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Abstract

Hydrological models are commonly used to predict future streamflow. However, the assumption of
stationary model parameters obtained through calibration on past conditions may not accurately represent
non-stationarity in hydrological system characteristics. Evidence suggests that vegetation adapts its root
zone storage capacity in response to changing climate, emphasizing the need to account for non-stationarity
in hydrological models. This study examines the effects of long-term climate variability on root zone
storage capacity and its consequences on hydrological response. By using the method of Fu (1981), we
determine whether the root zone storage capacity has significantly changed and evaluate the sensitivity of
hydrological model predictions to these changes. We explain the changes in root zone storage capacity and
evaporation using various climate indicators. For two large sample datasets CAMELS GB and CAMELS
USA, we confirm that the Fu method can be used with the same omega parameter when transitioning
from one decade to the next, indicating small differences in root zone storage capacity. However, for
hydrometeorological data from the Meuse basin in Northwest Europe, we observe a trend where the actual
evaporation is smaller than expected. This suggests that caution should be exercised when applying the
Fu-method. In four different scenarios, we have implemented historical changes in evaporation as altered
root zone storage capacity in the wflow flextopo model. The scenarios based on the evaporation trends
observed in the Meuse data, result in less evaporation during the summer months (May, June, July) within
a range of 0 to -22%, and an increase in streamflow during the autumn months (September, October,
November) between 0 and +48%. On the other hand, the scenarios based on evaporation trends observed
in all combined data (Meuse, CAMELS GB, CAMELS USA) result in changes around zero of evaporation
during summer months between -7% and +5%, and of streamflow in autumn months between -11% and
+10%. This study represents a step towards a more reliable and robust estimation of root zone storage
capacity in hydrological modelling, thereby enhancing our ability to predict future streamflow.

1 Introduction

Vegetation continuously adapts to climatic and
environmental changes to ensure sufficient and con-
tinuous access to water in order to overcome drought
periods (Gao et al., 2014; de Boer-Euser et al., 2016).
One of the processes involved is the adaptation of
root systems as these determine the soil pore volume
that is accessible for plants to extract water for
transpiration. The accessible water is stored in
the ground up to a maximum amount of root zone
storage capacity Sr,max. This variable is important
as it controls the partitioning of water into evapora-
tive fluxes and drainage (Savenije and Hrachowitz,
2017). The root zone storage capacity Sr,max is
impossible to observe directly at the catchment
scale and therefore is typically treated as a calibra-
tion parameter in hydrological models or obtained
from known soil characteristics combined with esti-
mates of the depths of the roots (Nijzink et al., 2016).

Hydrological models can be used to predict fu-
ture streamflow. Future projections in combination
with parameters for current-day conditions are
often used, as there is little information on the
future properties of the system (Parajka et al., 2015;
Van Noppen, 2022). This means that despite the
strong awareness of non-stationarity in hydrolog-
ical system characteristics, model parameters are
obtained through calibration on past conditions
and assumed stationary (Ponds, 2022; Nijzink
et al., 2016). The impact on simulated runoff of
assuming time-invariant parameters can be very
significant (Merz et al., 2011). To illustrate this,
Merz et al. (2011) calibrated different parameters for
a conceptual rainfall-runoff model for six consecutive
5-year periods over catchments in Austria. Different
parameters show clear time trends if calibrated to
different periods. There is an increasing trend for soil
moisture storage, which can be related to an increase
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in air temperature and potential evaporation.

For the root zone storage capacity, it is also
common practice to calibrate hydrological models
with the use of observed historical climate con-
ditions, assuming parameters to remain constant
in time, in contradiction to the root system that
is actively adapting (Nijzink et al., 2016; Parajka
et al., 2015). The consequences are uncertainties
in modelled predictions of hydrological response
(Bouaziz et al., 2021). To increase the reliability of
long-term hydrological predictions, a time-variable
model parameter describing the adaptation of root
zone storage capacity to a changing environment
is needed. Another way to reliably and directly
estimate the root zone storage capacity is from
long-term water balance data (de Boer-Euser et al.,
2016; Bouaziz et al., 2022). The water balance
or climate-based method derives the root zone
storage capacity from the maximum annual water
deficits that result from the difference between the
cumulative daily precipitation and transpiration
(Gao et al., 2014; Nijzink et al., 2016). In the
determination of root zone storage capacity, it may
initially appear reasonable to conduct ground-based
measurements and assess the composition of soil
in order to determine its value. However, natural
heterogeneity can pose significant challenges to such
an approach (Savenije and Hrachowitz, 2017). As
noted by de Boer-Euser et al. (2016), climate-derived
root zone storage capacities have greater explanatory
power than those derived from the soil.

Catchment characteristics that are associated
with root zone storage capacity include the arid-
ity index, inter-storm duration, seasonality, and
runoff ratio (Gao et al., 2014). Van Voorst (2020)
demonstrated that the variance in root zone storage
capacities between Canadian catchments can be
described by a combination of long-term average
variables such as the aridity index and runoff co-
efficient, and the coherence of seasonal and timing
effects, as indicated by the seasonality timing index.
The aridity index and runoff coefficient provide
insights into the allocation of water for transpiration
within a catchment, whereas the seasonality timing

index explains the seasonal distribution of this water.

Previous research (Bouaziz et al., 2022; Van Noppen,
2022) used 2K global warming scenarios to look
into the expected changes in the root zone storage
capacity in the study area of the Meuse. 2K global
warming scenarios are climate simulations that
project how the Earth’s climate could change in
response to a global average temperature increase
of 2 degrees Celsius above pre-industrial levels.
The water balance method applied to a 2K global
warming climate resulted in both studies in a larger
root zone storage capacity. This larger root zone
storage capacity results in strong seasonal changes
in the hydrological response. Although this previous
research has simulated the effects of global warming
on the root zone storage capacity in the Meuse study
area, it is important to note that these studies have
not examined historical data to investigate changes
in root zone storage capacity. These simulations of
future climate change have demonstrated that global
warming leads to an increase in root zone storage
capacity. However, further research is needed to
explore the extent to which changes in root zone
storage capacity have occurred in response to histor-
ical climate variability. This study aims to address
this gap in the literature by examining historical
data on root zone storage capacity in both the
Meuse study area and other available large sample
datasets, and quantifying the potential impacts of
changing root zone storage capacity on hydrological
response. We also examine whether the changes can
be explained by climate indicators. A change point
analysis conducted by Tu et al. (2005) revealed that
climate variability, rather than land use change,
was the primary driver behind the increase in flood
frequency observed in the Meuse basin. However, the
research conducted by Fenicia et al. (2009) suggests
that changes in land use may also have played a role.

The main aim of this research is to quantify
the effect of long-term climate variability on the root
zone storage capacity and resulting consequences on
the hydrological response. We test the hypothesis
that historically the root zone storage capacity has
changed and caused significant changes in stream-

The effect of climate variability on the root zone storage capacity



N. Tempel — April 2023 3

flow. In order to determine this, we need to (I) test
if past climatic variability has resulted in changes in
root zone storage capacity at decadal time scales (II)
quantify differences in the sensitivity of changes in
root zone storage capacity to climate characteristics,
and (III) determine the consequences thereof on the
hydrological response.

Initially, we calculate changes in the long-term
hydrological distribution of evaporation and runoff
utilizing the Budyko approach for both the Meuse
data and large sample datasets. Then we try to
explain the changes with climate indicators. Finally
the changes in the evaporation are used in a process-
based model to quantify the effect on the streamflow
for the Meuse basin.

2 Study area

This study focuses on the Meuse river basin up-
stream of Borgharen (at the border between Belgium
and the Netherlands), which spans an area of 21,300
km2 in the northwest of Europe. Approximately
60% of the basin is used for agriculture, while 30% is
covered by forests (Bouaziz et al., 2022). See Figure
1 for (a) the location of the basin in Europe and (b)
the elevation range of in the basin.

The basin comprises different geological zones
with distinct landscapes and rock types. Lorraine
Meuse has wide floodplains and hilly landscapes
composed of sedimentary consolidated rocks. Ar-
dennes Meuse is characterised by narrow, steep
valleys and metamorphic rocks, and relatively thin,
impermeable soils. Dutch and Flemish Lowland
is composed of unconsolidated rocks with wide
floodplains and a low river gradient (De Wit et al.,
2007; Bouaziz et al., 2022).

The Meuse is located in an area with the char-
acteristics of a temperate climate. The Meuse is
a rain-fed river with a response time of a couple
of hours up to a few days. Snow has little impact
on the streamflow, although it can be of significant
importance in specific events (de Boer-Euser, 2017).

The streamflow has strong seasonality, with low
summer flow and high winter flow, which is on
average four times higher than the summer flow
(De Wit et al., 2007). Precipitation is relatively
constant throughout the year, so the seasonality
of the streamflow is mainly caused by the seasonal
differences of potential evaporation. The average
annual precipitation, potential evaporation, and
streamflow are respectively approximately 923
mm yr−1, 610 mm yr−1, and 402 mm yr−1, as
calculated from the data which will be discussed in
Section 3.1.

3 Data

To provide a more comprehensive analysis of the ef-
fects of climate variability, we have analyzed not only
the Meuse basin data but also large sample datasets.
However, given that the data have been collected us-
ing different methods and merged in different ways,
we have taken care to keep the results of different
datasets separate. This is particularly important be-
cause the different datasets may have distinct drivers
of changes in root zone storage capacity, which need
to be observed separately. By doing so, we can gain a
more nuanced understanding of the factors that con-
tribute to changes in evaporation and root zone stor-
age and ensure the reliability of our findings.

3.1 Meuse data

3.1.1 Observed historical climate data

The Meuse climate data have undergone preprocess-
ing by Bouaziz et al. (2022) using the European
daily high-resolution gridded dataset, E-OBS (v20.0)
(Cornes et al., 2018). This dataset comprises histor-
ical climate data, including daily precipitation, tem-
perature, and radiation fields, from 1980 to 2018 at a
25 km2 resolution. The data were collected from sta-
tion data compiled by the European Climate Assess-
ment & Dataset (ECA&D) initiative. To downscale
temperature, a digital elevation model and a fixed
lapse rate of 0.0065 ◦Cm−1 were utilised, while po-
tential evaporation was estimated using the Makkink
method (Hooghart and Lablans, 1988). However, a

The effect of climate variability on the root zone storage capacity
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(a)

 

 

(b)

Figure 1: (a) The location of the Meuse basin in Europe, (b) The elevation range in the basin Meuse basin.

significant underestimation of precipitation (>20%)
was observed when comparing to data provided by
the Service Public de Wallonie (Bouaziz et al., 2020,
2022). To address this issue, a monthly bias correc-
tion factor is applied to the E-OBS precipitation in
the center of the basin, resulting in a better repre-
sentation of local precipitation data. The corrected
dataset was used in subsequent analyses.

3.1.2 Streamflow

The time series data for streamflow in Belgium in-
cluding Borgharen is readily accessible for the years
1999 to 2018 (SPW, 2018) (Rijkswaterstaat, 2022).
The time series data for streamflow in France is
available for the period from 1989 to 2018 (Min-
istère de l’Ecologie, du Développement Durable et
de l’Energie, Banque Hydro). It is important to note
that the streamflow data for Borgharen is not a direct
measurement, but rather a constructed time series
that combines the measured streamflow at St Pieter
on the Meuse and at Kanne on the Albert Canal.
This composite time series is used to estimate the
total streamflow from the tributaries before some of
it is diverted into the Albert Canal (De Wit et al.,

2007; Bouaziz et al., 2022).

3.2 Large sample datasets

The large sample datasets that are used are CAMELS
USA and CAMELS GB. CAMELS stands for Catch-
ment Attributes and Meteorology for Large-sample
Studies.

3.2.1 CAMELS GB

The CAMELS-GB dataset (Coxon et al., 2020)
comprises 671 catchments situated in Great Britain
and has been carefully curated using strict criteria
to ensure accuracy and reliability. The catchments
were chosen from the UK National River Flow
Archive (NRFA) Service Level Agreement (SLA)
Network, which selects stations based on their
hydrometric performance, the representativeness
of the catchment, the length of record, and the
degree of artificial disturbance to the natural flow
regime (Dixon et al., 2013; Hannaford, 2004).
The NRFA also subjected the catchments to an

The effect of climate variability on the root zone storage capacity
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(a) (b)

Figure 2: The locations of the catchments that are provided by the large sample datasets (a) CAMELS GB,
(b) CAMELS USA.

additional level of validation to ensure the credi-
bility of flows in the extreme ranges and the need
to maintain complete time series (Coxon et al., 2020).

Daily meteorological time series are provided
from October 1st, 1961 to September 30th, 2015.
The following variables were used from these time
series: precipitation, temperature, and incoming
short-wave radiation. The daily precipitation data
was sourced from the CEH Gridded Estimates of
Areal Rainfall dataset (CEH-GEAR), which provides
gridded estimates at a resolution of 1 km2, derived
from quality-controlled, observed precipitation data
from the Met Office UK rain gauge network using
natural neighbour interpolation (Keller et al., 2015;
Tanguy et al., 2016). The temperature and incoming
shortwave radiation data were obtained from the
Climate Hydrology and Ecology research Support
System meteorology dataset (CHESS-met), which
provides daily gridded estimates at a resolution of 1
km2 (Robinson et al., 2017; Hough and Jones, 1997;
Thomson et al., 1981). The temperature was di-
rectly downscaled from the MORECS dataset, while
the incoming short-wave radiation was calculated
from the downscaled temperature, vapor pressure,
and sunshine hours. Potential evaporation was
estimated using the Penman-Monteith equation for
FAO-defined well-watered grass (Allen et al., 1998).

