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Preface

Physics has been in my life since childhood. I still remember the moment when I de-
cided to learn all laws of nature. A movie about the famous Russian scientist, Mikhail
Lomonosov, gave me an impression that I could finish with that project quite quickly −
in 10 years maximum. With a grief − I have to admit − I failed. However, that failure
had some positive consequences as well; and one of those is this thesis.

The thesis is based upon my studies conducted between January 2002 and January
2006, under the supervision of Profs. Gerrit Bauer and Arne Brataas, at TU Delft. The
research that has gone into this thesis has been entirely enjoyable. That enjoyment is
largely a result of the interaction that I have had with my supervisors, colleagues and all
other people I have met in Holland.

Many, many people have helped me not to get lost during my PhD! I would like to
express my heartiest felt gratitude to my leading supervisor Gerrit Bauer from whom I
have derived invaluable personal and scientific benefit. This thesis would not have been
possible without him. Although it was painful at times when he forced me to express
myself clearer, working with him has always been fun, enlightening and delighting. I
am very grateful to Arne Brataas who, as my second supervisor, has helped me with
my research and provided a warm atmosphere during my visits to him. I am very much
indebted to Yaroslav Tserkovnyak who has always been my good friend and from whom
I have learned a lot. Yuli Nazarov has always asked good questions during seminars and
discussions. Yaroslav Blanter, Milena Grifoni and Jos Thijssen have helped me many
times not only with physics but also with things related to life in the Netherlands. I would
exclusively like to thank our group secretary, Yvonne Zwang, for always being helpful.

"What a beautiful color, so dynamical and never the same?" One can say about the
sky in Holland. However it is somewhat depressive, and sun is absent most of the time. I
guess I would have been in extremely low mood all the time if it had not been for people
who had shared my free time. I will always be grateful to Sabrina Rahmanovic, Raymond
de Moré, Jasper Lim, Dennise, and Velimir Meded for always being there for me and
being my friends. I am very lucky I have met you! I also have many good memories
about AEGEE students who do great job for international newcomers to Delft.

The everyday struggle of academic research is a battle won or lost with ones’ buddies
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in the trenches, not by the generals in the history books. Consider my debt of grati-
tude to my colleagues, for everything from arguing on philosophical subjects, to advising
me on my research. Omar Usmani was always ready to help whenever I had a trouble.
Babak Hosseinkhani shared my dinners with quite tasty pizzas that we used to order to
the office. I would like to thank Sijmen Gerritsen, Wouter Wetzels, Freek Langeveld, and
Miriam Blaauboer for trying to teach me Dutch language. I thank our current and former
postdocs − Sigurdur Erlingsson, Antonio DiLorenzo, Daniel Huertas Hernando, Inanc
Adagideli, Dmitri Bagrets, Dmytro Fedorets, Henri Saarikoski and Wataru Izumida for
giving me many good advices. I am grateful to Oleg Jouravlev for all those moments
when he was silent, and I could better concentrate on my work. I acknowledge Floris
Zwanenburg for his efforts in organizing spin meetings. Jens Tobiska was always ready
to discuss physics whenever I needed it. It has been a very enjoyable experience for me
to play football with Hayk Haroutyounyan, Rachid el Boubsi and people from QT group.
Let me also mention Fabian Bodoky, Xuhui Wang, Jan Manschot, Izak Snyman, Jeroen
Danon, Catherine Fricot, Richard de Visser, Joël Peguiron, Moosa Hatami, and Gabriele
Campagnano.

I owe so much to my parents, Alexey Alexeevich, and Antonina Alexandrovna, for
giving me life in the first place, for educating me with aspects from both arts and sciences,
for unconditional support and encouragement to pursue my interests. Thank you, my high
school teachers, Margarita Anatolyevna Prokasheva and Pavel Evgenyevich Kanin, who
created my chance for academic career. I have a lot of gratitude to my diploma supervisor
in Moscow Institute of Physics and Technology, Alexandr Fedorovich Barabanov, who
introduced me to the field of theoretical physics.

And last, as they say, but not least, I would like to thank my better half, Elvin, whose
imagination and energy never let me be bored, whose passion can cover the whole world
and whose cleverness make me wonder. However princesses are more seldom in the
modern world, she always reminds me of one. Elvin brings love into my life, and what
can be a better motivation to live on and be successful.
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Chapter 1

Introduction

Charge current is the motion of charge. An electron charge current is induced in a con-
ducting wire by an applied voltage. But electrons have also a mass and an intrinsic angular
momentum - spin. Then the motion of electrons is associated to a mass current as well
as an angular momentum (spin) current. In ferromagnetic metals the density of states for
spin-up and spin-down conductance electrons is shifted in energy (Fig. 1.1) due to the ex-
change field - the mean field resulting from exchange interactions of itinerant electrons.
This leads to splitting of all spin 1/2-electrons into two kinds: spin-up and spin-down
electrons that are eigen states in the ferromagnet. Electrons from this two channels are
scattered differently when sent through a ferromagnet with a difference between the spin-
up and spin-down densities of states at the Fermi level. It is then useful to define con-
ductances for spin-up (G↑) and spin-down (G↓) electrons. A current in a ferromagnet can
be represented then as split flow of spin-up and spin-down electrons in two channels with
different conductances. An unpolarized current results in a spin-polarized current after
passing through a ferromagnet, as it follows form the two channel model. The degree of
polarization of outgoing current is characterized by the polarization P of a ferromagnet
that is defined in terms of the conductances for spin-up (G↑) and spin-down (G↓) elec-
trons, as P = (G↑−G↓)/(G↑+G↓) (for example Fe, Co or Ni have a polarization P of 40
to 70% [1]).

The field of magnetoelectronics is based on two important discoveries: giant magne-
toresistance effect (GMR) [2] and spin-transfer effect [3, 4]. The GMR effect arises in
ferromagnet-normal metal-ferromagnet (F|N|F) structures (with current perpendicular to
the plane CPP geometry) in which the magnetizations can be switched from anti-parallel
to parallel configurations. Usually the switching is achieved by an external magnetic field
that acts on a soft magnet with easily rotated magnetization (free layer) while the other
magnetization is fixed e.g. by a strong anisotropy. The GMR effect can be defined as a
very large change in electrical resistance that is observed in a multilayer structure when
the relative orientations of magnetizations change as a function of applied field. The

1



2 Electrical and mechanical magnetization torques

E

N(E)

Figure 1.1: A schematic representation of the density of electronic states in a ferromagnet.
E, the electron energy; N(E), density of states.

change in electrical resistance can be easily explained by a two resistor model with dif-
ferent resistances in parallel for the spin-up and spin-down electrons (Fig. 1.2). The fixed
ferromagnet may be interpreted as a spin polarizer, letting through more spin-up electrons
thus creating a spin polarized current collinear to its magnetization. For antiparallel con-
figurations the spin polarized current can not escape the normal metal spacer so easily and
thus an imbalance of spin-up and spin-down electrons (spin accumulation) is created in
the normal metal.

When the magnetizations of the ferromagnets are not collinear, the situation becomes
more complicated and a non-collinear to the free layer spin-current and spin imbalance
can appear in the normal metal. For reasons that are explained in Section 1.3, the non-
collinear spin current can only partially penetrate the free layer; its transverse component
is completely absorbed at the interface. As a direct consequence of angular momentum
conservation, the macroscopic magnetization receives a torque equal to the absorbed an-
gular momentum (Fig. 1.3). The spin-transfer torque can then be defined as the angular
momentum acquired by the macroscopic magnetization per unit of time due to the inter-
action with spin-polarized currents.

Since the prediction in 1996 [3, 4], and supporting evidence for its presence start-
ing in 1998 [5, 6], the spin-transfer torque effect has attracted much theoretical [7–11]
and experimental [5, 12–16] interest in the phenomenon of current-driven excitations in
magnetic multilayers: such as the reversal of layer magnetization with a possibility of
steady precessional states [16, 17], or the generation of spinwaves [18]. This interest is
sparked by the wish to understand the physics underlying the new phenomenon as well
as its potential for devices. Some of these applications are magnetization switching in
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Figure 1.2: The resistance of a ferromagnet-normal metal-ferromagnet structure depends
on the magnetic configuration. In the collinear geometry the spin current can be split into
two channels. Due to different band structure of the minority and majority-spin bands,
the resistances of two channels are different in ferromagnets leading to GMR effect. One
magnet is fixed e.g. by anisotropies while the other follows the external magnetic field.
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I

Fixed layer Free

layer

Figure 1.3: Current I is sent through the spin valve. Due to interaction with the mag-
netization of a free layer the transverse spin polarization of the spin current is absorbed
at the interface. By conservation of angular momentum, the spin current exerts an equal
and opposite torque on the magnetization.

magnetic memories [19], and generation of high frequency radiation [17]. In state of art
magnetic devices or media, externally generated magnetic fields are employed to reverse
the moments [20–22]. A current pulse through perpendicular F|N|F spin valves can re-
verse the free layer magnetization more effectively in small structures since one does not
waste energy on generation of magnetic field outside of the sample, thus also improving
possibilities for further miniaturization.

The macroscopic magnetization can also acquire torques from the lattice. These
torques can be mediated by e.g. crystal or shape anisotropy fields. In fact, any mag-
netization dynamics, that is caused by interactions with the lattice, lead to torques acting
on both the lattice and the magnetization. This transfer of torques can be seen as a re-
sult of the conservation law of angular momentum, that is to say: the torque received by
the magnetization should be equal to the torque lost by the lattice. We call these kind
of torques as magnetomechanical torques. Magnetomechanical torques generated by de-
magnetizing currents in samples with shape anisotropy [23] promise new functionalities
for mechanical transducers (nanomotors). Predicted some time ago [24] and observed
experimentally [25], magnetomechanical torques due to ferromagnetic resonance (FMR)
open new possibilities for sensors and detectors. Magnetic resonance force microscopy
(MRFM) employs similar principles and it has already proven to be a powerful imaging
technique [26].

In the first part of this Introduction we deal with nanoelectromechanical systems that
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can be used for detecting magnetomechanical torques. Then we proceed to magnetoelec-
tronic circuit theory that is a very convenient tool for describing spin-transfer torques.
We introduce the Landauer-Büttiker formalism, since spin-resolved scattering theory of
transport is an important ingredient of magnetoelectronic circuit theory. Next, the spin-
transfer torque effect is described. The Landau-Lifshitz-Gilbert equation is introduced
in Section 1.5 allowing us to describe the magnetization dynamics as a result of mag-
netic fields and, in generalized form, spin-transfer torques. Finally we describe several
examples in which magnetomechanical torques arise and show one of possible applica-
tions for magnetomechanical and spin-transfer torques - nanomotors. We show that at
small scales the spin-transfer torque may dominate torques created by Larmor response
in electro-magnetic motors.

1.1 Nanoelectromechanical systems (NEMS)

The study of nanoelectromechanical systems (NEMS) [27–29] is a newly developing
branch of mesoscopic physics that appeared after recent advances in nanostructure tech-
nology. A typical NEMS device contains a nano-to-micron scale mechanical resonator,
e.g. a cantilever - a suspended beam which is clamped at one end (Fig. 1.4). The me-
chanical resonator can then be coupled electrostatically [30] or via magnetomotive forces
[31] to an electric circuit. A mechanical resonator holds a number of normal vibrational
modes that is comparable to the number of atoms, but only the lowest flexural modes are
usually excited. For small amplitudes, a mechanical resonator is described by a harmonic
oscillator with different modes provided the quality factor is sufficiently large. The qual-
ity factor for a given oscillator is defined as Q = ωe/β , where ωe is the frequency of
the mode and β is a damping constant related to the time 1/β necessary for the energy
stored in the oscillator to decay by a factor e from its initial value. Nano-to-micron scale
mechanical resonators typically display quality factors for the lowest modes in the range
103 −104 [26].

According to the general theory of elasticity [32], the dynamics of a cantilever are
described by the elastodynamical equations for the strain tensor. The general problem is
three dimensional and it can become nonlinear. For a long beam the problem simplifies
significantly when the bending or torsion is small. The beam should be thin compared
to the radius of curvature in the case of bending. In case of torsion, compared to the
length at which two points have difference in torsion by π . Under such conditions the
elastodynamical equations can be integrated in the transverse direction leading to the
equations of bending and torsional motions of a beam [32]:

ρS
∂ 2X(y, t)

∂ t2 −EIz
∂ 4X(y, t)

∂y4 −2β xρS
∂X(y, t)

∂ t
= fx, (1.1)
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d
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z

y

Figure 1.4: A suspended beam (cantilever) clamped at one end.

ρS
∂ 2Z(y, t)

∂ t2 −EIx
∂ 4Z(y, t)

∂y4 −2β zρS
∂Z(y, t)

∂ t
= fz, (1.2)

ρI
∂ 2ϕ(y, t)

∂ t2 −C
∂ 2ϕ(y, t)

∂y2 −2β ϕ ρI
∂ϕ
∂ t

= fϕ , (1.3)

where X(y, t) and Z(y, t) are the displacements of the cantilever from its equilibrium posi-
tion, ϕ(y, t) is the angle of torsion, I = Ix + Iz (Ix =

∫
x2dzdx, Iz =

∫
z2dzdx) is the moment

of inertia of the cross-section about its center of mass, ρ is the mass density, E is Young’s
modulus, S is the cross section, C is an elastic constant defined by the shape and mate-
rial of the cantilever (C = 1

3 µda3 for a plate with thickness a much smaller than width
d, a � d, µ is the Lamé constant), fx(z) is an external force per unit length and fϕ is an
external torque in the y direction per unit length.

Let us first analyze one of the bending modes. In case of small damping and no
external force applied, the solution can be found immediately by separating variables:

X(y, t) = eiωt(b1 cosh(ky)+b2 sinh(ky)+b3 cos(ky)+b4 sin(ky))

where k2 =
√

ρS/(EI)(ω − iβ ) and the coefficients bi are determined by the boundary
conditions. For a cantilever clamped at one end, the resonant frequencies can be found as

νb =
α2

n
2πL2

√
EIz

ρS

with αn = knL and kn being a solution of the equation 1+ cosh(kL)cos(kL) = 0. For ex-
ample, a cantilever with length L = 1µm and thickness a = 0.03 µm has the lowest mode
frequency νb = 0.56 a

L2

√
E

12ρ ≈ 40MHz assuming the bulk material values for silicon (Si):

E = 1.5×1011Nm−2 [33] and ρ = 2.33×103kgm−3 .
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Let us repeat the same analysis for the torsional mode that has the form:

ϕ(y, t) = eiωt(b1 cos(ky)+b2 sin(ky)),

where k = (ω − iβ )/c is the wave number, c =
√

C/(ρI) and the coefficients bi are again
determined by the boundary conditions. For a cantilever clamped at one end, the resonant
frequencies can be found as

ν t =
c(1/2+n)

2L
with n = 0,1,2,3..... For the same cantilever as above and with a � d the lowest mode
frequency is νt = c/(4L) ≈ 1GHz (µ ∼ 100GPa [33], d = 0.1µm). NEMS oscillating at
frequencies in the GHz range have already been observed [31].

1.2 Magnetoelectronic circuit theory

Magnetoelectronic circuit theory [34] provides a powerful tool for analyzing electron spin
and charge transport in disordered or chaotic F|N heterostructures with static magnetic
configurations in the CPP geometry. Since this approach is a convenient tool for describ-
ing the spin-transfer effect, we give here a brief account of the theory.

1.2.1 Landauer-Büttiker formalism

Consider several reservoirs 1..i..N at chemical potentials µ i coupled by ideal leads (i.e.
without back scattering) to some scattering region. The reservoirs serve both as a source
and sink of carriers. Let us determine the currents in the leads that connect the reservoirs
with the scattering region. For sufficiently small biases the potentials µ i are withing a
narrow range at the Fermi energy so that the energy dependence of transmission and
reflection probabilities can be disregarded. Let us introduce a special chemical potential
µ0 that is the smallest of the µ i. Below µ0, all states with positive and negative velocities
are filled and consequently, we can consider only potentials �µ i = µ i−µ0. The reservoir
i injects a current eυ i(dni/dE)� µ i into lead i. Here υ i is the velocity and dni/dE =
1/(2πh̄υ i) density of states for carriers at the Fermi energy. The current (e/h)� µ i
provided by the reservoir i is combined with the reflected current −Rii(e/h)�µ i and sum
over all transmitted currents from other reservoirs −∑ j �=i Ti j(e/h)�µ j where Ti j and Rii

are elastic scattering probabilities for an incident carrier to be transmitted from a reservoir
j into the reservoir i and to be reflected from reservoir i back into reservoir i, respectively.
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The current in lead i thus becomes

Ii =
e
h

[(
∑
j �=i

Ti j �µ j

)
− (M−Rii)�µ i

]
(1.4)

where M is the number of channels in lead i. Elastic scattering probabilities can be ex-
pressed via the reflection matrix (rii)mn for the reservoir i and the transmission matrix
from reservoir i to reservoir j, (t ji)mn (m and n describe channels in leads):

Rii = Tr
[
rii(rii)†

]
Tji = Tr

[
t ji(t ji)†

]

1.2.2 Spin resolved version of Landauer-Büttiker formalism

Let us generalize the Landauer-Büttiker formalism to the case when reservoirs are re-
placed by chaotic normal nodes that can have quasiequilibrium spin accumulations. The
transport through the leads can be expressed in terms of the energy-dependent isotropic
distribution functions f̂i(ε) in each node, that are 2×2 energy-dependent matrices in spin
space of spin-1/2 electrons. The distribution functions are related to local electrochemical
potentials µ i

c and spin accumulations µ i
s in the nodes:

µ i
c =

1
2

∫ ∞

ε0

dεTr
[

f̂i(ε)
]

(1.5)

µ i
s =

1
2

∫ ∞

ε0

dεTr
[
σ̂ f̂i(ε)

]
(1.6)

where a reference energy ε0 lies below the Fermi energy by much more than the thermal
energy and potential voltage biases and σ̂ = (σx,σy,σ z) is a vector of the Pauli matrices.

Intuitively or by formal derivation, one can generalize Eq. (1.4) to the case of spin-
dependent transport [34]:

Îi =
e
h
{∑

j �=i

[
∑
mn

t̂i j
mn f̂ j(t̂i j

mn)†
]
− (M f̂i −∑

mn
r̂ii

mn f̂i(r̂ii
mn)†)} (1.7)

where mn index designates summation over all incident and outgoing channels, i j desig-
nates the nodes and Î is the 2×2 tensor current related to spin Is and charge I0 currents
as Î = (1̂I0 + σ̂ · Is)/2, where 1̂ is the 2×2 unit matrix.
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1 2

Figure 1.5: N1|F|N2 circuit element of an arbitrary multilayered spin valve structure (µ i
s

describes spin accumulation in normal metals).

1.2.3 Charge and spin currents in F|N multilayer structures

An arbitrary multilayered spin valve structure (or a multiterminal device) can be divided
into smaller elements; the same way as electronic circuit can be divided into resistive
elements allowing formulation of Kirchoff’s rules. For convenience, we chose an N|F|N
composite to be a generalized resistive element in our spin valve and we connect the
resistive elements by ideal leads and nodes taken in normal metals (e.g. setup in Fig.
1.3 consists of two N|F|N elements). The charge current is conserved in each node and,
provided spin flip in the nodes is small, the same is true for the spin current. Here we dis-
regard spin flip processes since they are usually small and can be disregarded. However,
in some cases they have to be taken into account [35] (Section 1.4).

Let us apply Eq. (1.7) to a N1|F|N2 circuit element, choosing the normal metals as
nodes (Fig. 1.5). Non-collinear spin accumulation in the nodes are created by currents
from other non-specified regions of the device. The entire F layer including the interfaces
is considered as a magnetic scatterer. On the normal metal side in the region 2

Î =
e
h
{∑

mn
[t̂ ′

mn
f̂ N1(t̂ ′

mn
)† − (δ mn f̂ N2 − r̂mn f̂ N2(r̂mn)†)]} (1.8)

where r̂mn is the spin-dependent reflection coefficient for electrons reflected from channel
n into channel m in the node 2, t̂ ′

mn
is the spin dependent transmission coefficient for

electrons transmitted from channel n in the node 1 into channel m in the node 2.
In the absence of spin-flip processes, the matrices r̂mn and t̂ ′

mn
should be diagonal in

spin space provided the axis z is parallel to the magnetization of the ferromagnet (we are
free to chose this reference frame). Expanding the spin-dependent distribution matrices
in nodes 1 and 2 into 2×2 Pauli and unit matrices; f̂ N = 1̂ f N

0 + σ̂ fN
s and the unit vector

mz parallel to the axis z, we obtain for spin and charge currents in the node 2:

I0 = (G↑ +G↓)∆ f N
0 +(G↑ −G↓)∆fN

s ·mz (1.9)
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Is = mz
[
(G↑ −G↓)∆ f N

0 +(G↑ +G↓)∆fN
s
]

−2(mz × fN2
s ×mz)ReGr

↑↓ +2(fN2
s ×mz) ImGr

↑↓
+2(mz × fN1

s ×mz)ReGt
↑↓ −2(fN1

s ×mz) ImGt
↑↓ (1.10)

where ∆ f N
0 = f N1

0 − f N2
0 and ∆fN

s = fN1
s − fN2

s . We introduced spin up(down) conduc-

tances G↑(↓) = e2

h ∑nm t ′↑(↓)nm

(
t ′↑(↓)nm

)∗
, and mixing conductance and transmission Gr

↑↓ =

e2

h ∑nm[δ nm − (r↑nm)∗r↓nm] and Gt
↑↓ = e2

h ∑nm t ′↑nm

(
t ′↓nm

)∗
, respectively.

