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Abstract

Solution methods and computational efficiency of stochastic linear programs have been exten-
sively studied over the years. Despite this, their practical applications remain limited due to
persistent computational challenges and the lack of a user-friendly interface for modeling and solv-
ing these problems. This thesis revisits those computational challenges and explores the usability
of stochastic linear programs in the field of energy system modeling. This is done by implement-
ing two solution methods for solving two-stage stochastic linear programs: the Extensive Form
method and the L-Shaped method, and applying both methods on existing input problems. To
additionally test the performance on an energy system model, the existing large-scale energy model
Oemof-B3 is extended to a stochastic linear program, and the solution methods are applied on this
problem too. Since the stochastic linear programming framework can be easily applied, and both
methods successfully produce solutions for various input problems, we conclude stochastic linear
programming holds significant potential as a modeling tool. However, computational challenges
remain, particularly when applying the stochastic programming framework to the energy model
Oemof-B3. Additionally, the lack of user-friendly tools and readily available solvers for solving
stochastic linear programs limits the practical applicability of these methods.
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1 Introduction

Linear programming is a fundamental tool for planning and decision-making. Its applications span
multiple fields, including supply chain management, finance, transportation, and energy system mod-
eling. In many real-world optimization problems, however, key parameters such as costs, demands, or
supply levels are not known precisely at the time of decision-making. Classical linear programming
assumes perfect information, but in practice, uncertainty is inevitable [Birge and Louveaux, 2011].

Typically, uncertainty is exorcised by taking reasonable guesses or by making careful estimates. Ad-
ditionally, sensitivity analysis is performed to evaluate how changes in coefficients, such as costs or
resource availability, impact the optimal solution. In most cases, this approach is satisfactory. How-
ever, if the optimal solution depends heavily on the value of some inaccurate data, the uncertainty of
the coefficients must be taken into consideration in a more fundamental way. Probability theory offers
a natural framework for quantifying uncertainty, making it reasonable to represent these uncertain co-
efficients as random variables. This perspective forms the foundation of stochastic linear programming
[Haneveld et al., 2024].

In energy system modeling, uncertainty is ubiquitous. Energy demand, fuel prices, and policy changes
all exhibit significant variability, making it challenging to develop reliable and cost-effective energy
plans. Additionally, the increasing share of variable renewable electricity supply, combined with more
unpredictable electricity consumption, requires true flexibility of the energy system to ensure that elec-
tricity demand is always met [Seljom et al., 2021]. For these reasons, stochastic linear programming
has emerged as a powerful tool for modeling energy systems.

Stochastic linear programming has proven particularly useful for modeling investment and operation
planning in distributed energy systems. For these types of systems, we often encounter two-stage
stochastic linear programs. As we will see later, these models typically consist of:

1. First stage: Investment decisions (e.g., capacity expansion)

2. Second stage: Operational decisions (e.g., power dispatch)

The objective function often aims to minimize the expected total cost of electricity generation while
considering constraints such as carbon dioxide emissions. An example of a two-stage stochastic lin-
ear program applied to the design of a distributed energy system is presented in [Zhou et al., 2013],
where the model is used for planning a distributed energy system for a hotel. Furthermore, Yu et al.
[Yu et al., 2019] present a two-stage stochastic programming model for the optimal operation of hybrid
renewable systems. Additional works have investigated the sizing of storage systems using stochastic
linear programming. In one study, Narayan and Ponnambalam [Narayan and Ponnambalam, 2017]
developed a risk-averse stochastic programming model –based on the two-stage stochastic program-
ming framework– to determine the optimal number of renewable energy production facilities, diesel
generators, and batteries in a microgrid. Abbey and Joos [Abbey and Joos, 2009] used a stochastic
model to analyze the impact of energy storage on wind-diesel hybrid systems, highlighting how storage
can mitigate wind variability and improve diesel generator efficiency.

To build intuition on the topic of stochastic linear programming, we now present a simple example of
a stochastic linear program in the field of energy system modeling, where demand is uncertain. This
example was first introduced by Louveaux and Smeers [Louveaux and Smeers, 1988] and has since
become a standard benchmarking example in the literature.

A country wants to invest in two different electricity generation technologies: one being a fossil fuel
power plant and the other a renewable power plant. Both technologies are used to produce electricity
in three modes: base load, intermediate load and peak load. These three modes correspond to differ-
ent levels of electricity demand. Base load represents the continuous minimum demand, intermediate
load fluctuates between base and peak levels throughout the day, and peak load corresponds to short
periods of maximum demand. The fossil fuel power plant is best suited for base load production,
as it provides a stable and continuous power supply. In contrast, the renewable power plant is best
suited for peak load production due to its intermittent nature, allowing it to meet high demand when
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conditions are good.

Two key decisions need to be made. First, the total capacity of the power plants to be built must be
determined. Second, it must be decided how much of the total capacity will be allocated to generating
electricity in each of the three modes (base load, intermediate load, and peak load). These values,
of course, are not determined arbitrarily; they will be the outcomes of the following model, which we
refer to as a linear program. The model is formulated as follows:

First, we introduce the decision variables xF and xR, which determine the capacity allocated to each
power plant:

xF = capacity allocated to the fossil fuel based power plant [MW].
xR = capacity allocated to the renewable power plant [MW].

(1.1)

Next, we define six additional decision variables: yF1, yF2, yF3, yR1, yR2 and yR3, which represent
the amount of capacity devoted to producing electricity in each mode. The modes are base load,
intermediate load, and peak load, indexed by j = 1, 2, 3.

yFj = amount of capacity of the fossil fuel based power plant devoted to producing
electricity in mode j, j = 1, 2, 3.

yRj = amount of capacity of the renewable power plant devoted to producing electricity
in mode j, j = 1, 2, 3.

(1.2)

The cost per unit of capacity installed for plants F and R are given by cF and cR, respectively.
Additionally, the operational costs of the power plants F and R in mode j per unit of capacity are
denoted fFj and fRj . The Total Cost (TC) function can be formulated as:

TC = cF xF + cR xR + fF1 yF1 + fF2 yF2 + fF3 yF3 + fR1 yR1 + fR2 yR2 + fR3 yR3

= cF xF + cR xR +

3∑
j=1

(fFj yFj + fRj yRj) .
(1.3)

Letting x = (xF , xR) and y = (yF1, yF2, yF3, yR1, yR2, yR3), where x represents the capacity allocated
to each power plant and y represents the amount of capacity devoted to each mode for both plants.
The goal of our linear program is to minimize the total costs, i.e., to minimize the value of the Total
Cost (TC) function. This leads to the objective function:

min
x,y

TC = cF xF + cR xR +

3∑
j=1

(fFj yFj + fRj yRj) . (1.4)

The outcome of the model that minimizes the total cost would be to set all decision variables equal
to zero, resulting in zero total costs. However, this would imply that no power plants are built at all,
which is not a realistic solution. To avoid this, we introduce constraints into our linear program, which
limit the feasible solutions and ensure that only practical and feasible outcomes are considered.

The first constraint we introduce is a capacity constraint, which ensures that the total installed capacity
across both power plants is at least m MW. This constraint can be expressed as:

xF + xR ≥ m.

Secondly, we introduce a cost constraint, which ensures that the total installation costs do not exceed
a budget b. This constraint is formulated as:

cF xF + cR xR ≤ b.

Related to the decision variables y, we introduce two capacity constraints to ensure that the total
amount of capacity devoted to producing electricity in the three modes does not exceed the installed
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capacity of each power plant. These constraints are:

3∑
j=1

yFj ≤ xF ,

3∑
j=1

yRj ≤ xR.

(1.5)

Finally, it is crucial that the electricity produced in each mode meets a certain demand. For each
mode j = 1, 2, 3, we require that:

yRj + yFj ≥ dj , j = 1, 2, 3. (1.6)

The objective function, together with the constraints, defines our optimization model. Solving this
model will yield the values of the decision variables x and y, which minimize the total costs.

Now, we extend our linear program to a stochastic linear program by following these steps. As
previously mentioned, the demand dj is uncertain. Therefore, we replace each demand with the

random variable d̃j , which has a finite number of possible outcomes. The final constraint of our model
then becomes:

yRj + yFj ≥ d̃j , j = 1, 2, 3. (1.7)

As a result of this change, the linear program can no longer be solved in the traditional way. To address
this, we split the problem into two stages that occur sequentially. Decisions about the installed capacity
must be made now, but the allocation of capacity to each mode can be determined later. Thus, x
represents first-stage decisions, and y represents second-stage decisions. Since the second-stage decision
variables depend on the resolution of uncertainty, we redefine the total cost function by replacing the
operarational costs with expected operational costs:

TC = cF xF + cR xR + E

 3∑
j=1

(fFj yFj + fRj yRj)

 . (1.8)

The complete stochastic linear program is defined as follows:

min
x≥0

TC = cF xF + cR xR + E

 3∑
j=1

(fFj yFj + fRj yRj)


s.t. xF + xR ≥ m,

cF xF + cR xR ≤ b,
3∑

j=1

yFj ≤ xF ,

3∑
j=1

yRj ≤ xR,

yRj + yFj ≥ d̃j , j = 1, 2, 3.

(1.9)

Solving problem (1.9) will provide the first-stage solutions x and the corresponding total cost TC.
The second-stage decisions y will be determined at a later stage, after the realization of the random
variables.

From our example, we observe that the stochastic linear programming (SLP) framework is straight-
forward to apply: the key step involves introducing random variables and distinguishing between
first-stage and second-stage decision variables. However, one significant drawback of SLPs is that their
formulations can result in large-scale problems, which present considerable computational challenges.
Over the years, much research has focused on developing efficient solution methods, which we’ll be

5



discussing now.

A well-known method for solving stochastic linear programs (SLPs) is the L-Shaped method, intro-
duced by van Slyke and Wets [Van Slyke and Wets, 1969], which offers an analytical framework for
tackling SLPs. However, solving SLPs analytically often proves too challenging, prompting researchers
to explore sampling methods instead. Sampling methods can be divided into two main categories: inte-
rior sampling and exterior sampling. Interior sampling algorithms aim to solve the original stochastic
linear program, but resort to sampling whenever the algorithm requires an (approximate) value of
the objective function. We mention in particular the L-Shaped method with embedded sampling
of [Dantzig and Infanger, 1991], the stochastic decomposition method of [Higle and Sen, 1991], and
stochastic quasi-gradient methods [Ermoliev, 1988]. A second fundamental approach to sampling is
an “exterior” approach, in which a sample is selected from the set of all possible outcomes and a
corresponding approximation to the objective function is defined from this sample. This approximate
objective is then minimized using a deterministic optimization algorithm; no further sampling is per-
formed. This approach is known variously as sample path optimization [Gürkan et al., 1994] or the
stochastic counterpart method [Rubinstein and Shapiro, 1993].

Despite advancements in solution methods for stochastic linear programs (SLPs), computational chal-
lenges remained, preventing the widespread application of the framework. The first notable computa-
tional results were presented by [Linderoth et al., 2006], who demonstrated that the Sample Average
Approximation (SAA) method could provide high-quality solutions with proven accuracy within a
within a reasonable computational time across all test problems. More recently, [Sen and Liu, 2016]
demonstrated that their Stochastic Decomposition approach could achieve similar solution quality to
SAA but in significantly less time, even when using standard desktop or laptop computers. However,
in their first paper, uncertainty was only accounted for in the constraints. In a subsequent study,
[Gangammanavar et al., 2020] extended the Stochastic Decomposition implementation to also address
uncertainty in the cost coefficients of the objective function.

To summarize, the field of stochastic linear programming, particularly in the application to energy
system modeling, holds great promise. This motivates the objective of this thesis: to revisit the com-
putational challenges of solving stochastic linear programs and examine their practical applicability
in energy system modeling. This is achieved through the implementation of two solution methods,
followed by an evaluation of their accuracy and computational efficiency using test problems from the
literature. Ultimately, these methods are applied to a large-scale energy system model to assess their
real-world performance.

This thesis is structured as follows. Section 2 introduces the formulation of stochastic linear programs
and outlines various solution methods. Section 3 describes the modeling framework ‘oemof’, and
introduces the energy model oemof-B3. Section 4 provides an overview of the methodology, detailing
the file formats of the input problems, the preparation of Gurobi models for solution methods, and
the algorithmic steps of the Extensive Form method and the L-Shaped method. Section 5 presents the
computational results of both solution methods, ultimately comparing their performance. Finally, in
section 6, our results are discussed, and a conclusion on the potential of stochastic linear programming
based on our findings is drawn.
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2 Stochastic linear programs

In this section, we introduce the two-stage stochastic linear program and outline various solution
methods for solving it. We start with a brief overview of linear programming before defining the
two-stage stochastic model with fixed recourse. We then discuss two different solution methods: the
Extensive Form method and the L-Shaped method based on Benders Decomposition. Lastly, we discuss
the sampling-based techniques Sample Average Approximation (SAA) and Stochastic Decomposition
(SD).

2.1 Linear programming

Before introducing the formal definition of a stochastic linear program, let us shortly discuss some
basics about linear programming. A linear program is an optimization problem with a linear objective
function that must be maximized or minimized, subject to a set of linear constraints. The general
form is:

min
x

z = cTx

s.t. Ax = b,

x ≥ 0,

(2.1)

where x is the vector of decision variables, c is the cost vector, A is the matrix of constraint coefficients,
and b is the vector of constraint bounds. Given a problem of type (2.1), precisely one of the following
three situations must occur:

1. The problem is feasible, and the optimal objective function value is bounded.

2. The problem is feasible, and the optimal objective function value is unbounded.

3. The problem is infeasible.

The feasible region for x of problem (2.1) is the space P = {x ≥ 0 |Ax = b}. If the problem is
infeasible, P = ∅. Otherwise, the set P is a polyhedron. A point x ∈ P is called an extreme point
of P if x cannot be written as a convex combination of two distinct points in P . So, geometrically,
an extreme point of P is a ‘corner point’ of P . An example polyhedron including one of its extreme
points is given in figure 2.1.

Figure 2.1: Polyhedron P with extreme point x.

Given figure 2.1, we can also give the definition of a ray of P . Informally, a ray r of P is a ‘direction’
that we can follow infinitely far, and still be within P . Additionally, we call a ray r of P an extreme
ray of P if r cannot be expressed as a convex combination of other rays of P . Polyhedron P with
extreme rays r1 and r2 is given in figure 2.2.
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Figure 2.2: Polyhedron P with extreme rays r1 and r2.

One of the cornerstone results in linear programming is the fundamental theorem that establishes the
connection between the feasibility of solutions and the optimization process. The following theorem
formally states this important result:

Theorem 1. Given a linear optimization problem of the form (2.1), where P ̸= ∅. If the objective
function is bounded, there exists an optimal solution at an extreme point of P .

This concept is fundamental to several solution techniques, such as the simplex method, which sys-
tematically searches for optimal solutions by evaluating the objective value at extreme points. The
theorem, which is stated as Theorem 3.2 in [Aardal et al., 2023], can be found along with its proof in
that reference.

The final linear programming concept to be introduced is duality. Duality establishes a powerful rela-
tionship between two optimization problems: the primal problem and its associated dual problem. The
dual problem can be derived from the original (or primal) problem by reinterpreting its constraints
and objective in terms of resource values or shadow prices. It has many nice properties and forms the
basis for most theory and practical algorithms for solving linear programming problems.

Given the primal problem (2.1), the dual is formulated as:

max
π

w = bTπ

s.t. ATπ ≤ c,
(2.2)

where π are the dual variables associated with the equality constraints Ax = b. The key relationship
between the primal and dual variables is stated in the principle of strong duality.

Theorem 2. If x∗ is an optimal solution to the primal problem (2.1), then the dual problem (2.2) has
an optimal solution π∗ and

z(x∗) = w(π∗).

The result implies that solving the dual problem is an equivalent approach to solving the primal,
as both yield the same optimal objective value. This equivalence underpins advanced methods in
optimization, such as decomposition techniques, as we will see in section 2.4. The theorem and proof
can be found in [Aardal et al., 2023, Theorem 5.3].

