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ESTIMATION OF CARDIAC FIBRE DIRECTION BASED ON ACTIVATION MAPS
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∗ Signal Processing Systems group, Delft University of Technology, the Netherlands
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ABSTRACT

Estimating tissue conductivity parameters from electrograms
(EGMs) could be an important tool for diagnosing and treat-
ing heart rhythm disorders such as atrial fibrillation (AF). One
of these parameters is the fibre direction, often assumed to be
known in conductivity estimation methods. In this paper, a
novel method to estimate the fibre direction from EGMs is
presented. This method is based on local conduction slow-
ness vectors of a propagating activation wave. These conduc-
tion slowness vectors follow an elliptical pattern that depends
on the underlying conductivity parameters. The fibre direc-
tion and conductivity anisotropy ratio can therefore be esti-
mated by fitting an ellipse to the conduction slowness vectors.
Applying the presented method on simulated data shows that
it can estimate the fibre direction more accurately than ex-
isting methods, and that its performance depends mostly on
the range of wavefront directions present in the measurement
area. The main advantage of the presented method is that it
still functions relatively well in the presence of conduction
blocks, as long as the surrounding tissue is approximately ho-
mogeneous.

Index Terms— Anisotropy, atrial fibrillation, conduction
velocity, fibre direction, local activation time

1. INTRODUCTION

Contractions of the heart are induced by action potentials
propagating through the cardiac tissue. These action poten-
tials consist of a rapid depolarisation of the transmembrane
potential of a muscle cell (myocyte), causing the cell to
contract and neighbouring cells to depolarise as well. The
electrical propagation through the cardiac cells that follows
is determined by the tissue conductivity. Due to the complex
composition of cardiac tissue, the conductivity is generally
inhomogeneous and orthotropic, with the main direction of
propagation aligned with the fibre direction.

Impaired electrical conductivity in pathological tissue
plays an important role in cardiac electrophysiology as it
gives rise to heart rhythm disorders such as atrial fibrillation
(AF) [1]. The impaired conductivity hinders a smooth con-
traction of the atria, which has several long-term health risks
such as an increased risk of heart failure and stroke. Be-

ing able to estimate the local atrial tissue conductivity from
electrogram (EGM) recordings could be an important tool in
diagnosing and treating AF.

The inverse problem of estimating local tissue conductiv-
ity parameters from EGM measurements, however, is an ill-
posed and highly challenging task due to high dimensionality,
nonlinearity and stochasticity. Furthermore, most estimation
approaches focus on finding a single set of homogeneous pa-
rameters for the whole tissue, which does not facilitate local-
isation of areas with impaired conductivity. Recently, some
methods have been developed that estimate conductivity pa-
rameters locally [2]–[4]. Although these methods perform
relatively well, they depend on a number of parameters that
are assumed to be known. One of these parameters is the fi-
bre direction, which influences the effective conductivity due
to the orthotropic nature of the tissue. A method to estimate
this fibre direction was developed by Roney et al. [5] in 2019,
based on fitting elliptical wavefronts to local activation times
(LATs). This method does not perform well, however, in the
presence of conduction blocks due to wavefronts breaking up.
Another method was used by Houben et al. in 2004 [6], based
on conduction velocity properties. This paper presents a novel
method to estimate the fibre direction from LATs based on
reciprocal conduction velocity, aiming to improve the esti-
mation accuracy while still performing well for tissue with
conduction blocks.

2. PHYSIOLOGICAL MODELS

Cardiac tissue is a composite tissue and consists mainly of
muscle cells, capable of providing tension. The contraction
of these cells is triggered by electrical depolarisation. Spe-
cialised cells in the sinoatrial node can generate an electrical
impulse: the action potential. This action potential consists
of a rapid depolarisation, activating the cell contraction, and a
slower repolarisation. Due to intercellular coupling, the depo-
larisation also induces depolarisation in neighbouring muscle
cells. Because of the delay in this coupling, each myocyte
activates at a different time, known as the LAT. A propa-
gating depolatisation wave follows through the tissue. The
orthotropic nature of the tissue conductivity means that the
conduction velocity of the wave is also orthotropic and the
wavefronts are therefore usually elliptical in shape.IC
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2.1. Monodomain model

