
predictions, calculated solely on the validation (composite panels) set (ੋ ∈ ੘). ঒e criteria
loss function includes Mo, Pr, and Tr, which are computed using all datasets, including
both training and validation portions (ੋ ∈ ੘ ∪ ਭ). Since the BO algorithm does not initially
have a clue about the optimal solutions’ space, this can lead to a wide range of responses.
It results in slower convergence and increased time consumption. ঒e regression loss
function serves as a guide for the model by providing a general pa਄ern. On the other hand,
the criteria loss function strengthens the signiॲcance of prognostic metrics to prevent the
algorithm from merely adhering to the simulated labels, allowing it to explore other viable
and meaningful solutions. ঒is strategy drives the BO algorithm to seek out diverse and
potentially superior solutions, improving its capacity to adapt and converge towards be਄er
outcomes.

঒e equations of the regression and criteria loss functions that constitute the PBO
objective function are as follows:

ਵ੔ੈ੊੔ੈ੕੕ੋੑ੐ = ਻ਸ਼਼ਮ (਽ੋ ,਱ ਲ (1)ੋ )
maxੋ (਽ੋ) = √ 1਷ੌ ∑਷ੌੋ=1 (਽ੋ − ਱ਲ (1)ੋ )2100 , ੋ ∈ ੘ , ੌ ∈ ਸ਼ (5.2)

ਵਬ੔ੋ੖ੈ੔ੋ੄ = max(ਯ ੋ੖੐ੈ੕੕) − ਯ ੋ੖੐ੈ੕੕
max(ਯ ੋ੖੐ੈ੕੕) = 3 − (ਸ਼ੑ + ਹ੔ + ਽ ੔)3 , ੋ ∈ (੘ ∪ ਭ) (5.3)ਵਹਫਸ = ਵ੔ੈ੊੔ੈ੕੕ੋੑ੐ + ౶ਵਬ੔ੋ੖ੈ੔ੋ੄ (5.4)
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Table 5.5: ঒e hyperparameters of TIM and their search spaces for optimization by PBO.
Hyperparameter Search space Type

Levenberg-Marquardt (LM)
Bayesian regularization (BR)Optimizer
Resilient backpropagation (RB)

categorical

Number of neurons at FC layer 1 [1,50] integer
Number of neurons at FC layer 2 [1,50] integer
Number of neurons at FC layer 3 [1,50] integer
Number of neurons at FC layer 4 [1,10] integer

Name function
Linear ಇ (ੜ) = ੜ
Rectiॲed linear units (ReLU) ಇ (ੜ) = ⎧⎪⎨⎪⎩ 0 ∶ ੜ ≤ 0ੜ ∶ ੜ > 0
Saturating linear ಇ (ੜ) = ⎧⎪⎪⎨⎪⎪⎩

0 ∶ ੜ ≤ 0ੜ ∶ 0 ≤ ੜ ≤ 11 ∶ ੜ ≥ 1
Symmetric saturating linear ಇ (ੜ) = ⎧⎪⎪⎨⎪⎪⎩

−1 ∶ ੜ ≤ −1ੜ ∶ −1 ≤ ੜ ≤ 11 ∶ ੜ ≥ 1
Hard-limit ಇ (ੜ) = ⎧⎪⎨⎪⎩ 0 ∶ ੜ < 01 ∶ ੜ ≥ 0
Symmetric hard-limit ಇ (ੜ) = ⎧⎪⎨⎪⎩ −1 ∶ ੜ < 01 ∶ ੜ ≥ 0
Log-sigmoid ಇ (ੜ) = 11+exp(−ੜ)
Hyperbolic tangent sigmoid ಇ (ੜ) = 21+exp(−2ੜ) − 1
Elliot symmetric sigmoid ಇ (ੜ) = ੜ1+|ੜ|
Radial basis ಇ (ੜ) = exp(−ੜ2)
Normalized radial basis ಇ (ੜ) = exp(−ੜ2ੋ)∑ਲ਼ੌ=1 exp(−ੜ2ੌ) , ੋ = 1, 2, 3, …, ਲ਼
So঍max ಇ (ੜ) = exp(ੜੋ)∑ਲ਼ੌ=1 exp(ੜੌ ) , ੋ = 1, 2, 3, …, ਲ਼
Triangular basis ಇ (ੜ) = ⎧⎪⎨⎪⎩

0 ∶ ੜ < −11 − |ੜ| ∶ −1 ≤ ੜ ≤ 10 ∶ ੜ > 1
Inverse ಇ (ੜ) = 1ੜ

Activation functions

Competitive ಇ (ੜ) = ⎧⎪⎨⎪⎩ 1 ∶ ੌ = argmaxੋ (ੜੋ), ੋ = 1, …, ਲ਼0 ∶ ੌ ≠ argmaxੋ (ੜੋ), ੋ = 1, …, ਲ਼

categorical

঒e parameter ౶ determines the signiॲcance of ਵਬ੔ੋ੖ੈ੔ੋ੄ in relation to ਵ੔ੈ੊੔ੈ੕੕ੋੑ੐ . ਵਬ੔ੋ੖ੈ੔ੋ੄
is normalized using the maximum ॲtness score, resulting in a range of [0, 1]. On the
other hand, ਵ੔ੈ੊੔ੈ੕੕ੋੑ੐ is normalized based on the maximum target value, which is 100. It
should be noted that the ideal HI values are simulated within a range from 0 (representing
a healthy state) to 100 (indicating a failure state) for this framework. ঒e PBO algorithm
was given 100 trials with an exploration ratio of 0.8 in parallel computing to optimize the
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hyperparameters.

Time-based resampling
A঍er the TIM step, the 1੕੖ level predicted HI can serve as a prognostic parameter to be
imported into a prognostic model for predicting RUL. Despite the undeniable historical de-
pendence in SHM data, rooted in the physics of fatigue, progressive damage, and the pas-
sive nature of the AE technique, this aspect has been overlooked in the current framework.
঒erefore, a historical- or time-dependent model, TDM, should be designed to extract the
temporal information. Prior to designing the TDM, the input data needs to undergo re-
sampling to ensure that all sequences of input ਱ਲ (1) within a batch have the same length.
Conventional padding techniques like zero padding are unsuitable in this context, as the
HI values with respect to the percentage of lifetime should exhibit similarities. For ex-
ample, if the batch size is 2 and the lengths of the two intended HIs are 100 and 1000,
extending the ॲrst HI with 900 zero values to match the length of the second HI would in-
correctly set the HI at the EoL for the ॲrst unit as 0 instead of its actual (compatible) value,
which should be 100, as in the second HI. Likewise, conventional interpolation methods
are not viable due to the non-linear correlation between the number of data points in HI
and the EoL. Due to the varying recording rate of the passive AE system depending on the
predetermined amplitude threshold value and uncertain progressive damage, the length
(number of data points) of HI for a unit with a bigger EoL may be shorter than that with
a smaller EoL.

To address these challenges, the current study adopts a technique for up-sampling
referred to as ”time-based resampling” (see Figure 5.16). ঒e ॲrst step is to convert the
time vectors of HIs into percent lifespans, with values in the range of [0%, 100%]. ঒e
shorter HI vectors (in terms of the quantity of data points) in each batch are then up-
sampled (based on the associated time vectors) to match the length of the longest HI vector.
For every batch separately, this procedure is performed. It is crucial to remember that in
such a scenario, the batch size cannot be the same as the total number of training datasets.
঒is is due to the TIM’s tendency to just learn the position of data, disregarding its value,
leading it to predict from 0 (healthy) at the beginning to 100 (failure) at the EoL based
exclusively on the position of the incoming data. For instance, if HIs of equal lengths of
1000 are employed, the TIM model would learn that, regardless of the input value, position
1 should result in a zero value and position 1000 should result in a hundred. As the test
set should not logically be resampled, training a model in this way would result in much
worse performance on the test set. As a result, the batch size should be less than all of the
training data. In the current investigation, 10 units are kept for training, and one panel is
designated for testing and another for validation in all scenarios. Consequently, a batch
size of 2 or 5 appears more reasonable, with 2 being the preferred choice. Lastly, it should
be noted that if a batch size of 1 is chosen, time-based resampling becomes irrelevant.

Time-dependent model (TDM)
In this subsection, a seq2seq regression model called TDM is introduced to address the
historical dependence (HD) among AE data. Prior to this, using the previous regression
model, TIM, 10 high-level extracted features are mapped to the 1੕੖ level HI without con-
sidering the HD among AE data. ঒e TDM model takes into account the temporal rela-
tionship between data points, which is crucial for accurate prognostic applications.
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Figure 5.16: Sequence length synchronization and time-based resampling.

To maintain a long-term record of sequential inputs, the LSTM layer [15] is a suitable
candidate and serves as a key component in the TDM (see Figure 5.17). ঒e LSTM layer
consists of 10 units, initialized with zero values for hidden and cell states. ঒e pseudo-
Huber loss function, which is a smooth approximation of the Huber loss function [16], is
used for the seq2seq regression task [14, 17]:

ਵ਽ ਭਸ਼ = 1਷ੌ ਷∑ੋੌ=1 ౸2 ⎛⎜⎜⎝ √1 + (਽ੋ − ਱ਲ (2)ੋ౸ )2 − 1⎞⎟⎟⎠, ੋ ∈ ਭ , ੌ ∈ ਸ਼ (5.5)

Here, ౸ controls the steepness at extreme values and is set to 20 in our work a঍er trial
and error (20% of the maximum target value, considering that maxੋ (਽ੋ) = 100). An Adam
optimizer [8] is employed to train the TDM, with an initial learning rate of 0.01, a learning
rate drop factor of 0.1, a learning rate drop period of 10, and a gradient threshold of 1, all
determined through trial and error. ঒e network’s output is based on the best validation
loss (ੌ ∈ ੘), with the validation check frequency set to 50 iterations (the number of learned
batches) and the validation check patience set to 50, despite the fact that the maximum
number of training epochs was set to 2000. Since the sequences in each batch are already
identical in length, a batch size of 2 was chosen, as described in the preceding section.

Figure 5.17: Time-dependent model (TDM) fed by the 1੕੖ level HI and yielding the 2੐ੇ level HI.
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Ensemble learning (EL)
A঍er building HIs with TIM-TDM models, EL techniques can address randomness and un-
certainties by creating a meta-model. While exploring several EL techniques, the second
framework employs averaging EL techniques with distinct weighting methods discussed
in the previous chapter. Unlike the ॲxed architecture of TDM, it is important to highlight
that the TIM component of the base models, involving architecture optimization through
PBO, dictates whether the base learners are homogeneous or heterogeneous. When TIM
is executed individually for each validation index-based combination, the resulting TIM
architectures, optimizers, and other hyperparameters are likely to diॱer. However, to miti-
gate resource-intensive processes, TIM’s hyperparameters are optimized using PBO solely
for the ॲrst validation index-based combination in the set (੘ ∪ ਭ). For the remaining com-
binations, the same hyperparameters are retained, resulting in homogeneous TIMs across
the 110 base learners.

5.5.2 Results
To comprehensively assess various combinations and ascertain the eॱectiveness, validity,
and stability of the proposed framework, all 12 folds were examined. Within each fold, a
single stiॱener composite panel was designated as the test set, while the remaining panels
served as training and validation data. Since there are 11 alternatives that can be used
as validation and this choice is eॱective, this process was repeated across 11 diॱerent
validation index-based combinations, iterated 10 times using distinct random seed num-
bers. Essentially, this approach emulates the LOOCV methodology, wherein a holdout
validation strategy is adopted within each fold. ঒is strategy aॴrms the evaluation of the
model’s generalizability. ঒ese 1320 runs (12 × 11 × 10) were conducted for all four types
of PCA-based data reduction techniques to facilitate a comprehensive comparison.

In this section, the results of the proposed methodology up to the ensemble stage,
termed base learner models, are ॲrst presented. Subsequently, the outcomes of the ensem-
ble learner models are explored.

Base learner models
Figure 5.18 displays the simulated ideal HIs alongside a selection of promising candidates
from the outcomes of ਱ਲ (1)s (TIM outputs) and ਱ਲ (2)s (TDM outputs) for diॱerent PCA-
based techniques. Each case represents a holdout validation scenario. ঒e error depicted
in Figure 5.18 illustrates the RMSE between the simulated ideal HIs and the constructed
HIs. Notably, ਱ਲ (1)s generated by TIM exhibit signiॲcant ॳuctuations, whereas TDM
yields smoother ਱ਲ (2)s. ঒ere have been some noteworthy observations, highlighting the
limitations of TIM, such as cases where ਱ਲ (1)s exhibit a declining trend. On the other
hand, TDM successfully corrects such pa਄erns. Concerning the behavior of ਱ਲ (2)s, mul-
tiple incremental steps were observed over the fatigue life in many instances (e.g., A.1 in
Figure 5.18. ঒ese steps can potentially signify distinct damage states, oॱering insights
for subsequent prognostic models in RUL prediction. However, linking these steps with
physical damage states in a stable and meaningful manner necessitates substantial eॱort
and future experiments.

Table 5.6 presents the evaluation metrics for the HIs shown in Figure 5.18. Notably,
due to its HD nature, all scores for ਱ਲ (2)s surpass those for ਱ਲ (1)s. ঒e proposed model not
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Figure 5.18: Qualiॲed candidates for ਱ਲ (1)s (TIM outputs) and ਱ਲ (2)s (TDM outputs) for diॱerent PCA-based
techniques (A.1, A.2, B.1, and B.2) - continued on the next page
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Figure 5.18: Qualiॲed candidates for ਱ਲ (1)s (TIM outputs) and ਱ਲ (2)s (TDM outputs) for diॱerent PCA-based
techniques (A.1, A.2, B.1, and B.2) - continued from the previous page
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only provides a streamlined and faster approach but also yields elevated Fitness scores in
comparison to the 1੕੖ framework. Worth highlighting is that the DL model in the 1੕੖ frame-
work incorporates 193,418 learnable parameters, while the proposed method employs only
between 662 and 4,924 learnable parameters, averaging around 1,731 (approximately 0.9%).
Out of this total, 491 parameters are allocated to TDM, and the quantity varies for TIM
depending on its optimized architecture.

Table 5.6: ঒e desirable candidate outcomes of each model run individually for various PCA methods.
PCA
type

Test
specimen

Validation
specimen

Mo Pr Tr Fitness RMSE of test Learnable
parameters਱ਲ (1) ਱ਲ (2) ਱ਲ (1) ਱ਲ (2) ਱ਲ (1) ਱ਲ (2) ਱ਲ (1) ਱ਲ (2) ਱ਲ (1) ਱ਲ (2)

A.1 6 1 0.98 1.00 0.82 0.90 0.66 0.94 2.46 2.84 13.72 6.19 704
A.2 11 1 0.99 1.00 0.72 0.76 0.63 0.92 2.34 2.68 13.48 6.54 1217
B.1 4 3 0.98 1.00 0.92 1.00 0.43 0.91 2.32 2.90 28.49 9.73 1662
B.2 3 7 0.95 1.00 0.71 0.92 0.40 0.90 2.06 2.82 32.47 14.03 2794

Furthermore, it is essential to emphasize that in the 1੕੖ framework, the LOOCV pro-
cedure employed 11 units for training and 1 unit for validation. ঒at approach yielded
results based on the network’s output with the best validation loss, which was also the
same as the test unit. In contrast, in the 2੐ੇ framework, the LOOCV process employs
diॱerent units for validation and testing, thus achieving a higher degree of generalization.

঒e comprehensive outcomes of TIM-TDM across various subsets and PCA-based tech-
niques are depicted in Figures 5.19 and 5.20, illustrating the RMSE and Fitness scores, re-
spectively. ঒e results indicate the mean values (displayed on the right y-axis) over ten
replications (shown on the x-axis) for each subset (validation index-based combinations
displayed on the le঍ y-axis), with error (standard deviation) bars.

Figure 5.19 shows the RMSE between the simulated ideal HIs and the constructed HIs
by the developed model (਱ਲ (2)). With the exception of specimen 9, the B.1 PCA-based
technique generally yields a lower average RMSE compared to others, notably evident in
specimens 2, 4, and 5. Following B.1, A.2 (observed in specimens 5 and 10) and B.2 (seen
in specimens 8 and 9) demonstrate be਄er RMSE results on average. Yet, it is important
to note that RMSE outcomes vary based ॲrst on the test unit and then on the validation
unit. For instance, B.1 is consistently the best choice for test specimen 5, regardless of the
chosen validation specimen. However, this trend might not hold true for test specimen 6,
as its superiority depends on the selection of the validation specimen.

Given that the primary objective is to provide qualiॲed HIs based on prognostic cri-
teria, Figure 5.20 holds greater signiॲcance than Figure 5.19. ঒e outcomes presented in
Figure 5.20, showcasing Fitness scores, exhibit a higher degree of stability compared to
the RMSE results in Figure 5.19. Across various units (except for 2, 3, and 8), the B.1
PCA-based technique consistently yields higher Fitness scores, while the A.2 PCA version
displays the lowest average Fitness score. ঒e test unit that poses the greatest challenge
for acceptable PCA versions is 5, where the discrepancy with the impractical version B.1
is substantial. Unit 8 presents challenges across all PCA versions. Notably, in the excep-
tional case of unit 3, the B.2 PCA version stands out as the most eॱective. ঒e key point
is that the choice of a suitable validation unit can signiॲcantly inॳuence the score. For in-
stance, in test unit 11 with the best validation unit 1, the score becomes highly acceptable,
even for the A.2 PCA version.
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Figure 5.19: RMSE between ideal HIs and constructed HIs by the 2੐ੇ framework over various subsets (train,
validation, and test combinations) and PCA-based techniques (A.1, A.2, B.1, and B.2)
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Figure 5.20: Fitness for the 2੐ੇ framework over various subsets (train, validation, and test combinations) and
PCA-based techniques (A.1, A.2, B.1, and B.2)
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Ensemble learner models
In this subsection, the outcomes of ELMs are presented, covering both SAE and WAE.
Various ಍੍ values are explored for WAE, encompassing ಍ਸ਼਼ਮ੍ , ಍ਯ ੋ੖੐ੈ੕੕੍ , and ಍ਯ ੋ੖੐ੈ੕੕_ਸ਼਼ਮ੍
as deॲned in Eqs. 4.45, 4.46, and 4.47, respectively. For ಍ਯ ੋ੖੐ੈ੕੕੍ , various sets of coeॴcients{੄,੅, ੆} are considered, including {1,1,1}, {1,1,0}, {1,0,0}, and {1,0.5,0.25}, to assess the
impact of diverse prognostic metrics. As for ಍ਯ ੋ੖੐ੈ੕੕_ਸ਼਼ਮ੍ , the coeॴcient set {1,1,1} is
exclusively taken.

Figure 5.21 depicts the distributions of the Fitness score across 110 subsets (resulting
from 11 validation-index-based combinations × 10 replications) for each fold. ঒e x-axis
represents the fold, or, in other words, the single-stiॱener composite panel chosen as the
test unit for the model. ঒is ॲgure oॱers insights into the various versions of PCA and
ELMs employed. Additionally, Appendices (A.2) contains ॲgures showcasing all the con-
structed HIs post-EL for diॱerent versions of PCA.

As observed in Figure 5.21, the EL step, regardless of its type, consistently enhances the
score in comparison to the mean value across all cases. ঒is improvement is particularly
notable for the A.2 PCA version, while it has a relatively smaller impact on the B.1 PCA
version. Speciॲcally, the B.1 PCA version yields a more consistent distribution of highly
qualiॲed HIs with less variance, as indicated by the box plot. However, it is crucial to note
that this PCA version is unsuitable for prognostics, as previously discussed.

Certain folds present greater challenges for diॱerent PCA versions. For instance, spec-
imens 5, 3, and 1 are more challenging for the A.1 PCA version, while specimens 3, 2, 4,
and 1 pose challenges for the A.2 PCA version. ঒e B.1 PCA version encounters diॴcul-
ties with specimens 8 and 3, while the B.2 PCA version struggles with specimens 2 and
5.

While examining various applied EL techniques, it is notable that WAE-MSE does not
necessarily outperform SAE. However, WAE-Fitness and WAE-FitnessMSE consistently
yield be਄er outcomes than SAE. Focusing on WAE-Fitness, it is evident that the prognostic
metrics can sometimes oppose each other. For instance, taking composite panel 6 for
the A.2 PCA version (refer to Figure A.7), considering the metrics coeॴcient set {1,1,0}
achieves the desired Pr, an important aspect. Conversely, when the Tr coeॴcient increases
(in cases of {1,1,1} or {1,0.5,0.25}), Pr decreases. When Pr is achieved, the challenge of
extrapolation in RUL prediction can be transformed into an interpolation problem, and as
is well known, an extrapolation problem still poses a signiॲcant challenge in the ॲeld of
ML.
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Figure 5.21: Distribution of Fitness for the 2੐ੇ framework over various subsets (train, validation, and test com-
binations) and versions of PCA (A.1, A.2, B.1, and B.2). ঒e box plot and the mean value (represented by a dark
blue-ॲlled circle) pertain to results before EL, while the other markers depict the scores of the HIs a঍er EL.

5.6 3੔ੇ framework: CEEMDAN-SSEDL

T he 3੔ੇ new AI-based approach, as illustrated in Figure 5.22, incorporates CEEMDAN
for feature extraction and semi-supervised base deep learner models made of LSTM

layers for information fusion. Ensemble learning, especially using a SS network built with 
BiLSTM, improves HI quality while reducing deep learning randomness.

