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EEN STAGE AAN HET WATERLOOPKUNDIG LABORATORIUM

Dit verslag is het resultaat van een aan het Waterloopkundig Laboratorium
(WL, internationaal bekend onder de naam Delft Hydraulics) uitgevoerde
gecombineerde stage- en afstudeeropdracht.
Een periode van zeven maanden (van augustus '91 tot maart '92) is
daartoe doorgebracht op locatie 'De Voorst' (Noordoostpolder) van dit
instituut. Het WL houdt zich bezig met technisch-wetenschappelijk onderzoek
en advisering inzake aan water of andere vloeistoffen gerelateerde
problemen.
Bijvoorbeeld kan men denken aan het bepalen van ontwerpcriteria voor
waterbouwkundige constructies in verband met belastingtoestanden hierop,
aan het bepalen van de gevolgen van sedimenttransport in rivieren, het
voorspellen van waterhoogten, enzovoorts. Het onderzoek wordt veelal
uitgevoerd in opdracht van derden (bedrijven, instanties en overheden) en
is grotendeels toegepast van aard. Ter verbreding van de basis voor het
opdrachtenwerk wordt echter ook vrij fundamenteel onderzoek verricht, vaak
in de vorm van eigen zogenaamde 'speurwerkprojecten' . Hierdoor vervult het
instituut een brugfunctie tussen wetenschap en praktijk.
De kracht van het WL ligt vooral in de combinatie van het gebruik van
enerzijds wiskundige modellen en anderzijds de beschikbare experimentele
faciliteiten. Het heeft een rijke traditie op het gebied van simulatie met
schaalmodellen. Ondanks de toenemende betekenis van geavanceerde computer-
faciliteiten en wiskundige modellen blijven de schaalmodellen van belang
ter aanvulling en als verificatie van de resultaten die met wiskundige
modellen zijn verkregen.
Het WL heeft in totaal (op de locaties in Delft, 'De Voorst' en Haren) zo'n
550 medewerkers, waarvan ongeveer 40% universitair geschoold is. Mijn stage
heb ik uitgevoerd bij de afdeling 'Havens, Kusten en Offshore technologie'.

Als stagiair krijg je indien mogelijk een plaats op de betreffende afdeling
toebedeeld, waardoor je omringd bent door de mensen die de kennis in huis
hebben die voor jouw probleem van belang kan zijn. Je krijgt in elk geval
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een PC tot je beschikking, maar voor zwaar rekenwerk zijn er ook nog andere
mogelijkheden. In het werken aan je opdracht wordt je een enorme vrijheid
gegund; de belangstelling en de grote bereidwilligheid van anderen je te
helpen, geven je verder 'automatisch' de motivatie en drang in je onderzoek
tot resultaten te komen. Terugkijkend is de stage aan het WL voor mij een
interessante en leerzame periode geweest.
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SAMEN VATTING

Doel van deze studie is de
tijdsafhankelijke compressibele
scheidingsvlak tussen gebieden
problemen te kunnen simuleren.
Voor dit soort problemen zijn visceuze effecten van zowel water en lucht

fysische en numerieke modellering van
stromingen met een vrij bewegend

van water en lucht, ten einde impact

verwaarloosbaar. De aanwezigheid van lucht, die meestal nauwelijks van
invloed is op de beweging van vrije wateroppervlakken, is hier wel van
belang: singulier gedrag van de stroming op het moment van impact wordt
hiermee voorkomen.
Ten eerste is onderzocht in hoeverre de beweging van water en lucht kan
worden beschreven als de beweging van een hypothetische vloeistof die zich
bij lage waarden van de massadichtheid gedraagt als lucht, voor hoge
waarden als water (met betrekking tot de samendrukbaarheid). Naar mijn
mening is het echter onmogelijk een realistische toestandsvergelijking te
formuleren voor deze vloeistof (slechts gebaseerd op de massadichtheid).
In de tweede plaats zijn daarom water en lucht apart beschouwd; dat wil
zeggen, behalve de massadichtheid van het mengsel wordt nu ook de fractie
lucht bepaald. Met behulp van deze extra informatie kan een fysisch betere
toestandsvergelijking worden gegeven. Bovendien is nu massabehoud van zowel
water als lucht gegarandeerd.
Vanuit numeriek oogpunt is één van de grootste problemen het vrijwel
discontinue gedrag van grootheden over het scheidingsvlak tussen water en
lucht. Ruimtelijk centraal discretiseren leidt tot onechte oscillaties in
de numerieke oplossing (fenomeen van Gibbs). Waar nodig worden kunstmatig
dissipatieve termen toegevoegd (op een behoudende manier), die deze
oscillaties 'wegfilteren'. Hoewel het scheidingsvlak zo uitsmeert over een
aantal roosterpunten, werkt deze 'interface-capturing' methode redelijk
en lijkt bruikbaar voor simulatie van impact problemen.
Enkele één-dimensionale berekeningen zijn uitgevoerd en vergeleken met
analytisch verkregen oplossingen.
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SUMMARY

The object of this study is the physical and numerical modeling of
time-dependent compressible flow with a moving free interface between
regions of water and air, in order to simulate impact phenomena.
For this type of problem the effect of viscosity of both water and air is
negligible. The presence of air, which often can be neglected for other
free-surface problems, is very important for impact problems: it prevents
singular behaviour of the flow at the moment of impact.
First, it is investigated to what extent the motion of water and air can be
described by the motion of a hypothetical fluid, which for small values of
its density behaves like air, for large values like water (with regard to
its compressibility). However, in my opinion it is impossible to formulate
arealistic equation of state for this fluid (merely based on its density).
Second, water and air are considered separately; that is, the fraction air
in the mixture is considered besides its density. A better equation of
state can be given using this information. Furthermore conservation of mass
for both water and air are guaranteed.
From a numerical point of view, one of the main problems is the almost
discontinuous behaviour of quantities at the interface between water and
air. Central-space discretization leads to spurious oscillations in the
numerical solution (Gibbs' phenomenon). Artificial dissipation terms are
added to the equations when necessary (and in a conservative way) , which
'filter out' these oscillations. Although the interface smears out over
some grid cells, this method of interface-capturing works well and seems
appropriate for the computation of impact phenomena.
Some (one-dimensional) computations are carried out and compared with
theoretically obtained results.
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CHAPTER ONE THE PHYSICAL PROPERTIES OF WATER AND AIR

§ 1 Liguids and gases

When we want to describe the motion of water and air, it is important to be
familiar with some elementary properties of these fluids. Aspects which are
of importance to this study, are briefly resumed in this chapter. It is
strongly based on the first chapter of [3].

The first remark to be made, is that under the circumstances we are
interested in, water is in the liquid phase, while air is in the gaseous
phase. The distance between the molecules in a gas is about 10 times the
distance between the molecules in a liquid.
The molecules in a gas are very weakly attracted to each other, they move
almost independently -excluding the occasional collisions- and the
importance of the potential energy is negligible compared with the kinetic
energy for the contribution to the force field.
In liquids, on the other hand, the arrangement of the molecules is
partially ordered. The motion of molecules (or groups of molecules) is much
more determined by the strong force field of the neighbors. Consequences
for the macroscopic mechanical behaviour of liquids and gases are:

• the mass density of liquids is much larger than the mass density of
gases; in fact this distinction between the two phases is not very
fundamental: the main difference is that for a given acceleration,
the change in momentum for a liquid will be much larger than this
change for a gas; the momentum of a gas is often negligible compared
with the momentum of a liquid;

• gases can be compressed much more readily than liquids; so, for a
given change in pressure, in the case of a gas the specific volume
will change much more than in the case of a liquid; compressibility
of a liquid is negligible compared with the compressibility of a gas.
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50 the motion of a fluid will strongly depend on its compressibility and
its density. Besides these properties, the motion for example also may
depend on the viscosity and the temperature of the fluid. However, for the
type of flow that will be considered here (impact problems), we shall in
the first instance neglect the contribution of viscous forces to the
motion. This assumption seems acceptable (at least until the moment of
impact).
First, water and air are not very viscous fluids. In a large area the
convective terms will be large compared to the viscous terms in the
equations of motion.
Second, the impact phenomenon is a very fast one: the time needed for the
development of boundary layers (in which viscous terms are dominating) is
too large.
We shall assume that changes in temperature and entropy are small. Then we
can, for example assuming the flow behaves isothermalor isentropical, find
arelation (the equation of state) between the pressure and the density of
the fluid. This means the motion of the fluid is determined (given external
forces, initial and boundary conditions) by the continuity equation and the
momentum equations, since the pressure can be replaced by some function of
the fluid density.

§ 2 Eguations of state for water and air

Volume changes which take place under the influence of longitudinal waves
at ordinary frequencies are adiabatic, not isothermal. This can be seen by
examining the properties of ordinary matter ([2], chapter 5, section 7).
Therefore the use of an equation of state which describes isentropic
(reversible and adiabatic) changes might be most realistic. An accurate
isentropic relation between the density of water p wand the pressure pw
reads ([3], chapter 1, section 8, equation (1.8.1))
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(1.2.a)

where p is the density of water at atmospheric pressure pand thewO wOo 3parameters are chosen n=7, 8=3000. At 15 C one can take p = 999.1 kg/m ,wO
while p =1.013'105 Pa. This relation only holds for pure water.wO
Assuming air behaves like an ideal gas and changes are isentropic, the
density Pa of air and the corresponding pressure Pa are related via

= p (p lp )'1aO a aO
(1.2.b)

where at atmospheric pressure p =1.013'105 Pa and 15 °c the density of airaO
is about p = 1.226 kg/m3

• The parameter '1 represents the ratio of the
aO

specific heats c and c . For air, '1=1.4approximately.
p v

In the following we shall write p = p = p for the atmospheric pressure.o wO aO
When the densities Pw and p do not differ very much from pand pa wO aO
respectively, the linearized versions of (1.2.a) and (1.2.b) wil! be good
enough for calculation of the pressure. The linearized equation for the
pressure in water then becomes

(1.2.c)

For the pressure in air we find

p -
a

340
2(p - P ) .a aO

(1.2.d)

§ 3 Compressibility and the speed of sound

The speed with which pressure disturbances are propagated in a fluid is
called the speed of sound c, which may be defined as
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c = Ii(~) ,
8p 5

(1.3.a)

where the subscript 5 says the partial derivative holds under isentropic
conditions. In that case c is only a function of the density p. Applying
this definition of the speed of sound to the equations (1.2.c) and (1.2.d),

we find for the speed of sound in water and air respectively c ~ 1460 m/s
w

and c ~ 340 m/s.
a

The isentropic compressibility K of a fluid is defined as

K = .!(~) =_1
P 8p 5 2pc

The compressibility of water and air are approximately K ~ 4.7'10-10 Pa-1
w-6 -1and K ~ 7.1,10 Pa . As expected, it is much easier to compress air than

a

(1.3.b)

water.
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CHAPTER TWO AN ATTEMPT TO MODEL THE FLOW

§ 1 Introduction

We want to describe the motion of water, air and the interface between
these phases in a certain domain. When this domain is divided up into grid
cells for numerical computation, there will be a number of cells containing
both water and air. So although investigation of two-phase flow is not our
aim, we have a problem here: it will be necessary to have an equation of
state that can be used in these cells.
It has already been mentioned that compressibility and density of the fluid
are important for its motion. In this chapter we will investigate whether
the motion of both water and air (or perhaps more important: a liquid and
a damp phase) can be treated by considering a hypothetical fluid with very
variable density and compressibility. If an equation of state for this
fluid can be found that is acceptable from a physical point of view, we
might obtain a relatively simple model for the flow, which doesn't have the
problem mentioned above. This idea will be worked out, the description of
this idea can be found in [1].

§ 2 Proposing a simple model

Consider a fluid which has variable mass density p(x,t), where x denotes a
position in space with for example Cartesian components x, y and z. The
variable t denotes time.
The velocity of the fluid is given by the vector u(x,t), which may have
Cartesian components u=u(x,t), v=v(x,t) and w=w(x,t). The pressure in the
fluid mayalso depend on position in space and time and will be denoted by
p=p(x,t ).
The continuity equation, which expresses conservation of the mass of the
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fluid reads

ap =at + 'iJ. (pu) O. (2.2.a)

For the present we shall assume that viscous effects are negligible, and
thus the equations of motion reduce to the Euler equations

a~~u) + 'iJ. (puu) = -'iJp + pg . (2.2.b)

The vector g may represent some external force acting on the fluid, for
example gravitation.
Furthermore we assume the existence of an equation of state that relates
density and pressure in the fluid, so we may write

[(p,p) = 0 (2.2.c)

where [ is some known function relating pand p.
Ihis relation should be adequate for both water and air, and this may be
possible because the mass-densities of these fluids differ very much. When
the pressure p can be resolved from (2.2.c), then it can be eliminated from
the equations of motion. Given some initial state of the fluid, its motion
is then determined, the only unknowns pand u can be found from equations
(2.2.a) and (2.2.b).

We shall have to specify (2.2.c) now in a way that is physically relevant.
In the first place it should be noted that the pressure in any fluid must
increase when its density increases. Iherefore we may assume the existence
of a function g which satisfies [(p,g(p))=O and is monotonously increasing,
continuously differentiable, so we may write (inverse mapping theorem)

p = g (p ) and p = g-1(p) . (2.2.d)

Ihis defines a unique relation between density and pressure.
However, this relation also must represent the compressibility of air for
low densities of the fluid (sinee g is an increasing function also for
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small values of the pressure). For high density the fluid should represent
water and thus have its compressibility. A simple equation of state
therefore at least should satisfy

pep) - Ps =
{

C2(P_P )a aO
2

C (p-p )
w wO

when p<p aO (2.2.e)
when p:!::p

wO

where p is some reference pressure and the other variables have the same
s

meaning as they had in the preceding chapter. The value of p is not very
s

important: the motion is determined by pressure differences (see (2.2.b),

not by absolute values of the pressure.
Notice that (2.2.e) also can be written as

{ PaO
+ (p-p )/c2 when p<p

pep) s a s (2.2.f)=
«:+ (p-p )/c2 when p:!::p

s w s

By this definition it makes sense to define the interface between water and
air as the set of points for which p=p , to define the area that contains

s

air by the set of points for which p<p and the area that contains water by
s

the set of points for which p>p .
s

Now (2.2.f) has a discontinuity for p=p and thereby does not satisfy our
s

conditions. It can however be smoothened using the blending functions as
described in appendix I. For example, when we define

(2.2.g)

relation (2.2.f) can be approximated by the following bijection

( ) ( p-ps) (p c-2Ps)= 1-B(p-p ,0-) p + -- + B(p-p ,0-) p +
s aO 2 s wO

C

(2.2.h)

a w
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and the smaller the parameter ~, the better this approximation will beo A
physical demand is, as mentioned before, that (2.2.h)

increasing mapping. This is true:
is a monotonously

dp =
dp

1-B
+

B
2

C

dB
dp (2.2.0

2
C
a w

which is positive for any realistic value of the pressure p, since

• O~B~ 1 by definition,
• dB/dp is positive (B is monotonously increasing) and
• the coefficient of dB/dp is positive (for realistic values of pl.