To obtain a mathematical model of the electrophysiology of
the heart, cardiac tissue can be approximated as one continu-
ous and homogeneous domain. This domain is characterised
by a location dependent conductivity tensor Σ and trans-
membrane potential V . Combining Ohm’s law, conservation
of current and a physiological decomposition of the trans-
membrane current [7] leads to the partial differential equation
known as the monodomain model. A detailed derivation of
this equation can be found in [8]. The continuous model
can be discretised for computational purposes. The tissue
is approximated by a two dimensional regular lattice of
Nx × Ny = N nodes, indexed by nx ∈ {1, . . . , Nx} and
ny ∈ {1, . . . , Ny}, that can either represent cells or groups of
cells. Assuming a regular lattice allows for the finite differ-
ence method (FDM) to be used in place of continuous partial
derivatives. It has been shown that the monodomain model
describes the caridac electrophysiology accurately, as long as
no injection of extracellular current is involved [9]–[11].

2.2. Conductivity tensor

The propagation of the depolarisation wave strongly depends
on the electrical conductivity of the tissue. Tissue conduc-
tivity is an orthotropic property [12], and can therefore be
described as a symmetric tensor. When considering two di-
mensional tissue, this tensor is a 2× 2 symmetric matrix. An
intuitive interpretation follows from applying an eigendecom-
position, given by

Σ =

(
cos ζ − sin ζ
sin ζ cos ζ

)(
σℓ 0
0 ασσℓ

)(
cos ζ sin ζ
− sin ζ cos ζ

)
.

(1)
Here, σℓ is the conductivity in longitudinal direction, ασ is
the anisotropy ratio such that ασσℓ represents the conductiv-
ity in transverse direction, and ζ is the angle of longitudinal
conductivity relative to the x-axis of the measurement frame
of reference. Due to the spatial organisation of the cells, lon-
gitudinal conductivity is along the local fibre direction of the
tissue. This means that ζ corresponds to the local fibre direc-
tion.

2.3. Local activation time & conduction slowness

When a depolarisation wave passes through the tissue, each
cell is activated at a different time. The LAT τ of a cell is
found from the transmembrane potential either as the instant
the −40mV threshold is passed or as the instant the time
derivative is maximal. In practice, however, transmembrane
potentials are only known indirectly through the measured
EGM potentials, and the LATs have to be estimated [13]. The
complete set of estimated LATs provides a discrete, approxi-
mate activation map of the tissue area.

Fig. 1: Ellipse representation of conduction slowness with
αs =

1√
2

and ξ = 2
3π rad.

The wavefront velocity is known as the conduction ve-
locity, and its reciprocal quantity is defined here as the con-
duction slowness. Conduction slowness is an interesting wave
property with a strong dependence on the conductivity param-
eters. Similarly to tissue conductivity, conduction slowness is
orthotropic [14] and can be represented as an ellipse in the
conduction slowness space. The orientation of this ellipse
is the longitudinal conduction slowness direction ξ, which
aligns with the transversal conductivity direction such that

ξ = ζ +
1

2
π. (2)

The semiminor to semimajor axis ratio is the conduction
slowness anisotropy ratio αs, which is related to the conduc-
tivity anisotropy ratio as [15]

α2
s = ασ. (3)

The radius of the ellipse in the wavefront direction equals
the effective conduction slowness of that wavefront. Figure
1 shows an example of this ellipse representation.

3. PROPOSED METHOD

The local conduction slowness of a node in an activation map
is a vector obtained from the gradient of the activation map:

s(x, y) =

(
sx(x, y)
sy(x, y)

)
= ∇τ(x, y). (4)

Because activation maps are discrete, this gradient can be nu-
merically approximated using the FDM. The local conduc-
tion slownesses can be represented as points in the conduction
slowness space, and for a homogeneous area of tissue, these
points roughly align with the aforementioned ellipse. The fi-
bre direction and conductivity anisotropy ratio can therefore
be estimated from an activation map by fitting a modelled el-
lipse to the conduction slowness points.
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(a) (b)

Fig. 2: Simulated (a) activation map and (b) corresponding lo-
cal conduction slowness points and fitted ellipse (dashed line).