1.3 Spin-transfer effect

The spin-transfer effect arises when one sends charge currents through spin valves with
noncollinear magnetizations (Fig. 1.3). The transverse spin-current in the normal metal
spacer is absorbed by the free layer magnetization. The cause of the absorption is band-
structure mismatch between majority and minority conductance bands in the ferromag-
net (Fig. 1.1) and conductance band in the normal metal [9]. This mismatch leads to
absorption of the transverse component via two mechanisms: the spin-dependent scatter-
ing at the interface and the destructive interference of transverse components of electron
spins entering the ferromagnet [34]. The interference appears since electron states from
the normal metal are not eigenstates in the ferromagnet and have to be represented as
a linear combinations of two states with kF

↑ and kF
↓ wave vectors. In ferromagnets with

a large cross-section area, a large number of transverse modes exists and up and down
states follow paths of different lengths before arriving to some arbitrary chosen point in
the ferromagnet. The difference in wave vectors for two states propagating in the ferro-
magnet is equivalent to a spin precession around the exchange field. The phase acquired
during the precession is proportional to the path length and thus averaging over all such
paths eliminates the transverse component of the spins provided the exchange magnetic
field is strong enough and the point is far enough from the interface. The distance at
which the transverse component of the spin current disappears is called the ferromagnetic
coherence length (λ c). An electron spin, travelling a distance ∆ in the ferromagnet, ac-
quires rotation by a phase ∆(kF

↑ − kF
↓ ). The coherence length, λ c can then be estimated

as λ c = π/|kF
↑ − kF

↓ |. In transition metals the coherence length is much smaller than all
other length scales such as spin-diffusion length or mean free path which is confirmed by
band structure calculations [9].

One can obtain the same result from the magnetoelectronic circuit theory Eq. (1.10).
This theory is also applicable when the node 2 in Fig. 1.5 is a ferromagnet and the scat-
tering element is the interface of the ferromagnet with the normal metal. This allows us to
describe the absorption of the transverse spin current in a ferromagnet. Since spin-up and
-down states are eigen states in the ferromagnet, the distribution function in the ferromag-
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netic node, f̂ F , does not have transverse spin-components. According to Eq. (1.10), the
transverse spin current is then proportional to the transverse component of f̂ N and to the

mixing transmission Gt
↑↓ = e2

h ∑nm t ′↑nm

(
t ′↓nm

)∗
. Due to the exchange field, the product of

the transmission coefficients acquire rapidly oscillating phase factor as a function of the
length of the trajectory. Consequently, after averaging over all channels, the transverse
spin current quickly decays in the ferromagnet . According to band structure calculations
for transition metals, the mixing transmission decays at length of � 1 nm [36] (becoming
even smaller with disorder). Since the coherence length is the smallest length scale even
smaller than the mean free path, the spin transfer effectively happens at the interface. The
situation is different for weak ferromagnets in which λ c may be larger.

1.4 Spin-flip in diffusive systems

The torques, due to the spin-transfer effect can be modified by spin-orbit interactions,
interactions with magnetic impurities or nonuniform magnetizations at interfaces, leading
to a partial angular momentum transfer to the lattice. Such effects are a source of small
mechanical torques that may even affect the motion of small mechanical structures [37].
The spin-orbit (SO) interaction is a relativistic correction to the motion of electrons in an
electric field. The Hamiltonian for the spin-orbit interaction is

HSO =
α

h̄k2
F

[σ̂ ×�V ] · p̂ (1.11)

where p̂ and σ̂ are the operators for momentum and electron spin respectively, α is the
dimensionless spin-orbit coupling constant and �V is the gradient of the electrostatic
potential due to non-magnetic impurities. The spin-orbit interaction becomes important
for heavy (large atomic number Z) elements. Interactions with magnetic impurities can
be introduced by

Hsm = Vsm(r)σ̂ ·S(r) (1.12)

where Vsm(r) is the strength of the coupling of the itinerant electron spin to the spin of
the magnetic impurity S(r). The general problem of spin-transfer in the presence of the
above effects is complicated. In case of isotropic diffusive system, the mentioned effects
can be included in the spin-diffusion equation for both ferromagnets and normal metals
[34]. The diffusion equations for charge and spin can be obtained after substitution of
currents in equation:

∂x j0 = 0 ,
∂
∂x

js = fs/τs f , (1.13)

where the spin-flip relaxation time 1/τs f = 1/τso + 1/τsm is a material dependent pa-
rameter that includes the spin-flip due to magnetic and non-magnetic impurities. The
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charge and spin currents in the normal metal are jN = D∂x f N
0 and jN

s = D∂xfN
s respec-

tively, where f N
0 and fN

s are the local charge and spin distribution functions defined as
f̂ N = 1̂ f N

0 + σ̂ · fN
s , and D is the diffusion constant. In the ferromagnet, the particle and

spin currents are jF = (D↑∂x f↑ + D↓∂x f↓)/2 and jF
s = m∂x(D↑ f↑ −D↓ f↓)/2, where D↑

and D↓ are the diffusion constants for spin-up and spin-down electrons. The diffusion
equation in the normal metal:

∂ 2
x D f N

0 = 0 ,
∂ 2

∂x
DfN

s = fs/τN
s f ,

and in the ferromagnet:

∂ 2
x (D↑ f↑ +D↓ f↓) = 0 ,

∂ 2

∂x
(D↑ f↑ −D↓ f↓) = ( f↑ − f↓)/τF

s f .

1.5 Magnetization dynamics

The dynamics of the order parameter of small magnetic clusters and films is a basic prob-
lem of condensed matter physics with considerable potential for technological applica-
tions [38, 39]. Here we describe a phenomenological approach that is usually used to
describe the magnetization dynamics.

We would like to consider temperatures well below the ferromagnetic critical temper-
ature Tc, so that the equilibrium magnetization density saturates to some material-specific
value Ms/V where V is the volume of the ferromagnet. Since we are interested in the low
energy excitations in the ferromagnet, only slow motions of the magnetization density
with a fixed magnitude are relevant, however, the magnetization direction can still vary
with coordinate. Thus equation for the magnetization density must be written as follows

∂M(r, t)
∂ t

= Ω×M(r, t) (1.14)

where Ω is some angular velocity that in principle can vary during the dynamics (we are
not considering second derivative since we are interested in slow dynamics). The equi-
librium state of the ferromagnet can be found by minimizing the Gibbs free energy when
temperature T , volume V and external magnetic field H are constant. Let us introduce an
effective field Heff:

δ F̃ = −
∫

Heffδ MdV,

where δ F̃ is a variation of the Gibbs free energy as a result of δM. The energy dissipated



Chapter 1. Introduction 13

by the magnet as the magnetization moves

Q = T
(

∂S
∂ t

)
TV H

= −∂ F̃
∂ t

,

where Q is the rate of energy dissipation and S is the entropy (for solids with T � Tc we
can consider zero temperature limit, thus temperature does not appear in formulas any
further). Using Eq. (1.14) we have

Q =
∫

Heff
∂M
∂ t

dV =
∫

Heff[Ω×M(r, t)]dV.

We can conclude that the dynamics is dissipationless when Ω = const ·Heff. To lowest
order in magnetizations the magnetic part of the Gibbs free energy is of the form:

Emg =
∫

∑
i j

(
1
2

Ai j
∂M
∂xi

∂M
∂x j

+
1
2

Di jMiMj −MH
)

dV, (1.15)

where symmetric tensors Ai j and Di j describe the exchange stiffness and anisotropies of
the ferromagnet respectively. The effective field is a functional derivative of the magnetic
Gibbs free energy:

Heff = ∑
i j

(
Ai j

∂ 2M
∂xi∂x j

−Di jMix j

)
+H (1.16)

We can now find the constant by considering a ferromagnet with uniform magnetization
and without anisotropies, which according to Eq. (1.16) means Heff = H. The behavior
of a moment in an external magnetic field H is well known

dM
dt

= −γM×H,

and we arrive at the conclusion const = γ .
In reality, the magnetization dynamics leads to some small dissipation due to inter-

actions with conduction electrons and generation of spin-waves (magnons). Landau and
Lifshitz introduced dissipation in a phenomenological way, arriving at what is known as
Landau-Lifshitz (LL) equation:

dM
dt

= −γM×Heff +
λ
Ms

M× (M×Heff), (1.17)

where λ is a material constant describing damping. In 1955 Gilbert developed a La-
grangian formulation of the magnetization dynamics where the role of the generalized
coordinates is played by the components of the magnetization Mx, My and Mz. In this
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Figure 1.6: (left) Undamped magnetization precession. (right) Damped magnetization
precession (Heff describes the effective magnetic field).

framework, the phenomenological dissipation is introduced quite naturally as a ’viscous’
force, whose components are proportional to the time derivatives of the generalized coor-
dinates. The resulting Landau-Lifshitz-Gilbert (LLG) equation has the form [40, 41]:

dM
dt

= −γM×Heff +
α
Ms

M× dM
dt

, (1.18)

where the phenomenological Gilbert constant is typically α ≤ 0.01. Note that for small
damping (which is usually the case) both LL and LLG equations are equivalent and there-
fore it does not matter which equation to use.

The dynamics due to LL or LLG equation is represented schematically in Fig. 1.6.
The first term is responsible for the rotation around the effective field as shown in the left
figure. The damping term creates a torque that pushes the magnetization in the direction
of the effective field as it is shown on the right in Fig. 1.6.

In Section 1.3 we concluded that in ferromagnets thicker than the ferromagnetic
coherence length the transverse component of spin-current is absorbed by the magne-
tization. The torque transfered to the magnetization can be easily expressed as τ =
− h̄

2em× (Is ×m) where m is a unit vector along the magnetization. The normal metal
can receive angular momentum as a result of the adiabatic response (spin pumping) of the
electrons in the normal metal to the time-dependent magnetization dynamics, leading to
dynamical torques on the magnetization [42]. For uniform magnetization densities, we
generalize LLG equation by accounting for the extra toques (spin-transfer torques and
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dynamical torques respectively):

dM
dt

= −γM×Heff +
α
Ms

M× dM
dt

− γ
h̄

V 2e
m× (Is×m) (1.19)

− γ
h̄2

V2e2

(
Re(Gr

↑↓ −Gt
↑↓)m× dm

dt
+ Im(Gr

↑↓ −Gt
↑↓)

dm
dt

)
. (1.20)

(1.21)

Current-induced magnetization dynamics can be realized in perpendicular spin valves
with one hard (fixed) ferromagnet that acts as a polarizer and a second soft (free layer)
ferromagnet that reacts on the spin-transfer torque. A recent beautiful experiment al-
lowed time domain measurement of macrospin magnetization dynamics driven by the
spin-transfer torque [17].

The knowledge of the magnetization dynamics is very important for magnetization
reversal applications, such as random-access memories (MRAM) [19]. Ultra-fast mech-
anisms of magnetization reversal, like the so-called precessional switching (Fig. 1.7) in
which the magnetization vector traces straight paths on the unit sphere, attract a lot of
attention [20–22]. Techniques of magnetization reversal by the spin-transfer torque in
magnetic layers [5, 6, 15–17] as well as in magnetic wires with domain walls [43, 44]
may be employed in applications soon. Completely different switching strategies, e.g.
using antiferromagnets [45], capture interest as well.

1.6 Magnetomechanical torques

Magnetomechanical torques (forces) provide the coupling between a mechanical res-
onator and spins. The principle of the Magnetic Resonance Force Microscopy (MRFM) is
based on such a coupling [26]. A sample is placed on a force microscope cantilever (Fig.
1.8) and a permanent magnet generates a magnetic field gradient which exerts a force
on the cantilever. The force originates either from unpaired electron spins in the sample
or from nuclear magnetic moments. The sample magnetization is then modulated by a
radio-frequency coil at the resonant frequency of the cantilever resulting in its excitation
that is measured by optical-fiber interferometry.

The MRFM technique can be used for detection of the ferromagnetic resonance
(FMR). In one of realizations, one directly measures the magnetomehcnaical torques act-
ing on the lattice [25]. The torsional mode of the cantilever is employed (Fig. 1.9) and the
magnetomechanical torques can be understood from the LLG Eq. (1.18). When rf fields
are constantly pumping the magnetization motion, the magnetization precesses around the
equilibrium direction for each cycle, losing some part of its momentum due to the Gilbert
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Figure 1.7: Precessional switching. A short magnetic pulse is applied until the moment
designated by star, after that the magnetization evolves due to demagnetizing field along
z-direction for a thin film in x− y plane.

Figure 1.8: Typical Magnetic Resonance Force Microscopy setup [26].
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Figure 1.9: Mechanical detection of FMR (H0 is an external magnetic field and hx is an
oscillating rf magnetic field) [25].

damping. The momentum that is thereby transfered to the lattice causes a torsion of the
cantilever that can be observed.

1.7 Electro-magnetic and spin-transfer motors

Using a broad definition of "motor" as apparatus that converts electrical energy into mo-
tion, most sources cite Faraday as developing the demonstration devices in 1821. Most
people nowdays wouldn’t recognize them as anything resembling a modern electric mo-
tor.

The classic motor has a rotating armature in the form of an electromagnet with two
poles. A rotary switch called a commutator reverses the direction of the electric current
twice every cycle, to flow through the armature so that the poles of the electromagnet
push and pull against the permanent magnets on the outside of the motor. As the poles
of the armature electromagnet pass the poles of the permanent magnets, the commutator
reverses the polarity of the armature electromagnet. During that instant of switching
polarity, inertia keeps the classical motor going in the proper direction (See Fig. 1.10).

A maximum torque generated by the structure in Fig. 1.10 is

τDC = BSI

where B is the magnetic flux density (usually ferromagnetic materials can not exceed 1.5T
before they saturate, for these reasons, 1 T will be taken as the maximum flux density),
S is the cross-section of the armature and I is the charge current flowing in the structure.
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Figure 1.10: An electro-magnetic motor operated by DC currents (current I is sent
through the armature, B is the magnetic flux generated by permanent magnets).

One can see that as the motor becomes N times smaller the ratio torque/current becomes
N2 smaller. A maximal spin-transfer torque can be estimated as (see Section 1.5)

τST = Ih̄/(2e)

where the torque is equal to the angular momentum transfered by spins of the current I. By
comparing these two torques we conclude that in structures smaller than 10−100 nm the
spin-transfer torques are dominant. The spin-transfer motor does not require generation
of magnetic fields which is advantageous for small structures.

In a realization of a motor that is based on spin-transfer torques, one needs to employ
magnetomechanical torques in order to transfer the spin-transfer torques to the mechanical
motion. One of the possible realizations of the spin-transfer motor is presented in Fig.
1.11. In this multilayer structure one of the magnetizations is rigidly fixed (e.g. by a
strong crystal anisotropy) and the other is free (due to strong shape anisotropy it only
moves in the plane of the film). The middle normal metal has no spin-flip. Let us first
suppose that the whole structure can not move. Then due to spin-transfer torques the
magnetizations align parallel for one direction of the current, while for the other direction
of the current antiparallel [4] (see Fig. 1.11 and Chapter 2 of this thesis). Suppose for a
while that the magnetization has inertia (a small external magnetic field along the rotor
can provide the effect of inertia, forcing the magnetization to keep rotation at parallel or
antiparallel instants when no other torque acts on the magnetizations) and we reverse the
direction of the current every time the magnetizations are parallel or antiparallel. In this
case, the magnetization in the free layer starts to rotate as a propeller. However, a torque
in the direction of the propeller rotation acts on the fixed layer as well and consequently
on the whole rotor. The rotor starts to rotate when released. In order to transfer the
charge current to the rotor, one may use a conducting liquid which may be preferable for
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layer
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layer

Directions of current

Figure 1.11: A realization of the spin-transfer motor. A rotor consists of two ferromag-
netic layers, one of which is fixed. The spin-transfer torques are shown by smaller arrows.

small scales. For simplicity, we suppose that all spin-flip happens in reservoirs and in the
conducting liquid.

Another realization of the spin-transfer motor contains two ferromagnetic layers that
have fixed by anisotropies magnetizations (see Fig. 1.11). The maximal torques are
generated when the angle between the magnetizations is 90 degrees. For this realization
we do not need to reverse the current, and the rotor rotates due to the spin-transfer torque
when a DC current is sent through the structure (see Fig. 1.11). The quantitative analysis
of the spin-transfer motor is presented in an upcoming publication (to be published in
Applied Physics Letters).

1.8 This thesis

In the second chapter of the thesis, we consider the spin-transfer effect in metallic F|N|F
multilayer structures. By applying the diffusion equation, we calculate the angular mag-
netoresistance and torques for asymmetric structures.

Spin-flip is taken into account at the end of the second chapter and further in the third
chapter. The latter chapter also deals with electron interference effects in ferromagnetic
layers with thickness of the order of the ferromagnetic coherence length. In this case, the
transverse component of the spin-current is not completely absorbed due to the destructive
interference, therefore, part of it can transmit through the ferromagnet. This has an effect
on the spin-transfer torque and transport equations.

In the last chapter, we consider the magnetomechanical torques in the regime of the
resonant magnetovibrational coupling. The transfer of energy from the magnetization
motion into the mechanical motion and vise versa is optimal in this regime. We propose



20 Electrical and mechanical magnetization torques

a transducer of mechanical motion that is based on the spin-transfer torque effect and on
resonant magnetovibrational coupling. Finally, in the same chapter, we consider the full
magnetization reversal induced by magnetovibrational coupling.
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Chapter 2

Spin transfer in diffusive
ferromagnet-normal metal systems with
spin-flip scattering

The spin transfer in biased disordered ferromagnet (F) - normal metal (N) systems is
calculated by the diffusion equation. For F1-N2-F2 and N1-F1-N2-F2-N3 spin valves,
the effect of spin-flip processes in the normal metal and ferromagnet parts are obtained
analytically. Spin-flip in the center metal N2 reduces the spin-transfer, whereas spin-flip
in the outer normal metals N1 and N3 can increase it by effectively enhancing the spin
polarization of the device.

23
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Figure 2.1: N1-F1-N2-F2-N3 multilayer system with noncollinear magnetizations.

2.1 Introduction

A spin-polarized electric current flowing through magnetic multilayers with canted mag-
netizations produces torques on the magnetic moments of the ferromagnets [1, 2]. The
effect is inverse to the giant magnetoresistance, in which a current is affected by the rela-
tive orientation of the magnetization directions. The spin-current-induced magnetization
torque arises from an interaction between conduction electron spins and the magnetic or-
der parameter, transferring angular momentum between ferromagnetic layers, hence the
name “spin transfer”. The observed asymmetry of the switching with respect to the di-
rection of current flow in the magnetization switching in cobalt layers [3–6] is strong
evidence that spin transfer dominates charge current-induced Oersted magnetic fields in
mesoscopic small structures. Spin-transfer devices are promising for applications by the
ability to excite and probe the dynamics of magnetic moments at small length scales. Re-
versing magnetizations with little power consumption can be utilized in current-controlled
magnetic memory elements. As a result the spin-transfer effect has already been the sub-
ject of several theoretical studies [7–15].

The torque can be formulated by scattering theory in terms of the spin dependence
of the reflection coefficients of the interface and the incoherence of spin-up and -down
states inside the ferromagnet. This leads to a destructive interference of the component of
the spin current perpendicular to the magnetization over the ferromagnetic decoherence
length, which is smaller than the mean free path for not too weak ferromagnets [7–11, 14,
15]. In this paper we solve the spin-dependent diffusion equation for a multilayer system
consisting of two reservoirs, three normal metal layers, and two ferromagnetic layers, (see
Fig. 2.1), generalizing the approach of Valet and Fert [16] to noncollinear systems.

