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Grating mirror for diffraction of electrons

M. A. R. Krielaart* and P. Kruit
Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands

(Received 9 August 2018; revised manuscript received 5 October 2018; published 5 December 2018)

The ability to imprint a phase pattern onto a coherent electron wave would find many applications in electron
optics, in analogy to what is already possible with photons in light optics. Spatially dependent phase manipulation
is achieved in transmission electron microscopy by passing the beam through a phase plate. However, in
transmission mode this technique suffers from crystal imperfections and electron-matter interaction. If instead
the electron wave is reflected of a spatially modulated potential, these difficulties can be circumvented. To
demonstrate this principle, we consider here a periodic topological mirror structure that results in a sinusoidal
plane of reflection for the incident electron. The reflection of the electron then takes place just above the physical
mirror surface. Such “electron grating mirror” is expected to diffract the incident wave upon reflection by the
introduced path length difference. The mirror can then be used as an electron beam splitter and coupler, analogous
to semitransparent mirrors used in light optics. This enables for instance a lossless Mach-Zehnder interferometer
for electrons. A numerical model that solves the Schrödinger equation for this system is obtained to enable a
quantitative description of the grating mirror. The results show that the obtained diffraction order intensities
behave like squared Bessel function of their respective order, and thus for instance the results show how an
increase in grating pitch reduces the sensitivity to energy spread in the incident electron beam. Additionally, we
show how the use of the WKB approximation enables faster calculations in the case of general patterns.

DOI: 10.1103/PhysRevA.98.063806

I. INTRODUCTION

Quantum electron microscopy (QEM) aims at the interac-
tion free imaging of beam sensitive materials [1]. To realize
this technique, new electron optical devices are required.
One of these new devices is a grating mirror for electrons. The
physics of an electron grating mirror is not described before
and we will introduce it here. We show how a grating mirror
can be used to reflect an incident coherent electron beam and
subsequently rearrange the amplitude of the several created
sub-beams.

The grating mirror consists of a topological pattern of
rectangular bars that is kept at a potential just above the beam
energy, thus effectively creating a periodically modulated
mirror potential in space. Alternatively, a grating mirror can
be realized by a pattern of lines kept at varying voltage levels
but this is not treated here. In QEM, a grating mirror fulfills
the role of coherent beam splitter and coupler: it enables the
transfer of the beam intensity from a reference beam into a
sample beam and vice versa, analogous to an optical beam
splitter found in interference experiments.

A. Grating parameters

The geometry of the grating mirror [Figs. 1(a) and 1(b)]
is described by a pattern pitch (p) and amplitude (δ). To
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obtain an order of magnitude estimate for these parameters,
we draw an analogy with a multiple slit experiment. Here, the
angles of the k vectors with the optical axis are related via
the pitch and wavelength (λ) by approximately θ ≈ λ/p. The
resulting diffraction pattern can than be imaged onto a screen
via a (system of) lens(es). The diffraction spot separation is
then approximately given by dspot ≈ θf , where f is the focal
length of the lens system.

For initial experiments, we will use low beam energies
(1–4 keV) and MEMS fabricated lenses. Plugging in these
energies and the small (10–30 mm) focal lengths of the lenses,
typical values for pitch are in the range of p = 100–500
nm. This should then result in spot separations on our de-
tector screen in the order of micrometers. When the pattern
amplitude δ is then in the same order of magnitude as the
pitch, the resulting equipotentials that form above the physical
mirror structure exhibit the required sinusoidal shape. Grating
mirrors with pitch and amplitude in the range mentioned
can be fabricated from a flat silicon waver using lithography
processes. An electrostatic potential is applied to the pattern
and the resulting field is confined in space by a (grounded)
field-limiting aperture, placed at a distance d above the pat-
tern.

For {p, δ} � d, the electric field in the confined region can
be approximated analytical by solving the Laplace equation.
To do so, we describe the potential applied to the pattern on a
straight line by

U (0, y) = Up

[
1 + δ

d
cos

(
2π

pitch
y

)]
. (1)

Here, Up is the pattern bias potential (a constant) and the
second term modulates the potential to mimic the presence
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FIG. 1. (a) Parameters describing the grating mirror and coordi-
nate system. (b) Details of region I, defining the pitch and amplitude
of the pattern. Equipotential lines are shown schematically. (c) Axial
and side potential corresponding to the details of region I.

of the pattern. By using separation of variables, the potential
inside the confined region can then be shown to satisfy

U (x, y) = Up{1 + d−1[δ sin(kpy) exp(kpx) − x]}. (2)

This result is valid for x < 0,∀y. The wave number kp

is directly related to the pitch of the pattern, kp = 2π/pitch.
From Eq. (2) it is observed that the modulation of the potential
attenuates exponentially fast away from the mirror surface
(region I in Fig. 1). For a distance 5/kp � d above the pattern
(region II) the equipotential surfaces are virtually flat again.