The requirement that (2.2.h) should be an increasing function may even be
too weak: since (2.2.i) represents the inverse of the square of the speed
of sound, we only claim this square be not negative (what is the meaning of
a complex speed of sound?); it might be more realistic to assume it has a
a certain minimum value. This will be discussed later on.

The equations (2.2.a), (2.2.b) and (2.2.h) determine the flow of some
hypothetical fluid with (2.2.h) the equation of state of this fluid. Now we
have to find out whether this model is appropriate in describing the flow
of our interest.

§ 3 Qualitative interpretation for water and air

The hypothetical fluid is interpreted as water when its density is large,
or, according to the preceding section when p>p , and as air when its

s

density is small, that is, when p<p . This means we can already draw the
s

following conclusions with respect to the model:
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• the pressure in water is always higher than the pressure in air and

there will be a force field caused by differences in density: water will

tend to expand in the direction of areas containing air;

• areas, followed in a Lagrangian way, in which p-p changes sign,
s

implicate the violation of conservation of water and air, although the

total conservation of mass (of the hypothetical fluid) is guaranteed

(by equation (2.2.a»;

• although the model takes the elasticity of air into account, pressure
peaks w i lI only be found in water; this is a consequence of the

monotonie pressure-density relation.

For impact problems the air between the water and the structure plays an
important role. We can distinguish two cases:

1) a volume of air is locked up between the water and the structure and is
not able to stream out; in this situation the pressure in the air may
become high and may determine the force on the structure; considering
the conclusions up here, the proposed model is not good enough to
describe this flow;

2) the air between the water and the structure can stream out easily;
although its motion may not be described very well, the air prevents the
singular behaviour of the impact; since the most part of the impact
force comes from the water, the model may still be good enough to deal
with this type of flow.

These rather qualitative remarks already show the restrictions of the
model. In the following sections we shall try to obtain more resul ts by
analyzing the one-dimensional case of the model.
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§ 4 The model in one dimension

The one-dimensional version of the equations (2.2.a) and (2.2.b) reads, for
the case no external forces are present,

a a
at(p ) + ax(pu) = 0

~t(pu) + ~X(p+pu2) = 0

(2.4.a)

(2.4.b)

These equations represent the conservation of mass and momentum. In general
a system of differential-equations which represent conservation laws can be
written as (in one dimension)

a aat(w) + ax(F(w») = 0 . (2.4.c)

Every component of the vector w integrated over a closed volume does not
depend on time, or, is conserved. F(w) is the flux-function which
determines the motion of the conserved quantity inside the volume.
Notice that p(x,t) and u(x,t) which satisfy (2.4.a) and (2.4.b) are
differentiable functions, which from a physical point of view is not
necessary. Therefore it is more natural to write (2.4.a) and (2.4.b) in
integral form, as a matter of fact these equations are derived from
integral forms.
Integration of the equations in question leads to

X2J (p(X,t2»)dx
X=Xl

X2J (p(x,tl»)dx
X=Xl

=

t2
= J (p(X2,t)U(X2,t»)dt

t=tl

t2J (p(Xl,t)U(Xl,t»)dt
t=tl

(2.4.d)

and
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X2J (p(X,t2)U(X,t2»)dx
X=XI

X2J (p(X, ti )U(X,ti»)dx
X=XI

=

(2.4.e)

t2J (p(X2,t)
t=tl

t2
+ P(X2,t)U2(X2,t»)dt - J (p(XI,t)

t=tl

. 2
+ p(XI,t)U (xl,t»)dt

These equations are valid for any Xl, X2, ti and t2. Furthermore p(x,t) and
u(x,t) can satisfy (2.4.d) and (2.4.e) without being differentiable or even
continuous.

§ 5 Conditions for the existence of a discontinuity

By applying conservation laws to small volumes containing a discontinuity,
conditions for the existence of such a discontinui ty can be found. These
conditions are the well-known Rankine-Hugoniot relations and will be
derived in this section. Consider the following initial state:

p(X,O) = pi for X < xM
p(x,O) = p2 for X > ~
u(x,O) = UI [or X < xM
u(x,O) = U2 [or X > xM

and let

p(pl) = pi and p(p2) = p2

V
-7

pi UIpi
p2 U2p2

Xl X2

19



Thus we have a discontinui ty at x = xM . Assume that this discontinui ty

moves with (unknown) speed v. Conditions for the existence of such a

discontinuity can be found by applying the conservation laws (2.4.d) and

(2.4.e).

Therefore let Xl < ~, X2 > ~ , ti = 0 and ta = f1t. For smal! f1t

equation (2.4.d) then reduces to

or, the discontinuity travels with speed

v =
p2·U2 - pl·Ul

p2 - pl (2.5.a)

Equation (2.4.e) yields

(2.5.b)

Substi tution of (2.5.a) leads us af ter some rewri ting to the fol!owing

result:

2(U2 - til) =
(p2 - pl)(p2 - pl)

Pl·p2
(2.5.c)

This relation wil! have to be satisfied crossing any discontinuity. When

this discontinui ty is a contact-discontinui ty, for example the interface

between water and air, we have pl*P2, pi=pa (neglecting surface tension)

and therefore Ul~U2~V.
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§ 6 Implications for the equation of state

The result of the preceding section has consequences for the choice of the
equation of state.
Choosing a pressure-density relation is in fact nothing else than choosing
the sound speed c (or the compressibility) as a function of the density. As
mentioned in § 2, arealistic relation should obey

c(p) = c (~ 340 mis)
a

for p<p aO

c(p) = c (~ 1460 mis)
w

for p>p
wO

and choosing a pressure-density relation is in fact the same as connecting
the points (p ,c) and (p ,c) in the (p,c)-plane in a convenient way.aO a wO w

c
w

e-------

speed ofsound
c
l'

?

c ---e
a

-7 denslty p

The difference in pressure between points with density PaO and Pwo is given
by

p(p ) - p(p ) =wO aO

PwO

J dp d
dp P

PwO

= J c2(p)dp

P=PaO

(2.6.a)

p=p aO

We shall distinguish two characteristic cases now.
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Case I:

According to the result of the preceding section the left-hand side of
(2.6. a) should vanish, therefore it is necessary to choose the speed of
sound

c ~ 0 mis for P < P < PaO wO

This means the pressure will be about constant for P < P < P . In thataO wO
range equation (2.4.b) therefore can approximately be written as

a a a a
= Pat(u) + uat(p) + uax(pu) + (pu)ax(u) =

(a a ) (a a)= u at(p) + ax(pu) + P at(u) + u ax(u) = o .

So the equations of motion in this area become

a a
at(p) + ax(pu) = 0

a aat(u) + uax(u) = 0

(2.6.b)

(2.6.c)

Equation (2.6. c) is known as Burgers' equation. When the velocity u is
constant it becomes a triviality and we are merely solving the continuity
equation. Note that the flow, as a consequence of the extreme low speed of
sound, becomes supersonic very easily in the areas of question.

Case II:

Now consider the case in which we want to have some more realistic (?)

values for the speed of sound. For example, let it be greater than a
minimum-value c for all p with p < P < P . Applying equation (2.6.a)min aO wO
yields
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pep ) - pep ) =wO aO

PwO

J dp d
dp P

2> e (p -p )mln wO aO
(2.6.d)

p=p aO

This means that the difference in pressure between points with density p aO
and p , when for example e. = 10 m/s is chosen, is already somewhere

wO mln
about 105 Pa! (In fact it is much more, because the substituted value emln
for e in (2.6.d) yields an underestimation.)
Now consider the situation of water surrounded by air. The change of
momentum of the fluid is given by

a
at(pu) = a a ( 2)- -cp) - - puax ax =

a (2) a (2) a ( 2 2)= - ax pc - ax pu = - ax p(e +u ) (2.6.e)

The magnitude of the terms on the right-hand side is now estimated for the
case we are crossing the water-air surface:

a- _cp) c::
ax

according to the foregoing, while for a typical value of the fluid-velocity
of 5 m/s,

= 105
0.25 t;}{

where the momentum of air is neglected. It is seen that in this case the
change of momentum is mostly caused by the density-gradient.
This means that the development of the flow at the surface in time is
determined by a term which is physically completely irrelevant.
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§ 7 Conclusions

The consequences of the preceding are far-reaching, because both above
discussed cases are unacceptable (from my point of view). The implications
that follow from the discussion in § 6 to me are:

a) If we want to capture the interface between water and air in arealistic
way, it is necessary that the speed of sound is very smallover a wide
density-range. If this not is the case, a volume of water surrounded by
air will 'explode'.

b) A very small speed of sound implies the flow will be supersonic. The
momentum-equation is replaced by Burgers' equation in that case.
'Information' then travels with the speed of the fluid and there will be
no possibility of 'a wall feeling a mass of water coming nearer'.
Moreover, occurrence of shocks is possible; these shocks however do not
have any physical meaning in our situation.
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CHAPTER THREE IMPROVING THE MODEL

§ 1 Introduction

The problems we had in the preceding were mainly due to the impossibility
of formulating a good equation of state. We merely used the density of the
'air-water mixture' to formulate this equation. A more realistic equation
of state can probably be found when we have more information (except this
density), for example when we know the volume-fraction or mass-fraction of
air in the mixture. In this chapter a proposition is made for an improved
model. This means we introduce a two-phase flow in its most simple form.

§ 2 Some elementary definitions

Consider a small volume OV which contains water and air. Assume that a
volume-fraction <X consists of air and consequently a fraction 1-<x that
consists of water. The total mass of air in OV is denoted by M

a
the total

mass of water by M . Now define
w

M
a for O<<x:Sl, (3.2.a)Pa= <x.oV

which is the density of air with respect to the volume <X·OV.Similarly we
write

M
w for O:S<x<l, (3.2.b)

which is the density of water with respect to the volume (l-<x)oV. It makes
sense to define an average mass-density P in the volume OV by
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P
__ { «.

ap + (I-a)p
a w

Pa

a=O

O<a<l

a=l

(3.2.c)

since substitution of (3.2.a) and (3.2.b) shows that p is equal to the
quotient of the total mass M +M and the volume aV.

a w
Using equation (3.2.c) we find

p -p
w , 0:Sa:s1 . (3.2.d)a = p -p

a w

Besides the volume-fraction air a in the mixture it also may be useful to
define the mass-fraction air k in the mixture

M
k = ~_a:-:-M+M

a w
(3.2.e)

Using the foregoing equations we can also write

k =
ap

a and 1-k =
(l-a)p

w (3.2.f)
p p

Replacing a by the right-hand side of (3.2.d) and some rewriting yields

1 k 1-k= + (3.2.g)

§ 3 The eguations of motion

The flow considered here consists of two fields (water and air) which are
assumed to be inviscid. These fields communicate in two ways: they cannot
occupy the same volume at the same time (i.e. a+(l-a)=l ), and through the
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pressure terms. One may assume both water and air have its own velocity
field; this assumption is essential when we for example want to describe
small (on sub-cell scale) air-bubbles rising in water. However, the
modelling of this type of flow becomes very complicated; for example,
it is well-known that the velocity of rising air-bubbles eventually becomes
constant: one should investigate the exchange of momentum of the fields
caused by viscosity to model this phenomenon. Such specific problems
however are beyond the scope of this report, in which we assume the fluids
are inviscid. Therefore, our model will be based on the hypothesis that
there should be an equation of motion for the mixture, like we in fact did
in the preceding chapter. The difference will be that we shall require
conservation of mass for water and air separately. This will enable us to
formulate a more realistic equation of state.
Referring to the preceding section, we notice that the density of air in
the mixture is a'p and not p , so when u is the velocity of the mixture,

a a

conservation of the mass of air requires

(3.3.a)

and in the same way the conservation of the mass of water can be written as

(3.3.b)

These equations can be written in terms of k and p (instead of
by means of equations (3.2.f), we then have

a, pand p )
a w

:t(kP) + ~. (kpu) = 0 (3.3.c)

and

:t((l-k)p) + ~. ((l-k)pu) = 0 . (3.3.d)
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Adding these equations, it follows that

ap =at + ~. (pu) 0, (3.3.e)

which states that the total mass of the mixture is conserved. It is clear
that any combination of two of the three equations (3.3. c), (3.3. d) and
(3.3.e) guarantees the conservation of mass for both water and air.

It may be imagined that the fact that both water and air have the same
velocity field, implicates that the mass fraction k of air in the mixture
is constant when we move along with the fluid. This is so indeed, since k
satisfies

Dk
Dt = ak + u.~kat =

= :t[~a] + u.v[a:a] =

1 a ) _ [apa]ap + (*). \1(apJ lap u]= - -(ap - -+- .~p =p at a 2 atp p

= ,{'l....(ap ) + u.V(ap.l]- [ap;] (:~ + u.~p) =p at a p

.t.[~(ap ) + u.~(aPJ + apa(v.ul] [ap] a= - ; (a~ + u.~p + p(~.u») =p at a p

= = o . (3.3.f)

So, following the motion of the fluid, k is constant.
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As mentioned up here, we assume the existence of an equation of motion for
the mixture, that is, we require

aat(pu) + V. (puu) = -Vp + pg (3.3.g)

where p is the pressure in the mixture and g represents possible external
forces. A convenient equation of state has to be found , from which p can
be determined.

§ 4 An eguation of state for the mixture

We now assume both pand k are known, so it would be desirable to have a
function of these variables, which represents the pressure in the mixture.
Assume we have equations of state for water and air, for example the
linearized equations (1.2.c) and (1.2.d). Resuming, we have

p (p ) _ p = c2(p _ P )wwo w w wO
(3.4.a)

and
p (p ) _ p = c2(p _ P ) .
a a 0 a a aO

(3.4.b)

When we consider a water-air mixture, the pressure p in a certain point in
space is still unique. To determine this pressure we should first discuss
what we mean by a water-air mixture.
First, we shall assume both fields (water and air) are not mixing on a
molecular level, as would two gases. So the scale of the regions occupied
by one field is coarser than the molecular. In a way this justifies the use
of equations (3.4.a) and (3.4.b).

Second, effects of surface tension will be neglected. So we shall assume
the pressure p in the mixture is continuous across any interface between
the two fields.
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Therefore we should require the following 'interface condition' :

p = p (p ) = p (p ) .a aww
(3.4.c)

This means Pa and Pw should satisfy

2c (p -p ) =a a aO
2c (p -p )w w wO

(3.4. d)

Furthermore we have

1 k l-k= + (3.4.e)

The result is obvious now. When pand k are known, pand p can be solved
a w

uniquely from equations (3.4.d) and (3.4.e). The pressure p then is found
by means of equation (3.4. a) or (3.4. b). The resulting equation for the
pressure will be derived now.
Equations (3.4.a) and (3.4.b) respectively state

p = p +w wO 2
C

and p = p +a aO 2
C

w a

Substitution of these equations in (3.4.e) yields after some rewriting

(3.4. f)

where /3(p,k) = P c2 + p c2 _ p(kc2 +(1-k)c2)aO a wO w a w

and -r(p,k) = c2c2(p P - p(kp +(l-k)p )) .a w aO wO wO aO

This equation has two solutions for p-po' However, only one of these is
physically correct.
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Define the set ~ byo

~ o
l-k

+ (3.4.g)

Then the physically correct solution is determined by the necessity that

(p ,k ) E ~o 0 0

Using the equations (3.2.f) we can gain more insight in the behaviour of
the coefficients ~ and r in (3.4.f). We find for (po,ko) E ~o'

2 2
= (l-a)p c + ap caO a wO w and (3.4.h)

reminding a is the volume fraction of air in the mixture, O~a~l. (From now
on the subscript 0 express the restriction
instead of ~(p ,k ) et cetera.)o 0
Obviously the only relevant solution to equation (3.4.f) reads

p=p , 50 we shall write ~o 0

p(p,k) - PO = H-~(P,k) + ~2(p,k)-4r(p,k)') . (3.4.i)
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CHAPTER FOUR MA THEMA TICAL ANAL YSIS IN ONE DIMENSION

§ 1 The resulting system in one dimension

The system of equations which describe the motion of the mixture are given
by equations (3.3.c), (3.3.e) and (3.3.g) and read in the one-dimensional
case

a
+ :x(pu )at (p ) = o ,

a a )at(pk) + ax(pku = o and (4. 1. a)

~t(pu) + ~x(p + pu
2
) = pg ,

where p = p(p,k) and g = g(x) a force along the x-axis. This system can
also be given by the equations

ap + uap + ~ = 0at ax r-ax
ak akat + uax = 0 and (4.1.b)

au au 1 ap =at + uax + p ax g.