Feature extraction: As mentioned in Section, six low-level features are obtained 
from each AE event, i.e., A, R, E, CNTS, D and RMS. For the ੋ੖ℎ unit, there are ੍ੋ time win-
dows. ঒e CEEMDAN methodology is applied to each time window in order to extract 
the IMFs. Arbitrarily, four IMFs are extracted for each time window. Since the time win-
dows have diॱerent numbers of data points and occasionally not enough data is available 
to decompose into IMFs, linear interpolation between the previous and next time windows 
is performed.

For each low-level feature, four IMFs are extracted, providing 24 new features. For 
each time window, 21 statistical quantities are calculated, which are listed in Table 5.7. In 
total, 504 (6x4x21) new features are obtained, which are going to be the input to the DL 
algorithm that creates the HI.

Standardization (zero-mean): Using a zero-mean normalization technique (Chap-
ter 4) that solely uses the mean value and standard deviation of the training dataset, the 
network’s input features are standardized.



5.6. 3੔ੇ framework: CEEMDAN-SSEDL

5

103

Figure 5.22: ঒e overall 3੔ੇ proposed framework: (a) AE monitoring and low-level feature extraction; (b) local-
ization; (c) windowing; (d) signal processing (CEEMDAN); (e) statistical feature extraction; (f) semi-supervised
base learner model; (g) semi-supervised ensemble learner model.

Table 5.7: Statistical features extracted from IMFs.
No. Name No. Name No. Name
1 Mean 8 Kurtosis 15 Central moment for 4th order
2 Standard Deviation 9 Crest Factor 16 Central moment for 5th order
3 Root Amplitude 10 Clearance factor 17 Central moment for 6th order
4 Root Mean Square 11 Shape factor 18 FM4
5 Root sum of Squares 12 Impulse factor 19 Median value
6 Peak 13 Maximum to minimum diॱerence 20 Signal Power
7 Skewness 14 Central moment for 3rd order 21 Entropy

5.6.1 Feature fusion: semi-supervised ensemble deep learning (SS-
EDL)

঒e same multi-layer LSTM network architecture proposed for the 1੕੖ framework (Fig-
ure 5.5) is used to perform the feature fusion task in the 3੔ੇ framework. ঒e half-mean-
squared error is regarded as the loss function of the seq2seq regression network. ঒e same
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ten top models (Table 5.2) obtained by BO, given the statistical features extracted from the
time and frequency domains in the 1੕੖ framework, are considered the base learners in
the 3੔ੇ framework, where the new features extracted from the IMFs of CEEMDAN are
imported. Although the process of optimizing the hyperparameters based on the new fea-
ture inputs could be repeated, this step is skipped to save time. It should be noted that this
section can be viewed as a type of transfer learning designed to cut down on time.

Ensemble learning (EL)
Once HIs are constructed using base deep learner models, ensemble learner models can
handle uncertainties and randomness. Initially, LOOCV is employed, reserving a single
unit for testing and utilizing the remaining 11 specimens for subsequent processing. ঒ree
main dataset divisions, as explained in Chapter 4, Section 4.6.3, guide this process. For the
third framework, Cases B and C are investigated, with Case C involving the random se-
lection of the validation SSP from the remaining 11 SSPs. ঒e base learner models are
trained a total of 100 times. In Case C, the validation unit is randomly selected 10 times,
and the learning process is conducted with 10 diॱerent random seed numbers for initial-
izing weights and biases. Subsequently, the 100 HIs predicted by the base learner models
are ensembled using a process involving SAE, WAE, and ॲnally DL models.

Beyond averaging ensemble models, this framework assesses 12 networks with various
types of layers, including FC, LSTM, and BiLSTM layers. ঒e architectures (hidden layers)
of these EL models are summarized in Table 5.8, with values in parentheses indicating the
number of neurons, units, or dropout percentages. An example of the ensemble learner,
Model 16– Net(12), is illustrated in Figure 5.23.

Table 5.8: Ensemble learner models used in the 3੔ੇ framework.
Model num. Model name Architecture (hidden layers)
1 SAE
2 WAE-MSE
3 WAE-RMSE
4 WAE-Fitness
5 Net(1) FC(10) D(0.5) ReLU FC(1)
6 Net(2) FC(100) D(0.5) ReLU FC(1)
7 Net(3) FC(10) D(0.5) ReLU FC(5) D(0.5) ReLU FC(1)
8 Net(4) FC(100) D(0.5) ReLU FC(5) D(0.5) ReLU FC(1)
9 Net(5) LSTM(5) D(0.5) FC(5) D(0.5) ReLU FC(1)
10 Net(6) LSTM(10) D(0.5) FC(5) D(0.5) ReLU FC(1)
11 Net(7) FC(10) D(0.5) ReLU LSTM(5) D(0.5) ReLU FC(1)
12 Net(8) FC(10) D(0.5) ReLU BiLSTM(5) D(0.5) ReLU FC(1)
13 Net(9) BiLSTM(5) D(0.5) BiLSTM(1) D(0.5) FC(1)
14 Net(10) BiLSTM(10) D(0.5) BiLSTM(1) D(0.5) FC(1)
15 Net(11) BiLSTM(5) D(0.5) FC(5) D(0.5) ReLU FC(1)
16 Net(12) D(0.5) BiLSTM(5) D(0.5) FC(5) D(0.5) ReLU FC(1)

5.6.2 Results
Base learner models
To demonstrate the eॱectiveness of the CEEMDAN features as input to the base learner
models, the average Fitness values (and standard deviation) over the 100 repetitions are
presented in Table 5.9. ঒e best obtained value is 2.82 (±0.24) for the Fold 12 and the
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Figure 5.23: ঒e architecture of the semi-supervised ensemble learner Model 16 – Net(12).

base learner Model 10. It is also important to evaluate the prognostic metrics speciॲcally
for the test units (Eq. 3.8) to check how well they adhere to these metrics and how well
the methodology generalizes to unknown input data. Table 5.10 summarizes these results
over the 100 repetitions. ঒e best result is observed for Model 10, Fold 12, with a Fitness
2.75 (±0.21). In Figure 5.24, a visual representation of Tables 5.9 and 5.10 for Model 10 is
displayed for easier comparison between the two. What is observed is that Mo and Pr, and
consequently Fitness, display slightly lower values. To clarify, the test unit is not able to
follow the ideal HI functions with the same proॲciency as the training units, and hence,
when calculating these prognostic metrics, excluding the training units results in reduced
overall values.

A drawback of the original methodology’s evaluation via LOOCV, also presented in
Ref. [3], is the use of the test unit as validation during training (Case B). ঒is way, it is in-
corporated into the training step, and consequently, it is not hidden during the application
step. Although this provides high Fitness results, its applicability in real-world scenarios
is limited due to its dependence on validating using unknown data. To overcome the lim-
itation and enable exploring the possibility of applying the methodology in real time, a
random SSP from the training set is used for model validation (Case C). By employing this
methodology, the dependency on the test unit is eliminated, thus enabling the possibility
of real-time implementation.

঒e average Fitness over the 100 repetitions for both the entire dataset and the test
units are shown in Tables 5.11 and 5.12, while Figure 5.25 presents both cases for the
base learner Model 9. In comparison with the methodology using the test unit for early
stopping and validation, it is evident that the values obtained are lower, which is expected
given that the test unit is now unknown. However, the values remain high, providing HIs
with great prognostic potential. ঒e best values are observed for Fold 12 and Model 9 at
2.51 (±0.43) for the entire set and 2.44 (±0.4) for the test unit.

঒e best HI obtained by Model 10 at iteration 96 and Model 9 at iteration 97 for data



5

106 5. Designing HI for T-Stiॱener Composite Panels using Acoustic Emission

Table 5.9: Fitness values for base learner models of the 3੔ੇ framework averaged over the 100 repetitions using
Eq. 3.4 and data division Case B.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Fold 11 Fold 12

Model 1 2.07
(±0.67)

2.21
(±0.61)

1.82
(±0.65)

2.75
(±0.26)

2.58
(±0.48)

2.81
(±0.17)

2.45
(±0.5)

1.98
(±0.35)

2.26
(±0.57)

1.26
(±0.3)

2.48
(±0.48)

2.71
(±0.23)

Model 2 2.35
(±0.6)

2.24
(±0.64)

1.66
(±0.63)

2.74
(±0.26)

2.59
(±0.45)

2.69
(±0.35)

2.49
(±0.44)

2.07
(±0.38)

2.25
(±0.62)

1.34
(±0.35)

2.48
(±0.54)

2.6
(±0.38)

Model 3 2.58
(±0.41)

2.12
(±0.68)

1.67
(±0.61)

2.68
(±0.28)

2.43
(±0.47)

2.65
(±0.31)

2.56
(±0.35)

2.16
(±0.38)

1.97
(±0.71)

1.47
(±0.48)

2.49
(±0.49)

2.54
(±0.33)

Model 4 2.22
(±0.6)

2.09
(±0.66)

1.61
(±0.64)

2.71
(±0.31)

2.5
(±0.45)

2.72
(±0.38)

2.54
(±0.43)

2.1
(±0.37)

2.17
(±0.62)

1.42
(±0.43)

2.32
(±0.58)

2.58
(±0.32)

Model 5 2.56
(±0.65)

1.71
(±0.62)

2.35
(±0.57)

2.7
(±0.27)

2.75
(±0.3)

2.59
(±0.38)

2.48
(±0.46)

1.93
(±0.33)

2.5
(±0.44)

1.32
(±0.27)

2.42
(±0.56)

2.78
(±0.25)

Model 6 2.07
(±0.65)

1.82
(±0.58)

2.1
(±0.55)

2.39
(±0.5)

2.33
(±0.55)

2.67
(±0.26)

2.31
(±0.51)

1.82
(±0.34)

2.06
(±0.61)

1.39
(±0.28)

1.93
(±0.58)

2.51
(±0.39)

Model 7 2.38
(±0.65)

2.12
(±0.7)

1.72
(±0.63)

2.75
(±0.21)

2.54
(±0.54)

2.76
(±0.28)

2.33
(±0.59)

2.17
(±0.36)

2.01
(±0.69)

1.39
(±0.41)

2.53
(±0.47)

2.6
(±0.31)

Model 8 2.23
(±0.6)

2.12
(±0.58)

1.74
(±0.54)

2.53
(±0.53)

2.46
(±0.53)

2.63
(±0.47)

2.24
(±0.59)

2.13
(±0.49)

1.91
(±0.68)

1.75
(±0.51)

2.24
(±0.5)

2.51
(±0.38)

Model 9 2.34
(±0.62)

2.31
(±0.61)

1.7
(±0.67)

2.72
(±0.24)

2.46
(±0.54)

2.7
(±0.34)

2.51
(±0.41)

2.17
(±0.37)

2.33
(±0.54)

1.34
(±0.42)

2.58
(±0.4)

2.61
(±0.33)

Model 10 2.36
(±0.76)

1.95
(±0.69)

1.98
(±0.7)

2.75
(±0.19)

2.74
(±0.35)

2.64
(±0.38)

2.47
(±0.49)

1.98
(±0.26)

2.56
(±0.36)

1.35
(±0.3)

2.48
(±0.5)

2.82
(±0.24)

Table 5.10: Fitness values for base learner models of the 3੔ੇ framework averaged over the 100 repetitions using
Eq. 3.8 and data division Case B.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Fold 11 Fold 12

Model 1 1.82
(±0.69)

1.82
(±0.52)

1.51
(±0.56)

2.51
(±0.37)

2.53
(±0.39)

2.63
(±0.26)

2.33
(±0.45)

1.61
(±0.31)

1.9
(±0.51)

1.26
(±0.25)

2.2
(±0.39)

2.66
(±0.2)

Model 2 2.13
(±0.66)

1.93
(±0.59)

1.5
(±0.49)

2.56
(±0.3)

2.54
(±0.38)

2.53
(±0.44)

2.34
(±0.43)

1.65
(±0.35)

1.99
(±0.48)

1.28
(±0.24)

2.32
(±0.45)

2.58
(±0.34)

Model 3 2.44
(±0.48)

1.89
(±0.57)

1.42
(±0.55)

2.48
(±0.34)

2.46
(±0.37)

2.54
(±0.34)

2.46
(±0.35)

1.81
(±0.38)

1.82
(±0.61)

1.39
(±0.31)

2.35
(±0.47)

2.55
(±0.3)

Model 4 1.96
(±0.63)

1.79
(±0.5)

1.44
(±0.54)

2.49
(±0.39)

2.45
(±0.44)

2.56
(±0.37)

2.41
(±0.4)

1.7
(±0.33)

1.88
(±0.49)

1.3
(±0.27)

2.11
(±0.49)

2.55
(±0.28)

Model 5 2.51
(±0.7)

1.46
(±0.47)

2.03
(±0.5)

2.48
(±0.35)

2.7
(±0.24)

2.43
(±0.42)

2.25
(±0.44)

1.59
(±0.29)

2.07
(±0.36)

1.26
(±0.21)

2.19
(±0.45)

2.72
(±0.22)

Model 6 1.84
(±0.71)

1.49
(±0.47)

1.86
(±0.46)

2.1
(±0.54)

2.37
(±0.46)

2.45
(±0.27)

2.2
(±0.45)

1.48
(±0.28)

1.75
(±0.49)

1.27
(±0.26)

1.79
(±0.43)

2.43
(±0.37)

Model 7 2.2
(±0.69)

1.86
(±0.54)

1.52
(±0.5)

2.57
(±0.29)

2.49
(±0.45)

2.64
(±0.29)

2.23
(±0.51)

1.76
(±0.33)

1.8
(±0.56)

1.27
(±0.25)

2.33
(±0.42)

2.59
(±0.28)

Model 8 1.86
(±0.56)

1.66
(±0.51)

1.33
(±0.46)

2.24
(±0.5)

2.41
(±0.45)

2.44
(±0.4)

2.06
(±0.5)

1.69
(±0.42)

1.7
(±0.54)

1.43
(±0.38)

2.05
(±0.44)

2.48
(±0.34)

Model 9 2.19
(±0.64)

2.03
(±0.52)

1.48
(±0.53)

2.51
(±0.29)

2.45
(±0.45)

2.55
(±0.38)

2.38
(±0.42)

1.75
(±0.36)

2.06
(±0.48)

1.3
(±0.25)

2.37
(±0.38)

2.6
(±0.3)

Model 10 2.26
(±0.76)

1.7
(±0.54)

1.76
(±0.58)

2.52
(±0.31)

2.68
(±0.31)

2.41
(±0.42)

2.24
(±0.46)

1.63
(±0.22)

2.08
(±0.4)

1.34
(±0.22)

2.21
(±0.4)

2.75
(±0.21)

division Case B and Case C can be seen in Figure 5.26(a) and (b), respectively. ঒e bright
green line represents the ideal HI, the do਄ed blue lines are the training SSPs, and the black
line is the test SSP. At ॲrst glance, it is observed that not every fold is able to create a HI
close to the ideal. For instance, in Fold 3, not even the training units are able to ॲt the
ideal HI, although the diॱerent units display a similar trend. On the other hand, for Fold
10, the training SSPs display a behavior close to the ideal one; however, the test unit fails
to reproduce this trend. Contrary to Figure 5.26(a) and data division Case B, the test unit
deviates from the training units quite signiॲcantly and in more Folds in Figure 5.26(b)
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Figure 5.24: ঒e prognostic metrics distribution based on all and test units for the base learner Model 10 of the3੔ੇ framework, considering Case B for the dataset division (the test SSP itself as validation).
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Table 5.11: Fitness values for base learner models of the 3੔ੇ framework averaged over the 100 repetitions using
Eq. 3.4 and data division Case C.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Fold 11 Fold 12

Model 1 1.8
(±0.55)

2
(±0.59)

2.08
(±0.61)

2.51
(±0.38)

2.18
(±0.62)

2.03
(±0.65)

1.67
(±0.5)

1.93
(±0.54)

2.02
(±0.49)

1.96
(±0.36)

2.06
(±0.51)

2.43
(±0.46)

Model 2 1.72
(±0.56)

2
(±0.6)

2.07
(±0.55)

2
(±0.67)

2.21
(±0.55)

2.09
(±0.6)

1.85
(±0.57)

2.21
(±0.49)

2.2
(±0.41)

1.94
(±0.45)

1.92
(±0.57)

2.38
(±0.56)

Model 3 2.07
(±0.49)

2.03
(±0.54)

2.12
(±0.54)

2.19
(±0.55)

2.19
(±0.59)

2.08
(±0.65)

1.95
(±0.59)

1.65
(±0.52)

2.1
(±0.5)

1.99
(±0.45)

2.09
(±0.53)

2.18
(±0.61)

Model 4 1.97
(±0.46)

1.96
(±0.64)

1.86
(±0.55)

2.19
(±0.55)

1.98
(±0.67)

2.21
(±0.69)

1.85
(±0.61)

1.99
(±0.55)

2.03
(±0.45)

1.83
(±0.47)

2.02
(±0.53)

2.27
(±0.55)

Model 5 1.6
(±0.52)

2.17
(±0.5)

2.01
(±0.6)

2.17
(±0.59)

2.2
(±0.61)

2.04
(±0.55)

1.56
(±0.4)

2.02
(±0.37)

1.95
(±0.58)

1.8
(±0.42)

2
(±0.54)

2.07
(±0.55)

Model 6 1.71
(±0.4)

1.88
(±0.53)

1.84
(±0.51)

2.02
(±0.53)

2.11
(±0.52)

1.92
(±0.48)

1.73
(±0.4)

1.79
(±0.41)

1.87
(±0.4)

1.86
(±0.41)

1.83
(±0.42)

1.92
(±0.57)

Model 7 2.09
(±0.51)

2.15
(±0.58)

2.05
(±0.52)

2.26
(±0.57)

2.35
(±0.53)

2.3
(±0.57)

1.75
(±0.53)

2.2
(±0.53)

1.97
(±0.54)

2.1
(±0.39)

2.08
(±0.53)

2.33
(±0.55)

Model 8 1.8
(±0.45)

2.02
(±0.55)

1.7
(±0.45)

2.21
(±0.51)

2.01
(±0.59)

2.17
(±0.56)

1.75
(±0.48)

2.11
(±0.49)

1.97
(±0.47)

1.82
(±0.39)

1.94
(±0.51)

2.17
(±0.58)

Model 9 1.95
(±0.55)

2.22
(±0.51)

2.12
(±0.56)

2.27
(±0.56)

2.36
(±0.5)

2.21
(±0.67)

1.91
(±0.53)

1.86
(±0.62)

2.03
(±0.51)

1.93
(±0.5)

2.15
(±0.56)

2.51
(±0.43)

Model 10 1.97
(±0.56)

2.18
(±0.51)

2.05
(±0.5)

1.93
(±0.55)

2.1
(±0.65)

2.1
(±0.58)

1.78
(±0.5)

1.92
(±0.47)

1.92
(±0.45)

1.8
(±0.42)

1.96
(±0.48)

2.25
(±0.57)

Table 5.12: Fitness values for base learner models of the 3੔ੇ framework averaged over the 100 repetitions using
Eq. 3.8 and data division Case C.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Fold 11 Fold 12

Model 1 1.59
(±0.54)

1.62
(±0.52)

1.68
(±0.55)

2.15
(±0.55)

2
(±0.59)

1.91
(±0.55)

1.5
(±0.41)

1.49
(±0.52)

1.47
(±0.53)

1.33
(±0.26)

1.75
(±0.43)

2.38
(±0.46)

Model 2 1.45
(±0.56)

1.68
(±0.53)

1.57
(±0.6)

1.81
(±0.64)

2.03
(±0.57)

1.94
(±0.6)

1.58
(±0.51)

1.75
(±0.5)

1.58
(±0.65)

1.43
(±0.34)

1.7
(±0.5)

2.32
(±0.55)

Model 3 1.77
(±0.63)

1.63
(±0.51)

1.64
(±0.57)

1.85
(±0.6)

2.08
(±0.54)

1.94
(±0.61)

1.79
(±0.58)

1.37
(±0.48)

1.62
(±0.6)

1.45
(±0.32)

1.84
(±0.49)

2.16
(±0.6)

Model 4 1.58
(±0.56)

1.6
(±0.57)

1.41
(±0.52)

1.89
(±0.58)

1.89
(±0.6)

2.12
(±0.62)

1.64
(±0.59)

1.59
(±0.5)

1.5
(±0.57)

1.37
(±0.28)

1.69
(±0.46)

2.2
(±0.55)

Model 5 1.38
(±0.5)

1.77
(±0.41)

1.63
(±0.54)

1.89
(±0.62)

2.05
(±0.6)

1.78
(±0.53)

1.3
(±0.28)

1.33
(±0.53)

1.52
(±0.53)

1.3
(±0.29)

1.73
(±0.46)

1.99
(±0.55)

Model 6 1.38
(±0.42)

1.47
(±0.48)

1.42
(±0.54)

1.62
(±0.55)

2.05
(±0.51)

1.67
(±0.49)

1.5
(±0.37)

1.31
(±0.39)

1.31
(±0.48)

1.36
(±0.37)

1.49
(±0.35)

1.8
(±0.55)

Model 7 1.76
(±0.59)

1.8
(±0.55)

1.52
(±0.58)

1.95
(±0.64)

2.12
(±0.55)

2.07
(±0.53)

1.49
(±0.47)

1.81
(±0.52)

1.48
(±0.57)

1.53
(±0.38)

1.79
(±0.52)

2.25
(±0.52)

Model 8 1.29
(±0.45)

1.59
(±0.5)

1.15
(±0.44)

1.76
(±0.54)

1.85
(±0.52)

1.94
(±0.56)

1.48
(±0.44)

1.62
(±0.48)

1.46
(±0.54)

1.23
(±0.33)

1.63
(±0.5)

2.03
(±0.64)

Model 9 1.67
(±0.59)

1.77
(±0.55)

1.62
(±0.65)

1.98
(±0.59)

2.12
(±0.54)

2.06
(±0.63)

1.64
(±0.51)

1.5
(±0.58)

1.49
(±0.6)

1.46
(±0.3)

1.84
(±0.54)

2.44
(±0.4)

Model 10 1.68
(±0.65)

1.75
(±0.46)

1.58
(±0.54)

1.59
(±0.59)

1.94
(±0.65)

1.89
(±0.51)

1.49
(±0.42)

1.37
(±0.46)

1.29
(±0.51)

1.25
(±0.25)

1.63
(±0.41)

2.19
(±0.57)

(data division Case C). ঒is is also observed by the drop in average Fitness values in Table
5.12. ঒is comments that the base learners are struggling to generalize the good results of
training with unseen data.
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Figure 5.25: ঒e prognostic metrics distribution based on all and test units for the base learner Model 10 of the3੔ੇ framework, considering Case C for the dataset division (another SSP other than the test SSP as validation).
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Figure 5.26: (a) ঒e HIs constructed by the base Model 10 of the 3੔ੇ framework, considering Case B for the dataset
division (the test SSP itself as validation), with Fitness 2.42 (±0.52) based on Eq. 3.8; (b) ঒e HIs constructed by
the base Model 9 of the 3੔ੇ framework, considering Case C for the dataset division (another SSP other than the
test SSP as validation), with Fitness 2.21 (±0.39) based on Eq. 3.8.
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Ensemble learner models
In Table 5.13, the ensemble models’ Fitness averaged over the 12 Folds is presented for the
diॱerent ensemble methodologies, where the base learner is trained with Case B (test unit
as validation). When considering the entire set (training and test) it is observed that Fitness
is mostly over 2.6. What is surprising is the performance of WAE-MSE and WAE-RMSE,
which are underperforming even compared to SAE. ঒e best Fitness result is obtained
using the 16੖ℎ EL model, Net(12), which is one of the more complex networks, where the
Fitness value is 2.84 (±0.13) and is obtained for base learner Model 9, while base learner
Model 3 also achieves a similar value of 2.84 (±0.15).