Here we present an approach based on a diffusion equation that reveals the main phys-
ical effects of spin-flip scattering in different parts of the multilayer on the spin transfer:
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Spin-flip scattering in the middle normal metal N2 reduces the spin transfer, whereas
spin-flip scattering in the outer normal metals N1 and N3 can enhance the spin transfer.
Spin-flip at interfaces is not considered analytically, although in Appendix 2.B we include
it into our approach. Since interface spin-flip is again a smaller correction to most (but
not all [17]) interfaces, the present analytic results are therefore quite generally valid. We
mainly focus on relatively large systems in which the bulk resistance dominates. Inter-
faces play an essential role in transferring the torques, but are assumed to not significantly
increase the total as well as the mixing resistance (the inverse mixing conductance) in the
limit of large systems. The inverse mixing conductance of a bulk (normal metal) layer
with an interface is simply the sum of the inverse interface mixing conductance and the
conventional bulk layer resistance [18]. When the layer is sufficiently thick, the former
can be disregarded. Physically this means that potential and spin-accumulation drops at
the interfaces are so small that their contribution can be disregarded. A typical interface
resistance for, e.g., Co/Cu is ARsurface ∼ fΩm2. The corresponding typical bulk resistance
for clean and dirty Co/Cu layer varies between ARbulk = 0.01L[nm] fΩm2 and 0.1L[nm]
fΩm2 (see, for example, [19] and [20]) where L is the length of the layers expressed in nm.
In the presence of spin-flip the analytic expressions derived below are valid when the lay-
ers are thicker than 100 nm for pure samples and 10 nm for alloys, which is reasonable for
experimental fabrication, and furthermore reveal qualitative effects of spin-flip relaxation
process on the spin torques for thinner layers. In the absence of spin-flip scattering our an-
alytic results also hold for general structures (Appendix 2.B). Related calculations of the
torque and the magnetoresistance for submicron Co/Cu multilayers using the Boltzmann
equation was presented in [15].

The paper is organized as follows: in Section 2.2 we explain the averaging mecha-
nisms of spin transfer and the boundary conditions for the diffusion equation. The latter
are formulated for a N1-F1-N2-F2-N3 multilayer system and solved analytically in the
presence of spin-flip processes in the bulk layers in Sections 2.3 and 2.4. In Section 2.5
we summarize our conclusion. In Appendix 2.A, magnetoelectronic circuit theory [8, 10]
is shown to be consistent with the results from the diffusion equation in the absence of
spin-flip scattering. Interfaces are considered in Appendix 2.B, where we also discuss the
possibility to take into account spin-flip at interfaces.

2.2 Diffusive approach to multilayer systems

Electron states with spins that are not collinear to the magnetization direction are not
eigenstates of a ferromagnet, but precess around the magnetization vector. In three di-
mensions, a noncollinear spin current is composed of many states with different Larmor
frequencies which average out quickly in a ferromagnet as a function of penetration depth.
The efficient relaxation of the nondiagonal terms in the spin-density matrix is equivalent
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to the suppression of spin accumulation noncollinear to the magnetization in the ferro-
magnet [8–10, 15]. This spin-dephasing mechanism does not exist in normal metals, in
which the spin-wave functions remain coherent on the length scale of the spin-diffusion
length, which can be of the order of microns. In ballistic systems, the spin transfer occurs
over the ferromagnetic decoherence length λ c = 1/

∣∣∣k↑F − k↓F
∣∣∣. In conventional ferromag-

nets the exchange energy is of the same order of magnitude as the Fermi energy, and λ c is
of the order of the lattice constant. The strongly localized regime in which the mean free
path is smaller than the inverse Fermi wavevector, � < 1/kF , is not relevant for elemen-
tal metals. In conventional metallic ferromagnets �  1/kF , and the length scale of the
spin transfer λ c is necessarily smaller than the mean free path �, and therefore is not af-
fected by disorder. This argument does not hold for gradual interfaces and domain walls.
The opposite limit was considered in [21] (although the authors intend to address the op-
posite limit in a forthcoming publication), where λ c =

√
2hD0/J (λ J in [21]), or with

D0 ∼ �2/τ , λ c ∼ �
√

2h/Jτ . The limit considered in [21] implies 2h/Jτ > 1 or λ c > �

and therefore does not hold for ferromagnetic conductors like Fe, Co, Ni and its alloys.
Semiclassical methods cannot describe processes on length scales smaller than the

mean free path, and thus cannot properly describe abrupt interfaces. It is possible, how-
ever, to express boundary conditions in terms of transmission and reflection probabilities
which connect the distribution functions on both sides of an interface, and have to be
computed quantum mechanically [22]. For transport, these boundary conditions translate
into interface resistances, which arise from discontinuities in the electronic structure and
disorder at the interface. This phenomenon was also extensively studied in the quasi-
classical theory of superconductivity [23], where a generalized diffusion approach can be
used in the bulk of the superconductor, but proper boundary conditions must be used at
the interfaces between a superconductor and another normal or superconducting metal.

These effects can be taken into account by first-principles band-structure calculations
[22]. In collinear systems it is possible to circumvent the problem by replacing the in-
terfaces by regions of a fictitious bulk material, the resistances of which can be fitted to
experiments. This is no longer possible when the magnetizations are noncollinear, be-
cause potential steps are essential for a description of the dephasing of the noncollinear
spin current and the torque. However, in the case of a small imaginary part of the mixing
interface conductance (which holds for intermetallic interfaces) this again becomes the
correct procedure, as shown in Appendix 2.B.

We wish to model the multilayer system (Fig. 2.1) by the diffusion equation and in-
terface boundary conditions. Let f̂ (ε) be the 2×2 distribution matrix at a given energy ε
and Î the 2×2 current matrix in spin space. It is convenient to expand these matrices into
a scalar particle and a vector spin contribution f̂ = 1̂ f0 + σ̂ · fs, Î = (1̂I0 + σ̂ · Is)/2. For
normal metals f̂ N = 1̂ f N

0 + σ̂ · s, where f N
0 is the local charge-related chemical potential

and the spin distribution function has magnitude f N
s and direction s. In the ferromagnet
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f̂ F = 1̂ f F
0 + σ̂ ·m f F

s = 1̂( f↑ + f↓)/2 + σ̂ ·m( f↑ − f↓)/2, where f↑ and f↓ are the diago-
nal elements of the distribution matrix when the spin-quantization axis is parallel to the
magnetization in the ferromagnet m.

The diffusion equation describes transport in both the normal metal and the ferro-
magnet. We first consider a single interface and disregard spin-flip scattering. The par-
ticle and spin currents in the normal metal with diffusion constant D are j = D∂x f N

0 and
jN
s = D∂xfN

s , respectively. The particle and spin currents are conserved:

D∂ 2
x f N

0 = 0 , D
∂ 2

∂x2 fN
s = 0 . (2.1)

In the ferromagnet the particle and spin currents are j = D↑∂x f↑ + D↓∂x f↓ and jF
s =

m∂x(D↑ f↑ −D↓ f↓) (see [8], Eqs. (38)-(39)), where D↑ and D↓ are the diffusion constants
for spin-up and -down electrons. Current conservation of the spin components parallel
and antiparallel to the magnetization direction in the ferromagnet read:

D↑∂ 2
x f↑ = 0 , D↓∂ 2

x f↓ = 0 . (2.2)

Eqs. (2.1) and (2.2) are applicable only inside the bulk layers. The boundary conditions
at the interface arise from the continuity of the particle and spin distribution functions on
the normal and the ferromagnetic metal sides [8, 10]:

f N
0 |N-surface = ( f↑ + f↓)/2|F-surface , (2.3)

fN
s |N-surface = m( f↑ − f↓)/2|F-surface . (2.4)

Furthermore, particle current is conserved [8, 10]:

[D∂x f N
0 ]|N-surface = ∂x(D↑ f↑ +D↓ f↓)|F-surface . (2.5)

We have discussed above why the noncollinear component of the spin-accumulation de-
cays on the length scale of the order of the lattice spacing. This leads to the third boundary
condition at the F-N interface, namely, that the spin current is conserved only for the spin
component parallel to the magnetization direction [8, 10]:

[D∂xfN
s ]|N-surface = m∂x(D↑ f↑ −D↓ f↓)|F-surface +�τ , (2.6)

where �τ is the nonconserved part of the spin current leading to torques acting on the
magnetization in the ferromagnet. One should keep in mind here that in Eq. (2.6) the
collinear to the magnetization part of the left side has to be equal to the first term of the
right side, and the transverse part of the left side has to be equal to�τ .

Solving these equations, we recover Eq. (2.29) with the mixing conductance, as found
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by the magnetoelectric circuit theory (Appendix 2.A) [8, 10]. The magnetoelectronic cir-
cuit theory is thus equivalent to the diffusion approach when the system size is larger than
the mean free path. However, the magnetoelectronic circuit theory is a more general ap-
proach that can also be used for circuits or parts of circuits that are smaller than the mean
free path. Note that the boundary conditions above do not contain explicit reference to
interface conductance parameters and are therefore valid only for bulk resistances which
are sufficiently larger than the interface resistances. The gain by using the diffusion equa-
tion is, that we can now easily derive simple analytical results, also in the presence of
spin-flip relaxation. In normal as well as ferromagnetic metals, spin-flip scattering leads
to

∂x j0 = 0 ,
∂
∂x

js = fs/τs f , (2.7)

where the spin-flip relaxation time τs f is a material dependent parameter.

2.3 Results for systems without spin-flip

Let us now apply this method to the spin transfer in a N1-F1-N2-F2-N3 system (Fig. 2.1)
to obtain explicit results for the figure of merit, viz. the ratio of the spin torque to the
charge current through (or voltage bias across) the system. The layers are characterized
by the lengths LN1, LF1, LN2, LF2 and LN3 and by diffusion constants DN1, DF1,↑(↓), DN2,
DF2,↑(↓) and DN3 for each normal and ferromagnetic metal layer, respectively. The resis-
tances of the system are RN1, RF1,↑, RF1,↓, RN2, RF2,↑, RF2,↓ and RN3 with, for example,
RN1 = LN1/(AN1DN1) and RF1,↑ = LF1/(AF1DF1,↑) (L and A are the length and cross
section of a layer respectively). The assymetry between the ferromagnetic layers can be
achieved by using different materials or by varying thicknesses of layers. Let us initially
disregard spin-flip scattering.

The continuity of the spin-current at the interface N1-F1 can easily be shown from
Eqs. (2.1), (2.4) and (2.6). As a result the two layers N1-F1 behave effectively like a
single ferromagnetic layer with renormalized resistance:

R̃F1,↑ = RF1,↑ +2RN1 , (2.8a)

R̃F1,↓ = RF1,↓ +2RN1 . (2.8b)

The same is true for the interface F2-N3. As a result it is sufficient to treat only the
F1-N-F2 system. In general, there are spin-current discontinuities at the interfaces F1-N
and N-F2 which, due to momentum conservation, lead to torques acting on the magnetic
moments in the ferromagnetic layers. Taking into account all diffusion equations (2.1) and
(2.2) and boundary conditions (2.3)-(2.6), and also introducing the parameters R = RN2,
Ri± = (R̃Fi,↑± R̃Fi,↓)/4, where i = 1,2, the torques can be written as
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�τ1 = I0R2−
(R+R1+−αR1−R2+/R2−)

(R+R2+)(R+R1+)−α2R1+R2+
(αm1 −m2) , (2.9a)

�τ2 = I0R1−
R+R2+ −αR2−R1+/R1−

(R+R2+)(R+R1+)−α2R1+R2+
(m1 −αm2) , (2.9b)

where τ1 and τ2 are torques acting on the magnetizations of the first and second ferro-
magnet respectively, α =(m1 ·m2)= cosθ , θ being the angle between the magnetizations.
The resistance can also be calculated:

ℜ(θ) = R+R1+ +R2+ − R2
1− +2αR1−R2− +R2

2− +(1−α2)(R2
1−R2+ +R2

2−R1+)/R
R+R1+ +R2+ +R1+R2+(1−α2)/R

.(2.10)

It is worthwhile to rewrite the above Eq. (2.9) using the effective polarization P = R−/R+

(which is the polarization of a current flowing through F or N-F layers connected to reser-
voirs) and the ferromagnet charge current resistance Ri = Ri+. The (absolute values of
the) torques are then

|τ1| =
|1+R/R1 −αP1/P2|

(1+R/R2)(1+R/R1)−α2 I0P2|sinθ | , (2.11a)

|τ2| =
|1+R/R2 −αP2/P1|

(1+R/R1)(1+R/R2)−α2 I0P1|sinθ | . (2.11b)

As one can see from Eqs. (2.9) and (2.11) there is an asymmetry with respect to current in-
version. For example, if only one polarization can rotate (one ferromagnet is much wider
than the other or exchange biased), domains in the two magnetic layers can be aligned
antiparallel by currents flowing in one direction, and reoriented parallel by reversing the
current flow. This happens because only one state (parallel or antiparallel) is at equilib-
rium for a fixed direction of the current. If the currents are large enough (depending on
other sources of torques such as external fields, magnetocrystalline anisotropy and damp-
ing) the magnetization will flip, which can be monitored by a change in the total resistance
of

R(↑↓)−R(↑↑)
R(↑↓) =

4R1−R2−
R2 +(R1+ +R2+)2 − (R1− +R2−)2 . (2.12)

In the case of unit polarization and R ≈ 0 the relative resistance change Eq. (2.12) can
be 100%. This asymmetry was predicted by spin-transfer theory [2], and was observed
experimentally [3–5]. Note, however, that in these experiments the mean free path is
comparable to the size of the systems, and the present theory cannot be directly applied.

From Eq. (2.11) follows that the torques are equal to zero for parallel and antiparallel
alignments. When the numerator of Eq. (2.11) 1+R/R1(2)−αP1(2)/P2(1) never vanishes,
the torque increases with θ from zero to a maximal value which corresponds to an angle
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Figure 2.2: Torque acting on the first ferromagnet as a function of the relative angle
between the two magnetizations for different normal metal resistances (the resistances
are expressed in units R1 = R2, P1 = 0.5, P2 = 0.2).

larger than π/2 and vanishes again when configurations become antiparallel. When the
nominator of Eq. (2.9) does vanish for some angle θ 0, the absolute value of torque has a
local maximum before θ 0 (see Fig. 2.2). In principle, it is possible to have an equilibrium
magnetization angle θ = θ 0 for one current direction while equilibrium magnetization
angle θ = 0 or π for the opposite current direction (this can lead to asymmetry for the
transition from the antialigned state to the aligned state in comparison with the transition
from aligned to antialigned observed experimentally [6]).

We propose a setup in which only one magnetization can rotate (usually it is achieved
by taking one ferromagnetic layer much wider than the other or by exchange biasing). If
one ferromagnetic layer (for example the first one) has a resistance R1 � R and the other
R2 > R, the torque τ2 vanishes whereas the other torque can be simplified to

τ1 = I0P2|sinθ | (2.13)

The maximal torque in this setup occurs when the magnetizations of ferromagnet F1 and
ferromagnet F2 are perpendicular.

In general, the spin torque is maximal when the resistance R of the normal metal
vanishes, as could have been expected since this also gives the maximum magnetoresis-
tance effect. In Eqs. (2.9) and (2.11) the size of the magnets does not play a dominant
role for small normal metal resistances. In this case the torques depend mainly on the
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polarizations.

2.4 Results for systems with spin-flip

So far, we have disregarded spin-flip scattering, which can be included readily, however.
Here the system N1-F1-N2-F2-N3 is analyzed, and spin-flip in each normal metal part is
considered separately. Introducing spin-flip in N1 and N3 leads to a simple result: Eq.
(2.8) without spin-flip remains valid, but with modified spin resistances,

Rs f
N1(N3) = RN1(N3)

tanh(LN1(N3)/�sd)
(LN1(N3)/�sd)

, (2.14)

where �sd is the normal metal spin-flip diffusion length. When L  �sd, the resistance
is governed by the spin-flip diffusion length �sd , which means that only part of the metal
takes part in the spin transfer whereas the rest plays the role of the reservoir. This reduc-
tion of the active thickness of the device can lead to an effective polarization increase by
decreasing the effect of RN in Eq. (2.8). Spin-flips in the middle normal metal have a
larger impact. The torques in the presence of spin-flips in N2 read

|τ1| =
β +Rs f /R1 −αP1/P2

(β +Rs f /R2)(β +Rs f /R1)−α2 I0P2|sinθ | , (2.15a)

|τ2| =
β +Rs f /R2 −αP2/P1

(β +Rs f /R1)(β +Rs f /R2)−α2 I0P1|sinθ | , (2.15b)

where β = cosh(L/�sd) and P1(2) and R1(2) are given by Eqs. (2.8) and (2.14). Rs f is an
effective normal metal resistance:

Rs f = R
sinh(L/�sd)

L/�sd
. (2.16)

For L≥ �sd the torque is significantly reduced by spin-flips, becoming exponentially small
for longer samples.

Let us now consider spin-flips in the ferromagnet. The treatment of the N1-F1-N2-
F2-N3 system is cumbersome, so let us concentrate on the simple case of a F-N-F system.
In that case formulas remain unchanged, provided R+ and R− are renormalized as

Rs f
1(2)− = R1(2)−

tanh(LF1(F2)/�F
sd)

LF1(F2)/�F
sd

, (2.17a)

Rs f
1(2)+ = R1(2)+

tanh(LF1(F2)/�F
sd)

LF1(F2)/�F
sd

. (2.17b)
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Figure 2.3: Torque on each ferromagnet as a function of the relative angle between the two
magnetizations for different spin-flip diffusion lengths in the normal metal (the resistance
R = 0.2 is expressed in units R1 = R2, P1 = P2 = 0.4, and L/�sd = 0, 1, 1.5, and 3, and
the lower plot corresponds to the higher ratio). With dashed line we plot Slonczewski’s
result [2] for the same polarization.

where �F
sd is the ferromagnet spin-flip diffusion length. These resistances should be used

in Eqs. (2.9) for the torques in F-N-F systems. If spin-flip in the normal metal exists, then
formulas (2.15) should be used. Eqs. (2.17) imply that there is no polarization change
(as defined below Eqs. (2.9)) and only the ferromagnet resistances R1(2) are affected. For
L �F

sd the bulk of the ferromagnet behaves like a reservoir (just like for the normal metal
in the same limit) and only a slice with thickness �F

sd is active. In general, spin-flip in the
ferromagnet leads to reduced torques as R1(2) becomes smaller. The effect may be quite
small as long as the resistance of the ferromagnet is sufficiently larger than that of the
normal metal (this can also be seen from Eqs. (2.8) and (2.11)), so that the polarization
of the current is maintained.

Finally we would like to discuss magnetoresistance and torque for the symmetric
R1+ = R2+ and R1− = R2−. For the angular magnetoresistance we extract from (2.10)
the formula observed by Pratt [24] and also shown to be universal for any disordered
F-N-F perpendicular spin valves in [18],

R(θ)−R(0)
R(π)−R(0)

=
1− cosθ

χ(1+ cosθ)+2
, (2.18)
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with one parameter χ that is given by circuit theory,

χ =
1

1− p2
|η|2
Reη

−1 , (2.19)

in terms of the normalized mixing conductance η = 2g↑↓/g, the polarization p = (g↑ −
g↓)/g, and the average conductance g = g↑ +g↓. As we do not take interface resistances
into account, in our case the parameters can be expressed only via bulk resistances: g =
1/(R↑+R)+1/(R↓ +R), η = 2/(Rg), p = 2R−/(2R+ +R). From Eqs. (2.11) and (2.10)
the analytical expressions of the spin torque on either ferromagnet for current and voltage
biased systems read

|τ| = p(χ +1)|sinθ |
χ(cosθ +1)+2

I0 , (2.20)

|τ| = pg
2

η|sinθ |
(η −1)cosθ +1+η

µ l −µr
2π

, (2.21)

where µ l(r) is the chemical potential in the left (right) ferromagnet. In the presence of
spin-flip for the angular magnetoresistance we can write (restricting ourself to F-N-F case
again)

R(θ)−R(0)
R(π)−R(0)

=
(1+ χ(β −1)/2)(1− cosθ)

χ(β + cosθ)+2
, (2.22)

where all parameters should be calculated according to Eqs. (2.16) and (2.17). The
dependences of the torque on angle now read

|τ| = p(χ +1)|sinθ |
(χ(cosθ +β )+2)

I0 , (2.23)

|τ| = pg
2

η|sinθ |
A1 cosθ +A2

µ l −µ r
2π

, (2.24)

where we introduced two parameters

A1 = − p2

1+
χ
2

β −1
χ +1

(1+
χβ + χ

2
)+ χ(1+

(κ1 + χκ2)
χ +1

−κ2p) , (2.25)

A2 =
p2

1+
χ
2

β −1
χ +1

(1− χβ +2
2

(β +1))+(1+
(κ1 + χκ2)

χ +1
−κ2p)(χβ +2) , (2.26)

and κ1 =
LN/�N,sd

sinh(LN/�N,sd)
−1, κ2 =

LF/�F,sd

tanh(LF/�F,sd)
−1.
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An interesting result can be drawn from Eqs. (2.22) and (2.23) by comparison with
the Eqs. (2.18) and (2.20). In order to fit the torque and the magnetoresistance in the
presence of spin-flip we need an additional parameter β (β was defined in Eqs. (2.15)),
which depends only on the spin-flip diffusion length in the normal metal spacer. The
general form of Eqs. (2.22) and (2.23) with only two important parameters seems to be
valid even in the presence of interfaces, but this has to be confirmed by future studies. Eq.
(2.24) is cumbersome depending explicitely on the diffusion length in the ferromagnets.
In Fig. 2.3 we plot results of Eq. (2.23) for different spin-diffusion lengths in the normal
metal. The smaller diffusion length corresponds to smaller torques. The curves only
qualitatively resemble Slonczewski’s result for ballistic systems, but it should be pointed
out that for the cases p = 1 and η = 2, both approaches result in the same formula.