2.2 A two-stage stochastic linear program with fixed recourse

Having established the fundamentals of linear programming, we now turn to the two-stage stochastic
linear program with fixed recourse (2-SLP). An example of such a problem was already given in (1.9),
we now use this example to illustrate the general formulation of a 2-SLP. We have a set of decisions
to be taken without full information on some random events. These decisions are called first-stage
decisions and are usually represented by the vector x. Later, full information is received on the real-
ization of some random vector ξξξ. In the context of our example, ξξξ represents the complete information
regarding the random variables d̃j . Then, second-stage decisions y are taken.
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The classical two-stage stochastic linear program with fixed recourse is the problem of finding

min
x

F (x) = cTx+ Eξξξ [Q(x,ξξξ)]

s.t. Ax = b,

x ≥ 0.

(2.3)

The first-stage decisions are represented by the n1 × 1 vector x. Corresponding to x are the first-stage
problem data c, b, and A, of sizes n1×1, m1×1 and m1×n1 respectively [Birge and Louveaux, 2011].

The function Q(x,ξξξ) is the so-called recourse function. We will call an outcome of ξξξ a realization or a
scenario ξ. For a realization ξ, the recourse function Q(x, ξ) is defined:

Q(x, ξ) := min
y

q(ξ)T y

s.t. T (ξ)x+Wy = h(ξ),

y ≥ 0.

(2.4)

The n2 × 1 vector y represents the second-stage decisions. Matrix W of size m2 × n2 is called the
recourse matrix, which we assume here is fixed (fixed recourse). Corresponding to y are the second-
stage problem data q(ξ), h(ξ) and T (ξ) of sizes n2 × 1, m2 × 1 and m2 × n1 respectively. For a given
realization ξ, these problem data become known. Each component of q(ξ), h(ξ) and T (ξ) is thus a
possible random variable.

For clarity, let us denote

q(ξ) =

 q1(ξ)
...

qn2
(ξ)

 , h(ξ) =

 h1(ξ)
...

hm2
(ξ)

 , T (ξ) =

 T1·(ξ)
...

Tm2·(ξ)

 ,

where Ti·(ξ) = (Ti,1(ξ), . . . , Ti,n1(ξ)) is the i-th row of T (ξ). Piecing together the stochastic components
of the second-stage data, we obtain the vector ξξξT = (q(ξ)T , h(ξ)T , T1·(ξ), . . . , Tm2·(ξ)), with potentially
up to n2 +m2 + (m2 × n1) components [Birge and Louveaux, 2011].

2.3 Extensive form

In the case that ξξξ has a finite discrete distribution, it is possible to reformulate the 2-SLP model as a
linear programming model. That is, for a finite discrete distribution the expected value in the objec-
tive of (2.3) becomes a sum and one set of constraints is introduced for each realization of the random
variable ξξξ. The resulting linear program is called the extensive form [Birge and Louveaux, 2011].

Let us assume that (qk, hk, Tk), k = 1, . . . ,K, are the joint realizations of (q(ξ), h(ξ), T (ξ)), with
corresponding probabilities pk, k = 1, . . . ,K. We can then express the 2-SLP in its extensive form
(EF) as follows:

min
x

F (x) = cTx+

K∑
k=1

pk q
T
k yk

s.t. Ax = b,

Tkx+Wyk = hk, k = 1, ...,K,

x ≥ 0, yk ≥ 0, k = 1, ...,K.

(2.5)

Rewriting the problem into the form given in (2.5) immediately presents our first solution method.
That is, (2.5) is a standard linear program that can be solved using Gurobi or other optimization
solvers. However, the fact that such an equivalent LP exists does not imply that all 2-SLPs with a
finite discrete distribution can be easily solved. That is, a 2-SLP involving 9 independent random
variables has a total number of scenarios:
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• K = 39 = 19 683 for 3 outcomes for each random variable;

• K = 59 = 1953 125 for 5 outcomes for each random variable.

This illustrates that the problem rapidly grows with an increasing number of realizations of the com-
ponents of the random vector and with an increasing number of random variables. The size of the
problem may easily grow to an extent where it is impossible to generate the equivalent LP not to speak
of solving it [Kall and Mayer, 1998].

Rather than directly solving the extensive form, alternative methods leverage its structure for a more
efficient approach. That is, the extensive form has a so-called block angular structure, which becomes
evident when considering the structure of the constraints. Problem (2.5) can be rewritten as:

min
x,y

F (x) = cTx + p1 q
T
1 y1 + . . . + pK qTKyK

s.t. Ax = b,

T1x + Wy1 = h1,

...
. . .

...

TKx + WyK = hK ,

x ≥ 0,

yk ≥ 0 k = 1, . . . ,K.

(2.6)

Given this structure, it is intuitive to apply Benders Decomposition, which ultimately leads to the
L-Shaped method developed by Van Slyke and Wets [Birge and Louveaux, 2011].

2.4 Benders Decomposition

Before diving into the L-Shaped method, let us discuss Benders Decomposition of the extensive form.
Our formulation will be based on the explanation provided in [Rahmaniani et al., 2017]. Assume we
have a problem of type (2.5) (or equivalently (2.6)). We can split up problem (2.5) into the master
problem

min
x

cTx

s.t. Ax = b,

x ≥ 0,

(2.7)

and the K subproblems
min
yk

qTk yk

s.t. Tkx+Wyk = hk,

yk ≥ 0,

(2.8)

With the master problem and subproblem formulations, the extensive form (2.5) can be reformulated
as:

min
x̄∈X

F (x̄) =

[
cT x̄+

K∑
k=1

pk · min
yk≥0

{qTk yk |Tkx̄+Wyk = hk}

]
, (2.9)

where X = {x |Ax = b, x ≥ 0}. Every subproblem is a continuous linear program that can be dualized
by means of dual variables πk associated with the constraint set Tkx̄ +Wyk = hk. That is, for every
k = 1, . . . ,K, we can write:

max
πk

{πT
k (hk − Tkx̄) |πT

k W ≤ qk}. (2.10)
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Based on strong duality, the primal and dual formulations can be interchanged to extract the following
equivalent formulation:

min
x̄∈X

F (x̄) =

[
cT x̄+

K∑
k=1

pk ·max
πk

{πT
k (hk − Tkx̄) |πT

k W ≤ qk}

]
. (2.11)

Let us now focus on subproblem k only. The feasible space of subproblem k, i.e., Fk = {πk |πT
k W ≤ qk},

is independent of the choice of x̄. Thus, if Fk is not empty, the problem can be either unbounded or
feasible for any arbitrary choice of x̄. In the case that the dual is unbounded, there is a direction of
unboundedness µlk , lk ∈ Lk, for which µT

lk
(hk − Tkx̄) > 0; this must be avoided because it indicates

the infeasibility of the x̄ solution. We add a cut

µT
lk
(hk − Tkx̄) ≤ 0, lk ∈ Lk (2.12)

to restrict movement in this direction. In the latter case, the solution of the dual problem is one of
the extreme points πek , ek ∈ Ek, where Ek denotes the set of extreme points of the feasible space Fk.
Now combining these results, we can reformulate (2.11) as:

min
x̄∈X

F (x̄) =

[
cT x̄+

K∑
k=1

pk ·max
ek

{πT
ek
(hk − Tkx̄)}

]
s.t. µT

lk
(hk − Tkx̄) ≤ 0, lk ∈ Lk, k = 1, . . . ,K,

(2.13)

where ek ∈ Ek. This problem can be linearized via a continuous variable η to give the following
equivalent formulation to problem (2.14), which we refer to as the Benders Decomposition:

min
x,η

F (x) = cTx+ η

s.t. Ax = b,

η ≥
K∑

k=1

pk π
T
ek

(hk − Tkx), ek ∈ Ek,

0 ≥ µT
lk
(hk − Tkx), lk ∈ Lk, k = 1, . . . ,K,

x ≥ 0.

(2.14)

Instead of using one of the dual solutions πek ∈ Fk of corresponding subproblem k in the formulation
of our optimality cuts, easier would be to obtain the optimal dual solution π∗

k and use this to define
the optimality cuts. The optimality cuts can then be formulated as:

η ≥
K∑

k=1

pk (π
∗
k)

T (hk − Tkx). (2.15)

Although Benders Decomposition offers an appealing formulation, fully enumerating all feasibility and
optimality cuts is impractical. Instead, the L-Shaped method for solving 2-SLPs with finite discrete ξξξ
adopts an iterative approach, progressively generating feasibility and optimality cuts. This procedure
will be detailed in the next section.

2.5 L-Shaped method

The L-Shaped method is an iterative variant of Benders Decomposition to solve problems of type (2.5).

Its basic idea is to approximate the term
∑K

k=1 pk q
T
k yk in the objective function. A general principle

behind this approach is that, because this objective term involves a solution of all second-stage recourse
linear programs, we want to avoid numerous function evaluations for it. We introduce the variable η
as an approximation for

∑K
k=1 pk q

T
k yk.

In each iteration of the L-Shaped method the master problem is solved, thereby obtaining solutions
for x and η. The master problem in iteration 0 only considers the first-stage constraints, and will
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therefore return solutions for x and η that lead to a much lower minimum than the actual minimum
of problem (2.5). In each iteration of the L-Shaped method, a cut is added to the master problem,
incorporating second-stage information. As the master problem is progressively refined, we expect the
value of η to increase. The algorithm continues iterating until a convergence criterion is met, at which
point it terminates and returns the optimal solutions for x and η. Each iteration consists of three main
steps, which will be referred to as step 1, step 2, and step 3 of the L-Shaped method.

In iteration 0, the master problem is formulated as:

min
x0,η

cTx0 + η

s.t. Ax0 = b,

x0 ≥ 0,

(2.16)

To solve this problem, η is initially set to be −∞. The solution x0 of this problem is called a first-stage
solution.

Before presenting the three main steps of the L-Shaped method, we define two feasibility sets. We
define the first-stage feasibility set S1 as

S1 = {x |Ax = b, x ≥ 0}. (2.17)

The set S1 is determined by the first-stage constraints: those that do not depend on the particular
realization of the random vector. For any given realization ξ, we may define a so-called elementary
feasibility set as

S2(ξ) = {x | y ≥ 0 exists s.t. Wy = h(ξ)− T (ξ)x}. (2.18)

As ξξξ is finite discrete, we may easily define the second-stage feasibility set

S2 =

K⋂
k=1

S2(ξk). (2.19)

Let us emphasize that S1 ̸⊂ S2. In other words, a solution x to the master problem does not guarantee
the feasibility of each subproblem for this specific solution. This will in fact be the main thing to check
in the first step of the L-Shaped method, which we will discuss now.

Given a solution x̄ ∈ S1 of the master problem, step 1 of the L-Shaped method determines whether
this solution is also second-stage feasible, i.e. x̄ ∈ S2. That is, for each k = 1, . . . ,K, the subproblem

Q(x̄, ξk) := min
y

qTk y

s.t. Tkx̄+Wy = hk,

y ≥ 0,

(2.20)

is checked to be feasible. If for some k problem (2.20) is infeasible, then we want to exclude the
considered first-stage solution x̄ among other x’s from the first-stage feasibility set S1 in subsequent
iterations of the L-Shaped method. We do this by generating a feasibility cut, and adding this cut to
the master problem. Using the dual of (2.20), we calculate the dual extreme ray µ∗

k associated with
the subproblem constraints and set

(µ∗
k)

T (hk − Tkx) ≤ 0, ∀x ∈ S1. (2.21)

By letting γ = (µ∗
k)

T hk and ΓT = (µ∗
k)

T Tk, we obtain the following inequality:

ΓTx ≥ γ, ∀x ∈ S1. (2.22)

This inequality is called the feasibility cut and cuts off a part of the first-stage feasibility set S1 to get
rid of the x’s leading to the infeasibility of the subproblem for scenario k [Ntaimo, 2015].
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Since obtaining the dual extreme ray µ∗
k can be challenging, [Birge and Louveaux, 2011] present an

alternative approach to generating a feasibility cut as follows: Instead of checking the infeasibility of
problems of type (2.20), we can solve linear programs of the following form and check their objective
value:

min
y,v+,v−

w′ = eT v+ + eT v−

s.t. Wy + Tkx̄+ Iv+ − Iv− = hk,

y ≥ 0, v+ ≥ 0, v− ≥ 0,

(2.23)

where eT = (1, . . . , 1). If subproblem (2.20) is infeasible, then subproblem (2.23) has an objective value
bigger than 0. The same holds the other way around. Therefore, solving subproblems of type (2.23)
provides an alternative method for checking first-stage feasibility, that avoids the need to compute the
extreme ray µ∗

k for generating the feasibility cut. Instead, we generate the feasibility cut as follows.
If for some k, problem (2.23) has an optimal objective value w′ > 0, then we get the associated dual
solution σ∗

k and set

(σ∗
k)

T (hk − Tkx) ≤ 0, ∀x ∈ S1. (2.24)

Again, by letting γ = (σ∗
k)

T hk and ΓT = (σ∗
k)

T Tk, we obtain the feasibility cut:

ΓTx ≥ γ, ∀x ∈ S1. (2.25)

Adding either one of the feasibility cuts to the master problem completes step 1 of the L-Shaped
method. If a feasibility cut is added, we skip step 2 and proceed directly to step 3. Otherwise, if no
feasibility cut is added because all subproblems are feasible for the first-stage solution x̄, we move on
to step 2.

In step 2 of the L-Shaped method, an optimality cut is generated. As we may assume all subproblems
(2.20) are feasible, we use their dual solutions π∗

k to generate the optimality cut.

By letting β0 =
∑K

k=1 pk (π
∗
k)

T hk and β =
∑K

k=1 pk (π
∗
k)

T Tk, we obtain the inequality:

βTx+ η ≥ β0, ∀x ∈ S1. (2.26)

This inequality is called an optimality cut. Adding this cut to the master problem completes step 2 of
the L-Shaped method.

In step 3 of the L-Shaped method, the master problem is solved. In iteration ν of the algorithm, the
master problem looks like:

lν := min
x,η

cTx+ η

s.t. Ax = b,

(βt)Tx+ η ≥ βt
0, t ∈ Θν

(Γt)Tx ≥ γt, t /∈ Θν

x ≥ 0.

(2.27)

The set Θν is defined as Θν := {t ≤ ν | an optimality cut was added in iteration t} and is updated in
each iteration ν. Solving problem (2.27) gives solution (xν , ην).

Since the number of optimality and feasibility cuts is finite, the L-Shaped method is guaranteed to
converge. To keep track of convergence, two different methods can be applied. We will discuss them
separately.

In [Birge and Louveaux, 2011], the following stopping criterion is provided. During iteration ν, specif-
ically in step 2 of the algorithm, before adding an optimality cut to the master problem, the value
of

wν := β0 − βxν−1 (2.28)
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is computed. We expect wν ≥ ην−1, as the value of η is supposed to increase in every iteration. There-
fore, if wν ≤ ην−1, we stop and return xν−1 as optimal solution. Otherwise, we add the optimality cut
to the master problem and proceed to step 3. However, this knowledge is not very useful in predicting
the progress of the algorithm, since the gap (wν − ην−1) does not necessarily steadily decrease. For
this reason, [Ntaimo, 2015] propose using an alternative stopping criterion, which will be discussed now.

The second approach relies on computing an upper and lower bound of the optimal objective value
v∗ of (2.5) in every iteration. The notion of gradually narrowing the range of the master objective
through a non-decreasing lower and a non-increasing upper bound seems rather appealing. In addition,
this measure allows us not to calculate a problem to full optimality, but to cut the algorithm when
the upper and lower bound is close enough. Computation of the lower bound in iteration ν is straight-
forward: the objective value lν of problem (2.27) serves as a lower bound of v∗, as its constraints are
less restrictive than those in (2.5) and both problems are minimization problems. Computation of the
upper bound is a bit more involved.