The general form equation for the ellipse is given by

p1s
2
x + p2sxsy + p3s

2
y = 1. (5)

Using the ellipse fitting approach in [16], the local conduction
velocity coordinates of all N nodes are stored in design matrix

D =

 s2x,1 sx,1sy,1 s2y,1
...

...
...

s2x,N sx,Nsy,N s2y,N

 (6)

such that the fitting problem can be expressed as

min
p

∥Dp− 1∥2 . (7)

This problem has the closed form least squares solution

p = D†1. (8)

where † represents the Moore–Penrose inverse. Converting
these coefficients to the estimated conduction slowness pa-
rameters, and applying (2) and (3), results in

ζ̂ = arctan

(
p3 − p1 −

√
(p3 − p1)2 + p22
p2

)
+

1

2
π (9)

and

α̂σ =
p1 + p3 −

√
(p3 − p1)2 + p22

p1 + p3 +
√
(p3 − p1)2 + p22

. (10)

A simulation example is shown in Figure 2, which shows
an activation map and the corresponding local conduction
slowness space, for homogeneous tissue with ζ = 0 rad and
ασ = 1

2 . The local conduction slowness vectors are plotted as
points, with relative area sizes corresponding to the amount
of overlapping vectors. The vectors closely follows an ellipti-
cal shape, and the range of vector directions equals the range
of wavefront directions present in the considered tissue area.
The fitted ellipse, found from (5) using (8), is plotted as well.
The resulting estimates are ζ̂ = 0 rad and α̂σ = 0.57.

When conduction blocks are present in the tissue, the el-
liptical wavefronts break up and wakes form behind the con-
duction block areas. This effect can be observed in the ac-
tivation map of the simulation example in Figure 3. In this

(a) (b)

Fig. 3: Simulated (a) activation map and (b) corresponding lo-
cal conduction slowness points and fitted ellipse (dashed line),
for tissue with conduction block (white outline). Some out-
liers, with magnitudes up to 15 s/m, are not visible here.

example, the same tissue is simulated except for the presence
of a conduction block area. Although most local conduction
slowness vectors still roughly follow the underlying ellipse, a
notable number of outliers is present as well. A first cause is
the lower conductivity at the conduction block areas, which
causes high magnitudes of the local conduction slowness. A
second cause of the outliers is a thin trail of low magnitudes at
the centre of the wakes behind conduction block area. This is
where two wavefronts collide, characterised by a near-zero
conduction slowness. Although these two groups of local
conduction slowness vectors disrupt the estimation, most of
the area in the wakes still behaves identical to the rest of the
tissue but with altered wavefront directions. As long as con-
duction blocks are not too large or prevalent, outlier detection
methods can be used to remove these unusable vectors. In
this paper, outliers are classified as vectors with a magnitude
more than three scaled median absolute deviations away from
the median. The resulting estimates for the tissue with con-
duction blocks are ζ̂ = 0.00093π rad and α̂σ = 0.69.

4. SIMULATION RESULTS

To test the proposed estimation method, activation maps were
simulated1 using the monodomain model and the Courte-
manche model [17]. LATs are found from the transmembrane
potentials as the time instant the potentials reach −40mV.
The area that is externally stimulated is 10× 10 cells, chosen
to exceed the liminal area [18]. The distance between mea-
surement and stimulus area d, measurement area size A and
true fibre direction ζ are all varied between simulations. Sim-
ulated tissues both without and with conduction blocks are
used, similar to the setup for the activation maps in Figures 2
and 3 respectively. The fibre direction estimation errors are
expressed as absolute errors: Eζ = |ζ̂ − ζ|.

The largest factor influencing the estimation accuracy is
the range of wavefront directions present in the measurement
area. A larger range leads to a more accurate ellipse fitting

1MATLAB codes of the simulation and proposed estimation method are
available at the repository of sps.ewi.tudelft.nl.
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(a) (b)

Fig. 4: Fibre direction estimation error as a function of (a) the
stimulus–measurement area distance (for the proposed and
reference method [6]), and (b) the true fibre direction (for tis-
sue without and with a conduction block area).

and in turn to a higher estimation accuracy. The range of
available wavefront directions is mainly determined by the
stimulus–measurement area distance and the measurement
area size. Figure 4a (solid blue line) shows estimation errors
as a function of the stimulus–measurement area distance, for
homogeneous tissue with A = 40 × 40 cells and ασ = 0.5,
and averaged over a range of fibre directions. As can be ob-
served, the estimation performance generally increases when
measurements are taken closer to the stimulus. A similar
effect is obtained when the measurement area is increased.