2.5 Conclusion

We investigated transport in multilayer systems in the diffusive limit with arbitrary mag-
netizations in the ferromagnetic layers. The boundary conditions for diffusion equations
including spin transfer were discussed, and analytic expressions for the magnetization
torques and the angular magnetoresistance were obtained. The torque can be engineered
not so much via the geometry of the samples (such as the layer thicknesses), but rather via
the materials, the ferromagnetic polarization being an important parameter. The asymme-
try with respect to the current flow direction has been addressed and the resistance change
under magnetization reversal was calculated for different current directions. The effect of
spin-flip in the normal metal and ferromagnet was studied analytically. Spin-flip in the
center normal metal suppresses the spin-transfer, whereas spin-flip in the outer normal
metals can effectively increase the polarization and spin transfer. The spin-flip processes
in the ferromagnet also diminish the spin transfer, but not as drastically as long as the
resistance of the ferromagnet is larger than the normal metal resistance. Finally we show
in Appendix 2.A that the diffusive approach with carefully chosen boundary conditions
leads to results which coincide with those from circuit theory.

We are grateful to Yuli Nazarov, Yaroslav Tserkovnyak and Daniel Huertas-Hernando
for stimulating discussions. This work was supported in part by the NEDO International
Joint Research Grant Program “Nano-magnetoelectronics”, NSF grant DMR 99-81283
and DARPA award No. MDA 972-01-1-0024.
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2.A Appendix: Circuit theory approach to the diffusive
systems

Here we show that the diffusion approach is equivalent to circuit theory and that the mix-
ing conductance is also a valid concept in systems which are dominated by bulk trans-
port [25]. We consider an F1-N2-F2 system Fig. 2.1 (N1 and N3 can also be included)
connected to two reservoirs R1 and R2 with negligible interface resistances. Note that
this does not mean that the interface is neglected, because it plays an essential role in
the boundary conditions as mentioned in the main text. Since the system is diffusive, a
thin slice of a ferromagnet or a normal metal can be considered as a node. The mixing
conductance can be written in terms of the reflection and transmission coefficients, and
incorporates any kind of details of the contacts, e.g., tunnel, diffusive, and ballistic con-
tacts. We are free to define interface resistors via the location of the nodes. Here it is
chosen such that the interface width is larger than the ferromagnetic decoherence length
but smaller than the mean free path. We introduce six nodes: r1 is in R1 just before the
interface, r2 and r3 are before and after the F1-N2 interface, r4 and r5 are before and after
the N2-F3 interface, and r6 is in R2 just after the interface (Fig. 2.1).

Let us first find the charge and the spin current in F1 (F2) at the interface where the
spin transfer takes place. The currents read

I0 = (G↓ +G↑)( f F
0 − f N

0 )+(G↓ −G↑) f F
s , (2.27a)

Is = m
[
(G↓ −G↑)( f F

0 − f N
0 )+(G↓ +G↑) f F

s

]
, (2.27b)

where f N
0 is the particle distribution function in r1 (r6) and f F

0 is the spin distribution
function in r2 (r5). The distribution function at r2 and r3 (r4 and r5) is identical due to
the continuity boundary condition. The spin-current between the ferromagnet reservoir r2
(r5) and the normal metal reservoir r4 (r3) driven by the nonequilibrium distributions can
be found by using circuit theory,

I1(2) = m2GN( f F
s − s ·m f N

s )−2ReG↑↓ f N
s (s− (s ·m)m)+(s×m)2ImG↑↓ f N

s , (2.28)

where the spin accumulation in the normal metal reservoir r4 (r3) is given by the unit vec-
tor s and the spin distribution function f N

s . Use was made of G↓ = G↑ = GN because r2 (r5)
is close to the interface. The component of the current perpendicular to the magnetization
m is transferred to the magnetization at the interface whereas the parallel component is
conserved. The torque acting on the magnetization in F1 (F2) therefore becomes

�τ1(2) = −2ReG↑↓ f N
s (sN − (sN ·m)m)+(sN ×m)2ImG↑↓ f N

s . (2.29)



36 Electrical and mechanical magnetization torques

The mixing conductance is related to the reflection coefficients of an electron from the
normal metal to the ferromagnet:

G↑↓ = ∑
nm

[δ nm − (r↑nm)∗r↓nm] . (2.30)

Let us now evaluate the mixing conductance for a disordered system. We assume that
the junction consists of two connected parts. The normal metal section is described by a
single scattering matrix for both spin-↑ and spin-↓ electrons. The ferromagnetic section
requires two independent scattering matrices, one for spin-↑ and one for spin-↓ electrons.
Scattering at the F-N boundary is disregarded here since it is assumed that the total re-
sistance is dominated by the diffuse normal metal and ferromagnetic metal parts of the
junction. The total reflection matrix rα for spin-α electrons can then be found by con-
catenating the normal metal and ferromagnetic parts as

rα = rN + t ′Nrα
F

∞

∑
n=0

(r′Nrα
F )ntN ≡ rN + χα . (2.31)

By inserting Eq. (2.31) into the definition for the mixing conductance we find that the
mixing conductance can be expressed as G↑↓ = GN +δG↑↓, where

δG↑↓ = ∑
nm

[(rN)∗nmχ↓
nm]+(χ↑

nm(rN)nm)∗ +(χ↑
nm)∗χ↓

nm] . (2.32)

Eq. (2.32) depends on the phase difference between the scattering paths of spin-up and
-down electrons. It is assumed that there are no correlations between the scattering matri-
ces of the spin-↑ and spin-↓ electrons in the ferromagnetic part, which is consistent with
the a small coherence length. Consequently, in a diffusive systems δ G↑↓ = 0. However,
the up- and down-spin parts of the total scattering matrix of the combined normal metal
and ferromagnetic system are correlated since both spin directions see the same scattering
centers in the normal metal part. This leads to the conclusion that, for a diffusive hybrid
system,

GD
↑↓ = GN . (2.33)

From Eqs. (2.27,2.28 and 2.29) and taking into account Eq. (2.33), and noting that
2GN = 1/R and G↓ = 1/R↓, G↑ = 1/R↑ one can easily find Eq. (2.11).
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2.B Appendix: Treatment of interfaces

We show in this Appendix how interfaces can be included into our approach. The general
forms of the boundary conditions at an F|N interface can be written

f N
s |N−inter f ace = ( f↑ + f↓)|F−inter f ace +∆ f , (2.34)

fN
s |N−inter f ace = m( f↑ + f↓)|F−inter f ace +∆fs . (2.35)

In the absence of spin-flip scattering at the interface the potential ∆ f and spin-
accumulation ∆fs drops can be found from the magnetoelectronic circuit theory as fol-
lows:

I0 = (G↑ +G↓)∆ f +(G↑ −G↓)(∆fs ·m) , (2.36)

Is = m[(G↑ −G↓)∆ f +(G↑ +G↓)(∆fs ·m)]+2ReG↑↓fN
s +2ImG↑↓(fN

s ×m) . (2.37)

When the imaginary part of the mixing conductance is small, the interface can be replaced
by a fictitious bulk material. Suppose we add a slice of ferromagnet as well as a slice of
normal metal with parameters R± = (R↑ ±R↓)/4 and RN respectively, the potential and
spin-accumulation drops read

∆ f = IRN +(m · Is)R−+ I0R+ , (2.38)

∆fs = IsRN +m(m · Is)R+ +mI0R− . (2.39)

In general, Eqs. (2.38) and (2.39) have some RN and R± as a solution.
Taking into account results from the previous Appendix and Eq. (2.36,2.37,2.38,2.39)

one can immediately derive that the ficticious bulk layers should obey

RN = 1/G↑↓, R↑ = 1/G↑ −1/G↑↓, R↓ = 1/G↓−1/G↑↓ . (2.40)

When interface and bulk spin-flip may be disregarded and ImG↑↓ = 0, the interface thus
leads to the following renormalized up, down and normal metal resistances of the layers
adjacent to it, R f

N , R f
↑ and R f

↓ :

R f
N = RN +1/G↑↓, R f

↑ = R↑ +1/G↑ −1/G↑↓, R f
↓ = R↓ +1/G↓ −1/G↑↓ . (2.41)

Recent experiments indicate that interface spin-flip scattering may not be neglected
in many systems [26]. It is straightforward to introduce spin-flip diffusion into the ficti-
cious layers, although difficulties arise from the necessity to link the analytical solutions
between regions with different spin-flip rates, �/�sd. Only when the N(F) ficticious layer
has the same spin-flip rate as the adjacent N(F) layer can we carry out analytic calcula-
tions. In this case the total system is equivalent to a bulk system with resistances given
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by Eqs. (2.41) (these resistances should be used in Eqs. (2.14,2.16,2.17)). Otherwise,
the problem becomes too cumbersome for an analytic treatment and has to be studied
numerically.
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Chapter 3

Perpendicular spin valves with
ultra-thin ferromagnetic layers

We address two finite size effects in perpendicular transport through magnetic multilay-
ers. When the magnetic layer thickness in spin valves becomes of the order or smaller
than the spin-flip diffusion length, structural asymmetries affect the transport properties.
A magnetic layer with thickness approaching the magnetic coherence length becomes
transparent for spin currents polarized perpendicular to the magnetization. We use the
generalized magnetoelectronic circuit theory to investigate both effects on the angular
magnetoresistance (aMR) and spin transfer torque. We analyze recent aMR experiments
to determine the spin-flip diffusion length in the ferromagnet as well as the interface
spin-mixing conductance and propose a method to measure the ferromagnetic coherence
length.

41
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3.1 Introduction

Since the discovery of the giant magnetoresistance (GMR) [1] electron transport in
magnetic metallic heterostructures has been studied intensively and with considerable
progress. The field developed from studies of large area multilayers of ferromagnetic (F)
and normal metals (N) in which the current flows in the plane of the interfaces (CIP)
to nanostructures with current perpendicular to the planes (CPP) [2]. Current-induced
magnetization excitation has been predicted for perpendicular F|N|F spin valves [3, 4]
and subsequently observed [5–8]. In these experiments applied currents excite a spin ac-
cumulation in the normal metal spacer that exerts a torque on the ferromagnets. When
this torque overcomes the damping, the magnetization starts to precess coherently, pos-
sibly leading to a complete magnetization reversal [9]. By fits of the parameters of the
diffusion equation [10] to a wealth of experimental data of the GMR in CPP structure,
the spin-dependent interface and bulk material resistances of the most important transi-
tion metal combinations are well known by now [2, 11]. First-principles calculations
in general agree well with the experimental values [12]. Also in view of possible ap-
plications for switching purposes in magnetic random access memories, a comparably
accurate modeling of the spin torque as a function of material combinations and applied
bias is desirable.

Physically, the spin-transfer torque is a consequence of angular momentum conserva-
tion when a spin current polarized transverse to the magnetization direction is absorbed
at the magnetic interface [13]. The transverse spin current can penetrate the ferromag-
net up to a skin depth equal to the ferromagnetic coherence length λ c = π/

∣∣∣kF
↑ − kF

↓
∣∣∣ . In

transition metals λ c is much smaller than all other length scales such as spin-diffusion
length or mean-free path [14–16]. When the ferromagnetic layer thickness dF  λ c the
spin-transfer torque is a pure interface property governed by the so-called spin-mixing
conductance, [17] which is accessible to first principles calculations [18].

An excellent method to measure the torque and mixing conductance is the normalized
angular magnetoresistance (aMR) of perpendicular F|N|F spin valves [19, 22, 23]

aMR(θ) =
R(θ)−R(0)
R(π)−R(0)

, (3.1)

where R(θ ) is electric resistance when the two magnetizations are rotated by an angle θ
with respect to each other. Deviations of the aMR as a function of cosθ from a straight
line are proof of a finite mixing conductance [20]. Systematic new measurements of the
aMR have been carried out recently by Urazhdin et al. [21] on Permalloy(Py)|Cu spin
valves as a function of the Py thicknesses.

Interesting effects such as non-monotonic aMR, change of sign of the spin-transfer
torque and strongly reduced critical currents for magnetization reversal have been pre-
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dicted for asymmetric spin valves [24–26]. Asymmetry here means that the two ferro-
magnets in the spin valve are not equivalent for spin transport. This can be achieved by
different thicknesses of the magnetically active regions of otherwise identical ferromag-
netic contacts, but only when the spin-flip diffusion length in the ferromagnet lF

sd is of the
order or larger than one of the magnetic layer thicknesses. The magnetically soft Py is
the material of choice, but its spin-flip diffusion length is only lF

sd
∼= 5 nm [11]. Urazhdin

et al. [21] investigated spin valves with ultrathin dF � lF
sd , which means that the analysis

of these experiments requires solution of the spin and charge diffusion equation in the
ferromagnet.

Detailed calculations for transition metals [16, 30] confirm that a transverse spin cur-
rent can penetrate the ferromagnet over distances � 1 nm as a consequence of incomplete
destructive quantum interference. Urazhdin et al. investigated spin valves with Py layers
of such thicknesses, claiming to observe an effect of this transverse component on the
aMR. In weak ferromagnets like CuNi or PdNi alloys in which λ c may become larger
than the scattering mean-free path, the transverse component of spin current and accumu-
lation can be treated semiclassically [27]. It is shown below that an effective conductance
parameter (“mixing transmission”) can be introduced to parametrize transport in both
regimes.

In this paper we treat the size effects related to dF � lF
sd (Section 3.2) and dF � λ c

(Section 3.3) (but λ c much smaller than the spin diffusion length). In Section 3.2 we apply
magnetoelectronic circuit theory[17] combined with the diffusion equation to the F|N|F|N
spin valves studied by Urazhdin et al.. We demonstrate that the angular magnetoresis-
tance provides a direct measure for the mixing conductance [20] and find that the non-
monotonicity in the aMR is indeed caused by the asymmetry as predicted. For F|N|F|N|F
structures, that are also of interest because of their increased spin torque, [31, 32] we ob-
tain several analytical results. The approach from Section 3.2 is generalized in Section 3.3
allowing us to treat ultrathin ferromagnetic layers or weak ferromagnets [28–30]. We find
that there should be no measurable effects of λ c on the aMR in F|N|F|N structures, but
predict that the torque acting on the thin layer is modified. We proceed to conclude that
the coherence length should be observable in the aMR of F|N|F|N|F structures. Finally,
we propose a set-up to measure the ferromagnetic coherence length in a three-terminal
device.

3.2 Magnetoelectronic circuit theory and diffusion equa-
tion for spin valves

In this Section we assume that λ c � dF . In Part 3.2.1 we recapitulate some old results:
the magnetoelectronic circuit theory for spin valves, with emphasis on the inclusion of the
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spin-flip diffusion in the ferromagnetic layers when the ferromagnetic layer thickness dF

is of the same order as the spin-flip diffusion length in the ferromagnet lF
sd . In Part 3.2.2

we apply these results to recent experiments by Urazhdin et al. in which we can disregard
spin-flip in the Cu spacers. In Part 3.2.3 we present new results for symmetric F|N|F|N|F
structures.

3.2.1 Magnetoelectronic circuit theory and diffusion equation

Magnetoelectronic circuit theory [14] has been designed to describe charge and spin trans-
port in disordered or chaotic multi-terminal ferromagnet-normal metal hybrid systems
with non-collinear magnetizations. The material parameters of the theory are the bulk
and interface spin-dependent conductances, as well a the so-called interface spin-mixing
conductance G↑↓. For spin valves, circuit theory can be shown to be equivalent to a diffu-
sion equation when ImG↑↓ ≈ 0, which is usually the case for intermetallic interfaces [24].
When the thickness of the ferromagnetic metal layer d  lF

sd , the layer bulk resistance
can be effectively replaced by that of a magnetically active region close to the interface
of thickness lF

sd . When connected to a reservoir or other type of spin sink, the effective
thickness becomes lF

sd tanh(dF/lF
sd) [24].

The aMR for general N|F|N|F|N structures with ImG↑↓ = 0 as derived previously [24]
reads

ℜ(θ ) = R↑↓+R1 +R2−
R↑↓(R1− +αR2−)2 +(1−α2)(R2

1−R2 +R2
2−(R1 +R↑↓))

(R↑↓ +R1)(R↑↓ +R2)−α2R1R2
. (3.2)

with α = cosθ , 4R1(2) = 1/G1(2)↑ + 1/G1(2)↓ − 2R↑↓, 4R1(2)− = 1/G1(2)↑ − 1/G1(2)↓,
P1(2) = R1(2)−/R1(2), and 2R↑↓ = 1/G1↑↓ +1/G2↑↓, where G1(2)↑ and G1(2)↓ are conduc-
tances of the left (right) ferromagnet including the left (right) normal layer, G1↑↓ and G2↑↓
are mixing conductances of the middle normal metal with adjacent ferromagnet interfaces
as shown in Fig. 3.1. The torques felt by first and second ferromagnetic layer become

τ1/I0 =
h̄
2e

1+R↑↓/R1 −αP1/P2

(1+R↑↓/R1)(1+R↑↓/R2)−α2 (3.3)

τ2/I0 =
h̄
2e

1+R↑↓/R2 −αP2/P1

(1+R↑↓/R1)(1+R↑↓/R2)−α2 (3.4)

When we approximate the mixing conductance 1/R↑↓ by the Sharvin conductance of
the normal metal, Eqs. (3.3,3.4) coincide with the expressions in [34] for asymmetric
N|F|N|F|N spin valves with Λ2

L(R) ≡ 2R1(2)/R↑↓ +1, PL(R)Λ2
L(R) = 2R1(2)−/R↑↓.
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Figure 3.1: Definition of conductances G1(2)↑(↓) and mixing conductances G1(2)↑↓ for
N|F|N|F|N structure.

3.2.2 Extraction of the mixing conductance from experiment and
asymmetric spin valves

Most material parameters in circuit theory are those of the two-channel resistor model.
They can be determined for the collinear magnetic configurations, i.e. via the (binary)
GMR. The only additional parameters for the non-collinear transport are the interface
mixing conductances Gr

i↑↓, assumed here to be real. These can be found from a single
parameter fit of the experimental aMR or from band structure calculations. A symmet-
ric F|N|F structure is most suitable to carry out this program. The thus obtained Gr

i↑↓
should be transferable to other (asymmetric) structures grown by equivalent techniques.
Urazhdin et al. fitted their experimental results for the normalized aMR by the simple
formula [19] that follows from circuit theory [14]:

aMR(θ) =
1− cosθ

χ(1+ cosθ)+2
, (3.5)

For symmetric junctions we identify χ = 2R/R↑↓ (see Eq. (18) in [24]).
Urazhdin et al. [21] used the structures

Nb(150)Cu(20)FeMn(8)Py(d1)Cu(10)Py(d2)Cu(20)Nb(150), where the numbers in
brackets are the thicknesses in nm. The exchange bias antiferromagnet FeMn is treated as
a perfect spin sink, which means that the effective thickness of the left Py layer becomes
lF
sd tanh(d1/lF

sd) = 0.8lsd (d1 = 6 nm, lF
sd = 5.5 nm). Note that this device is not exactly

symmetric when d2  lF
sd as d1 is not much larger than lF

sd. but the calculated deviations
from the fitted mixing resistances are smaller than the experimental error bars. When we
replace d1 by lF

sd and d2  lF
sd the sample is symmetric and the aMR is well represented

by Eq. (3.5) with χ = 1.96 (see Fig. 3.2) [21].
We can use the measured value of χ to derive the mixing conductance 1/(AR↑↓) of an

interface with area A by R↑↓ = 2R/χ . For comparison with first principles calculations
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for point contacts based on the scattering theory of transport, [18] the Sharvin resistance
of the normal metal should be added [20]

Rpc
↑↓ = R↑↓ +Rsh

Using the notation:

AR = lsdρ∗
Py +AR∗

PyCu −AR↑↓/2

AR− = lsdρ∗
Pyβ Py +AR∗

PyCuγ

we may substitute the well established material parameters for bulk and interface resis-
tances of Cu|Py [35] lsdρ∗

Py = 1.4 fΩm2, lsd = 5.5 nm, AR∗
PyCu = 0.5 fΩm2, β Py = 0.7,

γ = 0.7, disregarding the small bulk resistance of Cu which led us to AR↑↓ = 1.3 fΩm2

and η = 1.49. This value of the mixing resistance is larger than the Sharvin resistance
ARsh = 1/G = 0.878 fΩm2 of Cu used by Xiao et al. [34]. The point-contact mixing re-
sistance of the Cu|Py interface that should be compared with band structure calculations
is ARpc.