To compute the upper bound, it is assumed that all subproblems are solvable. Consequently, the
upper bound is computed only if step 2 of the L-Shaped method is executed. Let Q(x̄, ξk) represent
the solution of subproblem k of type (2.20). Then, the expression

u(x̄) := cT x̄+

K∑
k=1

pk Q(x̄, ξk) (2.29)

is an upper bound of v∗. In iteration ν the upper bound is thus computed as

uν := cTxν−1 +

K∑
k=1

pk Q(xν−1, ξk). (2.30)

Even though the lower and upper bound expressions are similar, there is one big difference. When
computing the lower bound, one is allowed to vary the first-stage decisions, while simultaneously taking
into account the impact of this choice on the first and second stage–although the effect on second stage
can only be approximated through the restrictions on η. When computing the upper bound, however,
the inputs are fixed. If the inputs happened to be optimal, the lower bound and upper bound coincide.
In this case, we stop and return xν−1 as an optimal solution. However, it is not necessary to wait until
uν = lν . Instead, we can decide to stop when the gap satisfies uν − lν ≤ ϵ|uν |, for some ϵ > 0. In this
case, the solution xν−1 is ϵ-optimal.

2.6 Sampling

So far, we have explored two approaches for solving 2-SLPs: the first involves rewriting the problem
in its extensive form and solving it directly using optimization solvers, while the second applies the
L-Shaped method to the 2-SLP. However, both methods have limitations. Specifically, they rely on
the assumption of a finite discrete distribution of the random vector ξξξ. Furthermore, even with a
finite discrete distribution, the methods may become computationally infeasible when the number of
scenarios is too large. To address these challenges, we introduce sampling.

Sampling offers several advantages. First it enables us to solve problems with continuous random vari-
ables. More importantly, it significantly reduces the size of any 2-SLP, allowing us to tackle a much
broader range of problems. Given that uncertainty is inherent in our problems, the use of sampling is
both natural and highly practical.

Sampling techniques can be applied in different ways. The first fundamental approach to sampling is
called Sample Average Approximation: an ‘exterior’ sampling approach, in which a sample is selected
from the underlying distribution of ξξξ and a corresponding approximation F̂N (x) to the objective value
function F (x) in (2.3) is defined from this sample. F̂N (x) is called the sample-average approximation
function. The algorithmic details of Sample Average Approximation in combination with both of our
solution methods will be discussed in section 2.6.1.
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Secondly, sampling can be used in ‘interior’ fashion. Sampling algorithms of this kind aim to solve the
original 2-SLP (2.3), but resort to sampling whenever the algorithm requires an (approximate) value
of F (x) or subgradient information for F (x) at some point x. Typically, a different sample is used each
time function or subgradient information is required. An example of an interior sampling method is
the Stochastic Decomposition method, which will be discussed in section 2.6.2 [Linderoth et al., 2006].

2.6.1 Sample Average Approximation

The method of Sample Average Approximation is taken from [Linderoth et al., 2006]. The first step in
Sample Average Approximation is sampling itself. As before, the vector ξξξ contains complete informa-
tion on the random variables. Now the most straightforward way to obtain a sample ξ1, ξ2, . . . , ξN ∼ P
of N realizations of the random vector ξξξ is through Monte Carlo sampling, where all ξi are independent.

A second approach to sampling is Latin Hypercube sampling, yielding dependent ξi. In this technique,
a sample of size N is constructed by dividing the interval (0, 1) into N subintervals of equal size and
picking one number randomly from each subinterval. These N numbers are then shuffled, and the
resulting sequence is used to generate random variates for a given distribution, possibly by performing
an inverse transform. Assuming that the components of the random vector are independently dis-
tributed, the procedure is repeated for each component, yielding a stratified sample of size N for that
vector. One advantage of Latin Hypercube Sampling over Monte Carlo sampling is that it often yields
a significantly lower variance in the approximation function F̂N (x). However, since F̂N (x) remains an
unbiased estimator of F (x) for both methods, we will use Monte Carlo sampling for the remainder of
this thesis.

The second step in Sample Average Approximation is to construct an approximation of the 2-SLP, as
defined in (2.3). For clarity, we restate the 2-SLP below in a slightly more compact formulation:

min
x∈X

F (x) = cTx+ Eξξξ [Q(x,ξξξ)] . (2.31)

In this formulation, X = {x |Ax = b, x ≥ 0} is the first-stage feasibility set and Q(x, ξ) is the recourse
function, as defined in (2.4). Let v∗ denote the optimal value of (2.31) and x∗ its corresponding solution.
Given a sample ξ1, . . . , ξN ∼ P of N realizations of the vector ξξξ, we can approximate problem (2.31)
by replacing F (x) by an approximation based on this sample:

min
x∈X

F̂N (x) :=
1

N

N∑
i=1

F (x, ξi)

= cTx+
1

N

N∑
i=1

Q(x, ξi)

(2.32)

The function F̂N (x) is a sample-average approximation (SAA) to the objective F (x) of (2.3). Since the
realizations ξi have the same probability distribution P , it follows that F̂N (x) is an unbiased estimator
of F (x), for any x.

The third and final step in this method is to solve the SAA problem (2.32). From a computational
point of view, one can regard the SAA problem as a 2-SLP with a finite number of scenarios ξ1, . . . , ξN ,
each with equal probability pi = N−1. Therefore, any numerical algorithm suitable for solving the
corresponding stochastic problem with a discrete distribution can be applied to the SAA problem.
Solving (2.32) yields the optimal value v̂N and its corresponding solution x̂N . These quantities provide
approximations to the optimal value v∗ and solution x∗ of (2.31) respectively. In particular, the mean
of v̂N serves as a lower bound of v∗, which is why we refer to v̂N as a lower bound estimate of v∗. This
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can be proven as follows:

Eξξξ[v̂N ] = Eξξξ

[
min
x∈X

F̂N (x)

]
≤ min

x∈X
Eξξξ

[
F̂N (x)

]
= min

x∈X
F (x)

= v∗.

(2.33)

In the first step of the proof, we used

min
x∈X

F̂N (x) ≤ F̂N (x̄) =⇒ Eξξξ

[
min
x∈X

F̂N (x)

]
≤ Eξξξ

[
F̂N (x̄)

]
=⇒ Eξξξ

[
min
x∈X

F̂N (x)

]
≤ min

x∈X
Eξξξ

[
F̂N (x)

]
,

(2.34)

and in the second step, we used that F̂N (x) is an unbiased estimator of F (x). Given a first-stage
solution x̄, one can also show that the mean of F̂N (x̄) is an upper bound of v∗. In particular, F̂N (x̄)
serves as an upper bound estimate, since

Eξξξ[F̂N (x̄)] = F (x̄)

≥ min
x∈X

F (x)

= v∗.

(2.35)

Thus, performing SAA in combination with some numerical algorithm for solving the SAA problem
(2.32) returns solution x̂N , optimal value v̂N serving as a lower bound estimate, and upper bound
estimate F̂N (x̄). As SAA is an approximation method, it is usually repeated a number M times, such
that the first-stage solutions and the upper and lower bound estimates can be averaged to improve
reliability. Additionally, confidence intervals for the average upper and lower bound estimate can be
created using the Central Limit Theorem. The steps of finding the average lower bound estimate LM,N

and its confidence interval are as follows:

1. Using the lower bound estimates {v̂jN}Mj=1, compute

LN,M :=
1

M

M∑
j=1

v̂jN .

LN,M is an unbiased estimator of E[v̂N ].

2. When the M replications are i.i.d., by the Central Limit Theorem it follows that

√
M

(
LN,M − E[v̂jN ]

)
d−→ N (0, σ2

L), M → ∞.

where σ2
L = Var(v̂N ). The sample variance estimator of σ2

L is

s2L(M) :=
1

M − 1

M∑
j=1

(v̂jN − LN,M )2.

Defining zα to satisfy P(N (0, 1) ≤ zα) = 1 − α and replacing σL by sL(M), we can obtain an
approximate (1− α)-confidence interval for E[v̂N ] to be[

LN,M −
zα/2sL(M)

√
M

, LN,M +
zα/2sL(M)

√
M

]
.

The process for computing the average upper bound estimate UM,N (x̄), along with its confidence in-
terval, is similar.
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This concludes the method of Sample Average Approximation. We have now established how to
construct the approximation function F̂N (x) and use it to obtain an approximate first-stage solution
x̂N , along with lower and upper bound estimates, v̂N and F̂N (x̄), of v∗. By repeating steps 1-3 a fixed
number of M times, we can refine these estimates to achieve greater accuracy.

2.6.2 Stochastic Decomposition

Stochastic Decomposition is an interior sampling approach designed to approximate solutions of
the two-stage stochastic linear program (2.31). The first version of the SD algorithm was intro-
duced by Higle and Sen in [Higle and Sen, 1991], and since then, numerous variations have been
proposed. This section provides an overview of the fundamental steps of the algorithm, as presented
in [Sen and Liu, 2016], but leaves out some mathematical details. For a more in-depth discussion,
including mathematical derivations and implementation results, we refer to the source.

Unlike SAA, where a fixed sample size N is chosen in advance, the SD algorithm adaptively deter-
mines a sufficiently large sample size during its execution. Rather than optimizing a single sample
average function F̂N , SD iteratively constructs successive approximations f̂k at each iteration k of the
algorithm, until a specified stopping criterion is met, at which point it returns a lower bound estimate
and an incumbent solution. These approximations satisfy

f̂k(x) ≤ F̂k(x),

where F̂k denotes a sample average function with a sample size of k (as in (2.32)). We refer to the

functions f̂k as Value Functions (VF).

Iteration 0, which initializes the algorithm, obtains the incumbent solution x̂0 by solving the master
problem:

x̂0 = {cTx |x ∈ X},
where X again denotes the first-stage feasiblity set. Additionally, an initial lower bound approximation
f̂0(x) of F (x) is defined.

Iteration k of the algorithm then proceeds as follows:

1. Obtain candidate decision xk: Solve the optimization problem using the current approxima-
tion of the VF f̂k−1(x):

xk = argmin
{
f̂k−1(x) |x ∈ X

}
.

Alternatively, a regularized version of the VF approximation can be optimized:

xk ∈ argmin
{
f̂k−1(x) +

ρ

2
∥x− x̂k−1∥2 |x ∈ X

}
.

2. Update VF approximation: Add one sampled outcome ξk to the available sample and solve
the second-stage problem for the current incumbent x̂0. Construct a new approximation f̂k(x)
by adding cutting planes, ensuring that it remains a valid lower bound on F (x).

3. Update incumbent solution for first-stage solution: Determine whether the candidate xk

or the previous incumbent x̂k−1 provides a better solution. A possible way to do this is to define

∆k := f̂k−1(x
k)− f̂k−1(x̂

k−1)

denoting the predicted change under the VF approximation f̂k−1. The next incumbent solution
x̂k is then selected as follows, using a fixed parameter r ∈ (0, 1):

x̂k =

{
xk if f̂k(x

k) < f̂k(x̂
k−1) + r∆k,

x̂k−1 otherwise.

4. Check stopping criterion: If the approximations have stabilized within a given tolerance, the
algorithm terminates, returning lower bound estimate f̂k(x̂k) and incumbent x̂k.

Just like in the Sample Average Approximation method, the algorithm is typically repeated M times
rather than just once to improve the accuracy of the solution and lower bound estimates. In most cases,
the final estimates are obtained by averaging the solutions and lower bounds across all repetitions.
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3 Oemof

As mentioned in the introduction, we will apply the solution methods described in the previous section
to an existing large-scale energy model, oemof-B3. Before proceeding with the application of these
methods, we must first understand the model’s formulation and extend it to a two-stage stochastic
linear programming model. This section focuses on these preparatory steps. We begin by analyzing
the oemof modeling framework, which serves as a method for energy system modeling. As we deepen
our understanding of the framework, we derive the linear program that represents the oemof-B3 model,
based on the graph structure. Finally, we extend this linear program to a two-stage stochastic linear
program by splitting the variables and constraints into two stages and incorporating random variables
where appropriate.

3.1 The modeling framework

The main concept behind oemof, as presented in [Hilpert et al., 2018], is to represent an energy system
as a graph, consisting of nodes N and edges E. The set of nodes N contains the components C and
the buses B. Components represent actual sources, sinks, or transformers within the energy system.
Examples include a photovoltaic (PV) system (source), the energy demand of a group of households
(sink), or a power plant that converts gas into electricity (transformer). Buses, on the other hand,
represent the connections between components. For example, an electricity bus in an energy system
links the PV system to the demand of a group of households. As an additional requirement, we require
buses to be solely connected to components and vice versa. The edges E represent the connections
within the energy system, and they are directed to indicate the flow of energy. A schematic illustration
of an energy system represented as an oemof network is shown in figure 3.1. For clarity, the buses and
components in the energy system have all been given different shapes and colors.

Figure 3.1: Schematic illustration of an energy system represented as an oemof network. Buses are
depicted as green ovals, transformer components as blue rectangles, source components as red trape-
zoids, and sink components as orange trapezoids.

Mathematically speaking, an energy system represented in such a way can be described as a directed
bipartite graph G. The formulation of this graph in its general form is given in equation (3.1).

G := (N,E)
N := {B,C}
E ⊆ B × C ∪ C ×B
C+ ⊆ C
C− ⊆ C
Tr ⊆ C

(3.1)

As mentioned earlier, the set of components consists of sources C+, sinks C− and transformers Tr.
Each of these component types has the following characteristics:

• Transformers have inflows and outflows.

• Sinks only have inflows but no outflows.

• Sources have outflows but no inflows.
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Furthermore, the set of transformers includes the greatest variety of components, so it is often subdi-
vided into more specific categories to simplify the model formulations.

3.2 Derivation of the linear program

Given a graph G that adheres to the modeling framework described above, the goal is to derive a linear
program from this graph, to ultimately be able to determine the optimal energy flow while minimizing
overall costs. Figure 3.2 presents the graph of an example energy system featuring ‘real-life’ compo-
nents that comply with the modeling framework outlined in section 3.1. This example will serve as
the basis for explaining the derivation of the linear program in the rest of the section.

Figure 3.2: Graph of an example energy system complying with the modeling framework in section
3.1.

Energy sources include natural gas, photovoltaic (PV) systems, and wind energy; the sinks consist
of demand and excess energy; and the transformers are represented by the gas power plant and the
battery. The two transformers are of different types. Namely, the power plant is a converter, whereas
the battery is a storage component. This distinction will be important when deriving the LP.

We begin by defining the decision variables and formulating the objective function of the LP. The deci-
sion variables represent the energy flow through the edges of a given graph, which must be determined
for each hour of a full year. Specifically, we define f(s,e)(t) as the flow through edge (s, e) at time t.
Certain flows are predetermined, including the energy input from renewable sources and the required
energy flow to meet demand at the sink component. These predetermined values will be incorporated
when defining the constraints of the LP.

The model aims to minimize the marginal costs over the course of an entire year. The set T represents
all hourly time steps in a year, defined as T = {0, 1, . . . , 8759}. The marginal costs, denoted c(s,e),
represent the costs per unit of energy flow through edge (s, e). These costs are assumed to be time-
independent.

The objective can be formulated as:

min
f

∑
t∈T

∑
(s,e)∈E

c(s,e) · f(s,e)(t) (3.2)

• f(s,e)(t): flow through edge (s, e) at time t [MW].

• c(s,e): marginal costs of transporting 1 MW through edge (s, e) [Eur/MW].

The first set of constraints derived from a given graph are the bus balance constraints. These ensure the
conservation of energy flow at all bus components. In the graph shown in figure 3.2, these components
include the gas bus and the electricity bus. The balance condition can be expressed as:∑

(s,b)∈E

f(s,b)(t) =
∑

(b,e)∈E

f(b,e)(t) ∀b ∈ B, ∀t ∈ T. (3.3)

This equation ensures that, at every time step, the total incoming energy flow to a bus equals the total
outgoing energy flow.
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The second set of constraints represent the balance around converter components, which, in the graph
in figure 3.2, only includes the power plant. These constraints ensure the conservation of energy flow
while accounting for a conversion rate kco. Since converter components generally have one inflow and
one outflow, the constraint can be expressed as:

kco · f(s,co)(t) = f(co,e)(t) ∀co ∈ Co, ∀t ∈ T. (3.4)

• kco: conversion rate of co ∈ Co [no unit].