3.2.2 CAMELS USA

The CAMELS USA dataset is a combination of
hydro-meteorological time series from Newman et al.
(2015) and catchment attributes from Addor et al.
(2017). The dataset contains meteorological forcing
and observed discharge data for the period between
1980 and 2010. The catchments are a subset of
the Geospatial Attributes of Gages for Evaluating
Streamflow (GAGES-II) from the United States
Geology Survey (USGS) of 2011 (Falcone et al.,
2010; Falcone, 2011). To be included, the gauges had
to meet the following criteria: be active as of 2009
and have complete flow data for at least 20 years in
the period between 1990 and 2009, be a GAGES-II
reference gage, have less than 5% imperviousness
as measured by the National Land Cover Database
(NLCD-2011) (Jin et al., 2013), and pass a survey
of human impacts in the basin conducted by local
Water Science Center evaluators. In this way, the
gauges are expected to best represent natural flow
conditions.

The meteorological forcing data includes three
datasets: NLDAS, Maurer, and Daymet. For this
study, the Daymet dataset was selected because of its
daily-gridded data and high spatial resolution of 1 x
1 km, following the work of Van Noppen (2022). The
variables used from the dataset are daily maximum

The effect of climate variability on the root zone storage capacity
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Table 1: Segmentation of datasets by 10-year periods, with exception of the CAMELS USA which has two
periods of 9 years. Note the extra time periods for the France Meuse river data, in comparison with the
Belgium/Netherlands data.

Dataset Data period (1st Jan. first year - 31st Dec. last year)
Meuse Belgium and
The Netherlands

1999 - 2008 2009 - 2018

Meuse France 1989 - 1998 1999 - 2008 2009 - 2018
CAMELS GB 1971 - 1980 1981 - 1990 1991 - 2000 2001 - 2010
CAMELS USA 1981 - 1989 1990 - 1999 2000 - 2009

and minimum temperature, precipitation, shortwave
downward radiation, and day length. To provide
the dataset with shortwave incoming radiation,
the Mountain Climate Simulator (MT-CLIM) was
used. Potential evaporation was estimated using the
Priestley-Taylor equation. Observed discharge data
were obtained from the USGS Water Information
System server for the period between 1980 and 2010
(Newman et al., 2015).

3.3 Data correction

To ensure consistency across the datasets, a data
correction was performed on the potential evapora-
tion calculation by Van Noppen (2022). Originally,
the CAMELS-USA dataset used the Priestley-Taylor
equation to estimate potential evaporation while
both the CAMELS-GB dataset and the observed his-
torical E-OBS dataset used the Penman-Monteith
and Makkink equations, respectively. In an effort
to create more consistency across the datasets, we
continue with Noppen’s work by using the Makkink
equation to compute the potential evaporation for
the catchments of the large sample datasets. The
Makkink equation uses the mean daily temperature
and shortwave incoming radiation (Hooghart and
Lablans, 1988). For the CAMELS-USA dataset, the
incoming shortwave radiation was estimated using
the daily number of sunshine hours (Hiemstra and
Sluiter, 2011). However, since the CAMELS-GB
dataset did not contain daily sunshine hours, a vari-
ation of the Makkink equation was used. For more
information, see Appendix A.

3.4 Data segmentation

The datasets are divided into 10-year periods as these
are an appropriate length to investigate changes in
root zone storage capacity and other key climate vari-
ables impacted by climate variability. Please refer
to Table 1 for the specific periods covered by each
dataset. This approach enables us to observe and
analyze changes in these variables over time and gain
a better understanding of the effects of climate vari-
ability.

4 Methods

In Figure 3, a schematic overview is presented of
the various steps undertaken in this research. The
first part of the study involves I) estimating histor-
ical changes in root zone storage capacities. This is
subdivided into step (1) to estimate changes in evap-
oration, which is discussed in Section 4.1.1. Step (2)
is to calculate changes in root zone storage capac-
ity based on these changes in evaporation, which is
discussed in Section 4.1.2. The second part of the
research involves II) relating changes in evaporative
index (∆EI) to climate indicators. Section 4.2 dis-
cusses how the climate indicators are calculated and
how it is determined whether the climate characteris-
tics have an impact on the error in EI (∆EI). Finally,
the third part of the study involves III) quantifying
the effect of changes on streamflow in the Meuse, as
discussed in Section 4.3.

The effect of climate variability on the root zone storage capacity
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I. Estimate historical changes in 
root zone storage capacity

Use the Budyko framework to estimate 
historical errors from expected evaporation

(ΔΕΙ)

Relate the historical errors (ΔEI) to 
climate indicators and to change in 

climate indicators

II. Relate changes to climate 
indicators

III. Quantify effect of changes on 
streamflow in the Meuse

(1)Calculate climate indicators for every catchment, for 
both the whole time period as for every decade.

(2)Perform multiple linear regression, with ΔΕΙt as 
dependent variable and climate indicators (𝑣) and 
change in climate indicators (Δ𝑣) as explanatory 
variables.

(3)Divide catchments in
(a) climate indicators grouped over whole 
period (𝑣) 
(b) change in variables calculated for  
one decade on to the next (Δ𝑣).

(4)Perform statistical tests to see if there is a  
significant difference in ΔEI between different groups

Use the distributions of the errors in EI (ΔΕΙ), 
to quantify the potential effects on the 

streamflow

(1)For every scenario, calculate the expected Sr,max

using the Fu-equation, assuming the error in EI 
(ΔEI) is zero – this is the reference run.

(2)For every scenario, calculate the expected Sr,max

using the Fu-equation but now change the 
expected evaporation based on the historical 
errors in EI (ΔEIMeuse and ΔEIAll).

(3)For every scenario, compare the hydrological 
response between the reference run and the other 
runs.

ΔΕΙ

p2exp

p2act

ω1

ω2

(1)

𝒗 𝚫𝒗 Climate indicator names

AI ΔΑΙ Aridity index

Pannual ΔPannual Mean annual precipitation

Ep,annual ΔEp,annual Mean annual potential evaporation

T ΔT Mean temperature

SI ΔSI Seasonality index

ST ΔST Seasonality timing 

Is_dur Δis_dur Interstorm duration

ΔΕΙ

p1 p1

(1a)Determine the average aridity index (AI) and
evaporative index (EI) for every decade.

(1b)Calculate ω-value for every decade, using  
the Fu-equation (see, Eq. 1).

(1c)Calculate expected evaporation based on the 
ω-value of the previous decade.

(1d)Calculate the error (ΔEI) between the expected 
and the actual value for EI

(2) Calculate the expected Sr,max based on the 
expected ΔEI and the error in ΔSr,max

Figure 3: Overview of the methodological procedure.

4.1 Changing climate and vegetation

4.1.1 Estimating changes in evaporation

The Budyko relationship (Budyko, 1961) is a water
balance of a catchment area based on the balance
between precipitation, evaporation, and runoff.
The relationship provides insight into how climate,
expressed as the aridity index (AI), influences the
evaporative index (EI) over the long term.

The Budyko space is bounded by the supply
limit, where no more water can evaporate than what
is available, and the demand limit, where long-term
actual evaporation cannot exceed potential evapora-
tion (Zhang et al., 2004; Budyko, 1961).

Fu (1981) introduced an additional parameter,
omega (ω), to reflect the collective impact of climate,
topography, soil, and vegetation on the relationship
between the aridity index (EP /P ) and the evapo-

rative fraction (EA/P ) versus the runoff fraction
(Q/P = 1 − EA/P ), as the original Budyko rela-
tionship does not explicitly consider these influences
(Troch et al., 2013; Bouaziz et al., 2022; Ponds,
2022), see Equation 1.

EA

P
= 1− Q

P
= 1 +

EP

P
−

(
1 +

(
EP

P

)ω)1/ω

(1)

The evaporative index (EI) and the aridity index
(AI) are defined as Equation 2 and 3 respectively.
From now these terms will be referred to as EI and
AI.

EI =
EA

P
(2)

AI =
EP

P
(3)

We have derived Equation 4 by rewriting Equation
1, where we use the abbreviations EI and AI.

EI = 1 +AI − (1 + (AI)
ω
)
1/ω

(4)

The effect of climate variability on the root zone storage capacity
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Determining a generalized value for ω remains
challenging because of the heterogeneity and in-
terdependency of catchment-specific influences.
Consequently, the relationship between changing
vegetation dynamics and changed catchment-specific
parameters is also assumed to be catchment-specific,
meaning that one catchment has a specific value for
ω (Jaramillo et al., 2018; Ponds, 2022; Bouaziz et al.,
2022).

We can determine the value of omega by solv-
ing Equation 1 using observed climate and discharge
data. Given that the value of omega is catchment-
specific, the Fu-equation is often extrapolated based
on historical data to make predictions about the
expected distribution of the evaporative fraction and
the runoff fraction, assuming no changes in land
use (Bouaziz et al., 2022; Ponds, 2022; Zhang et al.,
2004). The expected aridity index is then predicted
based on climate model projections of temperature
and precipitation. So in order to estimate the future
value of the evaporative index, the expected aridity
index is typically used. However, in this study, we
use historical data. So instead of estimating the
future value of the aridity index, we make predictions
from one decade to another, using the Fu-equation to
estimate the expected distribution of the evaporative
fraction and the runoff fraction. We use the actual
historical aridity index to make these predictions,
rather than relying on projected values.

To determine if the amount of evaporation is
changing due to climate change, we compare the
solution of the Fu-equation for each decade. This
involves solving the equation to find omega for
each decade, and ∆EI is the difference between the
actual EI of the subsequent century compared to
the predicted value of the EI based on the omega
value from the previous decade. See Figure 4 for
a step-by-step approach. The first step (step (a)
in Figure 4 and Equation 5) is to solve the Fu-
equation for the first time period, p1, with historical
data. This involves solving Equation 1, where the
values for the evaporative index EI and the arid-
ity index AI can be computed to obtain a value for ω.

p1act

Water Limit

ω1

Aridity index [-]

Ev
ap

o
ra

ti
ve

 in
d

ex
 [

-]

(a)

ΔΕΙ2

p2exp

p2act

Water Limit

ω1

ω2

Aridity index [-]

Ev
ap

o
ra

ti
ve

 in
d

ex
 [

-]

(b)

ΔΕΙ3

p3exp

p3act ω3

ω1

Water Limit

Aridity index [-]

ω2

Ev
ap

o
ra

ti
ve

 in
d

ex
 [

-]

(c)

Figure 4: The step-by-step process for calculating the
error in EI (∆EI) using data with three decades as
an example. In step (a), the evaporative index (EI)
and aridity index (AI) are calculated for the first
decade, resulting in p1,act and ω1. Step (b) involves
using ω1 from p1 and the AI of p2 to estimate the
expected EI and so p2,exp, while p2,act represents the
actual EI. The difference between p2,exp and p2,act is
∆EI2. p2,act is used to calculate ω2. In step (c), ω2 is
used to estimate the expected EI for p3,exp using the
AI of p3. By comparing p3,act and p3,exp, the value
for ∆EI3 can be determined.

The effect of climate variability on the root zone storage capacity
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EIp1 = 1 +AIp1 −
(
1 + (AIp1)

ω1
)1/ω1

(5)

The next step ((b) in Figure 4 is to solve the equa-
tion again with the (AI)p2 of the next decade while
using the ω1 value from the previous century, assum-
ing that we remain on the same ω line. The solution
of this yields the expected evaporation, (AI)p2,exp.

EIp2,exp = 1 +AIp2 −
(
1 + (AIp2)

ω1
)1/ω1

(6)

For this decade (p2), we can also compute the ac-
tual observed value of EI using historical evaporation
data with Equation 2. This is (EI)p2,act. Ultimately,
the error in evaporative index or ∆EI, is the differ-
ence between the expected value for EI and the actual
value of EI. See Equation 7. This means that the sign
is positive when the actual value is higher than the
expected value and the sign is negative when the ac-
tual value is lower than the expected value.

∆EI2 = EIp2,act − EIp2,exp (7)

To calculate ∆EI for the subsequent decade, i.e.,
p3 (step (c) in Figure 4), the same steps as in
Equation 5, 6 and 7 can be repeated. But now the
omega ω2 from p2 is used to calculated the expected
evaporative index EIp3,exp.

Figure 5 includes the definition of ∆EI, which
is the difference between the expected value of EI
based on the omega value from the previous century
and the actual value of EI. Positive values of
∆EI indicate upward movement within the Budyko
framework, while negative values indicate downward
movement.

4.1.2 Estimating changes in the root zone
storage capacity Sr,max

To calculate changes in the root zone storage capac-
ity, we use the changes in evaporation as computed
in Section 4.1.1, in conjunction with the calculation
of the root zone storage capacity discussed in this
Section.

ΔΕΙt

pt,exp

pt,act

ωt-1

ωt

pt-1

Figure 5: Budyko framework: The definition of the
error in EI (∆EI).

The root zone storage capacity can be calculated by
combining long-term averages with time-dependent
variables. The long-term water balance provides
information on actual mean transpiration Et (Gao
et al., 2014; Nijzink et al., 2016; de Boer-Euser
et al., 2016; Bouaziz et al., 2021, 2022; Hrachowitz
et al., 2021). It should be noted that the term
”transpiration” is used to refer to the combined
processes of transpiration, and both interception and
soil evaporation, as is not possible to make a clear
and quantitative differentiation between these two
fluxes at this scale.

The changes in storage and inter-catchment
groundwater flows can be assumed to be zero, so the
storage factor in the water balance equation can be
eliminated.