↑↓ = 2.2 fΩm2, somewhat smaller than that found in [20] (2.56 fΩm2). Both results
are close to the band structure calculations [18] of the point-contact mixing resistance for
the disordered Cu|Co interface (2.4 fΩm2).

In Fig. 3.2 we compare plots of Eq. (3.2) with experimental aMR curves for sym-
metric and asymmetric F|N|F|N|S multilayers, [36] identifying the following relations
between parameters:

AR1 = lsdρ∗
Py +AR∗

PyCu −AR↑↓/2

AR2 = d2ρ∗
Py +AR∗

PyCu +ARPyNb −AR↑↓/2

AR1− = lsdρ∗
Pyβ Py +AR∗

PyCuγ
AR2− = d2ρ∗

Pyβ Py +2AR∗
PyCuγ.

We assume that the spin current into the superconductor vanishes. The resistance between
the right ferromagnet and the right reservoir was taken to be ARPyNb = 5 fΩm2. This is
larger than the ARPyNb = 3 fΩm2 reported in [35], but gives better agreement with the
experiment. We observe good fits in Fig. 3.2 nicely reproducing the non-monotonic
behavior around zero angle.

In Fig. 3.3 we plot the angular magnetoresistance for different thicknesses of the
right Py layer, all relative to the parallel configuration, but not normalized to a relative
scale as above. The lower curve was obtained from Eq. (3.2), the others were calcu-
lated numerically solving the bulk layer spin-diffusion equation in the ferromagnet. The
non-monotonic angular magnetoresistance disappears when the right ferromagnetic layer
becomes thicker and therefore the sample more symmetric. For the set of parameters in
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Figure 3.2: aMR of the F|N|F|N structure for two thicknesses of the right ferromagnetic
layer d2 = 0.27lsd, 2.2lsd (d1 > lsd). The filled (large d2) and open (small d2) squares are
the experimental data [21].

Figure 3.3: Angular magnetoresistance ℜ(θ)−ℜ(0) of the F|N|F|N structure for differ-
ent thicknesses of the right ferromagnetic layer d2 = 0.27lsd, 0.5lsd, 2lsd, 2.5lsd and ∞
(starting from the lower curve respectively (d1  lF

sd, ARPyNb = 3 fΩm2)).
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Figure 3.4: Angular magnetoresistance ℜ(θ)−ℜ(0) and spin-transfer torque on the
left ferromagnet for the F|N|F|N structure with right F-layer thickness d2 = 0.27lsd
(ARPyNb → ∞, τ0 = I0h̄/2e).

Fig. 3.3 the non-monotonic behavior is rather weak but with circuit theory we can readily
propose samples that maximize the effect. The minimum of the angular magnetoresis-
tance Eq. (3.2) at finite θ 1 that coincides with a zero of the spin-transfer torque on the left
ferromagnet [24, 25]:

cosθ 1 =
(R↑↓ +R1)R2−

R1−R2
. (3.6)

To observe the effect clearly, cosθ 1 should be small, which can be achieved by increas-
ing R2, e.g. by the resistance of the right-most normal metal (within the spin-flip dif-
fusion length). In Fig. 3.4 we plot the angular magnetoresistance Eq. (3.2) and the
spin-transfer torque on the left ferromagnet Eqs. (3.3) when the resistance of the right
contact is ARPyNb → ∞.

3.2.3 Analysis of symmetric F|N|F|N|F structures

Our approach offers analytic results for symmetric F|N|F|N|F structures when the outer
layers are thicker than lF

sd . In Fig. 3.5 we plot the angular magnetoresistance when the
magnetizations of the outer layers are kept parallel for material parameters that are the
same as above and close to set-up B from [21]. When the middle layer thickness d3 
lF
sd the angular magnetoresistance is equal to that of two symmetric F|N|F structures in

series. The analytical formula for the angular magnetoresistance in the regime d3 � lF
sd

is presented in Appendix 3.A. For d3 � 0.3lF
sd we cannot disregard spin flip in the middle
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Figure 3.5: Angular magnetoresistance ℜ(θ )−ℜ(0) of the F|N|F|N|F structure for the
middle F layer thicknesses d = 0.27lsd, 0.5lsd, 2lsd, 2.5lsd and ∞ (starting from the lower
curve, respectively). The parallel resistance is subtracted.

layer and compute the resistances numerically.
A symmetric F|N|F|N|F setup with antiparallel outer layers can increase the torque

[31]. Enhancement by a factor of 2 was reported by S. Nakamura et al. [32]. This result
can be obtained from the magnetoelectronic circuit theory (see also S. Nakamura et al.,
unpublished). With a current bias I0, assuming d3 � lF

sd, we derived a simple formula
(note the similarity with the torque on the base contact of the three-terminal spin flip
transistor[20]):

τ/I0 =
h̄
2e

2R−|sinθ |
R↑↓ +Rsin2 θ

, (3.7)

without invoking the parameters of the middle layer. When d3  lsd we can divide system
into two F|N|F spin valves in series. Taking into account Eq. (3), the torque can be written
down immediately:

τ/I0 = τFNF(θ)/I0 + τFNF(π −θ )/I0 (3.8)

=
h̄
2e

R−|sinθ |
R↑↓ +R(1+ cosθ)

+
h̄
2e

R−|sinθ |
R↑↓ +R(1− cosθ)

In Fig. 3.6 we plot results of these two analytic formulas as well as results of numeric
calculations for the case d = 0.8lsd. Note that these curves are symmetric with respect to
θ = π/2. By the dashed line we plot the torque for the corresponding symmetric F|N|F
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Figure 3.6: The spin-transfer torque on the middle ferromagnet for the F|N|F|N|F struc-
ture for the thickness of the middle layer d = 0.27lsd, 0.8lsd and 10lsd starting from the
lower curve respectively (by bold line), the same for the corresponding symmetric F|N|F
structure (by dashed line), τ0 = I0h̄/2e.

structure.

3.3 Coherent regime

Urazhdin et al.’s [21] intentions to search for coherence effects in ultrathin magnetic layers
encouraged us to study the regime dF � λ c. In this Section we formulate the magneto-
electronic circuit theory that includes coherence effects in this regime in two and three
terminal multilayer structures. Since λ c is only a couple of monolayers, we are allowed
to disregard spin-flip and diffuse scattering in the ferromagnetic material bulk layers.

3.3.1 Extended magnetoelectronic circuit theory

We consider an N1|F|N2 circuit element, choosing the normal metals as nodes with a
possibly non-collinear spin accumulation and the entire F layer including the interfaces
as resistive element (see Fig. 3.7). This allows us to treat the ferromagnet fully quantum
mechanically by scattering theory. The current through the ferromagnet depends on the
potential drop between and the spin accumulation in each of the normal metal nodes. Spin
Is and charge I0 currents can conveniently expressed as 2×2-matrices in Pauli spin space
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Î = (1̂I0 + σ̂ · Is)/2, where σ̂ is the vector or Pauli spin matrices and 1̂ the 2× 2 unit
matrix. On the normal metal side [14] in the region 2

Î =
e
h
{∑

nm
[t̂ ′

nm
f̂ N1(t̂ ′

nm
)† −δ nm f̂ N2 + r̂nm f̂ N2(r̂nm)†]} (3.9)

where r̂mn is the spin dependent reflection coefficient for electrons reflected from channel
n into channel m in the node 2, t̂ ′

mn
is the spin dependent transmission coefficient for

electrons transmitted from channel n in the node 1 into channel m in the node 2 and δ nm

is the Kronecker delta symbol.

In the absence of spin flip processes the matrices r̂mn and t̂ ′
mn

should be diagonal in
spin space provided the axis z is parallel to the magnetization of the ferromagnet (we are
free to chose this frame reference as it is more convenient). Expressing the spin-dependent
distribution matrices in nodes 1 and 2 via Pauli matrices; f̂ N = 1̂ f N

0 + σ̂ fN
s and the unit

vector mz parallel to the axis z we obtain for spin and charge currents in the node N2:

I0 = (G↑ +G↓)∆ f N
0 +(G↑ −G↓)∆fN

s ·mz , (3.10)

Is = mz
[
(G↑ −G↓)∆ f N

0 +(G↑ +G↓)∆fN
s
]

−2(mz × fN2
s ×mz)ReGrN2|F

↑↓ +2(fN2
s ×mz) ImGrN2|F

↑↓
+2(mz × fN1

s ×mz)ReGtN1|N2
↑↓ −2(fN1

s ×mz) ImGtN1|N2
↑↓ . (3.11)

where ∆ f N
0 = f N1

0 − f N2
0 and ∆fN

s = fN1
s − fN2

s . This agrees with the result of [14] except
for the terms involving the mixing transmission [28–30]:

GrN2|F
↑↓ =

e2

h ∑
nm

(δ nm − rnm
↑
(

rnm
↓
)∗

); GtN1|N2
↑↓ =

e2

h ∑
nm

t ′nm
↑
(

t ′nm
↓
)∗

.

The torque acting on the magnetization through the interface adjacent to N2 is the trans-
verse component of the spin current flowing into the ferromagnet:

�τ2 = −2(mz × fN2
s ×mz)ReGrN2|F

↑↓ +2(fN2
s ×mz) ImGrN2|F

↑↓
+2(mz × fN1

s ×mz)ReGtN1|N2
↑↓ −2(fN1

s ×mz) ImGtN1|N2
↑↓ . (3.12)

When two opposite direction of the magnetization M and −M are equivalent for the
transport, we obtain GtN1|N2

↑↓ = GtN2|N1
↑↓ as a consequence of time reversibility. This condi-

tion should hold in most cases (e.g. Stoner model is isotropic in spin space). The mixing
transmission describes the part of the transverse spin current that is not absorbed by the
ferromagnet and vanishes when the ferromagnetic layer is thicker than the ferromagnetic
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Figure 3.7: A contact through a thin ferromagnet between two normal metals nodes. The
current is evaluated in the node 2.

coherence length λ c [30]. It is complex, its modulus representing the transmission prob-
ability and the phase of the rotation of the transverse spin current by the ferromagnetic
exchange field. First-principles calculations of Gr

↑↓ and Gt
↑↓ have been carried out by

Zwierzycki et al. [30] showing small variation of the first and non-vanishing value of the
second when the ferromagnetic layer becomes of the order of several monolayers.

3.3.2 Observation of ferromagnetic coherence in transport experi-
ments

In this section we address coherence effects due to the transmission of transverse spin cur-
rents through ultrathin ferromagnetic layers or weak ferromagnets. These effects should
be observable in Py structures when dF � 1.5 nm. Band structure calculations show that
in Cu|Co|Cu structures the mixing transmission can easily reach Gt

↑↓ ≈ 0.1
(
G↑ +G↓

)
for

such thicknesses [30].

We may draw an important conclusion from the extended magnetoelectronic circuit
theory applied to general (asymmetric) N1|F1|N2|F2|N3 structures: when the nodes are
chosen in the middle normal metal and in the outer normal metals at the points that con-
nect to the baths, a possibly finite mixing transmission completely drops out of the charge
transport equations, i.e. the expressions remain exactly the same as those presented above
for the N|F|N|F|N structure. For example, the charge and spin currents from N1 (and
similarly from N3) into N2 read

I0 = (GN1|N2
↑ +GN1|N2

↓ )∆µN
0 +(GN1|N2

↑ −GN1|N2
↓ )∆µN

s ·mz (3.13)
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Is = mz

[
(GN1|N2

↑ −GN1|N2
↓ )∆µN

0 +(GN1|N2
↑ +GN1|N2

↓ )∆µN
s

]
−2(mz ×µN2

s ×mz)ReGrN2|F1
↑↓ +2(µN2

s ×mz) ImGrN2|F1
↑↓

+2(mz ×µN1
s ×mz)ReGtN1|N2

↑↓ −2(µN1
s ×mz) ImGtN1|N2

↑↓ , (3.14)

where ∆µN
0 = µN1

0 −µN2
0 and ∆µN

s = µN1
s −µN2

s describe the potential and spin accumu-
lation drops between the left and the middle nodes. By conservation of spin and charge
currents in the center node, expression for aMR can be derived. However, the mixing
transmission does not appear in Eqs. (3.13,3.14) since there is no spin accumulation in
the outer nodes (reservoirs). Ferromagnets thin enough to allow transmission of a trans-
verse spin current can therefore not be distinguished from conventional ones in the aMR.
Our conclusions therefore disagree with the claims of ferromagnetic coherence effects in
aMR experiments on N|F|N|F|N structures by Urazhdin et al. [21].

On the other hand, the torque on the thin ferromagnet F2 does change:

�τ2 = −2(mz ×µN2
s ×mz)Re(GrN2|F2

↑↓ −GtN2|N3
↑↓ )+2(µN2

s ×mz) Im(GrN2|F2
↑↓ −GtN2|N3

↑↓ ).

A parameterization of the torque via a combination GrN2|F2
↑↓ −GtN2|N3

↑↓ was found in [13]
by random matrix theory, which is equivalent with circuit theory when the number of
transverse channels is large [20]. However these authors did not discuss their results in
the limit of thin ferromagnetic layers. When ImGt

↑↓ ≈ 0 and ImGr
↑↓ ≈ 0, the torque τcoh

acting on the thin layer is modified from the incoherent expression τ as:

τcoh = τ(Gr
↑↓ −Gt

↑↓)/Gr
↑↓. (3.15)

Naively one may expect that the reduced absorption of the transverse spin accumulation
diminishes the torque, but this is not necessarily so (see Fig. 3.8). Since the mixing
transmission may be negative, Eq. (3.15) shows that increased torques are possible. This
can be understood as follows. A spin entering a ferromagnet will precess around an
exchange field normal to its quantization axis. A negative mixing transmission ReGt

↑↓ < 0
adds a phase factor corresponding to a rotation over an angle π during transmission. The
outgoing spin then has a polarization opposite to the incoming one. The magnetization
torque, i.e. the difference between in and outgoing spin currents, consequently increases
compared to the situation in which the incoming transverse spin is absorbed as in thick
ferromagnetic layers.

In contrast to N|F|N|F|N structures, we find that it is possible to observe Gt
↑↓ in the

aMR of F|N|F|N|F devices. We study here the dependence of the aMR on the mixing
transmission in a Py based multilayer. In Fig. 3.9 we present the aMR for different
mixing transmissions in the middle layer of thickness dF = 0.27lsd. Unfortunately, it
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Figure 3.8: The torque on the thin right layer of thickness d = 0.27lsd for F|N|F struc-
ture. The left layer has thickness d  lF

sd. The curves starting from the lower one re-
spectively, Re(1/Gt

↑↓) = 5fΩm2, Im(1/Gt
↑↓) = ∞; Re(1/Gt

↑↓) = ∞, Im(1/Gt
↑↓) = 5fΩm2;

Re(1/Gt
↑↓) = ∞, Im(1/Gt

↑↓) = ∞; Re(1/Gt
↑↓) = −5fΩm2, Im(1/Gt

↑↓) = ∞ (τ0 = I0h̄/2e).

seems difficult to obtain quantitative values for the mixing transmission from experiments
since the dependence of the aMR on Gt

↑↓ is rather weak.
When the coherence length becomes larger than the scattering mean-free path, which

can occur in weak ferromagnets like PdNi or CuNi, the transverse spin accumulation
should be treated by a diffusion equation [37]. The result can be parametrized again in
terms of a mixing transmission, which can subsequently be used in our circuit theory.

3.3.3 Three terminal device for observation of coherence effects

Finally, we propose an experiment that should be more sensitive to ferromagnetic co-
herence. We suggest the setup shown in Fig. 3.10 that is analogous to the spin-torque
transistor [38] and the magnetoelectronic spin-echo [29] concepts. A current through the
antiparallel ferromagnets F1 and F2 excites a spin accumulation in the normal metal N1.
This spin accumulation can transmit F3 only when its thickness is less than λ c. In that
case a spin accumulation is induced in the upper normal metal N2 that can be detected as
a voltage depending on the magnetization angle θ of the analyzing ferromagnet F4. We
assume here that N1 is smaller than its spin-flip diffusion length (Cu is a good candidate
with spin-diffusion lengths of up to a micron) such that the spin accumulation is constant
under the contact to F3. Otherwise the signal at the ferromagnet F4 is diminished since
part of the spin accumulation in N1 is lost due to spin-flip processes.

When the Gt
↑↓ of F3 is smaller than its Gr

↑↓ and ferromagnet F4 is not too leaky for
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Figure 3.9: aMR of F|N|F|N|F structure for the thickness of the middle layer d = 0.27lsd.
Outer layers are antiparallel with d  lF

sd. The curves starting from the lower one respec-
tively, Re(1/Gt

↑↓) = −5fΩm2, Im(1/Gt
↑↓) = ∞; Re(1/Gt

↑↓) = ∞, Im(1/Gt
↑↓) = 5fΩm2;

Re(1/Gt
↑↓) = ∞, Im(1/Gt

↑↓) = ∞; Re(1/Gt
↑↓) = 5fΩm2, Im(1/Gt

↑↓) = ∞.
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Figure 3.10: An experimental setup to observe the mixing transmission and measure the
ferromagnetic coherence length in ferromagnet F3. The spin accumulation �µS2 in the
normal metal N2 is measured via the angular dependence of the potential U(θ) of the
ferromagnet F4 that is weakly coupled to N2.

the spin current (e.g. connected via a tunnel junction) the spin accumulation in N2 can be
found from Eqs. (3.10,3.11) in terms of the spin accumulation in N1:

�µS2 =
|µS1|

(ReGr
↑↓)2 +(ImGr

↑↓)2

⎛⎜⎝ 0
ReGr

↑↓ ReGt
↑↓ + ImGr

↑↓ ImGt
↑↓

ReGr
↑↓ ImGt

↑↓ − ImGr
↑↓ ReGt

↑↓

⎞⎟⎠ (3.16)

ImGr
↑↓→0
≈ |µS1|

ReGr
↑↓

⎛⎜⎝ 0
ReGt

↑↓
ImGt

↑↓

⎞⎟⎠ (3.17)

where Eq. (3.17) holds to a good approximation when the layer F3 is metallic. The
spin accumulation is indeed coherently rotated by the exchange field in F3. The angle
dependence of the potential in F4 is U(θ) ≈ µS1P|Gt

↑↓|cosθ/
(

ReGr
↑↓
)

with maximum
along �µS2, where P is the polarization of the contact N2|F4.

When the Gt
↑↓ of F3 is not smaller than Gr

↑↓ (or the spin current leak into F4 is sig-
nificant), the spin accumulation µS1 is affected by µS2 and the final expressions are more
complicated.

An angle dependence of U(θ) provides a direct proof of a finite mixing transmission.
The ferromagnetic coherence length can be determined by repeating experiments for a
number of layer thicknesses of F3. Such a direct experimental evidence should help to
get a grip on this important parameter λ c.
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3.4 Conclusion

In this paper we extracted the spin-mixing conductance of a Py|Cu interface from the
experimental data of Urazhdin et al. using material parameters measured independently
by the MSU collaboration. We find good agreement with experiments on asymmetric
F|N|F|N multilayers, reproducing quantitatively the non-monotonic aMR that we pre-
dicted earlier [24–26]. Magnetoelectronic circuit theory together with the diffusion equa-
tion is a convenient tool for the data analysis when the spin-flip diffusion length in the
ferromagnet is of the same order as the layer thickness. We suggest carrying out current-
induced magnetization reversal experiments on samples that display the non-monotonic
aMR since we predict anomalous magnetization trajectories due to a vanishing torque at
finite magnetization angle [24–26]. We also study the effects of the finite ferromagnetic
coherence length in ultrathin ferromagnetic films or weak ferromagnets. For this purpose
the magnetoelectronic circuit theory is extended to treat phase coherent transport in the
ferromagnet. A coherence length that is larger than the ferromagnetic layer thickness does
not modify the aMR of N|F|N|F|N structures, but a small effect should exist in F|N|F|N|F
structures. In contrast, the spin-transfer torque is affected more strongly and may even be
increased by the spin-coherence when the exchange field rotates the transverse spin cur-
rent polarization by the angle π. Finally, we propose a three-terminal device that should
allow experimental determination of the ferromagnetic coherence length.

3.A Appendix: Analytical results for F|N|F|N|F struc-
ture.