An electron incident to the mirror decelerates first on the
linear potential ramp inside region II. By spreading out the
electron beam over the pattern, path length differences occur
within the electron wave as it is being reflected inside region I.
It is expected that this leads to a modulation of the phase of the
wave function of the electron with corresponding diffraction
effects in the far field. As the mirror is an amplitude splitter,
consecutive illumination is expected to result in a coherent
buildup of phase modulation, leading to increased probability
amplitudes in the diffracted beams.

In this paper, we describe quantitatively how the pattern
parameters (pitch, amplitude, applied potential, and field
strength) dictate the physics of the electron grating mirror.

II. METHODS

Approximation methods, such as WKB [2] or convolution
methods [3], allow for first-order estimation of the pattern
effects. When applied along one spatial dimension parallel to
the optical axis of the system [see Fig. 2(a)], the WKB method
yields an integral over the selected electron trajectory that
calculates the accumulated phase of an electron with given
momentum p(x) = √

2meK and K the kinetic energy of the
electron, related by

φ(x, y) = h̄−1
∫

p(x, y)dx. (3)

Here, the transverse coordinate y is treated as a parameter
that allows one to select different paths parallel to the optical
axis. The phase modulation in the presence of the grating
mirror can now be calculated by integration along various
parallel paths starting and ending at the interface of regions
I and II. This reveals an increase in phase modulation as
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FIG. 2. (a) WKB approximation with integral paths parallel to
the optical axis of the system. The arrows indicate (schematically)
the starting point for the integration. (b) Obtained phase accumu-
lation as a function of pattern potential (legend items with respect
to −2000 V beam energy) and transverse coordinate. The offset is
subtracted such that only the modulated part of the phase is shown.
(c) The effect of grating pitch on the relative phase accumulation.

the spread out electron reflects closer to the physical grating
structure [Figs. 2(b) and 2(c)] as may physically be expected.

When the incident electron is described as a plane wave,
ψin = a exp(ikinx0), where kin is the appropriate wave num-
ber, then the obtained spatial phase modulation φ(x, y) from
Eq. (3) enables us to write the reflected wave at the interface
of regions I and II (x0) as ψout = a exp[iφ(x0, y)]. A Fourier
transform of the reflected wave with imprinted phase pattern
φ(x, y) then yields the spectrum of all k vectors and their
intensities.

However, the WKB approximation is generally not valid
in the vicinity of the classical turning point of the electron
just in front of the pattern [2]. This follows from the WKB
ansatz, resulting in an inverse proportionality of the amplitude
of the wave function and momentum p. Since the momentum
p(x, y) → 0 at the turning point, the wave function diverges
here. It is just at this location, where the influence of the
mirror pattern is dominant. Because of this, we do not trust
a priori results obtained by using the WKB method. For this
reason we also calculate the effect of the mirror potential by
numerically solving the Schrödinger equation inside region
I by coupling it to known analytical solutions of region II.
Details of this more time-consuming calculation are included
in Appendix A. Afterward, we compare the results of the
WKB and numerical method in order to validate the use of
the WKB method.

III. RESULTS

In the full numerical solution of the Schrödinger equation,
we describe the interface between region I and region II
of respectively unknown and known solutions by the wave
function ψb(xb, y) as

ψb(xb, y) =
∑

n

AnAi−(un(xb )) exp(iky,ny)

+
∑

n

BnAi+(un(xb )) exp(iky,ny). (4)

Here, the coefficients An represent probability amplitudes
of incident waves with wave vector �k determined by the angle
with respect to the optical axis. Coefficients Bn are obtained
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[V] and corresponding diffraction order intensities are shown.

from the calculation and yield directly the probability ampli-
tudes of the respective k vectors of reflected waves.

When we consider an incident plane wave that travels
parallel to the optical axis, all coefficients An = 0, except
for A0 = 1. In the following, a field free electron energy
of E = 2 keV is assumed. This requires a pattern poten-
tial of Up � −2 kV. When we assume a field strength of
10 kV/mm, the field limiting aperture is positioned at a
distance d = 200 μm above the grating mirror.

The effect of a 500 nm pitch grating pattern is studied
for various pattern potentials in order to show the effect of
field modulation on the reflected electron. The intensities
In = conj(Bn) · Bn of the most dominant diffraction orders
(n = 0,±1,±2) are plotted as a function of the pattern po-
tential [Fig. 3(a)]. From this, it is observed that a maximum
intensity of 34% is obtained in the first-order diffracted beam.
This compares to transmission studies of diffractive gratings
[4] and motivates the term “electron grating mirror” for the
studied device.