P − Et −Q− dS

dt
= 0 (8)

Hereafter, the long-term mean transpiration can be
estimated with the remaining components of the long
term water balance,

Et = P −Q (9)

where Et is the long-term mean actual transpiration,
P is the long-term mean precipitation and Q is the
long-term mean catchment runoff. At this moment,
there is no method to directly measure transpiration
at catchment scale. Therefore, the actual mean tran-
spiration Et can be scaled with the ratio of long-term
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mean daily potential evaporation Ep(t) over the mean
annual potential evaporation Ep:

Et(t) =
Ep(t)

Ep

× Et. (10)

Based on this, the cumulative deficit between ac-
tual transpiration and precipitation over time can be
estimated by means of an ”infinitive-reservoir”. In
other words, cumulative sum of daily water deficits,
i.e. evaporation minus precipitation, is calculated
between T0, which is the time in which the deficit
equals zero, and T1, which is the time in which the
total deficit returns to zero. The maximum deficit
of this period then represents the volume of water
that needs to be stored to provide vegetation with
continuous access to water throughout that time:

Sr,max = max

∫ T1

T0

(Et − Pe) dt (11)

where SR is the maximum root zone storage capacity
over the time period between T0 and T1.

The series of annual maximum storage deficits
can be fitted to a Gumbel distribution to derive the
root zone storage capacity at catchment scale for
different return periods. A return period of 20 years
can be used, assuming that forests develop root
systems to survive droughts with that return period.
This method is used in various studies (Gao et al.,
2014; Nijzink et al., 2016; de Boer-Euser et al., 2016;
Bouaziz et al., 2022, 2021; Hrachowitz et al., 2021).

Having established the methodology for calcu-
lating root zone storage capacity, the subsequent
step involves determining changes in the root zone
storage capacity Sr,max. This is achieved by using the
expected values for the evaporative index

(
EA

P

)
exp

obtained from Section 4.1.1.

First, we calculate the actual root zone storage
capacity Sr,max,act per decade, following the steps
discussed in this Section with the actual evaporation
data. Subsequently, we calculate the expected root
zone storage capacity Sr,max,exp using the expected
EI derived from Equation 6 to replace the actual

evaporation term Et from Equation 9.

For each decade, the difference between the ex-
pected root zone storage capacity Sr,max,exp and the
actual root zone storage capacity Sr,max,act is then
the error in the root zone storage capacity ∆Sr,max,
see Equation 12.

∆Sr,max = Sr,max,act − Sr,max,exp (12)

4.2 Relate changes to different cli-
mate indices

In order to explain the changes in evaporation, differ-
ent climate indicators are calculated for each catch-
ment. The climate indicators used in this study in-
clude precipitation, evaporation, temperature, arid-
ity index, interstorm duration, seasonality index, and
seasonality timing index. We calculate the values of
these variables in the catchments over the entire avail-
able timeseries and also examine differences between
the decades, in order to determine whether the error
in EI (∆EI from 4.1.1 ) can be associated with a
change in the climate indicator. The groups for the
climate indicators were formed in such a way as to
represent different climates (Teegavarapu, 2019), and
to be able to observe differences between the datasets.

4.2.1 Calculation of the different climate in-
dicators

Firstly, the mean annual values for precipitation,
evaporation, and temperature were calculated.
Precipitation and evaporation were calculated by
summing the total annual precipitation and evap-
oration for each year. For temperature, the yearly
average was taken. Subsequently, the overall mean
was computed over all the decades together per
dataset.

The aridity index AI is an indicator that can
be calculated using long-term averages. Specifically,
the potential evaporation and precipitation are
averaged over the entire period and divided by each
other, as shown in Equation 3.
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There are various indicators that can be calcu-
lated to account for seasonality. Seasonality is a
critical factor that is associated with root zone
storage capacity, since it can capture the seasonal
differences between evaporation and precipitation
(Gao et al., 2014; Van Voorst, 2020; Van Noppen,
2022).

One indicator linked to seasonality is the in-
terstorm duration [days], which represents the
maximum number of consecutive dry days in a given
year. The interstorm duration is computed on an
annual basis and then averaged over the entire period.

Another commonly used index to measure sea-
sonality is the Seasonality Index (SI), which
describes the distribution of precipitation over the
course of a year. The SI can range from 0 to 11/6,
where a value of 0 indicates that each month receives
an equal amount of precipitation, and a value of
11/6 indicates that all precipitation falls in a single
month (Guhathakurta and Saji, 2013). See Equation
13, where Pm is the mean monthly precipitation
[mm].

SI =
1

P

m=12∑
m=1

∣∣∣∣Pm − P̄

12

∣∣∣∣ (13)

Another seasonality indicator is the Seasonality Tim-
ing Index (ST ), which quantifies the timing of the
peak and trough of the seasonal variability of precip-
itation, potential evaporation, and temperature. It
describes whether the precipitation is in phase with
the potential evaporation and temperature regimes.
To calculate the Seasonality Timing Index, sinusoidal
curves must be modeled for each variable, as shown
in Equation 14, 15 and 16 (Berghuijs et al., 2014;
Van Noppen, 2022).

P (t) = P [1 + δP sin (2π (t− sP ) /τP )] (14)

E(t) = E [1 + δE sin (2π (t− sE) /τE)] (15)

T (t) = T +∆T [sin (2π (t− sT ) /τT )] (16)

Where t is the time [days], s is the phase shifts [-] and
τ indicates the duration of the seasonal cycle, 1 year.

δ and ∆ are dimensionless seasonal amplitudes. P (t),
E(t), and T (t) represent the rates of precipitation
[mm/d], potential evaporation [mm/d], and temper-
ature [C] as a function of time. The time-averaged
mean values of these rates are given by P , E, and T .
The dimensionless seasonal amplitudes (δP , δE, and
δT ), and the phase shifts (sP , sE , sT ) have been de-
termined using least squares optimization, following
the method of Van Noppen (2022).

sd = sP − sT for |sP − sT | ≤ 0.5 (17)

sd = −1 + (sP − sT ) for sP − sT > 0.5 (18)

sd = 1 + (sP − sT ) for sP − sT < −0.5 (19)

The phase difference between the precipitation and
the temperature regime (sd) can be computed using
the above equations. If sd = 0, precipitation and
temperature are in phase, where sd = -0.5 indicates
that the precipitation peaks before the temperature
and sd = 0.5 indicates the precipitation to peak
after the temperature (Berghuijs and Woods, 2016;
Van Noppen, 2022).

Using the parameters calibrated through least
square error optimization, the Seasonality Timing
Index (ST ) can be calculated with Equation 20.

ST = δP sgn (∆T ) cos (2π (sP − sT ) /τ) (20)

The value for the Seasonality Timing Index can range
from -1 to 1, where zero indicates uniform precipita-
tion throughout the year. A value less than zero indi-
cates an out-of-phase signal, with precipitation being
strongly winter-dominant, while a value greater than
0 indicates that the precipitation is strongly summer-
dominant (Berghuijs et al., 2014).

4.2.2 Multiple linear regression

The next step involves examining whether the
error in Evaporative Index (∆EI) can be explained
by the grouping of catchments based on climate
indicators or by the changes in climate indicators.
To accomplish this, a multiple linear regression
analysis is conducted using as dependent variable
the error in EI (∆EI) and as independent variables
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the values of climate indicators (P annual, Ep,annual,
T , AI, interstorm duration, SI, ST ) and the change
in those indicators (∆P annual, ∆Ep,annual, ∆T , ∆AI,
∆interstorm duration, ∆SI, ∆ST ).

Multiple linear regression is a statistical method
that involves using multiple independent variables to
estimate or predict the value of a dependent variable.
The mathematical formulation for this technique
is given in Equation 21, where y is the dependent
variable, xi are the independent variables, β0 is the
y-intercept, βi are the regression coefficients for each
of the independent variables and ϵ is the error.

y = β0 + β1x1 + . . .+ βnxn + ϵ (21)

4.2.3 Grouping catchments by climate indi-
cators and by changes in climate indi-
cators

For the purpose of grouping, climate indicators
were computed over the entire period of analysis,
namely, 1971 - 2010 for CAMELS GB, 1981 - 2009
for CAMELS USA, 1989 - 2018 for the French
catchments, and 1999 - 2018 for the Belgian and
Dutch catchments. Several groups were constructed
per indicator, and the catchments were assigned to a
specific group. Each catchment is categorized in the
same group across all periods.

Moreover, the analysis also aimed to determine
the change in a climate indicator for each catchment
going from one decade to the next. To achieve this, a
change in indicators ∆indicator was established for
each decade, by comparing with the previous decade.
There are three distinct groups per indicator,
namely, an increase in indicator (∆indicator > 0),
a decrease in indicator (∆indicator < 0) , and a
small difference compared to the previous century
(∆indicator ≈ 0).

Statistical tests have also been performed to
determine if there is a significant difference between
the different groups for each dataset. The potential
difference between two adjacent climate groups has
been investigated. First, it needs to be determined

whether the distributions of the errors in EI (∆EI)
are normally distributed. Depending on the nor-
mality of the distributions, we utilise either the
Wilcoxon rank-sum test (non-normal distributions)
or the t-test (normal distributions) to assess the
statistical significance of the observed difference
between the two groups. The Wilcoxon rank-sum
test (also known as the the Mann–Whitney test
or the Wilcoxon–Mann–Whitney rank-sum test) is
a nonparametric test that compares the medians
of two independent groups, while the t-test is a
parametric test that assumes normally distributed
data and compares the means of two independent
groups (Helsel and Hirsch, 1992).

4.3 Hydrological modelling

4.3.1 wflow wflow flextopo: a process-based
model

The third step is to quantify the historical changes
in the evaporative index (∆EI) in a process-based
model to see the effects of the hydrological response.
For this, we use wflow flextopo (de Boer-Euser, 2017;
Verseveld et al., 2022), a fully distributed process-
based model designed to represent spatial variability
in hydrological processes. The model uses flexible
model structures for a selection of Hydrological
Response Units (HRUs), which are delineated based
on topography and land use. In this case, the three
HRUs represent wetlands, hillslopes, and plateaus,
connected through their groundwater storage. The
HRUs were delineated using the MERIT hydro
dataset at 60m by 90m resolution (Yamazaki et al.,
2019), with a threshold of 5.9m for the height
above the nearest drainage (HAND, (Rennó et al.,
2008)) and a slope threshold of 0.129, following the
methodology proposed by Gharari et al. (2011). The
hillslopes are associated with forest and the plateaus
with agriculture, using the CORINE land cover data
(European Environment Agency, 2018), as they
have high proportions of these land covers (Bouaziz
et al., 2022). The areal fraction of each HRU was
then derived for each cell at a model resolution of
approximately 600m by 900m.

The effect of climate variability on the root zone storage capacity



N. Tempel — April 2023 13

The wflow flextopo model incorporates various
components to simulate hydrological processes,
including snow, interception, root zone, fast and
slow storage, and actual evaporation from the
root zone. The model is forced with precipitation,
potential evaporation, and temperature data. The
actual evaporation from the root zone decreases
linearly as the storage falls below a certain threshold
parameter. A kinematic wave approach is used to
route streamflow through the upscaled river network
at the model resolution, as described by Eilander
et al. (2021).

4.3.2 Scenarios

The model is run using the Meuse dataset for
the period during which data from both France,
Belgium, and the Netherlands are available. This
period is divided into two decades, p1: 1999-2008
and p2: 2009-2018. Using the omega value of
one of these decades, we predict the evaporative
index of the other decade. And with that predicted
evaporative index, we can calculate the root zone
storage capacities that are the changing variable
within the model runs. The root zone storage
capacity is adjusted based on historical errors in EI
(∆EI) that are found using the method described
in Section 4.1.1. Four different scenarios are con-
sidered, namely A1, A2, B1, and B2. See Figure 6.
Distinctions are made between scenarios in which
historical errors in EI are based on either the Meuse
dataset alone (A) or all datasets combined (B). The
A-scenarios are based on changes in climate observed
in the Meuse data. The B-scenarios are based
on changes in climate from all datasets combined,
including Meuse, CAMELS GB, and CAMELS USA.

Distinctions are also made based on which pe-
riod is used to make a prediction about the other
period (1 or 2). Scenario 1 is generated by utilising
the omega value of the first decade (p1, 1999-2008)
to predict the root zone storage capacity for the
second decade (p2, 2009-2018). This implies that
the model is executed for the period of 2009-2018.
The reference run is the run where it is assumed
that we are staying on the line with the same omega

Scenario A1

Scenario A2

Scenario B1

Scenario B2

p1

p1

p2

p2
p1exp

p1exp

p2exp

p2exp

ΔΕΙΜeuse

ΔΕΙΜeuse

ΔΕΙAll

ΔΕΙAll

ω2

ω1

ω2

ω1

Figure 6: Overview of the scenario structure. p1 is
the time period of 1999-2008 and p2 is the time period
of 2009-2018.

value, so the error in EI ∆EI is equal to zero (see
star in Figure 6). Other runs also utilise the omega
value from the first decade (1999-2008) to make
predictions, but now a sample of an error (∆EI)
is taken from the population (either Meuse or all
data) to calculate the root zone storage capacity.
Scenario 2 makes predictions by reversing time. The
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omega value of the second decade (p2, 2009-2018)
is used to predict the root zone storage capacity for
the first decade (p1, 1999-2008), meaning that the
model is executed for the period of the first decade
(p1, 1999-2008). Samples of ∆EI are taken from
the distributions (either Meuse only for A-scenarios
or all data for B-scenarios) to calculate different
root zone storage capacities. When sampling
from the distribution in Scenario 2, the sign of
∆EI is reversed to move in the correct direction.
Specifically, a negative value of ∆EI is made posi-
tive, while a positive value of ∆EI is made negative.