The propagation direction relative to the true fibre direc-
tion also influences the wavefront direction range, and in turn
the estimation accuracy. This is shown in Figure 4b (solid
blue line), where a similar simulation as for Figure 4a was
performed, but as a function of the true fibre direction and
with a constant stimulus–measurement area distance of d =
40. As the true fibre direction diverges from 0 rad (the gen-
eral propagation direction), the estimation error increases on
average. In practice, only small deviations between fibre di-
rection and wave origin direction would be expected, which
favours smaller estimation errors for this method.

When a conduction block area is present in the tissue, the
estimation results generally decrease slightly. An example is
shown by the dashed orange line in Figure 4b. The amount of
performance decrease depends on the size and amount of con-
duction block areas. In case of approximately planar wave-
fronts, however, the presence of conduction blocks can actu-
ally increase the performance. This is because the wavefront
direction range can increase due to the wavefront breakup
around the block.

In practice, EGMs indirectly record transmembrane po-
tentials of groups of cells instead of individual cells. The
decreased spatial resolution of resulting activation maps de-
creases the resolution of the conduction slowness vectors.
This does not influence the estimation accuracy much as the
range of wavefront directions is largely unaffected, and the
conduction slowness vectors roughly follow the same ellipse.
This also holds true for decreased temporal resolution and
mild LAT estimation errors, which similarly decrease the

conduction slowness resolution. When conduction blocks are
present and the spatial resolution is too low, however, the
activation times around conduction blocks become blurred.
This decreases the proportion of useful activation times and
might hinder outlier detection as well.

The proposed method mostly performs better than the
method used by Houben et al. In general, the method
by Houben et al. has absolute estimation errors around
0.015π rad higher than the proposed method. An example
comparison is shown in Figure 4a.

5. CONCLUSION

The fibre direction is a tissue parameter that determines the
direction of longitudinal conduction of the tissue and appears
in the spatial differential term of the monodomain equation.
A novel method was presented that estimates the fibre di-
rection of atrial tissue based on local conduction slownesses
found from LATs. Due to the relation between the conduc-
tion slowness and conductivity, the fibre direction and con-
ductivity anisotropy ratio of an area of tissue can be estimated
from these local conduction slownesses. Simulations were
performed to test the estimation method under different cir-
cumstances. These simulations show the estimation method
works well, even in the presence of a conduction block area.
The main factor influencing the estimation performance is
the range of wavefront directions present in the measurement
area. Mild reductions in spatial and temporal resolution of
activation maps also barely affect the estimation accuracy.

The fibre direction estimation method by Roney et al. [5]
is based on applying elliptical wavefront fitting to an activa-
tion map directly. Because wavefronts are not elliptical of
shape in the presence conduction blocks, this method does
not work in the context of AF and the conductivity estima-
tion methods of [2]–[4]. Another fibre direction estimation
method has been used by Houben et al. [6]. The main
difference between this method and the proposed method
is whether conduction velocities or conduction slownesses
are used for estimation. A comparison of simulation results
shows that the method based on conduction slowness pro-
vides more accurate estimates. The reason seems to be that
the conduction slowness directly follows from the gradient of
the LATs, as seen in (4). By additionally taking reciprocal
magnitudes, the elliptical nature is lost. Furthermore, the
method by Houben et al. does not make use of the anisotropy
ratio relation of (3), instead assuming both ratios to be equal.
This decreases the anisotropy ratio estimation accuracy.

The main goal of the presented estimation method is to
provide accurate fibre direction estimates, even in cases of tis-
sue with conduction blocks. The performed simulations show
that this goal has been achieved and that estimation accuracies
have increased relative to existing methods. The presented
method is therefore a considerable improvement upon exist-
ing fibre direction estimation algorithms based on EGMs.
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