The aMR of a F(↑)|N|F(θ )|N|F(↑ / ↓) CPP pillar can be described analytically when the
thick outer layers are parallel or antiparallel, respectively.

R(θ) = 2(R↑↓ +R)+RM

−R↑↓(R2
M− +4R−(R− +RM−α))+(2RMR2− +R2

M−R)(1−α2)
(R↑↓ +R)(2R↑↓ +RM)−RRMα2 , (3.18)

R(θ) = 2(R↑↓ +R)+RM − 2R2−(1−α2)
R↑↓ +R(1−α2)

− 2R2
M−(R↑↓ +R(1−α2))

(R↑↓ +R)(2R↑↓+RM)−RRMα2 , (3.19)
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where α = cosθ , 4R + 2R↑↓ = 1
G↑ + 1

G↓ , 4R− = 1
G↑ −

1
G↓ for the outer layers. The mix-

ing resistance for two interfaces adjacent to any normal metal R↑↓ = 1
Gr
↑↓

(we assume all

interfaces identical). For the middle layer 4RM = 1
G↑ + 1

G↓ −4R↑↓ , 4RM− = 1
G↑ −

1
G↓ .
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Chapter 4

Magnetomechanical torques in small
magnetic cantilevers

We study a small magnetic cantilever (e.g. a Si cantilever covered by a magnetic film
or an entirely ferromagnetic cantilever). The magnetomechanical torques are found to
cause line splittings in ferromagnetic resonance spectra and magnetization reversal facil-
itated by mechanical degree of freedom. We show that the magnetomechanical torques
can extend the limits of detecting and exciting motion at the nanoscale. A "nanomotor"
described here effectively transforms rf magnetic fields into mechanical oscillations. Fur-
thermore we propose to integrate mechanical osciallators into magnetoelectronic devices
that employ Slonczewski’s torque. This opens new possibilities for electric transducers of
nanomechanical motion.

61
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4.1 Introduction

Micro- and nanoelectromechanical systems (NEMS) [1, 2] allow nanoscale control over
as small sensors with spatial resolution on an atomic scale [3] operating at frequencies
in the GHz range [4]. NEMS detection of extremely small forces corresponding to bio-
molecular interactions [5] and mass changes corresponding to single molecules [6] have
been reported. Efforts have been made to merge the field of nanomechanics with that of
nanoscale magnetism. The success in the detection of a single electron spin by magnetic
resonance is a good example [7]. A nuclear spin sensor that is based on imposing a co-
herent motion on nuclear spins has been proposed [8]. Here we focus on the possibilities
provided by the coupled motion of the strain field of a cantilever and the magnetization
of a ferromagnet [9, 10]. Magnetization reversal in small magnetic clusters [11] is usu-
ally realized by external magnetic fields [12–15] or polarized spin currents employing
spin-transfer torques [16–23]. Along alternative mechanisms to switch the magnetiza-
tion such as employing antiferromagnets [24] and time-dependent magnetic fields [25],
we suggest the effect of mechanically assisted magnetization reversal [10]. The fastest
mechanical device reported in the literature is operated with the help of magnetomotive
forces at GHz frequencies [4]. We propose to actuate such systems by demagnetizing cur-
rents that provide coupling between the mechanical and the magnetization motion most
efficiently in the GHz range. Coupling of the magnetization motion to an electric circuit
via spin-transfer torques and magnetoresistance then opens the possibility of high fre-
quency transducers of nanomechanical motion. In this paper, we report consequences for
the magnetovibrational coupling such as splitting of the ferromagnetic resonance (FMR)
spectrum and magnetization reversal facilitated by the mechanical degrees of freedom.
We argue that a predominantly ferromagnetic cantilever provides stronger coupling and,
when integrated into a magnetoelectronic circuit, offers new functionalities for both me-
chanical and magnetic devices. Some preliminary results have been reported already
[9, 10].

The paper is organized as follows. In Section 4.2, we describe our system, the mag-
netic cantilever, and derive a set of equations describing magnetomechanical motion. In
Section 4.3, we solve these equations in the limit of small magnetization oscillations,
finding a splitting of FMR spectra for the resonantly coupled mode. In Section 4.4, we
propose a current-induced magnetic resonance technique in spin valves and demonstrate
that magnetovibrational modes can be detected by this method. Finally, in Section 4.5, we
analyze large magnetization oscillations in the presence of magnetovibrational couplings
and demonstrate magnetization reversal assisted by the mechanical degrees of freedom.
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Figure 4.1: A magnetomechanical cantilever supporting magneto-vibrational modes. On
a dielectric substrate (such as Si) a single-domain ferromagnetic film is deposited at the
free end.

4.2 System

We consider first a small dielectric cantilever with a single-domain ferromagnetic layer
deposited on its far end (see Fig. 4.1). A constant external field H0 is applied along the z
axis. In Section 4.3 we also include an oscillating field Hy along the y axis to pump and
probe the system. The effective field Heff felt by the magnetization consists of H0 as well
as the crystal anisotropy and the demagnetizing fields. The strains are localized in the
mechanical link of the cantilever between the ferromagnetic film at one end and the other
end that is fixed. The lattice of the ferromagnet then oscillates without internal mechanical
strains, but crystalline and form anisotropies couple the magnetic order parameter to the
torsional mode of the cantilever.

Our setup consists of two weakly interacting subsystems - the magnetic and the me-
chanical. It is then useful to first study the two subsystems separately.

4.2.1 Magnetization motion in a single-domain ferromagnet

The magnetization M of the ferromagnet precesses around an effective magnetic field Heff

according to the Landau-Lifshitz-Gilbert equation [26]:

dM
dt

= −γM×Heff +
α
Ms

M× dM
dt

, (4.1)

where γ denotes the gyromagnetic ratio. The phenomenological Gilbert constant is typi-
cally α � 0.01 for metallic and α � 0.00001 for insulating ferromagnets. The effective
field is given by the functional derivative of the free energy of the system, that is of the
form (in the lowest order in magnetizations in some specially chosen reference frame)

Emg =
1
2

DxM2
x +

1
2

DyM2
y +

1
2

DzM2
z −MH0, (4.2)
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Figure 4.2: Dependence of FMR broadening on aspect ratio m = a/c for ellipsoid with
the semi-axes a and b = c (H0 = Ms).

where Dx, Dy and Dz describe the anisotropy of the magnetization along the Cartesian
axes x, y and z, including demagnetizing effects and crystalline anisotropy. The associated
effective field is given by Heff = H0 −DxMxx−DyMyy−DzMzz.

4.2.2 Small magnetization oscillations and dependence of FMR
broadening on shape and crystal anisotropies

To first order, the deviations from the equilibrium magnetization in the z-direction lie
in the x− y plane: M = mxx +myz +Msz, where Ms is the saturation magnetic moment.
The magnetic susceptibilities χyy(ω) =

(
my/Hy

)
ω and χyx(ω) =

(
my/Hx

)
ω describe the

linear response of the magnetization my to a (weak) rf magnetic field Hy(Hx) at frequency
ω and can be found after linearizing the LLG equation in frequency space:

χyy(ω) =
γ2Ms(H0 +(Dx −Dz)Ms)

ω2 − (1+α2)ω2
m + iαω(2H0 +(Dx +Dy −2Dz)Ms)

, (4.3)

χyx(ω) =
iωγMs

ω2 − (1+α2)ω2
m + iαω(2H0 +(Dx +Dy −2Dz)Ms)

, (4.4)

where ω2
m = (H0 + (Dx −Dz)Ms)(H0 + (Dy −Dz)Ms) is the FMR resonant frequency.

Note that the FMR damping has to be renormalized in the presence of anisotropies. The
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broadening of the FMR lineshape is

α ′ = α
(H0/Ms +(Dx +Dy)/2−Dz)√

(H0/Ms +Dx −Dz)(H0/Ms +Dy −Dz)

Let us consider an ellipsoid with the semi-axes a and b = c. For small crystalline
anisotropies the anisotropy factors are defined by shape anisotropies

Dx = 4π
m2−1

[
m

2
√

m2−1
ln(m+

√
m2−1

m−
√

m2−1
)−1

] m�1≈ 4π −2πm,

Dy = Dz = 2πm
m2−1

[
m− 1

2
√

m2−1
ln(m+

√
m2−1

m−
√

m2−1
)
] m�1≈ πm,

(4.5)

where m = a/c. The dependence of FMR broadening on the aspect ratio m is plotted in
Fig. 4.2.

4.2.3 Nonlinear magnetization oscillations

Without Gilbert damping the dynamics of the magnetization can be analyzed analytically
for different magnetic anisotropies [27]. We present here solutions for the “easy plane”
anisotropy when Dy = Dz = 0 and H0 = H0z which is relevant for Section 4.4. Without
the Gilbert damping but including the anisotropy factor Dx the LLG equations read⎧⎪⎨⎪⎩

dMx
dt = −γMyH0

dMy
dt = γMxH0 + γDxMzMx

dMz
dt = γDxMyMx

(4.6)

The x−component of the magnetization then obeys

M̈x = −(H2
0 −DxEmg)γ2Mx − γ2

2
D2

xM3
x (4.7)

where the energy Emg =−H0Mz +DxM2
x/2 is constant when there is no Gilbert damping.

This equation describes a so-called “Duffing oscillator”, one of the rare examples of
a non-linear dynamic systems that can be solved analytically. The potential energy of
the oscillator has two minima. As a result, one can observe effects like periodic motion
centered at one of those minima that with increasing energy suddenly doubles its period.
When a periodic external force is applied to such an oscillator, the system may carry out
jumps between minima leading to stochastic motion in time. Duffing’s equation

ẍ− kx+2λ x3 = 0 (4.8)
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can be integrated at once to give the first integral:

ẋ2 − kx2 +λx4 = Z , (4.9)

where Z is the energy of the Duffing oscillator. By comparing Eqs. (4.6,4.7) to Eqs.
(4.8,4.9) we obtain that Z = γ2(M2H2

0 −E2
mg), k = γ2(DxEmg−H2

0 ) and λ = γ2D2
x/4. The

energy minima of the Duffing oscillator therefore correspond to the energy maxima in
our system. The magnetization can jump between the regions of maximal energy when
external torques are applied which is analogous to the behavior of the Duffing oscillator
(see Fig. 4.3). One can distinguish three different types of solutions.

1. Z < 0. “Small amplitude” solutions when motion is at energies close to an energy
minimum (in Fig. 4.3 it corresponds to two small circles and Emg > 1, the magnetization
oscillates close to the perpendicular to the film direction). We express the solutions in
terms of Jacobi elliptic functions dn:

x =

√
k

λ (2− v2)
dn

(√
k

λ (2− v2)
t,v

)
(4.10)

where v can be found from Z = − k2(1−v2)
4λ (1−v2/2)2 .

2. Z = 0 corresponds to the separatrix (in Fig. 4.3 it is the longest possible trajectory
in a shape of a bent "8"). Here the Jacobi functions degenerate to hyperbolic function ch:

x = ±
√

k
λ

1
ch(kt)

(4.11)

3. Z > 0 (in Fig. 4.3 it corresponds to bent elliptical trajectories and Emg < 1, the
magnetization trajectories are squeezed in the perpendicular to the film direction). “Large
amplitude” solutions via the Jacobi functions cn:

x =

√
k

λ (2v2 −1)
v cn

(√
k

λ (2v2 −1)
t,v

)
(4.12)

where Z = −k2v2(1−v2)
λ (2v2−1)2 .

The analytical solution in our case can be written for the entire parameter space with
the exception of the separatrix by a single formula as follows:

Mx =
√−2p−dn

(
tγ
√−p−/2,1− p+/p−

) p−�p+≈ √−2p− cos(t
√

p+/2) (4.13)

My = − Ṁx
γH0

, Mz = DxM2
x−2Emg
2H0

, (4.14)
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Figure 4.3: The period T1 (Emg < 1) and T2 (Emg > 1) of the magnetization dynamics in

Eqs. (4.15) in units 2π/
(

γ
√

(H0 +DxM)H0

)
as a function of energy in units H0M. The

inset shows a plot of typical trajectories at different energies on the unit sphere (DxM =
10H0).

where p± = H2
0 −DxEmg ±H0

√
H2

0 −2DxEmg +D2
xM2

s . When Dx > 0 this leads to the
trajectories and oscillation periods depicted in Fig. 4.3. The motion is periodic with time
periods that can be expressed by elliptic integrals K as

T1 = 4
√

2K (p−/p+)/
(
γ√p+

) p−�p+≈ 2π
√

2/p+; Emg < MH0

T2 = 2
√

2K (1− p+/p−)/(γ
√−p−)

|p−−p+|�|p−|≈ π
√−2/p−. Emg > MH0

(4.15)

The variation of the periodicity has important consequence for the coupling to the lattice
in the regime of large magnetization oscillations as explained below.

4.2.4 Cantilever oscillations and coupled magneto-mechanical equa-
tions

Throughout this paper, we assume that the torsional oscillations of the cantilever are small.
The torsional motion of the part of the cantilever that is not covered by the ferromagnet
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can be found by applying the variational principle to the total elastic energy [28]:

Eel =
1
2

∫ L

0
Cτ2dy, (4.16)

where τ = ∂ϕ/dy and C is an elastic constant defined by the shape and material of the
cantilever (C = 1

3 µda3 for a plate with thickness a much smaller than width d, a � d, µ
is the Lamé constant). T = Cτ (y) is the torque flowing through the cantilever at point y.
The integration is taken from the clamping point y = 0 until the cantilever endpoint y = L.
The equation of motion reads

C
∂ 2ϕ
∂y2 = ρI

∂ 2ϕ
∂ t2 +2βρI

∂ϕ
∂ t

, (4.17)

where I =
∫
(z2 +x2)dzdx � ad3/12 is the moment of inertia of the cross-section about its

center of mass, ρ the mass density, and β is a phenomenological damping constant related
to the quality factor Q at the resonance frequency ωe as Q = ωe/(2β) (at 1 GHz Q ∼ 500)
[4]. Note that ωe can be also a higher harmonic resonance frequency in what follows.
The oscillating solution has the form ϕ = sin(ky)(A1 sin(ωt)+ A2 cos(ωt)), where k =
(ω + iβ )/c is the wave number, c = ct2a/d =

√
C/(ρI) and ct =

√
µ/ρ is the transverse

velocity of sound. The free constants A1 and A2 depend on the initial conditions. The
boundary condition ϕ |y=0 = 0 at the clamping point is already fulfilled, and the boundary
condition at the end y = L is discussed in the following.

Combining Eqs. (4.2,4.16) and taking into account the smallness of the magnet ∆L �
L we can write the free energy of the cantilever coupled to the magnetization:

F = V (−MH0 +
Dx

2
[Mx +Mzϕ(L)]2 +

Dz

2
[Mz −Mxϕ(L)]2 +

DyM2
y

2
)+

C
2

∫ L

0
τ2dy.

(4.18)
Eq. (4.18) demonstrates that magneto-mechanical coupling is only possible when the
factors Dx or Dz are non-zero (the anisotropy factor Dy does not contribute to the coupling
since our mechanical motion is rotationally invariant with respect to the axis y and one
needs anisotropies Dx and Dz to break the invarance). For small ϕ = ϕ(L), where ϕ(y) is
the torsion angle at position y of the cantilever, the effective field Heff = − ∂F

∂M is

Heff = (DxMzϕ −DxMx)x+DxMxϕz− (DzMxϕ +DzMz)z−DzMzϕx−DyMy +H0

where Dx, Dy and Dz describe the anisotropies (Dx � 4π for a thin film without crystal
anisotropies). The equation of motion of the magnetization M in the presence of the
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mechanical degree of freedom then reads

dM
dt

= −γM×Heff +
α
Ms

M×
(

dM
dt

)
cant

, (4.19)

where the derivative
(dM

dt

)
cant = dM

dt + dϕ
dt (−Mzx + Mxz) is taken in the reference sys-

tem of the cantilever since the magnetization damping is caused by interactions of the
magnetization with the bulk of the cantilever.

By applying the variational principle to Eq. (4.18) we obtain Eq. (4.17) and the
second boundary condition for its solutions. The magnetovibrational coupling can then
be treated as a boundary condition to the mechanical problem, which is expressed as the
torque Cτ|y=L exerted by the magnetization on the edge of the cantilever:

Cτ|y=L =
1
γ

(
dM
dt

+ γM×H0

)
|y, (4.20)

This boundary condition is equivalent to the conservation law of the mechanical angu-
lar momentum written for the tip of the cantilever. Let us introduce an angular momentum
Vel(y) for a thin slice at point y ∈ {0,L} (without magnetic overlayer), then the conser-
vation law is dVel (y)/dt = T(y) , where T(y) is the torque flowing into the slice. This
equation is modified by the coupling to the magnet in a region y ∈ {L,L+∆L} (∆L is the
length of the cantilever covered by the magnetic layer) as:

d
dt

(
Vel (L)+(−1

γ
)M(L)V

)
= T(L)+Tfield. (4.21)

where Tfield = V M×H0, V is the volume of the magnet and T(y)|y = −Cτ (y). When
∆L� L, internal strains in the magnetic section may be disregarded and the magnetization
torque can be treated as a boundary condition Eq. (4.20).

The coupling of Eqs. (4.1) and (4.17) can be made explicit:

∂ϕ/dy|y=L = 1
Cγ

(
dMy
dt + γM×H0

)
Heff = (DxMzϕ −DxMx)x+DxMxϕz− (DzMxϕ +DzMz)z−DzMzϕx−DyMy +H0

(4.22)

4.2.5 Entirely ferromagnetic cantilever

It is straightforward to generalize the free energy Eq. (4.18) to the case when the whole
cantilever is covered by a ferromagnetic film or when the whole cantilever is ferromag-
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Figure 4.4: Dependence of the resonance frequency of the coupled motion on the FMR
frequency ωm of the uncoupled magnetization ( g ∼ 0.001).

netic. The free energy then has the form:

F = V (−MH0 +
Dx

2
[Mx +Mzϕ̄]2 +

Dz

2
[Mz −Mxϕ̄]2 +

DyM2
y

2
)+

C
2

∫ L

0
τ2dy (4.23)

where ϕ̄ = 1
L
∫ L

0 ϕ(y)dy is the average angle of torsion. In this case the system of the
magnetomechanical equations becomes:

dM
dt = −γM×Heff + α

Ms
M×(dM

dt

)
cant

C ∂ 2ϕ
∂y2 = ρI ∂ 2ϕ

∂ t2 + S
γ

(
dMy
dt + γM×H0

)
+2βρI ∂ϕ

∂ t

C∂ϕ/dx|x=L = 0
Heff = (DxMzϕ̄ −DxMx)x+DxMxϕ̄z− (DzMxϕ̄ +DzMz)z−DzMzϕ̄x−DyMy +H0

(4.24)
The coupling can be much more efficient in the latter as compared to the former system
since the volume of the magnet is larger. The disadvantage is that the form anisotropy
wants to align the magnetization along the cantilever making the subsystems uncoupled.
Another disadvantage, the possibility of spin wave excitations, is discussed in the next
Section.



Chapter 4. Magnetomechanical torques in small magnetic cantilevers 71

4.3 Small magnetization oscillations

4.3.1 Magnet at the tip of cantilever

To first order, the deviations from the equilibrium magnetization in the z-direction lie in
the x− y plane: M = mxx + myy + Msz, where Ms is the saturation magnetic moment
(see Fig. 4.1). For small ϕ , the effective field oscillates in the x − y plane: Heff =
(DxMsϕ −DxMx)x + DxMxϕz− (DzMxϕ + DzMs)z−DzMsϕx−DyMy + H0, (Dx � 4π
for a thin film without crystal anisotropy). Note that the coupling does not rely on a
strong magnetocrystalline field, since the surface forces of demagnetizing currents also
provide a restoring torque. For a thin ferromagnetic layer the latter dominates and the
magnetization does not precess, but oscillates like a pendulum in the y− z plane due to
the oscillating field in the x-direction Heff = DxMsϕx.

By using Eq. (4.20) with the substitution of ϕ in τ , Cτ|y=L =Ck cos(kL)(A1 sin(ωt)+
A2 cos(ωt)) = Ckϕ cot(kL), we obtain in frequency space and to first order in the magne-
tization oscillations:

Ckϕ cot(kL) =
V
γ

(−iωmy − γH0mx) (4.25)

≈−Cϕ
L

2c2 (ω2 +2iβω −ω2
e), (4.26)

where in the second line the cot has been expanded close to the resonance frequency
ωe = cπ(1/2 + s)/L ( s is integer, here we concentrate mainly on coupling to the first
harmonic and s = 0).

