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Preface
We live in an increasingly data-driven world in which the ability to extract useful information from our
data is crucial. One relatively new concept is to portray the data as a network of nodes that are con-
nected based on the visibility between data points. Features of this ’visibility graph’ can be analyzed in
order to gain insight about the data. I would like to thank my supervisor Rogier Noldus for introducing
me to this concept which, although able to produce accurate results in some use cases, is scarcely
described mathematically. The goal of this thesis is to increase the understanding of which metrics
are typical of a visibility graph, what sets them apart as a family of graphs, and how much information
is retained in the visibility graph of a certain data set. For a duration of almost a year, I have delved
into the abstract mathematical concept that is the VG. The curiosity-based objectives of this thesis are
a far cry from the engineering projects that I have previously encountered in my studies. During my
research I have written many MATLAB scripts to help me gain insight in the visibility graph algorithm. If
anyone would like to continue the research on this topic (there certainly is room left to explore), do not
hesitate to contact me at tim-alers@live.nl for my scripts thus far. I would like to thank my supervisor,
my brother, and my parents for the support they have provided me and the input they gave me when
discussing the content of my work.

T.J. Alers
Delft, December 2023
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Abstract
The visibility graph has gained traction as a method for time series analysis. Through this method, it
is possible to detect or quantify non-linear behavior in a myriad of fields and applications. This thesis
explores the variations of visibility graphs, describes how they are used in literature and investigates
what lies at the foundation of the transformation from time domain to graph domain. The algorithm
for the construction of a visibility graph is used as the starting point. Through mathematical derivation,
claims can be made regarding the degree metric of a visibility graph. The average degree for a discrete
random time series is defined with high accuracy. Using the inequality sets that can be derived from
the adjacency matrix of a visibility graph, certain patterns can be identified as being unattainable for a
visibility graph. The information retention is investigated by comparing the Shannon Entropy of both a
time series and the visibility graph that is constructed from it. The loss of information can be quantified,
but only for short discrete series with low sampling depth. These findings are reported in this thesis,
along with some insights that could be the subject of further research to deepen the understanding or
enhance the use of the visibility graph algorithm.
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vi Abstract

Table 1: List of Abbreviations

Abbreviation Meaning
VG Visibility Graph
A (matrix) Adjacency matrix of a graph
NVG Natural Visibility Graph
HVG Horizontal Visibility Graph
CVG Circular Visibility Graph
WVG Weighted Visibility Graph
dVG Directed Visibility Graph
LP Limited Penetration
DP Dual Perspective
(C)(LP)(DP)VG (Circular) (Limited Penetration) (Dual Perspective) Visibility Graph
H Hurst Exponent
(MF-)DFA (Multifractal Detrended) Fluctuation Analysis
MLE Maximum Likelihood Estimation
R/S (analysis) Rescaled Range (Analysis)
fBm Fractal Brownian Motion
QAM Quardature Amplitude Multiplexing
BPSK Binary Phase Shift Keying
SGN Sub-Graph Network
SNR Signal to Noise Ratio
𝑇𝑉𝐺 Total Variation on Graph
ApEn Approximate Entropy
PE Permutation Entropy
KU Kurtosis
RMS Root Mean Square
DS Degree Sequence
KLD Kullback-Leiber divergence
LTE Lower Triangle Entries
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Table 2: List of symbols, their names and meaning

Symbol Name Meaning
𝑁 (single value) Nodes The number of nodes in a graph
𝒩 (set) Node set The collection of nodes in a graph
𝐿 (single value) Links The number of links in a graph
ℒ (set) Link set The collection of links in a graph
𝐴 Adjacency matrix Binary matrix which describes the connections in

the graph
𝑎𝑖𝑗 Adjacency matrix element Binary element of the adjacency matrix where a 1

indicates the existence of a link between nodes 𝑖
and 𝑗

𝑊 Weighted Adjacency matrix Matrix with non-binary elements that describes the
connection in the graph

𝜏 Time delay The time difference between samples that are used
to create embedding vectors

