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Abstract

The quality of test suites is commonly measured using adequacy metrics
that focus on error detection, like test coverage. However, the diagnostic per-
formance of spectrum-based fault localization techniques, that can potentially
reduce the time spent on debugging, rely on diagnosability of test suites — the
property of faults to be easily and precisely located. Therefore, in prior work,
Perez et al. [13] proposed a new metric, called DDU, that measures the diag-
nosability of test suites. However, DDU is not yet usable in practice due to its
output value between 0 and 1. A developer would not know what test to write
next given a certain DDU value. In this study, we explore the performance of
DDU in practice by analyzing open source projects. We find no evidence that
DDU is correlated to diagnosability and, thus, DDU is currently only useful
when combined with test generation techniques.
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Chapter 1

Introduction

Software systems are complex and error-prone, likely to expose failures to the end
user. When a failure occurs, the developer has to debug the system to eliminate the
failure. This debugging process can be described in three phases [11]. In the first
phase, the developer has to pinpoint the fault, also known as the root cause, in code
that causes the failure. In the second phase, the developer has to develop an under-
standing of the root cause and its context. Finally, in the third phase, the developer
has to implement a patch that corrects the behavior of the system. This process is
time-consuming and can account for 30% to 90% of the software development cy-
cle [15, 4, 5].

Traditionally, developers use four different approaches to debug a software sys-
tem, namely program logging, assertions, breakpoints and profiling [21]. Program
logging is the act of inserting print statements in the code to observe program state
information during execution. Assertions are constraints that can be added to a pro-
gram that have to evaluate to true during execution time. Breakpoints allow the
developer to pause the software system during execution and observe and modify
variable values. Profiling is used to perform runtime analysis and collect metrics on,
for example, execution speed and memory usage. These techniques provide an in-
tuitive approach to localize the root cause of a failure, but, as one might expect, are
less effective in the massive size and scale of software systems today.

Therefore, in the last decades a lot of research has been performed on improv-
ing and developing advanced fault localization techniques [21] such that they are
applicable to the software systems of today. A prominent fault localization tech-
nique is spectrum-based fault localization (SBFL). SBFL techniques pinpoint faults
in code based on execution information of a program, also known as a program spec-
trum [14]. The output of SBFL techniques is a list of components, e.g. statements,
branches or methods, ranked by their fault probability, allowing the developer to
investigate the suspicious components consecutively. Intuitively, if a statement is ex-
ecuted primarily during failed executions, then this statement might be assigned a
higher suspiciousness score. Similarly, if a statement is executed primarily during
successful executions, then this statement might be assigned a lower suspiciousness
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1. INTRODUCTION

score. Ultimately, if the diagnostic performance of an SBFL technique is high, it
means that the faulty component is ranked high in the diagnostic report, allowing the
developer to spend less time on locating the root cause.

While SBFL techniques show promising results for debugging purposes, there
are still aspects that prevent SBFL techniques from being used in practice. First, in
one of the pioneering user studies performed by Parnin and Orso [11], the authors
show that several assumptions made by SBFL techniques do not hold in practice.
For example, the authors find no evidence that the effectiveness of SBFL techniques
is affected by the rank of the faulty statement. Second, the diagnostic performance
of SBFL techniques relies on the quality of the test suite. SBFL techniques cannot
accurately pinpoint a fault with a single failing test that covers multiple components.
However, if the test suite consists of many tests with different coverage patterns, then
SBFL is able to pinpoint the fault more accurately because it can indict or exonerate
components more precisely with more evidence, i.e. more execution traces.

The quality of test suites is commonly measured using an adequacy metric that
focuses on error detection like statement coverage, branch coverage, method cov-
erage. However, these metrics do not necessarily enforce the quality of a test suite
with respect to diagnosability — the property of faults to be easily and precisely lo-
cated [17]. For example, one could obtain a high test coverage (90%) with a relative
small number of tests that each covers a big part of the codebase. In this case, when
a test fails due to a fault, it is potentially difficult for SBFL techniques to pinpoint
the root cause accurately due to a failing test that covers a large portion of the code-
base and a small number of tests, lowering the possibility for SBFL techniques to
accurately indict or exonerate components from being faulty.

For this reason, Perez et al. [13] propose a new metric, called DDU, to quantify
the diagnosability of test suites as opposed to adequacy metrics that focus on error
detection. The objective of optimizing test suites with respect to DDU is to improve
the diagnosability of test suites and consequently improve the diagnostic performance
of SBFL techniques. The authors have shown empirical evidence that optimizing a
test suite with respect to DDU improves the diagnostic performance of SBFL by 34%
compared to a test suite that is optimized with respect to branch coverage.

1.1 Problem Definition

However, DDU is not yet usable in practice. Currently, when the DDU is computed
for a given test suite, its value lies in the domain [0,1], where 0 suggests that the
test suite’s diagnosability is low, and 1 suggests that the test suite’s diagnosability is
high. The problem with this value is that the developer does not know how to extend
or update the test suite given a DDU value. For example, when the test suite’s DDU is
equal to 0.1, it is impossible for the developer to know what tests to write to improve
the DDU. In other words, time spent on software debugging (using SBFL techniques)
cannot be reduced using DDU because its practical implications are unclear to the
developer.
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1.2. Goal

1.2 Goal

Although DDU is currently not usable in practice, Perez et al. [13] have shown that
optimizing a test suite with respect to DDU can yield a 34% gain in diagnostic per-
formance using SBFL under constrained conditions. Having a test suite with a high
diagnosability could possibly reduce the time spent debugging because the fault is
easier to pinpoint using SBFL techniques. Therefore, the goal of this thesis is to ex-
plore how DDU behaves in practice and to find ways to make DDU usable in practice.
In other words, we explore possibilities to convey DDU to the developer such that the
developer knows what kind of tests to write to improve the system’s diagnosability.

1.3 Structure of Report

The structure of this report is as follows. In Chapter 2, we explain the relevant top-
ics to understand this study, like spectrum-based fault localization, spectrum-based
reasoning, wasted effort, diagnosability assessment metrics and DDU. In Chapter 3,
we formalize the research questions and explain the motivation behind them. Then,
in Chapters 4 to 6, we discuss the experimental design and results to answer the re-
search questions. Finally, in Chapter 7, we conclude this study with a summary and
recommendations for future work.
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Chapter 2

Background

In this chapter, we discuss topics that are relevant to understanding this study. First,
we discuss spectrum-based fault localization and spectrum-based reasoning, which
are used in the experiments to perform fault diagnosis. Second, we discuss the met-
ric used to evaluate the diagnostic performance of spectrum-based fault localization
techniques. Then, we explain the definition of diagnosability and diagnosability as-
sessment metrics. Finally, we discuss how DDU was evaluated in the study that
proposed DDU.

2.1 Spectrum-Based Fault Localization (SBFL)

In spectrum-based fault localization, we define a finite set C = 〈c1,c2, . . . ,cM〉 of
M system components, and a finite set T = 〈t1, t2, . . . , tN〉 of N system transactions,
i.e. test executions. The outcomes of all system tests are defined as an error vector
e = 〈e1,e2, . . . ,eN〉, where ei = 1 indicates that test ti has failed and ei = 0 indicates
that test ti has passed. To keep track of which system components were executed
during which test execution, we construct a N×M activity matrix A , where Ai j = 1
indicates that component c j was exercised during test ti. The pair (A ,e) is also known
as a program spectrum, which was first coined by Reps et al. [14].

Given the program spectrum, SBFL techniques compute the suspiciousness scores
of system components, resulting in a diagnostic report, which is a list of components
ranked by their fault probability. The fault probabiliy is often computed using a sim-
ilarity coefficient [8, 1, 10, 18, 20, 23, 19]. Intuitively, the coefficient indicates the
similarity between the component’s activity and the error vector. When a component
is more frequently exercised by test executions that fail, then the component is more
likely to be faulty. Conversely, when a component is more frequently exercised by
test executions that pass, then the component is more likely to be healthy.
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2. BACKGROUND

2.2 Spectrum-Based Reasoning (SBR)

Spectrum-based reasoning distinguishes itself from SBFL techniques by leveraging
a reasoning framework. The diagnostic report is generated by reasoning about the
program spectrum instead of using a so-called similarity coefficient. The two main
phases of SBR are candidate generation and candidate ranking:

1. In the candidate generation phase, a set D = 〈d1,d2, . . . ,dk〉 is constructed us-
ing a minimal hitting set (MHS) algorithm to cover all failing transactions,
where each candidate di is a subset of C . An MHS algorithm is used to prevent
generating a large number of diagnostic candidates [3].

2. In the candidate ranking phase, the fault probability for each candidate di is
computed using the Naive Bayes rule [3]:

P(di|(A ,e)) = P(di) · ∏
j∈1..N

P((A j,e j)|di)

P(A j)
(2.1)

P(di) is the prior probability, i.e. the probability that di is faulty without any
evidence. P(A j) is a normalizing term that is identical for all candidates.
P((A j,e j)|di) changes the prior probability with every new observation from
the program spectrum. This term can be computed using maximum likelihood
estimation.