-- [ p~1Now define w andg=Pl·
g

Then the equations can be written as

aw + Aaw
at = gax

[(aP/~p)IP

0 p

1where A = u 0
(ap/ak)/p u

(4.1.c)

(4.1.d)
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The eigenvalues À of matrix A follow from

DET(À!-A) = (À-u)(À-u)2- 8p/8p) = 0 .

We find

À = u, À = u-18p/8P and À = u+18p/8P (4.1.e)

thus the system is strietly hyperbolie provided 8p/8p>0.

§ 2 The speed of sound of the mixture

The behaviour of solution (3.4. i) for a small disturbanee op in the
density, resulting in a pressure disturbanee op = pep +op,k ) - Po ' ean beo 0
found by approximating (3.4.i) round (p ,k ); Taylor expansion yieldso 0

whieh, sinee ~ = 0, reduees too

[

(8~/8P) 1op = - ~o 0 op + O(op2) . (4.2.a)
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2Defining c = Op/Op, we can write, neglecting second and higher order terms
o

in op,

1
P c2 + p c2 - P (k c2 +(l-k )c2)aO a wO w 0 0 aOw

=2
Co C2c2(k p +(l-k)p )a w 0 wO 0 aO

and some rewriting of this relation (using equation (3.2. g) yields the
nice expression

=
ko----+

(p c)2
aO a

1-ko (4.2.b)
1

2(p c )o 0
2

(p C)wO w

Some combinations of values are shown in the table down here. The variable
c may be interpreted as the speed of sound in the mixture for (p ,k ) E ~o 0 0 0

(which is obvious considering the eigenvalues of the system of equations
found in the preceding section).

3 cn[mlsec)k p [kg/m )
-0 ~
0 999.10 1460.00
10-5 991.06 132.89
10-4 924.13 45.23
10-3 551. 60 23.97
10-2 109.64 38.14
10-1 12.17 108.71
1 1.23 340.00

For the derivation of equation (4.2. b), we made use of the fact that
(p ,k ) E ~ (since we used 7 =0). However, equation (4.2.b) is valid in

o 0 0 0
general, which can be seen from the fact that the choice of p (ino
definition (3.4.g) is an arbitrary one. So the subscript 0 in (4.2.b) may
be omitted. Furthermore equation (4.2.b) can also be derived as follows.
The density p may be regarded as a function of pand k. Defining c2 as the
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partial derivative of p with respect to p (thus fixing k), we may write

= ap
ap = _p2 a ( 1 )ap p

1
2

C

which by equation (3.4.e), (3.4.a) and (3.4.b) becomes

2[dPa a 1 dpwall
-p dp apa ( P ) + dp apw ( P ) = _p2[_1_.~

2 2
C Pa a

1
12

C
w

and thus leads to (compare with (4.2.b»

1 k= +
l-k (4.2.c)

(p C )2
w w

This equation is also given in [4].
Using equations (3.2.f) and recalling the definition of the compressibility
of a fluid (see equation (1.3.b» this result can be written in its most
simple form:

K = a'K + (l-a)'K
a w

(4.2.d)

50 the compressibility K of the mixture depends linearly on a, the
volume-fraction of air, and is bounded by the compressibility K of air and

a

the compressibility K of water, K ~ K ~ K
w a w

Arelation for the speed of sound c in terms of the volume-fraction air a,

is given by van Wijngaarden in [5]. This relation and its equivalence with
(4.2.c) is shown in appendix 11.

When we take p ~p and p ~p we can give c as a function of k. In that
a aO w wO

case we find c has a minimum value for k ~ P lp . The speed of sound cae wo
for that value of k is about 24 mlsec . FIGURE I shows a plot of the speed
of sound for different values of the pressure p.
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From (4.2.c) it can be seen that c = / ap/ap is strictly positive, and
therefore the system of equations (4.1.c) is strictly hyperbolic.
The non-linearity of the system is not only caused by the term u:~ in the
momentum equation, but also due to the strong variation of c.

§ 3 Stationary solution

The existence of a stationary solution to the equations (4.1.b), where g
represents gravity, is obvious from a physical point of view. The
mathematical condition for the existence of this solution reads

dp = pgdx
(4.3.a)

which seems to be a simple equation at first sight. However, p is given by
(3.2.c), so we get

where p (x) and p (x) may be replaced using equations (3.4.a) and (3.4.b).
a w

This leads to

P::O)
a

(4.3.b)

To be able to solve this differential problem, it is necessary that the
distribution o:(x) of the air-fraction is known. When 0: is constant, the
right-hand side of (4.3.b) does not depend on x, and one can easily find an
exponential solution for p.
However, it would be interesting to take a blending function (appendix I)
for 0: , and thus having a part containing water, a part containing air,
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smoothly separated. I have not been able to solve this problem, although it
seems interesting to me. Of course numerical solution of equation (4.3.b)

is straightforward for a given distribution a(x).
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CHAPTER FIVE NUMERICAL TREATM ENT

§ 1 Introduction

The numerical integration of the system of equations (4.1.a) will be based
on the method that is presented in [6]. This means a finite-volume method
will be used for space-integration, while time-integration is carried out
using an explicit Runge-Kutta scheme. However, the integration here is much
simpler, mainly because:

• the viscous terms are neglected here;
• no energy-equation is formulated;
• only one-dimensional problems wi11 be

calculate complex geometrie quantities)
grid-points will be uniform.

considered (we don't have to
and the distance between the

Despite these simplifications, straightforward integration of the equations
will not be possible. The following points may cause difficulties and
require a special treatment:

• at the interface between water and air very steep gradients of some
quantities (density, fraction air) occur;

• small errors in the density of water give large errors in the pressure,
since water is almost incompressible (in comparison with air);

• in a numerical computation values k<O or k>l may be found, which is not
allowed from a physical point of view (k is the mass-fraction air in the
mixture);

• boundary conditions cannot be imposed (or will lead to spurious
oscillations), since the equations are hyperbolic.

It will be seen that in fact all above problems can be overcome, adding
dissipation terms to the equations. For the interpretation of solutions, we
have to keep in mind these terms are artificial in some sense.
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Remark: in the following we shall write w~=W(X=Xk,t=tn)' wk=w(x=xk,t) and
wn=w(x t=t ) where x =k·~x t =n·~t ~x and ~t fixed steps in, n k' n '
respectively space and time, and k,n E l.

§ 2 Space-integration

In this section the differential-equations we consider,

:t ( p) a pul+ ax( = 0

a a kpu)at (kp) + ax( = 0 (5.2.a)

:t (pu) + :x( p+pu2) = pg .

will be discretized. Since the flow is one-dimensional, it can be
interpreted as the motion of a mixture of water and air in a (frictionless)
tube, with a possible force acting along it. The physical domain is the
interval

!p = [O,L]

The set of points that is used for numerical integration is given by

D = { xk=~x I k=-2,-I,O,I, ...,N-I,N,N+I,N+2; ~x=L/N } .

For each point in D, except the virtual points
'control volume' is introduced now, namely

x ,-2 x ,
-1

X
N+1

and x
N+2

a

Q~ = [x~ , x~ ] , k=O,I, ...,N-I,N.
I\. 1\.-1 1\.+1

The equations that have to be integrated have the form

39



aw aF
at + ax = G. (5.2.b)

5pace-integration of this equation yields

J (~tW(X,t) - G(X,t»)dX + F(xk+1,t) - F(xk_1,t) = 0
Qk

(5.2.c)

and this can be approximated by

(5.2.d)

where Dk represents artificial dissipation. This dissipation is necessary
because the Euler-equations do not provide any natural dissipation-
mechanism and it is necessary to capture 'almost-discontinuities' (see also
the remarks in the preceding section and appendix 111) . This dissipation
is added in the following form:

D~ = (Dx)W~= d - d
l\. l\. k+l/2 k-l/2

(5.2.e)

where

5(2) (2) ( )d = c w - W
k+l/2 k+l/2 k+l/2 k+l k

5(4) c(4) (w - 3w + 3w - w ).
k+l/2 k+l/2 k+2 k+l k k-l

(5.2.f)

The factors 5 are sealing factors, while the variables care 'sensors'
which detect the need for dissipation. Note that (5.2.e) is the discretized
form of
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!J.x aax (5.2.g)

(2 )The parameter c is chosen in the following way:

where v" in the ISNaS-project represents a 'shock sensor'. In our case
there is a discontinuity in the mass-fraction of air k in the mixture of
water and air (the 'free surface' ) and therefore here is proposed to

choose

(5.2.i)

(During a computation a smal! posi tive number e wil! be added to the
denominator, since it may be equal zero.) All terms are positive, so we may

write

, and thereby 0 ~ v,,~1.
The fourth order dissipation will be added when no discontinuity is
present; more precisely, the parameter c(4) is chosen

(4) ( 4)
c"+1/2 = MAX 0, K

(2) )
c"+1/2 . (5.2.j)

The constants K(2) and K(4) and the sealing factors S(2) and S(4) have to

be chosen su eh that time-integration is stabie.
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§ 3 Time-integration

After space-integration we have a system of ordinary differential
equations. The equations in this system look like

(5.J.a)

where Ck and Dk respectively represent the convective and the dissipative
part of the flux. Time-integration of these equations will be carried out

found from w~using explicit three-stage Runge-Kutta scheme; fl.+1 isan wk
by walking through following scheme

(0) fl.
wk = wk
( 1 ) (0) O.6.Llt(C~0)+D~O»)wk = wk
(2) (0) O.6.Llt(C~1)+D~1))wk = wk
(3 ) (0) Llt(C~2)+D~2)) andwk = wk
fl.+1 (3 )

wk = wk

(5.J.b)

In order to save calculation time, sometimes the dissipative fluxes are
evaluated only at the first stage, that is, the following scheme is used:

(0) n
wk = wk
(1 ) (0) O.6.Llt(C~0)+D~O»)wk = wk
(2) (0) O.6.Llt(C~1)+D~O») (5.J.c)wk = wk
(3) (0) Llt(C~2)+D~O») andwk = wk
fl.+1 (3)

wk = wk
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§ 4 Stability analysis for a model equation

We consider the equation

= o. (5.4.a)

Central-space discretization yields

W -wk+ 1 k-1
2l1x

Wil.. -2wll.. +wD_1\.+1 I\. 1\.-1
+ 112 l1x

Wil.. -4wll.. +6wll.. -4wll.. +wll..
1\.+2 1\.+1 I\. 1\.-1 1\.-2

- 114 l1x

which can be rewritten as

1l4
À
(WIl.. -4wll.. +6wlI..-4wll.. +wll.. )a 1\.+2 1\.+1 I\. 1\.-1 1\.-2

(5.4.b)

when À is defined by

À =
a l1t
--r;x (5.4.c)

A Fourier mode 0k= eiA:Ç (where ç=pl1x and i represents the imaginary unit)
can be substituted into equation (5.4.b), whereby it reads

This can also be written as

(5.4.d)
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where z is defined by

(5.4.e)

For time-integration a multi-stage Runge-Kutta scheme wiU be used. The
stability region of such a scheme can be determined independently of the
terms in the differential-equation. In general one time-step yields

n+l nw = A(z)·w , (5.4.f)

where A(z) is known as the amplification factor. The stability region Y is
then given by

Y = { zeIC I IA (z ) I ~ 1} . ( 5 . 4. g)

Leaving undecided which scheme is used for time-integration, in general a
rectangle 1? ,

1? = { zeIC -1?e ~ Re(z) ~ 0, IIm(z) I ~ :Jm; Re, :Jm e Ilt } (5.4.h)

can be found, which is a subset of the stability region: 1? c Y . Stability
is obtained, comparing (5.4.e) and (5.4.h), when the following conditions
are satisfied:

(5.4.0

(5.4.j)

for all ç e [O,2nl.
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The coefficient a of the convective term will be chosen as the maximum of
the absolute eigenvalues (see equation (4.1.e)) that belongs to the
non-linear system we consider. Thus À>O.

Furthermore recall that the coefficients and for artificial
dissipation approximately have the form

K - KV)'4 2 '

5(2), 5(4), K2 and K4 are strictly positive parameters and O~v~l, thereby
the right inequality of (5.4.i) becomes a triviality. The sealing factors
5(2)and 5(4) are chosen equal a in [6]; to me appendix III is a motivation
to choose 5(2)= u, the local fluid velocity. Anyway, in both cases the
following inequalities will hold:

a K V
2

and

Now (5.4.i), (5.4.j) will be satisfied when

(5.4.k)

À ~ !lm . (5.4.1)

When ~e and !lm are known and the parameters K and K are set, the maximum
2 4

allowable time step ~t follows from (5.4.c), (5.4.k) and (5.4.1). ~e and!lm
will be determined for three-stage Runge-Kutta schemes in the next section.
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§ 5 Stability region of three-stage Runge-Kutta schemes

The model equation for a Fourier-mode has the form

l!.t dw =dt z'w, (5.5.a)

as shown in the preceding section. The derivation of z shows that Im(z)
represents the convective term, whereas Re(z) represents the dissipative
terms. For example the three-stage Runge-Kutta scheme (5.3.b) can be used
for integration of equation (5.5.a). We then have

(0) nw = w
( 1) (0) + 0.6 (0)w = w z w
(2) (0) + 0.6 ( 1) (5.5.b)w = w z w
(3) (0) + (2)

W = W Z W

n+l (3)w = w

Note that both convective and dissipative fluxes are evaluated at all
stages. According to (5.5.b) we have

(5.5.c)

For stability it is necessary that the amplification factor A(z) satisfies
(see (5.4.g) ) IA(z)1 ~ 1 or

(5.5.d)

We also can use scheme (5.3.c) which evaluates the dissipative fluxes once.
In that case we find, writing z = x+iy,
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(0) nw = w
( 1) (0)

+ 0.6 (0)w = w z w
(2 ) (0) + 0.6(x (0) . ( 1) )W = W W + ly W
(3) (0) + X W(O)+ iy W (2 )

W = W •
n+l (3)W = W

Substitution now yields

Of course for stability it is for this scheme required that

The stability regions are plotted in FIGURE 11 and FIGURE 111.
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CHAPTER SIX PROPAGATION OF DISCONTINUITIES

§ 1 Description of the numerical experiment

A type of discontinuity we are interested in, is the interface between
two fluids with vastly different densities. Some numerical experiments will
be carried out here to show the behaviour of numerical solutions. To do
this the following initial density distribution along the interval
I=[O,L] is used:

p(x,O) ={ PI' xe [0 ,Xl[
Ph xe[Xl,X2[
PI ' xe[X2, L]

(6.1. a)

where P < pand 0 < Xl < X2 < L.
I h

The initial velocity is chosen

u(X,O) = U ,xeIo
(6.1.b)

and the fraction air k(x,O) such that the pressure equals

p(X,O) = p(p(x,O), k(x,O)) = Po' (6.1.c)

the standard atmospheric pressure. The system of equations (5.2.a) is
integrated as proposed in chapter five. The boundaries x=O and x=L are
treated as if they were fully permeable (as much as possible).
Computations are performed with and without artificial dissipation and
varying the number of gridpoints. A gravitational force will be switched on
during the last computation.
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§ 2 Theoretically obtained results

The pressure in the fluid is initially constant. When no gravitational
force is applied, there is no driving term which could change the velocity
of the fluid. Thus we have at t>O

u(x,t) = u(x,O) (6.2.a)

and the density-profile of the fluid is given by

p(x,t) = p(x-u(x,O)·t) = p(x-U t)o
(6.2.b)

which means the profile is propagating with constant velocity . When a
gravitational force is applied (gravitational constant g), the solution
reads at t>O

u(x,t) = u(x,O) + gt = u + gto
(6.2.c)

and

p(x,t) = p(x - u(x,O)t - ~gt2) =
2

1 2p(x-U t--gt ).o 2
(6.2.d)

§ 3 Numerical results and interpretation

-3 -3 -1We shall start with values PI= 250 kgm ,Ph= 750 kgm , Uo= 1.0 msec
-2and g=O.O msec .