The final set of constraints derived from the given graph pertains to storage components. In the graph
shown in figure 3.2, the only storage component present is the battery. Since the storage content and
the storage loss at each time step t must be determined by the linear program, we introduce them as
decision variables: contst(t) for the stored energy and lossst(t) for storage losses, for all st ∈ St. Here,
St denotes the set of storage components. The constraints are as follows:

lossst(t) = λst · contst(t) ∀st ∈ St, ∀t ∈ T,

kinst · f(b,st)(t) + contst(t)− lossst(t) =
1

kout
st

· f(st,b)(t) + contst(t+ 1),

∀st ∈ St, ∀t ∈ T,

contst(0) = contst(8760) ∀st ∈ St.

(3.5)

• contst(t): content of st ∈ St at time t [MWh].

• lossst(t): loss of st ∈ St at time t [MWh].

• λst: loss rate of st ∈ St [no unit].

• kinst : conversion rate for the incoming flow of st ∈ St [no unit].

• koutst : conversion rate for the outgoing flow of st ∈ St [no unit].

The first of the three constraints in (3.5) states that the loss of the storage component at time t
equals the loss rate times the content of the storage component. The loss rate λst can take any value
0 ≤ λst < 1, but is generally very small. In the case no loss rate is considered, this constraint can be
disregarded.

The second constraint in (3.5) is a constraint of main importance, as it describes the energy balance
around the storage component while also linking time step t to time step t+ 1. The constraint states
that the storage inflow, plus the stored content minus the loss at time t, must equal the outflow at
time t plus the storage content at time t + 1. The last constraint in (3.5) ensures that the storage
component’s energy content at time t = 0 matches its content at time t = 8760.

The bounds on the flow decision variables are straightforward. All flows must be non-negative, i.e.,
they are constrained to be greater than or equal to zero. Additionally, an upper bound can be imposed
on the flow, denoted as fmax

(s,e) , which serves as the maximum allowable value for f(s,e)(t) at every time
step t. The flow bounds can then be defined as:

0 ≤ f(s,e)(t) ≤ fmax
(s,e) ∀f, ∀t ∈ T. (3.6)

Similarly, the variables lossst(t) and contst(t) are defined non-negative for all storage components
st ∈ St. Furthermore, the storage content at every time step t is always constrained to be less than or
equal to the maximum capacity of the storage component, denoted as capst. The storage bounds can
be defined as:

0 ≤ lossst(t) ≤ ∞ ∀st ∈ St, ∀t ∈ T,

0 ≤ contst(t) ≤ capst ∀st ∈ St, ∀t ∈ T.
(3.7)

The objective function (3.2), along with the constraints in (3.3), (3.4), and (3.5), and the bounds in
(3.6) and (3.7), together form the complete LP formulation for the graph in figure 3.2. The complete
model formulation can additionally be found in appendix A.1.
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3.3 Oemof-B3

The oemof-B3 model is an energy model based on the oemof framework, designed to represent the en-
ergy system of the Berlin-Brandenburg area. It covers two federal states —Berlin and Brandenburg—
which will be referred to as ‘regions’. The two regions are connected by a converter component, which
represents an electricity transmission line. Through this line, electricity can flow between regions,
subject to a conversion factor. The model includes one constraint to account for this. Apart from this
constraint, the regions are treated independently.

Similar to the example energy system in figure 3.2, the oemof-B3 model consists of nodes N and
edges E. The set of nodes N contains the components C and the buses B. Components represent
actual sources, sinks, or transformers within the energy system, while buses represent the connections
between these components. Figure 3.3 presents the graphical representation of one region of the oemof-
B3 model, depicting all buses and transformers while omitting sources and sinks for simplicity. To
clarify the figure further, we make the following three remarks:

• The edges E of the graph, shown as arrows, represent connections within the energy system
through which energy flows.

• The complete energy system consists of two distinct regions: Berlin and Brandenburg. As a
result, all components and buses appear twice in the complete energy system, including sources
and sinks–though the figure only depicts them in one region. The only unique element is the
electricity transmission line. The dotted arrows illustrate the connections between the regions
but are not actually part of the region shown in the figure.

• All buses and transformers are labeled according to their names in the linear program. For
instance, the storage component ‘heatcen storage’ corresponds to the model component ‘Gener-
icInvestmentStorageBlock total(BB heat central storage 0)’, where BB indicates that this stor-
age component belongs to the Brandenburg region.

Figure 3.3: Graphical representation of the buses, transformers, and their connections in the oemof-
B3 energy system. Buses are shown as green ovals, transformer components as blue rectangles, and
storage components (which are a subset of the transformer components) as light blue rectangles.

Given the graphical representation, a linear program can be formulated to determine the optimal en-
ergy flow within the model. The full derivation of the LP will is not discussed here, as it involves
numerous decision variables and constraints. Instead, we focus on deriving only the ‘relevant’ parts of
the LP, which will later enable us to extend it to a 2-SLP. However, a complete description of the LP
is provided in appendix A.2.

Similar to our example energy system, the objective of the linear program is to determine the optimal
energy flows while minimizing overall costs. However, in this case, the total costs include not only the
marginal costs but also the investment costs of storage components and transmission lines (i.e., the
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edges (s, e) ∈ E). As a result, the objective function consists of two parts: the first part minimizes the
investment costs, and the second part minimizes the marginal costs. These two parts will be derived
separately.

The first part of the objective function, which is time-independent, focuses on determining the capacity
investments for storage components and transmission lines, while minimizing the total investment costs.
We define decision variables Cstorinv,r

st to represent the capacity investment in storage components, and

Cflowinv,r
(s,e) to represent the capacity investment in transmission lines. Corresponding to these decision

variables are the investment costs cstor,rst for storage components and cflow,r
(s,e) for transmission lines.

The time-independent part of the objective function can then be formulated as:

min
C

∑
r∈R

∑
st∈St

cstor,rst · Cstorinv,r
st +

∑
r∈R

∑
(s,e)∈E

cflow,r
(s,e) · Cflowinv,r

(s,e) . (3.8)

• Cstorinv,r
st : capacity investment in storage component st in region r [MWh].

• Cflowinv,r
(s,e) : capacity investment in transmission line (s, e) in region r [MW].

• cstor,rst : investment costs of storage component st in region r [Eur/MWh].

• cflow,r
(s,e) : investment costs of transmission line (s, e) in region r [Eur/MW].

The second part of the objective function minimizes the marginal costs of the energy system over the
entire year. We define the decision variables fr

(s,e)(t) to represent the flow through connection (s, e) at

time t. Related to the flows are the marginal costs, denoted cmar,r
(s,e) . The second, time-dependent part

of the objective function can be formulated as:

min
f

∑
t∈T

∑
r∈R

∑
(s,e)∈E

cmar,r
(s,e) · fr

(s,e)(t). (3.9)

• fr
(s,e)(t): flow through connection (s, e) at time t in region r [MW].

• cmar,r
(s,e) : marginal costs of transporting 1 MW through edge (s, e) in region r [Eur/MW].

To summarize, the complete objective function becomes:

min
C,f

∑
r∈R

∑
st∈St

cstor,rst · Cstorinv,r
st +

∑
r∈R

∑
(s,e)∈E

cflow,r
(s,e) · Cflowinv,r

(s,e) +
∑
t∈T

∑
r∈R

∑
(s,e)∈E

cmar,r
(s,e) · fr

(s,e)(t).

(3.10)

Similar as in the objective function, the constraints can be categorized as either time-independent
or time-dependent. Naturally, constraints that include the investment decision variables Cstorinv,r

st

or Cflowinv,r
(s,t) , but do not include the flow decision variables fr

(s,e)(t) are time-independent. Two

constraints satisfy this condition:

Cstorinv,r
st ≥ Cinit,r

st ∀st ∈ St, ∀r ∈ R, (3.11)

which ensures the capacity investment is at least as large as the initial storage content. Here, the
initial storage content Cinit,r

st is also a decision variable. The second constraint is given by:

Cflowinv,r
(b,st) = Cflowinv,r

(st,b) ∀st ∈ St, ∀r ∈ R, (3.12)

which ensures that the capacity of the inflowing and outflowing transmission line of a storage compo-
nent are equal.

The linear program derived from the graph in figure 3.3 consists of numerous time-dependent con-
straints due to the complexity of the system and the large number of components involved. Among
these, the bus balance constraints are particularly noteworthy. The energy system comprises five buses,
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each of which must adhere to the principle of flow conservation. As in (3.3), this requirement can be
expressed as: ∑

(s,b)∈E

fr
(s,b)(t) =

∑
(b,e)∈E

fr
(b,e)(t) ∀b ∈ B, ∀r ∈ R, ∀t ∈ T. (3.13)

Focusing specifically on the electricity bus, which is centrally located in figure 3.3, we observe that it
has numerous inflows and outflows. In addition to its connections to 10 transformer components, it is
also linked to 5 source components and 4 sink components, as shown in figure 3.4.

Figure 3.4: In- and outflows of the electricity bus in the oemof-B3 model.

Among these in- and outflows, two are provided as input data:

• The flow fr
(belec,elec demand)(t) represents the electricity demand at time t.

• The flow fr
(belec,bev charging)(t) represents electric vehicle (BEV) charging at time t.

In a more robust and realistic version of the model, electricity demand does not necessarily have to
be predetermined for every time step throughout the entire year, but is subject to uncertainty. In our
extension of the LP to a two-stage stochastic linear program (2-SLP), we will explicitly incorporate
this uncertainty.

3.4 Extension of the oemof-B3 LP to a 2-SLP

Electricity demand is a key component of the oemof-B3 model, as it represents the largest share of
total demand in the system, and heavily influences capacity investment decisions. For this reason,
making an estimate for the demand is insufficient. Instead, we apply the stochastic linear program-
ming framework to carefully account for this uncertainty. In the following section, we describe how to
extend the oemof-B3 LP to a 2-SLP, allowing us to incorporate uncertainty in electricity demand.

The first step in extending the LP to a 2-SLP is to introduce two stages. Given that the model
naturally consists of time-independent variables and time-dependent variables, it is intuitive to use
this distinction to define the stages. The first stage comprises the time-independent variables, which
include the capacity investment decisions Cstorinv,r

st and Cflowinv,r
(s,e) , as well as the initial storage content

decision Cinit,r
st . The second stage comprises the time-dependent variables, which include the flow

decisions fr
(s,e)(t). Splitting up the variables, along with the objective function and the constraints in
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two stages yields the 2-SLP:

min
C

∑
r∈R

∑
st∈St

cstor,rst · Cstorinv,r
st +

∑
r∈R

∑
(s,e)∈E

cflow,r
(s,e) · Cflowinv,r

(s,e) + Eξξξ[Q(C,ξξξ)]

s.t. Cstorinv,r
st ≥ Cinit,r

st ∀st ∈ St, ∀r ∈ R,

Cflowinv,r
(b,st) = Cflowinv,r

(st,b) ∀st ∈ St, ∀r ∈ R,

Cstorinv,r
st , Cinit,r

st ≥ 0 ∀st ∈ St, ∀r ∈ R,

Cflowinv,r
(s,e) ≥ 0 ∀(s, e) ∈ E, ∀r ∈ R.

(3.14)

The recourse function Q(C,ξξξ) and the uncertainty vector ξξξ will be formally defined later. For now, we
focus on the master problem, which corresponds to problem (3.14) without the term Eξξξ[Q(C,ξξξ)] in the
objective function. Since this formulation only involves first-stage decision variables in the constraints,
a first-stage solution can be obtained by setting all variables to zero. However, this solution is infeasible
in the second stage, as it would fail to satisfy energy demands and other operational constraints.

Now that we adopted our model to the 2-SLP framework, we can introduce uncertainty in the second
stage. As previously discussed, we will uncorporate uncertainty in electricity demand. Specifically, for
all r ∈ {Be,BB} and all t ∈ T we define the random variable f̃r

(belec,elec demand)(t) as follows:

f̃r
(belec,elec demand)(t) =


0.9 · fr

(belec,elec demand)(t) p = 0.33,

fr
(belec,elec demand)(t) p = 0.33,

1.1 · fr
(belec,elec demand)(t) p = 0.34.

(3.15)

This random variable can be interpreted as follows. Given the original electricity demand, the actual
demand fluctuates with a probability 1/3, either decreasing to 90% or increasing to 110% of its original
value. Since the model considers two regions, two random variables f̃ are introduced per time step.
The full set of these random variables is represented by the uncertainty vector ξξξ, which explains the
expectation over ξξξ in the objective function of (3.14). Because all random variables are independent,
the total number of possible realizations of ξξξ after T time steps is 32T . For a specific realization ξ of
ξξξ, the recourse function Q(C, ξ) is defined:

Q(C, ξ) := min
f

∑
t∈T

∑
r∈R

∑
(s,e)∈E

cmar,r
(s,e) · fr

(s,e)(t)

s.t.
∑

(s,b)∈E

fr
(s,b)(t) =

∑
(b,e)∈E

fr
(b,e)(t) ∀b ∈ B \ {belec}, ∀r ∈ R, ∀t ∈ T,

∑
(s,belec)∈E

fr
(s,belec)(t)−

∑
(belec,e)∈E\{(belec,elec demand)}

fr
(belec,e)(t)

= f̃r
(belec,elec demand)(t, ξ) ∀r ∈ R, ∀t ∈ T,

...

fr
(s,e)(t) ≥ 0, ∀f, ∀r ∈ R, ∀t ∈ T,

(3.16)

where f̃(ξ) is the outcome of the random variable f̃ in scenario ξ. Let us emphasize that this formulation
of the recourse function Q(C, ξ) is an oversimplified version of the true formulation, which, apart from
the bus balance constraints, considers all additional second-stage constraints. We have, however,
chosen this representation because it clearly introduces the uncertainty in the electricity bus balance
constraint. Specifically, instead of using the deterministic value fr

(belec,elec demand)(t), we incorporate

an outcome f̃(ξ) of the random variable f̃ .
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4 Method

In this section, we outline the methods used to solve two-stage stochastic linear programs (2-SLPs).
Two solution approaches were implemented: the Extensive Form method and the L-Shaped method.
The experiments were performed on a MacBook Air (2024) equipped with an Apple M3 chip, featur-
ing an 8-core CPU and a 10-core GPU. The device has 8 GB of unified memory and runs on macOS
Sonoma, version 14.5. The programming language used for the implementation was Python 3.12.4,
and the optimization solver employed was Gurobi version 11.0.3.

The section begins with an overview of the input data and its corresponding file format. Next, we
describe the construction of the oemof-B3 model in this format. Following this, we detail the algorith-
mic steps of each solution method, emphasizing their key components and implementation. Finally,
we discuss the use of high-performance computing to optimize both methods.

4.1 Input data

To evaluate the performance of the implemented methods, a set of diverse test problems was selected:
LandS, LandS2, LandS3, baa99, pgp2, 20, SSN, and storm. All problems are two-stage stochastic
linear programs with recourse obtained from [Linderoth et al., 2002]. Some of these problems will be
briefly described here, for others just the problem data will be presented.

LandS
LandS is a simple problem in electrical investment planning presented in [Louveaux and Smeers, 1988].
In fact, the example problem (1.9) in the introduction is a simplified version of this problem. In the
original problem, there are four different technologies, indexed by i = 1, 2, 3, 4. For each technology, the
amount of capacity devoted to producing electricity in each of the three modes, indexed by j = 1, 2, 3,
has to be determined. As in our example problem, the second-stage constraints include capacity
constraints for each of the four technologies, and the demand constraints, which have the form

4∑
i=1

yij ≥ d̃j , j = 1, 2, 3, (4.1)

where d̃1, d̃2 and d̃3 are the (possibly uncertain) demands. In the problem LandS, d̃2 and d̃3 are fixed
at 3 and 2, respectively, while d̃1 takes on three possible values. More specifically, d̃1 is defined as:

d̃1 =

 3 p = 0.3,
5 p = 0.4,
7 p = 0.3.