As it was previously mentioned, it is important to calculate the prognostic metrics for
the test unit and evaluate the performance of the models only on unknown data. Table
5.14 demonstrates the Fitness values calculated using Eq. 3.8. ঒e overall values have
decreased, which is expected since the test unit does not ॲt the ideal behavior perfectly
and diverges from the average behavior of the training units. ঒e best Fitness is again
obtained for the Net(12) ensemble upon Model 3, with a value of 2.74 (±0.33). ঒e results
of Tables 5.13 and 5.14 are also visually summarized in Figure 5.27 for Model 3. It is
evident that the overall Fitness has only slightly reduced when only considering the test
units, which demonstrates the eॱectiveness of the methodology.

Table 5.13: Fitness values for ensemble learner models of the 3੔ੇ framework averaged over the 12 Folds using
Eq. 3.4 and data division Case B.

WAE DL-based: Net
SAE MSE RMSE Fitness (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model 1 2.69
(±0.26)

2.37
(±0.38)

2.61
(±0.29)

2.7
(±0.24)

2.39
(±0.39)

2.75
(±0.19)

2.68
(±0.13)

2.72
(±0.24)

2.72
(±0.31)

2.74
(±0.22)

2.71
(±0.25)

2.63
(±0.18)

2.66
(±0.17)

2.7
(±0.18)

2.76
(±0.22)

2.78
(±0.24)

Model 2 2.75
(±0.19)

2.52
(±0.27)

2.68
(±0.21)

2.75
(±0.18)

2.49
(±0.34)

2.76
(±0.18)

2.74
(±0.12)

2.72
(±0.14)

2.79
(±0.17)

2.75
(±0.2)

2.73
(±0.19)

2.57
(±0.23)

2.66
(±0.13)

2.72
(±0.13)

2.78
(±0.19)

2.81
(±0.18)

Model 3 2.75
(±0.14)

2.51
(±0.34)

2.67
(±0.2)

2.76
(±0.13)

2.53
(±0.39)

2.78
(±0.12)

2.63
(±0.19)

2.68
(±0.17)

2.82
(±0.11)

2.79
(±0.13)

2.67
(±0.19)

2.65
(±0.13)

2.7
(±0.09)

2.75
(±0.11)

2.81
(±0.14)

2.84
(±0.15)

Model 4 2.73
(±0.17)

2.44
(±0.27)

2.64
(±0.22)

2.73
(±0.16)

2.69
(±0.21)

2.79
(±0.12)

2.7
(±0.15)

2.72
(±0.12)

2.78
(±0.13)

2.77
(±0.14)

2.72
(±0.14)

2.64
(±0.11)

2.67
(±0.11)

2.72
(±0.11)

2.71
(±0.32)

2.82
(±0.14)

Model 5 2.74
(±0.22)

2.57
(±0.24)

2.7
(±0.21)

2.74
(±0.22)

2.57
(±0.2)

2.76
(±0.17)

2.63
(±0.18)

2.71
(±0.22)

2.8
(±0.14)

2.77
(±0.17)

2.76
(±0.17)

2.63
(±0.16)

2.64
(±0.15)

2.74
(±0.09)

2.78
(±0.2)

2.8
(±0.19)

Model 6 2.62
(±0.27)

2.32
(±0.31)

2.47
(±0.27)

2.63
(±0.26)

2.41
(±0.38)

2.73
(±0.24)

2.46
(±0.34)

2.66
(±0.28)

2.74
(±0.21)

2.74
(±0.23)

2.7
(±0.21)

2.54
(±0.25)

2.63
(±0.18)

2.7
(±0.14)

2.77
(±0.13)

2.77
(±0.17)

Model 7 2.75
(±0.2)

2.41
(±0.38)

2.64
(±0.26)

2.76
(±0.17)

2.66
(±0.15)

2.78
(±0.13)

2.58
(±0.22)

2.66
(±0.37)

2.77
(±0.14)

2.81
(±0.14)

2.74
(±0.18)

2.62
(±0.12)

2.68
(±0.09)

2.73
(±0.11)

2.81
(±0.14)

2.84
(±0.14)

Model 8 2.74
(±0.13)

2.15
(±0.28)

2.59
(±0.15)

2.74
(±0.13)

2.63
(±0.23)

2.75
(±0.14)

2.68
(±0.15)

2.72
(±0.14)

2.77
(±0.13)

2.75
(±0.15)

2.7
(±0.21)

2.66
(±0.16)

2.65
(±0.12)

2.72
(±0.09)

2.77
(±0.15)

2.77
(±0.17)

Model 9 2.76
(±0.15)

2.6
(±0.19)

2.71
(±0.15)

2.76
(±0.15)

2.47
(±0.38)

2.75
(±0.17)

2.62
(±0.23)

2.62
(±0.34)

2.79
(±0.13)

2.75
(±0.16)

2.71
(±0.2)

2.62
(±0.18)

2.66
(±0.15)

2.72
(±0.13)

2.76
(±0.19)

2.84
(±0.13)

Model 10 2.75
(±0.24)

2.53
(±0.24)

2.7
(±0.23)

2.75
(±0.23)

2.64
(±0.26)

2.77
(±0.15)

2.61
(±0.21)

2.63
(±0.36)

2.77
(±0.15)

2.76
(±0.14)

2.7
(±0.3)

2.61
(±0.17)

2.67
(±0.13)

2.72
(±0.1)

2.8
(±0.15)

2.79
(±0.21)

Using a random SSP as the validation unit (data division case C) slightly aॱects the
Fitness values of the HIs. Tables 5.15 and 5.16 show the average Fitness values (and stan-
dard deviation) averaged over the 12 Folds, calculated for the entire set (using Eq. 3.4) and
only for the test unit (using Eq. 3.8) respectively. ঒e highest Fitness value is obtained by
Net(12) upon Model 9 in both cases with values 2.74 (±0.19) and 2.59 (±0.24), respectively.
As expected, the Fitness value is lower than in the respective cases where the test unit is
used in the training, since in this case the test unit is unknown. ঒is case, however, is more
representative of the potential real-world application of the methodology. In Figure 5.28,
the results of Tables 5.15 and 5.16 for base learner Model 9 are visually summarized and
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Figure 5.27: ঒e prognostic metrics distribution based on all and test units for ensemble learner models upon
the base learner Model 3 of the 3੔ੇ framework, considering Case B for the dataset division (the test SSP itself as
validation).
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Table 5.14: Fitness values for ensemble learner models of the 3੔ੇ framework averaged over the 12 Folds using
Eq. 3.8 and data division Case B.

WAE DL-based: Net
SAE MSE RMSE Fitness (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model 1 2.44
(±0.39)

2.21
(±0.43)

2.39
(±0.41)

2.45
(±0.38)

2.09
(±0.66)

2.44
(±0.41)

2.42
(±0.29)

2.44
(±0.44)

2.48
(±0.51)

2.47
(±0.44)

2.41
(±0.52)

2.33
(±0.37)

2.43
(±0.3)

2.5
(±0.37)

2.5
(±0.45)

2.6
(±0.44)

Model 2 2.53
(±0.33)

2.39
(±0.34)

2.49
(±0.34)

2.53
(±0.33)

2.2
(±0.53)

2.48
(±0.4)

2.51
(±0.31)

2.47
(±0.26)

2.55
(±0.4)

2.51
(±0.4)

2.48
(±0.45)

2.3
(±0.41)

2.44
(±0.31)

2.56
(±0.29)

2.54
(±0.39)

2.67
(±0.37)

Model 3 2.58
(±0.29)

2.38
(±0.42)

2.51
(±0.33)

2.58
(±0.29)

2.3
(±0.62)

2.56
(±0.32)

2.44
(±0.33)

2.42
(±0.4)

2.63
(±0.32)

2.57
(±0.33)

2.47
(±0.36)

2.48
(±0.27)

2.52
(±0.25)

2.59
(±0.28)

2.62
(±0.33)

2.74
(±0.33)

Model 4 2.5
(±0.32)

2.29
(±0.35)

2.44
(±0.34)

2.49
(±0.31)

2.44
(±0.4)

2.49
(±0.32)

2.35
(±0.39)

2.44
(±0.35)

2.5
(±0.36)

2.5
(±0.36)

2.45
(±0.36)

2.4
(±0.28)

2.44
(±0.29)

2.53
(±0.29)

2.4
(±0.63)

2.71
(±0.21)

Model 5 2.5
(±0.36)

2.39
(±0.33)

2.48
(±0.36)

2.5
(±0.37)

2.24
(±0.47)

2.44
(±0.43)

2.27
(±0.41)

2.41
(±0.47)

2.52
(±0.4)

2.48
(±0.42)

2.46
(±0.43)

2.37
(±0.34)

2.39
(±0.36)

2.55
(±0.23)

2.54
(±0.44)

2.61
(±0.35)

Model 6 2.39
(±0.38)

2.15
(±0.35)

2.27
(±0.34)

2.4
(±0.37)

2.16
(±0.41)

2.41
(±0.43)

2.05
(±0.65)

2.38
(±0.41)

2.45
(±0.46)

2.47
(±0.45)

2.4
(±0.4)

2.25
(±0.32)

2.39
(±0.36)

2.52
(±0.23)

2.55
(±0.25)

2.66
(±0.26)

Model 7 2.54
(±0.37)

2.29
(±0.43)

2.47
(±0.41)

2.55
(±0.36)

2.42
(±0.31)

2.51
(±0.35)

2.33
(±0.39)

2.45
(±0.47)

2.55
(±0.4)

2.61
(±0.33)

2.51
(±0.41)

2.36
(±0.27)

2.5
(±0.21)

2.55
(±0.29)

2.59
(±0.32)

2.72
(±0.29)

Model 8 2.46
(±0.27)

2.1
(±0.28)

2.4
(±0.25)

2.46
(±0.27)

2.3
(±0.39)

2.39
(±0.35)

2.32
(±0.33)

2.48
(±0.28)

2.5
(±0.32)

2.46
(±0.33)

2.44
(±0.43)

2.36
(±0.28)

2.42
(±0.25)

2.52
(±0.2)

2.48
(±0.34)

2.57
(±0.33)

Model 9 2.55
(±0.3)

2.46
(±0.25)

2.52
(±0.27)

2.54
(±0.32)

2.19
(±0.38)

2.47
(±0.42)

2.34
(±0.45)

2.37
(±0.49)

2.56
(±0.37)

2.51
(±0.37)

2.46
(±0.43)

2.37
(±0.32)

2.45
(±0.36)

2.54
(±0.31)

2.53
(±0.43)

2.69
(±0.3)

Model 10 2.51
(±0.36)

2.37
(±0.34)

2.48
(±0.35)

2.51
(±0.36)

2.34
(±0.46)

2.47
(±0.37)

2.3
(±0.42)

2.34
(±0.52)

2.55
(±0.34)

2.51
(±0.34)

2.46
(±0.5)

2.33
(±0.37)

2.44
(±0.3)

2.52
(±0.27)

2.57
(±0.36)

2.61
(±0.38)

compared. ঒e values of the test-only-based Fitness are slightly lower than those for the
entire set, and especially for Net(12) ensemble, which displays promising results.

Table 5.15: Fitness values for ensemble learner models of the 3੔ੇ framework averaged over the 12 Folds using
Eq. 3.4 and data division Case C.

WAE DL-based: Net
SAE MSE RMSE Fitness (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model 1 2.62
(±0.2)

2.42
(±0.22)

2.54
(±0.2)

2.62
(±0.19)

2.43
(±0.35)

2.61
(±0.19)

2.52
(±0.28)

2.56
(±0.19)

2.64
(±0.2)

2.59
(±0.19)

2.52
(±0.28)

2.41
(±0.34)

2.5
(±0.21)

2.56
(±0.2)

2.64
(±0.19)

2.63
(±0.2)

Model 2 2.63
(±0.17)

2.48
(±0.23)

2.58
(±0.19)

2.63
(±0.17)

2.35
(±0.28)

2.65
(±0.16)

2.5
(±0.15)

2.55
(±0.24)

2.63
(±0.19)

2.58
(±0.2)

2.61
(±0.18)

2.48
(±0.19)

2.52
(±0.21)

2.59
(±0.17)

2.61
(±0.19)

2.67
(±0.27)

Model 3 2.67
(±0.12)

2.53
(±0.11)

2.62
(±0.12)

2.67
(±0.12)

2.25
(±0.49)

2.69
(±0.11)

2.5
(±0.34)

2.6
(±0.19)

2.69
(±0.14)

2.62
(±0.17)

2.6
(±0.18)

2.58
(±0.13)

2.58
(±0.13)

2.62
(±0.15)

2.67
(±0.18)

2.7
(±0.17)

Model 4 2.64
(±0.17)

2.41
(±0.24)

2.55
(±0.19)

2.64
(±0.17)

2.24
(±0.42)

2.64
(±0.16)

2.52
(±0.23)

2.54
(±0.21)

2.62
(±0.21)

2.6
(±0.22)

2.53
(±0.35)

2.42
(±0.33)

2.54
(±0.16)

2.59
(±0.16)

2.59
(±0.23)

2.64
(±0.31)

Model 5 2.55
(±0.3)

2.47
(±0.18)

2.5
(±0.24)

2.54
(±0.3)

2.37
(±0.36)

2.52
(±0.31)

2.34
(±0.29)

2.44
(±0.34)

2.55
(±0.3)

2.51
(±0.29)

2.52
(±0.27)

2.44
(±0.3)

2.47
(±0.32)

2.52
(±0.29)

2.58
(±0.28)

2.59
(±0.26)

Model 6 2.43
(±0.24)

2.18
(±0.24)

2.28
(±0.25)

2.44
(±0.24)

1.94
(±0.41)

2.53
(±0.23)

2.31
(±0.28)

2.36
(±0.3)

2.54
(±0.27)

2.51
(±0.23)

2.36
(±0.39)

2.32
(±0.29)

2.43
(±0.29)

2.49
(±0.25)

2.6
(±0.23)

2.61
(±0.21)

Model 7 2.65
(±0.15)

2.42
(±0.23)

2.57
(±0.18)

2.65
(±0.16)

2.42
(±0.38)

2.66
(±0.16)

2.37
(±0.25)

2.53
(±0.26)

2.64
(±0.21)

2.63
(±0.17)

2.56
(±0.19)

2.49
(±0.28)

2.54
(±0.17)

2.6
(±0.16)

2.67
(±0.18)

2.69
(±0.16)

Model 8 2.56
(±0.22)

2.17
(±0.27)

2.44
(±0.25)

2.56
(±0.21)

2.4
(±0.29)

2.57
(±0.25)

2.37
(±0.37)

2.45
(±0.24)

2.57
(±0.24)

2.56
(±0.23)

2.45
(±0.34)

2.52
(±0.23)

2.47
(±0.24)

2.56
(±0.2)

2.59
(±0.22)

2.61
(±0.34)

Model 9 2.67
(±0.15)

2.47
(±0.24)

2.6
(±0.17)

2.67
(±0.15)

2.55
(±0.22)

2.67
(±0.16)

2.53
(±0.23)

2.6
(±0.23)

2.64
(±0.19)

2.6
(±0.21)

2.61
±0.22)

2.43
(±0.35)

2.53
(±0.19)

2.62
(±0.16)

2.62
(±0.25)

2.74
(±0.19)

Model 10 2.52
(±0.26)

2.41
(±0.23)

2.45
(±0.25)

2.52
(±0.26)

2.38
(±0.31)

2.56
(±0.26)

2.31
(±0.37)

2.49
(±0.29)

2.58
(±0.22)

2.54
(±0.26)

2.53
(±0.27)

2.4
(±0.3)

2.46
(±0.28)

2.51
(±0.24)

2.53
(±0.27)

2.63
(±0.22)

Figure 5.29(a) displays the HIs for the diॱerent Folds using base learner Model 9 and
data division case B. Each Fold denotes the respective unit as the test. ঒e solid gray line
represents the ideal HI and the do਄ed colored lines represent the training unit results for
each ensemble model. ঒e solid-colored lines denote the test unit. It is observed that in
some Folds, like Folds 2, 3, 9, and 10, the test unit demonstrates a diॱerent behavior than
the training units and diverges from both the constructed HIs of the training units and the
ideal HI. In the other Folds, the test units display a similar trend to the training. When
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Figure 5.28: ঒e prognostic metrics distribution based on all and test units for ensemble learner models upon
the base learner Model 9 of the 3੔ੇ framework, considering Case C for the dataset division (another SSP other
than the test SSP as validation).
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Table 5.16: Fitness values for ensemble learner models of the 3੔ੇ framework averaged over the 12 Folds using
Eq. 3.8 and data division Case C.