In each scenario the model is run multiple times,
where each run is a prediction based on an error in
evaporative index, ∆EI, sampled from the distribu-
tion. This process is repeated 100 times per scenario
to generate a distribution of possible outcomes.

– Scenario A1 uses the omega value of p1 with a
sampled ∆EI from the distribution calculated
from the Meuse data to make a prediction about
the evaporation and root zone storage capacity
of p2, 2009-2018.

– Scenario A2 uses the omega value of p1 with a
sampled ∆EI from the distribution calculated
from the Meuse data to make a prediction about
the evaporation and root zone storage capacity
of p1, 1999-2008.

– Scenario B1 uses the omega value of p1 with
a sampled ∆EI from the distribution calcu-
lated from all the data (Meuse, CAMELS USA,
CAMELS GB) to make a prediction about the
evaporation and root zone storage capacity of p2,
2009-2018.

– Scenario B2 uses the omega value of p1 with
a sampled ∆EI from the distribution calcu-
lated from all the data (Meuse, CAMELS USA,
CAMELS GB) to make a prediction about the
evaporation and root zone storage capacity of p1,
1999-2008.

4.3.3 Model calibration

Bouaziz et al. (2022) performed the calibration of
the model with a Monte Carlo strategy to explore
the parameter space by sampling 10,000 realizations
from uniform prior parameter distributions. This
approach resulted in the identification of an ensemble
of plausible parameter sets, from which this study
uses one. To evaluate the model’s ability to simulate
outflow with this parameter set, hydrographs of
observed and modeled streamflow for Borgharen
are presented in Figure 7. Furthermore, several
performance indicators, namely Nash-Sutcliffe effi-
ciencies of streamflow, the logarithm of streamflow,
and Kling-Gupta efficiency of streamflow, are shown
in Figure 8 to assess the model’s performance.
Performance indicators are used to evaluate the
accuracy of hydrological models in simulating
streamflow. The three commonly used indicators
are Nash-Sutcliffe efficiency (NSE), logarithmic
Nash-Sutcliffe efficiency (NSElog), and Kling-Gupta
efficiency (KGE). NSE and NSElog measure the
ratio of the model’s mean square error to the mean
square error of the observed data, with higher values
indicating better model performance. KGE measures
the correlation, variability, and bias between the
observed and simulated streamflow, also with higher
values indicating better performance.

The models in Scenario 1 performed well in
most catchments with an average NSE of 0.59,
average NSElog of 0.68, and average KGE of 0.88.
Similarly, in Scenario 2, the models showed com-
parable performance with an average NSE of 0.62,
average NSElog of 0.65, and average KGE of 0.83.
However, catchments Modave and Jemelle exhibited
poor model performance in both scenarios, with
negative NSE and NSElog values. The underlying
geology of these catchments is complex, and they
are likely experiencing groundwater losses, which is
not accounted for in the wflow flextopo model used
here. (Bouaziz et al., 2018).
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Figure 7: Hydrograph of modeled and observed streamflow in Borgharen, where for scenario 1 and 2 respec-
tively the values for Nash-Sutcliffe efficiencies of streamflow are 0.85 and 0.81, Nash-Sutcliffe efficiencies of
the logarithm of streamflow 0.71 and 0.63 and Kling-Gupta efficiency of streamflow 0.88 and 0.83.
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Figure 8: Performance indicators calculated for the
time period of each scenario: Nash-Sutcliffe efficien-
cies of streamflow, the logarithm of streamflow, and
Kling-Gupta efficiency of streamflow. The band-
width of each violin represents the distribution of per-
formance across different catchments.

5 Results

In this chapter the results will be discussed, for I) the
historical changes in evaporation and the root zone
storage capacity in Section 5.1, II) the relationship
between the changes with climate indicators in Sec-

tion 5.2 and III) the quantification of the effect of the
changes on the hydrological response in Section 5.3.

5.1 Historical changes in evaporation
and the root zone storage capacity

5.1.1 Catchment selection

Several catchments were excluded from the analysis
because they did not meet the water balance in
every decade as they exceeded the energy limit
(EI > AI). This means that the Fu-equation could
not be solved, and the data is likely incorrect due to
groundwater losses.

In addition, the following requirements were imposed
on the catchments of the CAMELS datasets: there
should be minimal human impact, and no more than
10% of the annual precipitation can be from snowfall.
Catchments with too much snowfall are excluded
because of the ability of snowfall to temporarily
store water until it melts. In catchments that receive
significant snowfall, the estimation of root zone
storage capacity may be inaccurate because of the
delayed input of water.

To identify catchments with climatic conditions
similar to those of the present or future Meuse,
carefully selected catchments were used. Specifically,
following the methodology outlined by Van Noppen
(2022), only catchments located on the East Coast
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of the CAMELS USA dataset were considered. Also,
some catchments were eliminated based on data
availability (Van Noppen, 2022). After applying the
selection criteria, a total of 286 catchments remained
for analysis. These catchments comprised of 94 from
the CAMELS GB dataset, 169 from the CAMELS
USA dataset, and 23 of the Meuse.

5.1.2 Data visualisation in the Budyko
framework

In Figure 9, the different datasets are plotted in the
Budyko framework. This plot was generated using
the long-term average values for the entire period of
data analysis. The CAMELS USA dataset consists of
catchments with considerably drier climates (higher
aridity index), while the CAMELS GB dataset has
catchments with a wetter climate (lower aridity in-
dex). The Meuse dataset falls somewhere in the mid-
dle, where both CAMELS datasets also have some
catchments in the framework. The data points fall
along a line, following the theories of Budyko (1961)
and Fu (1981).
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Figure 9: Illustration of the long-term average values
for the entire period of data analysis. The evapora-
tive index is calculated with Equation 2 and aridity
index is calculated with Equation 3.

To provide an indication of how the root zone stor-
age capacity relates to the Budyko framework, Fig-
ure 10 displays the values of root zone storage ca-
pacity, using a colour scale, for all catchments -
Meuse, CAMELS USA, and CAMELS GB - within
the framework. The root zone storage capacity was
calculated using the method discussed in Section

4.1.2. There is a clear pattern where higher values of
the evaporative index and aridity index are associated
with larger root zone storage capacities. Conversely,
catchments with lower values of the evaporative index
and aridity index are associated with smaller values
of the root zone storage capacity.
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Figure 10: Root zone storage capacities (Sr,max) in
the Budyko framework for Meuse, CAMELS GB, and
CAMELS USA catchments.

5.1.3 Error in estimating the evaporative in-
dex (∆EI)

Figure 11 shows the histograms of the error in
predicting the evaporative index (∆EI) per decade.
The error in the evaporative index (∆EI) can
be calculated per catchment for every decade of
which data is available, except the first decade, as a
reference omega value is needed.

To assess whether there are differences in the
distribution of errors in EI between decades of the
same dataset, it is first necessary to test whether
the distributions are normally distributed. To do
this, QQ plots were created (Appendix C) and the
Shapiro-Wilk test was performed (see Table 2). The
Shapiro-Wilk test (Shapiro and Wilk, 1965) is a
statistical test for normality. The test statistic, W,
measures the deviation between the sample data and
a normal distribution. A larger value of W indicates
a greater deviation and lower likelihood of normality.
The p-value is calculated from the W statistic, and
if it is below a pre-specified significance level (e.g.,
0.05), we reject the null hypothesis of normality.
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Figure 11: Error in estimating EI (∆EI) for the different datasets. The white area of the histogram indicates
positive values and the grey part of the histogram indicates negative values. For (a) CAMELS GB the median
∆EI for 1981-1990 is 0.00, the median ∆EI for 1991-2000 is +0.01 and the median ∆EI for 2001-2010 is
0.00. For (b) CAMELS USA the median ∆EI for 1990-1999 is -0.01, the median ∆EI for 2000-2009 is
+0.04. For (c) the Meuse the median ∆EI for 1999-2008 is 0.00, the median ∆EI for 2008-2018 is -0.06.

For the Meuse, the results from the first decade
(1999-2008) are significant, but caution should be
exercised when drawing conclusions from these
findings as the sample size for the Meuse is very
small. The test suggests that for all decades of the
CAMELS GB dataset, ∆EI is likely not normally
distributed, as its p-value is below 0.05. On the
other hand, the distributions for CAMELS USA
may exhibit normality. Therefore, we proceed with
the Wilcoxon rank-sum test for all datasets to be
consistent. This test does not require the data to be
normally distributed, and it can handle data where
the two groups (in this case, decades) have unequal
sizes, which is the case for the Meuse data.

The Wilcoxon rank-sum test is a non-parametric
statistical hypothesis test that determines whether
there is a significant difference between two unpaired
samples. The test statistic is the sum of the ranks of
one sample in the combined sample of both groups.
A larger test statistic indicates a larger difference
between the two samples. The p-value is the prob-
ability of observing the data under the assumption
that the null hypothesis is true, where the null
hypothesis is that there is no difference between the
two samples. If the p-value is less than the threshold

Table 2: Shapiro-Wilk Test results for the normal dis-
tribution of the error in the evaporative index ∆EI,
per decade and dataset. The p-values below the sig-
nificance level (0.05) are bold.

Dataset &
Decade

n
Test

Statistic
p-value

CAMELS GB
1981-1990

95 0.66 0.000

CAMELS GB
1991-2000

95 0.96 0.010

CAMELS GB
2001-2010

95 0.95 0.001

CAMELS USA
1990-1999

169 0.99 0.442

CAMELS USA
2000-2009

169 0.99 0.104

Meuse
1999-2008

9 0.82 0.038

Meuse
2009-2018

23 0.94 0.148
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Figure 12: CAMELS GB - Errors in estimating EI for time periods (a) 1981-1990 (b) 1991-2000 (c) 2001 -
2010. The colours indicate the error in EI (∆EI), ranging from -0.2 (red) to +0.2 (blue).

(< 0.05), it suggests that there is a significant
difference between the two samples and the null
hypothesis can be rejected (Helsel and Hirsch, 1992).

See Table 3 for the results of the Wilcoxon
rank-sum tests. The p-values for all comparisons
were found to be less than 0.05, indicating that there
is a significant difference in the distribution of error
in EI between the decades for each dataset. This
suggests that the distribution of error in evaporative
index (∆EI) is not consistent over time.

The errors in EI (∆EI) are geographically il-
lustrated in Figures 12, 13 and 16, with the colour
scheme indicated in the legend. There is no apparent
geographical pattern in the errors observed for all
datasets. For CAMELS GB, adjacent catchments
display opposing error signs, with a positive and
negative error adjacent to each other. Conversely,
for the Meuse dataset, neighbouring catchments
exhibit similar errors in close proximity to one an-
other. In Figure 14, the found errors in evaporative
index (∆EI) of all data are combined and plotted
per aridity index to gain an understanding of the
magnitude of changes in the Budyko framework.

Table 3: Wilcoxon rank sum test results fordiffer-
ences in mean of errors in evaporative index ∆EI,
between two decades of one dataset.

Decade 1 Decade 2
Test
Stat.

p-value

CAMELS GB
1981-1990

CAMELS GB
1991-2000

3355 0.002

CAMELS GB
1991-2000

CAMELS GB
2001-2010

6103 0.000

CAMELS USA
1990-1999

CAMELS USA
2000-2009

4403 0.000

Meuse
1999-2008

Meuse
2009-2018

196 0.000

5.1.4 Error in estimating the root zone stor-
age capacity

The discovered error in EI was used to calculate the
error in Sr,max as discussed in Section 4.1.2. These
errors are combined per dataset as can be seen in
Figure 15. The relative error is calculated by dividing
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Figure 13: CAMELS USA - Errors in estimating EI for time periods (a) 1990-1999 (b) 2000-2009. The
colours indicate the error in EI (∆EI), ranging from -0.2 (red) to +0.2 (blue)
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Figure 14: Errors in Evaporative index [-] plotted
per aridity index in the Budyko framework, for all
datasets combined.

the error in the root zone storage capacity by the
actual value, see Equation 22.

∆Sr,max[%] =
Sr,max,act − Sr,max,exp

Sr,max,act
(22)

For both CAMELS datasets, the distribution is
centered around 0, but for the Meuse dataset, there
is often a negative error, indicating that the root
zone storage capacity is often overestimated using
this method and is therefore smaller than expected.

In Figure 17, the errors in Sr,max for all decades
and datasets are plotted in the Budyko framework.
No clear trend is observed between the error size
and the aridity index. However, the largest absolute
positive errors in Sr,max, indicating underestimation,
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Figure 15: The absolute [mm] and relative error [%]
in Sr,max for each dataset. In the text boxes, the
median and the 10th-90th percentiles are indicated.

are observed in the upper region of the Budyko
framework. When examining the relative error,
these errors are less significant in the upper region,
which is reasonable given that Figure 10 showed
that the largest root zone storage capacities are in
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Figure 16: Meuse - Errors in estimating EI for time periods (a) 1999-2008 (b) 2009-2018. Note that for the
first period, data is only available for the French section of the Meuse. The colours indicate the error in EI
(∆EI), ranging from -0.2 (red) to +0.2 (blue).

the upper region of the Budyko framework. The
catchments with the largest negative error in Sr,max,
indicating overestimation, are plotted furthest from
the energy limit. This suggests that the actual
evaporation is relatively lower than the potential
evaporation in these catchments.

