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1 Abstract

This paper covers the perfect indirect quantum measurement, specifically in
the context of repeated measurement. The indirect measurement is useful as
it allows information to be obtained from quantum systems without inflicting
much disturbance on them. We restrict ourselves to cases with no evolution of
the measured system between measurements and to perfect measurements, that
is, measurements from which no outgoing information is missed and no extra
information is added. In this case we can make use of the work by M. A. Nielsen
(2005). It says that the expected amount of information following a perfect in-
direct measurement is larger than the information before the measurement. We
make use of this result to show that the repeated indirect perfect measurement
of a quantum state has two mutually exclusive outcomes. The first outcome is
that the measured state becomes a pure state almost surely. The second is that
the measurement eventually stops resulting in information being revealed. In
the latter case, further measurements on the system result in the state switching
through spaces with the same dimension, and thus it does not become a pure
state. This paper builds on the work by Maassen and Kümmerer from 2005,
which already proved this, by expanding their proofs and adding additional the-
orems and proofs to create a more self-contained result. Further studies might
look at the rate at which states become pure, and what might influence this
rate.
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2 Introduction

The indirect quantum measurement is an important concept describing how in-
formation can be obtained about a quantum system. It provides a method to
get details on the state of the quantum system without disrupting the system
much [1]. This is in contrast to the direct (projective) measurement in which,
after the measurement, the system is set to the pure state corresponding to
the given outcome. Although you now have complete information regarding
the current system, the system was also greatly disrupted. As a trade-off, the
indirect measurement generally returns less information. After an indirect mea-
surement, the state is altered but does not necessarily collapse. This means
that indirect measurements can be repeated on a previously measured system.
But does repeating the indirect measurement necessarily lead to the complete
information of a pure state? Thereby showing us the path the system took
to a pure state? M. A. Nielsen has shown that the perfect indirect quantum
measurement will on average lead to a gain of information [2]. We make use of
this result to explore the effect on repeated indirect measurements. We restrict
ourselves to cases with no evolution of the measured system between measure-
ments and to perfect measurements, such that the measurement captures all
outgoing information and no extra information is going into the system. With
this restriction, we show that repeated measurements will either almost surely
converge to a pure state, or the purification process will stop before that point
and some information regarding the state will not be revealed. In the latter
case, the state will eventually cycle through ’dark subspaces’, named after the
inability to extract information from them.

The concept of purification of quantum trajectories has already been covered
by H. Maassen and B. Kümmerer in their article ’Purification of Quantum
Trajectories’ [3], and our work is based on this article. We want to create a
stand-alone and expanded version of this result.

If the repeated indirect measurements do lead to a pure state almost surely
or not depends on the measurement (Kraus) operators. A special case to this
would be in 2 dimensions, as mentioned in the work of Maassen and Kümmerer
[3][Corollary 2]. If all the measurement operators correspond to scaled unitaries,
then the dark subspace is the entire space. Whilst if the measurement operators
are not all scaled unitaries, then the repeated measurements converge to a pure
state with probability 1.

In Section 3 we give a brief introduction to the quantum mechanics used and
explain the perfect indirect measurement. Then in Section 4 we introduce the
trajectory of repeated measurements on a state and show that it is a stochastic
process. In Section 5 we step away from the quantum trajectory for a moment to
give a self-contained proof of a crucial inequality based on the work by Nielsen,
for which we need to delve into the majorization relation of vectors. Lastly,
we state and prove the purification of the quantum trajectories in Section 6,
followed by clarifications and an extension to this theorem.

3



3 Prerequisite knowledge

3.1 States

To understand the purification of quantum trajectories, it is crucial to have a
basic understanding of pure and mixed states, which are descriptions of quan-
tum systems. Pure states contain all possible information of the system, while
mixed states are a probabilistic mixture of pure states, thus giving a far less
clear image of the state. We describe these states using density matrices. A
good description of these topics can be found in the ”Introduction to Quantum
Mechanics” by D. J. Griffiths and D. F. Schroeter [4][p. 575].

A quantum system can be modelled by a Hilbert space H. There are two
possible types of state that describe the system, the first being the pure state. A
pure state is represented by a normalised vector |ψ⟩ ∈ H, this state can also be
represented as a square matrix, the density matrix, θ = |ψ⟩ ⟨ψ|. This notation
is useful for defining the mixed state. This state is a probabilistic mixture of
pure states with a density matrix.

θ =
∑
k

pk |ψk⟩ ⟨ψk| , (1)

where the |ψk⟩ are orthogonal pure states, and the pk are the ’probabilities’,
with 0 < pk < 1 and

∑
k pk = 1. The pk are also the eigenvalues of the density

matrix.
As the pure state is defined using a normalised vector, the trace of the density

matrix of a pure state must be one. And as the probabilities in a mixed state
must sum to one, the trace of a mixed state is also one. For a pure state, we
have that the state vector is the eigenvector of the density matrix representation,
with eigenvalue one. All other eigenvectors are orthogonal to the state vector
and thus have an eigenvalue of zero. This makes the density matrix positive
semidefinite. A mixed state is an affine combination of pure states, thus also
positive semidefinite. Thus θ is a density matrix only if it has trace one and is
positive semidefinite. Furthermore, it can be shown that if a matrix has trace
one and is positive semidefinite, it must be a density matrix; see ”Quantum
Computation and Quantum Information” by M. A. Nielsen and I. L. Chuang
[5], page 101.

What we can see from equation 1 due to the orthogonality of the vectors is
that for every density matrix

θn =
(∑

k

pk |ψk⟩ ⟨ψk|
)n

=
∑
k

pnk |ψk⟩ ⟨ψk| ,

with 0 < pk ≤ 1 and
∑

k pk = 1. From this it follows that

tr(θn) =
∑
k

pnk . (2)
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Following Maassen and Kümmerer [3] we call tr(θn) the nth moment of the
density matrix θ. Now we conclude the following observation, which we use
later to identify pure states.

Observation 1. Let θ be a density matrix, then θ is a pure state if and only if
for all n ∈ N, tr(θn) = 1.

Proof. If θ is a pure state, then we have that θn = (|ψ⟩ ⟨ψ|)n = |ψ⟩ ⟨ψ| = θ, as
the vector is normalised. It follows that tr(θn) = tr(θ) = 1.
If for all n ∈ N, tr(θn) = 1, then from equation 2 it follows that tr(θn) =∑

k p
n
k = 1 for all n ∈ N, with 0 < pk ≤ 1 and

∑
k pk = 1. This means we must

have one pk equal to one and the rest equal to zero, otherwise with increasing
n the trace would decrease. But one pk equal to one and the rest equal to zero
implies that θ is a pure state.

Remark 1. In fact, for mixed states θ we have that tr(θn) < 1 for n ≥ 2.
This is because pnk < pk for n ≥ 2, as pk is strictly less than one. So that
tr(θn) =

∑
k p

n
k <

∑
k pk = 1. So for a density matrix θ it suffices to have that

tr(θ2) = 1 to show that it is a pure state.

The observables are the hermitian matrices A ∈ A, whereA is a *-subalgebra
of L(H), the algebra of bounded operators on H. The observables correspond
to measurable quantities, whose possible outcomes are given by the eigenvalues
of the corresponding observable. The eigenvectors of an observable form a basis
of the space H. The expectation of an observable A for a density matrix θ is
given by tr(θA).

As it suffices for the paper, we consider only the finite-dimensional Hilbert
spaces H ∼= Cn for simplicity. Thus also L(H) ∼= Mn(Cn). For every finite-
dimensional Hilbert space H we have corresponding state space denoted as
D(H), the space containing all density matrices.

3.2 Evolution of states

Now we are interested in the evolution of these quantum states, specifically in
the context of measurements. In the finite-dimensional case this process can
be described using maps between state spaces. Specifically, given two Hilbert
spaces H1 and H2, by maps ϵ : D(H1) → D(H2). Restricting ourselves to linear
maps, according to Nielsen and Chuang [5], these maps ϵ : D(H1) → D(H2),
must be completely positive. A positive map implies that ϵ(θ) is a positive
semidefinite matrix if θ is a positive semidefinite matrix, such that density ma-
trices are sent to density matrices. Completely positive is the added demand
that the operator remains positive in combined systems. Thus (ϵ ⊗ Idn)(θ)
must be positive semidefinite for any positive semidefinite matrix θ and any n,
where Idn represents the identity map on Mn(Cn). The meaning of positivity
here is that the operation is valid on systems in isolation, meaning that when
the system interacts with no other system, the operation sends states to states.
Complete positivity adds to this by demanding that the operation remains valid
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even when applied to a system part of a larger entangled system. This means
that, even if the system is entangled with some ancillary system, applying the
operation locally, leaving the ancillary system untouched, still results in the en-
tire entangled system remaining a valid state.