WAE DL-based: Net
SAE MSE RMSE Fitness (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model 1 2.22
(±0.41)

2.05
(±0.44)

2.16
(±0.38)

2.23
(±0.4)

2.03
(±0.54)

2.18
(±0.41)

2.04
(±0.6)

2.13
(±0.39)

2.33
(±0.35)

2.25
(±0.35)

2.12
(±0.47)

2.02
(±0.55)

2.2
(±0.34)

2.27
(±0.34)

2.3
(±0.37)

2.43
(±0.31)

Model 2 2.23
(±0.34)

2.09
(±0.46)

2.16
(±0.4)

2.22
(±0.34)

1.86
(±0.51)

2.26
(±0.33)

2.12
(±0.34)

2.12
(±0.45)

2.23
(±0.36)

2.22
(±0.37)

2.28
(±0.35)

2.13
(±0.26)

2.22
(±0.34)

2.33
(±0.32)

2.26
(±0.37)

2.43
(±0.51)

Model 3 2.32
(±0.33)

2.18
(±0.33)

2.27
(±0.34)

2.32
(±0.33)

1.84
(±0.64)

2.38
(±0.28)

2.07
(±0.68)

2.23
(±0.41)

2.42
(±0.23)

2.32
(±0.32)

2.32
(±0.32)

2.23
(±0.3)

2.34
(±0.24)

2.41
(±0.26)

2.42
(±0.31)

2.56
(±0.29)

Model 4 2.24
(±0.39)

2.07
(±0.48)

2.18
(±0.4)

2.23
(±0.39)

1.77
(±0.55)

2.23
(±0.38)

2.02
(±0.5)

2.17
(±0.47)

2.22
(±0.43)

2.2
(±0.41)

2.07
(±0.69)

2.06
(±0.4)

2.21
(±0.35)

2.29
(±0.36)

2.23
(±0.43)

2.4
(±0.48)

Model 5 2.1
(±0.5)

2.12
(±0.36)

2.09
(±0.42)

2.09
(±0.51)

1.86
(±0.67)

2
(±0.54)

1.67
(±0.54)

1.93
(±0.56)

2.06
(±0.52)

2.02
(±0.52)

2.04
(±0.53)

2.01
(±0.46)

2.09
(±0.52)

2.15
(±0.47)

2.13
(±0.52)

2.3
(±0.48)

Model 6 1.97
(±0.45)

1.83
(±0.42)

1.89
(±0.43)

1.98
(±0.44)

1.56
(±0.49)

2
(±0.44)

1.73
(±0.56)

1.81
(±0.57)

2.07
(±0.47)

2.05
(±0.42)

1.84
(±0.7)

1.83
(±0.5)

2.05
(±0.46)

2.08
(±0.43)

2.18
(±0.46)

2.29
(±0.43)

Model 7 2.27
(±0.3)

2.07
(±0.42)

2.19
(±0.35)

2.27
(±0.31)

1.95
(±0.56)

2.27
(±0.31)

1.92
(±0.4)

2.06
(±0.55)

2.33
(±0.35)

2.32
(±0.29)

2.23
(±0.32)

2.07
(±0.46)

2.25
(±0.31)

2.36
(±0.19)

2.36
(±0.32)

2.49
(±0.23)

Model 8 2.08
(±0.44)

1.85
(±0.46)

2.02
(±0.47)

2.08
(±0.44)

1.97
(±0.49)

2.06
(±0.49)

1.9
(±0.6)

1.97
(±0.4)

2.13
(±0.47)

2.08
(±0.47)

1.91
(±0.7)

2.07
(±0.47)

2.06
(±0.45)

2.23
(±0.38)

2.16
(±0.47)

2.28
(±0.61)

Model 9 2.3
(±0.32)

2.1
(±0.47)

2.22
(±0.36)

2.3
(±0.32)

2.22
(±0.31)

2.31
(±0.32)

2.13
(±0.44)

2.23
(±0.41)

2.31
(±0.33)

2.29
(±0.36)

2.23
(±0.41)

2.03
(±0.54)

2.25
(±0.28)

2.36
(±0.29)

2.3
(±0.4)

2.59
(±0.24)

Model 10 2.02
(±0.5)

2
(±0.46)

1.99
(±0.5)

2.02
(±0.49)

1.94
(±0.6)

2.08
(±0.51)

1.68
(±0.73)

1.99
(±0.54)

2.14
(±0.46)

2.09
(±0.52)

2.11
(±0.53)

1.96
(±0.49)

2.07
(±0.48)

2.11
(±0.43)

2.04
(±0.57)

2.25
(±0.49)

data division Case C is applied, the diॱerence between training and test units increases,
diverging from the ideal HI in most Folds, as displayed in Figure 5.29(b). Diverging from
the ideal HI is not necessarily a negative a਄ribute as long as training and test units display
similar overall trends. ঒e ideal HI is mostly used as a baseline for the training and not
a panacea for the HIs to follow. However, there are Folds, like Folds 1 and 12 where the
constructed HIs are similar between test and training as well as the ideal HI.
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Figure 5.29: (a) ঒e HIs constructed by the ensemble Net(12) upon the base Model 3, considering Case B for the
dataset division (the test SSP itself as validation), with best average Fitness 2.74 (±0.33) based on Eq. 3.8; (b)
঒e HIs constructed by the ensemble Net(12) upon the base Model 9, considering Case C for the dataset division
(another SSP other than the test SSP as validation), with best average Fitness 2.59 (±0.24) based on Eq. 3.8. Do਄ed
lines are related to the training units.
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5.7 Discussion

I t is important to note that an identiॲed HI and its corresponding preprocessing tech-
nique are closely relevant to the engineering system/structure under monitoring [18],

as well as the type of SHM system that produces signals, and as a result, they cannot be
applied to other objects directly. ঒is marks the ॲrst challenge in comparing the current
work, which focuses on a new experiment, to earlier research. In several works, only Mo
was reported for the utilized HIs [19–21], while only one work [22] provided all the criteria.
঒e prognostic criteria have therefore infrequently been quantiॲed for the reported HIs,
especially for composite structures, which adds another challenge when comparing the
current study with existing work. Yue et al. [22] employed the GW monitoring technique
in the ReMAP project to predict the stiॱness of composite panels, which is a mechani-
cal characteristic of the structure, and then they reported the criteria for predictions and
stiॱness. In contrast to this chapter, they only considered ॲve units out of twelve, and it
should be highlighted that the more units used, the lower the Fitness score of HIs. One sig-
niॲcant and critical point in the HI construction or RUL prediction frameworks, which is
directly related to the Pr, is that input data must not be normalized in accordance with the
mean and standard deviation of the entire dataset (training and test) [23, 24], as test data
are unavailable in reality in the upcoming timeframes. A max-min normalization tech-
nique using the full dataset has similar or even more concerns [25, 26]. Several features
extracted from AE data, which were considered as HI of the composite structure based
on the literature (including 1/A [19, 20], energy [27], and Rise-time/Amplitude ratio (RA)
[28] cumulated in the time window), will be compared with the proposed HIs. Also, the
criteria for the proposed AE-based HI will be compared with the HIs extracted from GW
data and mechanical properties (stiॱness) of the ReMAP dataset [22]. ঒e summarized
results are presented in Table 5.17.

As can be seen, the proposed frameworks outperform the others proposed in the litera-
ture. ঒e prognostic criteria for the windowed AE features, particularly Tr, are extremely
low. ঒e maximum Mo is for the weighted HI derived from GW data. Pr, on the other
hand, is not as qualiॲed as the proposed frameworks in the current chapter. It should also

Table 5.17: HIs’ criteria (from Eqs. 3.1 – 3.4 ) for composite structures.

Criteria

12 composite specimens of ReMAP 5 composite specimens of
ReMAP

Present work According to Refs. Ref. [22] Refs. [19, 20]*Framework 1 Framework 2 Framework 3 [19, 20] [27] [28]

AE data L-D** GW data DIC
data

AE
data

DIC
& AE

Base
model

Ensemble
model

Base
model

Ensemble
model

Base
model

Ensemble
model

1ਪ E RA stiॱness 100
kHz

125
kHz

150
kHz weighted axial

strain
1ਪ Fusion

Mo 0.87
(±0.15)

0.99
(±0.01)

0.80
(±0.17)

0.97
(±0.01)

0.80
(±0.25)

0.97
(±0.05) 0.57 0.5 0.59 0.66 1 1 0.92 1 0.94 0.91 0.98

Pr 0.88
(±0.05)

0.93
(±0.03)

0.75
(±0.12)

0.84
(±0.05)

0.85
(±0.07)

0.93
(±0.08) 0.27 0.17 0.26 0.84 0.6 0.5 0.45 0.55 − − −

Tr 0.59
(±0.25)

0.86
(±0.14)

0.42
(±0.20)

0.88
(±0.07)

0.48
(±0.34)

0.85
(±0.16) 0 0 0 0.56 0.95 0.88 0.97 0.97 − − −

Fitness 2.34
(±0.45)

2.79
(±0.14)

1.99
(±0.31)

2.69
(±0.07)

2.13
(±0.57)

2.74
(±0.19) 0.84 0.67 0.85 2.06 2.55 2.38 2.34 2.52 − − −

* Di࠹erent experiments to the current one
** e࡞ sti࠹ness values measured from load-displacement data.
Framework 1: Model (7) as the base model and SAE as the ensemble model
Framework 2: A.2 PCA-TIM-TDM as the base model and WAE-FitnessMSE as the ensemble model
Framework 3: Model (9) as the base model and Net(12) as the ensemble model
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be highlighted that, even though both the AE and GW systems rely on acoustic and elastic
waves within the structure, one is passive and the other is active. As a result, they mea-
sure diॱerent structural characteristics, resulting in a variety of data spaces. ঒erefore,
the GW system may provide more informative data, whereas the physical model utilized
in Ref. [22] may not have been able to build its best HI. As a result, Table 5.17 compares
the data’s informativity as well as the proposed models for constructing HIs. Although
only Mo has been quantitatively reported for the HIs obtained from DIC data, AE data,
and the predeॲned function fusing DIC and AE data in Refs. [19, 20], not only is Mo of the
HIs developed in the current work slightly higher, but Tr and Pr are also superior based
on qualitative comparison.

During the project leading to this thesis, a primary workॳow was established for ana-
lyzing AE data, leading to the development of three frameworks in a typical evolutionary
journey of PhD research. Each framework was tailored to explore distinct pathways and
address speciॲc challenges encountered during the research process.

Framework 1, while showcasing superior performance, relied on the test unit for vali-
dation in the LOOCV process, potentially limiting its applicability to real-world scenarios
where test units are new and unknown. Subsequent frameworks were devised to mitigate
this limitation while maintaining overall performance.

Framework 2 was developed to address the validation issue and achieved comparable
performance to Framework 1, while exhibiting greater stability with a standard deviation
of ±0.07. Following this, Framework 3 was introduced, demonstrating further improve-
ments in ॲtness compared to Framework 2. In general, the EL step improved the criteria
in terms of both Fitness scores and stability

5.8 Conclusions

T hree novel frameworks have been developed in this chapter for designing HIs using
AE data regarding composite structures. ঒ese frameworks integrate advanced tech-

niques for feature extraction, deep learning, and ensemble learning, aiming to enhance
prognostic capabilities. Each framework introduces innovative approaches, contributing
to the ॲeld of SHM. While Framework 1 shows exceptional performance, its dependency
on the test unit for validation limits its applicability. Frameworks 2 and 3 address this limi-
tation, with Framework 3 demonstrating higher Fitness scores and Framework 2 showing
higher stability. Ensemble learning enhances prognostic criteria, emphasizing practical
implementation potential. ঒e results underscore the eॱectiveness of data-driven and
artiॲcial approaches, providing valuable insights for advancing health monitoring appli-
cations in composite structures.
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6
Designing HI for T-Stiॱener

Composite Panels and Dogbone
Specimens using Guided Waves

is࡞ chapter presents an AI-driven solution leveraging signal processing to design reliable
HIs for composite structures without the need for historical data. Utilizing GW data, the
methodology demonstrates high performance in HIs for T-single sti࠹ener CFRP panels and
dogbone CFRP specimens.
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6.1 Introduction

D eveloping comprehensive HIs for composite structures encompassing various dam-
age types is challenging due to the stochastic nature of damage accumulation and un-

certain events (like impact) during operation. ঒is complexity is ampliॲed when striving
for HIs independent of historical data. ঒is chapter introduces an AI-driven framework,
the Hilbert transform-convolutional neural network under the semi-supervised learning
paradigm (HT-SSCNN), for designing reliable HIs. It exclusively utilizes current GW
data, eliminating the need for historical information. EL techniques were also used to
enhance HI quality while reducing deep learning randomness. ঒e methodology is vali-
dated through investigations on T-single stiॱener CFRP panels under compression-fatigue
and dogbone CFRP specimens under tension-fatigue loadings, showing high performance
of up to 93% and 81%, respectively, in prognostic criteria.

6.2 Experimental Campaigns

F or the HT-SSCNN framework fed by GW data, two diॱerent datasets are investigated:
ReMAP and NASA
ReMAP: ঒e ॲrst dataset, ReMAP which already explained in Chapter 5, Section 5.2,

contains ॲve composite skin-stiॱener panels that were subjected to C-C fatigue loading
(see Figure 6.1(right) and Table 6.1). GW data collection is carried out with eight surface-
a਄ached PZT sensors, where four sensors are located on the skin panel, two sensors are
located on top of the stiॱener-skin bondline, and two sensors are a਄ached on the stiॱener
web. ঒e GW system operates with one PZT serving as the actuator with six excitation
frequencies (50 kHz, 100 kHz, 125 kHz, 150 kHz, 200 kHz, and 250 kHz) and the remaining
seven PZTs functioning as sensors, rotating through all eight PZTs.

Figure 6.1: Composite dogbone specimens under T-T fatigue (le঍) and single T-stiॱener CFRP panel under C-C
fatigue (right) being monitored by PZT sensors (red circles) (dimensions in [mm]).
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NASA: ঒e second dataset, NASA, has three diॱerent layups, Layup1, Layup2, Layup3,
with the ply orientation, [02/904]਼ , [0/902/ ± 45/90]਼ , and [902/ ± 45]2਼ , respectively [1–3].
Torayca T700G unidirectional carbon-prepreg material has been used to manufacture the
dogbone geometry coupons. ঒e coupons with a notch have been submi਄ed to tension-
tension (T-T) fatigue load. GW acquisition has been performed through a surface-a਄ached
PZT network. ঒e network contains one actuator and one sensor array with six linearly
distributed PZT transducers in each, as shown in Figure 6.1(le঍). GW acquisition is re-
alized between the linear arrays, which makes 36 actuator-sensor paths in total. Seven
excitation frequencies have been applied in the range of 150 to 450 kHz with 50 kHz in-
crementation with a 5-cycle Hanning modulated tone-burst signal with an average input
voltage of 50 V and a gain of 20 dB. Information regarding the mechanical test parameters
can be found in Table 6.2. Further information regarding the mechanical experiment, GW
data acquisition, etc. can be found in Refs. [1–3].

Table 6.1: Information of single T-stiॱener CFRP panels tested under C-C fatigue loading (ReMAP dataset) mon-
itored by guided waves.
Name L1-03 L1-04 L1-05 L1-09 L1-23
Name index SSP1 SSP2 SSP3 SSP4 SSP5
X-location of impact (mm) 50 25 115 82.5 -
Y-location of impact (mm) 80 80 160 140 -
Time of Impact at 0 cycles - at 0 cycles at 0 cycles -
Size of disbond (mm) - - - - 30×30
y-location of disbond (mm) - - - - 60
Min Load (kN) -6.5 -6.5 -6.5 -6.5 -5 and -6
Max Load (kN) -65 -65 -65 -65 -50 and -60
Cycles 152,458 280,098 144,969 133,281 438,000

Table 6.2: Information of dogbone CFRP plates tested under T-T fatigue loading (NASA dataset) monitored by
guided waves.
Ply orientation Layup 1: [02/904]਼ Layup 2: [0/902/ ± 45/90]਼ Layup 3: [902/ ± 45]2਼
Name index S1 S2 S3 S4 S1 S2 S3 S1 S2 S3 S4
Static Failure (Mpa) 133.8 133.8 133.8 133.8 147.5 147.5 147.5 104.8 104.8 104.8 104.8
Max Load (kN) 111.7 111.7 111.7 111.7 127.5 127.5 127.5 89.6 89.6 89.6 89.6
Load Ratio 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13
Cycles (×1000) 227 100 1650 125 207 900 1250 150 300 895 7500

6.3 Framework: HT-SSCNN

A framework called HT-SSCNN is introduced to construct HIs fulॲlling evaluation cri-
teria based on historical-independent GW data. First, the GW signals recorded from

the network of sensors and their envelopes are extracted using the Hilbert transform (HT).
঒en, these envelopes are integrated to reshape a 3D form input to feed the subsequent
DL model. Convolutional neural network (CNN) architectures are designed to fuse the
3D inputs trained by a SSL paradigm, and their inherent randomness and uncertainty are
mitigated by EL. All GW data generated from diॱerent triggering frequencies is also fused
during the EL step. Six methods, including four average-based and two DL networks, are

at 0 cycles
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considered for EL. In this section, the framework and step-by-step process are introduced
as can be seen in Figure 6.2.

Figure 6.2: ঒e overall proposed framework: (a) guided wave (GW) monitoring; (b) signal processing (Hilbert
transform); (c) base learner model (SSCNN); (d) ensemble learner model;(e) extracted health indicator.

Signal processing and 3D input preparation: Prior to using DL networks, sig-
nal processing techniques with explicit and fast solutions can improve performance and
simplify following DL modeling. An eॱective method involves extracting GW signal en-
velopes using the magnitude of their analytic signals, which is achieved through the HT
(Chapter 4, Section 4.3.2). HT is replaced by a ॲnite impulse response (FIR) ॲlter in discrete-
time signal processing to reduce computational complexity [4]. ঒is speciॲc FIR ॲlter is
termed the Hilbert transform FIR (HT-FIR) ॲlter, with its length determined by the excita-
tion frequency in the current work. For example, a 400 kHz frequency corresponds to an
HT-FIR ॲlter length of 400. ঒e ॲlter is created by applying a Kaiser window with a shape
parameter ౶ = 8 to an ideal brick-wall ॲlter. Similar processing generates upper and lower
envelopes for all GW signals.

A 3D form of [paths between actuators and sensors]×[signal length]×[upper and lower
envelopes in two states—baseline and current time] is implemented to prepare inputs
for the subsequent SSCNN model. Accordingly, the input dimensions are 36×2000×4 or
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56×2000×4 for the NASA and ReMAP datasets, respectively. Figure 6.3 shows, for the
NASA dataset (layup 1), the GW signals excited by one frequency (150 kHz), the extracted
envelopes for all paths, and the pertinent 3D input of SSCNN at cycle 60000.

Figure 6.3: Right column: (a) Sensed GW signals excited by 150 kHz and (b) their envelopes for all 36 paths of
the NASA dataset (layup 1) at baseline and cycle 60000, as well as the relevant (c) 3D input of SSCNN at cycle
60000. Le঍ column: ঒eir 2D display for only one path.

6.3.1 Feature fusion: semi-supervised convolutional neural net-
work (SSCNN)

A CNN architecture, illustrated in Figure 6.4, has been designed to map GW inputs
to the simulated ideal HI. ঒e inputs, as previously described, take the 3D shape of(਷੄ × ਷੕) × 2000 × 4, where ਷੄ and ਷੕ represent the number of actuators and sensors, re-
spectively. ঒e leakage coeॴcient for all Leaky ReLU functions is set at 0.01. To calculate
the loss function between predictions and targets, an MSE is employed. An Adam op-
timizer was utilized to train the SSCNN with 38400 and 28800 learnable parameters for
ReMAP and NASA setups, employing an initial learning rate of 0.001. SSCNN is consid-
ered the base learner model in the entire framework developed upon GW.
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Figure 6.4: ঒e architecture of the semi-supervised convolutional neural network (SSCNN) as the base learner
to construct HIs using GW data.

Ensemble learning (EL)
Once HIs are constructed using the base learner model, ensemble learner models can han-
dle uncertainties and randomness. ঒e initial step involves LOOCV. Here, one unit (com-
posite specimen) is set aside for testing, another for validation, and the rest are used for
training. ঒e validation unit rotates through all available options, and the base learner
model (SSCNN) is trained ten times with diॱerent random seed numbers for weight and
bias initialization.

Beyond averaging ensemble models, diॱerent networks with various layer types were
explored, among which the two best ones are presented. ঒e DL architectures are summa-
rized in Table 6.3, with the number of neurons, units, or dropout (D) percentages indicated
in parentheses.

Table 6.3: Ensemble learner models used on top of SSCNN.
Model num. Model name Architecture (hidden layers)
1 SAE
2 WAE-MSE
3 WAE-RMSE
4 WAE-Fitness
5 FC-Net FC(100) D(0.5) ReLU FC(5) D(0.5) ReLU FC(1)
6 BiLSTM-Net D(0.5) BiLSTM(5) D(0.5) FC(5) D(0.5) ReLU FC(1)
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6.3.2 Results
To thoroughly evaluate various combinations and conॲrm the eॱectiveness, validity, and
stability of the proposed framework, all potential dataset folds were examined. In each
fold, one specimen served as the test set, while the remaining composite specimens were
used for training and validation. For both the ReMAP and NASA datasets, which oॱered
four and three-two alternatives for validation, respectively, the process was repeated with
10 iterations using distinct random seed numbers. ঒is approach essentially mirrors the
LOOCV, employing a holdout validation strategy within each fold to assess the model’s
generalizability. In this section, the results of the HT-SSCNN up to the ensemble stage,
referred to as the base learner models, are initially presented before delving into the out-
comes of the ensemble learner models.

Base learner models
঒e comprehensive results of HT-SSCNN across various subsets and excitation frequencies
for ReMAP dataset are presented in Figure 6.5. ঒e results display ॲtness scores (based on
Eq. 3.4) across diॱerent replications and their mean values (indicated on the right y-axis)
over ten replications (shown on the x-axis) for each subset (validation index-based combi-
nations displayed on the le঍ y-axis), with error bars representing the standard deviation.
঒e impact of the choice of the validation unit varies depending on the speciॲc test unit
and frequency. For instance, in fold 5, where the test unit is specimen 5, unit 1 does not
serve as a suitable validation case for GW signals at the excitation frequency of 50 kHz.
঒is is either because it leads to the exclusion of unit 1 information during the training
phase or it proves to be an unsuitable validation specimen for terminating the training pro-
cess. Referring to Figure 6.5, it becomes evident that frequencies of 150 kHz and 200 kHz
led to more consistent high ॲtness scores, whereas 100 kHz and 250 kHz exhibit unstable
performance. Appendices (A.3) also include analogous illustrations for the NASA dataset,
highlighting the inॳuence of validation unit selection and GW excitation frequency. Ta-
bles 6.4, 6.5, 6.6, and 6.7 present averaged ॲtness values (±standard deviation) across all
repetitions, irrespective of the validation unit chosen, for various folds. F-All corresponds
to the ॲtness scores obtained from Eq. 3.4 considering all units, while F-Test relates to the
ॲtness scores obtained from Eq. 3.8 focusing solely on the test unit.