In the experiments of this study, we make use of STACCATO [2] to generate can-
didates, and BARINEL [3], which implements spectrum-based reasoning, to rank can-
didates, i.e. perform software fault localization.

2.3 Evaluation of Diagnosis

Presently, cost of diagnosis Cd and wasted effort [3, 22, 6, 16, 13] are the most preva-
lent evaluation metrics for software fault localization (SFL) techniques. In essence,
Cd computes the number of components that have to be inspected before the actual
fault is investigated in the diagnostic report. When Cd = 0, it indicates that the actual
fault is ranked first in the diagnostic report and, therefore, no effort is wasted investi-
gating diagnosed components that are non-faulty. Wasted effort (or effort) is the cost
of diagnosis normalized by the number of components in the diagnostic report.

Both evaluation metrics assume perfect bug understanding, which has been pointed
out by Parnin and Orso [11] as a non-realistic assumption. However, cost of diagno-
sis and effort serve as an objective evaluation metric that can be used for comparison
and therefore will also be used in this study.

2.4 Diagnosability

Diagnosability is the property of faults to be easily and precisely located [17]. In
other words, given that a fault exists in a software system, if the test suite’s diagnos-
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2.5. Diagnosability Metric: Entropy

ability is high and we would perform SFL using an automated debugging technique,
then the faulty component would be ranked high in the diagnostic report, resulting
in a low wasted effort. On the contrary, if the test suite’s diagnosability is low and
we would perform SFL using an automated debugging technique, then the faulty
component would be ranked low in the diagnostic report, resulting in a high wasted
effort.

2.5 Diagnosability Metric: Entropy

The optimal diagnosability is achieved by having an exhaustive test suite that would
exercise any combination of software components. This way, any fault, whether
it involves a single component or multiple components, can be diagnosed using an
automated debugging technique with 100% accuracy. Perez et al. [13] find that Shan-
non’s entropy accurately captures the test suite’s exhaustiveness:

H(T ) =−∑
ti∈T

P(ti) · log2 P(ti) (2.2)

where T is the set of unique test activities, and P(ti) is the probability of test activity ti
occuring in the activity matrix. The optimal entropy for a system with M components
is M shannons, and therefore we can compute the normalized entropy H(T )

M . SBFL
techniques are able to diagnose faults with 100% accuracy when H(T )

M = 1.0.
However, an optimal normalized entropy would require 2M − 1 distinct tests,

which is difficult to achieve in practice. First, not all activity patterns can be gen-
erated from tests due to software topology, e.g. a basic block consisting of several
statements — these statements will always be executed together, and therefore on
a statement granularity it is not possible to achieve optimal entropy, see Listing 2.1.
Second, systems of today can consist of millions of lines of code and would therefore
require a non-realistic amount of effort to write the tests.

1 public FieldRotation(final T q0, final T q1, final T q2, final T q3, final
boolean needsNormalization) {

2 if (needsNormalization) {
3 // normalization preprocessing
4 final T inv =
5 q0.multiply(q0).add(q1.multiply(q1)).add(q2.multiply(q2)).

add(q3.multiply(q3)).sqrt().reciprocal();
6 this.q0 = inv.multiply(q0);
7 this.q1 = inv.multiply(q1);
8 this.q2 = inv.multiply(q2);
9 this.q3 = inv.multiply(q3);

10 } else {
11 this.q0 = q0;
12 this.q1 = q1;
13 this.q2 = q2;
14 this.q3 = q3;
15 }
16 }

Listing 2.1: Lines 4 - 9 will always be executed together and therefore no optimal
entropy can be achieved on a statement granularity. The same holds for lines 11 - 14.

7



2. BACKGROUND

2.6 Diagnosability Metric: DDU

To elevate the problem with entropy, Perez et al. [13] propose a new diagnosability
metric: DDU. DDU combines three diagnosability metrics that capture characteris-
tics of the activity matrix, namely normalized density, diversity, and uniqueness.

2.6.1 Normalized Density

Prior work [7] has used density to assess the diagnosability of the activity matrix:

ρ =
∑i, j Ai j

N ·M
(2.3)

Gonzàles-Sanchez et al. [7] show by induction that the optimal density is obtained
when ρ = 0.5. For DDU, Perez et al. [13] propose a normalized density ρ′ where its
optimal value is 1.0 instead of 0.5:

ρ
′ = 1−|1−2ρ| (2.4)

An optimal value for normalized density can be obtained without improving the di-
agnosability. For exampe, in Figure 2.1(a), we observe that four tests (t1, t2, t3, t4)
have identical activation patterns, i.e. identical rows. Assuming that the tests are de-
terministic, if component c1 is faulty, then all four tests will fail and therefore tests
t2, t3, t4 do not add any value from the diagnosability perspective, i.e. tests t2, t3, t4 do
not help SBFL techniques to further indict or exonerate components. For this reason,
Perez et al. [13] propose two enhancements: diversity and uniqueness.

2.6.2 Diversity

The first enhancement to normalized density is diversity, which ensures test diversity
among the activity matrix’s rows. The test diversity is low when the test suite consists
of many tests that have identical activity patterns, i.e. rows. Conversely, the test
diversity is high when the test suite consists of many tests that have distinct activity
patterns.

Perez et al. [13] use the Gini-Simpson index G [9] to capture test diversity:

G = 1−
∑i∈1..|G| |gi| · (|gi|−1)

N · (N−1)
(2.5)

where G = 〈g1, . . . ,gk〉 is the set of ambiguity groups among the rows, |gi| is the
number of test with identical activation patterns, and N is the number of tests. To
clarify how this formula is used, we give two examples. In Figure 2.1(a), there is one
ambiguity group g1 = 〈t1, t2, t3, t4〉, resulting in G = 1− 4·3

4·3 = 0.0. In Figure 2.1(b),
there are four ambiguity groups, g1 = 〈t1〉,g2 = 〈t2〉,g3 = 〈t3〉,g4 = 〈t4〉, resulting in
G = 1− 1·0+1·0+1·0+1·0

4·3 = 1.0. As we can observe in Figure 2.1(b), when optimizing
the activity matrix for test diversity, the shortcoming of normalized density, shown
in Figure 2.1(a), is mitigated.

8



2.6. Diagnosability Metric: DDU

c1 c2 c3 c4

t1 1 1 0 0
t2 1 1 0 0
t3 1 1 0 0
t4 1 1 0 0

(a) No test diversity. ρ′ = 1.0, G = 0.0

c1 c2 c3 c4

t1 1 1 0 0
t2 0 0 1 1
t3 1 1 1 0
t4 0 0 0 1

(b) Component ambiguity. ρ′ = 1.0,
G = 1.0, U = 0.75

c1 c2 c3 c4

t1 1 1 0 0
t2 0 1 1 0
t3 1 0 1 1
t4 0 0 0 1

(c) No component ambiguity. ρ′ = 1.0,
G = 1.0, U = 1.0

Figure 2.1: The effect of diversity and uniqueness on diagnosability.

2.6.3 Uniqueness

The second enhancement to normalized density is uniqueness, which controls for the
number of ambiguity groups among the activity matrix’s columns. An ambiguity
group is a set of components that have identical activation patterns across the test
suite, i.e. identical columns in the activity matrix. Component ambiguity is undesir-
able because it prevents SBR from updating the fault probabilities of the individual
components in the ambiguity group, resulting in a less accurate diagnosis. If test
suite’s uniqueness is low, then many components in the activity matrix have identical
activity patterns, i.e. components are involved in the same test cases. Conversely, if
the test suite’s uniqueness is high, then many components in the activity matrix have
distinct activity patterns.

Given the set of component ambiguity groups G = 〈g1, . . . ,gl〉, then the test
suite’s uniqueness is computed as follows:

U =
|G|
M

(2.6)

where |G| is the number of ambiguity groups and M is the number of components, i.e.
columns. To clarify how this formula is used, we give two examples. In Figure 2.1(b),
there are 3 ambiguity groups: g1 = 〈c1,c2〉, g2 = 〈c3〉, g3 = 〈c4〉, resulting in U = 3

4 =
0.75. In Figure 2.1(c), there are 4 ambiguity groups: g1 = 〈c1〉, g2 = 〈c2〉, g3 = 〈c3〉,
g4 = 〈c4〉, resulting in U = 4

4 = 1
We observe in Figure 2.1(b) that optimizing the test suite with respect to normal-

ized density and diversity can still result in component ambiguity groups, namely
〈c1,c2〉. When optimizing the test suite with respect to normalized density, diversity

9



2. BACKGROUND

and uniqueness, we observe in Figure 2.1(c) that there are no identical test activity
patterns and no ambiguity groups, which results in a better diagnosability.

2.6.4 Combined

The DDU combines normalized density, diversity, and uniqueness as follows:

DDU = normalized density ·diversity ·uniqueness (2.7)

If DDU = 1, then the test suite’s diagnosability is high. Vice versa, if DDU = 0, then
the test suite’s diagnosability is low. Perez et al. [13] have shown in an experiment
that optimizing a test suite with respect to DDU yields a 34% diagnostic performance
compared to a test suite optimized for branch coverage.