Now to look at measurements in more detail, we make use of the work of
Maassen and Kümmerer [3] to describe a measurement as a linear completely
positive map. When we measure a prior state θ, we get information and possibly
change the state; say a measurement has outcomes i ∈ {1, . . . , k}, with corre-
sponding new states θ′i. All these outcomes have a certain probability to occur,

given by pi. As these are all possible outcomes, we have that
∑k

i=1 pi = 1. We
define the map Ti : θ → piθ

′
i, which says that there is a probability pi = tr(Ti(θ))

to get the result i, and thus the posterior state Ti(θ)
tr(Ti(θ))

. By definition, the

map Ti is a completely positive map. In the event that the measurement pro-
cess takes place but no outcome is measured, so we do not condition on the
outcome, then the posterior state is given by the trace-preserving completely
positive map T : θ →

∑k
i=1 piθ

′
i =

∑k
i=1 Ti(θ). Meaning we average over all

possible outcomes of the measurement.
To get a more detailed description of the operation Ti we work out the Kraus

representation of the measurement, following the approach used by Maassen and
Kümmerer [3] to explain this. The Kraus measurement makes use of the von
Neumann measurement, so we start there. The von Neumann measurement
is a projective measurement. Suppose we have the observable A ∈ A, whose
eigenspaces are the ranges of Pi, which are mutually orthogonal projections in
A adding up to 1. A measurement of A is described by operation Ti(θ) = PiθPi.
The probability is given by tr(PiθPi) = tr(θPi), due to the cyclic nature of trace
and projection property P 2

i = Pi.
For an indirect (Kraus) measurement of our system A in the state θ, we

make use of a second system B, the ’ancilla’, in the state β. We bring these
two systems into contact such that they interact under Schrödinger’s evolution,
described by a unitary u ∈ B ⊗ A. We then uncouple the ancilla and perform
a projective measurement on the ancilla. As the two systems have interacted,
the information gathered from this measurement will also contain information
regarding the original system.

To deduce the posterior state of our original system in this case, we make
use of an observable projection q ∈ A in our original system. Following our
formalism, where θ′i denotes the posterior state after decoupling the ancilla and
measuring i, we have that the probability of then measuring q is

P(q|Pi) = tr(θ′iq) = tr

(
Tiθ

tr(Tiθ)
q

)
=

tr((Tiθ)q)

tr(Tiθ)

The projections (Pi⊗1) and (1⊗q) commute, as they apply to other systems.
So again using von Neumann, we can write the probability of both happening
as:
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P(measurement i and event q) = tr ⊗ tr(u(β ⊗ θ)u∗(Pi ⊗ q))

From which we can gather the conditional probability as well.

P(event q|measurement i) =
tr ⊗ tr(u(β ⊗ θ)u∗(Pi ⊗ q))

tr ⊗ tr(u(β ⊗ θ)u∗(Pi ⊗ 1))

Thus we have that Tiθ = tr⊗id(u(β⊗θ)u∗(Pi⊗1)). Where id is the identity
map. This notation is unwieldy, so we first denote a simplification.

Proposition 1. Let Tiθ = tr ⊗ id(u(β ⊗ θ)u∗(Pi ⊗ 1)). If we have that:

1. B consists of all k × k matrices

2. Pi is one-dimensional (Pi = |gi⟩ ⟨gi| for some orthonormal basis {|gi⟩}i)

3. β is a pure state (with state vector |β⟩ = (β1, . . . βk)
T ).

Then we can denote Tiθ = aiθa
∗
i . Here ai :=

∑k
j=1 βjwi,j, where wi,j are d× d

matrices, the blocks of a unitary k × k block matrix w.

Proof. First we wish to remove the trace operator. Using the fact that tr ⊗
id(X ⊗ Y ) =

∑
i(⟨gi| ⊗ 1)(X ⊗ Y )(|gi⟩ ⊗ 1), for any orthonormal basis. Picking

the orthonormal basis of the projection for the trace, the sum is removed due
to the orthogonality property, and we write

Tiθ = tr⊗ id(u(|β⟩ ⊗ 1)(1⊗ θ)(⟨β| ⊗ 1)u∗(|gi⟩ ⟨gi| ⊗ 1))

= ((⟨gi| ⊗ 1)u(|β⟩ ⊗ 1)θ(⟨β| ⊗ 1)u∗(|gi⟩ ⊗ 1)).
(3)

Following point 2, we have a unitary matrix v with the orthonormal basis
vectors |gi⟩ as its columns such that |gi⟩ = v |ei⟩, and ⟨gi| = ⟨ei| v∗, with
{|ei⟩}i representing the standard basis. We then have a new unitary matrix
w := (v∗ ⊗ I)u. Applying this on the element left of θ in equation 3 we see that

(⟨gi| ⊗ 1)u(|β⟩ ⊗ 1) = (⟨ei| v∗ ⊗ 1)u(|β⟩ ⊗ 1) = (⟨ei| ⊗ 1)w(|β⟩ ⊗ 1). (4)

Due to point 1, u can be written as a k × k matrix (ui,j) of d × d matrices.
As explained above, we then have a new unitary matrix w = (v∗ ⊗ I)u, which
can also be written as a k × k matrix (wi,j) of d × d matrices. Thus w =∑k

i=1

∑k
j=1 |ei⟩ ⟨ej | ⊗ wi,j . Similarly we can write a vector as a sum of the

standard basis, |β⟩ =
∑k

l=1 βl |el⟩. Substituting both of these in equation 4 we
get

(⟨gi|⊗1)u(|β⟩⊗1) = (⟨ei|⊗1)(

k∑
i=1

k∑
j=1

|ei⟩ ⟨ej |⊗wi,j)(

k∑
l=1

βl |el⟩⊗1) =

k∑
j=1

βjwi,j ,

(5)
by the orthogonality of the standard basis. By a similar argument for the
element to the right of θ we find that,
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(⟨β| ⊗ 1)u∗(|gi⟩ ⊗ 1) =

k∑
j=1

β̄j(wi,j)
∗ (6)

Substituting equations 5 and 6 in equation 3, we get that

Tiθ = (

k∑
j=1

βjwi,j)θ(

k∑
j=1

β̄j(wi,j)
∗) = aiθa

∗
i ,

with ai :=
∑k

j=1 βjwi,j . This completes our simplification.

We now show that this simplified notation comes with the completeness
property of the ai. Meaning that

∑k
i=1 a

∗
i ai = 1d, where 1d denotes the d × d

identity matrix. Starting with

k∑
i=1

a∗i ai =

k∑
i=1

([

k∑
j=1

β̄j(wi,j)
∗][

k∑
j′=1

βj′wij′ ]) =

k∑
j,j′=1

k∑
i=1

β̄jβj′(wi,j)
∗wij′ . (7)

As w is unitary, we have that ww∗ = w∗w = 1dk, the dk × dk identity ma-
trix. Using the block matrix representation, this means that

∑k
j=1 wi,j(wi′j)

∗ =

1dδi,i′ and
∑k

i=1(wi,j)
∗wij′ = 1dδj,j′ respectively. Substituting this in equation

7 we get

k∑
i=1

a∗i ai =

k∑
j,j′=1

β̄jβj′1dδj,j′ =

k∑
j=1

|βj |21d = 1d,

where in the last step we used that as β is a pure state, the vector |β⟩ is
normalised. The Kraus (or indirect) measurement that we just described is a
perfect measurement by Maassen and Kümmerer, as they define it as follows:

’By a perfect measurement on A we mean a k-tuple (T1, ..., Tk) of operations

on S, where Tiθ is of the form aiθa
∗
i with

∑k
i=1 a

∗
i ai = 1’[3].