(4.2)

The total number of scenarios is therefore 3. In LandS2, the problem is modified to allow four different
values for each of these random variables, namely, for j = 1, 2, 3:

d̃j =


0 p = 0.25,
0.96 p = 0.25,
2.96 p = 0.25,
3.96 p = 0.25.

(4.3)

The total number of scenarios is therefore 64. Lastly, in LandS3, the problem is modified to allow 100
different values for each of the random variables, namely, for j = 1, 2, 3:

d̃j = 0.04(k − 1), k = 1, . . . , 100, (4.4)

each with p = 0.01. The total number of scenarios therefore equals 106, each with probability 10−6.

20
This problem is presented in the work of [Mak et al., 1999], which models the operations of a motor
freight carrier. In this model, the first-stage variables represent the positions of a fleet of vehicles at
the start of the day. The second-stage variables then determine how the fleet moves through a network
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to meet point-to-point shipment demands, with penalties for any unsatisfied demands, while ensuring
that the fleet ends the day in the same configuration as it began [Linderoth et al., 2006].

SSN
The SSN problem arises in telecommunications network design. The owner of the network sells private-
line services between pairs of nodes in the network. When a demand for service is received, a route
between the two nodes with sufficient bandwidth must be identified for the time period in question.
If no such route is available, the demand cannot be satisfied and the sale is lost. The optimization
problem is to decide where to add capacity to the network to minimize the expected rate of unmet
requests. In the data set for SSN, there are a total of 89 arcs and 86 point-to-point pairs. That is,
the first-stage vector x, which contains the capacity of each arc, has dimension 89, and the dimension
of the random vector ξξξ of demands is 86. Each component of ξξξ is an independent random variable
with a known discrete distribution. Specifically, there are between three and seven possible values
for each component of ξξξ, given a total of approximately 1070 possible complete demand scenarios
[Linderoth et al., 2006].

Oemof-B3
The oemof-B3 2-SLP, as described in section 3.4, includes a total of 32T possible demand scenarios for
a given number of time steps T . Over an entire year, this results in an exceptionally large number of
scenarios. Furthermore, the number of second-stage variables and constraints increases linearly with
time, leading to a corresponding linear growth in the size of the subproblems. To manage computa-
tional complexity in our numerical experiments, we analyze two versions of the oemof-B3 model: one
considering only three time steps and another encompassing the full year.

The input problem data for all test problems, along with the specific data for oemof-B3, is summarized
in table 1.

Table 1: Input problem data

Name Application Random Vari-
ables

Scenarios First-stage
(Vars., Cons.)

Second-stage
(Vars., Cons.)

lands Electricity
Planning

1 3 (4, 2) (12, 7)

lands2 Electricity
Planning

3 64 (4, 2) (12, 7)

lands3 Electricity
Planning

3 106 (4, 2) (12, 7)

baa99 2 625 (2, 0) (7, 4)
pgp2 3 576 (4, 2) (16, 7)
20 Vehicle As-

signment
40 1.1 · 1012 (63, 3) (764, 124)

ssn Telecom Net-
work Design

86 1070 (89, 1) (706, 175)

storm Cargo Flight
Scheduling

117 6 · 1081 (121, 185) (1259, 528)

Oemof-B3 (T = 3) Energy plan-
ning

6 729 (58, 16) (330, 303)

Oemof-B3 (T = 8760) Energy plan-
ning

17 530 317 530 (58, 16) (40150, 35779)

4.2 SMPS file format

All input data sets are given in SMPS format. This is an extension of the MPS file format to the
stochastic setting. The SMPS file format comprises three separate files: CORE, TIME and STOCH
files. We will now present these files for the test instance LandS described above.
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CORE file
The CORE file contains the ‘core’ problem in MPS file format, which is given as follows:

min
x,y

= cTx+ qT y

s.t. Ax = b,

Tx+Wy = h,

x ≥ 0, y ≥ 0.

(4.5)

The core problem contains only deterministic data and no distinction between stages is made yet.
However, it defines the ordering of decision variables (columns) x and y as well as the constraints
(rows), preparing for the separation into two stages [Ntaimo, 2015]. The CORE file of the test instance
LandS is shown in figure 4.1.

Figure 4.1: CORE file of the LandS test instance. The dots have been placed to indicate missing data
for better readability.

In the LandS test instance, demand d̃1 is stochastic, as described by the random variable in equation
(4.2). This random variable corresponds to the right-hand side of constraint S2C5 in the CORE file,
which is initially set to zero. However, since the randomness is introduced in the STOCH file, this
placeholder value is arbitrary and can be disregarded.

TIME file
The TIME file contains the information of the stages. The time file of LandS is given in figure 4.2.

Figure 4.2: TIME file of the LandS test instance.
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In this file, it is evident that the first first-stage variable is X1, and the first first-stage constraint is
S1C1. All subsequent variables and constraints listed in the CORE file after these will also belong
to the first stage. Similarly, Y11 is identified as the first second-stage variable, and S2C1 as the first
second-stage constraint. Any variables and constraints appearing after these in the CORE file will be
part of the second stage.

STOCH file
As the name implies, the STOCH file contains the information about the random variables, and their
distribution. The STOCH file of LandS is given in figure 4.3.

Figure 4.3: STOCH file of the LandS test instance.

Clearly, the RHS of constraint S2C5 is stochastic, as described by the random variable d̃1.

4.3 Construction of the SMPS file for the oemof-B3 2-SLP

The SMPS files for all test instances in table 1 are available online. However, since we constructed the
2-SLP for the oemof-B3 model ourselves, we had to construct the corresponding SMPS file accordingly.

The first step in creating the SMPS file is the construction of the CORE file. Since the MPS file follows
the same structure as the CORE file, a preliminary CORE file could be easily created by converting
the original LP into an MPS file using Gurobi’s built-in read and write functions. However, since the
variables and constraints in the CORE file must be arranged according to their respective first and
second stages, this reordering still had to be done manually.The original LP model of oemof-B3 uses
the following names for the first-stage variables and constraints, as listed in table 2.

Table 2: Names of first-stage variables and constraints in oemof-B3 LP file.

Variable Name in LP file

Cstorinv,r
st GenericInvestmentStorageBlock invest(“r” “st” 0)

Cinit,r
st GenericInvestmentStorageBlock init content(“r” “st”)

Cflowinv,r
(s,e) InvestmentFlowBlock invest(“r” “s” “r” “e” 0)

Constraint Name in LP file

Cstorinv,r
st ≥ Cinit,r

st ∀st ∈ St, ∀r ∈ R c u GenericInvestmentStorageBlock init content limit

Cflowinv,r
(b,st) = Cflowinv,r

(st,b) ∀st ∈ St, ∀r ∈ R c e GenericInvestmentStorageBlock power coupled

Specifically, the first-stage constraints were placed immediately below the objective function in the
‘Rows’ section, and the first-stage variables were listed first in the ‘Columns’ section.

The construction of the TIME file was straightforward. The only requirement was identifying the
first first-stage variable and constraint, as well as the first second-stage variable and constraint in the
CORE file–information we had already determined.

Finally, the STOCH file had to be created. For all r ∈ R and t ∈ T , we generated row i, where
i = 1, 2, 3, as follows:

• The first column contained the term ‘RHS’.

• The second column listed the constraint name c e BusBlock balance(“r” electricity 0 “t”) .
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• The third column held the sum of the random variable outcome f̃r
(belec,elec demand)(t) and the

deterministic value fr
(belec,BEV charging)(t).

• The fourth column contained the corresponding probability pi.

The random variable outcomes were computed in Excel, while the STOCH file was generated using
Python. The final STOCH file for the oemof-B3 model with is shown in figure 4.4.

Figure 4.4: STOCH file of the oemof-B3 2-SLP with three time steps.

4.4 Preparation of Gurobi models for solution methods

Given the input data in SMPS format, it first needed to be read and converted into usable objects
to execute our solution methods for solving 2-SLPs. Unfortunately, no optimization solver provides
a standard built-in function for reading or solving SMPS files, requiring us to implement this ourselves.

Now, more specifically, the goal was to read the SMPS file format using Python and construct Gurobi
models for the master and subproblems of a given 2-SLP. To simplify implementation, we restricted
ourselves to 2-SLPs with a finite discrete distribution of ξξξ, where randomness occurs only in the right-
hand side of the constraints. That is, all input problems can theoretically be written in extensive form
as follows:

min
x,y

F (x) = cTx+

K∑
k=1

pk q
T yk

s.t. Ax = b,

Tx+Wyk = hk, k = 1, ...,K,

x ≥ 0, yk ≥ 0, k = 1, ...,K.

(4.6)

This formulation is similar to the one presented in (2.5); however, note that the vector q in the objec-
tive function and the matrix T are now fixed.

The GitHub repository readSMPS-Py by siavashtab provided a framework for reading SMPS files. This
repository was forked as a starting point, and modifications were made to adapt it to our needs. Specif-
ically, the file decmps 2slp.py was modified to implement the following functions, each constructing a
specific Gurobi model:
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• The function create master() creates the master problem:

min
x

cTx + η

s.t. Ax = b,

x ≥ 0,

(4.7)

where the decision variable η in the objective is included only when the L-Shaped method is
used. In the Extensive Form method, this function creates the ‘base’ model of the extensive form
(4.6). The model is not solved standalone. In the L-Shaped method, the function is used to
create the master problem in iteration 0 of the algorithm. The model is solved to return initial
solution (x0, η0), before proceeding to iteration 1.

• The function add sub(ξk) creates the k-th subproblem given observation ξk and adds the variables
and constraints to an existing Gurobi model:

min
y

qT y

s.t. Tx+Wy = hk,

y ≥ 0.

(4.8)

This function is used in the Extensive Form method to create all K subproblems and add
them to the base model, which was created using the function create master. The final model
corresponds to the extensive form (4.6).

• The function create LSsub(x̄, ξk) creates k-th subproblem given observation ξk and first-stage
solution x̄:

min
y

qT y

s.t. Wy = hk − T x̄,

y ≥ 0.

(4.9)

The subproblems created using create LSsub are slightly different from those created with
add sub in that they incorporate the first-stage solution x̄ when creating the subproblems. The
function create LSsub is used in every iteration of the L-Shaped method to check for first-stage
feasibility. Additionally, if all subproblems are feasible, their optimal values Q(x̄, ξk) and solu-
tions π∗

k for each k are computed. These values are then used to compute an upper bound and an
optimality cut, respectively. Furthermore, create LSsub is also used in the upper bound compu-
tation of the Extensive Form method, as this computation requires the objective values Q(x̄, ξk).
However, this is not crucial, as the method can still operate without explicitly computing the
upper bound.

• The function create feas sub(x̄, ξk) creates the k-th ‘feasibility’-subproblem given observation
ξk and first-stage solution x̄:

min
y,v+,v−

w′ = eT v+ + eT v−

s.t. Wyk + Iv+ − Iv− = hk − T x̄,

yk ≥ 0, v+ ≥ 0, v− ≥ 0.

(4.10)

This function is used in the L-Shaped method when one of the subproblems created with
create LSsub is found to be infeasible. The dual multipliers from this subproblem are then
used to compute a feasibility cut.

With these four functions enabling the construction of Gurobi models for linear programs (4.7)-(4.10),
we can now proceed to implement our solution methods.
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4.5 Algorithmic steps of the Extensive Form method

To implement the Extensive Form method, a new Python file, extensive form.py, was created and
added to the GitHub repository readSMPS-Py by jolijnvandelft. Given the tools to construct the
master problem (4.7) and all K subproblems (4.8), the remaining task in the Extensive Form method
is to combine these linear programs into the full extensive form (4.6) and solve it using Gurobi.

Before presenting the pseudocode for constructing the extensive form, we first introduce the function
get obs probs, which generates and returns the lists observations and probabilities, that we will
need in both the Extensive Form method and the L-Shaped method. This function takes the object
rand vars, a boolean sampling, and the number of iterations N as inputs. If sampling = False, the
function creates the list observations by enumerating all possible outcomes of the random variables in
rand vars, and stores the corresponding probabilities in the probabilities list. If sampling = True, N
observations are generated using Monte Carlo sampling, and the corresponding probabilities for each
observation are set to 1/N . The pseudocode for the function get obs probs is provided in algorithm
1.

Algorithm 1 obtain obs probs

1: Input: Object rand vars, boolean sampling, number of iterations N .
2: Output: Lists observations and probabilities.
3: Initialize Empty lists observations = [ ], probabilities = [ ].

4: if sampling = False then
5: for all scenarios k, k = 1, . . . ,K do
6: Generate observation ξk with probability pk.
7: Add values to lists observations and probabilities respectively.
8: end for
9: else

10: for all i, i = 1, . . . , N do
11: Generate observation ξi with probability 1/N using Monte-Carlo sampling.
12: Add values to lists observations and probabilities respectively.
13: end for
14: end if

15: Return Lists observations and probabilities.

By using the function get obs probs, along with the previously defined functions create master and
create sub, we can formulate the extensive form in the case of no sampling. The pseudocode for this
is provided in algorithm 2.

Algorithm 2 Extensive Form method

1: Input: 2-SLP model
2: Output: First-stage solution x∗ and objective value v∗.

3: Obtain random variables rand vars from model.
4: Obtain lists observations, probabilities using create obs probs(rand vars, sampling =

False).
5: Create the Gurobi model extensive form and add the master variables and constraints to it using

create master.
6: for all scenarios k, k = 1, . . . ,K do
7: Create submodel k of type (4.8) and add its variables and constrains to extensive form using

add sub.
8: end for
9: Optimize model extensive form.

10: Return First-stage solution x∗ and objective value v∗.

In the case where we want to incorporate sampling, the Extensive Form method is adjusted slightly.
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The objective of the extensive form changes to the sample-average approximation function, which is
defined as:

min
x,y

F̂N (x) := cTx+
1

N

N∑
i=1

qT yi (4.11)

as given in (2.32). Specifically, the second-stage variables y will have different objective coefficients.
Moreover, instead of returning the optimal objective value v∗, we now return the lower bound estimate
v̂N as the optimal value of the extensive form. We also compute an upper bound estimate using F̂N (x̄)
for some given near-optimal x̄. The updated Extensive Form method is now described in algorithm 3.

Algorithm 3 Extensive form with sampling

1: Input: 2-SLP model, number of samples N , near-optimal solution x̄.
2: Output: Approximate first-stage solution x̂N , lower bound estimate v̂N and upper bound estimate

F̂N (x̄) of the true objective value v∗.

3: Obtain random variables rand vars from model.
4: Obtain lists observations, probabilities using create obs probs(rand vars, sampling = True,

N).
5: Create the Gurobi model extensive form and add the master variables and constraints to it using

create master.
6: for all i, i = 1, . . . , N do
7: Create submodel i of type (4.8) and add its variables and constrains to extensive form using

add sub.
8: Create subproblem i of type (4.9) given first-stage solution x̄ using create LSsub.
9: Optimize subproblem i of type (4.9) to obtain objective value Q(x̄, ξi).

10: end for
11: Compute upper bound estimate

F̂N (x̄) = cT x̄+
1

N

N∑
i=1

Q(x̄, ξi).

12: Optimize model extensive form.

13: Return Approximate first-stage solution x̂N , lower bound estimate v̂N and upper bound estimate
F̂N (x̄) of v∗.

One remark is in order. The computation of the upper bound can be time-consuming because it
involves creating and optimizing N additional subproblems, as indicated in line 8 of algorithm 3. We
will address this further in the results section.