5.2 Linking to climate indicators

5.2.1 Multiple linear regression

Table 4 presents the key regression results of the
multiple linear regression analysis, while all the
regression results can be found in Appendix D.
For CAMELS GB, the R-squared value is 0.076,
indicating that 7.6% of the variance in ∆EI can
be explained by the independent variables, i.e. the
climate indicators and the change in indicators.
This relatively low R-squared value suggests that
there is still much unexplained variance in ∆EI
for CAMELS GB. With a chosen significance level
(alpha) of 0.05, we reject the null hypothesis when
the p-value is less than 0.05. In this case, the p-value
is 0.083, which is greater than 0.05, and hence,
we cannot reject the null hypothesis. This means
that we do not have sufficient evidence to conclude
that there is a significant relationship between the
independent variables and the dependent variable in
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Figure 17: Error in estimating the root zone storage
capacity (Sr,max) plotted in the Budyko framework
by colour scale, (a) in absolute values [mm] and (b)
in percentages [%]
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Table 4: Summary results multiple regression, where the dependent variable is the error in EI (∆EI).

CAMELS GB CAMELS USA Meuse

R-squared 0.076 0.267 0.945
Adjusted R-squared 0.028 0.235 0.900
Probability (F-statistic) 0.083 0.000 0.000
Coefficient 1 SI: -0.247 ∆SI: -0.134 SI: 3.375
Coefficient 2 ∆AI: 0.199 ∆AI: 0.089 ∆AI: -2.228
Coefficient 3 ∆SI: 0.144 AI: -0.058 AI: 1.453
Coefficient 4 ST : 0.090 ∆T : -0.052 ∆SI: -1.257
Coefficient 5 ∆T : 0.039 ∆ST : 0.047 ST : -0.867

the regression analysis for CAMELS GB.

For the other datasets, the significances are be-
low the chosen alpha level, implying that the
results are significant. For CAMELS USA with an
R-squared of 0.267 and an adjusted R-squared of
0.234, we observe that the overall fit of the model
is not very strong, meaning that there is again still
much unexplained variance in ∆EI.

For Meuse, with an R-squared of 0.945 and an
adjusted R-squared of 0.900, we see that the overall
fit of the model is very strong, which means that a
large part of the variance in the errors in ∆EI can be
explained by the independent variables. Interpreting
the results of a multiple regression analysis involves
examining the coefficients and significance levels for
each independent variable. The coefficients represent
the magnitude of the effect of each variable on
the dependent variable ∆EI, while the significance
levels indicate the strength of the relationship be-
tween each independent variable and the dependent
variable. We identified the significant independent
variables if their significance level is 0.05 or lower.
Furthermore, the order of the variables in the table
reflects the magnitude of their coefficients, which
represents their relative importance in predicting the
dependent variable. A complete list of all coefficients
and significances can be found in Appendix D.

We observe that seasonality, specifically season-
ality timing index and seasonality index, aridity
index, and change in temperature are important
explanatory variables. We are excluding CAMELS

GB from our analysis due to its low significance. We
observe that the coefficients for CAMELS USA and
Meuse do not always move in the same direction.
While ∆SI is linked to a negative error in ∆EI for
both datasets, ∆AI is associated with an increase in
∆EI for CAMELS USA, but a decrease in ∆EI for
Meuse. Furthermore, a higher AI has a decreasing
effect on ∆EI for CAMELS USA, but an increasing
effect for Meuse. ∆ST is accompanied by an increase
in ∆EI for CAMELS USA, but a decrease for Meuse.

5.2.2 Grouping by climate indicators and by
change in climate indicators

Grouped histograms of the error in EI can be found
in Appendix E, and the results of the Wilcoxon
signed rank tests and other descriptive statistics
for the climate groups can be found in Appendix
F. This section provides a detailed discussion of
the significant differences observed for each climate
indicator when grouping the variables based on their
absolute value and grouping them based on their
change per variable.
Precipitation When grouping the catchments
based on average annual precipitation (P annual), we
did not observe any significant differences among
the groups. However, when grouping them based on
changes in average annual precipitation (∆P annual),
we obtained different results. For CAMELS GB,
there was no significant difference between the
group with a decrease in annual precipitation
and the group with little change in precipitation.
However, we did observe a significant difference
between the group with an increase in precipitation
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and the group with little change in precipitation.
For CAMELS USA and the Meuse, we observed
significant differences between all the groups of
change in precipitation. The significant differences
observed in both CAMELS datasets suggest that a
decrease in precipitation is associated with a more
positive error in EI, and vice versa. However, in the
case of the Meuse catchment, a decrease in precip-
itation is associated with a more negative error in EI.

Potential evaporation When grouping the
catchments based on the average potential evap-
oration value over the entire period (Ep,annual),
we did not observe any differences between the
groups. However, when grouping based on changes
in potential evaporation (∆Ep,annual), we did
observe a difference between the group with an
increase in potential evaporation and the group
with little change in the CAMELS GB and the
Meuse catchments. An increase in potential evap-
oration is associated with a more positive error in EI.

Temperature When grouping the catchments
based on the average temperature over the entire
period (T ), we did not observe any differences
between the groups. However, when grouping based
on changes in temperature (∆T ), we did observe
significant differences only for the CAMELS USA
and the Meuse catchments. For CAMELS USA,
an increase in temperature is associated with a
less positive error in EI. Conversely, for the Meuse
catchment, an increase in temperature is associated
with a less negative error in EI.

Aridity index Upon grouping by aridity index over
the entire period (AI), significant differences were
observed only for the Meuse, where the group with a
higher aridity index exhibited a less negative error in
EI. Moreover, examining the differences in changes
in aridity index (∆AI), no significant differences
were found for CAMELS GB. For CAMELS USA,
differences were observed among all three groups,
where an increase in AI was associated with a more
positive error in EI, while a decrease in AI corre-
sponded to a less positive error in EI. Contrasting,
at the Meuse, differences were found between the

group with little change in AI versus the group with
an increase in AI, where the latter exhibited a more
negative error in EI.

Interstorm duration When grouping by in-
terstorm duration (interstorm duration) over the
entire period, significant differences were observed
only for the Meuse, where the group with a longer
average interstorm duration exhibited a less negative
error in EI. No significant differences were found
when grouping by change in interstorm duration
(∆interstorm duration) for CAMELS GB. Signifi-
cant differences were found between all groups for
CAMELS USA and the Meuse. An increase in in-
terstorm duration for CAMELS USA was associated
with a more positive error in EI, while a decrease
corresponded to a less positive error in EI. On the
other hand, a decrease in interstorm duration for the
Meuse was associated with a less negative error in EI.

Seasonality index Significant differences were
found only for the Meuse data when grouping by
seasonality index (SI), with catchments exhibiting
a higher SI value showing a more negative error
in EI. When grouping by change in SI (∆SI), no
significant differences were found between groups for
CAMELS GB. However, for both CAMELS USA
and the Meuse data, a significant difference was
observed only between the group with a decrease in
SI and the group with little change in SI. In both
cases, a decrease in SI was associated with a more
positive error in EI.

Seasonality timing index No significant differ-
ences were found between groups when calculating
the seasonality timing index (ST ) over the total
period. However, differences were observed when
examining the change in seasonality timing index
(∆ST ) for both the CAMELS USA dataset and
the Meuse data. Specifically, a decrease in ST for
CAMELS USA was associated with a less positive
error in EI, while the opposite was observed for the
Meuse, where a decrease in ST was associated with
a less negative error in EI.
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5.3 Effect on the streamflow of the
Meuse

Figure 18 displays the distributions of the errors in
EI that were used for the different scenarios. Figure
18 shows the distribution of errors observed in the
Meuse dataset, which serves as the basis for the
A-scenarios. and the distribution observed across all
decades in all datasets, which serves as the basis for
the B-scenarios.
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Figure 18: Error in evaporative index ∆EI used for
the samples.

The average monthly streamflow for Borgharen is
depicted in Figure 19, providing insight into the high
and low flow months. This visualisation is included
to interpret the seasonal effects of the change in
streamflow. We see that the months with high flow
are December to March and the months with low
flow are June to September.
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Figure 19: Monthly flow Borgharen [mm/month] for
both model run periods based on the E-obs v20 data.

5.3.1 Seasonal changes in evaporation and
streamflow

In Figure 20, (a) and (b), the changes in streamflow
and actual evaporation for scenario A1 are displayed,
respectively. For every run the streamflow and
evaporation were compared to the reference run
(∆EI = 0). The data from all years and catchments
are aggregated and the percentiles are plotted. The
results indicate a decrease in evaporation (up to
13%, median of 4%) during summer months in
scenario 1A, which leads to an increase in streamflow
in the months of September, October, and November
(up to 48%, median of 12%). There is also a
small decrease in the summer months (up to 5%,
median of 1%). In scenario 2A (Figure 20, (c) and
(d), we observe an opposite pattern compared to
scenario 1A. This is expected since scenario 2A is the
inverse of scenario 1A. Specifically, we observe an
increase in evaporation during summer months (up
to 22%, median of 6%), which results in a decrease
in streamflow during winter months (up to 23%,
median of 7%). There is a again a small increase in
streamflow during summer months in this scenario
(up to 14%, median of 2%).

The distribution of errors in EI (∆EI) for all
combined data is more symmetrical (see Figure
18), which leads to more symmetrical results for
scenarios B1 and B2. However, the distribution does
tend towards the positive side, which causes the
median change in evaporation to be slightly above
0% for scenario B1 (see Figure 21 (a) and (b)),
and the median change in streamflow to be slightly
below 0%. Once again, the largest changes occur
for evaporation during summer months (from -3%
to 5% and -7% to +5%) and for streamflow during
the autumn and early winter months, September
to December (from -11% to +7% and from -5% to
+10%). For scenario B2 (see Figure 21 (c) and (d),
we observe the opposite of scenario B1, where the
changes in evaporation and streamflow are relatively
symmetrical. However, in this case, the median
change in evaporation is slightly below 0 percent and
the median change in streamflow is slightly above 0
percent.
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Figure 20: Change in evaporation and streamflow for scenario A1 and A2. The change is calculated for
every run as the difference between the evaporation or streamflow with the reference run (∆EI = 0). The
output for all years, catchments, and runs has been put together. The lightly shaded area represents the
90th and 10th percentiles, while the slightly darker shaded area represents the 25th to 75th percentiles. The
black line represents the median.

5.3.2 Change in maximum flow (Qmax) and
minimum flow (Qmin)

For each simulation run, the annual maximum
flow (Qmax) was calculated. As the maximum
flow occurs around the turn of the year, the time
period used for the calculations spanned from July
of one year to June of the following year. In order
to investigate changes in the magnitudes of high
flows, the mean Qmax for each simulation run
was compared to the mean Qmax of the reference
run (∆EI = 0). The results of this analysis are
illustrated in percentages of the Qmax in Figure 22
for all catchments combined [%]. The results per
catchment in [mm/d] in can be found in Appendix G.

For the A-scenarios the change in Qmax have a
median of +4.8% and -3.2% and for the B-scenarios
these are -0.9% and +0.2%. Notably, certain sub-

catchments such as Salzinnes, Huccorgne, La Meuse
Goncourt, Le Mouzon Circourt-sur-mourzon, and
Le Vair Soulesse sous Saint-Elophe exhibited higher
sensitivity to changes in maximum flow, either in
terms of increases or decreases.

The percentages of increase and decrease in Qmax are
not as significant as those in streamflow. This can
be attributed to the seasonal patterns presented in
Figure 19, which indicate the months with high flow.
The peak of the percentage increase in flow occurs
around the autumn months, thereby having less
impact than if this were to occur during the winter
months. The timing of the Qmax was also examined,
and the results are presented in Table 5. In Appendix
H the change in timing for every catchment can be
found. For the A2 scenario, the timing of the Qmax

is on average one day later than in the reference
run where ∆EI = 0. For the other scenarios there
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Figure 21: Change in evaporation and streamflow for scenario B1 and B2. The change is calculated for every
run as the difference between the evaporation or streamflow with the reference run (∆EI = 0). The output
for all years, catchments, and runs has been put together. The lightly shaded area represents the 90th and
10th percentiles, while the slightly darker shaded area represents the 25th to 75th percentiles. The black
line represents the median.

is on average no change in timing of the AMF.
Also the standard deviations are not very differ-
ent from the standard deviation of the reference run.

To analyze the low flows (Qmin), we examined
the minimum flow over a period of 7 consecutive
days. Unlike the analysis of the high flows (Qmax),
we considered the calendar year since low flows
typically occur during the summer months. For each
7-day period throughout the year, the total flow
was calculated using a moving window approach.
The calculations were performed for all simulation
runs for all years, and the resulting averages were
compared to the average of the reference run (∆EI
= 0). The results are presented in Figure 22 for all
catchments combined [%]. See Appendix G for the
results per catchment [mm/d]. It shows that again
the A-scenarios exhibit relatively greater changes in
low flow compared to the reference scenario. The

Table 5: Change in timing of Qmax per scenario. Ref.
run Qmax is the timing of the Qmax for all catchments
combined for the reference run. Also the standard-
deviation of the Qmax is given. ∆t is the average
change in Qmax compared to the reference run (∆EI
=0), calculated for each scenario, with the standard-
deviation. Unit of all columns is days.

Ref. run
AMF

Ref. run
std

Scen.
∆t

Scen.
std

Scenario A1 01-12 38 0 34
Scenario A2 29-11 27 +1 26
Scenario B1 01-12 38 0 38
Scenario B2 29-11 27 0 28
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median in the change in Qmin for the A-scenarios is
-0.4% and +1.7%, and for the B-scenarios +0.5%
and +0.34%.

Figure 22: Change in maximum flow (Qmax, left part
of the violin) and 7-day minimum flow (Qmin, right
part of the violin), in percentage of the reference run.
The quartiles are indicated with dashed lines. The
median of the change in Qmax and Qmin per sce-
nario are respectively A1: +4.8%, -0.4%, A2: -3.2%,
+1.7%, B1: -0.9 %, +0.5%, B2: +0.2%, +0.3%.