FIGURE IV.I shows the first result . No dissipative terms are added here,
and, as predicted (appendix 111), the well-known Gibbs' phenomenon appears.
Although the profile is transported with the right velocity, the solution
is poisoned with spurious oscillatiöns. For real water and air this
computation would not have been possible at all, since already after a few
timesteps negative mass densities occur.
So the result here is unacceptable. Refinement of the grid is not the
remedy to this problem (FIGURE IV.II) , the oscillations essentially stay.
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A better solution can be obtained (in fact we first should discuss the
properties of a good solution) by adding dissipation as proposed in chapter
five. The applied sensor is the second difference of the fraction air in
the mixture (see (5.2.i), a small positive number is added to the
denominator, since it may become zero).
FIGURE IV.III and FIGURE IV.IV show the result (about the best I could find

(2)by observing the solutions qualitatively and varying the parameters K and
( 4) )K .

During the last computation a gravitational term was added (g = 1 ms-2).
Despite the increasing velocity of the fluid, the dissipative term does a
good job, without changing the coefficient K(2). The table down here shows
the theoretical center of the 'block with high density' at the shown points
of time.

t x xc,g=O.O c,g=1.0

0.0 3.5 3.5
1.0 4.5 5.0
2.0 5.5 7.5
3.0 6.5 11.0

Comparison of this table with FIGURE IV. IV and FIGURE IV. V shows the
profile is (approximately) transported with the right velocity in both
cases.
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CHAPTER SEVEN A WA TER HAMMER

§ 1 Deseription of the numerical experiment

When the flow of a fluid in a pipe is stopped at onee somewhere, a pressure
wave starts running from this point. This wave travels with the speed of
sound and at its front density, pressure and velocity are theoretieally
(when we assume the fluid inviseid) discontinuous. This will be explained
in the next seetion.
We shall try to show sueh a pressure wave by means of a numerical
experiment. Therefore, along the interval I=[O,L] we initially take

p(x,O) = p ,xeIo

and the initial velocity is ehosen

u(x,O) = U ,xeI.o

The fraetion of air k = k(x,O) sueh that the pressure equalso

p(x,O) = pep ,k ) = P ,
000

the standard atmospherie pressure. For t>O the boundary condition
-1u(L,t) = ° msee

is applied (the fluid is stopped in x=L).

x

impermeable

wal I , x=L

1
velocity U ,o

pressure p +pU eo 0

stopped î 1ui d ,

pressure Po

undisturbed îluid reqion pressure wave wl th

lenqth e ·la
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§ 2 Theoretically obtained results

A pressure wave travels with speed c in negative direction. So, after some
time ~t, the length ~x of the pressure wave equals c~t. From t=o till t=~t,
the velocity of the fluid in x=L-c~t was undisturbed and equal to U , so,o
the amount of mass per unit area that came into the interval [L-c~t,L]
equals p U ~t.o 0
This means the mass density in the interval has increased by an amount ~p,

where ~p = (p U ~t)/(c~t) = P U /c.o 0 0 0
2This density change involves a pressure change ~p = c ~p = p U c.o 0

This result was first found by T. von Kármán. "The derivation can be found
in many books; one of the most simple and beautiful (to my opinion) is
given in [33], chapter 1.1, page 4, where it is derived as a basis for the
theory of sound waves.

§ 3 Numerical results and interpretation

The experiment was carried out for pure water with initial velocity equal
0.1 ms-i. FIGURE V.I shows the result when no artificial dissipation is
added. The sudden changes at the front of the pressure wave again cause
spurious oscillations. The effect of some basic fourth order dissipation
can be seen by looking at FIGURE V.II the solution is smoothened, but a
little under- and overshoot at the front of the wave is still present. When
extra second order dissipation is added, with second differences of
pressure as sensor for its necessity, the solution becomes like it found in
FIGURE V. 111.

The plots show that after 0.004 seconds the wave moved up about 6 meters.
This is in good agreement with the speed of sound of pure water, which is
about 1460 m/sec.
The pressure change should be about p U c = 999.1,0.1'1460 ~ 1.5 bar. Thiso 0
also can be read from the plots.
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CHAPTER EIGHT HARMONIC OSCILLA TION OF A COLUMN OF WATER

§ 1 Introduction

We consider a closed tube that has length 2(L+l) and is filled with air
and water. The variable x represents the displacement of the column of
water. At time t=o the tube contains (approximately)

air for -L-l < x < -L
water for -L < x < Land
air for L < x < L+l

At time t=O gravitation is 'switched on' in positive x-direction. What we
then see is that the column of water starts oscillating between the two
columns of air. The equation of motion of this oscillation can be derived
when we make some assumptions. This will be done in the following section.

2L

H H
P , P

air

water
L gravitational

force (t>O),
x(O)=O

L··_··=_·~_··~_~·_-P_···~_······_····-_J-Ii-Ic( t )
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§ 2 Analytically obtained results

The assumptions that are made are the following:

• the momentum of air is negligible compared to the momentum of water
• compressibility of water is negligible compared to the compressibility

of air
• the changes in the columns of air are small, furthermore the process is

quasi-static and the pressure in air does not depend on position
(in the seperate columns of course);

The variables in the upper and lower column of air are respectively
'superscripted' by Hand L. The pressure and density are initially such
as under standard atmospheric conditions (p and p ). The cross-sectionalo ao
area of the tube is A. The mass of air in a column thus equals Alp .ao
Suppose the displacement of the column of water is x(t). 50 x(O)=O. This
causes in the upper column of air a density change

x(t)
-Pao l+x(t)

and thus a pressure change

dpH =
a

2 x(t)
= -caPao l+x(t)

Likewise in the lower column of air we have

x(t)
+Pao l-x(t)

and a pressure change

L 2 d Ldp = c Pa a a
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The force on the column of water caused by the pressure changes in the
columns of air therefore equals

F = -Ac2p ( x(t) +
p a ao i+x(t) (8.2.a)

The gravitational force acting on the water is

F = 2ALp gg wo (8.2.b)

where prepresents the density of water (assumed constant here) and g thewo
gravitational constant (about 9.8 m/s2). According to Newton's second law
the equation of motion of the water is given by

d2x2ALp = F + Fwo dt2 P g

which by using equations (8.2.a) and (8.2.b) becomes

or

+ = o (8.2.c)

where f is defined by

The initial conditions for this second-order O.D.E. are given by

{ initial position is x(O) = 0

initial velocity is x' (0) = 0
(8.2.d)
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A solution to the problem can easily be found when the displacement of the
water is small compared to the length of the column of air (x «i,) , since

When x « t, the first term will be an accurate approximation for this
expression. The equation of motion then can be written as

2+ f x - g = 0, x(O)=O, x' (0)=0 . (8.2.e)

Now define

then problem (8.2.e) can be transformed to

y(O)=-g, y' (0)=0

with simple harmonic solution

y(t) = -g cos (ft)

and thus the solution to (8.2.e) becomes

x(t) = :2( 1 - COS(ft)) . (8.2.f)

The period T of this harmonic motion equals

T = (2n)/f =2n~
ca Pao

(8.2.g)

while the the amplitude x of the oscillation satisfiesamp
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X amp

gp Ltw (8.2.h)

Notice that x is in the interval [O,2x ] and not in [-x ,x J; so theamp amp amp
column of water oscillates around x=x and not around x=O. The maximumamp

of the column of water isvelocity x'amp

x'amp = g/f (8.2.i)

We have to keep in mind that this solution is only valid for x « t.

§ 3 Numerical results

The experiment described in the preceding sections has been simulated
numerically. The length of the column of water in this computation was
2L = 4 meters, the length of the columns of air was chosen t = 3 meters.
The interface between water and air could be captured very weIl during this
computation and the results are in good agreement with the analytically
obtained solution. At first, FIGURE VI.I shows the velocity of the column
of water as a function of the elapsed time (this velocity can be taken
anywhere in the water: since compressibility effects of water are
almost negligible for this experiment, the velocity in an uninterrupted
column does not depend on position, only on time).
The motion looks harmonical, which was expected. Furthermore we can check
the period and the amplitude by means of equations (8.2.g) and (8.2. i).

Substitution in (8.2.g) yields for the period of the oscillation
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T = 2w 1999.1' 2.0' 3.0
340 .;:. 1.23 ~ 1.3 sec,

while the maximum velocity becomes

x'amp
= 9.8 ~99.1' 0.2' 0.3

3402 • 1.23
2.0 mlsec .

These values are in good agreement with the values that can be read from
FIGURE VI.I. The period of the oscillation in the numerical result is about
5% smaller than the period of the harmonie solution: this difference must
not be interpreted as a numerical error, but is due to small non-linear
effects. The amplitude of the oscillation is

x =
amp 3402• 1.23

9.8' 999.1' 2.0' 3.0
:x 0.41 m ,

so X E [0,2x ] = [0.0, 0.82]. Since 2x /t ~ 0.27 and (2x /t)3~ 0.02amp amp amp

the 'harmonie approximation' is applicable, but the effect of the first
non-linear term in equation (8.2.c) may cause differences in the order of
some percents in the solution.

Values of pressure, velocity, density and interface-sensor at fixed points
of time are plotted in FIGURE VI.II and FIGURE Vl.lIl. Looking at pressure
values, it can be seen that in both columns of air the 'quasi-statie'
assumption indeed holds.
At about t=0.65 sec the pressure change àp in the compressed column of air
equals

àpL = 3402 • 1.23 ---=_0-::--:.8=-2-=:::--3.0-0.82 ~ 0.5 bar
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while for the expanded column

2-340 .1.23 0.82 0 3 b--=--=--=--==- '" -. ar .3.0+0.82

This also is in good agreement with the result in the last figure.
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CHAPTER NINE WAVE IMPACTS ON STRUCTURES

§ 1 Introduction

At the end of the seventies a study on wave impacts was carried out at
Delft Hydraulics, for the design of the storm surge barrier in the Eastern
Scheldt. Also same tests in a wave channel were performed, to verify the
results of the study. It was concluded that the so-called Bagnold's piston
model was the most appropriate to describe the wave impacts caused by
standing waves against protruding elements. Due to the specific shape of
the structure, a volume of air is trapped between the protrusion and the
rising water level, which acts as a spring (as we already observed in the
preceding chapter).
Wave impacts induced by breaking waves were not observed, because of the
relatively large foreshore depth.

road

protrudinq

S.W.L.

N.A.P. level 0.0········imp act····································· _ .

North

Sea

-11.5

The rising water and the air layer between the water and the protruding
element gave evidence for the choice of Bagnold's piston model to describe
the impact process. This one-dimensional model considers a column of water
of length L which approaches an unelastic wal! (the protruding element)
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with (initial) velocity v. Between the water and the wall a column of air
with (initial) length ~ is trapped. We write c for the speed of sound in

w

water, p for its density and p for the atmospheric pressure.
w 0

piston model
of Bagnold

rls lnq

water

Tv L

It was found (see for example [30]) that the following dimensionless
numbers characterize the impact phenomenon:

1 2- pv
L

S
2 w=

Po ~

and

(3
v L= ~c

w

(impact number) (9.1. a)

(water compressibility number). (9.1. b)

Roughly the following subdivision can be made. For values (3 < 0.01 the
water may be assumed incompressible, when 0.01 < (3 < 1.0 compressibility
of both water and air is important and when (3 > 1.0 only the elasticity of
water is important. Each case will be discussed briefly in the following
section.
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§ 2 Analytically obtained results

In this section some results that can be found in [28], [29], [30] and [31]
are reviewed.

(3 < 0.01

In this case the water is treated as a 'rigid body' and the problem looks
like the one we considered in chapter eight. However, no gravitional force
is added here (i t was concluded that gravity does not play an important
role for the impact problem) and the initial conditions are different.
Again, Newton's second law states for the displacement x(t) of the water
column

(9.2.a)

where p is the pressure in the air cushion. The initial conditions for this
problem are

x(O) = 0 and dx(O) = vdt . (9.2.b)

Furthermore we assume (Boyle)

P à = p(à-x)o
(9.2.c)

Defining

ex. = p L/p ,w 0
(9.2.d)

and using (9.2.c) the differential equation (9.2.a) becomes

x
+ à-x = o (9.2.e)

Integration of this equation is possible after multiplication by dx/dt.
This yields
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(ó-x )x + 15 In -15- = a.( 22: (dx/dt) - (9.2.f)

The maximum displacement x is found for dx/dt=O and thus follows from
lila x

x ó-x
~ax + ln( 15 max) =

2a.v
215 = -5 (9.2.g)

by definition of the impact number 5 and equation (9.2.d). For x «15 wemax
can write

and we find

X
max

-15- (9.2.h)

The maximum pressure Pmax then is (see equation (9.2.c))

Pmax ~ p ( 1 )
o 1 -,f2S'

(9.2.i)

0.01 < (3 < 1.0

This situation is more complicated since the compressibility of both water
and air is taken into account. A Lagrangian variabie a can be introduced:
a is the initial x-coordinate of a fluid particie. The position of a fluid
particle may be regarded as a function of its initial position and of time,
so x = x(a,t). The continuity equation for water now reads [32]

(9.2.j)

while the momentum equation is given by

+ !._ aaP = o.
Pw a

(9.2.k)
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By (9.2.j) this can also be written as

+ ap
ap

w
(9.2.1)

Furthermore differentiation of (9.2.j) with respect to a yields

~(p ) axaa w aa + p
w

= 0 . (9.2.m)

aNow aa(pw) may be eliminated using (9.2.1) whereby we find (again using the
continuity equation (9.2.j) )

When the variation in the term between brackets is neglected (which is
2reasonable) and is taken to be c we find an equation that looks familiar
w

to the most of us:

or

(9.2.n)

The initial conditions for this equation are

x(a,O) = a and axat(a,O) = v. (9.2.0)

At the surfaces the water should have the pressure of the adjacent air,
that is, we'd like to have

p(a=-L,t) = Po and p(a=O,t) 2
= P + C (p -p )o w w wO

which also can be written as

::(a=-L) = 1 and 8x 1
-(a=O) = ----------aa 21 +(p xl/Cp c (o-x))o wO w

(9.2.p)
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The problem was solved numerically ([30J. method of characteristics) to
find the maximum pressure.