The magnetic susceptibilities χyy(ω) =
(
my/Hy

)
ω and χyx(ω) =

(
my/Hx

)
ω describe

the linear response of the magnetization my to a (weak) rf magnetic field Hy(Hx) at fre-
quency ω . Generalization of Eqs (4.3,4.4) in the presence of magneto-vibrational cou-
pling can be found after writing LLG equation in frequency space with use of Eq. (4.25),
and taking into account smallness of the Gilbert damping α:

χyy(ω) =
γ2M2

s (Dx −Dz +H0(1−g tan(kL))/Ms)
ω2 −ω2

m +2iα ′ωωm +[ω2 −H0(H0 +(Dy −Dz)Ms)]g tan(kL)
(4.27)

χyx(ω) =
iωγMs

ω2 −ω2
m +2iα ′ωωm +[ω2 −H0(H0 +(Dy −Dz)Ms)]g tan(kL)

(4.28)

where g = M2
s V (Dx − Dz)c2/

(
CLω2

e
)

= (2/π)2(Dx − Dz)(L/a)2(V/Vc)(M2
s /µ) is the

magnetovibrational coupling constant (V and Vc are the volumes of the magnet and the
cantilever respectively) and the unperturbed resonance frequency ω2

m = (H0 + (Dx −
Dz)Ms)(H0 + (Dy −Dz)Ms). Note that the coupling constant is defined by the material
parameters in the term M2

s /µ , by the geometry in the term (L/a)2(V/Vc) and by both
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the geometry and the material parameters in the term (Dx −Dz). The imaginary part of
χyy(ω) is proportional to the FMR absorption signal.

When the cantilever with the magnet is subjected to the rf magnetic field, the magne-
tomechanical torques induce a mechanical motion. In effect we have then constructed a
nano-scale motor that transforms the magnetic field oscillations into mechanical motion
with amplitudes that are given by the susceptibility χϕy(ω) =

(
ϕ/Hy

)
ω . The latter fol-

lows from the LLG equation in frequency space using Eq. (4.25), and taking into account
the smallness of the Gilbert damping α:

χϕy(ω) =
iωg tan(kL)

ω2 −ω2
m +2iα ′ωωm +[ω2 −H0(H0 +(Dy −Dz)Ms)]g tan(kL)

(4.29)

In the absence of the external field H0 the resonance frequencies in the vicinity of the
resonance frequency ωe can be found after expanding cot(kL) as in Eq. (4.26):

ω1(2) =

√
1
2

[
ω2

e +ω2
m +gω2

e ±
(
((ωe +ωm)2 +gω2

e)((ωe −ωm)2 +gω2
e)
)1/2
]1/2

.

(4.30)
When the external field H0 is smaller than the demagnetizing field, Eq. (4.30) holds with
ω2

m = (H0 +(Dx −Dz)Ms)(H0 +(Dy −Dz)Ms). This fact can be used to tune the FMR
frequency in order to match the elastic frequency. In this limit of strong shape anisotropy
(for example a thin ferromagnetic film with Dx ∼ 4π) and when H0G/(Msβω2

e)� 1, Eqs.
(4.27,4.29) simplify to

χyy(ω) ≈ γ2M2
s (Dx −Dz)

ω2 −ω2
m +2iα ′ωωm +ω2g tan(kL)

, (4.31)

χϕy(ω) ≈ iωg tan(kL)
ω2 −ω2

m +2iα ′ωωm +ω2g tan(kL)
. (4.32)

Imaginary part of χyy(ω) corresponding to the rf absorption is plotted in Fig. 4.5. We
observe a typical anticrossing behavior between an optically active and non-active mode,
with level repulsion and transfer of oscillator strength. The intrinsic damping of the me-
chanical system (for MEMS Q factors can reach 104, which quickly deteriorate with de-
creasing size, however) imposes an extra damping on the magnetization dynamics, which
close to the mode crossing may dominate the intrinsic damping due to a small Gilbert
constant α . In case β/ω > α ′ the damping growth when we move from purely mag-
netic motion into purely mechanical motion along one of the lines in Fig. 4.4. In case
β/ω < α ′ the damping diminishes along such line.

The amplitude of mechanical oscillations along one of the spectrum lines in Fig. 4.4
is plotted in Fig. 4.6. The efficiency of the nanomotor is maximal at resonance.
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Figure 4.5: The oscillator strength corresponding to each resonance in Fig. 4.4 in ar-
bitrary units plotted by full lines and their widths plotted by dashed lines (g ∼ 0.001,
β/ω > α ′).

4.3.2 Ferromagnetic cantilever

Eq. (4.24) describes magnetomechanical dynamics for a ferromagnetic cantilever or a
dielectric cantilever covered by a ferromagnet in the whole. The LLG equation is exactly
the same as in case of previous subsections apart from the fact that the torsion angle
should be averaged over the cantilever. Following Eq. (4.24) and for frequencies close to
the mechanical resonance, the coupling can be written in Fourier space as follows

−Cϕ̄
L

2c2 (ω2 +2iβω −ω2
e) =

Vc

2γ
(−iωmy − γH0mx) (4.33)

This result is identical to the expansion in Eqs. (4.25,4.26) after substituting Vc/2 by V .
In the expression for the coupling constant g in Eqs (4.27,4.28) we have V/Vc = 1/2. The
coupling constant is thus increased in comparison to the case of a small magnet at the tip
of the cantilever in which V/Vc � 1.

The density of a metallic single crystal cantilever (Fe) is higher ρ ∼ 8000 kg/m3

and the Lamé constant µ ∼ 100GPa [29] is of the same order as for Si. Consequently,
the metallic cantilever has to be smaller in order to have the same resonance frequency
with the Si cantilever. Most importantly, we have to fulfill the condition H0 > DzMs

that forces the equilibrium magnetization direction along the z−axis (alignment with the
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Figure 4.6: Amplitude of mechanical oscillations along one of the resonances in Fig. 4.4.
The maximal efficiency of the “nanomotor" occurs when both subsystems are at resonance
( g ∼ 0.001).

y−axis would result in zero coupling). This condition can be easily fulfilled in our geom-
etry by not too strong magnetic fields since the largest demagnetizing factor is Dx.

It follows from Eqs. (4.27,4.28) that a ferromagnetic cantilever is more suitable for ob-
servating the magneto-mechanically coupled modes since the coupling strength is larger
by the factor Vc/2V compared to the system with a small magnet at the tip of the cantilever.
Close to the mechanical resonance frequency both systems will behave identically.

4.3.3 Observation

The magnetovibrational coupling in our cantilever is observable by sensitive local FMR
techniques such as optical [30], magnetoresistive [39] or calorimetric [31]. It is also
possible to detect the resonance by the static deflection of the same cantilever due to an
additional constant magnetic field HT along the x-axis, as described by Lohndorf et al.
[32]. In our approximation the field HT creates a torque γMyHT�x, whose modulation at
the FMR conditions should be detectable.

Since the vibrational frequencies of state-of-the-art artificial structures are relatively
low, the use of soft ferromagnets (such as permalloy) , is advantageous. The magnetic
mode frequencies are then determined by shape anisotropies. The FMR frequency and
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the mechanical resonance frequency should not differ by much more than ∆ω ∼ ω√
g for

a pronounced effect. A Si cantilever with a×d ×L = (1×5×50)µm
(
C = 10−13Nm2)

has a torsional resonance frequency of the order of ωe = 10 MHz. Taking our ferro-
magnetic layer of dimensions a1× d ×∆L = 50nm× 5µm× 5µm (thickness, width and
length), then ω√

g ∼ 100 KHz, meaning that we should tune the magnetic resonance to
ωe ±100 KHz to observe the “polariton”. The necessary rf field Hx depends on the vis-
cous dampings of mechanical and magnetization motion. At low frequencies additional
sources of damping complicate measurements [33] and the coherent motion of the mag-
netization can be hindered by domain formation. Coupling to higher resonance modes
[34] or structuring of the ferromagnet may help to carry out measurements. Use of weak
ferromagnets to diminish the FMR frequencey or scaling down the cantilever at expence
of lower Q factors may help as well. However, it is extremely difficult to create mechani-
cal devices that operate at microvawe frequencies. Stiff silicon-carbide epilayers are used
together with balanced, high-frequency displacement transducers in order to break the 1
GHz barrier [4].

An actual observation of the predicted splittings would give information about e.g.
the magnetic moment of the film and the broadening would yield the quality factor of
the elastic motion. From a technological point of view the tunable damping due to the
magnetovibrational coupling might be interesting for optimizing switching speeds. A fer-
romagnet effectively absorbs microwaves and turns them into a precessing magnetization,
which via the magnetovibrational coupling can be transformed into a coherent mechanical
motion. On the other hand, the ferromagnet may interact with the mechanical motion, to
cause a magnetization precession, which in turn emits polarized microwaves. The emis-
sion in the coupled regime is more energy efficient in comparison with a fixed magnetic
dipole emission in the case of small Gilbert constant but relatively low mechanical quality
factor. This might be interesting for e.g. on-chip communication applications.

In this Section we have calculated the magnetic susceptibility of a system with magne-
tovibrational coupling by magnetocrystalline fields or via surface forces of demagnetizing
currents. A condition for effective energy transfer from an external rf magnetic field into
mechanical motion and vice versa has been established. FMR spectra are predicted to
split close to the resonance, and to strongly depend on the mechanical damping. The pre-
dicted effects should be observable with existing technology, but a further reduction of
system size would strongly enhance them.
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Figure 4.7: Electro-magneto-mechanical device. The free ferromagnetic layer in a spin
valve is extended forming the cantilever. An AC current is sent through the base of the
cantilever.

4.4 Probing magnetization dynamics by spin-transfer
torques

All FMR observation techniques mentioned require the application of microwave fields to
excite the magnetization dynamics. In this Section, we propose an alternative method to
probe the magnetization dynamics in which the role of the microwave field is taken over
by spin-transfer torques. By driving an AC current through F|N|F spin valve structures
with fixed and free layer magnetizations that are canted with respect to each other, we
can excite the free layer motion (Fig. 4.7) (excitation of the magnetization motion by
DC currents has already been realized [39]). The magnetization dynamics should in turn
influence the resistance of the device that can be measured. When the magnetic layer has
a mechanically active extension, as in Fig. 4.7, we can also detect the magneto-vibrational
mode.

4.4.1 Electrical detection of FMR

We consider here F1|N|F2 multilayer structures with perpendicular magnetizations m1

and m2 assuming m2 fixed by anisotropies or exchange biasing. An AC current exerts an
oscillating torque τ1 on the magnetization m1 [35]:

τ1

I0
=

h̄
2e

1+R↑↓/R1 −βP1/P2

(1+R↑↓/R1)(1+R↑↓/R2)−β 2 (4.34)

with β = cosθ , 4R1(2) = 1/G1(2)↑ + 1/G1(2)↓ − 2R↑↓, 4R1(2)− = 1/G1(2)↑ − 1/G1(2)↓,
P1(2) = R1(2)−/R1(2), and 2R↑↓ = 1/Gr

1↑↓ + 1/Gr
2↑↓, where G1(2)↑ and G1(2)↓ are con-
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ductances of the left (right) ferromagnet including the left (right) normal layer, Gr
1↑↓ and

Gr
2↑↓ are mixing conductances of the middle normal metal with adjacent ferromagnet in-

terfaces. The resulting magnetization dynamics causes oscillations of the resistance of the
multilayer structure according to [35]

ℜ(θ ) = R+R1 +R2 −
R↑↓(R1− +β R2−)2 +(1−β 2)(R2

1−R2 +R2
2−(R1 +R↑↓))

(R↑↓ +R1)(R↑↓+R2)−β 2R1R2
. (4.35)

In the following, we consider only small deviations of m1 from the perpendicular to m2

direction. All the equations can then be rewritten keeping only the leading terms with
respect to small β . The torque τ1 is proportional to the current I0 in this approximation:

τ1 = I0
h̄
2e

1+R↑↓/R1

(1+R↑↓/R1)(1+R↑↓/R2)
= V |M×Hx| (4.36)

where we defined an effective rf field Hx along the axis x that creates the same torque as
the oscillating AC current. Thus the response function

(
my/I0

)
ω = Kχyx(ω) with

KMsV =
h̄
2e

1+R↑↓/R1

(1+R↑↓/R1)(1+R↑↓/R2)
, (4.37)

and the susceptibility can be found from Eq. (4.4). To the first order in the mechanical
damping constant β we can write the dynamical impedance as:

Z(ω) = R+R1 +R2 −
R↑↓(R2

1− +2I0Kχyx(ω)R2−R1−)+(R2
1−R2 +R2

2−(R1 +R↑↓))
(R↑↓ +R1)(R↑↓ +R2)

.

(4.38)
|Z(ω)| normalized by the resistance of the locked perpendicular magnetizations is plotted
in Fig. 4.8. The parameters of the spin valve are the same with the symmetric setup of
[35]. The current amplitude I0 is chosen to correspond to magnetization oscillations of
15 degrees which appears to be readily experimentally accessible. In Fig. 4.8 the FMR
resonance corresponds to the dip in the absolute value of the impedance that should be
easily detectable.

4.4.2 Electrical detection of magnetovibrational mode

The method described in the previous chapter can also be used for detecting the magne-
tovibrational modes. The ferromagnet F1 is extended forming a ferromagnetic cantilever
(Fig. 4.7). The magnetization m2 can have two directions (bold and dashed lines in Fig.
4.7) that are equally suitable for this purpose. In principle, the direction plotted by dashed
line can cause a constant torsion of the cantilever when a constant current is sent through
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Figure 4.8: Dependence of the normalized impedance on the AC current frequency (α ′ =
0.02).

the spin valve since in this case the spin-transfer torque is transferred to the mechanical
torque via the shape anisotropy. We concentrate here on the direction of m2 indicated by
the bold arrow which can be easier realized in experiment. When an AC current is sent
through the system the oscillating torque causes oscillations of the magnetization m1 as
explained in the previous Section. At resonance, we can observe the magnetovibrational
mode as a splitting of the dip in the absolute value of the impedance plotted in Fig. 4.9.
The width of the dips is a measure of the damping that is approximately half of the width
in Fig. 4.8 for chosen parameters, which is consistent with the results of Section 4.3.1 .

In a long cantilever with a finite exchange stiffness, the macrospin magnetization mo-
tion can be complicated by spin waves. The effective field for the LLG Eq. (4.1) in the
presence of nonuniform magnetization reads

Heff = −DxMxx−DyMyy−DzMzz+
2A
M2

s
�2 M+H0 (4.39)

where A is the exchange stiffness. The lowest-energy bulk spin wave mode is along the
cantilever with the frequency that can be found from the LLG equation written in Fourier
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Figure 4.9: Dependence of the normalized impedance on the AC current frequency (ωm =
ωe, α ′ = 0.02, β/ω = 0.002).

space:[
−iω γ( 2A

Ms
k2 +(Dy −Dz)Ms +H0)

−γ( 2A
Ms

k2 +(Dx −Dz)Ms +H0) −iω

][
mx/Ms

my/Ms

]
= 0

(4.40)
where M = (mxx + myy)ei(ωt+k·r) + Msz. The resonance frequency is ωsw =

γ
√

( 2A
Ms

k2 +(Dx −Dz)Ms +H0)( 2A
Ms

k2 +(Dy −Dz)Ms +H0). We estimate the difference
between frequencies of the macrospin mode with k = 0 and the longest wavelength
mode with k = π/L. For a thin film γ

√
4πMs

2A
Ms

(π/L)2 ≈ 0.2 GHz, where we adopted

A = 2×10−11J/m, Ms = 1.4×106A/m and L = 1 µm. Since we excite the mechanical
motion monochromatically by the AC currents, it is sufficient then to have the mode split-
ting larger than the broadening. This shows that in principle we can design the magnetic
and mechanical subsystems to avoid bulk spin wave generation provided the mechanical
damping as well as the Gilbert damping are relatively small. Note that by applying an
antiferromagnetic layer on top of the cantilever we can strengthen exchange stiffness thus
diminishing the possibility of spin waves even further.

It is also possible to include coupling of the mechanical motion to spin waves but this
regime will not be considered here.
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4.5 Large magnetization cones and magnetization rever-
sal in the presence of coupling

In this Section, we extend the linearized magnetization motion to large angles relevant
e.g. for the magnetization reversal.

4.5.1 Resonant magnetization oscillations and reversal

We consider resonant oscillations of the mechanical and magnetic degrees of freedom.
We restrict ourself here to the case when only one anisotropy direction is present (e.g.
Dy = Dz = 0) which is relevant for very thin ferromagnetic films with and easy plane
anisotropy when Dx ∼ 4π .

The coupling of Eqs. (4.1) and (4.17) is

∂ϕ
∂y |y=L = 1

Cγ

(
dMy
dt + γM×H0|y

)
,

Heff = (DxMzϕ −DxMx)x+DxMxϕz+H0 ,
(4.41)

We first address the maximal possible coupling strength of a system described by
Eq. (4.41). Consider the two subsystems oscillating at a common frequency ω . The
total mechanical energy is then Eme = ρILω2ϕ2

0, where ϕ0 is the maximal angle of the
torsional motion. By equipartition this energy should be of the order of the magnetic
energy Emg = MsV H0. The maximal angle would correspond to the mechanical motion
induced by full transfer of the magnetic energy to the lattice. By equalizing those en-
ergies, we find an estimate for the maximal angle of torsion ϕ0 =

√
MsV H0/(ρILω2).

The coupling between the subsystems can be measured by the distribution of an applied
external torque (e.g. applied by a magnetic field) over the two subsystems. The total
angular momentum flow into the magnetic subsystem by the effective magnetic field is
(MsV/γ)ω, whereas that corresponding to the mechanical subsystem at the same fre-
quency is (ρILωϕ0)ω. Their ratio is ϕ0ω/(γH0). The maximum angle ϕ0 derived
above is therefore also a measure of the coupling between the magnetic and mechani-
cal subsystems. This estimate is consistent with the coupling strength of polariton modes
at resonance of g = ϕ2

0ω2/(γH0)2 ≈ ϕ2
0DxMs/H0 in Eqs. (4.27,4.28) (in this estimate

we consider the case of not too strong external fields when ω ≈ γ
√

H0DxMs). An esti-
mate for a cantilever with ρ = 2330 kg/m3 (Si) and d = 100 nm (ω ∼1 GHz) leads to
g = ϕ2

0DxMs/H0 ∼ (L/a)2(M2
s /µ) ∼ 10−3. Increasing (L/a) and Ms or decreasing Lamé

constant µ is beneficial for the coupling.
Magnetization reversal by a magnetic field in the coupling regime can be realized

even without any damping by transferring magnetic energy into the mechanical system.
Since we find that ϕ0 � 1 for realistic parameters, the subsystems undergo many pre-
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Figure 4.10: Time-dependent response of the magnetomechanical system to an external
magnetic field switched on at t = 0 at an angle 2π/3 with the initial magnetization, in
the absence of dissipation. Plotted are the ϕ(L) and z−components of the magnetization
(DxM = 10H0).
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cessions/oscillations before the switching is completed. The switching is then associated
with a slow time scale corresponding to the global motion governed by the coupling or a
weak damping relative to a fast time scale characterized by the Larmor frequency. The
equation of motion for the slow dynamics (the envelope functions) can be derived by av-
eraging over the rapid oscillations. To this end, we substitute LLG Eq. (4.19) and first
of Eqs. (4.41), linearized in the small parameters α , β and ϕ0, into the equations for the
mechanical and the magnetic energies:

d
dt Eme = −2βEme +Cτ|x=L

dϕ
dt |x=L,

d
dt Emg = −H0Ṁz +DxMxṀx .

(4.42)

We focus in the following on the regime H0 � DxMs, which usually holds for thin films
and not too strong fields, in which the magnetization motion is elliptical with long axis in
the plane and small Mx even for larger precession cones. Disregarding terms containing
higher powers of Mx and averaging over one period as indicated by 〈...〉〈

dEme
dt

〉
+ 〈2βEme〉 = −V Dx 〈MzMxϕ̇〉 ,〈

dEmg
dt

〉
+
〈
αD2

xMsM2
x
〉

= Dx
〈
MzṀxϕ

〉
.