4.6 Algorithmic steps of the L-Shaped method

As explained in section 2.5, the L-Shaped method iteratively generates optimality and feasibility
cuts based on the solution of the K subproblems for a given first-stage solution x̄. These cuts are
then added to the master problem, which is solved in each iteration until the optimal solution x∗

is reached. The implementation relies on the function create master to initialize the master model
(4.7), while create LSsub and create feas sub are used to create subproblems (4.9) and (4.10)
respectively. Additionally, the function get obs probs, as defined in algorithm 1, is used to obtain
the lists observations and probabilities. The pseudocode for the L-Shaped method is provided in
algorithm 4, and its implementation can be found in the Python file L-Shaped.py in the GitHub
repository readSMPS-Py by jolijnvandelft.
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Algorithm 4 L-Shaped method

1: Input: 2-SLP model
2: Output: First-stage solution x∗ and objective value v∗.
3: Initialize. ν = 1, l = −∞, u = ∞, ϵ = 10−6, convergence = False.

Step 0: Initialize.
4: Obtain random variables rand vars from model.
5: Obtain lists observations, probabilities using create obs probs(rand vars, sampling =

False).
6: Create the Gurobi model master and add the master variables and constraints to it using

create master.
7: Optimize model master to obtain initial first-stage solution x0.

8: while convergence = False do
Step 1: Check feasibility of subproblems for xν−1.

9: for all scenarios k, k = 1, . . . ,K do
10: Create subproblem k of type (4.9) given first-stage solution xν−1 using create LSsub.
11: Optimize subproblem k to obtain objective value Q(xν−1, ξk).
12: if Subproblem k is infeasible then
13: Create subproblem k of type (4.10) given solution xν−1 using create feas sub.
14: Generate a feasibility cut using the dual solution π∗

k of (4.10) and add to model master .
15: Break and skip to step 3.
16: end if
17: end for

Step 2: Compute upper bound and generate optimality cut.
18: Compute upper bound

uν = cTxν−1 +

K∑
k=1

pk Q(xν−1, ξk).

19: Set u = min{uν , u}
20: if u is updated then
21: Set x∗ = xν−1

22: end if
23: Generate an optimimality cut using the dual solutions {π∗

k | k = 1, . . . ,K} of (4.9) and add to
model master .

Step 3: Solve the master problem and check for convergence.
24: Optimize model master to obtain solution (xν , ην) and objective value lν .
25: Set l = max{lν , l}
26: if u− l ≤ ϵ|u| then
27: convergence = True.
28: Return Solution x∗ and objective value l.
29: end if
30: Set ν = ν + 1
31: end while

Let us now make three important remarks. First, in the case of sampling, the algorithmic steps
of the L-Shaped method remain unchanged. The only modification is to the inputs of the function
get obs probs, which is responsible for generating the observations and probabilities. Specifically,
line 5 would be updated to:

observations, probabilities = create obs probs(rand vars, sampling = True, N).

Second, in each iteration of the while-loop, and for each scenario k = 1, . . . ,K, subproblem k of type
4.9 is created and solved. However, the only difference between the subproblems lies in the vector
hk and the first-stage solution x̄. In the next section (4.7), we will demonstrate how to leverage the
structure of a single subproblem to efficiently build all the others.

Finally, in section 2.5, we introduced two possible stopping criteria for the L-Shaped method. In
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the current pseudocode, we have used the second stopping criterion, u − l ≤ ϵ|u|. However, the first
stopping criterion could also be used, which is given by:

wν ≤ ην−1,

where wν was defined in (2.28). In this case, steps 2 and 3 of the L-Shaped method would be modified
as outlined in algorithm 5.

Algorithm 5 L-Shaped method with alternative stopping criterion

1: while convergence = False do
...
Step 2: Generate optimality cut and check for convergence.

2: Generate an optimality cut η ≥ β0 − βTx using the dual solutions {π∗
k | k = 1, . . . ,K} of (4.9)

and add to model master .
3: Compute wν = β0 − βTxν−1.
4: if wν ≤ ην−1 then
5: convergence = True.
6: Return Solution xν−1 and objective value lν−1.
7: end if

Step 3: Solve the master problem.
8: Optimize model master to obtain solution (xν , ην) and objective value lν .
9: Set ν = ν + 1.

10: end while

We will explore the impact of the chosen stopping criterion on the convergence behavior of the L-Shaped
method in the results section.

4.7 High-performance computing for optimization

With our solution methods implemented, we are able to compute solutions for 2-SLPs with finite ξξξ
and randomness in the right-hand side of the constraints. However, as the size of our input problems
increases, we are likely to encounter significant computational challenges. In the L-Shaped method, the
most time-consuming part of the algorithm is the creation of all K subproblems, which is done in every
iteration of the algorithm. To reduce computation time, we can leverage the structure of the previously
built subproblems and make small adjustments, rather than building each one from scratch. The same
adjustment can be applied to the Extensive Form method, to reduce computation time of upper bound
calculations. Beyond this, the Extensive Form method isn’t particularly suited for optimization within
the algorithm. However, when applied in combination with sampling, optimization can be performed
across the different replications of the algorithm. Like all subproblems in the L-Shaped method, the
extensive forms created in all replications share a similar structure, differing only in the right-hand
side of the second-stage constraints. Therefore, by reusing the structure of the extensive form created
in iteration 0 in subsequent iterations, we can save considerable computation time. These strategies
are expected to greatly reduce the overall computational cost for both methods, which we will discuss
in more detail below.

We will begin by optimizing the L-Shaped method. Before proceeding, we will revisit the k-th sub-
problem for observation ξk of ξξξ and solution x̄, as defined in (4.9), for clarity.

min
y

qT y

s.t. Wy = hk − T x̄,

y ≥ 0.

Line 10 of the L-Shaped method creates the above subproblem in each iteration of the while loop and
for every observation ξk:

Create subproblem k of type (4.9) given first-stage solution xν−1 using create LSsub.
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However, since only the vector hk and the first-stage solution x̄ change, it is unnecessary to rebuild
problem (4.9) from scratch in every iteration for each observation. To optimize this, we defined the
function change LSsub, which updates an existing LP of type (4.9) instead of recreating it from
scratch. This function takes as inputs an LP (4.9), an observation ξk, and a first-stage solution x̄. The
pseudocode for change LSsub is as follows:

Algorithm 6 change LSsub

1: Input: LP (4.9) for arbitrary ξ and x; observation ξk, first-stage solution x̄.
2: Output: LP (4.9) for observation ξk and first-stage solution x̄.

3: for all (i, c) in enumerate(constraints) do
4: Reset right-hand side of c to rhs = 0.
5: Add hk[i] to rhs.
6: Substract T [i]x̄ from rhs.
7: Reset right-hand side of c to rhs.
8: end for

In this pseudocode, hk[i] denotes the i-th element of vector hk, which varies with the observation ξk.
Additionally, T [i] represents the i-th row of matrix T .

This function can be integrated into algorithm 4 by calling create LSsub once before entering the
while-loop. Subsequently, change LSsub replaces create LSsub in line 10. This modification will be
incorporated when analyzing the results.

In the Extensive Form method with sampling, this adjustment is also applied to reduce computation
time during upper bound calculations. Additionally, a function named change ef is introduced to reuse
the existing structure of the extensive form when performing multiple replications of the algorithm.
The extensive form with sample-average approximation F̂N (x) for given samples ξ1, . . . , ξN of ξξξ is
formulated as follows:

min
x,y

F̂N (x) = cTx+
1

N

N∑
i=1

qT yi

s.t. Ax = b,

Tx+Wyi = hi, i = 1, ..., N,

x ≥ 0, yi ≥ 0, i = 1, ..., N.

(4.12)

The idea behind change ef is similar to that of change LSsub. Given the extensive form (4.12),
only the right-hand side vectors h1, . . . , hN are affected by the samples ξ1, . . . , ξN . The corresponding
pseudocode is as follows:

Algorithm 7 change ef

1: Input: Extensive form (4.12) for arbitrary N samples of ξξξ; samples {ξ1, . . . , ξN}.
2: Output: Extensive form (4.12) for samples {ξ1, . . . , ξN}.
3: no sub cons = len(constraints)/N .
4: for all (j, c) in enumerate(constraints) do
5: Reset right-hand side of c to rhs = 0.
6: index = j mod no sub cons.
7: Add hi[index] to rhs.
8: Reset right-hand side of c to rhs.
9: end for

Note that, since we are working with the extensive form, the total number of constraints is N times
the number of sub-constraints. Given that each vector hi has length no sub cons, we use index = j
mod no sub cons to ensure the index stays within bounds. The resulting extensive form incorporates
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each vector hi, which varies with the observation ξi, as the right-hand side. The function change ef

can be invoked during any replication of algorithm 3 after the first one. This modification will be
incorporated when analyzing the results.
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5 Results

In this section, we present the results obtained from applying the Extensive Form method and the
L-Shaped method to solve the input problems. The analysis is structured into two main parts: the
performance of the Extensive Form method and the performance of the L-Shaped method. For each
method, we evaluate the solutions obtained, computation time, and solution quality. Additionally, we
analyze the runtime characteristics and, in the case of the L-Shaped method, its convergence behavior.
Finally, we compare the two solution methods based on their computation time, solution quality, and
potential.

5.1 Extensive Form method: solutions and computation time

The input problems listed in the first column of table 3 were solved exactly using the Extensive Form
method. Table 3 presents their first-stage solutions, objective values, and computation times.

Table 3: First-stage solutions, objective values and computation times obtained using the Extensive
Form method for listed input problems.

Name Solution Objective value Time (s)
lands x∗ = (2.67, 4.00, 3.33, 2.00) 381.85 0.01
lands2 x∗ = (2.0, 3.96, 0.96, 5.08) 227.60 0.02
baa99 x∗ = (159.49, 111.38) -238.78 0.10
pgp2 x∗ = (1.5, 5.5, 5.0, 5.5) 447.32 0.15
Oemof-B3 (T = 3) x∗ = (214.58, 4.86, . . . , 0.00) 660 117 808.21 60.74

For the remaining input problems, obtaining an exact solution within a reasonable time was not
feasible. As a result, sampling was performed using a selected number of samples N , initially with
only one replication. Additionally, sampling was applied to the input problems that had already been
solved, allowing for comparison between the estimated lower and upper bounds and the true objective
values, as presented in table 3. For each input problem, an appropriate sample size was selected based
on the number of possible outcomes of the vector ξξξ. Specifically, for problems with a small number of
outcomes, a sample size of N = 20 was used, whereas for problems with a large number of outcomes,
a sample size of N = 100 or even N = 1000 was chosen. The results are presented in table 4.

Table 4: First-stage solutions, lower bound estimates, upper bound estimates and computation times
obtained using the Extensive Form method with number of samples N and replications M = 1 for
listed input problems.

Name N M First-stage solution LB Estimate UB Estimate Time (s)

lands 20 1 x̂N = (1.17, 5.00, 3.83, 2.00) 377.33 377.35 0.02
lands2 20 1 x̂N = (0.96, 5.00, 0.96, 5.08) 218.87 219.02 0.02
baa99 100 1 x̂N = (151.82, 106.28) -232.08 -214.23 0.02
pgp2 100 1 x̂N = (1.5, 5.5, 5.0, 5.5) 437.68 438.65 0.05
Oemof-B3 (T = 3) 100 1 x̂N = (225.27, 4.86, . . . , 0.00) 658 486 529.50 659 751 411.80 8.83
lands3 1000 1 x̂N = (0.80, 3.48, 1.92, 5.80) 226.42 226.45 0.03
20 1000 1 x̂N = (346.5, 10.0, . . . , 36.0) 253 938.76 253 943.63 156.29
ssn 1000 1 x̂N = (0.00, 4.91, . . . , 0.00) 9.51 9.99 340.36
storm 1000 1 x̂N = (0.00, 0.00, . . . , 0.00) 15 489 620.52 15 489 636.08 776.2

Lastly, sampling was performed using a smaller number of samples N for the largest input problems,
and a fixed number of M = 100 iterations. Results are presented in table 5.
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Table 5: First-stage solutions, lower bound estimates, upper bound estimates and computation times
obtained using the Extensive Form method with number of samples N and replications M = 100 for
listed input problems.

Name N M First-stage solution LB Estimate UB Estimate Time (s)

lands 20 100 x̃ = (2.13, 4.29, 3.52, 2.06) 382.07 382.14 0.18
lands2 20 100 x̃ = (1.28, 4.08, 1.38, 5.29) 226.45 227.67 0.18
baa99 100 100 x̃ = (156.23, 113.25) -244.47 -228.59 0.51
pgp2 100 100 x̃ = (1.42, 5.17, 5.08, 5.46) 444.64 450.96 0.84
Oemof-B3 (T = 3) 100 100 x̃ = (260.35, 24.06, . . . , 0.00) 659 216 149.56 742 380 590.71 94.78
lands3 100 100 x̃ = (0.83, 3.35, 1.86, 5.95) 224.01 224.14 1.02
20 100 100 x̃ = (0.88, 17.20, . . . , 2.46) 254 505.56 254 597.53 74.61
ssn 100 100 x̃ = (0.00, 15.32, . . . , 0.06) 6.81 11.33 372.33
storm 100 100 x̃ = (0.00, 0.00, . . . , 0.00) 15 496 474.70 15 496 913.20 512.66

5.2 Extensive Form method: solution quality analysis

This section analyzes the quality of solutions and objective estimates obtained through the Extensive
Form method with sampling. We compare the average solutions and objective estimates obtained
from this method, presented in tables 4 and 5, to the true solutions and objective values of the input
problems. When no true solution and objective value could be computed, we compare the results to
known values from external sources. Table 6 presents the solution and objective (estimates) of input
problems lands3, 20, ssn and storm, obtained from [Sen and Liu, 2016].

Table 6: Solution and objective (estimates) of input problems lands3, 20, ssn and storm, obtained
from [Sen and Liu, 2016].

Name Solution Objective value
lands3 x∗ = (0.84, 3.40, 1.88, 5.88) 225.63
20 ≈ 254 515.48
ssn ≈ 9.93
storm ≈ 15 481 852.29

Comparing our estimates from table 4 and 5 to the values in table 3 and 6, we observe that our
method generally performs very well. For instance, in the case of input problem lands3, with (N,M) =
(1000, 1), we obtained the approximate solution x̂N = (0.80, 3.48, 1.92, 5.80) and a lower bound esti-
mate of 226.42. These values are close to the true solution x∗ = (0.84, 3.40, 1.88, 5.88) and the true
objective value of 225.63. Furthermore, we find that repeating the algorithm yields even more accurate
approximations. That is, in the case of lands3 with (N,M) = (100, 100), the approximate solution
improved to x̂N = (0.83, 3.35, 1.86, 5.95), with a lower bound estimate of 224.01.

In each replication, we compute a lower and upper bound estimate. As described in section 2.6.1,
these values are averaged to compute the final estimates. These estimates are presented in table 5.
For several input problems, including lands2, baa99, pgp2, oemof-B3 (T = 3), 20, and ssn, the true
objective value falls within the lower and upper bound estimate. However, for lands, lands3, and storm,
this was not the case. Interestingly, despite the high accuracy of our estimates for lands and lands3,
the true objective was not captured within the interval. This likely occurs because our method solves
these problems with such precision that the lower and upper bounds are extremely close together, as
is also the case for the average estimates in table 2.6.1. For Oemof-B3 (T = 3), the true objective was
captured in 57 out of 100 replications, while for ssn, this occurred most frequently, with 72 out of 100
replications capturing the true objective value.

Lastly, as additionally described in section 2.6.1, confidence intervals can be computed for the lower
and upper bound estimates in table 5. The confidence intervals indicate that there is a 95% probability
that the lower bound estimate lies within its corresponding lower bound confidence interval and that
the upper bound estimate lies within its corresponding upper bound confidence interval. Therefore,
we do not expect the true objective value to fall within these intervals. Table 7 presents the lower
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bound and upper bound estimates from table 5 along with their respective 95% confidence intervals.

Table 7: Objective estimates from table 5 along with their respective 95% confidence intervals.