঒e highest-scoring frequency is 150 kHz for the ReMAP dataset, with an average
of 2.53 for all units and 2.26 for test units across all folds. In the NASA datasets, the
top-performing frequencies are 250 kHz, 300 kHz, and 350 kHz for layups 1, 2, and 3,
respectively. ঒e average scores across all folds are 2.37, 2.19, and 2.32 when considering
all units, and 2.04, 1.97, and 2.04 when considering test units, as highlighted in green in
the tables. Layup 2 yields lower scores because it has limited training data from only one
unit.

঒e results vary across diॱerent folds, with the folds showing the highest ॲtness scores
highlighted in bold in the tables. ঒e HIs generated from HT-SSCNN for the optimal fre-
quencies in diॱerent datasets are displayed in Figure 6.6. ঒ese HIs represent the averages
across all repetitions, irrespective of the validation unit selection (SAE method). However,
showcasing the HIs from a single repetition could yield more promising results.

For T-single stiॱener CFRP panels, the results are highly promising despite the pres-
ence of uncertainties such as broken sensors, impacts, and disbond. In the NASA dataset,
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Figure 6.5: Fitness for HT-SSCNN over various subsets (train, validation, and test combinations) and frequencies
in the ReMAP dataset (ॲtness calculated from Eq. 3.4, considering all units referred to as ‘F-All’). Black lines
illustrate the variance (Std) bars of the ॲtness with ॲlled square markers denoting its mean value, plo਄ed at every
10 iterations.
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Table 6.4: Fitness values for base learner models averaged over the 40 repetitions for ReMAP dataset.
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5Frequency F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test

50 kHz
2.23

(±0.15)
1.55

(±0.34)
2.31

(±0.37)
2.12

(±0.45)
2.46

(±0.25)
2.22

(±0.48)
2.41

(±0.42)
2.17

(±0.35)
2.49

(±0.5)
2.28

(±0.5)

100 kHz
2.44

(±0.35)
2.25

(±0.49)
2.03

(±0.26)
1.55

(±0.3)
2.5

(±0.23)
2.23

(±0.23)
2.57

(±0.23)
2.41

(±0.38)
2.28

(±0.33)
2

(±0.37)

125 kHz
2.54

(±0.31)
2.4

(±0.44)
2.21

(±0.29)
1.93

(±0.24)
2.52

(±0.21)
2.11

(±0.35)
2.55

(±0.33)
2.36

(±0.43)
2.55

(±0.2)
2.21

(±0.31)

150 kHz
2.59

(±0.45)
2.43

(±0.48)
2.19

(±0.34)
2.01

(±0.44)
2.72

(±0.14)
2.43
(±0.3)

2.54
(±0.19)

2.14
(±0.33)

2.6
(±0.22)

2.3
(±0.29)

200 kHz
2.45

(±0.3)
2.21

(±0.45)
2.16

(±0.31)
1.91

(±0.33)
2.5

(±0.09)
2.09

(±0.24)
2.63

(±0.14)
2.44

(±0.46)
2.62

(±0.32)
2.55

(±0.39)

250 kHz
2.51

(±0.51)
2.38

(±0.52)
2.21

(±0.26)
1.93

(±0.24)
2.35

(±0.2)
1.96

(±0.35)
2.29

(±0.4)
2.09

(±0.55)
2.45

(±0.25)
1.89

(±0.21)

All 2.55
(±0.32)

2.4
(±0.46)

2.19
(±0.37)

1.84
(±0.38)

2.62
(±0.2)

2.42
(±0.3)

2.64
(±0.25)

2.48
(±0.37)

2.53
(±0.49)

2.33
(±0.55)

Table 6.5: Fitness values for base learner models averaged over the 30 repetitions for NASA dataset (layup 1).
Fold 1 Fold 2 Fold 3 Fold 4Frequency F-All F-Test F-All F-Test F-All F-Test F-All F-Test

150 kHz 1.86 (±0.36) 1.16 (±0.47) 2.18 (±0.42) 2.08 (±0.47) 1.67 (±0.29) 1.21 (±0.38) 2.32 (±0.12) 2.18 (±0.16)
200 kHz 1.99 (±0.4) 1.4 (±0.49) 2.49 (±0.32) 2.21 (±0.36) 1.52 (±0.32) 0.86 (±0.51) 2.4 (±0.22) 2.12 (±0.45)
250 kHz 2.41 (±0.24) 2.03 (±0.31) 2.3 (±0.35) 1.87 (±0.32) 2.22 (±0.16) 1.92 (±0.22) 2.54 (±0.26) 2.32 (±0.32)
300 kHz 2.47 (±0.2) 2.11 (±0.24) 2.56 (±0.15) 2.14 (±0.27) 1.98 (±0.22) 1.61 (±0.28) 2.52 (±0.2) 2.13 (±0.33)
350 kHz 2.12 (±0.35) 1.71 (±0.39) 1.9 (±0.39) 1.43 (±0.52) 1.84 (±0.25) 1.45 (±0.25) 2.11 (±0.41) 1.57 (±0.75)
400 kHz 2.02 (±0.29) 1.52 (±0.58) 1.85 (±0.46) 1.24 (±0.51) 1.73 (±0.28) 1.18 (±0.42) 2.12 (±0.34) 1.91 (±0.53)
450 kHz 2.35 (±0.38) 2.05 (±0.44) 2 (±0.42) 1.59 (±0.55) 1.71 (±0.36) 1.25 (±0.47) 2.26 (±0.35) 1.87 (±0.64)
All 2.23 (±0.35) 1.86 (±0.48) 2.36 (±0.3) 2.06 (±0.28) 2.07 (±0.4) 1.65 (±0.43) 2.37 (±0.32) 2.28 (±0.48)

Table 6.6: Fitness values for base learner models averaged over the 20 repetitions for NASA dataset (layup 2).
Fold 1 Fold 2 Fold 3Frequency F-All F-Test F-All F-Test F-All F-Test

150 kHz 1.47 (±0.56) 1.11 (±0.76) 1.72 (±0.39) 1.36 (±0.65) 1.6 (±0.24) 1.37 (±0.24)
200 kHz 1.92 (±0.54) 1.55 (±0.83) 1.84 (±0.48) 1.64 (±0.55) 1.8 (±0.33) 1.54 (±0.27)
250 kHz 1.67 (±0.45) 1.47 (±0.54) 2.02 (±0.46) 1.75 (±0.62) 1.89 (±0.3) 1.69 (±0.4)
300 kHz 2.1 (±0.34) 1.96 (±0.43) 2.21 (±0.34) 1.79 (±0.55) 2.27 (±0.26) 2.17 (±0.29)
350 kHz 1.6 (±0.54) 1.37 (±0.62) 1.78 (±0.52) 1.42 (±0.62) 1.89 (±0.34) 1.7 (±0.27)
400 kHz 1.6 (±0.42) 1.14 (±0.57) 1.43 (±0.35) 0.92 (±0.44) 1.68 (±0.45) 1.53 (±0.49)
450 kHz 1.75 (±0.45) 1.46 (±0.64) 1.6 (±0.4) 1.16 (±0.5) 1.91 (±0.3) 1.64 (±0.31)
All 2.05 (±0.58) 1.91 (±0.59) 2.07 (±0.53) 1.79 (±0.68) 2.08 (±0.46) 1.98 (±0.35)

Table 6.7: Fitness values for base learner models averaged over the 30 repetitions for NASA dataset (layup 3).
Fold 1 Fold 2 Fold 3 Fold 4Frequency F-All F-Test F-All F-Test F-All F-Test F-All F-Test

150 kHz 1.78 (±0.42) 1.22 (±0.64) 2.28 (±0.23) 2.13 (±0.4) 2.32 (±0.19) 1.97 (±0.23) 1.83 (±0.34) 1.26 (±0.46)
200 kHz 2.37 (±0.33) 2.1 (±0.55) 2.46 (±0.31) 2.43 (±0.4) 2.6 (±0.14) 2.31 (±0.25) 1.83 (±0.32) 1.29 (±0.39)
250 kHz 2.37 (±0.33) 2.16 (±0.6) 2.59 (±0.19) 2.5 (±0.14) 2.25 (±0.27) 1.89 (±0.44) 1.91 (±0.39) 1.45 (±0.53)
300 kHz 2.27 (±0.34) 1.91 (±0.55) 2.47 (±0.44) 2.33 (±0.57) 2.44 (±0.22) 2.18 (±0.4) 1.87 (±0.34) 1.33 (±0.45)
350 kHz 2.46 (±0.25) 2.24 (±0.4) 2.28 (±0.33) 2.06 (±0.45) 2.55 (±0.21) 2.38 (±0.3) 1.99 (±0.36) 1.49 (±0.49)
400 kHz 2.31 (±0.39) 1.98 (±0.57) 2.28 (±0.24) 1.93 (±0.45) 2.52 (±0.18) 2.31 (±0.24) 1.91 (±0.35) 1.46 (±0.49)
450 kHz 2.5 (±0.2) 2.23 (±0.32) 2.25 (±0.44) 2.02 (±0.63) 2.57 (±0.18) 2.22 (±0.26) 1.98 (±0.37) 1.51 (±0.51)
All 2.22 (±0.47) 2.03 (±0.56) 2.54 (±0.17) 2.41 (±0.22) 2.46 (±0.34) 2.25 (±0.34) 1.82 (±0.33) 1.24 (±0.37)
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Figure 6.6: HIs obtained by the proposed framework (with SAE) for diॱerent datasets, given single frequency
input. ঒e actuating GW frequencies were selected based on the best ॲtness scores (Tables 6.4, 6.5, 6.6, and 6.7).

Layup 2 is hindered by a lack of training data, while the HIs for Layup 1 (except for unit
2) and Layup 3 (except for units 1 and 4) outperform others.
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Ensemble learner models
Tables 6.8, 6.9, 6.10, and 6.11 present the ensemble models’ ॲtness scores averaged across
all folds for various ensemble techniques. EL models can be applied to the HIs generated by
HT-SSCNN using a single excitation GW frequency or a fusion of all frequencies (labeled
’Fused (all)’ in Tables 6.8-6.11).

For the ReMAP dataset, the WAE-Fitness model using the fusion of all GW excitation
frequencies achieved the best ॲtness scores whether considering all or only test units, with
F-All of 2.78 and F-Test of 2.67. Additionally, SAE and the FC network (FC-EL) models
using the fusion of frequencies also resulted in high scores. Aside from the fusion of all
frequencies, the 150 kHz frequency, when employed with SAE and WAE-Fitness, yielded
high ॲtness scores (exceeding 2.6, meeting 87% of evaluation criteria).

In the NASA dataset, for Layup 1, the BiLSTM network (BiLSTM-EL using the fusion
of all frequencies obtained the highest ॲtness scores (F-All of 2.68 and F-Test of 2.31). How-
ever, it is important to note that the HI construction model for Layup 1 is not historical-
independent as it uses prior information in the EL step. WAE-Fitness with GW signals
generated from the 250 kHz frequency achieved be਄er ॲtness scores in second place. ঒e
WAE-Fitness using the fused frequencies for this layup generates acceptable scores (F-All
of 2.41 and F-Test of 2.03). For Layup 2, EL models on the GW excitation frequency of 300
kHz provided higher scores than others, but the ॲtness scores are not yet highly proper
as this dataset, as previously mentioned, suॱers from the limited data needed to train the
models. In Layup 3, WAE-Fitness on the fusion of all frequencies achieved the highest
ॲtness scores (F-All of 2.42 and F-Test of 2.23).
Table 6.8: Fitness values for ensemble learner models averaged over the 5 Folds for ReMAP dataset.

WAE Deep learningSAE MSE RMSE Fitness FC BiLSTMFreq.
(kHz) F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test

50
2.58

(±0.24)
2.32

(±0.6)
2.58

(±0.21)
2.33

(±0.56)
2.58

(±0.23)
2.32

(±0.59)
2.58

(±0.24)
2.32

(±0.6)
2.6

(±0.16)
2.29

(±0.44)
2

(±0.22)
1.64

(±0.16)

100
2.45

(±0.26)
2.13

(±0.52)
2.25

(±0.44)
2.04

(±0.53)
2.34

(±0.37)
2.08

(±0.51)
2.46

(±0.26)
2.12

(±0.52)
2.62

(±0.26)
2.33

(±0.47)
2.31

(±0.34)
1.97

(±0.52)

125
2.69

(±0.12)
2.52

(±0.26)
2.66

(±0.12)
2.5

(±0.26)
2.68

(±0.12)
2.51

(±0.27)
2.69

(±0.12)
2.52

(±0.27)
2.68

(±0.13)
2.5

(±0.22)
2.24

(±0.22)
1.75

(±0.2)

150
2.73

(±0.12)
2.6

(±0.11)
2.7

(±0.11)
2.58

(±0.09)
2.72

(±0.12)
2.59

(±0.1)
2.73

(±0.12)
2.6

(±0.11)
2.71

(±0.14)
2.45

(±0.35)
2.43

(±0.39)
2

(±0.36)

200
2.6

(±0.14)
2.51

(±0.38)
2.57

(±0.16)
2.47

(±0.41)
2.57

(±0.17)
2.48

(±0.41)
2.6

(±0.14)
2.51

(±0.38)
2.6

(±0.15)
2.49

(±0.37)
2.49

(±0.24)
2.18

(±0.52)

250
2.54

(±0.14)
2.25

(±0.35)
2.49

(±0.12)
2.27

(±0.31)
2.52

(±0.13)
2.26

(±0.34)
2.54

(±0.14)
2.25

(±0.32)
2.49

(±0.18)
2.1

(±0.32)
2.59

(±0.12)
2.26

(±0.46)

Fused (all) 2.77
(±0.15)

2.66
(±0.22)

2.71
(±0.23)

2.57
(±0.4)

2.75
(±0.18)

2.64
(±0.26)

2.78
(±0.15)

2.67
(±0.2)

2.76
(±0.14)

2.62
(±0.22)

2.38
(±0.37)

2.01
(±0.43)

On average, WAE-Fitness using the fusion of all GW excitation frequencies resulted in
higher ॲtness scores, and the related constructed HIs using this model (i.e., the end-to-end
model made of HT-SSCNN-WAEਯ ੋ੖੐ੈ੕੕) can be seen in Figure 6.7. Considering the scores
reported in Table 8 and the generated HIs in Figure 6.7 for T-single CFRP panels under C-C
fatigue loading, the performance is highly satisfactory, achieving 93% (2.78 / 3.00) given
all units and 89% (2.67 / 3.00) given test units. ঒e HIs exhibit monotonic, prognostic, and
trendable behavior, making them suitable for predicting the RUL of composite structures.

For dogbone CFRP specimens under T-T fatigue loading, layups with four units (Layup
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Table 6.9: Fitness values for ensemble learner models averaged over the 4 Folds for NASA dataset (layup 1).
WAE Deep learningSAE MSE RMSE Fitness FC BiLSTMFreq.

(kHz) F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test

150
2.14

(±0.37)
1.71

(±0.59
2.05

(±0.28)
1.73

(±0.51)
2.09

(±0.31)
1.73

(±0.53)
2.15

(±0.37)
1.72

(±0.59)
1.78

(±0.54)
1.43

(±0.92)
2.23

(±0.41)
1.87

(±0.23)

200
2.24

(±0.52)
1.8

(±0.71)
2.22

(±0.47)
1.86

(±0.71)
2.23

(±0.48)
1.85

(±0.7)
2.25

(±0.52)
1.79

(±0.7)
2.12

(±0.53)
1.54

(±0.9)
2.14

(±0.56)
1.77

(±0.91)

250
2.52

(±0.23)
2.12

(±0.26)
2.5

(±0.22)
2.12

(±0.26)
2.5

(±0.23)
2.12

(±0.25)
2.52

(±0.21)
2.13

(±0.23)
2.45

(±0.24)
2.1

(±0.39)
2.33

(±0.21)
1.89

(±0.33)

300
2.47

(±0.36)
2.06

(±0.32)
2.41

(±0.35)
2.06

(±0.36)
2.44

(±0.35)
2.07

(±0.33)
2.48

(±0.36)
2.08

(±0.32)
2.36

(±0.37)
1.96

(±0.33)
2.34

(±0.44)
1.84

(±0.52)

350
2.19

(±0.41)
1.82

(±0.52)
2.16

(±0.38)
1.85

(±0.51)
2.18

(±0.39)
1.85

(±0.49)
2.2

(±0.4)
1.82

(±0.52)
1.93

(±0.44)
1.26

(±0.51)
1.78

(±0.42)
1.24

(±0.41)

400
2.11

(±0.38)
1.7

(±0.52)
2.06

(±0.32)
1.73

(±0.46)
2.09

(±0.35)
1.73

(±0.48)
2.11

(±0.36)
1.69

(±0.51)
1.89

(±0.41)
1.26

(±0.75)
1.73

(±0.18)
1.18

(±0.31)

450
2.37

(±0.45)
1.95

(±0.62)
2.33

(±0.45)
1.99

(±0.68)
2.37

(±0.45)
2

(±0.68)
2.36

(±0.45)
1.93

(±0.57)
2.01

(±0.56)
1.58

(±0.63)
2.04

(±0.46)
1.73

(±0.74)

Fused (all) 2.39
(±0.44)

2.02
(±0.64)

2.35
(±0.39)

2.01
(±0.57)

2.36
(±0.41)

2.03
(±0.61)

2.41
(±0.43)

2.03
(±0.63)

2.29
(±0.5)

1.92
(±0.6)

2.68
(±0.2)

2.31
(±0.36)

Table 6.10: Fitness values for ensemble learner models averaged over the 3 Folds for NASA dataset (layup 2).
WAE Deep learningSAE MSE RMSE Fitness FC BiLSTMFreq.

(kHz) F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test

150
1.62

(±0.55)
1.24

(±0.87)
1.48

(±0.29)
1.19

(±0.68)
1.63

(±0.51)
1.3

(±0.89)
1.67

(±0.56)
1.38

(±0.98)
1.43

(±0.1)
0.9

(±0.52)
1.58

(±0.45)
1.3

(±0.39)

200
1.6

(±0.37)
1.33

(±0.8)
1.57

(±0.23)
1.29

(±0.64)
1.57

(±0.3)
1.26

(±0.74)
1.58

(±0.29)
1.35

(±0.6)
1.42

(±0.28)
0.84

(±0.51)
2.07

(±0.09)
1.72

(±0.15)

250
2.25

(±0.25)
2.12

(±0.42)
2.28

(±0.28)
2.15

(±0.33)
2.27

(±0.27)
2.16

(±0.39)
2.25

(±0.26)
2.11

(±0.47)
1.97

(±0.21)
1.73

(±0.35)
1.94

(±0.39)
1.79

(±0.47)

300
2.31

(±0.12)
2.25

(±0.14)
2.33

(±0.08)
2.25

(±0.13)
2.32
(±0.1)

2.27
(±0.16)

2.3
(±0.12)

2.25
(±0.14)

2.08
(±0.24)

1.7
(±0.54)

1.67
(±0.28)

1.15
(±0.46)

350
1.79

(±0.31)
1.55

(±0.24)
1.82

(±0.31)
1.62

(±0.28)
1.81

(±0.31)
1.59

(±0.26)
1.8

(±0.34)
1.53

(±0.33)
1.3

(±0.31)
0.95

(±0.41)
1.8

(±0.77)
1.68

(±0.64)

400
1.58

(±0.17)
1.08

(±0.5)
1.61

(±0.13)
1.17

(±0.41)
1.62

(±0.14)
1.19

(±0.42)
1.69

(±0.23)
1.21

(±0.51)
1.32

(±0.23)
1.01

(±0.47)
1.54

(±0.79)
1.32

(±0.94)

450
1.73

(±0.32)
1.33

(±0.43)
1.72

(±0.26)
1.44

(±0.37)
1.76

(±0.33)
1.39

(±0.38)
1.76

(±0.35)
1.39

(±0.41)
1.27

(±0.29)
0.91

(±0.52)
1.79

(±0.35)
1.67

(±0.46)

Fused (all) 1.87
(±0.43)

1.75
(±0.53)

1.76
(±0.43)

1.61
(±0.56)

1.84
(±0.44)

1.72
(±0.6)

1.92
(±0.4)

1.83
(±0.53)

1.46
(±0.59)

1.66
(±0.37)

1.53
(±0.76)

1.5
(±0.83)

1 and Layup 3), which have 2 units for training and 1 unit for validation, yield be਄er results
compared to Layup 2, which has only one unit for training and another for validation. ঒is
can be observed in Figure 6.7, particularly for coupon 4 of Layup 1 and coupons 1, 2, and
3 of Layup 3.

HIs constructed by BiLSTM-EL upon HT-SSCNN are displayed in Figure 6.8. ঒ese HIs
interestingly exhibit multiple incremental steps over the fatigue life in the ReMAP dataset
and Layup 1 of the NASA dataset. ঒ese steps may signify distinct damage states, provid-
ing valuable insights for subsequent prognostic models, especially state-based ones, for
RUL prediction. However, establishing a meaningful link between these steps and physi-
cal damage states requires further research and experimentation. ঒e HIs constructed by
FC-EL a঍er the HT-SSCNN model can be found in Appendices (A.3).

In general, higher ॲtness scores for HIs could have been a਄ained for the ReMAP
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Table 6.11: Fitness values for Ensemble learner models averaged over the 4 Folds for NASA dataset (layup 3).
WAE Deep learningSAE MSE RMSE Fitness FC BiLSTMFreq.