(4.43)

By adiabatic shaping of time-dependent magnetic fields H0(t) we can keep the two sub-
systems at resonance at all times (H0(t) does not change much since we do not consider
large angle cones that are very close to the antiparallel configuration). The slow dynam-
ics ϕ(L, t) ∼ A(t)ei(ω+π/2)t and Mx ∼ W (t)eiωt in time domain is then governed by the
equation:

Ȧ+β A = −gωm/Ms(−1+ DxW 2

4MsH0
)W ,

Ẇ +α ′ωW = ωMs(−1+ DxW 2

4MsH0
)A ,

(4.44)

we introduced a frequency ωm = γ
√

DxMsH0(t) that at t = 0 coincides with the fre-
quency of fast oscillations ω . Substitutions ϕ(L, t) ∼ Ã(t)eiωt and Mx ∼ W̃ (t)ei(ω−π/2)t

corresponding to π/2-shifted harmonics are also solutions, and the initial conditions de-
termine the linear combination of two envelope functions, i.e. the beating pattern of two
hybridized polariton modes [9]. When initially all energy is stored in one degree of free-
dom, Mx is π/2 shifted from ϕ(L, t) and A2(t) = 0. Eqs. (4.44) describe a (damped)
harmonic oscillator with frequency

√
gω̄mω � ω when DxW/4 � MH0 (since ωm does

not change much we replaced it by averaged ω̄m). Such oscillatory behavior persists for
general angles (except for motion with very large angle cones close to the antiparallel
configuration). This is illustrated by Fig. 4.10 which shows a numerical simulation of Eq.
(4.22) for an undamped system excited at t = 0 by a magnetic field H0 at an angle 2π/3
with the initial magnetization. The number of periods necessary to transfer all energy
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Figure 4.11: Time-dependent response of the magnetomechanical system to an external
magnetic field switched on at t = 0 (DxM = 10H0, α = 0). The importance of mechanical
damping can be seen by comparing the dotted line (β = 0) with the full line (β = 0.02).
The dashed line illustrates the dynamics when the subsystems brought out of resonance
by reducing the external magnetic field to half of its initial value at t = 6.5 (β = 0).

from one subsystem to the other is therefore given by ∼ 1/
(
4
√

g
)
. Eq. (4.44) also shows

that for damping constants α > ϕ0/π or β/ω >
√

g/π the beating is suppressed.

Fig. 4.10 illustrates that the mechanical system absorbs energy from the magnetic
subsystem and gives it back repeatedly in terms of violent oscillations that are modulated
by an envelope function on the time scale derived above in Eq. (4.44) as plotted by
dotted line. When the envelope function vanishes the magnetization is reversed and the
systems seems to be at rest. However, since the energy is not dissipated, the momentarily
silence is deceptive, and the beating pattern repeats. An efficient coupling requires that
the frequencies of the subsystems are close to each other at each configuration, which was
achieved in the simulation by the adiabatic modulation of the magnetic field H0 according
to Fig. 4.3. However, the reversal process is robust; an estimate from Eqs. (4.43) for
the necessary proximity of the resonant frequencies of the mechanical and the magnetic
subsystems is ∆ω ∼√

gω . In that case, the above estimates still hold.

Let us now consider the magnetization reversal by an antiparallel magnetic field H0(t)
that undergo slow change of amplitude to keep the subsystems at resonance. This method
of magnetization reversal by oscillating demagnetizing field due to mechanical oscilla-
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tions is strongly analogous to the reversal by time-dependent magnetic fields [25]. How-
ever, in contrast to the time-dependent field reversal, we vary the field H0(t) but not the
rf fields so avoiding complicated time dependence of rf fields [25]. We can calculate the
dependence H0(t) in advance for a specific sample, or we can create feedback circuit by
connecting metallic contacts to the magnetic film, thus monitoring the dynamics. Since
we assume zero temperature, the dynamics in Fig. 4.11 is initiated by assuming a tiny
angle of magnetization at t = 0. We wish to illustrate here that making use of the magne-
toelastic coupling can accelerate the reversal importantly. We can suppress the backflow
of mechanical energy for example by a sufficiently damped mechanical subsystem, as ev-
ident in Fig. 4.11 by comparing the two curves for β ∼ 0 and β ∼ 0.02 with vanishing
Gilbert damping, α = 0. Alternatively, we may detune the external magnetic field out of
the resonance precisely after the first reversal, effectively rectifying the energy flow from
the magnetic into the mechanical subsystem. We observe that even without any intrinsic
damping (α = β = 0) the unwanted “ringing” can be strongly suppressed (dashed line in
Fig. 4.11).

The experimental realization of such magnetization reversal will be a challenge since
the cantilever has to preferably work at high frequencies ∼ 1 GHz. In the resonant rever-
sal, a significant coupling strength of g ∼ 10−3 requires that one tenths of the cantilever
volume is a ferromagnet. We investigated here the non-linear dynamics of coupled mag-
netic and mechanical fields for a cantilever with a ferromagnetic tip. Employing the new
dissipation channels, we propose new strategies for fast magnetization reversal and sup-
pressed “ringing”. We can make use of the additional mechanical damping or shape the
external magnetic field pulses, thus quickly channeling-off magnetic energy when damp-
ing is weak.

4.5.2 Non-resonant magnetization oscillations and reversal

We propose a non-resonant mechanical reversal scheme analogous to “precessional”
switching [13]. The effective field Heff (see Eq. (4.22)) has a component perpendicular to
the plane of the film Hx ∼ Mϕ . Under a sudden mechanical twist this component acts like
a transverse magnetic pulse about which the precessing develops. Alternatively, we can
suddenly release a twist preinstalled on the cantilever. This could be achieved by an STM
tip bonded to an edge of the cantilever at (L, d) and pulling it up slowly to the breaking
point. The mechanical response should be fast, i.e. react on a time scale (γϕνM)−1, but
there are no resonance restrictions now. We integrate the equation of motion numerically
for a strongly damped cantilever β/ω ∼ 0.15 initially twisted by ϕ = 0.2 and suddenly
released at t = 0. We reintroduce an easy axis anisotropy described by DMzz. Adopt
D = 0.05, α = 0.01 and no external fields. Fig. 4.12 displays the desired reversal. The
rather severe overshoot, as in the case of the precessional switching technique, can be
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Figure 4.12: Magnetization switching without external field by an initially twisted can-
tilever that is released at t = 0. The inset shows the corresponding magnetization trajec-
tory on the unit sphere.
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minimized by carefully engineering the mechanical actuation to be closer to the optimum
“ballistic“ path between Mz = ±1.

Summarizing, we demonstrate here a precessional reversal scheme based on the me-
chanically generated out-of-plane demagnetizing field without applied magnetic fields. In
this reversal scheme, the sharp control of the resonance condition is not required, however,
the cantilever has to be fast determining the reversal time.

4.6 Conclusion

This paper reports a detailed study of magnetomechanical effects in small magnetic can-
tilevers, summarizing some old results [9, 10] and making several generalizations. We
proved that for small magnetization oscillations close to the mechanical resonance fre-
quency, a ferromagnetic cantilever behaves like the dielectric cantilever with a small mag-
net at the tip analyzed before. Such a ferromagnetic cantilever has an enhanced coupling
of mechanical and magnetic degrees of freedom and thus is more suitable for observation
of magnetomechanical effects. A metallic ferromagnetic cantilever can be integrated into
magnetoelectronic circuits as shown in Section 4.4 . Such an integrated device has the
potential as a fast transducer of mechanical motion as an alternative to previous designs
that take advantage of magnetomotive forces. In our case, the magnetomotive forces are
supplanted by spin-transfer torques. Our strategy; that is to say to avoid magnetic fields,
is similar to what happens in the field of random access memories in which there is a
considerable effort to replace magnetic fields by employing spin-trasfer torques. The
technique presented in this paper strongly relies on resonant magnetovibrational coupling
in which the magnetic torques can be effectively transformed into mechanical torques and
vice versa. In order to see magnetomechanical torques in experiement, one needs to be
able to handle small structures on micro and nano scale, the magnets have to be small
enough to form a single domain. We beleive that the integration of magnetoelectronics
and magnetomechanics is possible and should lead to devices with new functionalities.
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Summary
Electrical and mechanical magnetization torques

Only charge degree of freedom is utilized in most electronic devices. The use of the spin
degree of freedom is relatively recent. The discovery of the Giant Magnetoresistance
(GMR) effect initiated the development of magnetoelectronics - the field that studies ef-
fects on electron transport involving the spin degree of freedom. GMR is a very large
change in electrical resistance observed in ferromagnet/nonmagnet multilayer structures
when the relative orientations of the magnetizations in ferromagnetic layers change as a
function of applied field. The development of magnetoelectronics was very rapid lead-
ing to useful applications already within several years. For example, the GMR effect is
presently routinely used to sense magnetic fields of data in read heads of magnetic hard
disk drives.

Whereas in GMR the relative direction of the magnetizations defines the current flow-
ing through the system, an opposite effect of current on the magnetizations is also possi-
ble. Slonczewski predicted this effect - the spin transfer torque. In a ferromagnet/normal
metal/ferromagnet structure with one magnetization free and the other fixed, the magneti-
zation dynamics of the free layer can be driven by a current through the system as a result
of spin-transfer torques. The magnetization dynamics in small magnetic clusters and films
is a basic problem of condensed matter physics and is also important for applications: the
spin-transfer effect may find applications in the so-called magnetic random access memo-
ries in which the direction of the magnetization is used to store the data and the rewriting
process can be done by spin-transfer torques. Magnetoelectronics is a rapidly developing
field at the moment and this thesis deals with some aspects of it related to magnetization
dynamics and torques.

The main subject of the thesis is torque, i.e. a change of angular momentum in time.
We deal with torques that arise in spin valves and small magnetic cantilevers; spin-transfer
torques in the former and magnetomechanical torques in the latter case. In order to de-
scribe spin-transfer torques we develop an approach based on the diffusion equation with
quantum mechanical boundary conditions. With some simplifications this leads to mag-
netoelectronic circuit theory. This allows us to treat arbitrary diffuse spin valves and other
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devices.
Magnetomechanical torques arise in small magnetic cantilevers. An example is a can-

tilever with one end fixed and the other covered with a magnetic film. It is important
that the magnetic film has strong crystal or shape magnetic anisotropy, which provides
coupling between vibrations and the magnetization dynamics. The anisotropy in the film
leads to magnetomechanical torques that affect both the magnetization dynamics and the
mechanical motion of the cantilever. This can open new possibilities for Magnetic Reso-
nance Force Microscopy in imaging and sensor applications.

In Chapter 1 of this thesis we introduce the basic concepts of magnetoelectronics such
as the spin-polarized current, the GMR effect, the spin-transfer torque and the magneti-
zation dynamics. We introduce also magnetomechanical torques and analyze an example
of a nanomechanical system that can be used for detecting magnetomechanical torques.

We introduce magnetoelectronic circuit theory that can be used to describe spin-
transfer torques. Furthermore, we give a short account of the derivation of the Landau-
Lifshitz-Gilbert equation. In generalized form this equation allows us to describe the
magnetization dynamics as a result of magnetic fields and/or spin-transfer torques. Fi-
nally, applications of the magnetomechanical torques in Magnetic Resonance Force Mi-
croscopy is mentioned, and a design for a novel "spin-transfer motor"is proposed.

In Chapter 2, we apply the diffusion equation to electronic transport in disordered
ferromagnet (F) - normal metal (N) spin valves and show its equivalence to the mag-
netoelectronic circuit theory. The spin-transfer torque appears naturally in the diffusion
approach from the boundary conditions at N-F interfaces; spin currents polarized perpen-
dicular to the magnetization are absorbed at the interface of the ferromagnet. We obtain
analytical expressions for the spin transfer torque and the angular magnetoresistance in
asymmetric F1-N-F2 spin valves. The effect of spin-flip processes in the normal metal
and ferromagnet constituents are obtained analytically as well. In an N1-F1-N2-F2-N3
system, spin-flip in the center metal N2 reduces the spin-transfer, whereas spin-flip in the
outer normal metals N1 and N3 can increase it by effectively enhancing the spin polariza-
tion of the device.

In Chapter 3, magnetoelectronic circuit theory is employed to analyze perpendicular
spin valves with ultra-thin ferromagnetic layers. We consider two finite size effects in
transport through magnetic multilayers. The first effect arises when the magnetic layer
thickness in spin valves becomes of the order or smaller than the spin-flip diffusion length.
In this case the spin valve can become effectively asymmetric, which affects the transport
properties and spin-transfer torques. The second effect arises in magnetic layers with
thickness approaching the magnetic coherence length. In this case spin currents polarized
perpendicular to the magnetization can pass through the thin ferromagnetic layer (the
coherence length in transition metals is of the order of several atomic layers; much smaller
than the spin-diffusion length and mean-free path). We investigate both effects on the
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angular magnetoresistance (aMR) and spin transfer torque. The spin-flip diffusion length
in the ferromagnet as well as the interface spin-mixing conductance are determined by a
fit to recent aMR experiments. At the end, we propose a three terminal device to measure
the ferromagnetic coherence length.

In Chapter 4, we study a small magnetic cantilever (e.g. a Si cantilever covered by
a magnetic film or an entirely ferromagnetic cantilever). Such cantilevers can serve for
observation of magnetomechanical torques, which, for example, leads to hybrid magne-
tovibrational (“polaritonic”) modes and line splittings in ferromagnetic resonance spectra.
Magnetomechanical torques can even cause a complete magnetization reversal. It is still
very difficult to make nanoelectromechanical systems working at microwave frequencies,
but many new possibilities arise. We propose to build nanoelectromechanical systems
propelled by spin-transfer and magnetomechanical torques. Such systems can extend the
limits of detecting and exciting motion at the nanoscale and can serve as electric trans-
ducers of nanomechanical motion.
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Samenvatting

In de meeste electronische toepassingen wordt alleen de ladingsvrijheidsgraad gebruikt.
Het gebruik van de spinvrijheidsgraad is relatief recent. De ontdekking van het reuze-
magnetoweerstand effect (Giant Magnetoresistance, GMR) was het begin van de on-
twikkeling van de magnetoelectronica - het vakgebied dat de effecten van de spinvri-
jheidsgraad op electronentransport bestudeert. GMR is een zeer grote verandering van de
electrische weerstand die wordt waargenomen in ferromagnetisch/niet-magnetische mul-
tilaagstructuren als de relatieve oriëntatie van de magnetisaties in ferromagnetische lagen
verandert als functie van een aangelegd magnetisch veld. De ontwikkeling van de mag-
netoelectronica leidde zeer snel tot nuttige toepassingen. Het GMR effect wordt op dit
moment bijvoorbeeld gebruikt om magnetische velden van data in leeskoppen van mag-
netische harde schijven te detecteren.

Terwijl bij GMR de relatieve richting van de magnetisaties de stroom door het sys-
teem bepaalt, is het omgekeerde effect van stroom op de magnetisaties ook mogelijk.
Slonczewski heeft dit effect voorspeld -het spinoverdrachtsmoment. In een ferromag-
neet/normaal metaal/ferromagneet structuur met één vrije magnetisatie en één vaste, kan
de magnetodynamica van de vrije laag bepaald worden door een stroom door het sys-
teem als gevolg van de spin-overdrachts momenten. De magnetisatiedynamica in kleine
magnetische clusters en films is een fundamenteel probleem in de fysica van gecon-
denseerde materie en is ook belangrijk voor toepassingen: het spinoverdrachtseffect
zou toegepast kunnen worden in de zogenaamde magnetische random-access geheugens
(MRAM) waarbij de magnetisatie wordt gebruikt om data op te slaan en het herschrijf-
proces uitgevoerd kan worden met spinoverdrachtsmomenten. De magnetoelectronica is
op dit moment een zich snel ontwikkelend veld en dit proefschrift behandelt sommige
aspecten ervan die gerelateerd zijn aan magnetisatiedynamica en momenten.

Het hoofdonderwerp van dit proefschrift is moment, d.w.z. een verandering van
impulsmoment in de tijd. We behandelen momenten die ontstaan in zogenaamde
"spinventielen"(spin-valves) en kleine magnetische cantilevers; spinoverdrachtsmo-
menten in het eerste en magnetomechanische momenten in het tweede geval. Om
de spinoverdrachtsmomenten te beschrijven ontwikkelen we een aanpak gebaseerd op
de diffusievergelijking met quantummechanische randvoorwaarden. Met enige vereen-
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voudigingen leidt dit tot de magnetoelectronische netwerktheorie. Dit stelt ons in staat
willekeurige diffuse spinventielen en andere systemen te behandelen.

Magnetomechanische momenten ontstaan in kleine magnetische cantilevers. Een
voorbeeld is een cantilever waarvan één eind is vastgezet en het andere is bedekt met
een magnetische film. Het is belangrijk dat de magnetische film een sterke kristallijne
of magnetische vormanisotropie heeft, die zorgt voor een koppeling tussen vibraties en
de magnetisatiedynamica. De anisotropie in de film leidt tot magnetomechanische mo-
menten die zowel de magnetisatiedynamica als de mechanische beweging van de can-
tilever beïnvloeden. Dit kan nieuwe mogelijkheden bieden voor Magnetische Resonantie
Kracht Microscopie voor afbeeldings- en sensortoepassingen.

In hoofdstuk 1 van dit proefschrift introduceren we de basisconcepten van de magne-
toelectronica zoals spin-gepolariseerde stroom, het GMR effect, het spinoverdrachtsmo-
ment en magnetisatiedynamica. We introduceren ook magnetomechanische momenten en
analyseren een voorbeeld van een nanomechanisch systeem dat gebruikt kan worden om
magnetomechanische momenten te detecteren.

We introduceren de magnetoelectronische netwerktheorie die gebruikt kan worden
om spinoverdrachtsmomenten te beschrijven. Verder geven we een korte samenvatting
van de afleiding van de Landau-Lifschitz-Gilbert vergelijking. In gegeneraliseerde vorm
kunnen we met deze vergelijking de magnetisatiedynamica beschrijven die het gevolg is
van magnetische velden en/of spinoverdrachtsmomenten. Tenslotte worden toepassingen
van de magnetomechanische momenten in Magnetische Resonantie Kracht Microscopie
genoemd en wordt een ontwerp voor een nieuwe "spin-overdrachts motor"voorgesteld.

In hoofdstuk 2 passen we de diffusievergelijking toe op electronisch transport in
wanordelijke ferromagneet (F)- normaal metaal (N) spinventielen en tonen we de equiv-
alentie aan met magnetoelectronische netwerktheorie. Het spinoverdrachtsmoment volgt
bij de diffusie-aanpak op natuurlijke wijze uit de randvoorwaarden bij N-F grensvlakken;
spinstromen die gepolariseerd zijn loodrecht op de magnetisatie worden geabsorbeerd
bij het grensvlak met de ferromagneet. We vinden analytische uitdrukkingen voor het
spinoverdrachtsmoment en de hoekmagnetoweerstand (angular magnetoresistance, aMR)
in asymmetrische F1-N-F2 spin valves.

Het effect van spinflip processen in het normale metaal en ferromagnetische onderde-
len worden ook analytisch verkregen. In een N1-F1-N2-F2-N3 systeem vermindert spin-
flip in het middelste metaal N2 de spin-overdracht, terwijl spinflip in de buitenste normale
metalen N1 en N3 het kan vermeerderen door de effectieve spinpolarisatie van het sys-
teem te vergroten.

In hoofdstuk 3 wordt de magnetoelectronische netwerktheorie gebruikt om loodrechte
spinventielen met ultradunne ferromagnetische lagen te analyseren. We beschouwen twee
eindige grootte effecten in transport door magnetische multilagen. Het eerste effect on-
staat als de dikte van de magnetische laag in spinventielen van de orde van grootte of
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kleiner dan de spinflipdiffusielengte wordt. In dit geval kan het spinventiel effectief asym-
metrisch worden, wat de transport eigenschappen en spinoverdrachtsmomenta beïnvloedt.
Het tweede effect ontstaat in magnetische lagen met een dikte die in de buurt komt van
de magnetische coherentielengte. In dit geval kunnen spinstromen die loodrecht gepo-
lariseerd zijn op de magnetisatie door de dunne ferromagnetische laag stromen (de coher-
entielengte in transitie metalen is van de orde van enkele atomaire lagen, veel kleiner dan
de spindiffusielengte en de gemiddelde vrije weglengte). We onderzoeken het effect van
beide op de hoekmagnetoweerstand en het spinoverdrachtsmoment. Zowel de spinflipdif-
fusielengte in de ferromagneet, als de grensvlakspinmenggeleiding worden bepaald met
een fit aan recente aMR metingen. Tot slot stellen we een driecontactensysteem voor om
de ferromagnetische coherentielengte te meten.

In hoofdstuk 4 bestuderen we een kleine magnetische cantilever (bijv. een Si can-
tilever bedekt met een magnetische film of een geheel ferromagnetische cantilever).
Zulke cantilevers kunnen dienen ter observatie van magnetomechanische momenten, die
bijvoorbeeld leiden tot magnetovibrationele ("polaritonische") vrijheidsgraden en lijn-
splitsingen in ferromagnetische resonantiespectra. Magnetomechanische momenten kun-
nen zelfs een complete magnetisatieomkering veroorzaken. Het is nog steeds erg moeil-
ijk om nanomechanische systemen te laten werken bij microgolf frequenties, maar er
ontstaan veel nieuwe mogelijkheden. We stellen voor nanoelectromechanische syste-
men te bouwen die worden gedreven door spin-overdracht en magnetomechanische mo-
menten. Dit soort systemen kan de grenzen voor detectie en opwekking van beweging op
de nanoschaal verschuiven en kan dienen als electrische overbrenger van nanomechanis-
che beweging.
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