Name LB Estimate LB Conf. Interval UB Estimate UB Conf. Interval

lands 382.07 (340.05, 424.10) 382.14 (340.49, 423.78)
lands2 226.45 (165.17, 287.73) 227.67 (171.39, 283.96)
baa99 -244.47 (−445.67,−43.28) -228.59 (−491.48, 34.29)
pgp2 444.64 (425.10, 464.18) 450.96 (392.76, 509.15)
Oemof-B3 (T = 3) 659 216 149.56 (−77 067 495 543.98,

78 385 927 843.10)
742 380 590.71 (−606 317 594 669 132.00,

606 319 079 430 314.00)
lands3 224.01 (218.44, 229.59) 224.14 (218.73, 229.55)
20 254 505.56 (12 179.81, 496 831.31) 254 597.53 (32 924.73, 476 270.34)
ssn 6.81 (6.26, 7.36) 11.33 (10.70, 11.96)
storm 15496474.70 (−194 697 269.07,

225 690 218.47)
15 496 913.20 (−194 351 705.50,

225 345 531.90)

From the values in table 7, we conclude that the intervals are too wide to provide meaningful insights. In
particular, for ill-conditioned problems like Oemof-B3 (T = 3), the confidence intervals are completely
nonsense.

5.3 Extensive Form method: runtime analysis

For the results obtained through the Extensive Form method with sampling, as presented in table 5,
we analyzed the computation time for the first five replications. In replication 0, the extensive form is
constructed and solved to compute a near-optimal solution x̄. Since this involves building the model
from scratch, we expect replication 0 to take the longest. In replications 1-5, this extensive form is
reconstructed using the function change ef, where the right-hand side of the stochastic constraints
is replaced with samples ξ1,j , . . . , ξN,j , with j = 1, . . . ,M denoting the replication number. As a
result, we expect the building time of the extensive form to significantly decrease compared to the
building time in replication 0. Additionally, we expect the solving time to decrease, as Gurobi retains
information from the previously solved model and its solution. Because the replications 1-5 are assumed
to be independent, we expect similar computation times across those replications. The results for the
input problems pgp2, 20, ssn, and storm are shown in figure 5.1.

Figure 5.1: Building, solving, and upper bound computation times of replications 0-5 using the Ex-
tensive Form method with number of samples N = 100 for different input problems.
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Key observations from figure 5.3 are as follows:

• For all four datasets, the majority of the computation time is spent building the extensive form
in replication 0. Since the change ef function is used in replications 1–5, the building time is
significantly reduced in those replications.

• Upper bound computation is time-consuming, particularly in the case of pgp2.

• As expected, the solving times in replications 1–5 decrease compared to replication 0 for the input
problems pgp2, 20, and storm. However, for the ssn dataset, the solving time in replications
1–5 is higher than in replication 0. Additionally, we observe an increasing trend across these
replications, which is unexpected given that they are assumed to be independent. This behavior
will be investigated further.

To verify whether the observed increase in solution time across replications 1–5 is valid, we conducted
an additional experiment using the ssn input problem. Specifically, we solved it with N = 1000 samples
and analyzed the runtime of the first 10 replications. The results are shown in figure 5.2.

Figure 5.2: Building, solving, and upper bound computation times of replications 0-10 using the
Extensive Form method with number of samples N = 1000 for ssn.

Once again, we observe that the solving times for replications 1–10 are higher than that of replication
0. Additionally, there appears to be a gradual increase in solving time across replications, a pattern
we cannot yet explain. To address this issue, we may consider fully rebuilding the extensive form in
each replication, thereby making the replications 1-M independent of replication 0.

5.4 L-Shaped method: solutions and computation time

This section will present the results of solving our input problems with the L-Shaped method. For
the instances lands, lands, baa99, and pgp2, an exact solution and objective value were obtained,
matching those found with the Extensive Form method, as expected. These results, along with the
corresponding computation times, are presented in table 5.

Table 8: First-stage solutions, objective values and computation times obtained using the L-Shaped
method for listed input problems.

Name Solution Objective value Time (s)
lands x∗ = (2.67, 4.00, 3.33, 2.00) 381.85 0.02
lands2 x∗ = (2.0, 3.96, 0.96, 5.08) 227.60 0.05
baa99 x∗ = (159.49, 111.38) -238.78 0.37
pgp2 x∗ = (1.5, 5.5, 5.0, 5.5) 447.32 0.57
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The input problem Oemof-B3 (T = 3) is not included in this table, as numerical issues prevented it
from solving within a reasonable time. This issue will be explored further in the runtime analysis and
the examination of the L-Shaped method’s convergence behavior.

For the remaining problems, an exact solution could not be obtained, prompting us to use sampling.
To evaluate solution quality, sampling was also applied to the problems that had already been solved
exactly. The chosen sample sizes were the same as those used in the Extensive Form method. However,
for the largest input problems–20, ssn, and storm–we used a sample size ofN = 100 instead ofN = 1000
to keep computation times manageable. Table 9 presents the approximations, computation times, and
sample size N for the listed input problems.

Table 9: First-stage solutions, objective values and computation times obtained using the L-Shaped
method with number of samples N for listed input problems.

Name N First-stage solution Objective value Time (s)
lands 20 x̂N = (1.17, 5.00, 3.83, 2.00) 376.9 0.03
lands2 20 x̂N = (2.96, 3.00, 0.96, 5.08) 240.07 0.05
baa99 100 x̂N = (161.33, 101.25) -227.02 0.07
pgp2 100 x̂N = (1.5, 5.5, 4.0, 5.5) 436.55 0.11
lands3 1000 x̂N = (0.81, 3.34, 1.91, 5.94) 225.55 1.03
20 100 x̂N = (210.95, 25.00, . . . , 27.19) 254 623.34 620.70
ssn 100 x̂N = (0.00, 0.00, . . . , 0.00) 7.45 3730.04
storm 100 x̂N = (0.00, 0.00, . . . , 0.00) 15 507 768.78 193.08

Once again, Oemof-B3 (T = 3) is not included.

5.5 L-Shaped method: solution quality analysis

As before, we evaluate the quality of our approximate solutions and objective values against the true
solutions and objective values. For input problems that could not be solved exactly, we compare our
approximations to those presented in table 6. In most cases, our method provides accurate estimates
of the true objective value. For example, for the input problem 20, we obtain an approximate objective
value of 254 623.34, while the true value, according to [Sen and Liu, 2016], is around 254 515.48. How-
ever, when comparing our approximate first-stage solution x̂N = (210.95, 25.00, . . . , 27.19) to earlier
solutions–x̂N = (346.5, 10.0, . . . , 36.0) (from table 4) and x̃ = (0.88, 17.20, . . . , 2.46) (from table 5)–we
observe that even though we only saved three out of 63 indices, the solutions differ significantly. This
discrepancy is most likely to be blamed on the ill-conditioning of the problem, which causes small
changes in the linear program to lead to large differences in the solutions, but is still concerning. That
is, the first-stage decisions represent capacity investments that must be robust to small changes.

5.6 L-Shaped method: runtime analysis

We also analyzed the computation time of the L-Shaped method, but with a different approach com-
pared to the extensive form. For each solution presented in table 8 and table 9, we examined the time
spent in each step of the L-Shaped method–steps 0, 1, 2, and 3, as outlined in algorithm 4. The com-
putation time per step, corresponding to the solutions presented in table 8 and table 9, is summarized
in table 10. This time, the table includes Oemof-B3 (T = 3); however, the algorithm was terminated
after reaching the maximum number of ν = 1000 iterations, which occurred before convergence was
achieved.
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Table 10: Computation time per step in the L-Shaped method for listed input problems.

Name N main Step 0 Step 1 Step 2 Step 3
lands - 0.0215 0.0015 0.0011 0.0004 0.0003
lands2 - 0.0525 0.0032 0.0280 0.0005 0.0006
baa99 - 0.3666 0.0088 0.2634 0.0008 0.0008
pgp2 - 0.5652 0.0135 0.4261 0.0011 0.0011
lands3 1000 1.0274 0.0362 0.7891 0.0005 0.0009
20 100 620.70 0.29 517.76 0.67 47.74
ssn 100 3730.04 0.52 2551.11 14.58 189.67
storm 100 193.08 2.35 157.71 0.36 0.17
Oemof-B3 (T = 3) 20 194.01 0.19 171.74 1.02 1.22

To visualize the data presented in table 10, we created a bar chart that shows the relative computation
time for each step of the L-Shaped method across different input problems. Each bar shows the relative
time spent in steps 0, 1, 2, and 3 of the L-Shaped method, along with the ‘remaining’ time used by
Python. The number displayed at the top of each bar indicates the total computation time of each
input problem. The barchart is shown in figure 5.3.

Figure 5.3: Relative computation time per step in the L-Shaped method. Each bar shows the relative
time spent in steps 0, 1, 2, and 3 of the L-Shaped method, along with the ‘remaining’ time used by
Python. The number displayed at the top of each bar indicates the total computation time of each
input problem.

We can now observe a few key points from the graph:

• First, as expected, the majority of the time is spent in step 1 of the L-Shaped method, as this
is where the subproblems are created and solved during each iteration of the algorithm. Had we
not created the function change sub, which leverages the structure of an initialized subproblem,
this time would be even higher.

• Step 3 of the algorithm, in which the master problem is solved, doesn’t take much time. However,
for more challenging problems, such as 20 and ssn, which require more iterations, the size of the
master problem increases. As a result, step 3 requires relatively more computation time for these
cases.

• The light grey portion of the bar represents the remaining time used by Python. This time is
relatively large, though its exact cause cannot be explained. Notably, it is particularly large for
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the input problem lands. However, the computation time for this input problem is very short,
which may result in inaccuracies in the measurements.

5.7 L-Shaped method: convergence behavior

Lastly, we analyzed the convergence behavior of the L-Shaped method. As outlined in section 4.6, we
use two different stopping criteria. First, we will present the convergence graph according to our initial
stopping criterion, as described in algorithm 4. Then, we will examine the convergence behavior using
an alternative stopping criterion, described in algorithm 5. In both cases, particular attention will be
given to the convergence graphs of Oemof-B3 (T = 3).

For clarity, let us restate the first stopping criterion. The lower bound lν is the solution of the master
problem in iteration ν (as given in equation (2.27)), while the upper bound uν consists of the first-stage
cost, plus the probability-weighted sum of optimal responses in the second stage, given solution xν−1

(as given in equation (2.30)). Since the master problem is a minimization problem, and it becomes
more restrictive with the addition of cuts in each iteration, the lower bound lν will either increase or
remain constant throughout the process. This continues until all second-stage information is included
and the true minimum of the optimization problem is found.

Given the upper bound uν and the lower bound lν , the overall upper and lower bounds are updated
as follows: u = min{uν , u} (ensuring that u remains non-increasing) and l = max{lν , l}, respectively.
While updating l is technically unnecessary since lν is naturally non-decreasing, it is included for con-
sistency.

The algorithm converges when u− l ≤ ϵ|u|, with a fixed tolerance of ϵ = 10−6. The choice of ϵ is quite
small, ensuring accurate solutions. However, as we will see in the convergence graphs later, a tolerance
of ϵ = 10−4 would have been sufficient for approximating the objective values. Ultimately, the size of
ϵ did not determine whether an input problem was solved or not. Therefore, we chose a smaller ϵ to
gain more detailed insights into the solutions.

Figure 5.4 shows the lower and upper bound values at each iteration ν for input problems lands3, 20,
ssn and storm. The red point at the right of each graph indicates where convergence was reached,
with a fixed ϵ = 10−6. The coordinates next to the red point show the iteration number ν at which
convergence occurred, along with the lower bound l, which serves as the objective value estimate.
Additionally, the leftmost dot on each graph represents where convergence would have occurred if
ϵ = 10−4 had been chosen, again with the corresponding coordinates (ν, l).
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Figure 5.4: Lower and upper bound values at each iteration ν for input problems lands3, 20, ssn and
storm. The red point on the right side of each graph indicates where convergence was reached, with a
fixed ϵ = 10−6. The leftmost point on each graph represents where convergence would have occurred
if ϵ = 10−4 had been chosen.

In figure 5.4, we observe that the non-decreasing lower bound and non-increasing upper bound grad-
ually converge to each other for all input problems, indicating that the L-Shaped method with this
stopping criterion demonstrates steady convergence behavior. However, it is clear that ϵ = 10−4 would
have sufficed as a choice for ϵ, or perhaps even larger, as the objective value approximations obtained
with ϵ = 10−4 are only slightly smaller or equal to those obtained with ϵ = 10−6. Choosing a larger ϵ
would have significantly reduced computational time.

Figure 5.5 shows the convergence graph of Oemof-B3 (T = 3), executed within a 10 000 second time
limit.

Figure 5.5: Lower and upper bound values at each iteration ν for the input problem Oemof-B3 (T = 3),
obtained within a time limit of 10 000 seconds. The black point on the right side of the graph indicates
the last iteration number and its corresponding lower bound estimate.
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The graph differs significantly from those in figure 5.4, due to the large scale on the y-axis. Although
the lower bound curve appears straight, it actually ranges from 0 to 648 511 221.26. To gain deeper
insights into the convergence behavior, we replot the graph with a logarithmic scale on the y-axis and
focus on iterations starting from ν = 1100. The updated graph is presented in figure 5.6.

Figure 5.6: Lower and upper bound values at each iteration ν for the input problem Oemof-B3 T = 3,
obtained within a time limit of 10,000 seconds. The y-axis is displayed on a logarithmic scale, and the
graph starts from iteration ν = 1100 to better illustrate the convergence behavior. The black point
on the left represents (ν, log(lν)) at ν = 1100, while the two black points on the right correspond to
(ν, log(lν)) and (ν, log(uν)) at the final iteration ν = 2300, respectively.

From the graph in figure 5.6, we can observe the following. The figure demonstrates steady convergence
behavior and even suggests that convergence was nearly reached. However, log(8.812) corresponds to
a lower bound value l2300 = 648 511 221.26, while log(8.868) corresponds to an upper bound value of
u2300 = 738 604 720.26, leaving a gap of 90 093 499.00 between the two. From this, we can conclude
that convergence would have been achieved within the time limit if ϵ > 0.13, though such a threshold
would be too large. Despite not fully converging, the lower bound obtained in the final iteration,
l2300 = 648 511 221.26, is relatively close to the true objective value of 660 117 808.21. This suggests
that the method remains effective, though numerical issues arising from the model formulation may
have impacted its performance.

Let us now present the alternative stopping criterion, as described in algorithm 5. In this version of
the L-Shaped method, wν is defined as wν = β0 − βTxν−1, where β0 and β are defined to compute
optimality cuts. The algorithm converges if wν ≤ ην−1, where ην−1 corresponds to the optimal objec-
tive of the master problem in iteration ν − 1.

Figure 5.7 shows the values of ην−1 and wν at each iteration ν, for input problems lands3, 20, ssn and
storm. The red point at the end of the graph indicates where convergence was reached, along with
the coordinates (ν, ην−1). Note that ην−1 approximates the second term in the objective function,
and not the optimal objective value. To obtain the objective value estimate v̂N , we compute v̂N =
cTxν−1 + ην−1, given the using first-stage solution xν−1.
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Figure 5.7: ην−1 and wν at each iteration ν for input problems lands3, 20, ssn and storm. The red
point at the end of the graph indicates where convergence was reached, along with the coordinates
(ν, ην−1).

In figure 5.7, we see that the convergence behavior is much less steady compared to the convergence
behavior of the L-Shaped method with the first stopping criterion. Additionally, in three out of four
cases analyzed, convergence is reached at a later iteration than with the previous stopping criterion.
However, we also observe that long before the algorithm reaches convergence–well before wν ≤ ην−1–
the value of η is already very close to the final objective estimate ην−1 obtained in the last iteration.
This suggests that if this algorithm were to be adopted, it would be beneficial to introduce a small ϵ
and modify the stopping criterion to wν − ην−1 ≤ ϵ|wν |, ensuring an earlier yet reliable termination.

