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ABSTRACT: Effective-medium approaches are widely used to model initially heterogeneous systems: it saves computational 
time. In poroelasticity (two-phase media), it is advantageous to use one-phase effective medium if possible: it simplifies 
computations even more. In this paper we discuss situations where phase reduction introduces significant inaccuracy based on 
the example with homogenization of periodically layered porous media. The layers represent mesoscopic inhomogeneities 
(larger than the pore and grain sizes but smaller than the wavelength).  Each layer is homogeneous and behaves according to 
Biot’s equations of poroelasticity. The effective model is characterized by the frequency-dependent P-wave modulus, and is 
validated with the exact analytical solution (Floquet’s theory). The reduced-phase model is in agreement with the exact solution 
for stiff-frame materials (such as rocks) but introduces inaccuracy for weaker sandy sediments. The cause of the inaccuracy 
might be the no-flow boundary conditions at the edges of the representative element that do not allow flow at the macroscopic 
scale. Results show that the discrepancy mainly depends on the values of permeability, frame bulk  and shear moduli, as well as 
saturation for patchy-saturated sands. The Analysis is based on comparison of phase velocity, attenuation, transient point-source 
response and reflection from a fluid half-space for the effective and exact solutions. The results of the study are envisaged to be 
of importance for application of the effective models to highly permeable sandstones and sandy sediments. 

KEY WORDS: Seismic attenuation; Wave propagation; Effective medium; Mesoscopic heterogeneitites; Poroelasticity; 
Periodic layering; Permeability; Sandy sediments.  

1 INTRODUCTION 
In this study we deal with porous media with mesoscopic 
inhomogeneities (larger than the pore and grain sizes but 
smaller than the wavelength). The microstructure of such 
media is represented by domains with different fluid and 
frame properties. Each domain is homogeneous and behaves 
according to Biot’s equations of poroelasticity.  The direct 
method to account for the presence of such inhomogeneities 
and its effect on attenuation at the macroscale is to solve the 
equations with spatially varying coefficients. However, this 
can be computationally cumbersome and time consuming, and 
therefore motivates the development of effective-medium 
approaches where frequency-dependent coefficients are 
derived and used as input for equations of a homogeneous 
effective medium. It is even more efficient from a 
computational point of view to reduce the initially 
heterogeneous two-phase medium (fluid and solid particle 
displacements) to a homogeneous one-phase effective 
medium, where only one particle displacement is present in 
the equations of motion. In this case, Biot’s slow wave is not 
explicitly present in the effective medium.  

The simplest example of this is White’s model for 
periodically layered porous media with alternating fluid and 
gas saturations, where a frequency-dependent complex-valued 
bulk modulus of an effective elastic medium is derived [1]. 
This model received a lot of attention in the literature because 
it demonstrated the significance of seismic attenuation due to 
the presence of inhomogeneities, especially in fluid content. A 
similar approach (derivation of only the fast P-wave modulus, 
thus reducing the effective medium) was used in other 

analytical derivations [2]-[5] and in numerical studies where 
the P-wave modulus is derived by employing no-flow 
boundary conditions at the edges of representative volume 
element (where the fluid is not allowed to flow into or out of 
the sample) [6]-[7]. This kind of modelling is quite popular, 
because in many practical situations it gives accurate results 
with the reduction of computational costs.   
   In this paper we discuss situations where modeling of 
heterogeneous media with a fully poroelastic effective 
medium containing both phases is desirable. Our study is also 
based on media with a periodic configuration for which the 
exact analytical solution with Floquet’s theory is readily 
obtainable and proves helpful for validation of the effective 
models. It is shown that the reduced-phase model is not 
capable to describe dispersion and attenuation properly for 
saturated porous media with relatively high permeability and a  
weak frame even at very low frequencies. Such media have 
significantly lower Biot’s critical frequency than most stiff 
rocks; it can even be in the seismic range. Biot’s macroscopic-
scale attenuation mechanism is therefore not negligible at 
seismic frequencies, whereas for most stiff rocks it is. The 
reduced-phase effective model often underestimates 
attenuation in such media and, as a result, significantly 
overestimates the magnitude of the point-source response.  