(kHz) F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test

150
2.23

(±0.45) 1.96 (±0.62) 2.21
(±0.43)

1.97
(±0.62)

2.21
(±0.44)

1.97
(±0.62)

2.23
(±0.45)

1.94
(±0.62)

1.96
(±0.41)

1.42
(±0.66)

2.17
(±0.41)

1.73
(±0.57)

200
2.35

(±0.53)
2.22

(±0.82)
2.28

(±0.48)
2.17

(±0.78)
2.3

(±0.49)
2.18

(±0.79)
2.36

(±0.54)
2.23

(±0.82)
2.37

(±0.52)
2.14

(±0.83)
2.32

(±0.47)
1.91

(±0.39)

250
2.26

(±0.45)
2.16

(±0.75)
2.11

(±0.36)
2.05

(±0.66)
2.18

(±0.41)
2.1

(±0.7)
2.3

(±0.48)
2.18

(±0.77)
2.32

(±0.56)
1.99

(±0.73)
2.37

(±0.25)
1.93

(±0.54)

300
2.38

(±0.54)
2.2

(±0.82)
2.18

(±0.42)
2.08

(±0.74)
2.26

(±0.47)
2.13

(±0.77)
2.41

(±0.56)
2.22

(±0.83)
2.33

(±0.56)
2

(±0.82)
2.22

(±0.35)
1.79

(±0.6)

350
2.4

(±0.52)
2.2

(±0.75)
2.24

(±0.42)
2.09

(±0.68)
2.32

(±0.47)
2.15

(±0.71)
2.41

(±0.53)
2.21

(±0.76)
2.41

(±0.5)
2.08

(±0.71)
2.3

(±0.5)
2.14

(±0.54)

400
2.25

(±0.47)
2.05

(±0.68)
2.19

(±0.42)
2.06

(±0.68)
2.2

(±0.43)
2.03

(±0.66)
2.28

(±0.48)
2.07

(±0.69)
2.28

(±0.44)
1.85

(±0.64)
2.1

(±0.5)
1.69

(±0.67)

450
2.36

(±0.48)
2.15

(±0.72)
2.3

(±0.44)
2.11

(±0.69)
2.32

(±0.46)
2.12

(±0.7)
2.37

(±0.5)
2.16

(±0.73)
2.39

(±0.52)
2.09

(±0.72)
2.27

(±0.41)
1.83

(±0.56)

Fused (all) 2.4
(±0.52)

2.22
(±0.77)

2.29
(±0.46)

2.17
(±0.75)

2.33
(±0.48)

2.2
(±0.76)

2.42
(±0.54)

2.23
(±0.78)

2.43
(±0.59)

2.16
(±0.82)

2.09
(±0.45)

1.58
(±0.63)

datasets compared to the NASA dataset. ঒is can be a਄ributed to several factors, includ-
ing the larger number of training specimens (only one unit more) and a greater number
of time steps for GW inspections, which provide more training data for the DL models.
঒is diॱerence in performance seems to be less related to the structural type, loading con-
ditions, layups, or types of damage, as the T-single stiॱener panels are inherently more
complex in various aspects. Moreover, the ReMAP structures were monitored using a
more intertwined GW network with 56 paths, while the NASA structures used 36 paths.
঒is richer, intertwined GW network oॱers more information to leverage for model train-
ing. In essence, the model’s performance is less aॱected by issues encountered during
the monitoring process, such as the presence of broken or debonded PZT sensors, which
occurred during ReMAP experiments.
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Figure 6.7: HIs obtained by the proposed framework with WAE-Fitness for diॱerent datasets, given all frequency
inputs.
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Figure 6.8: HIs obtained by the proposed framework with BiLSTM-EL for diॱerent datasets, given all frequency
inputs.
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6.4 Conclusions

I n this chapter, an innovative approach was introduced to construct comprehensive HIs
for composite structures, addressing the challenges posed by the stochastic nature of

damage accumulation during operational conditions and the need for HIs independent
of historical data. Leveraging the power of AI, a Hilbert transform-convolutional neural
network (HT-SSCNN) was developed within the SSL paradigm. ঒e approach exclusively
utilizes current GW data, eliminating the reliance on historical information. It ॳexibly
accommodates diॱerent GW sensor numbers, networks, and setups. ঒e results demon-
strate the eॱectiveness and validity of the approach. To assess various combinations and
ensure robustness, rigorous evaluations were conducted, considering diॱerent datasets
under various conditions.

঒e ॲndings indicate that certain frequencies, such as 150 kHz for the ReMAP dataset
and 250 kHz for NASA Layup 1, consistently outperformed others, resulting in more stable
and reliable HIs. ঒e use of EL techniques, speciॲcally WAE-Fitness, led to signiॲcant im-
provements in HIs’ performance. For the ReMAP dataset, the WAE-Fitness model, fusing
all GW excitation frequencies, yielded the best ॲtness scores, with 93% accuracy consider-
ing all units and 89% given test units. While ReMAP experiments are more complex than
the NASA ones, HIs with higher performance could be extracted from the ReMAP dataset
than the NASA dataset, which can be a਄ributed to the availability of one more training
unit and a greater number of time steps for GW inspections. Additionally, ReMAP struc-
tures were monitored using a more intertwined GW sensory network, which provided a
wealth of data for model training.

঒e produced HIs exhibit desirable properties for RUL prediction. ঒ey are monotonic,
prognostable, and exhibit correlated trends, which are essential characteristics for accu-
rate predictions in PHM. ঒e incremental steps observed in the HIs may potentially corre-
spond to distinct damage states, which can be used to inform state-based RUL prediction
models. In conclusion, the framework oॱers a promising solution to the challenging task
of constructing reliable and historical-independent HIs for composite structures. A high
level of performance was achieved by combining AI with SP techniques, demonstrating
the applicability of the method across diॱerent datasets.
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7
Fusion of Acoustic Emission and

Guided Waves Techniques
In this chapter, AE and GW monitoring techniques are integrated to formulate HIs for T-
sti࠹ener composite panels using the fusion of three AE frameworks with one GW framework
developed in Chapters 5 and 6, respectively. e࡞ fusion approach demonstrates the potential
of combining AE and GW data for SHM applications.
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7.1 Introduction

I n this chapter, data from two SHM techniques—acoustic emission (AE) and guided wave
(GW)—are integrated to formulate HIs for T-stiॱener composite panels. ঒e frameworks

developed based on AE and GW data are combined to enhance the quality of HIs by lever-
aging complementary information. For this purpose, three frameworks developed using
AE data (as presented in Chapter 5) and one framework developed using GW data (as
provided in Chapter 6) are employed.

A঍er detailing the experimental campaigns considered for the GW-AE fusion scenario,
this chapter introduces the fusion framework, which encompasses resampling and syn-
chronization, followed by the fusion models. ঒e results of fusing diॱerent AE frame-
works and the GW framework are presented, demonstrating high performance of up to
97%, 93%, and 94% for fusion models fed by AE frameworks 1, 2, and 3, respectively, based
on HIs’ criteria given all units. When focusing exclusively on test units for the calculation
of HIs’ criteria, the fusion framework continues to exhibit strong performance, achieving
up to 97%, 87%, and 89%, respectively. ঒ese results underscore the eॱectiveness of the
fusion approach in enhancing the overall performance of SHM techniques.

7.2 Experimental Campaigns

A s mentioned earlier, the ReMAP dataset includes T-stiॱener composite panels mon-
itored by AE (Chapter 5) and GW (Chapter 6). However, both monitoring systems

were not available for all units, reॳecting a common scenario in real-world situations. In
total, 14 units underwent run-to-failure fatigue loading, with proper, available AE data for
12 units and 5 units monitored using the GW system. Among these units, only 3 were com-
mon to both AE and GW. Consequently, training GW-AE fusion models with this limited
number of units is very challenging.

Reserving one unit for the testing phase of the fusion models leaves only 2 units for
the training (and validation) phase. To address this constraint, as illustrated in Figure 7.1,
the AE frameworks are trained on (12-1=) 11 available units with AE data (excluding the
unit selected to test the fusion model), while the GW framework is trained on (5-1=) 4
available units monitored by the GW system (excluding the unit chosen for testing the
fusion model, which remains the same as before). Subsequently, the trained AE and GW
frameworks, along with the (3-1=) 2 available units for training that include both AE and
GW data, are fed into the fusion framework.
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Figure 7.1: Specimens grouping based on units available for the fusion framework incorporating AE and GW
data.

7.3 Fusion Framework

T he fusion framework is depicted in Figure 7.2. As AE is a passive monitoring technique
and GW is an active one, with diॱerent sampling frequencies and windowing rates,

the HIs produced by the developed frameworks for each must undergo resampling and
synchronization before being inpu਄ed into the GW-AE fusion step.

7.3.1 Resampling and synchronization
঒e AE data were windowed with lengths and intervals of either 500 cycles (1੕੖ and 2੐ੇ AE
frameworks) or 1000 cycles (3੔ੇ AE framework). In contrast, GW data were collected at
intervals of 5000 cycles. Consequently, the number of time windows (HI quantities) for AE
exceeds those for GW. To address this discrepancy, GW data are resampled and synchro-
nized based on the time vector of AE windowed data. ঒is process involves copying GW
data from the nearest preceding neighbor, which is practical in real-world applications.
঒e results of this resampling and synchronization step for the fusion of AE (Framework
1) and GW data across three available folds (units) are illustrated in Figure 7.3.

7.3.2 Fusion models
Various regression models, including Gaussian process regression (GPR) [1], least-squares
boosting (LSBoost) [2], binary decision tree (Tree) [3], linear model using stepwise regres-
sion (LR਼ ) [4], robust linear regression using the bisquare weight function (LR਻) [5], SVM
[6], an MLP network, and an LSTM network, are employed to integrate the HIs obtained
from AE and GW. ঒e subsequent subsections will detail the adjusted (hy)parameters for
each fusion model.
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Figure 7.2: Fusion framework of AE and GW SHM monitoring systems.

GPR
A squared exponential kernel function with a constant basis function is employed for GPR.
Optimization of GPR is conducted with respect to the noise standard deviation σ using BO
within a 5-fold cross-validation, considering 2 units for training. ঒e ॲve folds are divided
based on the number of data points (time steps) of the two units a঍er shuॵing. Parameters
of BO include an exploration ratio of 0.5, 4 seed points, and a maximum of 30 objective eval-
uations. ঒e tuned hyperparameter for noise standard deviation ಇ , determined through
the MSE loss function, is found to be 0.6750.

LSBoost
঒e hyperparameters of the ensemble learning (EL) fusion model, encompassing the
choice of EL method between two options—Bagging and LSBoost—as well as the num-
ber of EL cycles (search range: [10, 500]), learning rate (search range: [0.001, 1]), and the
minimum leaf size of the tree as the speciॲed learner, are tuned using BO within a 5-fold
cross-validation, with consideration for 2 units during training. ঒e folds are distributed
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Figure 7.3: HIs derived from AE (Framework 1) and GW data, both before and a঍er undergoing the resampling
and synchronization process, for three folds (units) designated for GW-AE fusion.

based on the number of data points (time steps) of the two units a঍er shuॵing. BO pa-
rameters include an exploration ratio of 0.5, 4 seed points, and a maximum of 30 objective
evaluations. ঒e optimized hyperparameters for the EL method were determined through
the MSE loss function, resulting in LSBoost, 457 cycles, a 0.1383 learning rate, and a mini-
mum leaf size of 4.
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Tree
঒e minimum leaf size of the binary decision tree, considered its hyperparameter with a
search range of [1, 149], is tuned using BO within a 5-fold cross-validation, following the
same procedure as the other fusion models. ঒e optimized minimum leaf size is found to
be one, and the resulting binary decision tree has 99 nodes with node sizes ranging from
1 to 298.

LR਼
Stepwise linear regression (LR਼ ) utilizes the p-value from an F-statistic to assess models by
adding or removing potential terms at each step. When a term is absent in the model, the
null hypothesis assumes that the term would have a zero coeॴcient if included. If there
is enough evidence to reject this null hypothesis, the function incorporates the term into
the model. Conversely, when a term is already present in the model, the null hypothesis
assumes a zero coeॴcient for that term. If there is inadequate evidence to reject this null
hypothesis, the function removes the term. ঒e p-value, derived from an F-test assessing
the change in sum of squared error resulting from adding or removing the term, is used
to train LR਼ . ঒e criteria thresholds for adding or removing a term are set at 0.05 and 0.1,
respectively. With a maximum of 1000 steps, the LR਼ fusion model undergoes training
within a 5-fold cross-validation.

LR਻
A robust linear regression model, denoted as LR਻ , is ॲ਄ed using a bisquare weight function.
In this study, the model is trained within a 5-fold cross-validation to fuse AE-HIs with GW-
HIs, aligning with the ideal simulated HIs.

SVM
An SVM regression model with a linear kernel, ಏ set to 3.727, and utilizing sequential
minimal optimization, is trained within a 5-fold cross-validation to regress the inputs to
the ideal simulated HIs.

MLP
An MLP with three hidden layers, comprising 5, 3, and 1 neurons, is trained using
Levenberg-Marquardt backpropagation. ঒e activation function log-sigmoid is employed
for the hidden layers, while the linear activation function is used for the output layer.
With a loss function of MSE and allocating 30% of the total number of data points from
the two units considered for training as validation, the MLP model is trained to fuse HIs.

LSTM
An LSTM model, as depicted in Figure 7.4, is speciॲcally designed to integrate GW-HIs
with AE-HIs. ঒rough iterative trials and adjustments, the conॲguration and hyperpa-
rameters have been ॲne-tuned. ঒e model utilizes the Adam optimizer with an initial
learning rate of 0.1. To mitigate overॲ਄ing, a regularization term, known as weight decay
or L2 regularization, is introduced with a set value of 0.001. Despite a maximum training
epoch of 2000, the network’s output is determined based on the best validation loss, with
a validation check frequency set at 30 iterations and a validation check patience set to 50.
Data shuॵing occurs at each epoch, with a mini-batch size of 20 ensuring robust training
and fusion performance within the LSTM architecture.
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Figure 7.4: LSTM model designed for GW-AE fusion.

7.4 Results

T o comprehensively assess various combinations and validate the eॱectiveness and sta-
bility of the proposed framework, all potential dataset folds were examined. In each

fold, one unit was designated as the test set, while the remaining two composite panels
were utilized for training (and validation). ঒e HIs constructed through the fusion of the
1੕੖ , 2੐ੇ , and 3੔ੇ AE frameworks with the GW framework are illustrated in Figures 7.5
to 7.7, respectively.

Regarding the fusion of the 1੕੖ AE framework with the GW framework, it is notable
that except for Unit 1, where GW produces superior HIs, AE data yields higher ॲtness
scores for the other two units. Speciॲcally, when considering ॲtness scores exclusively
for test units, the LSTM model outperforms others. However, in the case of ॲtness given
all units, LR਻ , MLP, and LSTM demonstrate the highest ॲtness scores for Units 1, 2, and 3,
respectively.

Concerning the fusion of the 2੐ੇ AE framework with the GW framework, noteworthy
observations include the superior HIs produced by GW on average compared to AE data.
In terms of ॲtness scores across all units, MLP achieves a higher score for fold 1 (Test SSP
1). However, it is evident that the HIs for the training units are overॲ਄ed, and the HI for
test unit 1 deviates. ঒is situation poses a challenge for prediction. Conversely, based on
ॲtness scores given the test unit, LR਻ a਄ains a higher score for fold 1. Notably, the HIs
are not overॲ਄ed, and all represent a distinctive jump with a consistent increasing pa਄ern
a঍erward. ঒is pa਄ern may potentially signify diॱerent damage states during the fatigue
loading of composite structures. ঒is underscores the importance of using reॲned criteria
speciॲcally designed for test units. While LR਻ provides be਄er scores for the test unit in
folds 1 and 2, it does not for fold 3. Consequently, LSTM is preferred, as its scores for
folds 1 and 2 are not signiॲcantly lower, and it outperforms others for fold 3. ঒is choice
reॳects the adaptability and eॱectiveness of LSTM in capturing the varying pa਄erns across
diॱerent folds.
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Figure 7.5: HIs obtained through the fusion framework combining the 1੕੖ AE framework and the GW framework.
Columns correspond to speciॲc folds labeled at the top, while rows represent the same SHM inputs (AE or GW)
or fusion models, labeled on the right. Green-colored values highlight the maximum ॲtness score obtained given
all (F-All) or test (F-Test) units for the fold indicated at the top.
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Figure 7.6: HIs obtained through the fusion framework combining the 2੐ੇ AE framework and the GW framework.
Columns correspond to speciॲc folds labeled at the top, while rows represent the same SHM inputs (AE or GW)
or fusion models, labeled on the right. Green-colored values highlight the maximum ॲtness score obtained given
all (F-All) or test (F-Test) units for the fold indicated at the top.



7

146 7. Fusion of Acoustic Emission and Guided Waves Techniques

Figure 7.7: HIs obtained through the fusion framework combining the 3੔ੇ AE framework and the GW framework.
Columns correspond to speciॲc folds labeled at the top, while rows represent the same SHM inputs (AE or GW)
or fusion models, labeled on the right. Green-colored values highlight the maximum ॲtness score obtained given
all (F-All) or test (F-Test) units for the fold indicated at the top.
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Concerning the fusion of the 3੔ੇ AE framework with the GW framework, several ob-
servations emerge. For the ॲrst fold, the fusion of AE and GW does not outperform the
GW-HI, but the LSTM fusion model stands out as the best for fold 3. In fold 2, the high F-
Test score of MLP is a਄ributed to the high Pr compared to GW. ঒e HIs of fold 1 obtained
from LSTM are particularly interesting. Initially, the HIs do not exhibit any increase, rep-
resenting a healthy state. Subsequently, a঍er a distinctive jump, they demonstrate a non-
linear increasing pa਄ern with ॳuctuations, indicative of a middle damage state. ঒e ॲnal
damage state includes a consistent, slightly increasing pa਄ern leading up to the eventual
failure. Notably, the duration of the middle damage state lasts around 40-50% of the EoL.

A detailed breakdown of the HIs’ criteria averaged over three folds is presented in
Table 7.1. According to the Fitness-Test metric, the LSTM fusion model emerges as the
most eॱective across all three AE frameworks. However, it is worth noting that the scores
for the 1੕੖ AE framework are higher than the other two due to the use of the test unit for
validation, as explained in Chapter 5. ঒is limitation hinders the generalizability of the
developed framework.

঒e Mo-Test scores for GW-based HI diॱer for Framework 3 compared to the other
two, indicating a discrepancy that should be addressed. ঒is inconsistency is a਄ributed
to the resampling process, highlighting the need for improvement in this metric in future
work because the criteria should not be aॱected by the number of time steps.

In summary, GW-based HIs outperform AE-based HIs, even though they were trained
on fewer units (11 units for AE and 4 for GW). Nevertheless, AE, as a passive SHM tech-
nique, oॱers higher temporal resolution.

঒e overall results indicate that the GW-AE fusion step enhances Fitness scores com-
pared to using only one SHM technique. However, considering that this improvement,
compared to the best single SHM input, is less than 10% (9%, 6%, and 2% for AE frame-
works 1, 2, and 3, respectively), the justiॲability of this improvement must be assessed in
the context of the cost of monitoring systems and computational complexity. It prompts
consideration of whether using only the GW technique, but with a more intricate network
of sensors and a greater number of time steps for inspection conditions, might compensate
for this improvement. ঒us, these ॲndings raise new questions in the ॲeld.
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Table 7.1: Distribution of HIs’ criteria values across three folds for the fusion framework fed by the GW model and
AE models (three frameworks) for the ReMAP dataset. ঒e values are computed from Eqs. 3.1 - 3.4, encompassing
all units denoted as ’-All,’ and Eqs. 3.5 - 3.8, focusing solely on test units labeled as ’-Test.’