To study the effect of a tilt angle between the incident
beam and the normal of the mirror surface, two options are
considered. First, we set all but one of the An coefficients
to zero. This simulates the effect entering the mirror field
at exactly one allowed angle. The results of this simulation
(not shown) indicate no sensitivity to angle of incidence but
rather shift the entire spectrum of coefficients Bn such that
it is centered around the selected incidence coefficient An.
Next, the effect of a tilt angle between the incident beam and
the normal of the mirror that is smaller than the first-order
angle is studied. This is possible by adding multiple pitches
to the numerical domain. Again, it is found that the resulting
spectrum of Bn is centered around the incidence coefficient.

The diffractive properties of the mirror invite one to treat
the system in a way similar to a diffractive crystal. One
then studies the intensity of the various orders of diffraction
as functions of the crystal thickness. Here, we consider the
amplitude of classical mirror plane equipotential (given by
Uclass. = E/e) as effective “crystal” thickness. The thickness
δxR of the crystal can then be tuned by changing the pattern
potential.

In Fig. 3(b) the diffraction intensities are plotted as a func-
tion of this effective thickness δxR . As it can be seen from the
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FIG. 4. Diffraction order intensities for a fixed pitch of (a)
500 nm and (b) 1000 nm. An increase in pitch results in a wider
bias potential window for complete attenuation of the central order
beam.

figure, the intensity in the first-order diffracted beam increases
linearly as a function of effective thickness for amplitudes
close to zero. This linear increase is at the expense of intensity
of the zeroth-order (central) beam and can be interpreted as an
exchange of intensity between the two modes. In this range
of effective thickness, the grating mirror can be applied as
a nonsymmetrical beam splitter, meaning that a non-50:50
splitting ratio is achieved. It should be noted though that both
the positive and negative orders are generated equally.

Earlier, we derived the exponential attenuation of the field
modulation as function of pitch. As a result, it should be
expected that the pitch influences the bias potential interval,
over which the central beam becomes fully attenuated. In
Fig. 4 we show the intensity of the first orders of diffraction
for a grating mirror with pitch of 500 nm and 1000 nm.
Indeed it is evident from the plots shown that an increase in
pitch stretches the interval over which the first-order diffracted
beam is generated, from approximately 2.3 V to 5.0 V.

The implications of this last result for an experiment are
evident when one considers the energy spread inherent to
an electron beam. By increasing the pitch, the sensitivity for
energy spread is reduced, leading to better spatially defined
diffraction spots. However, by increasing the pitch, one also
has to increase the width of the beam that is spread out over
the mirror surface, in order to illuminate an equal number of
pitches when compared to the smaller pitch. As an alternative
to increasing the pitch, one can also increase the field strength
between the mirror and field-limiting aperture, by reducing
the distance between the two or applying a positive bias to the
field limiting aperture.

The above results are all obtained from the numerical solu-
tion of the Schrödinger equation, which is a computationally
demanding procedure. We now compare the obtained results
to the outcome of the WKB method in order to assert the
validity of the latter. For this, we consider again a single
pitch of the grating mirror. We use our analytical expression
for the equipotential above the grating mirror [Eq. (2)] and
integrate the momentum along paths running parallel to the
optical axis, in order to obtain the spatial phase modulation.
The obtained phase profile is then decomposed in the various
spectral components using Fourier analysis and this yields the
intensity of the diffracted beams.

In Fig. 3(a), the intensity of the central-, first-, and second-
order beams (dashed lines) are plotted as a function of
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applied pattern potential. Comparison to the exact solution
(solid lines) shows good qualitative agreement. Quantitatively,
however, the WKB result is shifted approximately 1 V with
respect to the exact solution. It thus appears that the electron
approaches the mirror more closely in the WKB approxima-
tion as compared to the exact case. Indeed, this is the case
when one considers the Airy function solution of the exact
case. The maximum probability ψ∗ψ of finding the electron
is positioned not at, but just before the classical turning point
[also see Fig. 5(a)] and thus the electron spends more time at
this point than at the classical turning point itself.

From the above, it appears to be evident that the WKB
approximation does not yield useful quantitative results when
the beam intensities are expressed as a function of applied
pattern potential. However, we found that by expressing the
beam intensities as functions of classical turning point thick-
ness (δxR ) instead, a perfect agreement between the WKB
and exact method is obtained, as shown in Fig. 3(b). One
can then calculate the potential necessary for this thickness
in hindsight.

IV. DISCUSSION

The physics of a constant pitch grating mirror is studied via
two different methods. We observe a physical correspondence
of the studied grating mirror with that of a diffractive crystal.
Different pattern parameters are studied as well and these
show similar results.

It should be noted that the diffraction order intensities as
functions of effective crystal thickness [Fig. 3(b)] are remark-
ably similar to the square of Bessel functions of corresponding
orders. This may suggest that an analytical solution for the
studied system exists. This would enable a general description
of diffraction order intensities for any periodic grating mirror.