Analysis of the behaviour of the model for materials with 
different parameters is carried out in the next section. Based 
on that, some conclusions are provided suggesting to use two-
phase poroelastic models in specific situations when dealing 
with sandy sediments.  
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2 REDUCED-ORDER MODEL VS. EXACT SOLUTION 

2.1 Description of the models 
We consider wave propagation in a periodically layered 
porous half-space normal to the layering. Biot’s equations [8] 
govern the behavior of the layers.  The periodic cell consists 
of two layers with different frame and fluid properties. We 
compare the exact solution of this problem obtained with 
Floquet’s theory ([9], App. C) and the effective medium 
described in [10]. For derivation of the effective medium, an 
oscillatory compressibility test was applied to a half of the 
periodic cell assuming no fluid can flow in or out of the cell. 
This approach allows to derive a frequency-dependent 
complex effective P-wave modulus. The main difference 
between the exact solution and the effective medium is that, in 
the latter, Biot’s slow wave is not explicitly present; the 
medium is described with a single wavenumber and has only 
one phase (particle displacement). In the exact solution, two 
wavenumbers are derived, and there are two phases: fluid and 
solid particle displacements (or solid particle displacement 
and fluid pressure). The exact solution is valid for all 
frequencies, while the homogenized one is valid when the 
length of propagating wave is larger than the period of the 
system. 

2.1.1 Exact solution 
Biot’s equations governing the behavior of the layers can be 
written in the frequency domain in the form 
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where the hat denotes frequency domain; f̂ is the vector of 
field variables ˆˆ ˆ ˆ ˆ[ , , , ]v pζ σ=f  (solid particle velocity, relative 
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In equation (2) ω is angular frequency, ϕ is porosity, d=PR-Q2 
and parameters P, Q, R are related to material properties Kf 
(bulk modulus of fluid), Kb (bulk modulus of frame), Ks (bulk 
modulus of solid grains) and µ (shear modulus) as follows:  
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Densities 11 12 22
ˆ ˆ ˆ, andρ ρ ρ are expressed via parameters ρs 

(density of solid grains), ρf  (density of fluid), α∞ (tortuosity) 
as follows: 
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b kηφ ω ω= + , where η is viscosity of the fluid, k0 
is permeability and ωB=ϕη/(k0α∞ρf) is Biot’s critical frequency 
(here correction of Johnson [11] is adopted). 

For periodically layered media, matrix N̂  is periodic in 
space. According to Floquet’s theory, the solution of (1) can 
be found in the form ˆ ˆˆ ˆ( ) ( ) exp(i )x x x=f F A c , where ĉ  is a 
vector of coefficients that depends on the boundary 
conditions, Â  is a matrix that does not depend on x and F̂  is 
a periodic matrix ˆ ˆ( ) ( )x x L= +F F , where L  is a period of the 
system. We omit further technical details on the derivation of 
matrices F̂  and Â ; they can be found in [9, App. C]. As we 
will compare velocities and attenuation, we will focus on 
obtaining the characteristic equation. Eigenvalues of the 
matrix Â  are the Floquet wavenumbers kF that govern wave 
propagation in periodic media. They are related to the 
eigenvalues κ of the matrix ˆexp(i )xA : κ=exp(ikFL). And the 
characteristic equation for κ can be written in the form  
κ2+ κ-2+a1(κ + κ-1)+ a2=0, where a1 and a2 are coefficients 

expressed via the elements of the matrix ˆexp(i )xA . With the 
use of transcendental relations this equation can be rewritten 
in terms of kF: 4cos2(kFL)+2a1cos(kFL)+a2 − 2=0. The 
solution of this equation results in two pairs of Floquet 
wavenumbers corresponding to up-going waves (fast and slow 
ones) and down-going waves. 

2.1.2 Effective medium solution 
As has been mentioned above, the effective medium discussed 
in this paper is characterized by the single fast P-wave 
modulus Ĥ , which is complex-valued and frequency-
dependent. This model is referred to as viscoelastic, or 
reduced-order model throughout the paper.  

To describe wave propagation in such media, the P-wave 
modulus Ĥ  is substituted to the wave equation 
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density (s1,2 are ratios of the thicknesses of the layers to the 
period). Thus, the wave propagation in this medium is 
characterized by the wavenumber ˆ/effk Hω ρ= .   

2.2 Material parameters 
The physical properties chosen for different examples are 
given in Table 1. They represent a porous rock (R) and 
different sandy sediments (S1-S6).  

Table 1. Physical properties. 

 
The properties of porous rock (R) and coarse sand (S3) have 

been taken from [12]; sand of Mol (S1) from [13]; SAX99 
(S2) from [14]; S4 and S5 are Miho and Silica sands from 
[15]; S6 is Ottawa sand taken from [16].  