Inputs
(aࢦer resampling) Fusion modelsAE

model Criteria AE GW GPR LSBoost Tree LR਼ LR਻ SVM MLP LSTM

Fr
am

ew
or

k
1

Mo-All 0.99
(±0.02)

1
(±0)

0.99
(±0.01)

1
(±0)

1
(±0)

1
(±0)

1
(±0)

1
(±0)

1
(±0)

1
(±0)

Mo-Test 0.81
(±0.18)

0.7
(±0.28)

0.65
(±0.2)

0.88
(±0.07)

0.85
(±0.03)

0.9
(±0.02)

0.92
(±0.01)

0.92
(±0.02)

0.93
(±0.02)

0.97
(±0.05)

Pr-All 0.95
(±0.01)

0.87
(±0.11)

0.89
(±0.17)

0.9
(±0.07)

0.93
(±0.08)

0.91
(±0.01)

0.94
(±0.02)

0.94
(±0.02)

0.95
(±0.02)

0.95
(±0.05)

Pr-Test 0.94
(±0.01)

0.85
(±0.2)

0.84
(±0.26)

0.85
(±0.13)

0.89
(±0.13)

0.94
(±0.06)

0.94
(±0.07)

0.94
(±0.06)

0.96
(±0.06)

0.98
(±0.01)

Tr 0.92
(±0.12)

0.94
(±0.03)

0.9
(±0.05)

0.95
(±0.04)

0.94
(±0.04)

0.97
(±0.03)

0.97
(±0.03)

0.97
(±0.03)

0.96
(±0.04)

0.96
(±0.05)

Fitness-All 2.85
(±0.15)

2.8
(±0.09)

2.77
(±0.17)

2.85
(±0.04)

2.87
(±0.05)

2.88
(±0.04)

2.91
(±0.02)

2.91
(±0.02)

2.9
(±0.04)

2.91
(±0.06)

Fitness-Test 2.67
(±0.3)

2.48
(±0.32)

2.38
(±0.46)

2.68
(±0.15)

2.69
(±0.13)

2.81
(±0.06)

2.83
(±0.06)

2.84
(±0.05)

2.84
(±0.05)

2.91
(±0.05)

Fr
am

ew
or

k
2

Mo-All 1
(±0)

1
(±0)

0.98
(±0.02)

0.99
(±0.01)

0.98
(±0.02)

1
(±0.01)

1
(±0.01)

0.99
(±0.01)

1
(±0)

1
(±0)

Mo-Test 0.93
(±0.04)

0.7
(±0.28)

0.59
(±0.37)

0.67
(±0.22)

0.58
(±0.37)

0.79
(±0.28)

0.81
(±0.24)

0.78
(±0.3)

0.91
(±0.08)

0.95
(±0.05)

Pr-All 0.67
(±0.16)

0.87
(±0.11)

0.72
(±0.23)

0.73
(±0.18)

0.74
(±0.16)

0.76
(±0.19)

0.82
(±0.14)

0.78
(±0.17)

0.79
(±0.19)

0.85
(±0.2)

Pr-Test 0.71
(±0.28)

0.85
(±0.2)

0.59
(±0.33)

0.59
(±0.27)

0.61
(±0.23)

0.65
(±0.27)

0.73
(±0.21)

0.68
(±0.25)

0.68
(±0.27)

0.79
(±0.29)

Tr 0.76
(±0.08)

0.94
(±0.03)

0.76
(±0.3)

0.81
(±0.24)

0.81
(±0.24)

0.91
(±0.01)

0.95
(±0.02)

0.92
(±0.01)

0.94
(±0)

0.88
(±0.1)

Fitness-All 2.43
(±0.09)

2.8
(±0.09)

2.47
(±0.46)

2.53
(±0.37)

2.53
(±0.39)

2.67
(±0.19)

2.77
(±0.12)

2.69
(±0.18)

2.73
(±0.19)

2.73
(±0.14)

Fitness-Test 2.4
(±0.28)

2.48
(±0.32)

1.94
(±0.87)

2.07
(±0.64)

1.99
(±0.8)

2.34
(±0.48)

2.49
(±0.39)

2.37
(±0.48)

2.53
(±0.3)

2.62
(±0.28)

Fr
am

ew
or

k
3

Mo-All 0.99
(±0)

1
(±0)

0.99
(±0.01)

1
(±0)

0.99
(±0.01)

1
(±0)

1
(±0)

1
(±0)

0.99
(±0.01)

0.99
(±0)

Mo-Test 0.93
(±0.09)

0.82
(±0.12)

0.75
(±0.23)

0.97
(±0.02)

0.81
(±0.13)

0.95
(±0.06)

0.95
(±0.06)

0.95
(±0.06)

0.76
(±0.24)

0.92
(±0.08)

Pr-All 0.7
(±0.25)

0.87
(±0.11)

0.73
(±0.2)

0.72
(±0.24)

0.71
(±0.21)

0.75
(±0.2)

0.76
(±0.19)

0.77
(±0.18)

0.93
(±0.06)

0.92
(±0.09)

Pr-Test 0.58
(±0.36)

0.85
(±0.2)

0.6
(±0.3)

0.59
(±0.35)

0.59
(±0.33)

0.63
(±0.31)

0.65
(±0.3)

0.66
(±0.29)

0.9
(±0.08)

0.88
(±0.14)

Tr 0.86
(±0.18)

0.94
(±0.03)

0.85
(±0.14)

0.91
(±0.03)

0.83
(±0.11)

0.91
(±0.11)

0.91
(±0.12)

0.91
(±0.12)

0.89
(±0.04)

0.87
(±0.07)

Fitness-All 2.56
(±0.07)

2.81
(±0.08)

2.57
(±0.26)

2.62
(±0.23)

2.52
(±0.24)

2.66
(±0.1)

2.67
(±0.08)

2.68
(±0.07)

2.81
(±0.05)

2.79
(±0.02)

Fitness-Test 2.37
(±0.1)

2.61
(±0.23)

2.21
(±0.49)

2.46
(±0.33)

2.22
(±0.36)

2.5
(±0.15)

2.52
(±0.13)

2.52
(±0.12)

2.55
(±0.28)

2.67
(±0.14)

7.5 Conclusions

I n summary, the fusion of AE and GW data using various regression models, partic-
ularly the LSTM model, demonstrates promise for T-stiॱener composite panel health

monitoring. Synchronization and resampling of GW data based on AE windowed data
were required for fusion. Despite marginal improvements in Fitness scores, questions
arise about the cost-eॱectiveness of the fusion approach compared to using only the GW
technique with a more intricate sensor network. ঒e study provides valuable insights into
the challenges and potential trade-oॱs associated with AE-GW fusion in SHM.



References

7

149

References
[1] C. E. Rasmussen, C. K. Williams, et al., Gaussian processes for machine learning, vol. 1.

Springer, 2006.

[2] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, e࡞ elements of statistical
learning: data mining, inference, and prediction, vol. 2. Springer, 2009.

[3] L. Breiman, Classi࠺cation and regression trees. Routledge, 2017.

[4] N. R. Draper and H. Smith, Applied regression analysis, vol. 326. John Wiley & Sons,
1998.

[5] P. W. Holland and R. E. Welsch, “Robust regression using iteratively reweighted least-
squares,” Communications in Statistics-theory and Methods, vol. 6, no. 9, pp. 813–827,
1977.

[6] V. Vapnik, e࡞ nature of statistical learning theory. Springer science & business media,
1999.





8
Conclusions and Recommendations

151



8

152 8. Conclusions and Recommendations

8.1 Conclusions

T his research embarked on a comprehensive exploration of HI design for SHM and
prognostics, focusing primarily on composite structures. ঒e investigation spanned

various methodologies, incorporating AI, SP, and innovative fusion approaches. By focus-
ing on key evaluation criteria such as Mo, Pr, and Tr and identifying critical gaps like the
need for nonlinear HIs, generalizability, and historical-independent HIs, the groundwork
was laid for targeted investigations.

In response to these challenges, novel approaches were introduced to enhance HIs.
঒e emphasis on test units for modifying evaluation criteria and the introduction of a SSL
paradigm derived from nonlinear HIs, aligned with the physics of damage propagation,
marked notable methodological contributions. Additionally, the integration of a modiॲed
multiplicative neuron with sparsity control for discretizing weights aimed at designing
interpretable HIs with concise equations, particularly beneॲcial for turbofan engines.

঒e main conclusion of the thesis can be listed as follows:

• ঒ree frameworks integrating AI and SP were developed to formulate HIs for T-
stiॱener composite panels using AE data. ঒e frameworks demonstrated superior
performance, 93%, 90%, and 91% based on HIs’ criteria given all units, respectively,
outperforming existing literature models. Emphasis on improved feature extraction
by advanced SP methods, optimizing the ANN architectures and hyperparameters
by BO and PBO, implementing the HIs’ criteria into the learning and optimizing
process, separating the tasks of temporal and spatial information extraction during
the learning process, and ensemble learning showcased advancements in HI design.

• ঒e implementation of a HT-SSCNN fed by GW data followed by ensemble learn-
ing demonstrated high performance and highlighted the potential of data-driven
and AI approaches in health monitoring applications for composite structures. ঒e
methodology is validated through investigations on T-single stiॱener CFRP pan-
els under compression-fatigue and dogbone CFRP specimens under tension-fatigue
loadings, showing high performance of up to 93% and 81% based on HIs’ criteria
given all units, respectively. ঒e proposed GW approach exclusively utilizes current
GW data, eliminating the reliance on historical information. It ॳexibly accommo-
dates diॱerent GW sensor numbers, networks, and setups. ঒e incremental steps
observed in some HIs may potentially correspond to distinct damage states, repre-
senting another aspect of interpretability that can be used to inform state-based RUL
prediction models.

• ঒e fusion framework of AE and GW techniques demonstrated the potential of com-
bining these techniques for SHM applications. ঒e results of fusing diॱerent devel-
oped AE frameworks and the GW framework are presented, demonstrating high
performance of up to 97%, 93%, and 94% for fusion models fed by AE frameworks 1,
2, and 3, respectively, based on HIs’ criteria given all units. When focusing exclu-
sively on test units for the calculation of HIs’ criteria, the fusion framework contin-
ues to exhibit strong performance, achieving up to 97%, 87%, and 89%, respectively.
঒ese results underscore the eॱectiveness of the fusion approach in enhancing the
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overall performance of SHM techniques. However, questions arose about the cost-
eॱectiveness of the fusion approach compared to using only the GW technique.

• Lastly, INN was developed for designing HIs for commercial turbofan engines. ঒e
introduction of modiॲed multiplicative layers alongside discretizing weights by
sparsity control provided a breakthrough in creating concise equations. ঒e per-
formance of the INN surpassed that of alternative methods while maintaining inter-
pretability in HI design.

8.2 Recommendations

W hile the research has made signiॲcant strides in addressing gaps in HI design and
application, several areas for future exploration and improvement are identiॲed:

Cost-e࢓ectiveness and computational complexity analysis
Given the potential trade-oॱs of using fusion approaches, a detailed cost-eॱectiveness
analysis is recommended. Comparing the performance gains with the cost and complex-
ity of monitoring systems will provide valuable insights for decision-making in practical
applications. Also, while the fusion of AE and GW techniques showcased improvements
in performance, the computational complexity of fusion approaches warrants further in-
vestigation. Evaluating the trade-oॱs between enhanced performance and computational
eॴciency would provide valuable insights for practical implementation. Additionally, the
comparison should be fair, meaning that the same (enough) number of units without miss-
ing information should be available to train the AE-HI and GW-HI construction frame-
works.

Adaptive-active fusion scenario
An eॴcient fusion scenario, considering a cost-eॱective combination of SHM techniques,
could be an adaptive-active monitoring system. ঒is system activates the active SHM
technique (e.g., guided wave) when the passive SHM technique (e.g., acoustic emission) de-
tects a noticeable variation due to health degradation. ঒is adaptive-active fusion scenario
leverages temporal information recorded from the passive SHM technique eॴciently, min-
imizing the number of active SHM technique assessments and reducing operational shut-
down times.

Criteria improvement
As observed in Chapter 7, the resampling process aॱected Mo, highlighting the need for
improvement in this metric in future work to ensure that criteria are not inॳuenced by the
number of time steps.

Optimizing the weight of Tr that contributes to Fitness would enhance the ॳexibility
of learning algorithms. ঒e rationale behind this lies in the author’s belief that Tr directly
correlates with uncertainty and may not always achieve its maximum value in a compre-
hensive health indicator.

Additionally, criteria should be interconnected in a conditional manner, ensuring that
HIs not only meet the requirements of Pr and Tr but also incorporate health degrada-
tion, thereby enhancing their overall utility. For instance, if HIs exhibit purely horizontal
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pa਄erns without any increase or decrease, they may meet the criteria of Pr and Tr with
maximum scores. However, such HIs might lack practical signiॲcance since they do not
indicate any health degradation. In this context, Mo should be conditional to conॲrm Pr
and Tr. ঒e author believes that further enhancement of the criteria is possible.

Integration of uncertainty
Future work should explore methods to capture and integrate uncertainty within models
towards be਄er decision-making. Diॱerentiating noise or uncertainty components and
incorporating them into the frameworks can enhance stability and reliability, contributing
to the development of more robust HIs.

8.3 Final Remarks

I n conclusion, this thesis has advanced the ॲeld of prognostics and health management,
with a speciॲc focus on health indicator design, particularly within the domain of com-

posite structures. ঒e innovative methodologies, which span artiॲcial intelligence, signal
processing, and fusion techniques, have consistently demonstrated superior performance.
঒is research has also initiated discussions and taken important steps towards achieving
interpretability in health indicator design.

঒e methodologies, frameworks, and insights presented in this thesis lay a solid foun-
dation for further research, contributing to the ongoing innovation in health monitoring
applications. ঒e recommendations provided oॱer valuable guidance for future research
directions, with the aim of reॲning and extending the proposed frameworks for broader
applications in engineering systems.

঒e journey undertaken, from exploring critical gaps in the literature to proposing ad-
vanced methodologies, has played a pivotal role in the continuous evolution of prognostics
and health management. As technology and methodologies continue to evolve, the explo-
ration of reliable and interpretable health indicators will remain crucial to ensuring the
safety and eॴciency of complex engineering systems, such as composite structures.
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A.1 Interpretable HIs for Commercial Turbofan Engines

T his section aims to develop an interpretable ANN with the capability for automatic
feature selection and fusion targeting optimal HIs with considerably lower complex-

ity. As explained in Chapter 3 (Section 3.5), this architecture is made up of additive and
new modiॲed multiplicative layers that combine features to be਄er represent the system’s
physical characteristics. To extract a compact HI equation—making the neural network
mathematically interpretable—the number of parameters is further reduced by discretizing
the weights via a ternary set. ঒is weight discretization simpliॲes the extracted equation
while so঍ly controlling the number of weights that should be overlooked.

঒e proposed design is tested using the NASA Ames Prognostics Data Repository
dataset for turbofan engine degradation simulation, which is widely used in the PHM
ॲeld [1]. ঒e ॲndings will be discussed in comparison with PCA, KPCA, and two-stage
genetic programming (GP) outputs. ঒is methodology makes several key contributions,
including:

1. Introducing a new type of neuron that operates multiplicatively, in addition to the
commonly used additive neurons.

2. Building a network that combines both additive and multiplicative neurons to gen-
erate accurate and robust hybrid HI.

3. Utilizing the beneॲts of both multiplicative neurons and sparsity control by imple-
menting discretized (ternary) weights, resulting in concise and eॴcient equations.

4. Developing HI models with concise and easy-to-understand equations, while ensur-
ing they meet the evaluation criteria of Mo, Pr, and Tr.

In this section, a concise overview of pre-processing, de-noising, and data division into
training and test sets is presented in Section A.1.1. Subsequently, the interpretable HI con-
struction framework, which incorporates newly modiॲed multiplicative layers alongside
additive ones and utilizes discretized weights, is outlined. Finally, the criteria for HIs will
be presented and discussed.

A.1.1 Dataset

T he present section focuses on the NASA Ames Prognostics Data Repository dataset
for commercial turbofan engines (CMAPSS) [1]. ঒is dataset is generated using the C-

MAPSS tool, which models various engine ॳeet deterioration scenarios—from a baseline
condition to the point of ॲnal failure in the training data and a time period prior to the EoL
in the test data. Two sets of data are investigated in this section: ॲrst, engines degrading
with one failure mode (FD001); and second, engines degrading with two failure modes
(FD003). Each engine’s ID and deterioration time steps are given in the ॲrst and second
columns, respectively. ঒e next three columns provide the engine’s operational charac-
teristics, and the ॲnal 21 columns list the signals from 21 sensors. Both subsets FD001 and
FD003 consist of 200 turbofan engine units each, with 100 designated for model training
and the remaining 100 for testing RUL prediction models. However, the 100 units allo-
cated for RUL model testing lack sensory data up to the EoL. Consequently, these units
cannot be utilized for evaluating the HI construction model using the HIs’ criteria (Mo, Tr,
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and Pr). As a result, a test fraction equivalent to 20% of the ॲrst 100 turbofan engines with
complete input sensory data until EoL in each subset is reserved for testing.

Data processing can suॱer from signals that are constant throughout all measurement
points. As a result, data that have identical upper and lower boundaries is ॲrst found
and removed. Accordingly, out of the 21 sensors, the 1੕੖ , 5੖ℎ, 10੖ℎ, 16੖ℎ, 18੖ℎ, and 19੖ℎ are
removed, leaving 15 in place for the subset FD001. ঒e same sensors are removed from sub-
set FD003 with the exception of sensor 10, leaving 16 in place. As a result, the remaining
sensors are denoted in the following as 1 through 16, among which the 16੖ℎ sensor refers
to the diॱerent sensor used in subset FD003 (i.e., sensor 10), and the other sensors have
the same index. Data have been standardized using a zero-mean normalization technique
that used only the training samples’ mean value and standard deviation. Additionally, to
improve the quality of the resulting features and HI, the signals can be de-noised. In this
case, a polynomial function of order four is used to perform a regression. ঒e resulting
de-noised signals (features) can then be chosen as HIs or retrieved (feature extraction) and
combined (feature fusion) to create an appropriate HI.

A.1.2 Building Interpretable ANN (INN)

B y deॲnition, an ANN is a function approximator that integrates input data into the
expected output using a complicated equation. Since an ANN needs large numbers

of weights to build acceptable HIs, retrieving the equation is not practical. ঒e number
of variables should be dropped while ensuring high levels of performance to achieve an
interpretable network that could be transformed into an intuitive and condensed equa-
tion expressing a HI. ঒e proposed methodology will demonstrate that combining the
weights’ discretization—the regulation of their sparsity—and the simultaneous use of both
multiplicative and additive neurons results in an interpretability that is satisfactory. ঒e
abovementioned ANN can also take into account the physical characteristics that invisi-
bly underlie the components that make up a HI. As a result, the proposed approach may
now uncover the ANN’s underlying formula, the HI, which properly represents the feature
selection and fusion steps.

An additive layer is composed of several typical additive neurons, whereas a multi-
plicative layer is made up of several multiplicative neurons. Figure A.1 illustrates the
proposed framework. First, a multiplicative layer receives the inputs which are either raw
sensory data or de-noised ones. Each neuron at this layer is a multiplication of the inputs
with various weights and a bias in accordance with Eq. 3.12. ঒ere are several multipli-
cation combinations between the inputs when there are plenty of neurons. ঒e output of
the multiplicative layer is then added to a subsequent additive layer with a single additive
neuron to create the ॲnal output. ঒e ANN becomes increasingly complex when more
neurons are added to the additive layer, and it is quite probable to overuse a portion of
the inputs. Terms that correspond to a single input instead of a combination of them are
typically evident once a HI’s formula is obtained. For example, if the inputs are ਗ਼1, ਗ਼2,
and ਗ਼3, we might get the equation ਗ਼1ਗ਼2ਗ਼3 + ਗ਼1. It is diॴcult to establish such an equa-
tion utilizing purely the multiplicative layer’s outputs to be imported into the subsequent
additive layer. Hence, utilizing the inputs of the network in both additive and multiplica-
tive layers is the most applicable architecture. Accordingly, the inputs and outputs from
the multiplicative layer are concatenated before being passed into the additive layer. It
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is clear that using additive layers and then multiplicative layers results in more complex
equations, and the option to multiply the inputs together is missing. For instance, consid-
ering four inputs (two by two separated (zero weights) for simpliॲcation), the simpliॲed
combination of additive+multiplicative yields (ਗ਼1 + ਗ਼2)(ਗ਼3 + ਗ਼4) = ਗ਼1ਗ਼3 + ਗ਼1ਗ਼4 + ਗ਼2ਗ਼3 + ਗ਼2ਗ਼4
while the simpliॲed combination of multiplicative+additive yields ਗ਼1ਗ਼2 + ਗ਼3ਗ਼4, which is
less complex. ঒is is due to the ability of the multiplication operation to capture more
complex dynamics than the addition one. Consequently, the model should ॲrst create all
the necessary complex combinations between the features and then decide which of them
are important to be added together. It should also be noted that, as mentioned, the option
to directly multiply the inputs in the additive+multiplicative conॲguration, i.e., ਗ਼1 and ਗ਼2
as well as ਗ਼3 and ਗ਼4, is missing.

A stream of raw sensor data, a de-noised format, or some extracted features could all
be used as the model’s inputs. ঒e trained INN serves as the equation for generating the
outputs, which are a series of points that make the HI. Before importing the data into the
model, a preprocessing step including resampling is required due to the diॱerent sequence
lengths for each unit. ঒e time-series data points will all be the same length thanks to this
step. To do this, there are two techniques. ঒e easier method involves upsampling with
interpolation, which involves increasing the number of time-series samples until each se-
quence is equal to the largest one. Based on the interpolation method selected, those data
points are estimated. ঒e second technique involves extending each sequence by adding
pseudo-data points since it meets the maximum length needed. ঒is can be performed by
padding with an irrelevant value. ঒e padded inputs can then be used to train the model,
which outputs the results. ঒is method’s sensitive aspect is when it calculates losses. To
prevent these pseudo-values from biasing errors through backpropagation, the padded
lengths should be perfectly deleted. To continue the next forward pass following the up-
dating of the parameters, the lengths should be padded again. ঒is method eliminates the
need for any estimation steps, unlike the ॲrst technique. Nevertheless, training time rises
remarkably. It was found that both techniques in the present work produce outcomes that
are equal, and the ॲrst one has been adopted thanks to its simplicity and speed.