𝑚 Embedding dimension The length of an embedding vector
Θ(𝑥) Heaviside Function Returns 0 for any negative 𝑥, returns 1 for any pos-

itive 𝑥
𝑤𝑖𝑗 Weight The link weight attributed to the link between node

𝑖 and node 𝑗
𝑘 Degree The amount of neighbors a single node has
𝑃𝐺(𝑘) Degree Distribution The distribution of degrees that are found in a graph

G
𝛾 Power of Scale-Freeness The slope of the degree distribution of a scale-free

graph
𝑐𝑜𝑣(𝑋, 𝑌) Covariance (X,Y) The covariance between vector X and vector Y
𝜎 Standard Deviation The measure of how much entries differ from the

mean of the group
𝐶 Coupling factor The degree to which two chaotic systems influence

each other
𝑓 Frequency Number of oscillations per time unit
𝑓𝑠 Sampling Frequency Frequency used to sample a continuous signal or

process
𝑇 Period Time between two identical points in a periodic sig-

nal
𝐸[𝑋] Expected Value The expected value that is returned by stochastic

process X
𝐶 Clustering Coefficient The degree to which neighbors of a node are also

neighboring each other
𝐻(𝑋) Shannon Entropy A measure for the amount of information in a single

realization of process X
𝜌𝐷 Degree Assortativity The degree to which nodes tend to neighbor nodes

with a similar degree
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1
Introduction

In recent times, more and more events and processes are monitored for data collection. These mea-
surements are used to make data-driven decisions or predictions that would otherwise not be possible.
The collection of data over time can be stored as a string of values. A time series is such a collection of
values. The values are in chronological order and are placed equidistant in time domain, i.e. the values
are sampled or generated at a regular interval. The data are represented by vectors 𝑇 = [𝑡1, 𝑡2, ..., 𝑡𝑁]
and 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑁]. In these vectors, 𝑥𝑖 represents the value of the time series at time 𝑡𝑖. Any
sampled signal or regularly monitored process will result in such a series of data with certain values at
different time instances.
There have been efforts to transform the data from the time domain to the graph domain in the form of
Visibility Graphs and Recurrence Networks [1], [2]. A graph is a collection of nodes that are connected
by edges. Data in a graph can be subject to analysis tools that can only be used in the graph domain,
such as degree distribution, clustering coefficients, path analysis and others [3]. Transforming the data
in a time series to the graph domain would allow for these analysis tools to provide new insights in the
time series [1]. Such a transformation must define a set of nodes using the time series data, and then
define some criterion for which two nodes are connected by an edge. A number of methods have been
proposed for such a transformation.
This thesis delves into the Visibility Graphs (VGs), as a method of transforming a time series into a
network of links and nodes. In these cases, each sampling point of the time series represents a node
in the graph. Two nodes in the graph are connected by an edge if the two corresponding sampling
points share a direct line of sight. The first VG method was proposed by Lacasa et al. in 2008 [1].
Since then, variations on this method have been proposed [4]–[6].
Since Lacasa’s first work on the visibility graph, the theory has been used in a multitude of researches
across various fields. There are many applications and processes in which data in a time series is an-
alyzed. The advantage of transforming a time series to the graph domain is that the data can then be
analyzed using graph analysis tools. The applications of the visibility graph to characterize data include
brain scans, monitoring machine parts, and measurements of seismic activity [7]–[9]. The concept of
the VG can also be used to accurately forecast time series in which non-linear or chaotic dynamics are
present [10].
The fast adoption of the visibility graph in practice warrants further research. This thesis will explore
the current state of the art for the transformation from time series to a visibility graph, and how the
visibility graph plays a key role in the analysis of time series. The limitation of the current methods are
highlighted in the literature review. This thesis will attempt to improve the understanding of the VG as
a class of graphs. It investigates whether there are properties common to all VGs. Additionally, it is ex-
amined how much information about the time series is stored in the visibility graph. The reversibility of
the transformation is investigated and alterations to the visibility graph algorithm and their implications
to the retention of information are considered.
In Chapter 2, a selection of VG algorithms is introduced and the applications in scientific research are
presented. It becomes clear that both the methods and fields of research in which VGs are used, are
wide-ranging. Then some mathematical concepts that are important to the VG principle are detailed
and visualized in Chapter 3, including which graph metrics are empirically found to be typical for differ-
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2 1. Introduction