 R  S1 S2 S3 S4 S5 S6 
ρs, g/cm3 2.65 2.65 2.69 2.65 2.72 2.67 2.65 
Kb, MPa 2170 298 43.6 217 42.7 38.2 199 
Ks, GPa 36 36.5 32 36 36 36 40 
ϕ, - 0.3 0.39 0.38 0.35 0.39 0.42 0.38 

k0, D 0.5 10.2 25 100 153 16.1 6.49 
µ, MPa 103 112 29.2 100 6.76 6.29 119 
α∞, - 1 1.7 1.35 1.25 1.25 1.25 1.25 
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The sample water and gas properties are: density of water is 
1000 kg/m3, of gas – 140 kg/cm3; bulk modulus of water is 
2.25 GPa, of gas – 56 MPa; viscosity of water is 10-3 Pa·s, of 
gas – 10-5 Pa·s. 

In the examples that follow the period of the system, if not 
specified, is L=0.1m. Saturation refers to the relative volume 
of the gas phase: s = l/L, where l is the thickness of the gas-
saturated layer.  

2.3 Velocity and attenuation 
All figures in this subsection depict phase velocity c=ω/Re(k), 
and attenuation versus dimensionless frequency ω/ω0. ω is a 
frequency of the propagating signal and k is a wavenumber 
(corresponding to the fast P-wave in the exact solution), ω0 is 
a frequency at which the wavelength is approximately equal to 
the period of the system. In the plots, the maximum value of 
the dimensionless frequency ω/ω0 corresponds to the 
wavelength approximately 5 times larger than the period of 
the system. Attenuation is characterized by the inverse quality 
factor Q-1 =2|Im(k)/Re(k)|. Black lines correspond to the exact 
solution and red lines – to the effective one.  

First, we will study the effect of permeability and frame 
properties on the behavior of the reduced-order effective 
model based on the examples with different sets of properties 
from Table 1. Each layer is fully saturated, one with water and 
the one with gas.  The thickness of the gas-saturated layer is 
0.1L: 10% saturation. Frame and grain properties are the same 
in both layers. In the plots below the maximum value of the  
dimensionless frequency corresponds to the frequencies 
between 3 and 4 MHz, depending on the material properties.  

Figure 1 shows results for partially saturated Rock (R, Table 
1). Both solutions are in a good correspondence with each 
other up to relatively high frequencies. 

 

 
Figure 1. Velocity (left panel) and attenuation (right panel) for 
partially saturated Rock. Black line corresponds to the exact 

solution, red – to the reduced-order effective medium solution 
(the same for all other plots in this paper). 

For most rocks with low permeability and stiff frames the 
reduced-order effective solution gives a very good 
approximation at seismic frequencies. However the situation 
changes for high permeable sandstones and sands with weak 
frame. Biot’s critical frequency is much lower for these 
materials than for typical rocks (several orders of magnitudes 
lower) and can even be in the seismic range.  

Figure 2 depicts velocity and attenuation for S1 (Table 1), 
consolidated sand of Mol. It has higher permeability than rock 
and a weaker frame. There is a good correspondence between 
the exact solution and the effective model at low frequencies. 

Significant discrepancy takes place at higher frequencies, 
where the assumptions of the effective medium might become 
violated. 

 

 
Figure 2. Velocity (left panel) and attenuation (right panel) for 

partially saturated sand of Mol (S1). 

Results for partially saturated sand SAX99 (S2 from Table 
1) are depicted in Figure 3. It is a weakly consolidated sand. 
The permeability is even higher than in sand S1 and the frame 
is weaker. As one can see from the plots, attenuation is not 
accurately approximated by the effective model even at low 
frequencies for 10% gas saturation. For 90% gas saturation 
the discrepancy is huge. Based on our results for different 
saturations (not shown here) we can conclude that the higher 
gas saturation in partially saturated sediments, the larger the  
discrepancy between the reduced-order effective model and 
the exact solution. 

 
Figure 3. Velocity (left panel) and attenuation (right panel) for 

SAX99 (S2). Solid lines: 10% saturation, dotted lines: 90% 
saturation. 

 
Figure 4. Velocity (left panel) and attenuation (right panel) for 

partially saturated coarse sand (S3). 

Results for coarse sand (S3) are depicted in Figure 4. This 
sand has stiffer frame than S2, but permeability is higher. 
Both velocity and attenuation predictions by the effective 
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model are not accurate at low frequencies where the effective 
medium concept is valid and the inaccuracy increases with 
increasing frequency. 

 
Figure 5. Velocity (left panel) and attenuation (right panel) for 

partially saturated Miho sand (S4). 