4 Repeated measurement

We consider repeated measurement of a system, potentially up to infinite mea-
surements. Using the notation of the previous section, in the case that we
first obtain outcome i and then, after a second measurement, outcome j, the
posterior state after these two measurements is:

θ′i,j =
(Tj ◦ Ti)(θ)

tr((Tj ◦ Ti)(θ))
.
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This procedure can be repeated for any finite number of measurements to
determine the posterior state. However, to make statements about future mea-
surements, it is helpful to view this process as a stochastic process. Based on
the explanation given in the book ’A First Course in Stochastic Processes’ by
S. Karlin and H. M. Taylor [6] a stochastic process is a collection of random
variables, say Xt, where t ∈ T is the index set. All individual random variables
Xt are defined on the same probability space and take values in the same state
space.

To this end we now create a probability space for the repeated measure-
ments, following the approach of Maassen and Kümmerer [3]. Starting with the
set of infinite outcome sequences (sample space) Ω = {ω = (ω1, ω2, . . . )|ωi ∈
{1, . . . , k}}. To fix the first m outcomes for each m ∈ N we make use of the
cylinder sets Λi1,...im = {ω|ω1 = i1, . . . , ωm = im}. For our event space we could
take the σ-algebra generated by the cylinder sets for all m ∈ N, but later we
see that it is helpful to make the distinction, such that we first take the finite
σ-algebra Σm generated by all cylinder sets which fix the first m outcomes and
use these Σm to generate the σ-algebra Σ over all m.

4.1 Creating a measure

With this in place we need a measure on this probability space (Ω,Σ) with
respect to an arbitrary starting state θ0. To this end we apply Kolmogorov’s
extension theorem from ”Probability: Theory and Examples” by R. Durrett [7]
appendix A.3. The extension theorem applies to the following set RN = {ω =
(ω1, ω2, . . . )|ωi ∈ R} with product σ-algebra RN generated by sets of the form
{ω|ωi ∈ (ai, bi], i = 1, . . . ,m}, for all m ∈ N. This is a more general real-
valued version of our integer-based infinite outcome sequence Ω with product
σ-algebra Σ generated by cylinder sets Λi1,...,im . The theorem then states that
given probability measures µm on (Rm,Rm) for all m ∈ N that are consistent,
meaning that

µm+1((a1, b1]× · · · × (am, bm]×R) = µm((a1, b1]× · · · × (am, bm]),

then there exists a unique probability measure µ on (RN,RN) with

µ(ω|ωi ∈ (ai, bi], i = 1, . . . ,m) = µm((a1, b1]× · · · × (am, bm]).

In our case, we work with ωi ∈ {1, . . . , k}, and we create the following
measures on the Σm algebras,

Pm(
⋃

i1∈J1,...,im∈Jm

Λi1,...im) = Pm(J1×· · ·×Jm) =
∑
i1∈J1

· · ·
∑

im∈Jm

tr[(Tim◦· · ·◦Ti1)(θ0)],

where Ji ⊆ {1, . . . , k} for all i, and we used the fact that a measure on
the length m cylinder sets solely depends on the m subsets Ji to write it as a
measure on {1, . . . , k}m to simplify the notation.
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Pm is a measure only accepting values from {1, . . . , k}, for a measure ac-
cepting real numbers, we create P ′

m(A) = Pm(A ∩ {1, . . . , k}m), and we re-
quire that {1, . . . , k} ⊆ R. Now for the proof of consistency of P ′

m we denote
W := {1, . . . , k},

P ′
m+1((a1, b1]× · · · × (am, bm]×R) =

Pm+1([(a1, b1] ∩W ]× · · · × [(am, bm] ∩W ]×W ) =∑
i1∈((a1,b1]∩W )

· · ·
∑

im∈((am,bm]∩W )

k∑
im+1=1

tr[(Tim+1 ◦ Tim ◦ · · · ◦ Ti1)(θ0)] =∑
i1∈((a1,b1]∩W )

· · ·
∑

im∈((am,bm]∩W )

tr[(T ◦ Tim ◦ · · · ◦ Ti1)(θ0)] =∑
i1∈((a1,b1]∩W )

· · ·
∑

im∈((am,bm]∩W )

tr[(Tim ◦ · · · ◦ Ti1)(θ0)] =

Pm+1([(a1, b1] ∩W ]× · · · × [(am, bm] ∩W ]) =

P ′
m+1((a1, b1]× · · · × (am, bm]),

where we used the fact that T is trace preserving. Thus we have a measure
P ′ on (RN,RN) and by the same relation between Pm and P ′

m we also have a
measure P on (Ω,Σ). Until now we have neglected specifying the starting state
θ0, but it should be noted that this measure works for any valid starting state.
Thus now we have the probability space (Ω,Σ, Pθ0), on which we can create the
random variable

Θn =
(Tωn

◦ · · · ◦ Tω1
)(θ0)

tr((Tωn
◦ · · · ◦ Tω1

))
.

Which denotes the posterior state, given that we started with state θ0, and
we measured outcomes ω1, . . . , ωn, in that order after nmeasurements. For every
n ∈ N this random variable is Σn measurable. As for every density matrix, the
pre-image is a union of cylinder sets.

We call (Θn)n∈N the quantum trajectory, and this stochastic process is a
Markov process, as any posterior state depends solely on the prior state.

With the trajectory in place, we can start looking ahead towards purification.
By purification we mean that the state in a trajectory converges to a pure state,
formally a quantum trajectory (Θn(ω))n∈N purifies when

∀m∈N : lim
n→∞

tr(Θn(ω)
m) = 1.

We consider this purification, as only pure states have that the trace of all
powers of their density matrix is equal to 1, as shown in observation 1. Thus,
a quantum trajectory purifies when the state eventually becomes pure. With
that out of the way, we can finally state the theorem on purification.
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Theorem 1 (From [3]). Let (Θn)n∈N be a quantum trajectory with an initial
state θ0 and process as described above. Then we have either of the following
options occur:

• (i) The quantum trajectory (Θn)n∈N purifies almost surely.

• (ii) There exists a projection p ∈ A with a dimension of at least 2, such
that

∀i∈{1,...,k}∃λi≥0 : pa∗i aip = λip. (8)

The proof of Theorem 1 is also discussed in the work of Maassen and
Kümmerer [3], we have added detail to this proof. But before we can start
proving this theorem we need more information on the relation between the
mth moment of subsequent density matrices in a trajectory.

5 Nielsen’s Inequality

We derive an inequality first shown by Nielsen [2], that gives a relation between
the moments of density matrices before and after an indirect measurement.
This inequality allows us to describe the moments as submartingales, and the
submartingale properties are the main components of the proof of Theorem 1.

This inequality is derived from a majorization relation, so we first need to
define the majorization relation ≺. For real vectors x and y, x ≺ y means that
y majorizes x, thus that the vectors with their components in non-increasing
order, denoted as x↓ = (x↓1, . . . , x

↓
n), with x

↓
k ≥ x↓l for k ≤ l have the following

relation:

k∑
i=1

x↓i ≤
k∑

i=1

y↓i ,

where k ∈ {1, . . . , n}, with n the number of components of the vectors. We
also require equality for k = n, so

n∑
i=1

x↓i =

n∑
i=1

y↓i .

5.1 Horn’s lemma

Horn’s lemma serves as the foundation of Nielsen’s inequality, as it allows us to
relate specific equalities between vectors to a majorization relation. Leading us
to eventually relate our measurement process to a majorization relation.

For the description of Horn’s lemma, we make use of the following article by
Nielsen [8].
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Lemma 1 (Horn’s Lemma). Let x and y be two vectors of length n then x ≺ y
if and only if there exists a unitary matrix u = (ui,j) such that for the matrix

Di,j = |ui,j |2 we have x = Dy.

This means that xi =
∑n

j=1 |ui,j |
2
yj . Furthermore, D is called unitary-

stochastic, and due to the unitary matrix, it has the property that

n∑
j=1

|ui,j |2 =

n∑
i=1

|ui,j |2 = 1, (9)

so that every row and column sum to one. If the matrix u were orthogonal,
then D is called orthostochastic.