6 Discussion

6.1 Limitations

6.1.1 Hydrological Data

Sufficiently long time series of data are essential for
investigating the influence of climate variability as
this enables us to analyse historical patterns and
trends. Unfortunately, the availability of long-term
data is limited. The restricted timeframe of the
available data may impact the accuracy and reli-
ability of the results. Although the availability of
long-term data is limited in this research, significant
efforts have been made to utilise the available data as
efficiently as possible. Potential errors in the input
data may also have impacted the accuracy of the
water balance method and consequently the findings
of this study. Hydrological data are subject to un-
certainties typically ranging from 10% to 40%, which
can arise from various sources such as measurement
errors, data derivation, interpolation, scaling, and
data management (McMillan et al., 2018). When
constructing a large sample dataset, multiple sources
of data are often combined. To ensure that the
compared data reflect similar processes, catchments
that are significantly affected by human activities
or snow accumulation are excluded in this study
(Van Noppen, 2022). Despite these measures, it is
important to acknowledge that the utilisation of any
dataset carries inherent uncertainty, which should be
taken into account in the interpretation of the results.

Considering the potential for data inaccuracies,
it is noteworthy that the Meuse presents a different
outcome in contrast to the other datasets. To
address this discrepancy, an additional analysis was
conducted on the climate forcing variables of the
Meuse, including precipitation, potential evapora-
tion, and temperature. Results indicate a declining
trend in precipitation. To confirm that this trend is
not an artefact of the data, a comparison was made
with alternative versions of the dataset, E-OBS v24
and E-OBS v25, as well as with a different dataset
that is based on a climatological grid. Further details
can be found in Appendix I. The analysis suggests
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that the dataset used in this study, E-OBS v20,
displays a slightly stronger declining trend, but this
trend is also present in the other datasets, thereby
confirming that it is not an artefact of the dataset.

Different methods were used to estimate poten-
tial evaporation in the catchments studied. The
E-OBS meteorological data (Cornes et al., 2018)
used the Makkink equation to estimate potential
evaporation for the Meuse catchments, while the
Priestley-Taylor equation and the Penman-Monteith
equation were used by the CAMELS-USA and
CAMELS-GB catchments, respectively. To ensure
consistency across the datasets, the approach of
Van Noppen (2022) was adopted where in the ma-
jority of datasets the Makkink equation was applied
which is based solely on temperature and incoming
short-wave radiation data. However, other factors
such as relative humidity and wind speed can also
impact potential evaporation rates. Consequently,
this method may introduce a degree of uncertainty
in the potential evaporation estimates.

6.1.2 Water balance method

The water balance method estimates root zone
storage capacity by calculating the maximum an-
nual water deficits, which are determined by the
difference between cumulative daily precipitation
and transpiration. Given the complexity of mea-
suring transpiration at the catchment scale, this
parameter is estimated based on long-term water
balance calculations. Daily potential evaporation
rates are used to generate daily transpiration values,
thereby preserving the seasonal trends in transpi-
ration while still adhering to mean transpiration
amounts. Nonetheless, this approach fails to account
for extreme events and inter-annual variability
in transpiration, particularly during hydrological
events characterised by limited or abundant water
availability. This assumption implies that vegetation
can extract water for transpiration from dry soils as
easily as from wet soils. This introduces an element
of uncertainty into the water balance method,
and its impact is difficult to quantify given that
the values cannot be validated against real-world

transpiration data. In addition to these limitations,
the water balance method may not be suitable
for regions where the water table is situated close
to the surface and vegetation can extract water
directly from groundwater, rather than relying on a
buffer capacity (Fan et al., 2017; Bouaziz et al., 2022).

The water balance method is a conceptualiza-
tion of reality, which disregards some processes.
Firstly, interception is not taken into account. This
process occurs when precipitation falls on vegetation,
and some of it is captured and stored on the leaves,
stems, or branches, reducing the amount of water
that reaches the soil surface. Bouaziz et al. (2020)
reported that the fluctuations caused by interception
are insignificant when compared to the magnitude
of storage deficits. Consequently, it is believed that
the absence of interception in the water balance
method is unlikely to have a substantial impact
on the results of this research. Furthermore, the
method assumes that all precipitation immediately
infiltrates the root zone, thereby neglecting other
processes, such as Infiltration Excess Overland Flow
and Saturation Excess Overland Flow. Infiltration
Excess Overland Flow occurs when the water input
exceeds the soil’s infiltration rate during periods of
extreme precipitation. Saturation Excess Overland
Flow occurs when the soil pores are entirely filled,
causing saturation and resulting in overland flow.
Both processes indicate high water volumes that
have entered or want to enter the system. However,
since such processes are unlikely to occur during
periods of water deficits, their absence in the water
balance method is again unlikely to have a signifi-
cant impact on the estimation of root zone storage
capacities (Bouaziz et al., 2022).

6.1.3 Statistical analysis

The Wilcoxon rank-sum test was used to analyze
the trend in ∆EI, as discussed in Section 5.1.
Some of the distributions of ∆EI were found to be
normally distributed. And some of the distributions
had equal sizes, but not all of them. This made it
possible in some cases to use either the t-test or the
Wilcoxon signed rank test instead of the Wilcoxon
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rank-sum test. We chose to use only the Wilcoxon
rank-sum test for all datasets to be consistent. The
Wilcoxon rank-sum test is generally less powerful
than the Wilcoxon signed-rank test or t-test. This
is because the Wilcoxon rank-sum test makes use of
less information in the data, as it only considers the
ranks of the observations rather than their actual
values. In contrast, the Wilcoxon signed-rank test
and t-test make use of the actual data values.

We employed a multiple linear regression model
to investigate the relationship between ∆EI and a
set of climate indicators variables. However, this
approach has limitations. Firstly, linear regression
may not have been the most appropriate technique
for the data, given the potential non-linearity
and complexity of the relationship between our
dependent and independent variables. Secondly,
we included all of our explanatory variables in the
model, even though some of them, such as potential
evaporation and temperature, are known to be
highly correlated.

6.1.4 Modelling process

The model has been calibrated by Bouaziz et al.
(2022) for a range of possible parameters, and for
this study, one of those sets has been used. However,
the model has not been re-calibrated to obtain the
best parameter set. The performance indicators
for the model are reasonably good, but they could
have been better if an additional calibration had
been conducted. This is not a major concern since
the aim of the analysis is to test the sensitivity of
the model to changes in evaporation, specifically
∆EI, for which the current calibration should suffice.

The values of the root zone storage capacity
were calculated for the areas including the nested
subcatchments, so including all upstream areas.
Therefore a correction is needed to adjust for those
upstream areas and their value for Sr,max. To
make this correction, the geometric mean should
be used instead of the arithmetic mean. However,
when calculating both the geometric and arithmetic
means, unrealistically large and small values of the

root zone storage capacity were obtained because the
correction places too much weight on the subcatch-
ment in question if its value is higher or lower than
the nested subcatchments. This means that data
issues, but also changes in evaporation, are given
an extra high weighting due to the correction. For
this reason, it was decided to use the uncorrected
values for the root zone storage capacity in the
model, so that the value for the subcatchment in the
model actually represents the value for the entire
upstream area. The decision to use the uncorrected
values of root zone storage capacity in the model is
not entirely realistic in closing the water balance.
The aim was to investigate the effect of changes
in evaporation on the hydrological response of the
catchment, and using uncorrected values provided a
better option for achieving this objective. While the
use of uncorrected values may introduce some bias
into the analysis, the potential benefits in terms of
improved understanding of the hydrological response
outweighed this concern.

6.2 Implications

6.2.1 Changes in root zone storage capacity

In this study, we used the Fu-method to assess its
suitability for estimating root zone storage capac-
ity in a changing climate. Specifically, we tested
the assumption that the relationship between the
aridity index and evaporative index, as represented
in the Budyko framework, remains applicable in
the future. To test this assumption, we analyzed
catchment-specific omega values and examined
whether the omega value for a given decade could
be used to predict the evaporative index (EI)
value for the subsequent decade, indicating that
the relationship between the aridity index and
evaporative index remains stable over time. By
using this approach, we were able to assess the
suitability of the Fu-method for estimating root zone
storage capacity in a changing climate, as well as
to investigate how catchment-specific characteristics
affect the relationship between the aridity index and
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evaporative index.For both CAMELS datasets, we
confirm that the Fu method can be used with the
same omega parameter when transitioning from one
decade to the next. In the case of CAMELS GB,
the median of the distribution in ∆EI for successive
time steps is 0.00, +0.01, and 0.00. Meanwhile, in
CAMELS USA, the median of the distribution in
∆EI for the decades is -0.01 and +0.04. The Meuse
dataset displays a distinct pattern compared to the
CAMELS datasets. For the initial time step, the
median is 0.00, but there are fewer data points (n=9)
due to the use of exclusively French data. For the
second time step, which covers the entire study area,
the median of ∆EI is -0.06, indicating a decrease in
evaporation.

One possible explanation for the downward de-
viation in EI for the Meuse basin is the standing
age of trees as the research by Fenicia et al. (2009)
hypothesises that forest rotation has had a significant
impact on the evaporation of the catchment. Specif-
ically, the shift from deciduous to coniferous forest,
and the increase in average forest age during the last
decades of the 20th century, may have influenced
the evaporation patterns observed in the Meuse
dataset. While the relationship between stand age
and evaporation is still under investigation, evidence
suggests that young forests tend to evaporate more
than mature forests. In the latter part of the 20th
century, forest management practices underwent
changes that led to an increase in the average age of
standing forests in the Meuse basin area. Specifically,
Dirkse and Daamen (2004) noted that in the Nether-
lands, the adoption of practices such as reduced
clear-cutting and increased thinning resulted in a
10-year increase in the average age of trees between
1980 and 2001, from 43.3 to 53.3 years (Dirkse and
Daamen, 2004; Fenicia et al., 2009). There are some
studies that have shown that young forests tend
to evaporate considerably more water than mature
forests. Although the results of these studies may
vary by climate and forest type, they suggest that
forest age significantly affects the catchment water
balance (Brown et al., 2005). Vertessy et al. (2001)
estimated that annual transpiration declines by
66% when tree age increases from 15 to 240 years.

Scott and Lesch (1997) found that afforestation of a
catchment with an average runoff of 236 mm/a led
to the stream drying up completely after 12 years.

6.2.2 Climate indicators

The analysis reveals that the errors in EI (∆EI)
for the CAMELS GB dataset cannot be explained
by climate indicators. For CAMELS USA, we see
that a greater or lesser increase in error in EI can be
linked to an increase or decrease in certain climate
indicators. An increase in ∆EI can be linked to
an increase in aridity index (∆AI) and seasonality
timing index (∆ST ). A decrease in ∆EI can be
linked to an increase in seasonality index (∆SI)
and temperature (∆T ). A decrease is also more
likely to occur for catchments with a higher aridity
index (AI). Nevertheless, these variables have low
explanatory power together in the regression model
(27%). For the Meuse, we see that catchments with
a higher aridity index (AI) can be linked to an
increase (or less negative decrease) in ∆EI. The
most important variables that can be linked to a
decrease in ∆EI are an increase in aridity index
(∆AI) and seasonality index (∆SI). Also, catch-
ments with a higher seasonality timing index (ST )
can be linked to a more negative ∆EI. Together
the indicators have very high explanatory power in
the multiple linear regression model (97%). High
explanatory power means that the regression model
explains a large proportion of the variability in the
data, but it does not guarantee that the model is
accurate. With a small sample size (n = 45), the
model may be overfitting to the data, meaning it
is fitting the noise rather than the underlying pattern.

The study conducted by Van Noppen (2022)
identified the most significant climate variables for
explaining root zone storage capacities for the catch-
ments in the Meuse basin upstream of Borgharen.
The found variables include the Holdridge aridity
index, phase shift of precipitation, and seasonal
amplitude for potential evaporation. In contrast to
the calculated root zone storage capacities used for
the multiple linear regression model of Van Noppen,
in this research there is already an account for the
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aridity index when extrapolating the omega value
and moving along the line within the Budyko frame-
work. Moreover, both the phase shift of precipitation
and the seasonal amplitude for potential evaporation
are factors linked to the seasonality timing index
and the seasonality index. From the analysis, the
variables related to seasonality and aridity index
appeared to be the most important explanatory
variables, which is consistent with the findings of
Van Noppen (2022).

6.2.3 Effect on the streamflow

When examining the impact on streamflow, four
scenarios were considered. The A-scenarios were
formed by considering the historical trends observed
in the Meuse hydro-meteorological data. The sce-
narios based on the evaporation trends observed in
the Meuse data result in less evaporation during the
summer months (May, June, July) in a range of 0 to
-22% with medians of -4% and -6%, and an increase
in streamflow during the autumn months (Septem-
ber, October, November) in a range of 0 to +48%,
with medians of +7% and +12%. These findings
contrast with those of Bouaziz et al. (2022), who
found that a more pronounced climatic seasonality
with warmer summers under 2K global warming
resulted in a streamflow decrease of up to 15% in
autumn, associated with up to 14% higher summer
evaporation. For comparison with the global warm-
ing simulation studies, we find that the period over
which this study was conducted is relatively short,
and thus, the effects of the temperature changes may
not have fully manifested. Furthermore, the model
results indicating lower summer evaporation and
higher autumn streamflow are driven by the ∆EI
derived from historical data. It is possible that the
increasing standing age of the trees, as discussed in
Fenicia et al. (2009), is responsible for this observed
decrease in the evaporative index. The short-term
effects of tree standing age may mask long-term
global warming impacts, making it difficult to assess
climate change consequences.