(3> 1.0
Here only compressibility of water is important and we refer to the results
found in chapter seven. Notice that the maximum pressure found in this case
is equal to (1+2S/(3)p .o
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§ 3 Numerical results

Computations were carried out for a few values of S and (3. The maximum
pressure in the tube as a function of time can be read from FIGURE VII.I
The heights of the pressure peaks (which can be read from the plots) are in
the following table.

0.01
0.01

0.25
1.0

2.2
6.4

S p (bar)max

The shape of the plots and the values of the pressure peaks are (for
these values of (3 and S) in good agreement with the results presented in
[30]. For a comparison, see FIGURE VII.II.
Unfortunately, computations with large values for the compressibility
number (3 (for example (3=0.3,(3=1.0,like in [30]) could not be carried out,
since in those cases the following (practical) problems occurred.
When the values of (3 and S are given, the values of v and L/o can be
computed from equations (9.1.a) and (9.1.b). For example, when (3= 0.3 and
S = 1.0, we find v "" 0.46 and L/o "" 946. This large value for L/o in
combination with the uniform grid I use causes the problem. For an accurate
computation it is necessary that the column of air (with length 0) at least
takes a few grid-points. However, this means thousands of grid-points are
necessary for the total computation, which makes it much too expensive or
even impossible.
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CONCLUSIONS AND RECOMMENDATIONS

The method that is presented for the computation of time-dependent
compressible flow of water and air works weIl for one-dimensional problems
of short duration. It is quite expensive for two reasons:

• the large eigenvalues (determined by the speed of sound waves) require
very small time-steps (otherwise the explicit time-integration process
becomes unstable);

• to capture the interface between water and air with some accuracy a
relatively fine grid has to be used. The artificial dissipation model
(Jameson), which is appropriate for the capturing of shock waves, is
less appropriate for the capturing of linear discontinuities like
interfaces.

More research and sophisticated techniques are needed to overcome these
problems.
For example, adaptive grid refinement could be used to get a sharper
interface. However, in that case a new grid has to be computed several
times during a computation, since the interface will be moving. Furthermore
it leads to even smaller time-steps.
For the computation of steady state solutions often acceleration methods
are used. The system of equations then is 'preconditioned' by introducing
artificial time derivatives which allow for a faster convergence [27]. An
interesting idea is the application of this method to time-accurate
computations. A 'pseudo-time' is introduced and pseudo-time derivatives
are added to the equations of motion. The physical solution at an advanced
time-level then is obtained as the steady state solution of the system of
preconditioned equations in pseudo-time. This treatment allows for much
larger time-steps [26].
To my opinion it would be very interesting to investigate the possibilities
of the techniques mentioned here. When this will be done perhaps one day
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all types of flow can be attacked by compressible solvers and the
compressibility of fluid flows wil! be more the result of a computation
(which it should be, I think) than an assumption made beforehand.
However, the feasibility and the use of these ideas in the near future is
questionable, since a lot more computer-power than available at the moment
will be required.
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Appendix I Blending functions

A set of blending functions ~ may be defined as follows,
Let B:~x~+~ [0,1] be a continuously differentiable mapping, Then BE~ if and
only if the following conditions are fulfilled:

(i) B(x,er) is monotonously increasing for any fixed cr,

( I L) lim B(x,er)= 0 for any fixed er,x~-oo
(lii) lim B(x,er)= 1 for any fixed erandx~+oo
(iv) !lm B(x,er) = { ~

when x<O
er-!-o when x>O

Blending functions can be used to smear out a discontinui t.y , Suppose we
1\ 1\have f:~~ and g:~~ both continuous mappings. Assume f(x) ~ g(x) and

, { f(x) when x<~def1ne h:~~ by h(x) = g(x) when x~~ h' d l t i f 1\,so lS lscon 1nuous or x=x,

Furthermore let B , B E~, Then h can be approximated by a continuous
1 2

function Per ' defined by

This function is continuous, since all terms are,
The smaller the positive parameter er,the better the approximation is in
the following sense,

lim J Iper(x)-h(x)ldx= 0,
er-!-o

Examples of blending functions are
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Appendix 11 The speed of sound in a mixture of water and air

According to the definitions given in chapter 3, section 1, the following
equations hold:

(1) kp = ap
a

(2) (l-k)p = (l-a)p and
w

(3) k/(l-k) = (apJ/((l-a)pJ

Furthermore we shall use

2 2 2 2
(4) P c «p ca aww

and (following from equation (1.2.d))

2
(5) P c = -r.p .

a a

The equation we found for the speed of sound reads (eq. (3.5.c))

= k----+
(p C )2

a a

1-k1
2

(p c )w w
2(pC)

Straightforward rewriting of this relation yields

kp2 2
1 (l-k)p= + =2 2 2
C (p c ) (p c )

a a w w

( ~: ) 2(-t.-) + ((l-k)p)2(. 1 2)
(1),(2)

= =
Pw (l-k)c

a w

= =
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(1 l~k)( ~ )2+ (1 ~)(~r (3)
= + + =1-k c

a w

(+)2 + ( l~a )2 a(1-a}p a(1-a}p ( 4)w a= + + Q<2 2
a w p C P c

a a w w

( ~ )2 + (~)2 a(l-a}p ( 5)
w

Q< + =2
a w p C

a a

( ~ )2 + (~)2 a(1-a}p w= +
'lPa w

This expression for the speed of sound can be found in [5] .
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Appendix 111 Discontinuities, central-space discretization
and artificial dissipation

The finite-volume method that is used in [6] reduces to central-space
discretization in our case, a one-dimensional problem where a uniform grid
is used.
It will be shown here qualitatively that central-space integration causes
problems for functions which are almost discontinuous somewhere (in fact,
second differences are the point), and therefore require a special
treatment.
For example consider a function w(x,t) which initially is given by

w(x,O)
for
for
for

X :S X
1

x < X :S X
1 r

X < X
r

where w >w .
h 1

Grid-points along the x-axis are given by xk = k!:.x(keI and ~x fixed) such
that

{
w for k :S k
1 1

w(xk,O) = w for k < k :S k
h 1 r

W for k < k
1 r

Thus w(x,O) has a discontinuity between the points xk and xk +1 and between
1 1

the points xk and xk +1 .
r r

Suppose we want to transport this profile with a constant and positive
velocity U. This can be described by

which strictly spoken is not valid in the discontinuous points. Now, the
time-derivatives in the point x=xk are estimated, after central-space
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integration, by

-u w -wk+1 k-1
2t.x

Notice, that although this discretization is second-order, the information
in x=xk is not used at all!
The time-derivative

d w - W
h 1

dt (Wk = -u < 02t.x
1

d w - W
h 1

dt (Wk +1 = -U < 02t.x
1

d w - W
1 hdt(Wk = -U > 0 and2t.x

r-

d W - W
) 1 h

dt (Wk = -u > 0
+1 2t.x

r-

(1)

(2)

(3 )

(4)

while in all other points the time-derivatives are equal zero, as they
should beo The inequalities (2) and (4) are necessary for the transport of
the profile, but to conserve its shape we'd like to have

ddt(wk = 0 and
1

and not (1) and (3); these inequalities cause in the first time-step
respectively an under- and overshoot, and later on spurious oscillations in
the numerical solution (Gibbs' phenomenon).

For this simple one-dimensional problem upwind-discretization could be the
solution; however, upwind-methods are only first-order accurate, while
central-methods can reach second-order accuracy (in smooth regions).
Furthermore for upwind methods the 'upwind-direction' has to be determined,
which requires a lot of work for two- or three-dimensional problems.
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A finite-volume method in combination with artificial dissipation seems a
better choice. Ihis dissipation will only be added when necessary, that is,
when large second differences of the quantity in question appear. Roughly
one can say that central-space integration (second order accuracy) with a
convenient amount of dissipation yields upwind integration (first order
accuracy), since

wk-Wk_1 W -w wk =e:«-u -u k+1 k-1 + U +1 -1 (upwind for U>O)=l:!.x 2l:!.x 2 l:!.x

and

wk+1-wk W -w wk -2wk+wk-u -u k+1 k-1 - U +1 -1 (upwind for U<O).=l:!.x 2l:!.x 2 l:!.x

50, it is seen that in both cases we have added a dissipation term with
(positive) artificial viscosity lUI ·l:!.x/2 .

For this reason it seems convenient to me to choose the sealing factor 5(2)
of the second order dissipation term (chapter five), proportional to the
velocity of the fluid.
Moreover, this means no dissipation is added when it isn't necessary , that
is, when the fluid is not moving.
5ince we have a hyperbolic system of equations, we always have to add some
dissipation; therefore the sealing factor 5(4) of the fourth order
dissipation term will be chosen as the absolute maximum eigenvalue of the
system.
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Appendix IV The computer program

The listing of the computer program which I used for the computation of
one-dimensional compressible time-dependent flow of water and air is part
of this appendix. The fact that my program is not an example of elegance,
partly sterns from my poor knowledge of FORTRAN (which is the most popular
language in the computational world, I guess?). However, it does work and
can roughly be schematized as is down here.

read initial state variables

f'rom files iniwl.dat

iniw2.dat and iniw3. dat

read parameters f'or computat i on

from f'ile proqdata.dat

(amount of dissipation etc. )

i: =1, J: =1

if if STopli:=i+1
i <nsteps i nsteps

IJ:=J+1 m::-inteqrat ion wri te data to files

step and set J:=1

if if

J<nwrite j=nwrite
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The block that performs a Runge-Kut ta integration step is a bit more
specified by the following scheme.

I qiven old state variables
Iw1(old), w2(old) and w3(old)

tI determine allowable time-step ll.t:I
based on linear stabili ty analys is

t
Cor i:=1 to 3 do

determine convective Clux;
compute parameters needed
to determine the amount
artlClcial dissipation;
(like interCace-sensor)
determine dissipative Clux

perCorm Runqe-lCutta staqe i

t
assiqn values «e new state variables
w1 (new) , w2(new) and w3(new)
to old state variables
w1(old), w2(old) and w3(old)

The following pages contain the FORTRAN-code.
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C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C This code is an attempt to compute one-dimensional, inviscid,
C time-dependent, compressible flow of water and air;
C Helmus van de Langemheen, version February 1992C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

SUBROUTINE PRESSURE(DENS,FRAC,DP)C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C for given density DENS and mass-fraction air FRAC of water-air
C mixture, the relative pressure DP is calculated (relative means
C DP is absolute pressure minus standard-atmospheric pressure);C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

DOUBLE PRECISION DENS,FRAC,DP
DOUBLE PRECISION D1,D2,DA,DW,CA,CW
DOUBLE PRECISION EPS
PARAMETER (DA=1.23DO, DW=999.1DO,

+ CA=3.4D2, CW=1460.0DO,
+ EPS=1.0D-12)
IF (FRAC.LE.EPS) THEN

DP=(DENS-DW)·CW··2
ELSE IF (FRAC.GE.(1.0DO-EPS» THEN

DP=(DENS-DA)·CA··2
ELSE

D1=DA·CA··2+DW·CW··2-DENS·(FRAC·CA··2+(1.0DO-FRAC)·CW··2)
D2=«CA·CW)··2)·(DA·DW-DENS·(FRAC·DW+(1.0DO-FRAC)·DA»
DP=O.5DO·(-D1+SQRT(D1·D1-4.0DO·D2»

ENDIF
END

SUBROUTINE SPSOUND(DENS,FRAC,CM)C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C for given density DENS and mass-fraction air FRAC of water-air
C mixture, the speed of sound CM of the mixture is calculated
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

DOUBLE PRECISION DENS,FRAC,DP,CM
DOUBLE PRECISION D1,D2,DA,DW,CA,CW
DOUBLE PRECISION EPS
PARAMETER (DA=1.23DO, DW=999.1DO,

+ CA=3.4D2, CW=1460.0DO,
+ EPS=1.0D-12)
CALL PRESSURE(DENS,FRAC,DP)
D1=(DENS·CA)/(DA·(CA··2)+DP)
D2=(DENS·CW)/(DW·(CW··2)+DP)
IF (FRAC.LE.EPS) THEN

CM=CW
ELSE IF (FRAC.GE. (1.0DO-EPS» THEN

CM=CA
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ELSE
CM=SQRT(1.0DO/(FRAC·D1··2+(1.0DO-FRAC)·D2··2))

ENDIF
END

SUBROUTINE AIRFRAC(DENS,FRAC)C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C for given density DENS of a water-air mixture, the fraction air
C FRAC is calculated (given standard-atmospheric pressure)
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

DOUBLE PRECISION DA,DW,DENS,FRAC
PARAMETER (DA=1.23DO, DW=999.1DO)
FRAC=DA·(DENS-DW)/(DENS·(DA-DW))
END

SUBROUTINE CONVFLUX(W1,W2,W3,FW1,FW2,FW3,GRAVCON,PRES,N,DX)C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C convective terms FW1, FW2 and FW3 for variables W1, W2 and W3
Care calculated; the gravitational constant is given by GRAVCON;
C pressure PRES is calculated here for each point, based on state
C variables W1 and W2; FW1, FW2 and FW3 become convective fluxes
C after multiplying by timestepC ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

INTEGER J,N
DIMENSION W1(-2:N+2),W2(-2:N+2),W3(-2:N+2)
DIMENSION FW1(-2:N+2),FW2(-2:N+2),FW3(-2:N+2)
DIMENSION PRES(-2:N+2)
DOUBLE PRECISION W1,W2,W3,FW1,FW2,FW3
DOUBLE PRECISION PRES,DX,GRAVCON
DO 80 J=-1,N+1

FW1(J)=(W3(J+1 )-W3(J-1))/(2·DX)
80 CONTINUE

DO 90 J=-1,N+1
FW2(J)=(W2(J+1)·W3(J+1)/w1(J+1)-

+ W2(J-1)·W3(J-1)/w1(J-1))/(2·DX)
CONTINUE
DO 100 J=-1,N+1

CALL PRESSURE(W1(J),W2(J)/w1(J),PRES(J))
CONTINUE
DO 110 J=-1,N+1

FW3(J)=(PRES(J+1)+W3(J+1)·W3(J+1)/w1(J+1)-
PRES(J-1)-W3(J-1)·W3(J-1)/w1(J-1))/(2·DX)+
W1(J)·GRAVCON

90

100

+
+

110
C
C

CONTINUE
The following statements should be added in case of
impermeable boundaries
FW3(N)=FW3(N)-W1(N)·GRAVCON
FW3(0)=FW3(0)-W1(0)·GRAVCON
END
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SUBROUTINE DISSDATA(Wl,W2,W3,K2,K4,LAM1,LAM2,NUU,EP2,EP4,N)C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C for given state variables Wl, W2 and W3, parameters K2, K4,
C absolute eigenvalues LAMl and LAM2 (:U: and :U:+C) are
C calculated; furthermore values of some sensor NUU are calculated
C resulting in coefficients EP2 and EP4 for the dissipative terms
C (respectively second and fourth order); these values are used in
C subroutine DISSFLUX to calculate the dissipative flux in each
C pointC ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