In our argument we only need the reverse implication of Horn’s lemma, but
for completeness, we also provide a proof of the forward implication. Starting
with the latter, the proof of the forward implication is based on the same work
by Nielsen [8], and will be done for orthogonal matrices. We make use of the
matrices called T-transforms, which are identical to the identity matrix except
in two dimensions, where they have the following structure:[

t 1− t
1− t t

]
with 0 ≤ t ≤ 1. Keep in mind that the given structure may occur on

any set of coordinates i ̸= j in the T-transform, not necessarily on consecutive
coordinates. The matrix has t on the diagonal entries Ai,i and Aj,j , 1− t on the
entries Ai,j and Aj,i, and equals the identity matrix in all other entries. We first
state and prove a supporting lemma before moving on to the proof of Horn’s
lemma.

Lemma 2. Let x and y be vectors with the relation x ≺ y, then there exists a
finite number of T-transforms Ti such that x = T1 . . . Tmy.

Proof. For ease of notation in the entire proof we set the components of the
vectors in non-increasing order, which is allowed as this can be done through a
finite series of T-transforms with t = 1. We prove this lemma using induction.

For vectors x and y with two components and x ≺ y, we have that x1 ≤ y1
and x1 + x2 = y1 + y2, thus also y2 ≤ x2. By the non-increasing order of the
vectors x2 ≤ x1. Together we have that y2 ≤ x2 ≤ x1 ≤ y1. Thus there exists
a t ∈ [0, 1] such that x1 = ty1 + (1 − t)y2 and as x1 + x2 = y1 + y2, we also
conclude that x2 = (1 − t)y1 + ty2. Proving the lemma for vectors with two
components.

For induction we assume that for vectors with n components, if x ≺ y,
there exists a finite number of T-transforms such that x = T1 . . . Tmy. To
finish the induction step, we prove that the same holds for vectors with n + 1
components. For this we first show that there exists a T-transform which sets
the first component of of both vectors equal, before applying the induction
assumption. Suppose we have two vectors x and y with n+ 1 components such
that x ≺ y, then x1 ≤ y1. Furthermore, for x ≺ y with n + 1 components,∑n

i=1 xi ≤
∑n

i=1 yi, but then for the sum over one more component, we have
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equality,
∑n+1

i=1 xi =
∑n+1

i=1 yi. This means that xn+1 ≥ yn+1, and by the
non-increasing order of the vectors x1 ≥ xn+1, so that x1 ≥ xn+1 ≥ yn+1.
As we now have that y1 ≥ x1 ≥ yn+1, we can find the component yk such
that yk ≤ x1 ≤ yk−1. This means that there exists a t ∈ [0, 1] such that
x1 = ty1+(1−t)yk. Applying the corresponding T-transform matrix to vector y,
we can write Ty = (x1, y

′), with y′ = (y2, . . . yk−1, (1−t)y1+tyk, yk+1, . . . , yn+1)
a vector of n components, we note that this vector y′ is not necessarily in non-
increasing order. Similarly we define x′ = (x2, . . . , xn+1), also as a vector of n
components, which is still ordered.

Now we have shown that there exists a T-transform matrix that sets the
first component of y equal to the first component of x. From here, to prove
the lemma, we need to show that there exists a finite number of T-transforms
to set the other n components equal. For this we make use of the induction
assumption so that we only need to show that x′ ≺ y′, as these are vectors
with n components. For the new component (1− t)y1 + tyk of y′, we have that
(1 − t)y1 + tyk ≥ yk ≥ yk+1, so in the ordered vector y′↓ we know that this
new component (1− t)y1 + tyk has position k − 1 or lower. position k − 1 and
not k as from y to y′ we removed the largest component, so all vectors rise one
position when ordered. The position could be lower, as this new component
could be larger than yk−1 etc. Call the position of this new component k′, with
k′ ≤ k−1. As [(1−t)y1+tyk]+[ty1+(1−t)yk] = y1+yk and x1 = ty1+(1−t)yk,
we have that this new component (1− t)y1 + tyk = y1 + yk − x1.

To show the majorization relation x′ ≺ y′, we start by comparing summa-
tions over the ordered components before we include this new component. As

x′ is still ordered, we have that
∑k′−1

i=1 x′↓i =
∑k′

i=2 xi, and as x1 is the largest

component, we have
∑k′

i=2 xi ≤ (k′ − 1)x1. The vector y′ is also ordered non-
increasingly except for the new component, which is placed too high. So, for
sums over the ordered components of y′ that end before the index k′, so before
the new component is added to the sum, we have a similar notation to x′ in that∑k′−1

i=1 y′↓i =
∑k′

i=2 yi. Then by our previous assumption that yk ≤ x1 ≤ yk−1,
combined with k′ ≤ k − 1, we see that

k′−1∑
i=1

x′↓i =

k′∑
i=2

xi ≤ (k′ − 1)x1 ≤
k′∑
i=2

yi =

k′−1∑
i=1

y′↓i .

By the same argument, we have inequality for sums over fewer components, say
l ≤ k′ − 1.

l∑
i=1

x′↓i =

l+1∑
i=2

xi ≤ lx1 ≤
l+1∑
i=2

yi =

l∑
i=1

y′↓i .

When we do include this new component, say a sum over m ≥ k′, we see
that the sum over the first m components of the y′↓ vector is

m∑
i=1

y′↓i =

m+1∑
i=2

yi − yk + (y1 + yk − x1) =

m+1∑
i=1

yi − x1, (10)
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where the term −yk +(y1+ yk −x1) was used to replace the yk in the sum with
the new component (1−t)y1+tyk = y1+yk−x1. Given that x ≺ y, we know that∑m+1

i=1 yi ≥
∑m+1

i=1 xi, subtracting x1 from both sides,
∑m+1

i=1 yi−x1 ≥
∑m+1

i=2 xi,
meaning that

m∑
i=1

y′↓i =

m+1∑
i=1

yi − x1 ≥
m+1∑
i=2

xi =

m∑
i=1

x′↓i . (11)

For equality when summing over all n components, it suffices to note that as
x ≺ y, we have

∑n+1
i=1 yi =

∑n+1
i=1 xi. Subtracting x1 from both sides we conclude

n∑
i=1

y′↓i =

n+1∑
i=1

yi − x1 =

n+1∑
i=2

xi =

n∑
i=1

x′↓i . (12)

Thus proving that x′ ≺ y′.
As x′ and y′ are vectors with only n components by our induction assump-

tion, there exists a finite number of T-transforms such that x′ = T1 . . . Try
′.

These T-transforms can be extended to work on vectors with n + 1 compo-
nents, working as the identity on the first element, and thus we can write
x = T1 . . . TrTy, proving what we wanted.

With this lemma in place we briefly cover an observation that aids the proof
of Horn’s lemma before moving on to the proof of Horn’s lemma.

Observation 2. Let D be a unitary-stochastic or orthostochastic matrix, so
D = |ui,j |2. Then for permutation matrices P and Q, we have that PDQ is
also a unitary-stochastic or orthostochastic matrix, respectively.

Proof. As permutation matrices are orthogonal (thus also unitary), we can de-
fine the unitary or orthogonal matrix u′ := PuQ. As the relation between u and
D is that D has the absolute square elements of u, as D = |ui,j |2, permutations

of D can be seen as permutations of u. This means that PDQ =
∣∣u′i,j∣∣2, which

is unitary-stochastic or orthostochastic, respectively.

As the proof of Horn’s lemma is rather long I will split the lemma into
two different lemmas, a forward and reverse implication and proof both sep-
arately. Note that for the forward implication we prove a stronger case with
orthostochastic matrices.

Lemma 3 (Forward implication of Horn’s lemma). Let x and y be two vectors
of length n, then x ≺ y implies that there exists a orthostochastic matrix D,
such that x = Dy.

Proof. Without loss of generalization we may assume that the vectors x and y
are in non-increasing order. Indeed, any vector can be created from an ordered
vector and a permutation matrix. If we have that x↓ = Dy↓, for orthostochastic
matrix D. Then for any two permutation matrices P and Q such that Px = x↓

and Qy = y↓, we have x = P−1DQy. As P−1 is also a permutation matrix, by
observation 2, P−1DQ is also orthostochastic.
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Now we only have to prove the lemma for vectors with components in non-
increasing order. The proof of Lemma 2 directly gives us a method to generate
the T-transforms required for these ordered vectors such that for n+ 1 compo-
nents x = T1 . . . Tny. In this product of T-transforms, Tn+1−k acts on the kth

and some dthk component with k < dk.
Using induction, we prove that this specific sequence of T-transforms can be

written as an orthostochastic matrix. In the case that n = 2, we shape the T
transform with the orthogonal matrix

U =

[ √
t −

√
1− t√

1− t
√
t

]
.