We demonstrated in the previous section that the WKB and
exact method show remarkable quantitative agreement, when
the beam intensities are expressed as a function of classical
turning point thickness instead of applied bias potential. This
observation allows speeding up of future calculations, since
the calculation of the WKB integral takes only a few seconds.
This is an improvement over the use of exact solutions, the
calculation of which takes up to 30 min on the PC used for
the shown calculations. Additionally, the WKB method allows
more flexibility for studying nonperiodic patterns.

Finally, we discuss several effects which might prevent us
from obtaining the coherent diffraction as we described. The
most obvious disturbing effect is a possible low-frequency
distortion of the mirror topology, for instance, the effect of
curvature of the surface due to stress inside the material.
We can approximate the maximum allowable curvature by
assuming illumination of the mirror with a beam of 20 μm
diameter. Then, for the generation of the first-order diffracted
beam, a field modulation of the classical turning point of
0.5 nm is required [5]. From Eq. (2), we can then estimate
a maximum thickness variation of 1 nm is tolerated within
this region. A further increase in curvature will ultimately
lead to blurring of the diffracted beams in the image plane
of the mirror system. Similarly, the potential on the surface of
the mirror is assumed to be very uniform. At 10 kV/mm, a
topology change of 1 nm, as just discussed, is equivalent to
a potential change of 10 mV. This sets requirements for the
surface treatment of the mirror surface. Also, contamination
should be avoided because this could lead to local charging. In
principle, the electron beam does not need to touch the mirror
surface ever, but during the alignment procedures it will be
hard to really avoid electrons reaching the surface.

A more subtle effect is that of the induced mirror charges
inside the mirror. At the sub-nA current that will be used, elec-
trons can be treated as arriving individually. The proximity of
an electron near a wall induces an image charge (distribution)
inside this wall [6]. At the point of nearest approach to the
mirror surface (approximately 500 nm when only the first-
order diffracted beam is induced) this yields an increase of the
potential at the classical turning point. A simple calculation
shows that this is in the order of millivolts. The force from the
mirror charge on the electron is always perpendicular to the
surface, so we do not expect any effect from this. However,
as the electron moves towards and away from the mirror, the
induced surface charges on the mirror surface are dragged
along, possibly causing dissipation [7,8]. In the which-way
setup of [8], this dissipation due to Joule heating is recognized
as the mechanism that leads to dephasing of the state of the
wave function associated with the respective path. As a result,
decoherence is observed as the electron propagates alongside
the wall.

A similar effect is observed for intensity splitting in
nanofabricated gratings [9]. Here, the dissipative effect of the
image charge can be related to the side walls of the slits that
the electron passes through. The question is if this effect could
cause decoherence in our proposed setup. The effect would be
that a localized excitation in the mirror surface would cause
the electron to lose energy, in the process collapsing the wave
function to a smaller area than the original 20 μm. This would
affect the diffraction. We do not have a full theory from which
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we can derive the probability of this effect. However, we point
out that, in all of the cases in the literature, the dephasing of
the wave function is the result of splitting the wave function
and successive dissipation in one of the resulting trajectories
as it travels for some distance parallel and very close to
a surface. As this is not the case for the reflective grating
mirror that we present here, we expect that the probability of
decoherence will be smaller than in those cases. Also, earlier
experimental work involving electron holography [3] with
reflected electrons did not indicate any effects of decoherence.

A final effect to be considered is bremsstrahlung, the
emission of a photon while decelerating and accelerating the
electron. Potentially this could cause energy spread or local
collapse and thus loss of coherence. However, a nonrelativistic
estimate of the average energy that is lost per electron to
bremsstrahlung for an initial electron energy of 2 keV re-
flected in a 10 kV/mm field gives 1 × 10−9 eV, which can
safely be neglected.

Further requirements on experimental setups for demon-
stration of the grating mirror for electrons would require stable
power supplies, with an accuracy that is well below the energy
spread of the electron beam. This criterion is easily satisfied
with modern supplies and the optional use of an additional
low-pass filter on the output.

This all said, we must admit that we have tried to observe
the diffraction experimentally and so far have not obtained
convincing results. Future work requires experimental veri-
fication of the grating mirror. This demands the microfabri-
cation of the grating mirror and (lens) apertures. The spatial
coherence of the electron beam should then extend across
a distance of multiple pitches. From our simulations it is
obtained that a small pitch requires the electron to approach
the mirror to such proximity that higher-order diffracted
beams may not be generated. On the other hand, a too large
pitch places a more demanding condition on spatial beam
coherence.

The realization of a quantum electron microscope can
benefit from the presented work, as we describe accurately
the intensity of the diffracted beams for given operation pa-
rameters. One should however take into account the coherent
buildup of signal in the higher-order diffracted beams [10].
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APPENDIX A: NUMERICAL SOLUTION OF THE
SCHRÖDINGER EQUATION IN FRONT OF THE

GRATING PATTERN

We seek a full solution of the (time-independent)
Schrödinger equation as a means of obtaining an accurate
description of the wave function upon reflection of a (mod-
ulated) potential surface. The analysis is based on coupling
(known) analytical solutions to Schrödinger’s equation for
linearly sloped potential fields (region II) to a modulated
potential field with unknown solution (region I) as defined in

Fig. 1 of our paper. First, the analytical solution in region II
is described. Then, the coupling of this solution to region I
is demonstrated and finally the numerical implementation is
discussed.