Figure 5 depicts results for unconsolidated Miho sand (S4). 
In this case the discrepancy between the solutions is even 
more significant, starting from the very low frequencies.   

From this analysis we can conclude that inaccuracy of 
predictions by the effective model increases with increasing 
permeability and decreasing bulk and shear moduli of the 
frame; it also increases with frequency and gas saturation.  

Next, we will look at different frame properties with single 
fluid saturation (100% water-saturated samples).  

Significant attenuation occurs for alternating layering of 
Miho sand and less permeable Silica sand (S5). The effective 
model does not capture attenuation and dispersion in this case 
(Figure 6). 

 
Figure 6. Velocity (left panel) and attenuation (right panel) for 

double porosity sand: 50% S4 and 50% S5. 

 
Figure 7. Velocity (left panel) and attenuation (right panel) for 

double porosity sand: 50% S1 and 50% S6. 

As once can see in Figure 7, the same situation occurs with 
alternating layers of  consolidated sands with much lower 
permeability: sand of Mol (S1) and Ottawa sand (S6). 

The discrepancies in attenuation and phase velocity 
predictions by the exact solution  and the effective medium 
shown in this subsection might affect the accuracy of the 
results of simulations with the effective model. In the next 
subsection a transient point-source response and reflection 
from an interface with fluid is analyzed.  

2.4 Reflection coefficient and response 
Most of the properties from Table 1 refer to marine sediments. 
Therefore, it is interesting to compare the reflection 
coefficients from the fluid-solid interface predicted by the two 
solutions (i.e., the exact and effective one).  

We calculate the reflection coefficient at the interface 
between two half-spaces: fluid and the periodically layered 
medium. The fluid is viscous, with the properties as described 
in subsection 2.2. The incident wave propagates in fluid 
towards the interface:  

 exp(i ) exp( i ).I RA kx A kxϕ = + −  (4)  

φ is the displacement potential (displacement in fluid u = 
∂φ/∂x), R = |AR/AI| is the reflection coefficient, k is the fluid 
wavenumber  

 / ( i ).f fk Kω ρ ωη= +  (5) 

Here, ρf, Kf and η are fluid density, bulk modulus and 
viscosity, respectively. According to the well-known acoustic 
equations, fluid pressure p= ρfω2φ. 

In a periodically layered half-space there are two 
transmitted waves in the exact solution (the slow and the fast 
P-waves 1,2

hsk ) and one transmitted wave in the effective 

solution hs

effk : 
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For the exact solution, the boundary conditions at the interface 
between the half-spaces are: the continuity of the particle 
displacement, total stress and fluid pressure:  
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hs

exactu  is the solid particle displacement, hs

exactw  is the fluid 
particle displacement. For the effective solution, there are two 
boundary conditions: the continuity of the particle 
displacement and stress. The solution of the system of 
equations obtained from the boundary conditions defines the 
reflection coefficient R. 

Next, the responses of the periodically-layered half-space to 
a point-source at the top are obtained for the effective medium 
and the exact solution. An external force ( )f t  is chosen as a 
source and the values of particle displacements in the time 
domain are compared at the distance 103L below the source 
(100 m for L=0.1 m). The boundary conditions at the top 
interface for the exact solution are: ( ), and 0.hs hs

exact exact
f t pτ = =  
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For the effective medium solution, continuity of stress is 
applied: ( ).hs

eff f tτ =  
In both cases, the radiation condition is applied: the 
amplitudes of the up-going waves should be equal to zero as 
there are no sources at infinity (and the medium is lossy).  

 
 

 
Figure 8. Reflection from the interface with fluid (left panel) 
and point-source response (right panel) for Miho sand with 

1% gas saturation. 

The Ricker wavelet is defined as: 
 ( ) ( )2 2 2 2 2 2

0 0 0( ) 1 2 ( ) exp ( ) ,R Rf t f f t t f t tπ π= − − − −  (8) 
where f0 is scaling coefficient, fR is the central frequency and 
t0 is an arbitrary time shift chosen such that the non-zero part 
of the wavelet lies within the positive domain t > 0. 

The reflection coefficient and point-source response for a 
force-source with a Ricker shape with a central frequency 50 
Hz are depicted in Figure 8. While the reflection coefficient is 
approximated relatively well, the reduced-order model 
overestimates attenuation, even for small gas saturation (1%). 
The overestimation can be noticed in the amplitude of the 
response (right panel; again, red line is for effective model, 
black line – exact solution).  