The matrix U is orthogonal as UU∗ = U∗U = I and has the property that
T1 = (U2

i,j).
Now for induction we assume that the product of n − 1 T-transforms for

vectors with n components is equal to some n × n orthostochastic matrix Dn

such that T ′
1 . . . T

′
n−1 = Dn. The accent denotes that these are T-transforms on

n dimensions. Then for the case of vectors with n + 1 components, we extend
T ′
1 . . . T

′
n−1 to act on n + 1 components by letting it act as the identity on the

first element, just like in the previous proof. Let us denote these extended
T-transform without the accent, then

T1 . . . Tn−1 =

[
1 0
0 T ′

1 . . . T
′
n−1

]
=

[
1 0
0 Dn

]
.

Besides T1 . . . Tn−1, we also need a new T-transform Tn, which influences
the first and dth1 component of the vector. For convenience we introduce the
permutation matrix P which switches this dth1 row with the second row, such
that

PTnP =

 t 1− t 0
1− t t 0
0 0 In−1

,
where In−1 is the n− 1× n− 1 identity matrix. We also want to apply the

permutation to T1 . . . Tn−1. As the permutation matrix P switches the dth1 row
with the second row, we can write P as

P =

[
1 0
0 P ′

]
,

with P ′ being a n × n permutation matrix, the switching first and (d1 − 1)th

row. This makes it easier to apply the permutation to T1 . . . Tn−1, as we now
have that

PT1 . . . Tn−1P =

[
1 0
0 D′

n

]
,

where D′
n := P ′DnP

′. As P ′ is a permutation matrix and Dn is orthos-
tochastic, by observation 2 D′

n is also an orthostochastic matrix. For the fol-
lowing step it helps to split the first column of D′

n such that D′
n = [δ D̃′

n], with
δ the first column and D̃′

n being D′
n without the first column. Then we can write
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PT1 . . . Tn−1P =

[
1 0 0

0 δ D̃′
n

]
.

Now to multiply PT1 . . . Tn−1P by PTnP , as P
2 = I, we see that

PT1 . . . Tn−1PPTnP = PT1 . . . TnP =

[
t 1− t 0

(1− t)δ tδ D̃′
n

]
.

This is an orthostochastic matrix, as if we take the orthogonal matrix V cor-
responding to D′

n, and have v as the first column and Ṽ as the matrix without
the first column, we can write a new matrix

W =

[ √
t −

√
1− t 0√

(1− t)v
√
tv Ṽ

]
.

W is orthogonal, as the columns have unit length. For the first column we

have

√
t+ (1− t)|v|2 = 1 as column v is a normalised vector. The argument is

similar for the second column, and all other columns are from the orthogonal
matrix V , so they must have unit length. The columns are also orthogonal,
as for the first and second column we see that the dot product

√
t(1− t) −√

t(1− t)|v|2 = 0. For the other columns, the first element is zero, and the
remainder are orthonormal vectors, including the split column v, so all other
columns are orthogonal. So we have now proven that PT1 . . . TnP = (W 2

i,j)

for an orthogonal matrix W . So T1 . . . Tn = P−1(W 2
i,j)P

−1, and as P−1 is
also a permutation matrix, we apply observation 2, showing that T1 . . . Tn is
orthostochastic. Thus, we have proven the forward implication.

Lemma 4 (Reverse implication of Horn’s lemma). Let x and y be two vectors
of length n and let D be a unitary-stochastic matrix, then x = Dy implies that
x ≺ y.

Proof. If we have that x = Dy, for some unitary-stochastic D. Then we also
have that x↓ = D′y for some other unitary-stochastic D′. As x↓, is the vector
x ordered non-increasingly, so there exists a permutation matrix P such that
Px = x↓ = PDy. Then by observation 2, PD is also unitary-stochastic for some

unitary u′ := Pu, so we define D′ := PD = (
∣∣u′i,j∣∣2). It follows that x↓ = D′y,

such that x↓i =
∑n

j=1

∣∣u′i,j∣∣2yj . Now to show that to show that x ≺ y. Summing

over the first k components of x↓, we get

k∑
i=1

x↓i =

k∑
i=1

n∑
j=1

∣∣u′i,j∣∣2yj = n∑
j=1

( k∑
i=1

∣∣u′i,j∣∣2)yj .
Now let us denote αj =

∑k
i=1

∣∣u′i,j∣∣2 as the coefficient for the yj . Using the
unitary-stochastic matrix property 9, we see that

0 ≤ αj =

k∑
i=1

∣∣u′i,j∣∣2 ≤
n∑

i=1

∣∣u′i,j∣∣2 = 1. (13)
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And looking at the sum over all αj , we have that

n∑
j=1

αj =

n∑
j=1

k∑
i=1

∣∣u′i,j∣∣2 =

k∑
i=1

n∑
j=1

∣∣u′i,j∣∣2 =

k∑
i=1

1 = k. (14)

Putting this all together, we have that

k∑
i=1

x↓i =

n∑
j=1

αjyj , (15)

with 0 ≤ αj ≤ 1 and
∑n

j=1 αj = k for any k ≤ n. Now to prove the majorization

relation, we need to show that
∑n

j=1 αjyj ≤
∑k

i=1 y
↓
i , with equality for k = n.

We do this by showing that

max{
n∑

j=1

αjyj |0 ≤ αj ≤ 1,

n∑
j=1

αj = k} =

k∑
i=1

y↓i .

The argument goes as follows: to maximise
∑n

j=1 αjyj , we wish to maximise
the coefficients of the largest components yj . As αj is upper bounded by one,
we set αj equal to one for the largest components yj . Then by the constraint∑n

j=1 αj = k, only the coefficients of the k largest components yj get set to one.

We note that the vector y↓ with components y↓j is defined as the vector y with

its components set in non-increasing order. So
∑k

i=1 y
↓
i represents the sum over

the k largest components of the vector y. Now we have shown that

k∑
i=1

x↓i =

n∑
j=1

αjyj ≤
k∑

i=1

y↓i .

To show equality when k = n, we note that in this case αj = 1 for all j following
from the constraints, and so

n∑
i=1

x↓i =

n∑
j=1

yj =

n∑
i=1

y↓i .

Showing that x ≺ y.

Combining Lemma 3 and Lemma 4 we have also proven Horn’s lemma,
Lemma 1.

5.2 Ky Fan’s maximum principle

With Horn’s lemma in place, we can show Ky Fan’s maximum principle, whose
description and proof are based upon the following work by Nielsen [2]. This
principle allows us to relate majorization to sums of vectors.
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Lemma 5 (Ky Fan’s maximum principle). Let A be a hermitian matrix, then
the sum of the k largest eigenvalues is the maximum value of tr(AP ), where P
denotes the projections onto k dimensional spaces.

We denote λ(A) as the vector of eigenvalues of A, with components λj(A)
in non-increasing order, so that the lemma claims that

k∑
j=1

λj(A) = max
P

tr(AP ).

Proof. The proof of this is based upon the work by Nielsen [2]. Of course we
have equality when P projects onto the eigenspaces of the k eigenvectors of A
with the largest eigenvalues. Now denote P =

∑k
j=1 |gj⟩ ⟨gj | for an orthonormal

basis |g1⟩ , . . . , |gn⟩, then

tr(AP ) =

k∑
j=1

⟨gj |A |gj⟩ .

As A is hermitian, there exists an orthonormal basis |f1⟩ , . . . , |fn⟩ such that
A =

∑n
i=1 λi(A) |fi⟩ ⟨fi|. Note that the ordering of eigenvalues is non-increasing.

This means that

⟨gj |A |gj⟩ = ⟨gj | (
n∑

i=1

λi(A) |fi⟩ ⟨fi|) |gj⟩ =
n∑

i=1

λi(A)|⟨gj |fi⟩|2.

This means that for the vector (⟨gj |A |gj⟩) with components from j = 1 to
j = k, we have that

(⟨gj |A |gj⟩) = λ(A)D, (16)

where we define the unitary-stochastic matrix Di,j := |⟨gj |fi⟩|2. To show
D is unitary-stochastic, we have to show that the matrix Ui,j := (⟨gj |fi⟩) is
unitary. Say i denotes the row, then the inner product of two columns j and m
is

∑n
i=1 ⟨gj |fi⟩ ⟨fi|gm⟩ = ⟨gj |gm⟩.