On the other hand, the scenarios based on evapora-
tion trends observed in all combined data (Meuse,

CAMELS GB, CAMELS USA) result in relatively
symmetric changes around zero for both the evapora-
tion during summer months of between -7% and +5%
with medians of 0%, and in streamflow in autumn
months between -11% and +10% with medians of
-1%. Timing plays an important role in the changes
in streamflow as the effects on maximum (Qmax) and
minimum flow (Qmin) were not equally substantial
(approximately 1% compared to the reference run for
the B-scenarios). The largest changes in streamflow
occurred in September, October, November, and
December. The maximum flow typically occurred
slightly later in the year, which means that the
potential increase in maximum flow is smaller than
the change in streamflow. The potential decrease in
streamflow occurs during the relatively dry months
of May, June, and July, but slightly earlier than the
driest months, namely July, August, and September.

6.3 Recommendations

Based on our findings, we recommend taking certain
measures to improve the accuracy and reliability of
predictions for the Meuse river basin. While the Fu-
method can be utilised with the same omega parame-
ter for large sample datasets when transitioning from
one decade to the next, caution is advised when ap-
plying this method to the Meuse river basin due to
the potential for a deviation in the evaporative index
of -0.06. To address this issue, we propose several ap-
proaches that can help to increase confidence in the
predictions for this region. Firstly, we suggest mon-
itoring changes in land use using satellite imagery,
which can help to identify any differences in vegeta-
tion cover that could affect the prediction accuracy.
Secondly, it is important to take into account the
standing age of trees, as this can also impact evapora-
tion. It is worth noting that the average standing age
of trees can be influenced by policy decisions, such
as forest management practices and reforestation ef-
forts. By implementing these recommendations, we
believe that the accuracy and reliability of predictions
for the Meuse river basin can be improved, thereby
providing the Fu-method as a valuable tool for water
management.
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7 Conclusions

The non-stationarity of hydrological systems in
response to a changing climate is a well-recognised
challenge in hydrology (Blöschl et al., 2017; Bouaziz
et al., 2020; Ponds, 2022; Van Noppen, 2022). Of
particular concern is the impact of changing vegeta-
tion and root zone storage capacity, which is difficult
to quantify and model in hydrological models. To
address this challenge, the use of non-stationary root
zone storage capacities has been identified as an
important step towards more accurate hydrological
models. This study examines the effects of long-term
climate variability on root zone storage capacity and
its resulting consequences on hydrological response.
By utilizing the method of Fu (1981), we deter-
mine whether the root zone storage capacity has
significantly changed and evaluate the sensitivity of
hydrological model predictions to these changes. We
explain the changes in root zone storage capacity and
evaporation using various climate indicators. Four
model scenarios are identified, and for each scenario,
historical changes in root zone storage capacity are
compared to a reference scenario without changes.

For both CAMELS datasets, we confirm that
the Fu method can be utilised with the same omega
parameter when transitioning from one decade to
the next, indicating small differences in root zone
storage capacity. However, for the Meuse data, we
observe a downward trend where actual evaporation
is smaller than expected based on the Fu method,
indicating that the root zone storage capacity has
changed. The downward trend in actual evaporation
compared to the expected evaporation suggests that
caution should be exercised when applying the Fu
method, with consideration given to a deviation in
the evaporative index of approximately -0.06. A
possible explanation for this trend of decreasing
evaporation is the standing age of the trees, ac-
cording to the hypothesis put forward by Fenicia
et al. (2009). In the latter part of the 20th century,
forest management practices underwent changes
that resulted in an increase in the average age of
standing forests. The relationship between stand age
and evaporation is still being studied, but current

evidence suggests that young forests generally have
a higher rate of evaporation compared to mature
forests.

We have implemented historical changes in evapo-
ration as altered root zone storage capacity in the
wflow flextopo model in four different scenarios.
The A-scenarios are based on the evaporation trends
observed in the Meuse data, with model results in-
dicating less evaporation during the summer months
(May, June, July) with a range of 0 to -22%, and an
increase in streamflow during the autumn months
(September, October, November) with a range of
0 to +48%. On the other hand, the B-scenarios
are based on evaporation trends observed in all
combined datasets, including Meuse, CAMELS GB,
and CAMELS USA. Implementing these trends in
the model results in a change in evaporation during
summer months with a range of -7% to +5%, and
a change in autumn flow with a range of -11% to
+10%. The greatest increases and decreases in flow
occur during the period preceding the annual high
and low flow periods.

The results of this study have important impli-
cations for water management, as they shed light
on the observed trends in global water balance data
and anticipated changes in future evaporation rates.
Specifically, we have identified a trend in the Meuse
river over the past two decades and examined its
potential impact on the hydrological response if it
were to persist in the future. The trend we observed
differs from what is predicted by global warming
scenarios. This could be due to the effect of changes
in standing age of trees, which may outweigh the
effects of temperature increase on a short-term
basis. Furthermore, our study provides valuable
insights into the potential effects of trends seen in
other large sample datasets, which reflect global
trends in evaporation rates. However, it is important
to acknowledge that while these trends may be
primarily associated with climate variability, human
activities such as land use changes and deforestation
can also significantly impact evaporation rates.
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Appendix A: Calculation Potential Evaporation

The following correction is executed by Van Noppen (2022). For the CAMELS-USA data set the Makkink
equation that has been used is given by Eq. 23 (Hiemstra and Sluiter, 2011).

ETref = 0.65 ∗ s

s+ γ

K

λ ∗ ρ
(23)

Where ETref = potential evaporation
[
md−1

]
, γ = psychrometric constant (at sea level 0.066kPa◦C−1 ),

s = the slope of the curve of saturation water vapor pressure
[
kPa◦C−1

]
, K = daily incoming short-wave

radiation
[
Jm−2day−1

]
, λ = Heat of vaporization of water

[
Jkg−1

]
and ρ = 1000 kg m−3 = bulk density

of water. The slope of the curve of saturation water vapor pressure is calculated with Eq. 24 and es is the
saturated vapor pressure is calculated with Eq. 25.

slope =
7.5 ∗ 237.3
(237.3 + T )2

∗ log 10 ∗ es (24)

es = 0.6107 ∗ 10
7.5∗TDay

237.3+TDay (25)

The heat of vaporization is calculated with Eq. 26 and the psychrometric constant with Eq. 27.

λ = (2501− 2.375 ∗ TDay) ∗ 1000 (26)

γ = 0.0646 + 0.00006 ∗ TDay (27)

For CAMELS-GB the incoming short-wave radiation is provided in Wm2 instead of in Jm−2day−1, therefore
the previous method should be adjusted to these different units, as follows.

ETref = 0.65 ∗ s

s+ γ

K

λ
(28)

Where ETref = potential evaporation
[
md−1

]
, γ = psychrometric constant (at sea level 0.066 kPa◦C−1),

s =the slope of the curve of saturation water vapor pressure
[
kPa◦C−1

]
, K =daily incoming short-wave

radiation
[
Jm−2day−1

]
, and λ = Heat of vaporization of water

[
Jkg−1

]
The slope of the curve of saturation

water vapor pressure is calculated with Eq. 29.

slope =
abc

(c+ T )2
∗ exp bT

c+ T
(29)

Where a = 6.1078 mbar, b = 17.294 [−], c = 237.73◦C, T = Temperature [◦C] The heat of vaporization
and the psychrometric constant have been computed again with Eq. 26 and 27.
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Appendix B: Overview of model structure

Figure 23: Overview of the wflow flextopo model (Verseveld et al., 2022).
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Appendix C. Normality plots
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Figure 24: Test normality - QQ plots. If the data points fall along a straight line, the distribution is
approximately normal. Deviations from a straight line indicate non-normality. Left-skewed data points
suggest a left-skewed distribution, while right-skewed points suggest a right-skewed distribution.
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Appendix D. Results Multiple Linear Regression

Table 6: The results of the multiple linear regression analysis. Each dataset indicates the significance and
coefficient for each variable.

Sign
CAMELS GB

Coef
CAMELS GB

Sign
CAMELS USA

Coef
CAMELS USA

Sign
Meuse

Coef
Meuse

∆AI 0.047 0.199 0.153 0.089 0.0 -2.228
P annual 0.097 0.0 0.16 -0.0 0.991 0.0
∆P annual 0.079 0.0 0.812 -0.0 0.48 0.0
Ep,annual 0.35 -0.0 0.872 0.0 0.335 -0.001
∆Ep,annual 0.383 -0.0 0.771 0.0 0.563 -0.002
T 0.957 -0.0 0.81 -0.001 0.994 -0.0
∆T 0.107 0.039 0.0 -0.052 0.008 0.34
SI 0.02 -0.247 0.513 0.036 0.0 3.375
∆SI 0.121 0.144 0.002 -0.134 0.002 -1.257
ST 0.268 0.09 0.327 -0.023 0.173 -0.867
∆ST 0.544 -0.034 0.035 0.047 0.141 0.606
Interstorm duration 0.103 0.024 0.7 0.002 0.001 -0.41
∆Interstorm duration 0.195 -0.021 0.061 0.013 0.001 0.266
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Appendix E. Histograms Error in EI grouped by climate indicators
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Figure 25: Error in prediction EI grouped by average annual precipitation. Green indicates low precipitation
(P annual < 500 mm), yellow indicates medium precipitation (500 mm < P annual <= 750 mm), and red
indicates high precipitation (750 mm < P annual).
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Figure 26: Error in prediction EI grouped by change in average annual precipitation, ∆P annual. Red indicates
a decrease in average annual precipitation (∆P annual < -20 mm), yellow indicates little or no change in
average annual precipitation (-20 mm < ∆P annual <= 20 mm), and green indicates an increase in average
mean precipitation (20 mm < ∆P annual).
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Figure 27: Error in prediction EI grouped by average annual potential evaporation. Green indicates low
potential evaporation (Ep,annual < 500 mm), yellow indicates medium annual potential evaporation (500 mm
< Ep,annual <= 750 mm), and red indicates high potential evaporation (750 mm < Ep,annual).
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Figure 28: Error in prediction EI grouped by change in average annual potential evaporation, ∆Ep,annual.
Red indicates a decrease in average annual potential evaporation (∆Ep,annual < -10 mm), yellow indicates
little or no change in average annual potential evaporation (-10 mm < ∆Ep,annual <= 10 mm), and green
indicates an increase in average annual potential evaporation (10 mm < ∆Ep,annual).
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Figure 29: Error in prediction EI grouped by average temperature. Green indicates low temperature (T < 5
C), yellow indicates medium temperature (5 C < T <= 10 C), and red indicates high average temperature
(5 C < T ).
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Figure 30: Error in prediction EI grouped by change in average temperature, ∆T . Red indicates a decrease
in average temperature (∆T < -0.2 C), yellow indicates little or no change in average temperature (-0.2 C
< ∆T <= 0.2 C), and green indicates an increase in average temperature (0.2 C < ∆T ).
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Figure 31: Error in prediction EI grouped by aridity index. Green indicates low aridity (AI < 0.33), yellow
indicates medium aridity (0.33 < AI <= 0.66), and red indicates high level of aridity (0.66 < AI).
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Figure 32: Error in prediction EI grouped by average interstorm duration. Green indicates short average
interstorm duration (Interstorm duration < 4 days), yellow indicates medium average interstorm duration
(4 days < Interstorm duration <= 6 days), and red indicates long interstorm duration (6 days < Interstorm
duration).
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Figure 33: Error in prediction EI grouped by seasonality index. Green indicates low seasonality (SI < 0.2),
yellow indicates medium seasonality (0.2 < SI <= 0.4), and red indicates high seasonality (0.4 < SI).
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Figure 34: Error in prediction EI grouped by seasonality timing index. Green indicates negative seasonality
timing (ST < 0), yellow indicates medium seasonality timing effects (0 < ST <= 0.10), and red indicates
higher positive seasonality timing (0.10 < ST ).
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Figure 35: Error in prediction EI grouped by change in aridity index, ∆AI. Red indicates a decrease in
aridity index (∆AI < 0.05), yellow indicates little or no change in aridity index (0.05 < ∆AI <= 0.05), and
green indicates an increase in aridity index (0.05 < ∆AI).
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Figure 36: Error in prediction EI grouped by change in interstorm duration, ∆Interstorm duration. Red
indicates a decrease in interstorm duration (∆Interstorm duration < 0.5), yellow indicates little or no change
in aridity index (0.5 < ∆Interstorm duration <= 0.5), and green indicates an increase in interstorm duration
(0.5 < ∆Interstorm duration).
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Figure 37: Error in prediction EI grouped by change in seasonality index, ∆SI. Red indicates a decrease in
seasonality index (∆SI < -0.02), yellow indicates little or no change in seasonality index (-0.02 < ∆SI <=
0.02), and green indicates an increase in seasonality index (0.02 < ∆SI).
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Figure 38: Error in prediction EI grouped by change in seasonality timing index, ∆ST . Red indicates a
decrease in seasonality timing index (∆ST < -0.02), yellow indicates little or no change in seasonality timing
index (-0.02 < ∆ST <= 0.02), and green indicates an increase in seasonality timing index (0.02 < ∆ST ).
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Appendix F. Results Wilcoxon rank-sum tests

Table 7: Results wilxocon ranked sum test and descriptive statistics of ∆EI grouped per variable

Variable Dataset Group n mean std
Sign level
(1 vs 2)

Sign level
(2 vs 3)

Pa ≤ 700 48 0.01 0.03
700 < Pa ≤ 1400 162 0.00 0.04 0.31

CAMELS GB
1400 < Pa 75 0.00 0.03 0.85

Pa ≤ 700 10 0.00 0.01
700 < Pa ≤ 1400 286 0.02 0.04 0.11

CAMELS USA
1400 < Pa 42 0.01 0.05 0.32

Annual
precipitation
[mm]