1. Solutions for a linear sloped potential

The analytical solution to the Schrödinger equation for
a linear sloped potential is obtained by solving the time-
independent Schrödinger equation,[

− h̄2

2m
∇2 + V (x)

]
ψ (x, y) = Eψ (x, y). (A1)

The potential-energy function V (x) is dependent on the
aperture-mirror separation d and potential difference �U . In
the absence of a pattern, i.e., a flat mirror, and assuming a
grounded aperture, the potential is described as U (x) = Ēx +
Up with Ē the linear field strength (V/m) and V (x) = eU (x).
Here, e = −1.6 × 10−19 C represents the electron charge. The
general solution to the resulting differential equation is given
by Airy functions of first and second kind [11]. As the solution
has to vanish for x > 0, the Airy function of first kind (from
now on referred to as “the Airy function”) is the only valid
solution of the Schrödinger equation here.

For two spatial dimensions, the solution is given by the
product of the Airy function in the direction of the linear
sloped potential and plane waves in the direction perpendicu-
lar to the ramp; thus

ψ (x, y) = X(x)Y (y) = Ai(un(x)) exp(iky,ny). (A2)

The Airy function Ai(un(x)) is a standing wave type,
which is described by

Ai(un) ≡ 1

π

∫ ∞

0
cos

(
s3

3
+ sun

)
ds. (A3)

The term un(x) is a scaling factor that depends on the param-
eters of the pattern. The derivation of this term is provided
inside Appendix B, and given here by

un(x) = α

[
x − E − Vp

E
+ h̄2k2

y,n

2mE

]
. (A4)

This expression is obtained by solving the Schrödinger
equation analytically in two spatial dimensions by the method
of separation of variables. In this equation, α ≡ (2mE/h̄2)1/3

is a constant that depends only on the linear field strength E

in region II. The second term in brackets is recognized as the
“classical turning point.” This is the coordinate plane where
classically the electron would be reflected. However, quantum
mechanically there is a finite probability for the electron to
penetrate this barrier. Moreover, the electron spends most time
just in front of the classical turning point [12]. This is also
visible in Fig. 5(a), where the square of the Airy function
is plotted as a function of position in front of the mirror
plane. The last term in brackets is considered a correction
due to the transverse component ky,n of the wave and m =
9.1 × 10−31 kg is the electron rest mass.
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2. Coupling the linear and modulated potential region

The numerical solution of the Schrödinger equation in
region I is obtained by a finite element method and described
as a boundary value problem. By virtue of the periodicity of
the pattern in transverse direction, we only require a single
pitch and may apply periodic boundary conditions to both
sides. A zero-boundary condition is applied sufficiently far
below the classical turning point resulting in full reflection.

The boundary values at each point of the interface of
regions I and II are described by the incident and reflected
part of the wave function at this boundary,

ψb = ψincident + ψreflected. (A5)

For this, the standing-wave–type Airy function must be split in
countertraveling components. The asymptotic approximation
of the Airy function, valid for un > π , allows for this [13],
since

Ai(−un) ≈ sin(γ )√
πu

1/4
n

= exp(iγ )

2i
√

πu
1/4
n︸ ︷︷ ︸

Ai+(un )

− exp(−iγ )

2i
√

πu
1/4
n︸ ︷︷ ︸

Ai−(un )

. (A6)

The result after the equality sign follows from applying Eu-
ler’s identity, using γ ≡ 2

3u
3/2
n + π/4 as shorthand notation.

This allows us to describe the wave function at the interface
in general by

ψb(xb, y) =
∑

n

AnAi−(un(xb )) exp(iky,ny)

+
∑

n

BnAi+(un(xb )) exp(iky,ny). (A7)

The complex coefficients An and Bn provide the probability
amplitudes for various wave numbers kn.

3. Numerical implementation

The solution at the interface [Eq. (A5)] is a linear com-
bination of the wave(s) incident towards and reflected by the
patterned mirror. The allowed values for the transverse wave
component ky,n are determined by the pitch of the mirror
pattern and must yield wave numbers that exactly fit an integer
amount of times within the pitch. As a result, the interface
between regions I and II must consist of Ny (necessarily odd)
number of points, resulting in allowed values of ky,n = ±2πn,
with n = 0, 1, . . . , (Ny − 1)/2, in order to prevent numerical
aliasing.