2.7 Evaluation of DDU

In the study that proposed DDU, Perez et al. [13] performed two experiments to
answer three research questions:

RQ1 Is the DDU metric more accurate than the state-of-the-art in diagnosability
assessment?

RQ2 How close does the DDU metric come to the (ideal yet intractable) full en-
tropy?

RQ3 Does optimizing a test-suite with regard to DDU result in better diagnosabil-
ity than optimizing adequacy metrics such as branch-coverage in traditional
scenarios?

The goal of their study was to evaluate how DDU compares with the existing metrics:
entropy, density, uniqueness, and branch coverage.

The empirical evaluation leveraged a test-generation approach using EVOSUITE1,
which employs search-based software testing approaches. EVOSUITE generates tests
to minimize a fitness function using genetic algorithms. In essence, the fitness func-
tion is a measure that indicates the distance between a given solution and the optimal
solution. For example, in the case of DDU, the optimal solution is DDU = 1 and,
therefore, EVOSUITE generates tests to minimize the differene between the current
test suite’s DDU value and the optimal DDU value.

To answer RQ1 and RQ2, the authors generated test suites for each class in
the open source projects Commons Codec, Commons Compress, Commons Math
and JodaTime that are optimized with respect to DDU, branch coverage, entropy,
density and uniqueness. For each test suite, the activity matrix is constructed and,
subsequently, the error vector is generated by artificially injecting faults — single-
component and two-component faults. Then, given these program spectra, on each
program spectrum SBR is performend to generate a diagnostic report. Finally, the

1http://www.evosuite.org/
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wasted effort is computed for each diagnostic report, which enables the authors to
compare the diagnostic performance of DDU against the diagnostic performance of
branch coverage, entropy, density, uniqueness.

To answer RQ3, the authors make use of the DEFECTS4J database, which con-
tains 357 real software bugs from 5 open source projects. The database contains a
faulty and fixed software version for each bug. For each bug, the authors generate
two test suites for the fixed software version — one test suite that optimizes DDU
and one that optimizes branch coverage. Then, instead of artificially injecting faults,
the authors run the generated test suite against the faulty software version and collect
the program spectrum. Subsequently, SBR is performed on the collected program
spectra, enabling the comparison between DDU and branch coverage.
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Chapter 3

Research Questions

Ideally, we would like to propose an intuitive approach that allows developers to use
DDU in their software development cycle. However, there has been no study yet on
DDU that investigates how it actually behaves in practice. For this reason, the goal
of this study is to explore how DDU behaves in practice and to find ways to make
DDU usable in practice. To achieve this goal, we define three research questions.

RQ1: How do normalized density, diversity, uniqueness, and DDU vary in prac-
tice?

To be able to propose an intuitive approach that allows developers to use DDU in
practice, we first need to understand how the metrics vary in practice. By analyzing
how these metrics perform in practice, we are able to propose improvements for
DDU, and potentially propose an approach that enables DDU in practice.

RQ2: What is the relation between normalized density, diversity, uniqueness,
and DDU and diagnosability?

In Perez et al.’s work [13], the authors show that generating tests with respect
to DDU yields a 34% diagnostic performance compared to a test suite optimized for
branch coverage. However, this does necessarily imply that DDU is strongly corre-
lated with diagnosability. Therefore, we would like to validate that DDU and diag-
nosability are strongly correlated, i.e. the higher DDU, the better the diagnosability,
and vice versa. This question is important to answer because DDU was proposed as
a metric to quantify the diagnosability.

RQ3: What is the relation between density, diversity, uniqueness, and DDU and
test coverage?

13
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The intention of test coverage is to optimize for error detection. Perez et al. [13]
propose DDU as a complementary metric to test coverage because DDU is meant
to capture the diagnosability and not error detection. However, if there is a strong
correlation between DDU and test coverage, then DDU could possibly replace test
coverage as a test adequacy metric, which is a use case that the authors have not
thought of. Furthermore, assuming that DDU is strongly correlated with diagnos-
ability and test coverage is representative for error detection, answering this research
question will give us a better understanding on the relation between diagnosability
and error detection, and could give us insight in how DDU and test coverage can be
used together in practice.
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Chapter 4

DDU in Practice

RQ1: How do normalized density, diversity, uniqueness, and DDU vary in prac-
tice?

In this chapter, the goal is to obtain a better intuition on what common values are
for density, diversity, uniquness, and DDU by analyzing open source projects hosted
on GitHub. First, we take a look at the distributions of normalized density, diversity,
uniqueness, and DDU. Second, we give examples of classes that have a low or high
value for any of the diagnosability metrics and analyze why these components have
either a low or high value by investigating the class’ test suite. Finally, we conclude
this chapter with a list of observations.

4.1 Approach

To get a better understanding of how the values vary for normalized density, diver-
sity, uniqueness, and DDU, we use ddu-maven-plugin1, developed by Perez, to
instrument Java code and construct the activity matrix. Once we obtain the activity
matrices, we analyze the data using multiple Python scripts2. With these two tools
we collect data such as density, normalized density, diversity, uniqueness, DDU, and
the activity matrix.

Then, we analyze the collected data and show examples to illustrate how DDU
and its individual terms vary as a consequence to particular kinds of tests or testing
strategies. We are interested in what kinds of testing approaches result in a high or
low value.

Note that ddu-maven-plugin is able to instrument the code for three different
granularity levels, namely statements, branches, and methods. By default ddu-maven-
plugin uses the method level granularity. In this study, we make use of the same

1https://github.com/aperez/ddu-maven-plugin
2https://github.com/aaronang/ddu

15

https://github.com/aperez/ddu-maven-plugin
https://github.com/aaronang/ddu


4. DDU IN PRACTICE

granularity used in the study performed by Perez et al. [13], namely branch granu-
larity.

4.2 Selection

The selection of open source projects is done according to the following criteria.

• The project must have an executable test suite. To compute the DDU for a
software project, we must construct an activity matrix. The activity matrix is
constructed by running the test suite and instrumenting the code to keep track
of which components are executed during a program execution. Since we are
interested in the activity matrix A , we do not care if a test suite has failing
tests. A project meets this criterion as long as the test suite executes and does
not crash.
• The project must use Apache Maven, a software project management and com-

prehension tool. The current tool that instruments the code to construct the
activity matrix is implemented as a Maven plugin. Note that the current Maven
plugin does not work for all Maven projects and, therefore, only projects that
can be analyzed with this plugin are used.

Based on these requirements, we choose the following open source projects.

• Commons Codec3: a package that contains simple encoders and decoders for
various formats such as Base64 and Hexadecimal.
• Commons Compress4: an API for working with compression and archive for-

mats.
• Commons Math5: a library of lightweight, self-contained mathematics and

statistics components addressing the most common practical problems.
• Guice6: a lightweight dependency injection framework for Java 6 and above.
• Jsoup7: an API for extracting and manipulating data, using the best of DOM,

CSS, and jquery-like methods.

Note that some of the projects are also used in Perez et al.’s study [13]. In Table 4.1,
we show some statistics for each project. The number of classes, methods, and lines
were obtained by running the complete test suites in IntelliJ and collecting the cover-
age report. The number of branches was obtained by running the complete test suite
while the DDU-MAVEN-PLUGIN instruments the code using the branch granularity
and consequently counting the number of components in the program spectrum.

3https://github.com/apache/commons-codec
4https://github.com/apache/commons-compress
5https://github.com/apache/commons-math
6https://github.com/google/guice
7https://github.com/jhy/jsoup
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4.3. Normalized Density

Table 4.1: Statistics of open source projects.

Subject Classes Methods Branches Lines
Commons Codec 87 743 2901 3827
Commons Compress 261 2143 8650 12182
Commons Math 977 7406 33614 45004
Guice 332 2039 9134 7102
Jsoup 232 1343 5088 6875

Figure 4.1: Normalized density distribution.

4.3 Normalized Density

In Figure 4.1, we show the distribution of normalized densities for all classes of the
five open source projects mentioned before. The average equals to 0.5145. The peak
for the interval [0, 0.1) is primarily caused by classes that are exercised by tests that
involve all components. In the interval [0, 0.1), 43 classes consist of only one branch.
A class with one branch will always have a density of 1.0 and therefore a normalized
density of 0.
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Table 4.2: Partial activity matrix of the
com.google.inject.internal.ProvidesMethodScanner class where

ρ′ = 0.111.

transaction c1 . . . c22 c23 c24 . . . c35
BinderTest#testUntargettedBinding 0 . . . 0 1 0 . . . 0
BinderTest#testMissingDependency 0 . . . 0 1 0 . . . 0
BinderTest#testProviderFromBinder 0 . . . 0 1 0 . . . 0
BinderTest#testToStringOnBinderApi 0 . . . 0 1 0 . . . 0
BinderTest#testUserReportedError 0 . . . 0 1 0 . . . 0
...

...
...

...
...

...
...

...