Using equation 16, we can use Horn’s lemma 1 and state (⟨j|A |j⟩) ≺ λ(A),
meaning that

tr(AP ) =

k∑
j=1

⟨j|A |j⟩ ≤
k∑

j=1

λj(A),

which is what we wanted to prove.

This can now be used to show that

λ(A+B) ≺ λ(A) + λ(B) (17)

for hermitian matrices A and B, as there exists a P such that
∑k

j=1 λj(A+B) =

tr([A+B]P ) = tr(AP )+ tr(BP ) ≤
∑k

j=1[λj(A)+λj(B)] for all integers k ≤ n,
where n denotes the size of the matrices.
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5.3 Density matrices and measurement

Considering density matrices θ, as they are hermitian, there exists a matrix A
such that θ = A∗A, and we can split the matrix A = [A1A2] such that

θ = A∗A =

[
A∗

1A1 A∗
1A2

A∗
2A1 A∗

2A2

]
.

We will show that

λ(θ) ≺ λ(A∗
1A1) + λ(A∗

2A2). (18)

By using that λ(EF ) = λ(FE) for two square matrices E and F of the
same size, as shown in the book ”Matrix Analysis” by R. A. Horn and C. R.
Johnson [9, Theorem 1.3.22]. And noting that AA∗ = A1A

∗
1 + A2A

∗
2 combined

with equation 17, we conclude that

λ(θ) = λ(A∗A) = λ(AA∗) =

λ(A1A
∗
1 +A2A

∗
2) ≺ λ(A1A

∗
1) + λ(A2A

∗
2) =

λ(A∗
1A1) + λ(A∗

2A2).

For any complete set of orthogonal projections Pi, we have that the density
operator θ =

∑n
i,j=1 PiθPj . If we choose a basis such that each projection acts

as the identity on its own subspace, we can write the density matrix as

θ =

P1θP1 . . . P1θPn

...
. . .

PnθP1 PnθPn

.
Then using our previous result 18 with induction, we can deduce that

λ(θ) ≺
∑
i

λ(PiθPi). (19)

Keep in mind that the vectors λ(PiθPi) are first padded with zeroes to en-
able summation and majorization.

This can then be applied to our measurement process to show that

λ(θ) ≺
k∑

i=1

piλ(θ
′
i). (20)

For the projective measurement on the ancilla, we used a complete set of
orthogonal projections Pi = |gi⟩ ⟨gi|, and then (Pi ⊗ I) = (|gi⟩ ⟨gi| ⊗ I) is also a
complete set of orthogonal projections. Furthermore, for our density matrices
θ and pure state ancilla |β⟩ ⟨β|, we have that λ(θ) = λ(|β⟩ ⟨β| ⊗ θ) as we have
the same eigenvectors |ψk⟩, only now expanded to |β⟩ ⊗ |ψk⟩, thus with the
same eigenvalues. We also applied a unitary to this system, which does not
influence the eigenvalues, so that λ(|β⟩ ⟨β|⊗θ) = λ(u(|β⟩ ⟨β|⊗θ)u∗). Lastly, we
need to recall our Kraus measurement Tiθ = aiθa

∗
i , where ai =

∑k
j=1 βjwi,j =
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(⟨gi| ⊗ 1)u(|β⟩ ⊗ 1). Putting this all together with our previous statement 19,
we see that

λ(θ) = λ(u(|β⟩ ⟨β| ⊗ θ)u∗)

≺
k∑

i=1

λ((|gi⟩ ⟨gi| ⊗ 1)u(|β⟩ ⟨β| ⊗ θ)u∗(|gi⟩ ⟨gi| ⊗ 1))

=

k∑
i=1

λ(|gi⟩ ⟨gi| ⊗ aiθa
∗
i ).

Now we can apply the same argument as with λ(θ) = λ(|β⟩ ⟨β| ⊗ θ) to state
λ(|gi⟩ ⟨gi| ⊗ aiθa

∗
i ) = λ(aiθa

∗
i ). Furthermore, we can substitute aiθa

∗
i = piθ

′
i,

where θ′i represents the new density state, and pi = tr(aiθa
∗
i ) is the probability

of measuring outcome i. This gives us that

k∑
i=1

λ(|gi⟩ ⟨gi| ⊗ aiθa
∗
i ) =

k∑
i=1

λ(aiθa
∗
i ) =

k∑
i=1

piλ(θ
′
i),

Proving what we wanted to show.

5.4 Deriving the inequality

To obtain an inequality from this, we make use of Schur-convex functions, as
explained in the article by Nielsen [2].

Definition 1. a Schur-convex function f() is a function mapping a vector to
a real number. It has the property that when applied to a majorization x ≺ y it
preserves the relation such that f(x) ≤ f(y).

In that same article, they mention that the function f(x) =
∑n

i=1 x
m
i is

Schur convex for any m ≥ 1, where n denotes the length of vector x with
components xi.

Applying this function to the constraint 20 above, we get that for all m ∈ N
and states θ,

tr(θm) ≤
k∑

i=1

pitr((θ
′
i)

m). (21)

We show this by first working out the left hand side

f(λ(θ)) =

n∑
j=1

λj(θ)
m = tr(θm). (22)

Doing the same to the right-hand side, we get

f(

k∑
i=1

piλ(θ
′
i)) =

n∑
j=1

[

k∑
i=1

piλj(θ
′
i)]

m ≤
n∑

j=1

k∑
i=1

pi[λj(θ
′
i)]

m,
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where we used that the function xm is convex for values in [0, 1]. Keep in
mind that the eigenvalues λj(θ

′
i) are from density matrices and thus represent

a probability, so that 0 ≤ λj(θ
′
i) ≤ 1. This is the reason that the convex sum is

in [0, 1]. Switching the sums, we see that

n∑
j=1

k∑
i=1

pi[λj(θ
′
i)]

m =

k∑
i=1

n∑
j=1

pi[λj(θ
′
i)]

m =

k∑
i=1

pitr((θ
′
i)

m). (23)

Now that we have worked out both sides, equation 22 and 23, applying the
Schur-convex relation to equation 20 gives us the stated result 21. This inequal-
ity states that the expectation of any moment of the posterior state is larger or
equal to the same moment of the prior state θ. As this inequality holds for all
states θ, it also works for our random variable Θn for all n ∈ N, as these random
variables output a state. Flipping the inequality, this results in the following:

E(tr(Θm
n+1)|Σn) ≥ tr(Θm

n ), (24)

where on the left-hand side we specified in the expectation that we are only
considering the expectation of the (n + 1)th measurement, as the first n mea-
surements are known.

5.5 Submartingales and their convergence theorem

Equation 24 is a very important result for the proof of purification, but to
effectively use it in the proof, we first cover the context of the notation. This
is because equation 24 allows us to describe the stochastic processes tr(Θm

n ) as
submartingales. We now cover what submartingales are and give a convergence
theorem, to then show that this applies to tr(Θm

n ). This section is based upon
the book ’Probability with Martingales’ by David Williams [10], with chapter
10 covering martingales and chapter 11 the convergence theorem.

On a probability space (Ω,F ,P), we define the filtration {Fn : n ≥ 0} as
an increasing family of sub-σ-algebras of F , F0 ⊆ F1 ⊆ · · · ⊆ Fn. This can
be interpreted such that Fn contains all possible outcome sequences, where we
know the first n outcomes. Then a stochastic process (Xn)n∈N is a martingale
relative to the filtration Fn and measure P when:

• (i) X is adapted, meaning that Xn is Fn-measurable for all n

• (ii) E(|Xn|) <∞,∀n

• (iii) E(Xn+1|Fn) = Xn, a.s.∀n.

We subsequently define super- and submartingales similarly, but with (iii)
changed to E(Xn+1|Fn) ≤ Xn, a.s. ∀n and E(Xn+1|Fn) ≥ Xn, a.s. ∀n respec-
tively.