Meuse 700 < Pa ≤ 1400 32 -0.06 0.06

Annual
evaporation
[mm]

CAMELS GB Epa ≤ 500 54 0.01 0.05 0.66500 < Epa ≤ 750 231 0.00 0.03
CAMELS USA 750 < Epa 338 0.02 0.04
Meuse Epa < 500 32 -0.06 0.06

T ≤ 10 246 0.00 0.04
CAMELS GB 10 < T ≤ 15 39 0.00 0.02 0.54

T ≤ 10 4 0.00 0.07
10 < T ≤ 15 282 0.02 0.04 0.46

CAMELS USA
15 < T 52 0.02 0.04 0.81

T ≤ 10 13 -0.07 0.07

Temperature
[C]

Meuse 10 < T ≤ 15 19 -0.04 0.05 0.11

Aridity
index
[-]

CAMELS GB
AI ≤ 0.33 60 0.00 0.03 0.420.33 < AI ≤ 0.66 117 0.00 0.04 0.33AI < 0.66 108 0.00 0.03
0.33 < AI ≤ 0.66 28 0.01 0.04

CAMELS USA 0.66 < AI 310 0.02 0.04 0.30

Meuse 0.33 < AI ≤ 0.66 15 -0.09 0.07 0.000.66 < AI 17 -0.03 0.05
Is dur ≤ 4 168 0.00 0.04

CAMELS GB 4 < is dur ≤ 6 117 0.00 0.03 0.72

Is dur ≤ 4 42 0.01 0.04
4 < is dur ≤ 6 262 0.02 0.04 0.76

CAMELS USA
6 < is dur 34 0.01 0.02 0.18

Is dur ≤ 4 11 -0.09 0.06

Interstorm
duration
[days]

Meuse 4 < is dur ≤ 6 21 -0.04 0.06 0.00

Seasonality
index
[-]

CAMELS GB SI ≤ 0.2 165 0.01 0.04 0.550.2 < SI ≤ 0.4 120 0.00 0.03
SI ≤ 0.2 170 0.02 0.04
0.2 < SI ≤ 0.4 138 0.02 0.04 0.88

CAMELS USA
0.4 < SI 30 0.02 0.03 0.25

Meuse SI ≤ 0.2 28 -0.05 0.06 0.000.2 < SI ≤ 0.4 4 -0.13 0.06
0 < ST ≤ 0.1 69 0.01 0.04

CAMELS GB 0.1 < ST 216 0.00 0.03 0.09

ST ≤ 0 54 0.01 0.04
0 < ST ≤ 0.1 70 0.02 0.04 0.80

CAMELS USA
0.1 < ST 214 0.02 0.04 0.70

Seasonality
timing
index
[-]

Meuse 0 < ST ≤ 0.1 32 -0.06 0.07
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Table 8: Results wilxocon ranked sum test and statistics of ∆EI grouped per change in variable

Variable Dataset Group n mean std
Sign level
(1 vs 2)

Sign level
(2 vs 3)

∆Pa ≤ -20 42 0.00 0.03
-20 < ∆Pa ≤ 20 57 0.01 0.02 0.24CAMELS GB
20 < ∆Pa 186 0.00 0.04 0.01

∆Pa ≤ -20 118 0.04 0.03
-20 < ∆ Pa ≤ 20 52 0.02 0.05

0.01
CAMELS USA

20 < ∆Pa 168 0.00 0.03 0.01

∆Pa ≤ -20 18 -0.07 0.07

Annual
precipitation
[mm]

Meuse 20 < ∆Pa 17 0.00 0.02 0.00

Annual
evaporation
[mm]

CAMELS GB
∆Epa ≤ -10 1 - - 0.21
-10 < ∆Epa ≤ 10 197 0.00 0.04 0.0010 < ∆Epa 87 0.01 0.03
Epa -10 103 0.02 0.04
-10 < ∆Epa ≤ 10 186 0.02 0.04

0.97
CAMELS USA

10 < ∆Epa 49 0.02 0.04 0.11

Meuse
-10 < ∆Epa < 10 8 -0.12 0.07

0.0010 < Epa 27 -0.01 0.03
-0.2 < ∆T ≤ 0.2 97 0.00 0.05CAMELS GB
0.2 < ∆T 188 0.00 0.03

0.15

∆T ≤ -0.2 18 0.05 0.04
-0.2 < ∆T ≤ 0.2 205 0.02 0.04 0.02CAMELS USA
0.2 < ∆T 115 0.00 0.03

0.00

-0.2 < ∆T ≤ 0.2 4 -0.18 0.01

Temperature
[C]

Meuse 0.2 < ∆T 32 -0.01 0.03 0.00

Aridity
index
[-]

CAMELS GB
∆AI ≤ -0.05 66 0.00 0.05 0.24-0.05 < ∆AI ≤ 0.05 196 0.00 0.03 0.090.05 < ∆AI 23 0.02 0.03
AI ≤ -0.05 98 0.00 0.03
-0.05 < ∆AI ≤ 0.05 166 0.02 0.04 0.00CAMELS USA
0.05 < ∆ AI 74 0.03 0.03

0.00

Meuse
∆AI < -0.05 2 -0.02 0.00 0.05-0.05 < ∆AI ≤ 0.05 17 0.01 0.02

0.000.05 < ∆isdur 16 -0.08 0.06
∆ Is dur ≤ - 0.5 9 0.01 0.04
- 0.5 < ∆is dur ≤ 0.5 274 0.00 0.03

0.45
CAMELS GB

0.05 < ∆isdur 2 0.00 0.00 0.80

∆ Is dur ≤ - 0.5 31 0.00 0.03
- 0.5 < ∆is dur ≤ 0.5 268 0.02 0.04

0.03
CAMELS USA

0.05 < ∆isdur 39 0.03 0.03 0.00

∆ Is dur ≤ - 0.5 17 0.00 0.02

Interstorm
duration
[days]

Meuse - 0.5 < ∆is dur ≤ 0.5 18 -0.07 0.07 0.00

Seasonality
index
[-]

CAMELS GB
∆SI ≤ -0.02 73 0.00 0.03 0.43-0.02 < ∆SI ≤ 0.02 112 0.00 0.03

0.990.02 < ∆SI 100 0.01 0.05
∆SI ≤ -0.02 99 0.03 0.03
-0.02 < ∆SI ≤ 0.02 116 0.01 0.04

0.00
CAMELS USA

0.02 < ∆SI 123 0.01 0.03 0.55

Meuse
∆SI ≤ -0.02 14 0.01 0.02

0.01-0.02 < ∆SI ≤ 0.02 7 -0.10 0.09 0.260.02 < ∆SI 14 -0.03 0.03
∆ST ≤ -0.02 62 0.00 0.03
-0.02 < ∆ST ≤ 0.02 72 0.00 0.03 0.50CAMELS GB
0.02 < ∆ST 151 0.01 0.04 0.43

∆ST ≤ -0.02 122 0.00 0.04
-0.02 < ∆ST ≤ 0.02 46 0.02 0.03 0.01CAMELS USA
0.02 < ∆ST 170 0.03 0.04 0.10

∆ST ≤ -0.02 19 -0.01 0.02
-0.02 < ∆ST ≤ 0.02 10 -0.06 0.06 0.00

Seasonality
timing
index
[-]

Meuse
0.02 < ∆ST 6 -0.10 0.07

0.28
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Appendix G. Change in flow per catchment

The following images show the outcomes of the model concerning alterations in evaporation and streamflow
for each catchment. The changes in evaporation (EA) and streamflow (Q) are represented in units of [mm/d].
To calculate the change, the difference between evaporation or streamflow and the reference run (∆EI = 0)
was determined for each run. The results for all years and runs were then aggregated. The 90th and 10th
percentiles are depicted in the lightly shaded area, while the slightly darker shaded area represents the 25th
to 75th percentiles. The median is denoted by the black line.
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Figure 39: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for La Meuse Stenay.
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Figure 40: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Chooz.
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Figure 41: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Membre Pont.
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Figure 42: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Treignes.
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Figure 43: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Salzinnes.
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Figure 44: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Huccorgne.
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Figure 45: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Maastricht.
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Figure 46: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for La Bar Cheveuges.
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Figure 47: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for La Vence la Francheville.
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Figure 48: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for La Meuse Saint Mihiel.
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Figure 49: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for La Chiers Carignan.
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Figure 50: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for La Chiers Longlaville.
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Figure 51: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Staimont.

The effect of climate variability on the root zone storage capacity



N. Tempel — April 2023 56

J F M A M J J A S O N D
0.4

0.2

0.0

0.2

0.4

0.6

Ch
an

ge
 in

 E
A 

[m
m

/d
]

Scenario 1A

J F M A M J J A S O N D

Scenario 2A

J F M A M J J A S O N D

Scenario 1B

J F M A M J J A S O N D

Scenario 2B

J F M A M J J A S O N D
0.4

0.2

0.0

0.2

0.4

Ch
an

ge
 in

 Q
 [m

m
/d

]

Scenario 1A

J F M A M J J A S O N D

Scenario 2A

J F M A M J J A S O N D

Scenario 1B

J F M A M J J A S O N D

Scenario 2B

Catchment Hastiere

Figure 52: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Hastiere.
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Figure 53: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Warnant.
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Figure 54: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Daverdisse.
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Figure 55: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Jemelle.
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Figure 56: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Wiheries.
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Figure 57: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Ortho.
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Figure 58: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for La Meuse Goncourt.
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Figure 59: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for La Mouzon Circourt-sur-
Mouzon [Villars].
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Figure 60: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Le Vair Soulosse-sous-Saint-
Élophe.
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Figure 61: Change in evaporation (EA) and streamflow (Q), both in [mm/d] for Amay.
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Figure 62: Change in maximum flow (Qmax) for each catchment, compared to the reference run, where
∆EI = 0.
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Figure 63: Change in minimum 7 day flow (Qmin) for each catchment, compared to the reference run, where
∆EI = 0.
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Appendix H. Timing Maximum Flow

Table 9: Timing maximum flow (Qmax) for scenario 1. For every catchment the average timing of the
reference run is indicated, with the standard deviation of that timing. ∆t indicates the average change in
timing [days] for the runs in comparison to the reference run. Also, the standard deviations are indicated
[days].

Scenario 1
Reference run
AMF timing

Reference run
std

∆t A1 std A1 ∆t B1 std B1

Membre Pont 30-11 44 +2 36 0 43
Straimont 29-11 44 +2 38 0 44
Treignes 29-11 44 +1 40 0 44
Chooz 30-11 43 +10 16 0 42
Daverdisse 29-11 44 +2 36 0 43
Jemelle 29-11 44 0 45 0 44
Hastiere 29-11 44 0 44 0 44
Warnant 30-11 44 0 44 0 44
Ortho 29-11 44 0 42 0 44
Wiheries 02-12 45 -1 43 0 45
Salzinnes 03-12 45 0 45 0 45
Huccorgne 03-12 42 0 42 0 42
Amay 02-12 44 +2 37 0 44
Maastricht 29-11 51 0 48 0 50
La Meuse Goncourt 04-12 16 0 16 0 17
Le Mouzon Circourt-sur-Mouzon [Villars] 06-12 18 -1 17 0 18

Le Vair Soulosse-sous-Saint-Élophe 06-12 18 0 18 0 18
La Meuse Saint-Mihiel 06-12 17 0 17 0 17
La Meuse Stenay 07-12 17 0 17 0 17
La Chiers Longlaville 28-11 44 0 40 0 44
La Chiers Carignan 29-11 44 0 44 0 44
La Bar Cheveuges 29-11 44 0 44 0 44
La Vence la Francheville 26-11 43 +4 33 0 43
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Table 10: Timing maximum flow (Qmax) for scenario 2. For every catchment the average timing of the
reference run is indicated, with the standard deviation of that timing. ∆t indicates the average change in
timing [days] for the runs in comparison to the reference run. Also, the standard deviations are indicated
[days].

Scenario 2
Reference run
AMF timing

Reference run
std scenario 2

∆t A2 std A2 ∆t B2 std B2

Membre Pont 03-12 17 0 17 0 17
Straimont 04-12 18 -1 20 -5 25
Treignes 05-12 16 0 19 0 16
Chooz 07-12 12 0 12 0 12
Daverdisse 07-12 17 0 17 0 17
Jemelle 17-11 44 +2 43 0 45
Hastiere 21-11 48 +1 48 0 48
Warnant 18-11 52 +4 49 +1 51
Ortho 16-11 43 +6 36 0 43
Wiheries 23-11 48 0 48 0 48
Salzinnes 24-11 48 +1 48 0 48
Huccorgne 30-11 42 0 46 -2 45
Amay 07-12 12 0 13 0 12
Maastricht 08-12 12 +1 13 0 12
La Meuse Goncourt 28-11 25 +1 26 0 26
Le Mouzon Circourt-sur-Mouzon [Villars] 02-12 26 0 25 -1 26

Le Vair Soulosse-sous-Saint-Élophe 29-11 25 +2 25 -1 26
La Meuse Saint-Mihiel 28-11 26 +4 25 0 27
La Meuse Stenay 04-12 25 +3 24 0 25
La Chiers Longlaville 17-11 46 +13 24 +5 36
La Chiers Carignan 14-12 12 0 12 -1 13
La Bar Cheveuges 09-12 14 +1 13 0 14
La Vence la Francheville 04-12 14 0 14 0 14
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Appendix I. Precipitation trend analysis
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Figure 64: Trend analysis with trend lines for the model time period.
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Figure 65: Trend analysis with trend lines for the timespan of the data from the climatological grid (Bouaziz
et al., 2020; Service Public de Wallonie, 2018).
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