Table 4.3: Activity matrix of the
org.apache.commons.math4.fitting.leastsquares.CircleProblem class

where ρ′ = 0 because every transaction covers every component.

transaction c1 c2 . . . c26
LevenbergMarquardtOptimizerTest#testParameterValidator 1 1 . . . 1
LevenbergMarquardtOptimizerTest#testCircleFitting2 1 1 . . . 1

The normalized density value is low when a class is tested by many tests that
only cover a couple of branches, or covered by tests that involve all components.
For example, the class ProvidesMethodScanner has 35 branches and its partial
activity matrix is shown in Table 4.2, where the columns represent branches of
ProvidesMethodScanner. In the first row, we observe that the transaction test-
UntargettedBinding only hits one branch c23, indicated by a 1. We observe that
all transactions in the activity matrix have a similar coverage. Since every trans-
action is only hitting a few components, the normalized density is low. Moreover,
ProvidesMethodScanner has 35 components and if a transaction only hits a few
components, it results in the activity matrix to become sparse.

In the activity matrix of CircleProblem, shown in Table 4.3, we observe a high
density; all branches of CircleProblem are hit in every single test. This results in a
low normalized density: 0.0, because the density is high: 1.0.

Thus, ideally, to obtain a high value for the normalized density, we need a good
balance between tests that cover many components and tests that cover a few. In
Commons Math, the ElitisticListPopulation class has a nearly optimal nor-
malized density. In its activity matrix, see Table 4.4, we observe that there is a good
balance between tests that cover a few components and tests that cover many com-
ponents, resulting in a normalized density of 0.979.

4.4 Diversity

In Figure 4.2, the distribution of diversity of classes is shown. The average is 0.588.
The peak for the interval [0, 0.1) occurs for various reasons. The first reason is
that there are 43 classes with only one method and therefore every row is identical,
resulting in a diversity of 0. The second reason is that for 52 classes there exists only
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Table 4.4: Activity matrix of
org.apache.commons.math4.genetics.ElitisticListPopulation where

ρ′ = 0.979.

transaction c1 c2 c3 c4 c5 c6 c7 c8
ElitisticListPopulationTest#testChromosomeListConstructorTooLow 1 0 0 1 0 0 0 0
ElitisticListPopulationTest#testSetElitismRateTooLow 1 0 0 1 0 0 1 0
ElitisticListPopulationTest#testConstructorTooHigh 1 0 0 1 0 0 0 0
ElitisticListPopulationTest#testConstructorTooLow 1 0 0 1 0 0 0 0
ElitisticListPopulationTest#testSetElitismRateTooHigh 1 0 0 1 0 0 1 0
ElitisticListPopulationTest#testChromosomeListConstructorTooHigh 1 0 0 1 0 0 0 0
ElitisticListPopulationTest#testSetElitismRate 1 0 0 0 0 1 1 0
ElitisticListPopulationTest#testNextGeneration 1 1 1 0 1 1 1 1
FitnessCachingTest#testFitnessCaching 1 1 1 0 1 1 1 1
GeneticAlgorithmTestBinary#test 1 1 1 0 1 1 1 1
GeneticAlgorithmTestPermutations#test 1 1 1 0 1 1 1 1
TournamentSelectionTest#testSelect 1 0 0 0 0 0 1 0

Table 4.5: Partial activity matrix of
org.apache.commons.math4.analysis.function.Power where G = 0.077.

transaction c1 c2 c3
FunctionUtilsTest#testFixingArguments 1 1 0
FunctionUtilsTest#testMultiplyDifferentiable 1 0 1
FunctionUtilsTest#testComposeDifferentiable 1 1 1
FunctionUtilsTest#testCompose 1 1 0
FunctionUtilsTest#testMultiply 1 1 0
ArrayRealVectorTest#testMap 1 1 0
ArrayRealVectorTest#testMapToSelf 1 1 0
RealVectorTest#testMap 1 1 0
...

...
...

...

one test, and in the current Python script the diversity defaults to 0 when there is only
one test. The third reason is that there are test suites where all the test cases have
identical activity patterns. In total there are 176 classes with a diversity of 0, where
36 classes only have one method, 45 classes only have one test, and 7 classes only
have one method and one test.

Intuitively, the diversity has a low value when the number of identical transac-
tions is high, i.e. identical rows in the activity matrix. Conversely, the diversity is
high when the number of identical transactions is low.

In the partial activity matrix of Power, shown in Table 4.5, we observe that almost
every transaction has an identical activity and therefore the diversity is low: 0.077.
Another reason for the low diversity of Power is that it is covered by 102 test cases,
while there are only 23−1 = 7 possible different tests for two components. After 7
unique tests every additional test will have a negative effect on the diversity because
it will share an identical activity with an existing test.

In the activity matrix of AbstractParameterizable, shown in Table 4.6, we
observe that almost every transaction has a unique activity and therefore its diversity
is high: 0.933. Note that the diversity suffers when there are too many test cases, but
does not suffer from a low number of test cases.
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Figure 4.2: Diversity distribution.

Table 4.6: Activity matrix of
org.apache.commons.math4.ode.AbstractParameterizable where

G = 0.933.

c1 c2 c3 c4 c5 c6 c7 c8
JacobianMatricesTest#testHighAccuracyExternalDifferentiation 1 0 1 0 1 0 1 0
JacobianMatricesTest#testAnalyticalDifferentiation 1 0 1 0 1 0 1 0
JacobianMatricesTest#testInternalDifferentiation 0 0 0 0 1 0 1 0
JacobianMatricesTest#testParameterizable 1 0 0 0 1 0 1 1
JacobianMatricesTest#testWrongParameterName 0 0 1 1 1 1 0 1
JacobianMatricesTest#testFinalResult 1 0 1 0 1 0 1 1
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Table 4.7: Partial activity matrix of org.apache.commons.math4.analysis.-
integration.gauss.SymmetricGaussIntegrator, where parameterized testing

exhibits identical activity patterns.

c1 c2 c3 c4 c5 c6 c7 c8
HermiteParametricTest#testAllMonomials[0] 0 1 1 0 0 0 0 0
HermiteParametricTest#testAllMonomials[1] 1 0 1 1 1 1 1 0
HermiteParametricTest#testAllMonomials[2] 1 0 1 1 1 1 1 1
HermiteParametricTest#testAllMonomials[3] 1 0 1 1 1 1 1 0
HermiteParametricTest#testAllMonomials[4] 1 0 1 1 1 1 1 1
HermiteParametricTest#testAllMonomials[5] 1 0 1 1 1 1 1 0
...

...
...

...
...

...
...

...
...

HermiteParametricTest#testAllMonomials[26] 1 0 1 1 1 1 1 1
HermiteParametricTest#testAllMonomials[27] 1 0 1 1 1 1 1 0
HermiteParametricTest#testAllMonomials[28] 1 0 1 1 1 1 1 1
HermiteParametricTest#testAllMonomials[29] 1 0 1 1 1 1 1 0

Table 4.8: Activity matrix of org.apache.commons.codec.digest.Crypt where
U = 0.916.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12
CryptTest#testDefaultCryptVariant 0 0 0 1 1 0 0 1 0 1 0 0
CryptTest#testCryptWithEmptySalt 1 1 0 0 0 0 1 1 0 1 1 0
CryptTest#testCryptWithBytes 0 1 1 1 0 1 0 1 0 1 0 0
Md5CryptTest#testMd5CryptBytes 0 1 0 0 0 0 1 1 1 1 1 0
Md5CryptTest#testMd5CryptLongInput 0 1 0 0 0 0 1 1 1 1 1 0
Md5CryptTest#testMd5CryptStrings 0 1 0 0 0 0 1 1 1 1 1 0
Sha256CryptTest#testSha256CryptBytes 0 1 0 0 0 0 0 1 0 1 1 1
Sha256CryptTest#testSha256CryptStrings 0 1 0 0 0 0 0 1 0 1 1 1
Sha512CryptTest#testSha512CryptBytes 0 1 1 0 0 0 0 1 0 1 0 0
Sha512CryptTest#testSha512CryptStrings 0 1 1 0 0 0 0 1 0 1 0 0
UnixCryptTest#testUnixCryptStrings 1 1 0 0 0 0 1 1 0 1 1 0
UnixCryptTest#testUnixCryptBytes 1 1 0 0 0 0 1 1 0 1 1 0

An interesting case for diversity is parameterized testing. Although parameter-
ized testing is a common practice to test different inputs for a unit, it can have a neg-
ative effect on the diversity if the various parameters chosen exhibit identical activity
patterns. An example is the class SymmetricGaussIntegrator with a diversity of
0.571, shown in Table 4.7.

4.5 Uniqueness

The distribution of uniqueness of classes is shown in Figure 4.3. The average is
0.477. The peak for the interval [0.9, 1.0] is partially caused by classes that only
have one component; activity matrices that consist of one component always have a
uniqueness of 1.0. There are 130 classes that have a uniqueness of 1.0 and 43 out of
the 130 classes only have one branch.

The uniqueness of a class is high when there is a high number of unique columns
in the activity matrix. Conversely, the uniqueness is low when there is a low number
of unique columns in the activity matrix.
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Figure 4.3: Distribution of uniqueness.