Now for Doob’s ’Forward’ Convergence Theorem: Let X be a supermartin-
gale bounded in L1: supE(|Xn|) < ∞. Then limn→∞Xn exists and is finite.
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For the proof of this theorem we refer back to the book ’Probability with Mar-
tingales’ by David Williams [10] page 109. We note that by definition if X is a
supermartingale, then −X is a submartingale, and every martingale is both a
super- and a submartingale. This means that the previous theorem also holds
for submartingales and martingales.

Looking back at the stochastic process Θm
n , we see that the moments, which

we note as M
(m)
n := tr(Θm

n ), are submartingales. The filtration in this case is
given by the sets Σn, and tr(Θm

n ) is Σn measurable for all n,m ∈ N. For point
two, these moments take values between [0, 1], and for point three we refer to
the inequality we gathered from the works of Nielsen, equation 24.

This then directly implies that we can use the convergence theorem on the

submartingales, so the moments M
(m)
n converge to some finite random variable

M
(m)
∞ .

6 Purification

Now we have all the tools necessary to prove Theorem 1. Following the approach
taken by Maassen and Kümmerer [3] we first state and prove a related lemma
before showing how this lemma proves the purification theorem.

Lemma 6 (From [3]). Let (Θn)n∈N be a quantum trajectory with a process as
described in Section 4.1 and an initial state θ0. Then we have either of the
following options occur:

• (i) The quantum trajectory (Θn)n∈N purifies almost surely.

• (ii) There exists a mixed state density matrix ρ ∈ S such that

∀i=1,...,k∃λi≥0 : aiρa
∗
i ∼ λiρ

For the proof of this lemma, we make use of the following function for each
m ∈ N

δm : S → [0,∞) : θ →
k∑

i=1

tr(aiθa
∗
i )[tr([

aiθa
∗
i

tr(aiθa∗i )
]m)− tr(θm)]2. (25)

This represents the square difference between the expectation of the mo-
ment after measurement and the moment before the measurement. Using the
submartingales, we can write

δm(Θn) = E[(M (m)
n+1 −M (m)

n )2|Σn].

In the proof of lemma 6 we make use of the following property of this func-
tion.

22



Lemma 7. Let δm(Θn) represent the function as described above. Then we
have that limn→∞ E(δm(Θn)) = 0.

Proof. To show this is the case it suffices to show that the function is square
summable

∀m∈N :

∞∑
n=0

E(δm(Θn)) ≤ 1.

This is the case as

E[(M (m)
n+1−M (m)

n )2|Σn] = E[(M (m)
n+1)

2|Σn]−2E[(M (m)
n+1M

(m)
n )|Σn]+E[(M (m)

n )2|Σn].

Then E[(M (m)
n )|Σn] =M

(m)
n , as if we are given all n outcomes, we know the

nth moment. Applying this to the negative term, we get

E[(M (m)
n+1 −M (m)

n )2|Σn] = E[(M (m)
n+1)

2|Σn]− 2M (m)
n E[(M (m)

n+1)|Σn] + (M (m)
n )2.

Now using the submartingale property ∀m∈N : E(M (m)
n+1|Σn) ≥ M

(m)
n , we have

that −2M
(m)
n E[(M (m)

n+1)|Σn] ≤ −2(M
(m)
n )2. Adding the last two terms, leading

to

E[(M (m)
n+1 −M (m)

n )2|Σn] ≤ E[(M (m)
n+1)

2|Σn]− (M (m)
n )2. (26)

Now, to show square summability, we note that

∀m∈N :

∞∑
n=0

E[(M (m)
n+1 −M (m)

n )2] =

∞∑
n=0

E(E[(M (m)
n+1 −M (m)

n )2|Σn]).

Applying the found inequality 26, we have

∞∑
n=0

E(E[(M (m)
n+1 −M (m)

n )2|Σn]) ≤
∞∑

n=0

E(E[(M (m)
n+1)

2|Σn]− (M (m)
n )2).

Splitting the expectation, we can solve the sum

∞∑
n=0

E(E[(M (m)
n+1)

2|Σn]− (M (m)
n )2) =

∞∑
n=0

E((M (m)
n+1)

2)− E((M (m)
n )2)

= E[(M (m)
∞ )2]− E[(M (m)

0 )2] ≤ 1,

where M
(m)
∞ is the random variable to which the martingales converge, and as

the martingales are between zero and one, their difference is bounded by one.
We have thus shown square summability

∀m∈N :

∞∑
n=0

E[(M (m)
n+1 −M (m)

n )2] ≤ 1,

completing the proof.
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With the proof of Lemma 7 complete, we can move on to the proof of Lemma
6.

Proof of Lemma 6. To prove Lemma 6, we assume that (i) is not the case and

show that we must have (ii). In this case we have that for onem ≥ 2, E(M (m)
∞ ) =

µm < 1. By Observation 1 this means we are considering a mixed state, and

thus by Remark 1, we have that for all m ≥ 2, E(M (m)
∞ ) = µm < 1. To this end

consider the following set for any n ∈ N.

An := {ω ∈ Ω|M (2)
n ≤ µ2 + 1

2
}.

By Nielsen’s inequality 24 for m = 2, if we take the expectation on both

sides, we must have that E(M (2)
n+1) = E(tr(Θ2

n+1)) ≥ E(tr(Θ2
n)) = E(M (2)

n ).

Meaning that the expectation E(M (2)
n ) is a non-decreasing sequence, such that:

µ2 = E(M (2)
∞ ) ≥ E(M (2)

n ).

This leads to the following string of inequalities:

µ2 ≥ E(M (2)
n ) ≥ E(M (2)

n 1
M

(2)
n >

µ2+1
2

) ≥ µ2 + 1

2
P(M (2)

n >
µ2 + 1

2
) =

µ2 + 1

2
(1−P(An)),

from which we conclude

P(An) ≥
1− µ2

1 + µ2
. (27)

We use this shortly. First, An is a Σn measurable set, as it consists of
moments, which we have shown are Σn measurable. This means An consists
of unions of cylinder sets. On these cylinder sets Λi1,...in , the random variable
Θn is constant, which we define as Θn(i1, . . . in). Then the expectation of the
function δm defined before is certainly greater or equal to the expectation only
on the set An.

1

P(An)

∑
Λi1,...in⊂An

P(Λi1,...in)

d∑
m=1

δm(Θn(i1, . . . in)) ≤
1

P(An)

d∑
m=1

E[δm(Θn)].

As the left ’expectation’ is a weighted average, there must be one ρn =
Θn(i1, . . . in) such that the inequality also holds,

1

P(An)

d∑
m=1

δm(ρn) ≤
1

P(An)

d∑
m=1

E[δm(Θn)].

Furthermore, as 1
P(An)

≥ 1, this factor can be removed from the left also.

Finally, making use of equation 27 on the right:
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d∑
m=1

δm(ρn) ≤
1 + µ2

1− µ2

d∑
m=1

E[δm(Θn)] (28)

As this holds for every n, we have a sequence (ρn)n∈N, which lies in the
compact set of states

{θ ∈ S|tr(θ2) ≤ 1 + µ2

2
}. (29)

Meaning that we have a limit point ρ of the sequence. Using this limit point
combined with Lemma 7 to equation 28, we get

d∑
m=1

δm(ρ) ≤ lim
n→∞

1− µ2

1 + µ2

d∑
m=1

E[δm(Θn)] = 0. (30)

Next, using that δm(ρ) ≥ 0, because it is a squared difference, we see that all

elements of the sum
∑d

m=1 δm(ρ) are non-negative. Then we must have that
the individual elements go to zero, so

δm(ρ) = 0.

Furthermore, from the compact set 29, we get that

tr(ρ2) ≤ 1 + µ2

2
< 1,

meaning that ρ is a mixed state. If we now substitute the definition of the
function 25 into equation 6, we see that

tr(aiρa
∗
i )[tr([

aiρa
∗
i

tr(aiρa∗i )
]m)− tr(ρm)]2 = 0.

So we have either tr(aiρa
∗
i ) = 0, proving (ii) for λi = 0, or tr([

aiρa
∗
i

tr(aiρa∗
i )
]m) =

tr(ρm) for all m ∈ N. As all moments are equal, and we know that the moments
are also equal to the sums of mth powers of the eigenvalues tr(ρm) =

∑
i λi(ρ)

m,

for eigenvalues λi(ρ) of ρ. We must have that the eigenvalues of ρ and
aiρa

∗
i

tr(aiρa∗
i )

are equal. As both are density matrices they must be unitarily diagonalizable
with the same diagonal matrix and thus we must have unitary equivalence, again
proving (ii) for λi = tr(aiρa

∗
i ). Showing that if option (i) is not the case, we

must have option (ii), proving the Lemma.