ent VG implementations. Predictions for the degreemetrics of a Natural VG (NVG), which is the method
proposed by Lacasa et al. [1], are explored in Chapter 4. In Chapter 5, the gathered information about
the NVG is used to find a method of identifying a graph as being the product of the NVG algorithm.
Lastly, the goal of Chapter 6 is to find out howmuch information is lost in the transformation to the graph
domain when using the NVG algorithm, and to what extent the transformation can be reversed. The
thesis concludes with a summary of the findings and mentions some avenues of research that could
be further explored in Chapter 7. Some suggestions for further research are presented in Chapter 8.



2
Literature review

This chapter provides an overview of literature regarding the transformation of a time series to the graph
domain. This includes variations of Recurrence Networks and of VGs. The chapter then further elabo-
rates on the usage the VG as a tool to analyze a time series. The chapter is divided into three sections.
First, multiple variations of the Recurrence Network and VG algorithms are presented. Secondly, a
collection of work is analyzed in which the concept of the VG is used as a tool in time series in analysis.
It will become evident that the VG tool is very flexible and can be used in numerous situations, although
it often is only one part of a larger system of analysis. There are many pieces of scientific literature that
make use of the relation between the degree distribution of the VG and the Hurst exponent of a time
series, and this relation finds applications in numerous fields. After these are introduced, a number or
publications that classify time series through various graph metrics of the VG are presented. Lastly,
the limitations and recommendations found in these publications are summarized.

2.1. Recurrence networks
Recurrence networks are a method for representing data from a time series in a graph. The method
allows for determining characteristics of chaotic time series created by dynamical systems [11]. The
method is based on the notion that there are states within such systems that reoccur, and that such
recurrences can be predicted by previous data.

Recurrence plots
The structure of a recurrence network is based on the recurrence plot of a time series. For a discrete
time series, there needs to be a phase space reconstruction to reconstruct the dynamical system vari-
ables. This is often done using the time delay method. Values of the time series that are a certain time
𝜏 apart, are gathered in a vector. These vectors indicate a trajectory of the series over time and are
interpreted as a point in phase space. For a discrete time series 𝑧(𝑖𝑡), where 𝑖 = 1, 2, ..., 𝑀 and 𝑡 is the
time interval, vectors in phase space are created as follows [12]:

xk = [𝑥𝑘(1), 𝑥𝑘(2), ..., 𝑥𝑘(𝑚)] = [𝑧(𝑘𝑡), 𝑧(𝑘𝑡 + 𝜏), ..., 𝑧(𝑘𝑡 + (𝑚 − 1)𝜏)] (2.1)

Different vectors are created for 𝑘 = 1, 2, ..., 𝑁 and 𝑁 = 𝑀−(𝑚−1)𝜏/𝑡. The values of𝑚 (the embedding
dimension) and 𝜏 (the time delay) have to be chosen carefully in order to obtain an accurate phase
portrait. For the time delay, a suitable value can be found by determining the first local minimum in the
average mutual information between the sets 𝑧(𝑖𝑡) and 𝑧(𝑖𝑡+𝜏). This gives an indication of the amount
of information about 𝑧(𝑖𝑡 + 𝜏) that can be inferred from 𝑧(𝑖𝑡) for any 𝑖 [13]. The embedding dimension
𝑚 is chosen using the false nearest neighbor method, in which the embedding dimension is extended
until the number of false neighbors drops to zero [14].

When the parameters have been chosen, the vectors xk are created. The vectors are plotted
as points in m-dimensional phase space, this is the recurrence plot. An example of how a periodic
time series can be represented in phase space in a recurrence plot and how its recurrence network
would look, is shown in Figure 2.1. The recurrence network can be represented using a matrix 𝑅. The
construction of the matrix can be done using several methods, elaborated upon below.