Table 4.9: Partial activity matrix of
org.apache.commons.math4.random.UnitSphereRandomVectorGenerator

where U = 0.142.

c1 c2 c3 c4 c5 c6 c7
MicrosphereProjectionInterpolatorTest#testLinearFunction2D 1 1 1 1 1 1 1
FieldRotationDfpTest#testDoubleVectors 1 1 1 1 1 1 1
FieldRotationDfpTest#testDoubleRotations 1 1 1 1 1 1 1
FieldRotationDSTest#testDoubleVectors 1 1 1 1 1 1 1
FieldRotationDSTest#testDoubleRotations 1 1 1 1 1 1 1
SphereGeneratorTest#testRandom 1 1 1 1 1 1 1
...

...
...

...
...

...
...

...

An example of a class with a high uniqueness is the Crypt class of Commons
Codec, see Table 4.8. The Crypt class has a uniqueness of 0.916 because it only has
one ambiguity group 〈c8,c10〉.

In the activity matrix of UnitSphereRandomVectorGenerator, see Table 4.9,
we observe that all components have identical activity patterns and, therefore, the
uniqueness is low: 0.142. Note that the uniqueness does not equal zero although

22



4.6. DDU

Figure 4.4: DDU distribution.

there is no component with a unique activity.

4.6 DDU

The distribution of DDU of classes is shown in Figure 4.4. The average is 0.157.
We observe that 176 out of 987 classes have a DDU of zero due to either normalized
density, diversity, or uniqueness being equal to zero. Additionally, we observe a
right-tailed distribution due to the nature of how DDU is computed, a product of
three metrics within the domain [0, 1].

In Table 4.10, we observe a class with a high DDU: 0.809. Its DDU is high
because it has an optimal normalized density, uniqueness, and an almost optimal
diversity.

In Table 4.11, we observe a class with a low DDU: 0.082. Eventhough the
normalized density and uniqueness are above average, the DDU is low due to the
low diversity.
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Table 4.10: Activity matrix of
org.apache.commons.math4.analysis.function.Min, ρ′ = 1.0, G = 0.809,

U = 1.0, and DDU = 0.809.

transaction c1 c2 c3 c4
UnivariateDifferentiableFunctionTest#testMinus 1 0 1 1
FunctionUtilsTest#testCollector 0 1 0 0
FunctionUtilsTest#testAdd 1 0 1 0
FunctionUtilsTest#testComposeDifferentiable 0 0 1 1
FunctionUtilsTest#testCombine 1 0 1 0
FunctionUtilsTest#testCompose 1 0 1 0
FunctionUtilsTest#testAddDifferentiable 0 0 1 1

Table 4.11: Partial activity matrix of org.jsoup.parser.ParseSettings,
ρ′ = 0.727, G = 0.204, U = 0.555, and DDU = 0.082.

transaction c1 c2 c3 c4 c5 c6 c7 c8 c9
ParseTest#testBaidu 0 1 1 0 0 1 1 1 1
AttributesTest#html 0 0 1 0 0 0 1 1 0
HtmlParserTest#canPreserveAttributeCase 0 1 1 0 0 0 1 1 1
HtmlParserTest#handlesBaseTags 0 1 1 0 0 1 1 1 1
SelectorTest#descendant 0 1 1 0 0 1 1 1 1
...

...
...

...
...

...
...

...
...

...

4.7 Observations

In this section, we summarize our findings with regards to normalized density, diver-
sity, uniqueness, and DDU.

The optimal normalized density is 1.0 and the optimal density is 0.5 for a test
suite. It is difficult to utilize normalized density to recommend the developer what
kind of test to write — a test that covers a few components or a test that covers many
components. For example, if ρ′ = 0.6, then the density can either be ρ = 0.3 or
ρ = 0.7. Therefore, the density can be used to guide the developer in writing tests.
For example, when the test suite’s density is less than 0.5, the developer should write
tests that cover many components. Conversely, when the test suite’s density is greater
than 0.5, the developer should write tests that cover a few components.

In practice, we write tests to account for many corner cases. From the diagnos-
tic perspective, adding tests, that do not improve the information gain, is useless.
For example, the diversity can be negatively impacted when we write parameterized
tests with certain inputs that cause identical activation patterns. Another example is
property-based testing, where the outputs are checked against a so-called property
that should hold true given arbitrary inputs that meet certain criteria. Therefore, we
pose the question whether we need a metric that penalizes tests that have identical
component coverage.

We observe in Figure 4.4, that the DDU distribution is right-tailed. This can be
explained by the fact that the DDU is the product of normalized density, diversity,
and uniqueness, which all operate in the domain [0, 1]. Even when a test suite has a
high normalized density and diversity but a low uniqueness, then the value for DDU
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can only be as high as the uniqueness. In other words, the DDU can only be as high
as the term with the lowest value. A possible solution to the right-tailed distribution
is to use geometric mean.

Revisiting the first research question:

RQ1: How do normalized density, diversity, uniqueness, and DDU vary in prac-
tice?

A: We observed that the average for normalized density, diversity, and uniqueness
are 0.5145, 0.588, 0.477, respectively. However, the values for DDU have an average
of 0.157. In addition, the distribution of DDU is right-tailed which could be explained
by the fact that DDU can only be as high as the lowest component — normalized
density, diversity, or uniqueness.
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Chapter 5

DDU vs. Diagnosability

RQ2: What is the relation between density, diversity, uniqueness, and DDU and
diagnosability?

In prior work, Perez et al. [13] show that optimizing test suite generation with respect
to DDU results in better fault diagnosis. Optimizing test suite generation with respect
to DDU yields a 34% increase in diagnostic performance compared to a test suite
optimized for branch coverage. Therefore, in this chapter, we perform experiments
to verify the correlation between DDU and diagnosability.

5.1 Experimental Setup

To verify the correlation between DDU and diagnosability, we seed 10 artificial mul-
tiple components faults of cardinality 2 — that is, faults that are caused by two com-
ponents — for each class that has at least 8 components, i.e. branches. We do not
seed single component faults because in this case the optimal activity matrix for diag-
nosability is an identity matrix, i.e. each component is tested individually by a (very
focused unit) test.

For each injected fault, we produce an error vector corresponding to the activity
matrix and the fault. We determine for each test that exercises the faulty components
whether it is failing according to an oracle quality probability of 0.75, which was
also used in prior work [13]. Note that we only seed faults that result in at least
one failing test in the error vector because in this experiment we are interested in
diagnosability and not error detection. For some classes, it is not possible to seed 10
faults that result in a failing test in the error vector and, therefore, we do not include
these classes in the experiment.

Then, for each seeded program spectrum, we use STACCATO to generate fault
candidates and BARINEL to rank these candidates into a diagnostic report, see Sec-
tion 2.2 for a more detailed explanation. Based on the diagnostic report we compute
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Table 5.1: Classes that were not included in the analysis due to STACCATO taking
longer than 10 seconds.

Class Number of tests Number of branches
com.google.inject.AbstractModule 643 27
com.google.inject.internal.InjectorImpl 601 223
com.google.inject.spi.Elements 706 109
org.apache.commons.math4.analysis.differentiation.DSCompiler 278 338
org.apache.commons.math4.linear.AbstractFieldMatrix 140 295
org.apache.commons.math4.linear.AbstractRealMatrix 559 262
org.apache.commons.math4.linear.BlockRealMatrix 221 374
org.apache.commons.math4.linear.QRDecomposition 108 101
org.apache.commons.math4.util.Decimal64 222 147
org.apache.commons.math4.util.FastMath 3646 702
org.apache.commons.math4.util.MathArrays 1261 306
org.jsoup.nodes.Element 426 233
org.jsoup.parser.HtmlTreeBuilder 406 941
org.jsoup.parser.HtmlTreeBuilderState 392 673
org.jsoup.parser.TokeniserState 406 439

class ...

Figure 5.1: An activity matrix A is constructed from a particular class. Then, 10
fault candidates of cardinality 2 are seeded with a corresponding activity matrix Ak.

For each seeded matrix, we perform fault diagnosis with BARINEL resulting in
diagnostic report Dk and compute the wasted effort. Finally, we compute the

average wasted effort. This process is repeated 10 times.

the wasted effort which is a measurement for diagnosability. This whole process of
constructing an activity matrix, injecting artificial faults, performing SFL, and diag-
nosis evaluation is shown in Figure 5.1.

To account for randomness of generating fault sets, we repeat this process 10
times. Additionally, STACCATO can sometimes take hours or days to generate fault
candidates. Hence, we discard classes when the generation of fault candidates takes
longer than 10 seconds; this resulted in 15 classes being discarded. In Table 5.1,
we observe that the discarded classes are covered by a relative big number of tests
and consist of many branches, potentially causing STACCATO’s computation to take
longer than 10 seconds.

In the construction of the activity matrix we use the branch granularity, that is,

28



5.1. Experimental Setup

class ...