INTEGER J,N
DIMENSION Wl(-2:N+2),W2(-2:N+2),W3(-2:N+2)
DIMENSION LAM1(-2:N+2),LAM2(-2:N+2),NUU(-2:N+2)
DIMENSION EP2(-2:N+2),EP4(-2:N+2)
DOUBLE PRECISION Wl,W2,W3,K2,K4,CMIX
DOUBLE PRECISION LAM1,LAM2,NUU,EP2,EP4 \
DO 140 J=-2,N+2

CALL SPSOUND(Wl(J),W2(J)1W1(J),CMIX)
LAM1(J)=ABS(W3(J)1W1 (J»
LAM2(J)=ABS(W3(J)1W1(J»+CMIX

140 CONTINUE
C Values of sensor are calculated now

DO 120 J=-l,N+l
NUU(J)=ABS(W2(J-l)1W1(J-1)-2·W2(J)1W1(J)+W2(J+1)1W1(J+1»

+ /(W2(J-l)1W1(J-1)+2·W2(J)1W1(J)+W2(J+1)1W1(J+1)+1.D-8)
120 CONTINUE

DO 130 J=-l,N
EP2(J)=K2·MAX(NUU(J),NUU(J+l»
EP4(J)=MAX(0.ODO,K4-EP2(J»

130 CONTINUE
DO 150 J=-l,N

LAM1(J)=0.5DO·(LAM1(J)+LAM1(J+l»
LAM2(J)=0.5DO·(LAM2(J)+LAM2(J+l»

150 CONTINUE
END

SUBROUTINE DISSFLUX(Wl,W2,W3,FW1,FW2,FW3,LAM1,LAM2,EP2,EP4,DX,N)C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C for given state variables Wl, W2 and W3, the total dissipative
C flux in each point is calculated, where LAM1, LAM2, EP2 and EP4
Care used and already calculated in the routine DISSDATA;
C according to the last statements, no dissipation is added at
C boundariesC ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

INTEGER J,N
DIMENSION Wl(-2:N+2),W2(-2:N+2),W3(-2:N+2)

80



DIMENSION FWl(-2:N+2),FW2(-2:N+2),FW3(-2:N+2)
DIMENSION LAM1(-2:N+2),LAM2(-2:N+2)
DIMENSION EP2(-2:N+2),EP4(-2:N+2)
DOUBLE PRECISION Wl,W2,W3,FW1,FW2,FW3
DOUBLE PRECISION LAM1,LAM2,EP2,EP4,DX
DO 160 J=O,N

FWl(J)=LAM1(J)·(EP2(J)·(Wl(J+l)-Wl(J»)-
+ LAM2(J)·(EP4(J)·(Wl(J+2)-3·Wl(J+l)+3·Wl(J)-Wl(J-l»)-
+ LAM1(J-l)·(EP2(J-l)·(Wl(J)-Wl(J-l»)+
+ LAM2(J-l)·(EP4(J-l)·(Wl(J+l)-3·Wl(J)+3·Wl(J-l)-Wl(J-2»)

160 CONTINUE
DO 170 J=O,N

FW2(J)=LAM1(J)·(EP2(J)·(W2(J+l)-W2(J»)-
+ LAM2(J)·(EP4(J)·(W2(J+2)-3·W2(J+l)+3·W2(J)-W2(J-l»)-
+ LAM1(J-l)·(EP2(J-l)·(W2(J)-W2(J-l»)+
+ LAM2(J-l)·(EP4(J-l)·(W2(J+l)-3·W2(J)+3·W2(J-l)-W2(J-2»)

170 CONTINUE
DO 180 J=O,N

FW3(J)=LAM1(J)·(EP2(J)·(W3(J+l)-W3(J»)-
+ LAM2(J)·(EP4(J)·(W3(J+2)-3·W3(J+l)+3·W3(J)-W3(J-l»)-
+ LAM1(J-l)·(EP2(J-l)·(W3(J)-W3(J-l»)+
+ LAM2(J-l)·(EP4(J-l)·(W3(J+l)-3·W3(J)+3·W3(J-l)-W3(J-2»)

180 CONTINUE
DO 190 J= O,N
FWl(J)=-FW1(J)/(2·DX)
FW2(J)=-FW2(J)/(2·DX)
FW3(J)=-FW3(J)/(2·DX)

190 CONTINUE
C No dissipation at
C boundaries, so

FWl(O)=O.ODO
FW2(0)=0.ODO
FW3(0)=0.ODO
FWl(N)=O.ODO
FW2(N)=0.ODO
FW3(N)=0.ODO
END

SUBROUTINE BOPEN(Wl,W2,W3,N)C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C (approximately) the boundary condition d/dx(. )=0 is applied here
C by requiring the values of the state variables in the virtual
C points are the same as in the botindarypoints; this routine can
C be used when no changes are present at the boundaries; in that
C case it is the same as requiring D/Dt(. )=0, but this does not
C hold in general!C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

INTEGER N
DIMENSION Wl(-2:N+2),W2(-2:N+2),W3(-2:N+2)
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DOUBLE PRECISION Wl,W2,W3
Wl(-1) = Wl(O)
Wl(-2) = wl(O)
Wl(N+l) = Wl(N)
Wl(N+2) = Wl(N)
W2 (-1) = W2 (0)
W2(-2) = W2(0)
W2(N+1) = W2(N)
W2(N+2) = W2(N)
W3 (-1) = W3 (0)
W3(-2) = W3(0)
W3(N+l) = W3(N)
W3(N+2) = W3(N)
END

SUBROUTINE BCLOSED(Wl,W2,W3,N)C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C the values of the state variables Wl, W2 and W3 in the virtual
C points are chosen such that the boundaries may be assumed
C impermeable;C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

INTEGER N
DIMENSION Wl(-2:N+2);W2(-2:N+2),W3(-2:N+2)
DOUBLE PRECISION Wl,W2,W3
Wl(-1) = Wl(1)
Wl(-2) = Wl(2)
Wl(N+l) = Wl(N-l)
Wl(N+2) = Wl(N-2)
W2 (-1) = W2 (1)
W2(-2) = W2(2)
W2(N+l) = W2(N-l)
W2(N+2) = W2(N-2)
W3(0) = O.ODO
W3(-1) = -W3(1)
W3(-2) = -W3(2)
W3(N) = O.ODO
W3(N+l) = -W3(N-l)
W3(N+2) = -W3(N-2)
END

SUBROUTINE RKSTAGE(ALFA,W10LD,W20LD,W30LD,W1NEW,W2NEW,W3NEW,
+ DIFL1,DIFL2,DIFL3,COFL1,COFL2,COFL3,DT,N)

C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C one stage of the Runge-Kutta time integration scheme is carried
C out by this routine; DIFL1, DIFL2 DIFL3, COFL1, COFL2 and COFL3
Care respectively the known dissipative and convective fluxes;
C DT is the actual time-step, ALFA a constant which depends on
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C the stage of the scheme (three stages: 0.6, 0.6 and 1.0);C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
INTEGER J,N
DIMENSION WIOLD(-2:N+2),W20LD(-2:N+2),W30LD(-2:N+2)
DIMENSION WINEW(-2:N+2),W2NEW(-2:N+2),W3NEW(-2:N+2)
DIMENSION DIFL1(-2:N+2),DIFL2(-2:N+2),DIFL3(-2:N+2)
DIMENSION COFL1(-2:N+2),COFL2(-2:N+2),COFL3(-2:N+2)
DOUBLE PRECISION WIOLD,W20LD,W30LD,WINEW,W2NEW,W3NEW
DOUBLE PRECISION DIFL1,DIFL2,DIFL3,COFL1,COFL2,COFL3
DOUBLE PRECISION ALFA,DT
DO 200 J=O,N

WINEW(J)=WIOLD(J)-ALFA·DT·(DIFL1(J)+COFL1(J»
W2NEW(J)=W20LD(J)-ALFA·DT·(DIFL2(J)+COFL2(J»
W3NEW(J)=W30LD(J)-ALFA·DT·(DIFL3(J)+COFL3(J»

200 CONTINUE
CALL BCLOSED(WINEW,W2NEW,W3NEW,N)
rnD

SUBROUTINE RK(INIW1,INIW2,INIW3,CONVW1,CONVW2,CONVW3,
+ DISSW1,DISSW2,DISSW3,LAM1,LAM2,NU,EPS2,EPS4,
+ Wl,W2,W3,PR,DX,DT,KAPPA2,KAPPA4,N,GRAVCON)

C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C performs one step of the time-integration process; the initial
C state variables have values INIW1, INIW2 and INIW3, which after
C this time-step become Wl, W2 and W3C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

INTEGER N
DIMENSION INIW1(-2:N+2),INIW2(-2:N+2),INIW3(-2:N+2)
DlMENSION CONVW1(-2:N+2),CONVW2(-2:N+2),CONVW3(-2:N+2),
DIMENSION DISSW1(-2:N+2),DISSW2(-2:N+2),DISSW3(-2:N+2)
DIMENSION LAM 1(-2:N+2),LAM2(-2:N+2),NU(-2:N+2)
DIMENSION EPS2(-2:N+2),EPS4(-2:N+2)
DIMENSION Wl(-2:N+2),W2(-2:N+2),W3(-2:N+2),PR(-2:N+2)
DOUBLE PRECISION INIW1,INIW2,INIW3
DOUBLE PRECISION CONVW1,CONVW2,CONVW3
DOUBLE PRECISION DISSW1,DISSW2,DISSW3
DOUBLE PRECISION LAM1,LAM2,NU,EPS2,EPS4
DOUBLE PRECISION Wl,W2,W3,PR,GRAVCON
DOUBLE PRECISION ALPHA,DX,DT,KAPPA2,KAPPA4
CALL CONVFLUX(INIW1,INIW2,INIW3,CONVW1,

+ CONVW2,CONVW3,GRAVCON,PR,N,DX)
CALL DISSDATA(INIW1,INIW2,INIW3,KAPPA2,KAPPA4,

+ LAM1,LAM2,NU,EPS2,EPS4,N)
CALL DISSFLUX(INIW1,INIW2,INIW3,DISSW1,DISSW2,

+ DISSW3,LAM1,LAM2,EPS2,EPS4,DX,N)
ALPHA=0.6DO
CALL RKSTAGE(ALPHA,INIW1,INIW2,INIW3,Wl,W2,W3,

+ DISSW1,DISSW2,DISSW3,CONVW1,CONVW2,CONVW3,DT,N)
CALL CONVFLUX(Wl,W2,W3,CONVW1,CONVW2,CONVW3,GRAVCON,PR,N,DX)
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CALL DISSDATA(INIW1,INIW2,INIW3,KAPPA2,KAPPA4,
+ LAMl ,LAM2,NU,EPS2 ,EPS4,N)
CALL DISSFLUX(INIW1,INIW2,INIW3,DISSW1,DISSW2,

+ DISSW3,LAM1,LAM2,EPS2,EPS4,DX,N)
CALL RKSTAGE(ALPHA,INIW1,INIW2,INIW3,Wl,W2,W3,

+ DISSW1,DISSW2,DISSW3,CONVW1,CONVW2,CONVW3,DT,N)
CALL CONVFLUX(Wl,W2,W3,CONVW1,CONVW2,CONVW3,GRAVCON,PR,N,DX)
CALL DISSDATA(INIW1,INIW2,INIW3,KAPPA2,KAPPA4,

+ LAMl ,LAM2,NU,EPS2,EPS4,N)
CALL DISSFLUX(INIW1,INIW2,INIW3,DISSW1,DISSW2,

+ DISSW3,LAM1,LAM2,EPS2,EPS4,DX,N)
ALPHA=l .ODO
CALL RKSTAGE(ALPHA,INIW1,INIW2,INIW3,Wl,W2,W3,

+ DISSW1,DISSW2,DISSW3,CONVW1,CONVW2,CONVW3,DT,N)
END

SUBROUTINE TIMESTEP(W1,W2,W3,K2,K4,EP2,EP4,LAM1,LAM2,NUU,XSTP,DT,N)C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C the maximum allowable timestep DT is calculated here, based on
C a linear stability analysis; for both dissipative and convective
C ,direct ion' a restrietion on the time-step is found;
C the minimum of these is assigned to DT; the parameters REB and
C IMB determine a subset [-REB,OJx[-IMB,IMBJ of the stability
C region as mentioned in chapter five;C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

INTEGER J,N
DIMENSION Wl(-2:N+2),W2(-2:N+2),W3(-2:N+2)
DIMENSION LAM1(-2:N+2),LAM2(-2:N+2),NUU(-2:N+2)
DIMENSION EP2(-2:N+2),EP4(-2:N+2)
DOUBLE PRECISION W1,W2,W3,K2,K4,CMIX
DOUBLE PRECISION LAM1,LAM2,NUU,EP2,EP4,EPS
DOUBLE PRECISION TMRE,TMIM,DT,TMSTP,XSTP,REB,IMB
PARAMETER (REB=1.0DO,

+ IMB=1.0DO,
+ EPS=1.0D-l0)
DO 140 J=-2,N+2

CALL SPSOUND(Wl(J),W2(J)1W1(J),CMIX)
LAM1(J)=ABS(W3(J)IW1(J))
LAM2(J)=ABS(W3(J)IW1(J))+CMIX

140 CONTINUE
DO 120 J=-l,N+l

NUU(J)=ABS(W2(J-1)IW1(J-1)-2·W2(J)IW1(J)+W2(J+1)1W1(J+1))
+ /(W2(J-l)1W1(J-1)+2·W2(J)1W1(J)+W2(J+1)1W1(J+1)+1.D-12)

120 CONTINUE
DO 130 J=-l,N

EP2(J)=K2·MAX(NUU(J),NUU(J+l))
EP4(J)=MAX(0.ODO,K4-EP2(J))

130 CONTINUE
DO 150 J=-l,N
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LAM1(J)=0.5DO·(LAM1(J)+LAM1(J+1»
LAM2(J)=0.5DO·(LAM2(J)+LAM2(J+1»