In the next example (Figure 9) the wavelet has been chosen 
with a central frequency 100 Hz and gas saturation 50% (to 
strengthen the attenuation effects). A larger period is chosen: 
L=1m. As one can see from the plots, the discrepancy between 
the predictions of two solutions is very significant, both in 
reflection coefficient and the response. 

Another example with more consolidated sand (S3) is 
depicted in Figure 10. The central frequency of the wavelet is 
100 Hz, the period L=0.1m. The effective solution still 
overestimates attenuation rather significantly, and the 
reflection coefficient is approximated inaccurately.  

 

 
Figure 9. Reflection from the interface with fluid (left panel) 
and point-source response (right panel) for Miho sand with 

50% gas saturation. 

We conclude this section with the example of periodic 
layering with different properties in both fluid and frame: one 
layer is Miho sand (S4) fully saturated with water and the 
other layer is Silica sand (S5) fully saturated with gas (Figure 
11). Overestimation of the amplitude of the response in the 
effective solution is remarkably huge. 

 

 
Figure 10. Reflection from the interface with fluid (left panel) 
and point-source response (right panel) for coarse sand, 10% 

gas saturation. 

 
Figure 11. Reflection coefficient (left panel) and point-source 
response (right panel) for double porosity sand: 50% S4 and 

50% S5.  

3 DISCUSSIONS AND CONCLUSIONS 
This paper contributes to the study of wave propagation in 
partially saturated (or patchy saturated, inhomogeneities in 
fluid) and double porosity (frame inhomogeneities) porous 
materials. It has been reported in the literature that such 
materials exhibit high level of attenuation and therefore the 
equations used to describe them should account for this fact. 
Since it is often much easier to work with homogenized 
models, different effective media have been proposed to 
account for various spatial inhomogeneities. We analyzed the 
behavior of the reduced-order (in comparison to the full 
poroelastic solution: only one particle displacement is present) 
viscoelastic (governed by equations of motion for an elastic 
continuum with a frequency-dependent bulk modulus) 
effective model for a periodic system of layers where wave 
propagation is governed by Biot’s theory. For this 
configuration, the exact analytical solution exists. In the 
effective medium, the equivalent fast P-wave modulus is used, 
while the exact solution explicitly contains both fast and slow 
P-wave modes.  

Comparison of the phase velocities, attenuations, reflection 
coefficients and transient point-source responses predicted by 
the effective model and the exact solution shows that such an 
effective medium can be successfully used at seismic 
frequencies for stiff rocks with low permeability. However, 
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for high permeable sandstones, unconsolidated and weakly 
consolidated sands and sandy sediments, results of the 
modeling can be inaccurate even at low frequencies when the 
wavelength is much larger than the size of  heterogeneities. 
This can be due to the fact that the effective model does not 
incorporate Biot’s wavelength-scale (macroscopic, or global 
flow) attenuation mechanism. The reason for this is the no-
flow boundary conditions that are employed at the outer edges 
of the representative element for the derivation of the effective 
modulus. They also result in reducing the phase of the 
effective medium. This modeling approach is widely spread 
and it is explained by the fact that explicit presence of the 
slow wave complicates numerical computations since it is 
highly diffusive and requires a smaller grid choice. Another 
issue is that Biot’s global flow attenuation is not the dominant 
attenuation mechanism for seismic waves in many cases and 
its effect is negligible at low frequencies. However, for the 
sands discussed above, this mechanism gives significant input 
already at very low frequencies.   

Furthermore, the results show that for high permeable 
materials with a weak frame it depends on a number of 
parameters whether the viscoelastic effective model can be 
applied. It is better to use the fully poroelastic solution for 
unconsolidated sands, in case of high gas saturations, large 
values of the quality factor and propagation distance, and at 
relatively high frequencies. For weakly consolidated sands 
and sandstones, inaccuracy of the viscoelastic model can be 
not visible on the response when attenuation and propagating 
distance is small and at low frequencies. However, in other 
situations it can be extremely large and result in 
overestimation of the amplitude of the propagating wave by a 
factor 2 to 5.   

In real situations, there might be uncertainty about the exact 
parameters of the sandy sediments under investigation. 
Therefore, fully poroelastic solutions are desirable for these 
kind of materials in order to increase accuracy. An example of 
this is the modeling of seismic wave propagation for an 
offshore CO2 storage site where marine sediments are present 
at the sea bottom. An alternative to the viscoelastic effective 
model for periodically layered system has been proposed by 
the authors in [9] and [17]. The proposed models keep two 
phases in the effective medium and agree with the exact 
solution even for the considered special case of high 
permeable and weak frame materials. 
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