Figure 5.2: Two activity matrices A and A ′ are produced for a particular class based
on two different test suites. We seed 10 fault candidates of cardinality 2 and

accordingly produce 10 activity matrices. Then, we use BARINEL to perform fault
diagnosis and compute the wasted effort.

every column in the activity matrix represents a method branch. This granularity is
also used by Perez et al. [13]. To construct the activity matrix of a class we use Perez’
DDU Maven plugin1 using the basicblock granularity, which represents branch
granularity. The steps after obtaining the activity matrix in Figure 5.1 are performed
using Python scripts2.

This experiment is different from Perez et al.’s work because we do not improve
the DDU of a fixed system. In Perez et al.’s study, the authors improved the DDU
of a fixed system under test by generating tests using EvoSuite. However, in this
experiment, we compute the DDU for each class and measure for each class its diag-
nosability using the aforementioned approach.

For this reason, we perform another experiment where we generate two test suites
for each class with at least 8 components and at least 10 tests. We generate two
test suites by enabling the first 50% of the tests and 100% of the tests. For both
test suites we compute the DDU and randomly seed 10 multiple components faults
of cardinality 2 to compute the wasted effort. Similar to previous experiment we
perform this process 10 times to account for randomness of generating fault sets.
The intuition behind this experiment is when we improve the DDU of a fixed system,
its diagnosability should improve too. If the two created test suites of a class do result
in a difference in DDU, then the class is discarded. The setup of this experiment is
illustrated in Figure 5.2.

In the experiments, we compute the wasted effort using the following approach.
Given a diagnostic report where the candidates are ranked by their fault probabilities
in descending order, shown in Table 5.2, and the injected fault set: 〈c0,c1〉, the wasted
effort is computed by, first, flattening the ranked list to single components and recom-

1https://github.com/aperez/ddu-maven-plugin
2https://github.com/aaronang/ddu
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Table 5.2: Computation of wasted effort.

(a) Diagnostic report computed by BARINEL.

candidate fault probability
〈c0,c1〉 0.5
〈c2〉 0.3
〈c3〉 0.15
〈c0〉 0.05

(b) Flatten candidates and rerank.

candidate fault probability
c0 0.55
c1 0.5
c2 0.3
c3 0.15

puting the probabilities for each component using addition, e.g. fault probability of
〈c0〉 = 0.5+ 0.05 = 0.55. Then, the wasted effort is computed for each component
in the generated fault set: effortc0

= 0
4 = 0, effortc1

= 1
4 = 0.25. Finally, the wasted

effort of the seeded multi-component fault is computed by averaging the computed
wasted efforts: 0+0.25

2 = 0.125. This approach is used because of its simplicity. It’s
not always guaranteed that the multi-component fault is found as a candidate in the
diagnostic report. For example, there are cases that STACCATO does not generate c0
and c1 as one candidate set but as separate candidates.

5.2 Experimental Results

In the first experiment, we measure for each class the normalized density, diversity,
uniqueness, DDU, and effort. The results of this experiment are shown in Figure 5.3.
In Figure 5.3, the population comprises all classes of all projects. Each datapoint in
Figure 5.3 represents a class for which 100 fault candidates are generated in (poten-
tially overlapping) sets of 10 fault candidates as described in Figure 5.1.

Using a significance level of 5%, we observe the that there is a weak positive
correlation between density and effort, a weak negative correlation between diversity
and effort, a weak negative correlation between uniqueness and effort, and a statisti-
cally non-significant weak correlation between DDU and effort.

To investigate the relations between these metrics in more detail, we display the
correlation values per project in Table 5.3. For three projects we can say with 95%
confidence that normalized density is correlated with effort. However, the Pearson
correlation for Commons Compress is negative while the Pearson correlation values
for Commons Math and Commons Codec are positive. Hence, the results show no
strong evidence that density is strongly correlated with effort.

Regarding diversity and uniqueness, we observe in Table 5.3 and Figure 5.3 that
both metrics have a weak negative correlation with effort, and that the correlation
values in 4 out of 5 projects are statistically significant.

Regarding DDU, for two projects the results show statistical significance that
DDU has a weak negative correlation with effort. However, for three projects there is
no evidence that DDU is correlated to effort. Therefore, there is no strong evidence
that DDU is negatively correlated to effort.

It is unexpected that the normalized density tends to be positively correlated to
wasted effort. The normalized density is a diagnosability assessment metric and is
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5.2. Experimental Results

(a) Normalized density, r = 0.183,
p < 0.001.

(b) Diversity, r =−0.326, p < 0.001.

(c) Uniqueness, r =−0.120, p < 0.001. (d) DDU, r =−0.046, p = 0.224.

Figure 5.3: Scatterplot of density, diversity, uniqueness, and DDU against effort.

Table 5.3: Correlations between density, diversity, uniqueness, DDU, and effort for
each project.

Pearson correlation / Correlation p-value
Subject

Number of
classes Density Diversity Uniqueness DDU

0.63 -0.33 -0.65 -0.23Commons
Codec

34
5.880×10−5 0.057 3.713×10−5 0.197
-0.22 -0.45 -0.40 -0.37Commons

Compress
104

0.027 1.348×10−6 2.083×10−5 1.121×10−4

0.20 -0.36 -0.19 -0.03Commons
Math

420
4.982×10−5 1.782×10−14 7.553×10−5 0.572
0.01 -0.31 -0.29 -0.22

Guice 94
0.935 0.002 0.005 0.031
0.29 -0.37 0.16 0.20

Jsoup 37
0.085 0.024 0.337 0.229
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5. DDU VS. DIAGNOSABILITY

Table 5.4: Partial activity matrix of
com.google.inject.internal.AbstractProcessor, ρ = 1, ρ′ = 0.

transaction c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11
com.google.inject.BinderTest#testUntargettedBinding 1 1 1 1 1 1 1 1 1 1 1
com.google.inject.BinderTest#testMissingDependency 1 1 1 1 1 1 1 1 1 1 1
com.google.inject.BinderTest#testProviderFromBinder 1 1 1 1 1 1 1 1 1 1 1
...

...
...

...
...

...
...

...
...

...
...

...
com.googlecode.guice.Jsr330Test#testInjecting... 1 1 1 1 1 1 1 1 1 1 1
com.googlecode.guice.Jsr330Test#testScopeAnnotation 1 1 1 1 1 1 1 1 1 1 1
com.googlecode.guice.Jsr330Test#testInject 1 1 1 1 1 1 1 1 1 1 1

supposed to be negatively correlated to wasted effort, that is, the higher the nor-
malized density, the better the diagnosability and, thus, the lower the wasted effort.
In Figure 5.3(a), the three datapoints in the top-left corner (ρ′ = 0∧ effort > 0.4) are
classes — AbstractProcessor, IterativeLegendreGaussIntegrator, Circle-
Vectorial — that have an activity matrix where ρ = 1 resulting in a normalized
density ρ′ = 0. In Table 5.4, the partial activity matrix of AbstractProcessor is
shown. During the candidate generation phase using STACCATO, the following fault
candidates are generated: 〈c1〉, 〈c2〉, 〈c3〉, 〈c4〉, 〈c5〉, 〈c6〉, 〈c7〉, 〈c8〉, 〈c9〉, 〈c10〉,
〈c11〉. BARINEL will rank these candidates randomly because each component is in-
volved in all transactions. Hence, the diagnostic performance of these three classes is
as good as randomly investingating components and, thus, the wasted effort for these
classes is around 0.5.

The datapoints in the bottom-left corner (ρ′< 0.1∧effort< 0.05), in Figure 5.3(a)
are classes that have a low density. Since we are only including classes for which we
can generate 10 faults that result in a failing test in the error vector, these classes have
a high diagnosability for the generated faults and, thus, a low wasted effort.

In the top-right corner of Figure 5.3(a) (ρ′ > 0.8∧ effort > 0.3), the classes have
a higher wasted effort than the classes in the bottom-right corner (ρ′ > 0.8∧ effort <
0.15) because the activity matrices consist mostly of tests that cover many compo-
nents. For example, in Table 5.5, we observe that most transactions cover all com-
ponents making it difficult for SBR to diagnose the faults accurately. In Table 5.6,
we observe the class BaseOptimizer’s activity matrix which mostly consists of tests
that cover a few components, enabling SBR to diagnose faults better. Note that there
are classes in the top-right corner of Figure 5.3(a) for which the activity matrix looks
similar to Table 5.6 and, therefore, it is unclear what exactly causes the diagnosability
to be good or bad for classes where ρ′ > 0.8.