With Lemma 6 in place, proving Theorem 1 requires us to show that point
(ii) in Lemma 6 is equivalent to saying that there exists a projection p ∈ A with
a dimension of at least 2, such that

∀i∈{1,...,k}∃λi≥0 : pa∗i aip = λip.

This shows that ai acts as a scaled isometry restricted to the space of p, when
acting on the space of p. What we can gather from this is that the measurement
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process scales the part of the state that is in this projection space. The part of
the state that is outside this projection space, we know less about. This part
might purify and get sent to this projection space. However, we do know that we
cannot gather any more information from this projection space. This notation
specifically highlights the space which we cannot purify, which we cover in more
detail later.

Lemma 8. Let ρ be a mixed state density matrix ρ ∈ S such that

∀i=1,...,k∃λi≥0 : aiρa
∗
i ∼ λiρ.

Then there exists a projection p ∈ A with a dimension of at least 2, such
that

∀i∈{1,...,k}∃λi≥0 : pa∗i aip = λip.

Proof. We make use of the fact that the support projection of the mixed state
density matrix is a projection with a dimension of at least two.

Starting with the following statement, if p is the support projection of matrix
x, then we have that

detpos(x) = detpos(λp) ⇒ tr(xp) ≥ tr(λp), (31)

with equality if and only if x = λp. The term detpos(x) represents the
positive determinant of x, the product of the strictly positive eigenvalues of x.
This statement is derived from the Arithmetic Mean-Geometric Mean inequality
x1+···+xn

n ≥ (Πn
j=1xj)

1
n , where there is equality, and thus a minimum, if and only

if xi = (Πn
j=1xj)

1
n for all i. In other words, a sum of n numbers with the same

product is minimal if and only if all numbers have the same value.
Let p be the support projection of the density matrix ρ. We wish to apply

statement 31 to prove Lemma 8, so we start by showing that p is the support
projection of pa∗i aip. By the relation aiρa

∗
i ∼ λiρ, we must have that the image

of aiρa
∗
i must have the same dimension as the image of λiρ. This means that ai

must map the entire image of ρ to some space with the same dimension. Then
a∗i , being the adjoint, must send this space to the entire image of ρ. Thus we
must have that pa∗i aip maps vectors to the entire image of p, as any vector not
in this space gets sent to zero by p. For this reason, p is the support projection
of pa∗i aip.

Now to show that the determinants are equal, denote the polar decompo-
sition of aip as vi

√
pa∗i aip, with vi a partial isometry. Then by the relation

aiρa
∗
i ∼ λiρ, we have that

detpos(λip)detpos(ρ) = detpos(λiρ) = detpos(aiρa
∗
i ) =

detpos(aipρpa
∗
i ) = detpos(vi

√
pa∗i aipρ

√
pa∗i aipv

∗
i ) =

detpos(pa
∗
i aipρ) = detpos(pa

∗
i aip)detpos(ρ),

26



where in the second-to-last equality we used that the partial isometries can
be removed as they do not change the positive determinant; their purpose is
rotation. In this same step, as p is the support projection of pa∗i aip, it is
also the support projection of

√
pa∗i aip. Then as

√
pa∗i aip and ρ have the

same support projection p, the positive determinant is the normal determi-
nant over the image of the support projection p, and thus we can make use of
the multiplicativity of the determinant. As detpos(ρ) > 0, we conclude that
detpos(λip) = detpos(pa

∗
i aip). Now we can apply statement 31 to obtain that

tr(pa∗i aip) ≥ tr(λip), (32)

where we used the projection property p2 = p. This result holds for all
i ∈ {1, . . . , k}. Now, to prove the lemma, we want to show equality of the trace.
Using the relation aiρa

∗
i ∼ λiρ, we have that

k∑
i=1

λi =

k∑
i=1

tr(λiρ) =

k∑
i=1

tr(aiρa
∗
i ) = tr(ρ

k∑
i=1

(a∗i ai)) = tr(ρ) = 1,

where we used that
∑k

i=1(a
∗
i ai) = 1, as described in section 3.2. This means

that

tr(p) =

k∑
i=1

tr(pa∗i ai) =

k∑
i=1

tr(p2a∗i ai) =

k∑
i=1

tr(pa∗i aip),

where after the second equality we again used the projection property p2 = p.
Combining this result with the inequality 32, we get

tr(p) =

k∑
i=1

tr(pa∗i aip) ≥
k∑

i=1

tr(λip) = tr(p).

Showing equality of the sums, combined with the inequality 32, we must have
equality of the individual terms,

tr(pa∗i aip) = tr(λip).

Then by the if and only if relation of statement 31, we can then conclude
that

pa∗i aip = λip.

Thus we have also proven Theorem 1 as it follows directly from the combi-
nation of Lemma 6 and Lemma 8.
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6.1 Extension

Following the work of Maassen and Kümmerer [3], Lemma 8 can be further
extended over multiple measurements; that is, there exists a projection p ∈ A
with a dimension of at least 2, such that for any l ∈ N

∀i1,...,il∈{1,...,k}∃λi1,...,il
≥0 : pai1 . . . aila

∗
il
. . . a∗i1p = λi1,...,ilp. (33)

As we can consider ai1 . . . ail to be one measurement operator. Maassen and
Kümmerer then call the projections satisfying this ’dark projections’ and the
range a ’dark subspace’.

Maassen and Kümmerer [3] then explain the following regarding these dark
projections. Suppose p is a dark projection, and let aip have the polar decom-
position vi

√
pa∗i aip =

√
λivip, with vi a partial isometry. If we then take the

projection p′i = vipv
∗
i , we get that

λip
′
ia

∗
i1 . . . a

∗
il
ail . . . ai1p

′
i = λivipv

∗
i a

∗
i1 . . . a

∗
il
ail . . . ai1vipv

∗
i

= vipa
∗
i a

∗
i1 . . . a

∗
il
ail . . . ai1aipv

∗
i

= λi,i1,...,ilp
′
i.

This means that if λi ̸= 0, then p′i is also a dark projection with constants

λ′i1,...,il =
λi,i1,...,il

λi
.

What we see is that using the polar decomposition of aip, a measurement
of i results in the part of the state that is in the dark subspace of p is sent to
some space with the same dimension determined by the partial isometry vi. A
projection of this new dark space is p′i, which is itself a dark projection, meaning
that a measurement from here leads to this new space being sent to some same
dimensional dark subspace again, as described before. The probability of being
sent to these specific dark subspaces overlaps with the respective measurement
output, so have probabilities given by λi. If we have that the projection is of
dimension one, then we have purification.
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7 Conclusion

In conclusion, we have shown that for a perfect indirect measurement, a quan-
tum trajectory follows one of two options. The first is that the trajectory purifies
almost surely, meaning that after performing repeated indirect measurements,
we eventually expect the outcome state to be pure. The alternative is that the
measurement operation is not capable of extracting all the information from
the state. The consequence of this is that after purifying as much as possible,
the state switches through different subspaces of the same dimension with ev-
ery measurement. With these measurements, no more information is revealed,
so the state remains mixed. Further work could check the effects of repeated
measurements with imperfect measurements; this would give the results wider
use. Another follow-up could look at the rate at which trajectories purify and
on which factors this depends. Similarly, in the case that the trajectory does
not purify, at what rate the trajectory is confined to these dark subspaces.

29



References

[1] T. A. Brun, “A simple model of quantum trajectories,” American Journal
of Physics, vol. 70, no. 7, pp. 719–737, Jun. 2002, issn: 1943-2909. doi:
10.1119/1.1475328. [Online]. Available: http://dx.doi.org/10.1119/
1.1475328.

[2] M. A. Nielsen, “Characterizing mixing and measurement in quantum
mechanics,” Physical Review A, vol. 63, p. 022 114, 2 Jan. 2001, issn:
1094-1622. doi: 10 . 1103 / physreva . 63 . 022114. arXiv: quant - ph /

0008073 [quant-ph]. [Online]. Available: http://dx.doi.org/10.
1103/PhysRevA.63.022114.
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