150 CONTINUE
TMIM=IMB/LAM2(-l)
TMRE=REB/(EPS+LAM2(-l)·(4·EP2(-l)+16·EP4(-l»)
TMSTP=TMIM
IF (TMRE.LE.TMSTP) THEN

TMSTP=TMRE
ENDIF
DO 160 J=O,N

TMIM=IMB
TMRE=REB/(EPS+LAM2(J)·(4·EP2(J)+16·EP4(J»)
IF (TMIM.LE.TMSTP) THEN

TMSTP=TMIM
ENDIF
IF (TMRE.LE.TMSTP) THEN

TMSTP=TMRE
ENDIF

160 CONTINUE
DT=XSTp·TMSTP
END

PROGRAM EULERCALCC ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
C main program; performs read- and write-actions, time-integration
C N is number of grid-points;
C OWi, i=1,2,3 represent the 'old' state variables;
C (before time-integration)
C P1 is pressure;
C CW1 is convective flux;
C DW1 is dissipative flux;
C LMD1 and LMD2 are absolute eigenvalues :U: and :U:+C;
C EPS2 and EPS4 are factors used for dissipative fluxes;
C NWi, i=1,2,3 represent the 'new' state variables;
C (after time-integration)
C LEN is the physical length of the interval, and DX the (uniform)
C distance between the grid-points;
C GRAVC is the gravitational constant (which is acting in positive
C direction;
C TIMFR is the fraction of the maximum allowable time-step that is
C used during integration;
C K2 and K4 stand for kappa2 and kappa4, the coefficients used for
C the dissipative terms;
C NSTEPS is the number of time-steps after which data are written
C to files;
C NWRITE is the number of times that is written to the data-files,
C so the total number of time-steps is NWRITE·NSTEPSC ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

INTEGER I,J,N,NSTEPS,NWRITE
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PARAMETER (N=lOO)
DIMENSION OWl(-2:N+2),OW2(-2:N+2),OW3(-2:N+2)
DIMENSION Pl(-2:N+2)
DIMENSION CWl(-2:N+2),CW2(-2:N+2),CW3(-2:N+2)
DIMENSION DWl(-2:N+2),DW2(-2:N+2),DW3(-2:N+2)
DIMENSION LMDl(-2:N+2),LMD2(-2:N+2),NU(-2:N+2)
DIMENSION EPS2(-2:N+2),EPS4(-2:N+2)
DIMENSION NWl(-2:N+2),NW2(-2:N+2),NW3(-2:N+2)
DOUBLE PRECISION OWl,OW2,OW3,Pl,CWl,CW2,CW3
DOUBLE PRECISION DWl,DW2,DW3,LMDl,LMD2,NU,EPS2,EPS4
DOUBLE PRECISION NWl,NW2,NW3
DOUBLE PRECISION LEN,DX,DT,K2,K4,ELTIME
DOUBLE PRECISION GRAVC,TIMFR
INTEGER·2 IHR,IMI,ISE,IHU
PARAMETER (LEN=lO.ODO,

+ DX=LEN/N)
CALL GETTIM(IHR,IMI,ISE,IHU)
WRITE (.,.) , ,
WRITE(·,·) , ,WRITE(·,·) '••••••••••••••••••••••••••••••••••••••••••••• '
WRITE(·,·) '•• ONE-DIMENSIONAL FLOW OF WATER AND AIR ••'WRITE(·,·) ,**.***.*•••••••••• *•••***••••••••••• *••*••••• '
WRITE(·,·) , ,
WRITE(·,·) '••••••••• *•••••••••••••••••••• *•••••••••••••• '
WRITE(·,*) 'COMPUTATION STARTED : ',IHR,':' ,IMIWRITE(·,·) '•••••••••••••••• *••**••**••••*•••••••••• *.*•• '
WRITE(*,·) , ,
WRITE(*,·) '•••••••••••••••••••••• **•••• '
WRITE(*,*)' ACTUAL / LAST TIMESTEP'
WRITE(·,·)' ------ ------
WRITE(*,*) , ,
OPEN(UNIT=lO,FILE='DENS.DAT' )
OPEN(UNIT=ll,FILE='PRES.DAT' )
OPEN(UNIT=12,FILE='VELO.DAT' )
OPEN(UNIT=13,FILE='TIME.DAT' )
OPEN(UNIT=17,FILE='PROGDATA.DAT' )
OPEN(UNIT=18,FILE='EP24.DAT' )
OPEN(UNIT=19,FILE='FLUX.DAT' )
OPEN(UNIT=20,FILE='NUUS.DAT' )
OPEN(UNIT=21,FILE='FRAC.DAT' )
OPEN(UNIT=31,FILE='INIWl.DAT' )
OPEN(UNIT=32,FILE='INIW2.DAT' )
OPEN(UNIT=33,FILE='INIW3.DAT' )
READ(17,·) K2
READ (17 ,.) K4
READ(17,·) NSTEPS
READ(17,·) NWRITE
READ(17, *) TIMFR
READ(17,·) GRAVC
READ (17,.) DT

C DT MAY BE A FIXED TIMESTEP
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C NOW READ INITIAL STATE VARIABLES
DO 505 J=O,N

READ(31,*) OW1(J)
READ(32,*) OW2{J)
READ{33,*) OW3(J)

505 CONTINUE
C AND ASSIGN VALUES TO VARIABLES
C IN VIRTUAL POINTS

CALL BCLOSED{OW1,OW2,OW3,N)
C CALCULATE MAXIMUM ALLOWABLE TIME-STEP
C WHEN VOU DON'T WANT TO USE A FIXED TIME-STEP

CALL TIMESTEP(OW1,OW2,OW3,K2,K4,EPS2,EPS4,
+ LMDl,LMD2,NU,DX,DT,N)
DT=TIMFR*DT

C IS ACTUAL TIME-STEP
C ELAPSED TIME IS

ELTIME=O.ODO
WRITE{13,*) ELTIME,OW3(N/2)/OW1(N/2)

C WRITING OF DATA TO FILES
DO 600 J=O,N

WRITE(lO,*) J*DX,OW1{J)
CALL PRESSURE{OW1{J),OW2(J)/OW1(J),Pl{J»
WRITE{ll,*) J*DX,Pl{J)
WRITE{12,*) J*DX,OW3(J)/OW1(J)
WRITE(20,*) J*DX,NU(J)

600 CONTINUE
C NOW PERFORM THE REQUIRED NUMBER OF INTEGRAT ION-STEPS

DO 400 L=l,NSTEPS
DO 350 I=l,NWRITE

CALL RK(OW1,OW2,OW3,CW1,CW2,CW3,
+ DW1,DW2,DW3,LMD1,LMD2,NU,EPS2,
+ EPS4,NW1,NW2,NW3,Pl,DX,DT,K2,K4,N,GRAVC)

DO 300 J=-2,N+2
OW1(J)=NW1{J)
OW2(J)=NW2{J)
OW3{J)=NW3(J)

300 CONTINUE
CALL BCLOSED(OW1,OW2,OW3,N)
ELTIME=ELTIME+DT

C CALCULATE MAXIMUM ALLOWABLE TIME-STEP
C WHEN VOU DON'T WANT TO USE A FIXED TIME-STEP

CALL TIMESTEP(OW1,OW2,OW3,K2,K4,EPS2,EPS4,
+ LMDl,LMD2,NU,DX,DT,N)

DT=TIMFR*DT
C IS ACTUAL TIMESTEP

WRITE(*,345) (L-l)*NWRITE+I,NSTEPS*NWRITE
345 FORMAT{lH+,I8,I8)
350 CONTINUE

C SOME DATA WILL BE WRITTEN
C TO FILES NOW

WRITE(13,*) ELTIME,OW3(N/2)/OW1(N/2)

87



00 315 J=O.N
WRlTE(lO.·) j·DX.NW1(J)
CALL PRESSURE(NW1(J).NW2(J)/NW1(J).Pl(J))
WRlTE(ll.·) j·DX.Pl(J)
WRITE(12.·) J·DX.NW3(J)/NW1(J)
WRITE(18.·) J·DX.EPS2(J).EPS4(J)
WRITE(19.·) J·DX.CW1(J).DW1(J)
WRITE(20.·) j·DX.NU(J)
WRITE(21.·) J·DX.NW2(J)/NW1(J)

315 CONTINUE
400 CONTINUE

C COMPUTATION RAS BEEN FINISHED HERE
CALL GETTIM(IRR.IMI.ISE.lHU)WRITE(·.·) ••••••••••••••••••••••••••••••
WRITE(·.·) • •WRlTE(·.·) ••••••••••••••••••••••••••••••••••••••••••••••
WRITE(·.·) 'COMPUTATION FINISHED:' .IRR.·:· .IMIWRITE(·.·) ••••••••••••••••••••••••••••••••••••••••••••••
CLOSE(lO)
CLOSE(1l)
CLOSE(12)
CLOSE (13)
CLOSE (11)
CLOSE (18)
CLOSE (19)
CLOSE(20)
CLOSE (21)
CLOSE (31)
CLOSE(32)
CLOSE (33)
END

88



Appendix V Accuracy

Central-space discretisation yields a second-order truncation error for the
numerical solution (which can be found by Taylor expansion). In areas where
a lot of artificial dissipation is added, this accuracy cannot be obtained,
then the error is first-order.
The three-stage Runge-Kutta time-integration scheme is, as is well-known,
third-order accurate.

89



REFERENCES

[1] G. Klopman
Free moving interfaces in unsteady compressible flow
Delft Hydraulics, November 1990 (unpublished)

[2] M.W. Zemanski and R.H. Dittman
Heat and Thermodynamics
McGraw-Hill, 1981

[3] G.K. Batchelor
An Introduction to Fluid Dynamics
Cambridge University Press, 1967

[4] H.B. Stewart and B. Wendroff
Two-Phase Flow: Models and Methods
Journalof Comp. Physics 56, 363-409, 1984

[5] A. Biesheuvel
Hydrodynamika van twee-fasen stromingen,
naar het college van L. van Wijngaarden
TH Twente, april 1984

[6] J.G.M. Kuerten
Numerical definition document for the
ISNaS time-explicit flow solver
University of Twente, 1989
(ISNaS 88.10.031)

[7] D. Dijkstra
The selection of an implicit Navier-Stokes
solver for compressible flows
University of Twente, 1989
(ISNaS 89.12.061)

[8] G. Klopman, H. Petit and H. Raven
Incompressible flow simulation,
section 2.3: free surface treatment
Delft Hydraul icslMARIN , 1988
(ISNaS 88.09.037)

[9] G. Klopman
Numerical simulation of gravity
wave mot ion on steep slopes
Delft Hydraulics, October 1988
(Report H 195)

90



[10] Von Karman Institute for Fluid Dynamics
Hyperbolic Conservation Laws
Lecture Series 1990

[11] M. Borsboom
Compressible Water - An alternative way of modeling free
surface flows and many other interesting flow phenomena
Delft Hydraulics. November 1988

[12] M. Borsboom
Compressible Water - Preparing a Feasibility Study
Delft Hydraulics. July 1990

[13] M. Borsboom
Viskeuze Stromingsmodellen.
eisen en benodigd numeriek onderzoek
Delft Hydraulics. maart 1991

[14] C.W. Hirt and B.D. Nichols
Volume of Fluid (VOF) Method for the
Dynamics of Free Boundaries
Journalof Comp. Physics 39. 201-225. 1981

[15] P.K. Sweby
High Resolution TVD Schemes Using Flux Limiters
Lectures in Applied Mathematics. Volume 22. 1985

[16] R.J. Le Veque and J.B. Goodman
TVD Schemes in One and Two Space Dimensions
Lectures in Applied Mathematics. Volume 22. 1985

[17] C.-W. Shu and S. Osher
Efficient Implementation of Essentially Non-Oscillatory
Shock-Capturing Schemes. 11
Journalof Comp. Physics 83. 32-78. 1989

[18] S.R. Chakravarthy and S. Osher
Computing with High-Resolution Upwind Schemes
for Hyperbolic Equations
Lectures in Applied Mathematics. Volume 22. 1985

[19] R.L. Higdon
Absorbing Boundary Conditions for Difference Approximations
to the Multi-Dimensional Wave Equation
Mathematics of Computation. Volume 47. October 1986

[20] A. Harten
ENO Schemes with Subcell Resolution
Journalof Comp. Physics 83. 148-184. 1989

91



[21] F. Lafon and S. Osher
High Order Filtering Methods for Approximating
Hyperbolic Systems of Conservation Laws
Journalof Comp. Physics 96, 110-142, 1991

[22] A. Jameson
A Nonoscillatory Shock Capturing Scheme
Using Flux Limited Dissipation
Lectures in Applied Mathematics, Volume 22, 1985

[23] P.L. Roe
Some Contributions to the Modelling of
Discontinuous Flows
Lectures in Applied Mathematics, Volume 22, 1985

[24] T.H. Pulliam
Artificial Dissipation Models for the Euler Equations
AlAA Journal, Volume 24, December 1986

[25] D. Kröner
Numerical Schemes for the Euler equations in two
space dimensions without dimensional splitting
Proceedings of the Second Conference on
Hyperbolic Problems, 1988

[26] W.Y. Soh and J.W. Goodman
Unsteady Solution of Incompressible Navier-Stokes Equations
Journalof Comp. Physics 79, 113-134, 1988

[27] E. Turkel
Preconditioned Methods for Solving the Incompressible
and Low Speed Compressible Equations
Journalof Comp. Physics 72, 277-298, 1987

[28] C. Ramkema
A model law for wave impacts on coastal structures
Delft Hydraulics Laboratory,
Publication no. 207, October 1978

[29] Th. van Doorn
Schaaleffekten bij golfklappen op een talud
Waterloopkundig Laboratorium,
Verslag modelonderzoek M 1057, augustus 1979

[30] C. Ramkema en C. Flokstra
Stormvloedkering Oosterschelde; Golfklappen:
Een zuigermodel met samendrukbaar water
Waterloopkundig Laboratorium,
Verslag M 1335 deel 11, juni 1979

92



[31] C. Ramkema en C. Flokstra
Stormvloedkering Oosterschelde; Golfklappen:
Een literatuuroverzicht en schaaleffekten in model onderzoek
Waterloopkundig Laboratorium,
Verslag H 1335 deel lIl, augustus 1919

[32] H. Lamb
Hydrodynamics
Cambridge University Press, 1932

[33] H.J. LighthilI
Waves in fluids
Cambridge University Press, 1918

93



a:UJ In

oa:u.UJ
:I:a: a...... en

<0
X

Cl t-
Z oe:(
oe:( ID c,
0 .r1

a: 111

UJ C\J c
t- 0
<0 .r1

3:Z ..
oe:(

u

U.
111
c,

0 0 .....
I

UJ - S
oq ClI

a: E
;:J

:::)
Iri " ......

t- ~ 0

X >
..... 0
X 11a.
< en
Z UJ (\J

H ..... t-
oe:(

Cl t-
Z en

W :::)
02:

Cl: en:::)
H

:::> u. a:om 0

(.!) H
Cl _J

H UJ H IC) 0 IC) 0 IC) 0UJ ::l

LL a. Cl (1') (1') (\J (\J .... ....
en UJ

(punos 10 paadsj 90101

o
....



o o

o
N

N
I

0 0

Q) I') Q) I')

e I e I
Q) Q)

J:. J:.
U X U X
UI ::J UI ::J.... ....
10 00- 10 00-

..... .......... Q) ..... Q)

::J > ::J >~ .r1 ~ .r1

I ..... I .....
Q) 10 Q) 10
OIC. OIC.
I: .r1 I: .r1

::J UI ::J UI
tI: UI tI: UI

.r1 .r1

Q)"c Q)"C
en Ol
10 00- H 10-..... 0 .....0
UI UI

H I UI H I I:
I') I: I') 0

H 0 H
.r1- .r1 00- .....