In the second experiment, we generate two test suites for a given class: a test
suite with the first 50% of the test cases enabled, and a test suite with 100% of the
test cases enabled. This naturally results in two test suites with two different DDU
values. For each class, we compare the effort of a test suite with a lower DDU value
with a test suite with a higher DDU value. Identical approach is used for normalized
density, diversity, and uniqueness. Note that we exclude classes where the two test
suites do not result in a metric difference. The results of this experiment are shown
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Table 5.5: Partial activity matrix of org.apache.commons.math4.ode.-
nonstiff.DormandPrince853FieldStepInterpolator,

ρ′ = 902.

transaction c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14
testModelsMerging 1 1 1 0 1 1 1 1 0 1 1 1 1 1
testStartFailure 0 0 0 0 0 0 1 0 0 0 0 0 0 0
testEvents 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5.6: Partial activity matrix of
org.apache.commons.math4.optim.BaseOptimizer, ρ′ = 0.976.

transaction c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
testDimensionMatch 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1
testBoundariesDimensionMismatch 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1
testMissingMaxEval 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1
testMissingSearchInterval 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1
testMath290GEQ 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1
testAckley 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1
testBadFunction 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1
testMaxEvaluations 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 1
testMath842Cycle 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1
testDegeneracy 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1
testSolutionCallback 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1
testBoundaries 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1
testAckley 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1
testQuinticMax 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1
testMaxIterations 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 1
testQuinticMin 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 1
testQuinticMin 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1
testLeastSquares1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 0 1
testCircleFitting 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1
testSinMin 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1

in Figure 5.4 and Table 5.7. In Figure 5.4, we observe that an increase in any metric
— normalized density, diversity, uniqueness, DDU — results in a lower required
effort to diagnose mistakes. Although the results are statistically significant except
for uniqueness, see Figure 5.4, the correlations are weak.

Revisiting the second research question:

RQ2: What is the relation between density, diversity, uniqueness, and DDU and
diagnosability?

A: In the first experiment, we observe that diversity, uniqueness and DDU have
a negative weak correlation with diagnosability. The normalized density showed an
unexpected weak positive correlation with diagnosability. In the second experiment,
we observe that an improvement in normalized density, diversity, uniqueness and
DDU have a negative weak correlation with an improvement in diagnosability. In
conclusion, there is no strong evidence that indicates that the normalized density,
diversity, uniqueness, DDU are strongly correlated with the diagnosability. Conse-
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5. DDU VS. DIAGNOSABILITY

(a) Density, r =−0.107, p < 0.01. (b) Diversity, r =−0.189, p = 4.479×10−5.

(c) Uniqueness, r =−0.079, p = 0.137. (d) DDU, r =−0.223, p = 9.044×10−7.

Figure 5.4: Scatterplot of delta density, delta diversity, delta uniqueness, and delta
DDU against delta effort.

quently, this means that these diagnosability assessment metrics are, currently, only
useful for generating test suites to improve diagnosability and SBFL techniques.
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Table 5.7: Correlations between delta normalized density, delta diversity, delta
uniqueness, delta DDU, and delta effort for each project.

Size / Pearson correlation / Correlation p-value
Subject

Density Diversity Uniqueness DDU
29 24 26 29
-0.277 -0.229 0.230 0.011

Commons
Codec

0.145 0.281 0.256 0.950
74 73 55 74
-0.098 -0.372 -0.217 -0.297Commons

Compress
0.401 0.001 0.111 0.010
251 256 186 262
-0.142 -0.162 -0.109 -0.280Commons

Math
0.023 0.009 0.135 3.855×10−6

78 78 57 78
0.103 0.001 0.047 -0.006Guice
0.368 0.995 0.728 0.952
29 29 27 29
0.452 -0.465 0.012 -0.273Jsoup
0.013 0.011 0.951 0.150
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Chapter 6

DDU vs. Test Coverage

RQ3: What is the relation between density, diversity, uniqueness, and DDU and
test coverage?

In this chapter, we investigate the relation between DDU and test coverage. The
reason for researching the relation between DDU and test coverage is to investigate
whether DDU should be used as a complementary metric to test coverage as Perez
et al. proposed. If there is a strong correlation between DDU and test coverage, then
it means that DDU might function as an error detection metric too. Furthermore,
investigating the relation between DDU and test coverage might give us insight in
how DDU and test coverage could work together in practice.

To answer the research question we perform several experiments. First, we con-
firm that test coverage is strongly correlated with error detection since test coverage
presumably optimizes the test suite for error detection. Second, we investigate the
relation between DDU and test coverage. Third, we examine the relation between
DDU and error detection.

6.1 Experimental Setup

Similar to the previous experiment, we use the projects Commons Codec, Commons
Compress, Commons Math, Guice, and Jsoup.

To analyze the relation between test coverage and error detection, we measure the
test coverage and error detection. Test coverage can be determined by dividing the
number of components hit in the activity matrix by the total number of components
in the activity matrix. Given the acitity matrix in Table 6.1, we observe that 3 out of
the 4 components are hit and therefore the test coverage is 3

4 = 0.75.
The error detection is computed by generating 10 artificial faults — in the ex-

periments we generate multiple components faults with a cardinality 2. As opposed
to the experimental setup described in Section 5.1 where we only generate faults
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6. DDU VS. TEST COVERAGE

Table 6.1: Example of activity matrix with a test coverage of 75%. Bolded
components are hit by one of the tests.

transactions c1 c2 c3 c4
t1 0 0 0 1
t2 1 0 0 1
t3 1 1 0 0

that cause a failure, in this experiment, we also include artificial faults that that do
not cause a failure because we are interested in error detection. For each fault, we
compute the error vector using an oracle probability of 0.75, similar to Perez et al.’s
study, and check whether the vector (ei) contains an error, i.e. 1 ∈ ei. Finally, the
error detection ED is computed by dividing the number of detected faults by 10, the
number of generated faults.

To account for randomness of generating fault candidates, we repeat this process
10 times. We obtain the activity matrices by using Perez et al.’s ddu-maven-plugin,
similar to the experiments in Chapter 5. An overview of this experiment is illustrated
in Figure 6.1.

For the second experiment, in which we investigate the relation between DDU
and test coverage, we compute the normalized density, diversity, uniqueness, DDU,
and test coverage for each activity matrix, and compute the correlation. Furthermore,
we use a similar approach as the experiments in Chapter 5; we create two test suites:
(1) a test suite that consists of the first 50% of the available tests and (2) a test suite
that consists of 100% of the available tests. This will most likely result in a system
with two test suites with different DDU values, allowing us to investigate whether
improving the DDU for a fixed system results in a test coverage improvement. If
the two created tests suites of class do not result in test coverage difference, then the
class is discarded.

Since we are comparing test coverage with DDU, normalized density, diversity
and uniqueness, there is no need for injecting artificial faults. Test coverage and the
diagnosability assessment metrics can be computed solely from the activity matrix.

class ...

Figure 6.1: We compute the activity matrix for a given class and generate 10
artificial fault candidates d1, d2, d10 of cardinality 2. For each pair (Ai,di), the error
vector ei is computed. The error detection ED is computed by dividing the number

of detected faults by the number of generated faults.
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6.2. Experimental Results

class ...

Figure 6.2: For each class, two test suites are generated, resulting in two activity
matrices A and A ′. For each activity matrix, we compute test coverage TC, DDU,

normalized density, diversity, uniqueness.

class ...

Figure 6.3: For each class, we generate two different test suites, resulting in two
activity matrices. For each matrix, we generate 10 fault candidates of cardinality 2
and compute the error vector. Finally, we compute the error detection and repeat

this process 10 times.

The overview of the second experiment is shown in Figure 6.2,
For the third experiment, we generate two test suites with different DDU val-

ues and investigate whether the error detection improves when DDU improves, as
illustrated in Figure 6.3. Similar to the first experiment, we generate 10 fault can-
didates of cardinality 2 and compute the error vector with an oracle probability of
0.75 to determine the error detection. To account for randomness of generating fault
candidates, we repeat this process 10 times.

6.2 Experimental Results

In the first experiment, we confirm whether test coverage is representative for error
detection. In Figure 6.4, we observe that there is a strong correlation between branch
coverage and error detection. We can say with 95% confidence that branch coverage
is positively correlated with error detection. Furthermore, we observe in Figure 6.4
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6. DDU VS. TEST COVERAGE

Figure 6.4: Scatterplot of coverage and error detection, r = 0.628, p < 0.01.

Table 6.2: Example of activity matrix with a high test coverage of 100% but a low
error detection for faults with a cardinality of two.

transactions c1 c2 c3 c4

t1 1 0 0 0
t2 0 1 0 0
t3 0 0 1 0
t4 0 0 0 1

that all data points are in the lower right corner, meaning that branch coverage puts
an upper bound on error detection. The upper bound can be explained with the fol-
lowing example. Assuming that 60% of the components are tested, faults that involve
untested components (in the remaining 40%) can never be detected and, therefore,
the error detection can at most be 60%. Likewise, the error detection can at most be
100% if the test coverage is 100%. In Table 6.2, an example is given of a class with
100% test coverage but 0% error detection for faults of cardinality 2. To summarize,
the error detection for a class can at most be equal to the test coverage.

In the second experiment, we examine the correlation between normalized den-
sity, diversity, uniqueness, and DDU on the one hand, and branch coverage on the
other. The results are shown in Figure 6.5 and Figure 6.6. We observe in Figure 6.5(a)
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6.2. Experimental Results

and Figure 6.5(b) that normalized density is uncorrelated to branch coverage, and that
diversity is weakly correlated to branch coverage. In Figure 6.5(c) and Figure 6.5(d),
we observe that uniqueness and DDU are weakly correlated to branch coverage.