3



4 2. Literature review

Figure 2.1: Example of a 2-D phase space representation, or recurrence plot, of time series (left) and its resulting Recurrence
Network (right) that connects the points that are in close proximity in phase space [11]

Recurrence networks
Each point in the recurrence plot is considered to be a node in the network. The resulting network will
then carry information about the dynamical system that created the original time series. The require-
ments for two nodes to be connected can vary. Three common interpretations of recurrence plots are
𝜖, 𝑘 nearest neighbors, and adaptive nearest neighbors networks.

𝜖 recurrence networks In this interpretation, 𝑅 is a binary matrix, with each element equal to [2]:

𝑅𝑖,𝑗 = Θ(𝜖 − ||xi − xj||) (2.2)

Recall that the points in the recurrence plots are given by m-dimensional vectors. In essence, the
element 𝑅𝑖,𝑗 is equal to 1 if the distance between vector 𝑖 and vector 𝑗 is smaller than some 𝜖. The
element is equal to 0, otherwise. This leads to a symmetric adjacency matrix and thus an undirected
network.

𝑘 nearest neighbors recurrence networks When using the 𝑘 nearest neighbors method, each node
𝑖 will be connected to the 𝑘 nodes that are closest to it, i.e. the first 𝑘 points in the recurrence plot when
expanding from point 𝑖. This will lead to a regular graph, because all nodes will have the same degree
by definition. The matrix will be asymmetrical in nature because if node 𝑗 is the nearest neighbor of
node 𝑖, it is not necessarily so that node 𝑖 the nearest neighbor of node 𝑗 [15].

Adaptive nearest neighbors recurrence networks An adaptation to the 𝑘 nearest neighbors algo-
rithm was proposed in order to obtain an undirected network [16]. In the adaptive nearest neighbors
algorithm, a number (𝐸0) is chosen. Then an iterative process is started in which each node con-
nects to its 𝐸0 nearest neighbors. However, the links are bidirectional meaning that if 𝐴(𝑖, 𝑗) = 1, then
𝐴(𝑗, 𝑖) = 1. Furthermore, the link between nodes 𝑖 and 𝑗 only counts towards the maximum amount of
allowed neighbors for one of the two nodes. This leads to an undirected network with 𝑁 ⋅𝐸0 edges and
nodes with a degree of at least 𝐸0, but an average degree of 2 ⋅ 𝐸0.

Recurrence networks capture trajectories over time within the time series and show when these
trajectories re-occur. This makes them useful for determining characteristics of dynamical systems.
Some properties of the dynamical system are captured in the topology of the network. For example,
the local clustering coefficient can be used to identify dynamically invariant objects in the system [11].

2.2. VG variations
The VG is another way of transforming a time series to a graph, in which the mutual visibility between
to data points determines whether connections in the graph are present. First presented in 2008 by
Lacasa et al., the VG has been shown to inherit features from the time series it is generated from [1].
The definition for mutual visibility, which determines the existence of links in the graph, can be altered
to achieve a variation on the algorithm that Lacasa et al. proposed. The method of Lacasa et al. will
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henceforth be referred to as the Natural VG (NVG). In the following subsections, this algorithm and
some variations to it will be presented briefly.

Natural VG
The visibility graph proposed by Lacasa et al. generates a node for each entry of the time series (𝑥𝑖 , 𝑡𝑖).
Edges are placed between the nodes if the nodes can ‘see’ each other i.e. no peaks between the two
time series entries obstruct the view. A pair of nodes corresponding to entries (𝑡𝑎 , 𝑥𝑎) and (𝑡𝑏 , 𝑥𝑏) are
connected if

𝑥𝑐 < 𝑥𝑎 +
(𝑥𝑏 − 𝑥𝑎)(𝑡𝑐 − 𝑡𝑎)

𝑡𝑏 − 𝑡𝑎
(2.3)

holds for all entries (𝑡𝑐 , 𝑥𝑐) with (𝑡𝑎 < 𝑡𝑐 < 𝑡𝑏). In other words, if all values 𝑥𝑖 are plotted against
time 𝑡 and slopes are drawn between the peaks of all entries (𝑥𝑖 , 𝑡𝑖), the entries (𝑥𝑎 , 𝑡𝑎) and (𝑥𝑏 , 𝑡𝑏) are
connected in the graph if there is no peak that intersects or touches the slope.