The solution to the Schrödinger equation within the prox-
imity of the pattern can now be obtained by a finite difference
scheme. Grid points are labeled ψi,j , with i = 1 . . . Nx (rows),
j = 1 . . . Ny (columns), and the grid size is given by hx and
hy . The full domain consists of Nx × Ny grid points. Elements

FIG. 6. Schematic representation of the grid, showing the single
pitch, boundary conditions, and the labeling of index points.

ψ1,j represent the first row of grid points of region I, directly
below the interface. The grid is shown in Fig. 6.

The Laplacian operator in the kinetic part of the Hamilto-
nian H is described by

∇2
i,jψi,j = ψi+1,j + ψi−1,j − 2ψi,j

h2
x

+ ψi,j+1 + ψi,j−1 − 2ψi,j

h2
y

. (A8)

This introduces a nearest-neighbor dependence. When the
grid points ψi,j are represented by a column vector
ψ̄ = (ψ1,1, . . . , ψ1,Ny

, ψ2,1, . . . , . . . , ψNx,Ny
)T the Hamilto-

nian can be described as a sparse square matrix.
The above definition for the Laplace operator introduces

the interface grid points ψb into the system of equations, since
the interface coincides with ψ0,j . In turn, this introduces the
unknown coefficients An and Bn into the set of equations and
the resulting system becomes underdetermined, since we now
have Nx × Ny equations and (when we choose the incident
wave form coefficients An) Nx × (Ny + 1) unknowns, due to
the unknown coefficients B1, . . . , BNy

.
To overcome this problem, one more step is required. By

describing the first row of grid points inside the numerical do-
main (grid elements ψ1,j ) in terms of a Taylor expansion of the
interface grid points, the first row entries inside the solution
column vector ψ̄ can be replaced by coefficients Bn, such that
ψ̄ → (B1, B2, . . . , BNy

, ψ2,1, . . . , . . . , ψNx,Ny
)T . The Taylor

expansion of the interface elements is given by

ψ1,j ≈ ψ0,j + dψ0,j

dx

∣∣∣∣
x0

hx, (A9)

where the derivative is taken at the halfway point in between
i = 0 and i = 1. The Schrödinger equation can now be written
as a matrix equation by (H − IE )ψ̄ = �X and �X is determined
by the choice of the incident wave condition. If we define M ≡
(H − IE ), we will first explicitly state the form of Mψ̄ = �X
in the following set of expressions:

i = 1 :
∑

n

Bn[ψout[j, n](−ax − 2ay + V1,j − E ) + ψ
′
out(−2ax − 2ay + V1,j − E )

+ ay (ψout[j ± 1, n] + ψ
′
out[j ± 1, n])] + ψ2,j (ax )

= −
∑

n

An[ψin[j, n](−ax − 2ay + V1,j − E ) + ψ
′
in[j, n](−2ax − 2ay + V1,j − E )

+ ay (ψin[j ± 1, n] + ψ
′
in[j ± 1, n])],
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i = 2 :
∑

n

Bn[ax (ψout[j, n] + ψ
′
out[j, n])] + ψ2,j (−2ax − 2ay + V2,j − E )

+ψ3,j (ax ) + ψj±1,2(ay )

= −
∑

n

An[ax (ψin[j, n] + ψ
′
in[j, n])],

i � 3 : ψi±1,j (ax ) + ψi,j (−2ax − 2ay + Vi,j − E ) + ψi,j±1(ay ) = 0. (A10)

Here, terms aq relate to the step size in the respective
direction (x, y). The analytical expression [also see Eq. (A7)]
at the interface is given by

ψb ≡ ψ0,j =
∑

n

[Anψin[j, n] + Bnψout[j, n]], (A11)

that is, for every point on the interface, the contribution of
all modes n are summed for the specific position j . For
an incident plane wave parallel to the optical axis, only
Am = 1 for n = m, the mode corresponding to ky,m = 0, i.e.,
the mode that has no transverse wave number component.
Further, the derivative of ψin/out[j, n] is defined as given by
the Taylor expansion evaluated at the x coordinate related to
column j and mode n. Also, definition of ψi±1,j ≡ ψi−1,j +
ψi+1,j and ψ[j ± 1, n] ≡ ψ[j + 1, n] + ψ[j − 1, n] allows
for shorthand notations.

The right-hand sides for i = 1 and i = 2 in Eq. (A10)
provide the source terms for �X. From this scheme it is also
clear that only the first 2J positions of �X are filled with
nonzero entries.

4. Obtaining a solution

Next, the system M �ψ = �X must be solved for �ψ . This is
done by left multiplication of both sides of the equation by the
inverse of matrix M,

M−1 M �ψ = M−1 �X ⇒ �ψ = M−1 �X. (A12)

By definition of �ψ the first J elements contain the co-
efficients of the reflected waves, B1, B2, . . . , BJ . Moreover,
for transverse waves of the form Yn(y) = Bn exp(iky,ny) the
coefficients Bn are equivalent to the spectrum of outgoing
wave vectors with (field free) small angle approximation angle
θn = ky,n/kx,n with respect to the optical axis. The corre-
sponding values for kx,n are readily obtained via the field-free
solution of the Schrödinger equation, kx,n = 2mE/h̄2 − k2

yn
,

and allow one, for instance, to directly obtain the intensity
of the various diffraction orders induced by placing a grating
mirror.