Although uniqueness and DDU have a weak correlation with branch coverage,
in Figure 6.5(c) and Figure 6.5(d), we observe that uniqueness and DDU put a lower
bound on branch coverage — all data points are located in the upper left corner of
the plot. The branch coverage is lower bounded by uniqueness since uniqueness
corresponds to the number of unique columns in the activity matrix. This means that
if the uniqueness is low, then the number of unique columns is low and therefore the
branch coverage is potentially low. In Figure 6.7(a) and Figure 6.7(b), we provide
examples illustrating how branch coverage can be high or low given an activity matrix
with a low uniqueness. If the uniqueness is high, then the number of unique columns
is high and therefore the branch coverage has to be high too. In Figure 6.7(c) and
Figure 6.7(d), we provide two activity matrices with optimal uniqueness, resulting
in a relative high or optimal coverage. Consequently, the DDU lower bounds branch
coverage because uniqueness is a component of DDU.

Similar results are found in the experiment where an improvement in a diagnos-
ability assessment metric is compared with a difference in test coverage, see Fig-
ure 6.6. In Figure 6.6(a), Figure 6.6(b), and Figure 6.6(d), we observe that an im-
provement in normalized density, diversity, and DDU is weakly correlated with an
increase in branch coverage. Also, an improvement in uniqueness is strongly corre-
lated with an improvement in branch coverage, as illustrated in Figure 6.6(c), which
could be related to our previous observation where uniqueness puts a lower bound on
branch coverage. However, DDU does not show similar results — a strong correla-
tion with an improvement in branch coverage, which could be caused by the fact that
normalized density and diversity reduce the effect of uniqueness.

In the third experiment, we analyze the relation between DDU and error detec-
tion. In Figure 6.8, we observe that there is no strong correlation between normal-
ized density, diversity, uniqueness, and DDU on the one hand, and error detection on
the other. In Figure 6.9, we observe similar results; no strong correlation between
delta normalized density, delta diversity, delta uniqueness, delta DDU, and delta er-
ror detection, i.e. improving a diagnosability assessment metric does not result in an
improvement in error detection. The results in Figure 6.8(c) and Figure 6.9(c) are
unexpected because we have seen in previous experiments that branch coverage is
strongly correlated to error detection, see Figure 6.4, and that an improvement in
uniqueness is strongly correlated to an improvement in branch coverage, see Fig-
ure 6.6(c). However, we do not observe any correlation between uniqueness and
error detection.

Revisiting the third research question:

RQ3: What is the relation between density, diversity, uniqueness, and DDU and
test coverage?
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6. DDU VS. TEST COVERAGE

(a) Normalized density, r = 0.029, p = 0.44. (b) Diversity, r = 0.173, p < 0.01.

(c) Uniqueness, r = 0.237, p < 0.01. (d) DDU, r = 0.228, p < 0.01.

Figure 6.5: Scatterplot of normalized density, diversity, uniqueness, and DDU
against branch coverage.

A: In the first experiment, we confirmed that branch coverage is strongly corre-
lated to error detection. In the second experiment, in which we analyze the relation
between the diagnosability metrics and branch coverage, we observed that only an
improvement in uniqueness is strongly correlated to an improvement in branch cover-
age. The other metrics did not show any significant correlation. Further, we observed
that uniqueness and DDU put a lower bound on branch coverage. In final experiment,
we found no evidence that uniqueness and the other diagnosability metrics are corre-
lated to error detection.
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(a) Normalized density, r = 0.143, p < 0.01. (b) Diversity, r = 0.230, p < 0.01.

(c) Uniqueness, r = 0.546, p < 0.01. (d) DDU, r = 0.290, p < 0.01.

Figure 6.6: Scatterplot of delta normalized density, delta diversity, delta uniqueness,
and delta DDU against delta branch coverage.

43



6. DDU VS. TEST COVERAGE

c1 c2 . . . c10

t1 1 0 . . . 0
t2 1 0 . . . 0
t3 1 0 . . . 0
t4 1 0 . . . 0

(a) Low uniqueness, U = 0.2,
coverage = 0.1.

c1 c2 . . . c10

t1 1 1 . . . 1
t2 1 1 . . . 1
t3 1 1 . . . 1
t4 1 1 . . . 1

(b) Low uniqueness, U = 0.1,
coverage = 1.0.

c1 c2 c3 c4

t1 1 0 0 0
t2 0 1 0 0
t3 0 0 1 0
t4 0 0 0 1

(c) Optimal uniqueness, U = 1.0,
coverage = 1.0.

c1 c2 c3 c4

t1 1 0 0 0
t2 0 1 0 0
t3 0 0 1 0
t4 0 0 0 0

(d) Optimal uniqueness, U = 1.0,
coverage = 0.75.

Figure 6.7: Examples of activity matrices with a low or high uniqueness.
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(a) Normalized density, r = 0.256, p < 0.01. (b) Diversity, r =−0.132, p < 0.01.

(c) Uniqueness, r =−0.080, p < 0.05. (d) DDU, r = 0.142, p < 0.01.

Figure 6.8: Scatterplot of normalized density, diversity, uniqueness, and DDU
against error detection.
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(a) Normalized density, r = 0.165, p < 0.01. (b) Diversity, r = 0.275, p < 0.01.

(c) Uniqueness, r = 0.323, p < 0.01. (d) DDU, r = 0.324, p < 0.01.

Figure 6.9: Scatterplot of delta normalized density, delta diversity, delta uniqueness,
and delta DDU against delta error detection.
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Chapter 7

Conclusion

In this work, we performed the first study on DDU, a metric that quantifies the diag-
nosability of software systems, proposed by Perez et al. [13]. The goal of this study
was to obtain knowledge about DDU such that it can be made usable in practice as
an aid to developers in writing better tests. Better tests, in this study, are defined as
tests that can easily and precisely locate the root cause of a failure, also known as di-
agnosability. A high diagnosability is important because it can potentially reduce the
time spent on debugging, which currently accounts for 30% to 90% of the software
development cycle.

To better understand the capabilities of DDU, we answer the research questions
defined in Chapter 3 by analyzing real-world code repositories, namely Commons
Codec, Commons Compress, Commons Math, Guice and Jsoup.

RQ1: How do normalized density, diversity, uniqueness, and DDU vary in prac-
tice?

In Chapter 4, we explored the behavior of the diagnosability assessment metrics
by analyzing existing software systems. We looked at various activity matrices to see
what influences the diagnosability assessment metrics to have a low or high value.
We found that DDU is right-tailed, that is, it is difficult to write tests to obtain an
optimal DDU value of 1.

RQ2: What is the relation between normalized density, diversity, uniqueness,
and DDU and diagnosability?

In Chapter 5, we performed experiments to investigate the relation between the
diagnosability assessment metrics and diagnosability. We found no strong evidence
that DDU is correlated to diagnosability, measured in effort, although prior study [13]
showed evidence that DDU improves the diagnosability when generating tests that
are optimized with respect to DDU. Therefore, this means that current tests written
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in open source projects, according to DDU, are not written with the intent to optimize
diagnosability.

RQ3: What is the relation between density, diversity, uniqueness, and DDU and
test coverage?

In Chapter 6, we performed experiments to investigate the relation between the
diagnosability assessment metrics and test coverage to understand how DDU could
potentially be used together with test coverage. We found that normalized density,
diversity, DDU have a weak correlation with test coverage, and that uniqueness is
strongly correlated to test coverage. However, uniqueness does not have a strong
correlation with error detection, which is supposedly measured by test coverage.

7.1 Future Work

The experimental results have shown that DDU and its components do not have a
strong correlation with diagnosability in practice. Therefore, it is worth researching if
manually writing tests to optimize diagnosability is useful in practice at all. Also, we
pose the question if diagnosability is only useful for automated debugging techniques
because prior work [13] has shown that optimizing tests with respect to DDU when
generating tests results in an increase in diagnosability. To answer these questions,
we propose a case study or user study in which a deeper understanding should be
obtained on why developers write tests and to investigate whether developers desire
tests that improve the diagnosability.

Furthermore, DDU is supposedly a metric that quantifies diagnosability, the prop-
erty of faults to be easily and precisely located [17]. Currenlty, DDU is only useful
when generating tests to increase the diagnostic performance of SBFL techniques.
However, Parnin and Orso [11] found evidence in a prelimenary user study that a
high diagnostic performance does not result in a shorter debugging time due to the
lack of context provided by SBFL techniques to understand the root cause. There-
fore, we pose the question: how important is diagnosability in practice?

We analyzed DDU due to its possibility to improve the diagnostic performance
of automated debugging techniques. However, there has been no study that investi-
gates the impact of diagnosability on the debugging activity when performed by the
developer without automated debugging techniques. Future work could perform a
user study with two developer groups, where one group tries to locate the fault with
tests that are optimized for test coverage and the other group tries to locate the fault
with tests that are optimized for diagnosability.

In this study, most experiments are performed by injecting faults of cardinality
2, which is similar to the cardinality used by prior work [13]. However, Perez et
al. [12] showed evidence with an empirical study that single-component faults are
prevalent — over 82% of the bugs found in 279 open source projects involved a
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single-component fault. This means that DDU can be modified to account for these
findings, for example, by biasing DDU towards single-component faults.
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