Horizontal VG
In the case of the horizontal visibility graph, lines of sight are only drawn horizontally. An advantage of
this is the lower computational complexity. The criterion for two nodes to be connected in the graph is
defined as

𝑥𝑎 , 𝑥𝑏 > 𝑥𝑐 , (2.4)

in which (𝑥𝑐 , 𝑡𝑐) are all entries in between entries (𝑥𝑎 , 𝑡𝑎) and (𝑥𝑏 , 𝑡𝑏) [5]. The lower complexity of
this implementation allows for analytical solutions to be generated regarding average degree, degree
distribution and clustering for HVGs of certain time series [17].

Circular VG
Instead of drawing straight lines between peaks, one can choose to draw arcs to determine visibility
between samples. This is the defining feature of Circular VGs. No line is drawn between the two
samples, instead a circle is chosen that passes through both data points. The circle segment, or arc,
that is between the two data points is used as the measure for visibility. If there are samples that
intersect with the arc, visibility is obstructed. The circle system can be described by Eq. 2.5 [4].

𝑓(𝑡, 𝑥) = (𝑡 − 𝑡𝑎)(𝑡 − 𝑡𝑏) + (𝑥 − 𝑥𝑎)(𝑥 − 𝑥𝑏) + 𝛼[(𝑡 − 𝑡𝑎)(𝑥𝑏 − 𝑥𝑎) − (𝑥 − 𝑥𝑎)(𝑡𝑏 − 𝑡𝑎)] (2.5)

Where the subscripts 𝑎 and 𝑏 are indicative of samples 𝑎 and 𝑏 that are placed on the circle, and
𝛼 determines the radius of the circle and the angle at which the arc is placed. For large |𝛼|, the radius
of the circle grows. This means that for |𝛼| → ∞ the line segment between the two samples will be a
straight line. When |𝛼| → 0 the line segment approaches the diameter of a circle. The values for |𝛼|
used by Xuan et al. are in the range [-100, 100] [4]. The sign of 𝛼 determines whether the midpoint
of the selected circle is above or below the line between the data points [4]. The circle systems for
various 𝛼 are visualized in Figure 2.2. In Figure 2.3, it is shown how these circles are used as lines of
sight between samples. In this example there is a negative 𝑎𝑙𝑝ℎ𝑎, evident from the orientation of the
arcs.

Limited Penetrability VG
The concept of limited penetrability was first introduced in 2012 and was applied to the NVG [18]. When
generating a VG with limited penetrability, the line of sight between two samples is no longer obstructed
by a single sample that lies in between. Instead, a penetration distance is introduced which determines
how many samples that are in conflict with the visibility criterion are allowed between two data points,
while still having a link between the two corresponding nodes in the VG [18], [19]. This concept can
be applied to the NVG, HVG and CVG presented above. Most commonly a penetration distance of
𝑚 = 1 is used, meaning one sample is allowed to violate the visibility criterion [4], [18], [19]. Figure 2.3
shows limited penetration being applied to a CVG. The links that are formed as a result of the limited
penetration are shown as dashed lines in the graph.
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Figure 2.2: Depiction of circle system between two data points (at the lower left and upper right corner of the red square marked
point 𝑎 and point 𝑏), for various values of 𝛼 [4]

Figure 2.3: Example of how the concept of Limited Penetrability affects a CVG. In (a) the lines of sight are drawn on the time
series. In (b) these lines of sight are represented by links in the graph. The blue dashed links are links that are added to graph
as a result of the LP feature. The red dashed link is added as result of the lines of sight being drawn as arcs, as opposed to the
straight lines of the NVG [4]

Dual perspective VG
In 2021, Zheng et al. noticed a shortcoming of the NVG algorithm. Although large positive values are
typically converted to hub nodes in the graph, the same is not true for large negative values [6]. This
means that some extreme events in the time series can go unnoticed in the visibility graph. To solve
this issue, the authors propose a dual perspective VG. In the dual perspective VG, the NVG of both
the original time series (𝑠𝑡) and the reflected time series (−𝑠𝑡) are used to construct the graph. This
allows extreme negative events in the time series to convert to nodes with extreme nodal properties
[6]. These events are characterized by a large sudden drop in the time series. The values in the trough
do not necessarily have to be negative, but very small compared to the other values in that region of
the time series. Similar to limited penetrability, the concept of dual perspective can be applied to any
VG algorithm although at the time of writing it has only been used by Zheng et al. [6] in combination
with the NVG.