Lastly, let us have a look at the convergence graph for Oemof-B3 (T = 3) obtained using the second
stopping criterion. The graph is shown in figure 5.8.

Figure 5.8: ην−1 and wν at each iteration ν for input problem Oemof-B3 (T = 3), obtained within a
time limit of 10 000 seconds. The black point on the right side of the graph indicates the last iteration
number and its corresponding value ην−1.
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Strangely, the graph closely resembles the one in figure 5.5, despite the fact that w is computed differ-
ently from the upper bound u, and η is computed differently from the lower bound l. Another unusual
observation is that η remains zero throughout all iterations. To further examine the convergence be-
havior beyond ν = 1100, we have replotted the graph starting from this iteration, but plotting log(w)
instead of w. The revised graph is presented in figure 5.9.

Figure 5.9: ην−1 and log(wν) at each iteration ν for input problem Oemof-B3 (T = 3), obtained within
a time limit of 10 000 seconds. The graph starts from ν = 1100 to better illustrate the convergence
behavior. The black point on the left represents (ν, ην−1) at ν = 1100, while the two black points on
the right correspond to (ν, ην−1) and (ν, log(wν)) at the final iteration ν = 2259, respectively.

The significant gap between log(w) and ην−1 suggests that this algorithm is unlikely to ever satisfy
the convergence criterion wν ≤ ην−1. However, on a positive note, the objective value estimate
obtained after ν = 2259 iterations is 648 484 342.34, which is a good estimate of the true objective
value 660 117 808.21. Interestingly, since η remains zero in the final iteration, it is implied that all costs
are attributed to the first-stage variables. While this aligns with the expectation that investment costs
are significantly higher than marginal costs, we do not fully understand this outcome. Therefore, we
will revisit the issue in the conclusion and discussion section.

5.8 Comparison of solution methods

Let us first compare computation time of both methods. Table 11 summarizes the previously presented
results, with the new values representing the computation times for 20, ssn, and storm obtained using
the Extensive Form method with number of samples N = 100. The Extensive Form method is not
repeated in the case of sampling.

Table 11: Computation times obtained using different solution methods with optional number of
samples N .

Name N Time EF method (s) Time L-Shaped method (s)
lands - 0.01 0.02
lands2 - 0.02 0.05
baa99 - 0.10 0.37
pgp2 - 0.15 0.57
Oemof-B3 (T = 3) - 60.74 -
lands3 1000 0.03 1.03
20 100 7.24 620.70
ssn 100 11.08 3730.04
storm 100 47.40 193.08
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Clearly, in terms of computation time, the Extensive Form method is the better choice.

In terms of solution quality, both methods perform similarly on the test problems. However, for the
model Oemof-B3 (T = 3), the L-Shaped method fails to return a solution within the 10 000-second time
limit. Despite this, as we have observed, the objective value estimates returned after 10 000 seconds
are comparable to those obtained with the Extensive Form method. The numerical difficulties within
the model seem to prevent the L-Shaped method from converging. This raises the question: to what
extent is the issue with the model itself, and to what extent with the method? We will explore this
further in the conclusion and discussion.
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6 Conclusion and discussion

In this section, we reflect on our findings, examine the key challenges encountered, and draw a conclu-
sion from our research. Finally, we provide suggestions for future work.

We begin by discussing the results. The most notable outcome is that we were unable to successfully
compute any solutions for the model Oemof-B3 (T = 8760), as significant challenges had already
emerged with Oemof-B3 (T = 3). This suggests that the difficulties encountered stem from both the
complexity of the model and the limitations of the methods used. It is likely that the challenges are a
result of a combination of both factors.

To critically assess our approach, we now turn to several limitations of the method and our result
analysis. First, while we conclude that both methods perform well in estimating first-stage solutions
and objective values, our assessment approach differs between small and large problems. For small
input problems, such as lands, baa99, and pgp2, we validate our findings by directly comparing both
the approximate solution and the objective value to the true solution and true objective. However, for
larger problems like 20, ssn, and Oemof-B3 (T = 3), our evaluation if primarily based on comparing
objective function values, as only three indices of the first-stage solution vector are known.

As demonstrated in the case of input problem 20, even though we computed three objective value
estimates–v̂N = 353 938.76 (table 4), ṽ = 254 505.56 (table 5), and v̂N = 254 623.34 (table 9)–
that were all relatively close to the objective value estimate v∗ = 254 515.48 (table 6), the cor-
responding first-stage solutions differed significantly. The three first-stage solutions obtained were
x̂N = (346.5, 10.0, . . . , 36.0), x̃ = (0.88, 17.20, . . . , 2.46), and x̂N = (210.95, 25.00, . . . , 27.19). Such
drastic differences are concerning, as the first-stage solution represents critical decision variables. Even
if problem 20 is ill-conditioned, as seems likely, discrepancies of this magnitude should not occur. There-
fore, in evaluating method performance, a more rigorous approach would have been to measure not
only the accuracy of objective values but also the deviation in first-stage solution vectors compared to
either the true solution or a reliable estimate.

A second point of criticism we would like to highlight is our inability to explain the runtime behavior
of the input problem ssn when solved with the Extensive Form method, as presented in figure 5.2.
Specifically, cannot explain the increase in runtime in replications 1–10 compared to replication 0, nor
can we account for the increasing trend in runtime across replications 1–10. Although this is not a
major concern, we should be able to fully understand the behavior of the algorithm.

Lastly, the L-shaped method can result in very large computation times. For the input problem ssn,
with only N = 100 samples, it took 3730.04 seconds to compute our solution, as shown in table 9,
whereas the Extensive Form method with the same number of samples took only 11.08 seconds (table
11). Moreover, for input problems like ssn, which involves a total number of ≈ 1070 scenarios, the
sample size of N = 100 is actually too small to provide accurate results.

Now, we turn to discussing the Oemof-B3 model and the challenges we encountered when attempting
to solve it. One key area for self-reflection is that we should have explored uncertainty modeling in
energy systems more thoroughly before deciding to use the stochastic linear programming framework
to include uncertainty in this model. On the surface, given the linear nature of Oemof-B3 and its role
in modeling investment and operational planning in the Berlin-Brandenburg area, it seemed well-suited
to this framework. An additional reason for choosing this approach was the fact that similar energy
models, such as those discussed in [Zhou et al., 2013] and [Yu et al., 2019], were also formulated as
stochastic linear programs to include uncertainty. However, as we will explain below, there were sev-
eral reasons why this approach may not have been the most appropriate.

First of all, Oemof-B3 is an exceptionally large model, containing numerous demand variables, all of
which we chose to model as stochastic. While this is an inherent feature of the model that we cannot
change, it is something we should have considered more carefully before applying the stochastic linear
programming framework.

49



Secondly, we did not perform a sensitivity analysis to understand the relative importance of the vari-
ables in the model. We introduced random variables for demand volatility, but it’s possible that these
variables don’t influence the model outcome as drastically as we initially assumed. If that were the
case, including randomness in these areas may not have been necessary.

Furthermore, no comparison with a deterministic model was conducted. A sufficient approach might
have been to replace the random variables with their mean values or another reliable estimate, and
then solve the resulting linear program.

Lastly, and most importantly, there is a fundamental lack of understanding of the model’s interpreta-
tion. It is unclear what the outcomes of the decision variables and the resulting objective value actually
represent in a real-world context. Moreover, it was only after analyzing the convergence behavior of
the L-Shaped method with the second stopping criterion, as shown in figure 5.8, that we realized that
(nearly) all costs were coming from the first-stage decision variables. Whether this is realistic remains
uncertain, and it is a critical issue that requires further investigation.

Having discussed the results and research limitations, we will now draw a conclusion from our research.
The objective of this thesis was to revisit the computational challenges of solving stochastic linear pro-
grams and to evaluate their usability, with the aim of assessing their potential. To achieve this, we
implemented two solution methods for solving two-stage stochastic linear programs: the Extensive
Form method and the L-Shaped method. We then assessed their performance on various 2-SLP test
problems and applied them to the energy model Oemof-B3.

Mathematically speaking, stochastic linear programs offer great potential. The 2-SLP framework can
be applied to any linear program involving a time component, naturally extending it to a 2-SLP that
accounts for uncertainty in the second stage. Furthermore, because these problems inherently involve
uncertainty, they are well-suited for various sampling techniques, which can provide significant com-
putational advantages. However, in practice, solving 2-SLPs presents challenges, with the primary
difficulty being the high computational cost. This is primarily driven by the size of the random vector
ξξξ, which grows exponentially with the number of random variables. In the context of energy system
modeling, there is definite potential in applying stochastic linear programming, but both the initial
model and the number of random variables should be of manageable size to ensure computational
feasibility. A second challenge we encountered when solving 2-SLPs was the lack of user-friendly tools
and readily available methods. Every step in both the Extensive Form method and the L-Shaped
method, including the reading of SMPS files, had to be implemented manually. If optimization solvers
like Gurobi provided built-in solution methods for 2-SLPs, or if reliable open-source implementations
were available, much less time would have been spent on the implementation process. This would have
allowed for a deeper exploration of the true potential of stochastic linear programs. Due to this lack
of accessibility, we conclude that while stochastic linear programs hold great promise, their practical
usability remains limited.

Based on the challenges and limitations encountered in this research, we propose two directions for
future work. One promising direction for optimizing the L-Shaped method is the implementation of
parallel computing. The for-loop that iterates over all scenarios is inherently suited for parallelization,
and it would be interesting to see how much this could accelerate the method’s performance.

Generally, rather than focusing on developing additional solution methods, the priority should be
on developing more efficient and user-friendly optimization solvers for stochastic linear programs. By
providing more intuitive interfaces and optimizing solver performance, it would become easier for users
to implement and solve stochastic linear programs. As a result, stochastic optimization could reach a
wider audience, encouraging practical application in various fields.
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A Appendix

A.1 Example energy system model formulation

Objective function:

min
f

∑
t∈T

∑
(s,e)∈E

c(s,e) · f(s,e)(t). (A.1)

Bus balance constraints: ∑
(s,b)∈E

f(s,b)(t) =
∑

(b,e)∈E

f(b,e)(t) ∀b ∈ B, ∀t ∈ T. (A.2)

Converter balance constraints:

kco · f(s,co)(t) = f(co,e)(t) ∀co ∈ Co, ∀t ∈ T. (A.3)

Storage constraints:

lossst(t) = λst · contst(t) ∀st ∈ St, ∀t ∈ T,

kinst · f(b,st)(t) + contst(t)− lossst(t) =
1

kout
st

· f(st,b)(t) + contst(t+ 1),

∀st ∈ St, ∀t ∈ T,

contst(0) = contst(8760) ∀st ∈ St.

(A.4)

Flow bounds:

0 ≤ f(s,e)(t) ≤ fmax
(s,e) ∀f, ∀t ∈ T. (A.5)

Storage bounds:
0 ≤ lossst(t) ≤ ∞ ∀st ∈ St, ∀t ∈ T,

0 ≤ contst(t) ≤ capst ∀st ∈ St, ∀t ∈ T.
(A.6)

A.2 Oemof-B3 model formulation

Objective function:

min
C,f

∑
r∈R

∑
st∈St

cstor,rst · Cstorinv,r
st +

∑
r∈R

∑
(s,e)∈E

cflow,r
(s,e) · Cflowinv,r

(s,e) +
∑
t∈T

∑
r∈R

∑
(s,e)∈E

cmar,r
(s,e) · fr

(s,e)(t).

(A.7)

Initial storage content constraints:

Cstorinv,r
st ≥ Cinit,r

st ∀st ∈ St, ∀r ∈ R, (A.8)

Storage capacity balance constraints:

Cflowinv,r
(b,st) = Cflowinv,r

(st,b) ∀st ∈ St, ∀r ∈ R, (A.9)

Bus balance constraints:∑
(s,b)∈E

fr
(s,b)(t) =

∑
(b,e)∈E

fr
(b,e)(t) ∀b ∈ B, ∀r ∈ R, ∀t ∈ T. (A.10)

Converter balance constraints:

krco · fr
(s,co)(t) = fr

(co,e)(t) ∀co ∈ Co, ∀r ∈ R, ∀t ∈ T. (A.11)
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Maximum emission constraint:∑
t∈T

∑
r∈R

εrch4 import · fr
(ch4 import,bch4)(t) + εrh2 import · fr

(h2 import,bh2)(t)+∑
t∈T

εBB
elec import · fBB

(elec import,belec)(t) ≤ 0.
(A.12)

Electricity-gas relations:

krbheatcen · fr
(ch4 boil large,bheatcen)(t) = fr

(elec heat large,bheatcen)(t) + fr
(elec pth,bheatcen)(t)

∀r ∈ R, ∀t ∈ T.

krbheatdecen · fr
(ch4 boil small,bheatdecen)(t) = fr

(elec heat heat small,bheatdecen)(t)

∀r ∈ R, ∀t ∈ T.

(A.13)

Renewable generation flow constraints:

fr
(PV,belec)(t) = prPV (t) · C

flowinv,r
(PV,belec) ∀r ∈ R, ∀t ∈ T,

fr
(wind,belec)(t) = prwind(t) · C

flowinv,r
(wind,belec) ∀r ∈ R, ∀t ∈ T,

fr
(hydro ror,belec)(t) = prhydro ror(t) · C

flowinv,r
(hydro ror,belec) ∀r ∈ R, ∀t ∈ T.

(A.14)

Maximum converter flow constraints:

fr
(co,e)(t) ≤ Cflowinv,r

(co,e) ∀co ∈ Co, ∀r ∈ R, ∀t ∈ T. (A.15)

Maximum storage flow constraints:

fr
(s,st)(t) ≤ Cflowinv,r

(s,st) ∀st ∈ St, ∀r ∈ R, ∀t ∈ T,

fr
(st,e)(t) ≤ Cflowinv,r

(st,e) ∀st ∈ St, ∀r ∈ R, ∀t ∈ T.
(A.16)

Storage balance constraints at t = 0:

kst · fr
(s,st)(0) + (1− δst) · Cinit,r

st = 1
kst

· fr
(st,e)(0) + Cstor,r

st (0) ∀st ∈ St, ∀r ∈ R. (A.17)

Storage balance constraints:

kst · fr
(s,st)(t) + (1− δst) · Cstor,r

st (t− 1) = 1
kst

· fr
(st,e)(t) + Cstor,r

st (t)

∀st ∈ St, ∀r ∈ R, ∀t ∈ T \ {0}.
(A.18)

Storage balance constraints for t = 0 and t = 8760:

Cinit,r
st = Cstor,r

st (8760) ∀st ∈ St, ∀r ∈ R. (A.19)

Maximum storage content contraints:

Cstor,r
st (t) ≤ Cstorinv,r

st ∀st ∈ St, ∀r ∈ R, ∀t ∈ T. (A.20)

Link-block relations:

1

kelec trans
· fBB

(elec trans,belec)(t) = fB
(belec,elec trans)(t) ∀t ∈ T,

1

kelec trans
· fB

(elec trans,belec)(t) = fBB
(belec,elec trans)(t) ∀t ∈ T.

(A.21)
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Flow bounds:

0 ≤ f(s,e)(t) ≤ fmax
(s,e) ∀f, ∀t ∈ T. (A.22)

Initial storage bounds:

0 ≤ Cinit,r
st ≤ ∞ ∀st ∈ St, ∀r ∈ R. (A.23)

Storage content bounds:

0 ≤ Cstor,r
st (t) ≤ ∞ ∀st ∈ St, ∀r ∈ R, ∀t ∈ T. (A.24)

Generic investment storage bounds:

0 ≤ Cstorinv,r
st ≤ caprst ∀st ∈ St, ∀r ∈ R. (A.25)

Generic investment flow bounds:

0 ≤ Cflowinv,r
(s,st) ≤ flowcaprst ∀st ∈ St, ∀r ∈ R,

0 ≤ Cflowinv,r
(st,e) ≤ flowcaprst ∀st ∈ St, ∀r ∈ R.

(A.26)
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