We use MATLAB to solve the inversion problem, ψ̄ =
(H − IE )−1 �X, where the first Ny entries of ψ̄ directly yield
the probability coefficients Bn of various reflected wave com-
ponents.

5. Stability and convergence

In region I, the time-independent Schrödinger equation
is solved on a uniform grid with step size hx and hy for
the longitudinal and transverse direction. The maximum step
value of hx is limited by the shortest wavelength that occurs in
the numerical domain. This wavelength occurs at the interface

(with potential V0,j ), since the electron is decelerated towards
the mirror plane. In order to sample q steps within one
wavelength λ the value of hx is upper bound by

hx � λe

q
⇒ hx � 1

q

√
2m[E − V0,j ]

h̄
. (A13)

The step size hy , on the other hand, is unconditionally sta-
ble as long as the aliasing requirement (n = 0, 1, . . . ,

Ny−1
2 )

is met. Then, the second spatial derivative is obtained by two
central difference operations,

∇2
i,jψi,j = ψi+1,j + ψi−1,j − 2ψi,j

h2
x

+ ψi,j+1 + ψi,j−1 − 2ψi,j

h2
y

. (A14)

Here, the wave function on coordinate (x, y) is represented
by ψi,j , where i = 1 . . . I (and I ≡ Nx) labels the row coor-
dinate and j = 1 . . . J (and J ≡ Ny) the column coordinate.
Periodic conditions imply that ψi,J+1 = ψi,1 and ψi,0 = ψi,J .
The zero boundary condition opposite to the interface implies
that ψi,J+1 ≡ 0.

APPENDIX B: LINEAR SLOPED POTENTIAL SOLUTION
FOR TWO-DIMENSIONAL WAVE ψ (x, y)

The solution for a linear sloped potential in the x direction
that extends infinitely in the (transverse) y direction is derived
here. The potential with slope E (unit eV/m) and mirror
pattern potential Vp (unit eV) is given by

V (x, y) =
{

0 for x � b with b < 0,

Ex + Vp for b < x < 0.
(B1)

By using separation of variables ψIII (x, y) = X(x)Y (y),
the solution in the field-free region (III) follows from the
solution of

1

X

d2X

dx2
+ 1

Y

d2Y

dy2
= −2mE

h̄2 . (B2)

The right-hand side is the separation constant and the corre-
sponding solutions are

X(x) = Ain exp(ikxx) + Aout exp(−ikxx), (B3)

Y (y) = Bin exp(ikyy) + Bout exp(−ikyy), (B4)
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with k2
x + k2

y = 2mE/h̄2. Next, the solution for the sloped
region (II) follows from solving

− h̄2

2m

1

X

d2X

dx2
+ V (x)︸ ︷︷ ︸

C

− h̄2

2m

1

Y

d2Y

dy2︸ ︷︷ ︸
D

= E

⇒ C + D = E . (B5)

Since the potential V = V (x) is only varying in the x

direction, it is absorbed in the separation constant C, and the
solution for Y (y) is equated to a related separation constant
D such that C + D = E . The solution for Y (y) is readily
obtained,

d2Y

dy2
= −2mD

h̄2 Y

⇒ Y (y) = D1 exp(ikyy) + D2 exp(−ikyy), (B6)

for given ky . Note that ky remains initially a free variable,
unless periodic boundary conditions are applied. Then, the
values of ky are limited (numerically, for Ny is odd) to values
ky,n = ±2πn/pitch for n = 0, 1, . . . ,

Ny−1
2 , and either D1 =

0 or D2 = 0 to avoid double solutions.
The differential equation describing the x direction is given

by

d2X

dx2
= −2m

h̄2 [C − V (x)]X(x)

= −2m

h̄2 [C − Ex − Vp]X(x)

= 2mE

h̄2

[
x − C − Vp

E

]
X(x). (B7)

This differential equation can be solved by change of variable.
First, define

u = α[x − C1] with

⎧⎨
⎩C1 ≡ C−Vp

E
,

α ≡
(

2mE

h̄2

)1/3
.