So far, the equation for formulating the HI was not completely expressive because the
weights could have any real value. ঒anks to Eqs. 3.13 to 3.16 for training the INN, the
majority of the weights, if not all, shi঍ in the direction of the integers -1, 0, or 1. Weights
can converge to the intended values in practice, but they may not always coincide. With
this in mind, it is safe to appropriately round the values during validation without compro-
mising accuracy in these circumstances. Utilizing a de-noised version of the sensor data
enables all the weights to become ternary (see subsection A.1.3); however, using their raw
version does not cause this to happen. As long as the majority of the weights are within
the ternary form, a few weights in this last scenario could range from [-1, 1], which
could be smoothly rounded to the ॲrst decimal point with a trivial accuracy loss. Follow-
ing training, several non-ternary weights are a result of the noisy raw data. Hence, there
is indeed a trade-oॱ between ternarizing the weights and minimizing the ਮਬ loss, which
can be controlled by the regularization hyperparameter ౿. A large value for ౿ indicates
that more ternary weights have been preferred (be਄er ਮ਻ minimization), leading to a more
concise equation rather than optimally predicted results (not ideal ਮਬ minimization). For-
tunately, the intention is to construct a HI that delivers high criteria scores (Mo, Pr, and
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Figure A.2: First principal component of the PCA and KPCA applied to the raw (ॲrst row) and de-noised (second
row) entire dataset of subset FD001 given 100 engine units.

Tr) rather than relying solely on simulated label values, thus placing greater emphasis on
developing concise formulas.

A.1.3 Results and Discussions

I n this section, the HIs constructed using the introduced approach are compared and
discussed with the outputs of the PCA, KPCA, and GP models for subsets FD001 and

FD003, respectively.

Subset FD001
Since the ॲrst principal component of the PCA and KPCA covers the largest portion of
variations in data, it can be regarded as HI. ঒ese PCs were extracted through models
applied to the whole dataset including 100 units, which are shown in Figure A.2. Sensor 8
has the highest ॲtness score for raw inputs, 2.58, which has been improved using the PCA
model to 2.85 (10.47%). ঒is value for de-noised inputs increased from 2.91 (sensor 8) to
2.94 (1%). On the other hand, the KPCA model was unable to improve the HI with regard
to neither raw nor de-noised inputs, demonstrating that the CMAPSS dataset (especially,
subset FD001) has a linear rather than a nonlinear correlation among inputs. As a result,
PCA can produce a reasonably appropriate HI for this dataset, and the results argue that
complex models for CMAPSS, including DNNs, are unnecessary and redundant. ঒is is
also valid for RUL prediction because a be਄er HI results in a more precise RUL forecast.
঒is viewpoint could be supported by the fact that the dataset is an output of a simulation
model instead of realistic cases, and that the simulation tool most probably used a number
of existing equations in addition to typical noise [2].

঒e inability to interpret the generated principal components is one of the HI-related
drawbacks of the PCA and KPCA methods, as was previously mentioned. ঒us, eॱective
solutions to cope with this issue should be introduced and substituted. ঒e following
paragraphs provide an overview of the proposed methodology’s outcomes.
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঒e developed method constructed the following formula a঍er training with 80% of
the de-noised dataset (80 turbofan engines):਱ਲ = −0.14ੁ5ੁ15 + ੁ8 − ੁ9 − ੁ10 − ੁ14 − 0.2 (A.1)

where ੁੋ denotes the de-noised data from sensor ੋ. Zero weights have been given to the
sensors that had no component in the equation, whereas {-1, +1} have been applied
to the others. ঒e existence of only one multiplication occurring between the de-noised
data shows that only one multiplicative neuron with a bias of ੈ੅ = 0.14 contributes to the
additive layer. ঒e bias of the additive neuron is ੅ = −0.2. ঒e INN hyperparameters are
listed in Table A.1. It is worth mentioning that all of the hyperparameters were selected
via a grid search technique applied to the subset FD001 only, and then the same values
were also applied to the subset FD003. ঒e potential values for each hyperparameter are
shown in Table A.2. Since a combination of activation functions converts the additive
neuron into a multiplicative one, the computational complexity is similar to a vanilla feed-
forward NN, i.e. O(L×N2), where L is the number of layers and N is the number of neurons
on each layer.

Table A.1: ঒e INN model’s hyperparameters.

Dataset Alpha (౵) Lambda (౿) Batches Epochs Multiplicative
Neurons

Additive
Neurons

Learning
Rate

de-noised 1.6 10−5 4 200 32 1 0.01
raw 1.8 10−3 4 200 64 1 0.01

Table A.2: ঒e hyperparameters’ spaces for grid search.
Alpha (౵) [1.1, 1.3, …, 1.9] Multiplicative Neurons [1, 16, 32, 64, 128]
Lambda (౿) [10−5, 10−4, …, 10−2] Additive Neurons [1, 16, 32, 64, 128]
Batches [4, 8, 16] Learning Rate [10−4, 10−3, 10−2, 10−1]
Epochs [100, 200, 300]

঒e created HIs for each sample of the test data are displayed in Figure A.3(bo਄om
le঍), demonstrating successful performance for all three metrics (Mo, Pr, and Tr). ঒e
overall ॲtness score is 2.9461, as depicted in Table A.3, demonstrating that the INN eॱec-
tively combined the de-noised data to produce a greater score for criteria. Whereas the
multiplicative layer has a large number of multiplicative neurons (32) in order to obtain a
concise formula, as expected, only one multiplicative neuron—the one that multiplies the
features ੁ5 and ੁ15—contributes to the output a঍er implementing weight regularization
with sparsity control.

Given directly unprocessed raw data as input, the suggested model produces the fol-
lowing equation:਱ਲ = 0.04ੁ 0.41 ੁ 0.32 ੁ 0.26 ੁ 0.17 ੁ 0.112ੁ 0.25 ੁ 0.314 ੁ 0.215 − ੁ5 + ੁ8 − ੁ9 + ੁ11 + 0.11 (A.2)

where ੁੋ denotes the raw data from sensor ੋ. Since it is more challenging to achieve an
eॱective equation given raw noisy data than de-noised ones if only the ternary format
of the weights is employed, the HI equation contains more terms, as expected. In order
to construct Eq. A.2, some weights of the multiplication layer had to be ॳoat values that
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Figure A.3: HIs constructed by the proposed (INN) and two-stage GP (GP) models, utilizing raw (ॲrst row) and
de-noised (second row) data for 20 test engine units of subset FD001.

were rounded to the closest ॲrst decimal point. Figure A.3(top le঍) displays the created
HIs for each test unit. As can be seen in Table A.3, the ॲtness score for the raw data
is 2.7407, which is lower than the de-noised form. Once more, the proposed INN was
able to eॱectively combine the raw data to generate a be਄er HI in terms of criteria and
interpretability. ঒e number of neurons in the multiplicative layer was doubled (Table A.1)

Table A.3: Scores for HI evaluation criteria of PCA, KPCA, GP, and the proposed model (INN), all trained on 80
engine units from subset FD001, calculated considering the 20 test engine units.

PCA KPCA GP Proposed model Best Sensor (S 8)
Raw 0.99 0.96 0.97 0.98 0.96Monotonicity Denoised 1.00 1.00 1.00 1.00 1.00
Raw 0.92 0.64 0.83 0.92 0.78Trendability Denoised 0.96 0.95 0.97 0.99 0.97
Raw 0.96 0.71 0.92 0.83 0.87Prognosability Denoised 0.97 0.70 0.97 0.96 0.95
Raw 2.87 2.31 2.73 2.74 2.61Fitness Denoised 2.94 2.65 2.93 2.95 2.91

* “Green color → Red color” equalizes “Best result → Worst result” midpoint

Table A.4: Scores for HI evaluation criteria of PCA, KPCA, GP, and the proposed model (INN), all trained on 80
engine units from subset FD001, calculated considering both the 80 training and 20 test units.

PCA KPCA GP Proposed model Best Sensor (S 8)
Raw 0.99 0.97 0.98 0.99 0.97Monotonicity Denoised 1.00 1.00 1.00 1.00 1.00
Raw 0.93 0.60 0.79 0.90 0.74Trendability Denoised 0.97 0.95 0.97 0.99 0.97
Raw 0.93 0.65 0.90 0.81 0.87Prognosability Denoised 0.97 0.68 0.96 0.96 0.94
Raw 2.85 2.22 2.67 2.70 2.58Fitness Denoised 2.94 2.63 2.93 2.94 2.91

* “Green color → Red color” equalizes “Best result → Worst result” midpoint
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since processing raw data is more complicated. ঒is makes training more complex, but
the sparsity control once again eliminates the unneeded weights to still generate a simple
formula. ঒e hyperparameters ౵ and ౿ have to be raised to increase the zeroed weights
and emphasize this process more, respectively, so that this doubling of the neurons can be
compensated. For comparison, the outputs of the most recent study (a two-stage GP model
[3]) are shown in Figure A.3(right), along with the outputs of the proposed approach. It
should be emphasized that although the equation produced from the two-stage GP model
was only applied to and resulted from de-noised data, the same constructed equation was
also used to generate HIs given the raw data in order to make a comparison. Tables A.3
and A.4 present, respectively, the evaluation criteria scores for the test set and for the
whole dataset (100 units). ঒e la਄er is because the prognostic model, which also needs to
be trained on only the training portion, could achieve more accurate RUL predictions for
the test portion when the criteria scores for the entire HIs, including the training and test
portions, are high, rather than only for the test HIs.

঒e developed model using the de-noised data has the best ॲtness score of all (2.95).
PCA-based HI has a close ॲtness score (2.94), but the derived HI equation is complicated
to comprehend. ঒e GP model similarly achieves a high score (2.93); however, the authors
[3]) only took into account the highest-quality inputs (based on the feature extractor in
the ॲrst stage) in the second stage (which has been dedicated to the feature fusion pro-
cess). It should be emphasized that a larger INN including more layers and neurons with
decreasing ౵ could have produced even higher ॲtness scores, but with less interpretability
and more complex functions. ঒e results show that the developed methodology is supe-
rior for the subset FD001 as a result of the highest ॲtness score and, in the meantime, good
interpretability.

Subset FD003
঒e PCA- and KPCA-based HIs for subset FD003, considering the whole dataset, are shown
in Figure A.4. Similar to the subset FD001, sensor 8 has the highest ॲtness score for raw
inputs, 2.56, which has been diminished using the PCA model to 2.29 (-10.55%). ঒is value
for de-noised inputs decreased from 2.80 (sensor 8) to 2.47 (-11.79%). In contrast to the
subset FD001, the KPCA model provides slightly be਄er HIs compared to the PCA model,
with scores of 2.37 and 2.49 for raw and de-noised inputs, respectively. However, they are
still less than the best input (sensor 8).

঒e INN model constructed the following equation a঍er training with 80% of the de-
noised dataset: ਱ਲ = −3.04ੁ5ੁ8ੁ9ੁ10ੁ16ੁ14ੁ15 − 1.51 (A.3)

where ੁੋ denotes the de-noised data from sensor ੋ. In comparison to Eq. A.1 for the subset
FD001, although the equation format has changed, the same sensors are involved, except
for sensor 16 (ੁ16) which was the diॱerent sensor used in subset FD003. Although the
same sensors were included because the objects (engines) are of a special model, the new
sensor 16 was also included in the formula, possibly because the subset FD003 contains
engines that have two failure modes (rather than one), and thus this sensor likely carries
the information related to the failure modes. As can be seen, mainly multiplication neu-
rons contribute to a bias of the additive neuron, which is ੅ = −1.51. It should be mentioned
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Figure A.4: First principal component of the PCA and KPCA applied to the raw (ॲrst row) and de-noised (second
row) entire dataset of subset FD003 given 100 engine units

Figure A.5: HIs constructed by the proposed (INN) and two-stage GP (GP) models, utilizing raw (ॲrst row) and
de-noised (second row) data for 20 test engine units of subset FD003.

that the INN hyperparameters for the subset FD003 are the same as the FD001 (Table A.1)
since the purpose is also the interpretability rather than purely the high criteria scores.
঒e created HIs for each sample of the test data are displayed in Figure A.5(bo਄om le঍),
demonstrating successful performance for all three metrics. ঒e overall ॲtness score is
2.8624, as depicted in Table A.5, conॲrming the INN’s performance.
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Table A.5: Scores for HI evaluation criteria of PCA, KPCA, GP, and the proposed model (INN), all trained on 80
engine units from subset FD003, calculated considering the 20 test engine units.

PCA KPCA GP Proposed model Best Sensor (S 8)
Raw 0.99 0.98 0.96 0.99 0.97Monotonicity Denoised 1.00 1.00 0.99 1.00 1.00
Raw 0.90 0.88 0.58 0.91 0.78Trendability Denoised 0.98 0.98 0.93 0.87 0.97
Raw 0.59 0.63 0.61 0.90 0.92Prognosability Denoised 0.59 0.63 0.60 0.99 0.94
Raw 2.47 2.50 2.15 2.80 2.67Fitness Denoised 2.57 2.60 2.52 2.86 2.91

* “Green color → Red color” equalizes “Best result → Worst result” midpoint

Table A.6: Scores for HI evaluation criteria of PCA, KPCA, GP, and the proposed model (INN), all trained on 80
engine units from subset FD003, calculated considering both the 80 training and 20 test units.

PCA KPCA GP Proposed model Best Sensor (S 8)
Raw 0.99 0.99 0.96 0.99 0.98Monotonicity Denoised 1.00 1.00 0.99 1.00 0.99
Raw 0.75 0.75 0.43 0.86 0.68Trendability Denoised 0.92 0.87 0.73 0.83 0.86
Raw 0.56 0.63 0.60 0.89 0.90Prognosability Denoised 0.56 0.62 0.61 1.00 0.94
Raw 2.29 2.37 1.99 2.74 2.56Fitness Denoised 2.47 2.49 2.33 2.82 2.80

* “Green color → Red color” equalizes “Best result → Worst result” midpoint

Given directly unprocessed raw data of the subset FD003 as input, the suggested model
produces the following formula:

਱ਲ = −0.024ੁ 0.21 ੁ 0.22 ੁ 0.15 ੁ 0.36 ੁ 0.27 ੁ 0.28 ੁ 0.39 ੁ 0.111 ੁ 0.312 ੁ 0.314 ੁ 0.216ੁ 0.114 ੁ 0.115− 0.1(ੁ1 + ੁ2 − ੁ6) − 3.29 (A.4)

where ੁੋ denotes the raw data from sensor ੋ. Similar to the subset FD001, to construct Eq.
A.4 for the noisy data, some weights of the multiplication layer had to be ॳoat values that
were rounded to the closest ॲrst decimal point. Figure A.5(top le঍) displays the created
HIs for each test unit. As can be seen in Table A.5, the ॲtness score for the raw data is
2.7893, which is lower than the de-noised form. Again, the suggested INN was successful
in combining the raw data to produce a be਄er HI in terms of criteria and interpretabil-
ity. Training becomes more complicated as a result, but the sparsity control once more
excludes the extra weights to produce a straightforward equation.

In Figure A.5, the outputs of the INN and the two-stage GP model [3] are displayed
for comparison. It is important to note that, even though the equation generated by the
two-stage GP model was the result of applying to only the de-noised data of the subset
FD001, the same built equation was also used to obtain HIs for the subset FD003 in order to
compare results. Tables A.5 and A.6 present, respectively, the evaluation metrics scores for
the test set and for the whole dataset. Regarding the la਄er, it should be again emphasized
that if the criteria scores for the complete set of HIs (both the training and test) are high,
it will increase the accuracy of RUL predictions for the test portion.

঒e INN model using the de-noised data has the highest ॲtness score (2.86) compared
to the other models. PCA and KPCA models generated HIs with lower ॲtness scores,
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and the extracted HI formula is also complicated to understand. ঒e GP model achieves
the lowest score; however, the used equation has been extracted from only the subset
FD001. ঒e ॲndings demonstrate that the INN model performs be਄er because of its high
ॲtness score and, concurrently, its high interpretability, i.e., the equation of the built HI
can be interpreted and is readable in terms of the inputs. In contrast to the thousands of
parameters in typical DL models, the number of parameters in HI equations of INN, given
de-noised inputs, is 8 and 9, and given raw inputs, it is 14 and 18, for subsets FD001 and
FD003, respectively.

Health indicator threshold
Since the HI labels were simulated according to a SSL framework with an initial range of
[0–1] [4], which can be scaled in any desired range, like [0–10], the end limit was already
considered as the threshold of HI for the simulated labels. However, the true threshold of
the designed HI for the Time-To-Failure should be selected (or calculated) a঍er the training
phase, considering the constructed HIs rather than the simulated HIs. With this in mind,
the mean value of the constructed HIs at the EoL or at a predeॲned level based on the
intended reliability and safety as well as uncertainty could be selected as the threshold.
For example, the range of the simulated labels has been scaled to [0–10] for the subset
FD001, while the range for subset FD003 is [0–1] without any scaling, which proves that
the employed SSL model is insensitive to the range of labels and only the pa਄ern of targets
is important. However, as explained, the constructed HIs are the basis for determining
the threshold. With this in mind, for subset FD001, the threshold considering the raw
data-based constructed HI is 8.56 and the threshold considering the de-noised data-based
constructed HI is -24.04 according to the mean value of the predicted HIs in the training
phase. Similarly, these thresholds for subset FD001 considering a higher safety conॲdence,
5% earlier than the EoL, are 6.09 and -26.56 for the raw data-based and de-nosied data-
based constructed HIs, respectively. ঒ese threshold values for both subsets in comparison
with the testing phase in order to calculate the error between them are shown in Table A.7.
঒e error is calculated as (঒reshold਽ ੔੄ੋ੐ੋ੐੊ - ঒reshold਽ ੈ੕੖ )/঒reshold਽ ੈ੕੖ , to consider
the test as the basis. ঒e negative errors indicate safer thresholds, while positive ones
indicate earlier failures. It should be noted that the true thresholds (at 100% × EoL) for the
test units are always greater (later) than the thresholds at 95% × EoL based on the training
units, which in turn shows that with a 5% interval, the determined threshold is almost
safe.

Table A.7: Mean value of the constructed HIs at the EoL (100% × EoL) and 5% earlier than the EoL (95% × EoL)
to determine the threshold for the Time-To-Failure, which should be based on the training phase.

Inputs resholdࢩ at 95% × EoL resholdࢩ at 100% × EoL
Training Test Error (%) Training Test Error (%)

Subset FD001 Raw data 6.09 5.70 6.84 8.56 8.55 0.12
De-noised data -26.56 -26.68 -0.45 -24.04 -23.95 0.38

Subset FD003 Raw data 0.84 0.85 -1.18 0.88 0.90 -2.22
De-noised data 0.97 0.99 -2.02 0.98 0.99 -1.01

঒e INN’s ability to directly convolve inputs together is the main reason why it out-
performs other compared methods, which lack the ability to multiply inputs, in terms of
both higher evaluation scores for HIs and interpretability. Furthermore, sparsity control
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through the use of discretized (ternary) weights has improved interpretability by making
the neural network more compact, resulting in more concise output equations.

A.1.4 Conclusions

D esigning an appropriate HI that satisॲes the evaluation requirements of Mo, Pr, and
Tr for prognostics while also being interpretable for an engineering system or struc-

ture in PHM is a challenging task. ঒e proposed methodology in this section, INN, has
the potential to combine the sensory data and create the intended HI. ঒is section showed
the potential of the INNs to achieve ultimate performances by making their prohibitively
large equations compact and readable. As such, the HI function has also been simpli-
ॲed by combining the multiplicative and additive neurons with the discretized weights
employing sparsity control. It was shown that even when increasing the number of neu-
rons, the extracted equation is still constructed only by the contributions of a bunch of
neurons by controlling the hyperparameters ౵ and ౿. ঒e results demonstrated that the
proposed methodology in this section is superior based on its combined highest score and
interpretability.
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A.2 HIs using Acoustic Emission

Figure A.6: HIs constructed by diॱerent ensemble learning methods applied to the 2੐ੇ framework (with A.1 PCA
version implemented) utilizing acoustic emission data.
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Figure A.7: HIs constructed by different ensemble learning methods applied to the 2੐ੇ framework (with B.1 PCA 
version implemented) utilizing acoustic emission data.
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Figure A.8: HIs constructed by different ensemble learning methods applied to the 2੐ੇ framework (with A.2 PCA 
version implemented) utilizing acoustic emission data.
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Figure A.9: HIs constructed by diॱerent ensemble learning methods applied to the 2੐ੇ framework (with B.2 PCA
version implemented) utilizing acoustic emission data.
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A.3 HIs using Guided Waves

Figure A.10: Fitness for HT-SSCNN over various subsets (train, validation, and test combinations) and frequen-
cies of GW data in the NASA dataset-layup 1 (ॲtness calculated from Eq. 3.4, considering all units referred to as
‘F-All’).
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Figure A.11: Fitness for HT-SSCNN over various subsets (train, validation, and test combinations) and frequen-
cies of GW data in the NASA dataset-layup 2 (ॲtness calculated from Eq. 3.4, considering all units referred to as
‘F-All’).
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Figure A.12: Fitness for HT-SSCNN over various subsets (train, validation, and test combinations) and frequen-
cies of GW data in the NASA dataset-layup 3 (ॲtness calculated from Eq. 3.4, considering all units referred to as
‘F-All’).
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Figure A.13: HIs obtained by the proposed framework upon GW data with FC-EL for diॱerent datasets, given
all frequency inputs.
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