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Abstract—While in-memory databases have largely removed
I/O as a bottleneck for database operations, loading the data
from storage into memory remains a significant limiter to end-to
end performance. Snappy is a widely used compression algorithm
in the Hadoop ecosystem and in database systems and is an option
in often-used file formats such as Parquet and ORC. Compression
reduces the amount of data that must be transferred from/to the
storage saving both storage space and storage bandwidth. While
it is easy for a CPU Snappy decompressor to keep up with the
bandwidth of a hard disk drive, when moving to NVMe devices
attached with high bandwidth connections such as PCIe Gen4 or
OpenCAPI, the decompression speed in a CPU is insufficient. We
propose an FPGA-based Snappy decompressor that can process
multiple tokens in parallel and operates on each FPGA block ram
independently. Read commands are recycled until the read data
is valid dramatically reducing control complexity. One instance of
our decompression engine takes 9% of the LUTs in the XCKU15P
FPGA, and achieves up to 3GB/s (5GB/s) decompression rate
from the input (output) side, about an order of magnitude faster
than a CPU (single thread). Parquet allows for independent
decompression of multiple pages and instantiating eight of these
units on a XCKU15P FPGA can keep up with the highest
performance interface bandwidths.

Index Terms—Snappy, Decompression, FPGA

I. INTRODUCTION

Due to the significant I/O bottleneck when database op-
erations access data in storage, database systems have been
moving to processing data in-memory. However, loading the
data from persistent storage into main memory remains a
bottleneck. Systems such as Netezza [4] have used compres-
sion algorithms for bandwidth amplification. In these kinds
of systems, the raw data is compressed and stored in storage,
and only when it needs to be loaded, is the data transferred
and decompressed into memory. Although this architecture can
save both storage space and storage bandwidth, prior designs
do not keep up with current high-bandwidth connections such
as PCIe Gen4 or OpenCAPI-attached NVMe [8].

Snappy [5] is an LZ77-based, byte-level (de)compression
algorithm developed by Google and open-sourced in 2011.
It has been widely used in big data platforms, especially in
the Hadoop ecosystem, supporting big data formats such as
Parquet [2] and ORC [1]. Similar to LZ77 [9], a Snappy
compressed file consists of two kinds of tokens: literal tokens
and copy tokens. A literal token contains data (uncompressed
for Snappy) while a copy token specifies a copy of data

from previously decompressed data. Snappy 64KB blocks are
independently compressed.

Due to the dependency between adjacent tokens in
Snappy [3], the general expectation is that there is little accel-
eration performance potential. Previous work [6] proposed a
token-level parallel implementation on FPGAs that can process
two tokens each cycle by doubling the token history for read
conflict resolution and combining write operations for write
conflict resolution. However, this method takes advantage of
the parallelism of FPGA logic but not of the array structure
in the FPGA, one of the key advantages of which is to
allow parallel block ram (BRAM) access. In this paper, we
propose an FPGA-based Snappy decompression accelerator
that makes optimal use of BRAM-level parallelism. Our FPGA
implementation translates a stream of tokens into independent
read and write commands that access a single BRAM to gain
maximum parallelism and efficiency within a single stream.

II. DECOMPRESSOR ARCHITECTURE

A. Architecture Overview

As shown in Fig. 1, the proposed decompressor consists
of a slice parser (SP), an arbiter, multiple BRAM command
parsers (BCPs), execution modules, recycle units, and the
corresponding FIFOs and selector logic. The SP reads 16 bytes
of data every cycle and parses it into a “slice” that contains
the token information in these 16 bytes such as token start
position, etc. After that, an arbiter is used to assign each slice
to one of the second level parsers, the BCPs, in which a slice
will be converted into one or multiple BRAM commands.
There are two types of BRAM commands, write commands
and copy commands. A write command indicates a data write
operation on the BRAM while a copy command leads to a read
operation followed by one or two write commands to place
the data in the appropriate BRAM blocks. For each execution
module, a read selector and a copy selector are used to
select the BRAM commands from all BCPs. In the execution
module, the BRAM commands are executed by performing
BRAM read/write operations. As the BRAM can perform both
a read and a write in the same cycle, each execution module
can simultaneously process a write command and one copy
(read) command at the same time. Since new write commands
and new copy commands (if the read data is not ready) are
generated after the copy command is executed, a recycle unit
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Fig. 1. Architecture Overview

is adopted to collect these commands and send them back
for a new execution round. The approach of re-executing read
commands that do not produce valid data is similar in spirit
to the GPU-optimized algorithm in [7] and reduces control
complexity.

B. Two-level Parser

We adopt a two-level parsing technique to split data into
finer-grained commands to obtain high parallelism. In the
first level parser, the slice parser reads 16 bytes of data and
computes the number of tokens in these 16 byte data, as well as
the token start position, token remainder counter, and the literal
remainder flag, etc. Our proposed architecture adopts a second
level parser to further split tokens into fine-grained BRAM
commands to fully use the BRAM parallelism. This way,
more BRAMs are active and more tokens can be processed
in parallel.

C. Parallel BRAM Operations

The BCPs generate two kinds of BRAM commands, the
write command and the copy command that write data to
or copy data from only one BRAM. Since each BRAM has
one independent read port and one independent write port,
each BRAM can process one read command and one copy
command each clock cycle. While the write command can
always be processed successfully, the copy command can fail
when the target data is not ready in the BRAM. So there
should be a recycle mechanism for failed copy commands.
After executing a copy command, there can be three kinds of
results: 1) all the target data is ready (hit); 2) only part of the
target data are ready (partial hit); 3) none of the target data is
ready (miss). In the hit case and the partial hit case, one or
two write commands are generated to write the copy results to
one or two BRAMs. In the partial hit case and the miss case,
a new copy command is generated and recycled, waiting for
the next round of execution.

TABLE I
IMPLEMENTATION RESULTS

Flip-Flop LUTs BRAMs Frequency Power
32K(3.32%) 46K(8.95%) 29(2.95%) 250MHz 2.9W

III. EXPERIMENTAL RESULTS

We implemented a single instance of our proposed architec-
ture in the XCKU15P FPGA. The implementation results are
shown in Table I. A 250MHz implementation of the proposed
architecture takes 3.32% of the Flip-Flops, 8.95% of the LUTs,
and 2.95% of the BRAMs. The design uses the minimum
number of BRAMs per block and is LUT-limited.

A preliminary experiment was run on decompressing the
book “Alice’s Adventures in Wonderland” [5], the compressed
(uncompressed) size of which is 85KB(149KB). The proposed
decompression accelerator achieves a processing rate about
13 Bytes/clock cycle, meaning an input (output) throughput
of 3GB/s (5GB/s). Compared with a single-thread (similar
resource) CPU implementation [5], our design is about an
order of magnitude faster than a thread in Core i7 processor
(500MB/s). Meanwhile, synthesis results indicate that eight
instances only consume 13.6W of power, leading us to expect
more than an order of magnitude power efficiency advantage
at a chip level.

IV. CONCLUSIONS AND FUTURE WORK

Based on our single-unit results we expect our design to
have an order of magnitude better per-thread Snappy per-
formance than a CPU, about an order of magnitude more
chip-level throughput, and close to two orders of magnitude
better power efficiency. Our future work targets on multiple
instances with follow-up additional processing such as filtering
that can keep up with the latest high-bandwidth interfaces. Our
design will be made open source to enable further community
improvement1.
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