0 ..... 0 10
10 ::J

I: ::J I: ....
W 0 ..... W 0 10

.r1 10 .r1 >
Ol > OIQ)

Cl: Q) Q) Cl: Q)
c, c... Q)

::l Q) ::l ....
>- Q) >-01..... c... ..... 1:

(!) .r1 J:. (!) ..... .r1.... ..... .... UI

H
.r1

H
.r1

.0 J:. .0 J:.
10 ..... 10 .....

LL ..... .r1 LL ..... •r1

Ul ~ Ul ~

o
N



0 0

0 0.... ....
0 0

Cl) Cl)

0 0

te te.... (Tl

0 0 0 0
11 11
-+J <q' -+J <q'

0 0

C\J C\J

Ol
E 0 0....
-+J- 0 in 0 0 m 0

0 "0 .... ....
Ol

(J) "0
+J "0 (E+Ol) ÁflSuap (E+Ol) ÁflSuapc 10....
o (J)a. .... 0 0

U
+J C Ol 0 0
C o (J) .... ....
Ol ............

0 0
H t.. +J E

Ol 10- a. .... al al- ....
> .... (J) B 0 0"0 (J)

H .... ::l te te+J "0 0 C\J10 >0,..... +J 0 0 0 0

W >OIO ....
11 11

+J ..... U +-J <q' -+J ~a: .... U 0
(J) .... ,.....

~
c - Ol 0 0
Ol .... >

(!) "0 +J _(\I C\J
I c, "0

H (J) 10 .... 0
(J) ::J in 0 0

LL 10 0 ,..... •~ Z LL Z I I

0 in 0 0 U1 0

.... ....
(E+Ol) ÁflSuap (E+Ol) Áf~SUap



0 0

0 0.... ....
0 0.
CD CD

0 0
(() (().... (Tl

0 0 0 0
11 11
+J ~ +J ~

0

_C\J

Ol
E 0 0
or1

I I+J- 0 U1 0 0 U1 0
0 "0 .... ....

Ol
Ul "0
+J "0 (E.Ol) Á':nsuap (E.Ol) Á:nSuapc 10
or1

o Ul
a°r1 0 0

U
+J C Ol 0 0

H c o Ul .... ....
Ol or1 .......

H c, +J E 0 0
Ol 10- a .... CD CD• - 0r1

> or1 Ul • 0"0 Ul 0

H or1 :::J (() to+J "0 0 C\J10 ::>-..... +J 0 0 0 -::::: ~ 0
LiJ ::>-10 or1 11 11

+J or1 U +J 'q' +J 'Ver or1 U 0
Ul or"! .....

::> c - Ol 0 0
Ol or"! >

(.!) "0 +J (\J C\J
I c, "0 0 ~~

H Ul 10 or"! 0
Ul ::::J C\J 0 0

l..L. 10 0 ..... •~ Z IJ.. Z I I

0 U1 0 0 U1 0
.... ....
(E.Ol) Á:psuap (E.Ol) Á':nsuap



0 0

0 0.... ....
0 0

CD CD

0 0

lD lD
0 0

.... 0 .(1") 0
11 11
~ "q' ~ "q'

0

C\I

Q)

E C\I 0 0
.r1

~ 0
11 0 IC) 0 0 IC) 0- "q'

0 ~ .... .....
IJ)
~ 0 (E+O~ ) Á'l~Suap (E+O~ ) Á'l~Suape
.r1 IC)
0"'"
0. 11 0 0

H C\I
~ ~ 0 0

H e U .... ....
Q) Q)

H c, c IJ) 0 0
Q) 0 .......- .r1 E CD CD- ~ -> .r1 ttJ • 0 0u 0.:::>

H .r1 lD lD~ IJ)
ttJ IJ) >- 0 0

.r1 ~ 0 0 C\I 0

W >-u .r1 11 11~ U ~ "q' ~ "q'

0: .r1 ..... 0
IJ) ttJ .....

~
e .r1 Q) 0 0
Q) U >

(!) U .r1 (\I C\I
I - U -

H IJ) .r1 .r1 0
IJ) ~ ::::J IC) 0 0

LL ttJ c, ..... •~ « LL Z
0 IC) 0 0 IC) 0

.... ....
(E+O~ ) Á'l~Suap (E+Ot) Á'l~Suap



0 0

0 0- -
0 0

CD CD

0 0

lD lD
0 0- 0 (Tl 0
11 11

-+-J ~ -+-J ~

0 0

C\J C\J

Q)
E ~ 0 0
.r-f

-+-J 0
I1 0 In 0 0 U1 0- ~

0 ~ ..... .....
en
-+-J 0 (E+OJ) Á'Hsuap (E+OJ) knsuapc
.r-f 0
oC\J
C. I1 0 0

C\J U
-+-J ~ Q) 0 0

> c en ..... .....
Q) ...........

H c... c E 0 0
Q) 0- .r04 ..... CD CD- -+-J

> .r-f ltJ • 0 0"C C.

H .r04 => 1.0 1.0-+-J en 0 0ltJ en >-
.r04 -+-J 0 0 ..... 0

W >- "C .r-f 11 11
-+-J U -+-J ~ -+-J <q

Cl: .r-f ,..... 0
en ltJ ,.....

::l C .r04 Q) 0 0
Q) u >

(.!) "C .r04 cu C\J
I - "C 0

H en .r04 .r-f 0
en -+-J :l C\J 0 0

LL ltJ c... ,..... •::E ct u, Z I

0 U1 0 0 U1 0

..... .....

(E+OJ) Á:}~suap (E+OJ) Á:}~suap



0 0

0 0.... ....
0 0.
al al

0 0

lD lD
0 0

.... 0 C"l 0
C\J I1 11
U ., <q' ., <q'
QJ
(I)
<, 0 0
E

C\J C\J....
QJ
E <q' • 0 0....., 0 en

I1 0 lC) 0 0 in 0- ""l
0 ~ U .... ....

QJ
(I) - (I)., 0 <, (E+O~ ) Á:nSuap (E+O~ ) Á~~suapc E.... 0
oC\J ....
011 0 0

C\J •., ~ 0 0
c :::l .... ....
Q)

0 0> c, C >-
QJ 0 ., al al- .... ....

• - ., U

> .... CO 0 0 0'0 0 .....

H .... QJ lD lD., (I) ::> 0 0CO (I)..... '0 0 0 .... 0

W >-'0 ..... 11 11., :::J +.I <q' ., <q'er ..... ..... .....
(I) CO -:::> c ..... 0 0
QJ U .....

(.!) '0 ..... CO C\J
I - ..... 0

H (I) ..... ., 0
(I) ., ..... C\J 0 0

LL CO c, C •~ « 1-4 z
0 in 0 0 m 0

.... ....
(E+O~ ) Á~·~suap (E+O~ ) Á~~suap



0 0

0 0..... « .....
0 ! 0

m -ei co.....
0 .. 0....

C\J tD "q' .. tD
0 0

QJ 0 0 ...
c, 0 0
::J 0 0

...
U) 11 "q' n "q'
U) ~ ~ ..

U) QJ
QJ c, 0 0
E a. 0..... A C\J C\J
~ - ~

0
0 0~

C QJ U)
QJ U <,
c, c E
QJ QJ 0 0 0 0 0 0- c, U) 0 0 0 0 0- QJ <, C\J ..... C\J .......... - E 0
"0 - (E+O~ ) d (E+O~ ) d..... ..... U 0
~ "0
ltI 0 - 0

"0 0 0 0
Ol C U •.c 0 0 0 .~. 0
::J U :::J ..... _ ..... .....
~ QJ • "q' ..

U) >-x- 0 0
C ~-ltI ·m co

H ..... "0 ..... :::J a.
QJ U a.

QJ N 0 C ltI 0 0c, ..... - 0 ~
> ::J - QJ ..... ..... tD (Tl tD

U) ltI > ~ 0 0
U) E •.-4 0 0 0Ol c, "0 "0 0 0

LlJ '- 0 ..-4 C 0 0 0a. c ::J 0 11 "q' • "q'a: - u • ~ ~- U) -:::> 0 •.-4 >-- 0 0- ,-C\J
(.!) U) c, ltI ltI C\J C\J

Ol 0 •.-4 "0 ltI

H ::J U) ~ C a.- c •.-4 ::J a. 0 0

LL ltI QJ C 0 ltI
> (f) t-i m ~

0 0 0 0 0 0
0 0 0 0
C\J ..... C\J .....

(E+O~ ) d (E+OO d



0 0

i
0

I
0- -•! 0 0

.) al al,

i0 0

C\J lD 'q' lD
Q)

0 0 (j0 0c... 0 0
:::J 0 0 .
en 11 "q' 11 "q'
en -I-) -I-)

en Q)
Q) c... 0 0
E a. 0..... " C\J C\J
-I-) - -I-)

0
0-I-) 0

C Q) en
Q) u .........
c... C E
Q) Q) 0 0 0 0 0 0- c... en 0 0 0 0 0- Q) <, C\J - C\J -..... - E 0
"0 - - (E+O ~) d (E+O ~) d..... - H 0
-I-) "0
10 0 - 0

"0 0 0 0
Q) C • •.c 0 0 )

0

I
0

:::J U ::l -- - --I-) Q) H "'l ,.
0 0

H en >x- ic -I-) - 10

H ..... "0 ..... ::l a. al ! al
Q) U a. i

Q) N 0 C 10
,

c... ..... - 0 .:JL. 0 .l 0

> :J - Q) ..... - lD (Tl !. tDen 10 > -I-) 0 0en E .r-4 0 0 0
Q) c... "0 "0 0 ··0

W c... 0 ..... C 0 0 0a. c :::J 0 11 'q' H 'q'er - u u -I-) -I-)- en -=> 0 ..... >- 0 0- c...C\J
(!) en c... 10 10 C\J C\J

Q) 0 ..... "0 10

H :::J en -I-) c a.- c ..... :::J a. 0 0

LL 10 Q) C 0 10
> Ul I---i al.:JL.

0 0 0 0 0 0
0 0 0 0
C\J - C\J -

(E+O~ ) d (E+O~ ) d



0 0

t
0

i
0- -

0

I
0

CD CD
.

0 I 0. .
C\J ••• c.o ""f

I
c.o

0 0
Q) 0 0
'- 0 •.. 0
:J 0 0
(I) 11 ""f 11 ""f
(I) .f,.J ~

(I) Q)
···0Q) c, 0e a. 0..... 1\ C\J C\J

~ - ~
0

0 0~
c Q) (I)
Q) u <,
c, C E
Q) Q) 0 0 0 0 0 0- '- (I) 0 0 0 0 0- Q) <, C\J - C\J ......... - EO
"C - - (E+O~ ) d (E+O~ ) d..... .... U 0
~ "C
ltI 0 _O

0"C 0 0
Q) C U •.c 0 0 t. 0 0

H :J U ::J -_ - -~ Q) n ""f

H (I) >-x- 0 0
C ~-ltI CD

H ..... "C ..... ::J a. ... CD
Q) U a.

• Q) N 0 C ltI 0 0
'- ..... .... 0 ~

> :J .... QJ ..... - c.o (T) tD
(I) ltI > .f,.J 0 0

.
(I) e ..... 0 0 0
QJ c, "C "C 0 0

UJ c, 0 ..... C ....
0 0

.. .
a. c :J 0 11 ""f ft ""frr .... U H .f,.J ~- (I) -::l 0 ..... >-- 0 0.... '-C\J

(!) (I) '- ltI 1tI- C\J C\J
Q) 0 ..... "C ltI

H :J (I) ~ C a..... c ..... :J a. 0 0

LL ltI Q) C 0 ltI
> Ul t-4 CD~

0 0 0 0 0 0
0 0 0 0
C\J - C\J ....

(E+O~ ) d (E+O~ ) d



0
(\J

(J)

tD
.....

L L ~.... Q.)

10 .&J .....
10

'C 3
C
10 -0
L
Q.) C U
.&J E Q.)

10 :J (/)

3: r-t .....
0- U Q.)

H 0 (J) E- .r-i

C 0 .&J
0

H .... .&J
.&J 0

> 10 r-t
r-t a.
r-t.... >-

W U .&J
(/) ....

er 0 u
0

=> U r-t C\J.... Q.)

(.!) C >
0 I

H E Q.)
L E

LL 10 ....
I I-

0 0 0 0 0

C\J ..... ..... C\J
I I

(JaSjW) '<'~~JOlaA



0 0

0 0.....
0
(J)

0

tO co

0 0c,
0 ~
U)
c
Q) 0
U)
I
Q)
U
10 0-c,
Q) 0 0 0 0 LO 0~
c C\J C\J ......... I

u (s/W) ol aA ~osuasc
10 U

Q)
>oU) 0 0
~......... 0 0

H U) ..... .....
co

H Q) 0 0
U 11 (J) al.~

H >0 0 0~ ~
> .... 10 tO tou

0 Q)
r-1 .0 0 0

LU Q) :J
> ~ ~

0: • Q)

::> Q)s:;. 0c..~
(.!) :J C\J

u)o

H U) c
Q) 0 0

LL c..r-1
Q. 10

0 0 0 0 LO 0

0 0 .....
LO LO

(E+OO (ed) sa.ro' (E+OO (Ew/Ö)!) suap



0 0

0 0..... .....
0 0

CD

0

tD

0c,
0 'q' 'q'
U)

c
Cl)
U), (\J (\J
Cl)
U
10 0 0-c,
Cl) 0 0 0 0 111 0~
c (\J (\J .......... ,
u (S/W) oIaA ...JOsuasc u
10 Cl)

U)

>- 0 0

H ~(T)
..... tD 0 0

H U) ..... .....
CO

H Cl) 0 0

U " CD CD- ~
H >- 0~ ~
> ..... 10 tDu

0 Cl)...... .0 0

W Cl) ::J
> ~ 'q'

er - Cl)

::l Cl)S;: 0
t..~

(!) ::J (\J
U) C)

H U) c
Cl) 0 0 0

LL t.. ......
a. 10

0 0 0 0 111 0

0 0 .....
111 111

(E+Ot) (ed) sa.ie' (E+Ot) (Ew/5)!) suap



0-
al
E
.r-f - m
ol-) 0

0- 0 U
0 A - al

10 • Ul
C ol-) (/) -
0 al
.r-f .c Ul al
ol-)

ui
E

u Ul .r-f

H c .r-f C\J .f-J
::J- c, 0

al •
H 10 .c (/)

E
~

~
H Ul ::J al

10 C c, ~

> 10 "al >-c, ol-) Ul Vl
::J .r-f c,

LU Ul ...... al
Ul .r-f .c C\Ja: al .c E
c, .r-f ::J

~
a Ul c

Ul

(!) .f-J al ol-)

U c, u
H 10 aIOa E a 0

LL E o E
1----4 u .....

0 co Ul 'q" C\J 0-
(9+0~ ) (ed) d



32

30

28

2e

2-4
~ ,., 22
0
(ft

LI
20c

<0....c;- o 18
i

Q.-Q.
_j

f
16

'-"
14

H 12
H

H 10
H
> 8

W
6a:

::J
(.!) 4
H
LL 2

-

B.~ 0.01,

):2,5

lil;!~\S'l
J'J 1.LS:O,2!:

IU~ ~ ,~ S=~O,02
~ ~ .,...

0,1 Q2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

-___. .. (gmorm<2<2rd<2 tijd) t/T

1,0