(B8)

Then [14] du/dx = α ⇒ d2X/dx2 = α2d2X/du2 and thus
the differential equation for X(x) may also be written as

d2X

du2
= uX, with X = X(u(x)). (B9)

This is a well-known type of differential equation and the
solution is given by the Airy functions of first and second kind,
respectively Ai(u) and Bi(u). Note that the latter grows to
infinity for x > 0 and is no valid solution here. On the other
hand, the Airy function of the first kind Ai(u(x)) is a valid
solution since it vanishes for x > 0. The function Ai(u) is real
and defined as

Ai(u(x)) = 1

π

∫ ∞

0
cos

(
s3

3
+ su

)
ds. (B10)

The scaling factor u = u(x) is explicitly given by

un(x) = α[x − C1]

= α

[
x − C

E
+ Vp

E

]

= α

[
x − 2mE − h̄2k2

y,n

2mE
+ Vp

E

]

= α

[
x − E − Vp

E
+ h̄2k2

y,n

2mE

]
. (B11)

In this equation, the term (E − Vp )/E may be recognized as
the “classical turning point” for 1D, that is the position of
zero momentum (kinetic energy) of a classical particle. The
second term (involving k2

y,n) can be regarded then as a two-
dimensional energy-conservation correction term. Effectively,
this term shifts the point where the Airy function is evaluated
in a way that can be regarded as if reflection took place
a little earlier (since some of the kinetic energy is in the
transverse component now). When desired, the solutions in
regions II and III can be connected by equating the normal
and first derivative of the wave function at x = b for a selected
incident coefficient Ain and Bin for comparison of numerical
and analytical results.

APPENDIX C: PHASE ANGLE OF AN ELECTRON
REFLECTED FROM A SLOPED

POTENTIAL WITH A BUMP

The presented method is verified against known analyti-
cal solutions of the one- and two-dimensional Schrödinger
equation. The verification is performed using (i) field free,
(ii) constant potential, (iii) linear sloped potential, and (iv)
sloped potential with a step edge at the back [12] [Figs. 5(b)
and 5(c)].

The following example involves two parts, both in which
an incident electron wave is reflected against a linear sloped
potential with maximum Vmax > E . First, it is shown that the
phase angle of the returning wave is obtained, again when
this returning wave propagates in a field-free region (V = 0)
in front of the slope. Next, it is shown that the effect of a
perturbation at the top of the slope (near the turning point) can
be obtained both analytically and numerically, the latter using
the method presented here. A good agreement is obtained for
this method.

For a plane incident wave (in field-free region) that is
reflected by a linear sloped potential, it can be shown that the
analytical solution [for the potential landscape as shown in
Fig. 5(b)] to the time-independent Schrödinger equation reads

ψ (x) =
{
A exp(ikx) + B exp(−ikx) for V (x) = 0,

C Ai(u(x)) for V (x) = Ex + E .
(C1)

The numerical solution is obtained and compared to the analytical solution (for which the value of B and C are uniquely
determined for given coefficient A) and this is shown in Fig. 5(c). Note that the analytical expressions for B and C are obtained
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by equating the expression for the wave function (and the spatial derivative) just to the left and right of the onset for the sloped
potential.

In the second part of this example, the validity of the Airy-splitting method is demonstrated [as suggested in Eq. (A6)]. The
goal is to obtain the additional phase shift that is due to a potential step (or perturbation) on the top of the linear slope [the orange
line in Fig. 5(b)]. An analytical solution for this type of potential (field free, sloped, sloped with additional offset) exists and is
given by

ψ (x) =

⎧⎪⎨
⎪⎩

A exp(ikx) + B exp(−ikx) for V (x) = 0,

C Ai(uI(x)) for V (x) = Ex + E,

D Ai(uII(x)) for V (x) = Ex + E (1 + δ).

(C2)

Notice that the argument to the Airy function differs for the two parts of the sloped potential. The scaling is given
by

u(x) =

⎧⎪⎨
⎪⎩

(
2mE

h̄2

)1/3
(x) for u(x) = uI(x),(

2mE

h̄2

)1/3(
x + δE

E

)
for u(x) = uII(x).

(C3)

When the value of Cin is known (or selected) it is possible to calculate the effect of the offset potential on Cout by starting the
calculation just in front of the boundary between the two sloped potentials. The boundary condition ψ0 must then discriminate
between the incident and reflected component of the Airy function Ai(uI(x0)), since the Airy function in itself is a real function.
This discrimination is made by selecting

ψ0 = Cinψin + Coutψout

= CinAi+(u0) + CoutAi−(u0), (C4)

which are left and right traveling waves. Note that the analytical result for Cout is obtained by solving the following system
of linear equations: (

Ai−(uI(xs )) −Ai(uII(xs ))
d
dx

[Ai−(uI(xs ))] − d
dx

[Ai(uII(xs ))]

)(
Cout

D

)
=

(−CinAi+(uI(xs ))
−CinAi+(uI(xs ))

)
. (C5)

The property of interest now is the phase angle φCout = Im(Cout)/Re(Cout) and this is shown in Fig. 5(c). Note that the
(wrapped) phase angle will not linearly increase with δE when the step size creates a barrier that extends above V = E . This is
the case here for δE = 10% of E .
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