Link weights
In the original algorithms for NVG, HVG, and CVG, the adjacency matrix of the resulting graph is binary
[1], [4], [5]. Each link has a Boolean value 𝑎𝑖𝑗 = 1, regardless of which nodes 𝑖 and 𝑗 it connects.
When no link is present, the entry in the adjacency matrix is a logical 0. There have been multiple
works that attributed weights to the links in the VG, in different ways [20]–[23]. These methods include
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weights based on the angle of the link and the (Euclidean) distance between the data points [6], [20].
The addition of the weight information means that more information from the time series is captured
in the graph, which can lead to more robust results when deriving conclusions from the resulting VGs
[20], [22].

Directed VG
All VGs that have been introduced above are proposed as undirected graphs. This entails that a link
between nodes works in both directions, i.e. if node 𝑎 is connected to node 𝑏 then the inverse is
also true. However, directed versions of the algorithms have been proposed and used for specific use
cases. To quantify the reversibility of a time series, the time directed HVG was proposed by Lacasa et
al. [24]. In this version, any node 𝑎 can only connect to node 𝑏 when 𝑡𝑎 < 𝑡𝑏. A directed version of
the NVG has been used by Hu and Xiao [10] for improved prediction for time series based on random
walks in the directed NVG.

2.3. Applications of the VG
The applications of VGs fall largely into two categories: analysis of fractal series and the classification
of time series of which the underlying system is unknown. Works from both categories are described
in this review.
Time series observed in many fields have a fractal nature. This entails that a small part of the time
series is similarly shaped as a part of the time series on a larger scale [25]. Fractal time series can be
modeled as a fractal Brownian motion (fBm). Models like these are used in various fields, ranging from
geology, to biology and finance [26]–[28].

Estimating the Hurst Exponent
Fractal Brownian motions are characterized by their Hurst exponent [29]. The Hurst exponent (𝐻) is
indicative of whether the time series displays long memory, or long range dependence. It was first intro-
duced by H.E. Hurst during his research of the reservoir control for the river Nile. The Hurst exponent
is a measure of how the fluctuations between data points scale and how much these fluctuation deviate
from a random-walk model. The value of 𝐻 lies between 0 and 1, where a value of 0.5 corresponds to a
random walk, whereas values close to 0 and 1 correspond to anti-persistent and persistent time series,
respectively. An anti-persistent process means it is more likely for a decreasing process to show an
upward trend and vice versa. For the persistent process the opposite holds, and thus a decreasing
process is likely to keep decreasing while an increasing process is likely to keep increasing [30].
The estimation of the Hurst exponent has attracted a lot of attention, as it indicates whether the future
behavior of the time series is dependent on the past behavior. If this is the case, that means the pos-
sibility for making predictions on the future behavior exists [31]. Naturally, this has garnered interest
in the financial markets as the prices fluctuations of stocks can be analyzed this way. However, there
are other fields in which the Hurst exponent has become a point of interest [32]. There are multiple
methods to estimate the Hurst exponent. A relatively new method was proposed by Lacasa et al. in
the same paper where they introduce their VG algorithm [1]. This method rests upon the found relation
between the degree distribution of the VG and the Hurst exponent of the time series. It is found that
the slope of the distribution when plotted on a log-log scale, scales linearly with the Hurst exponent.
Furthermore, this slope is indicative of the nature of the process that generated the time series and can
be used to distinguish between stochastic and chaotic processes [33].

Power of Scale-freeness of VG for heart rate dynamics
The visibility graph approach to determining the Hurst exponent of a time series has been used suc-
cessfully in multiple fields. In 2016, Bhaduri and Ghosh compared it with the multifractal detrended
fluctuation analysis method (MF-DFA) which had already been widely used. They opted for MF-DFA
over DFA, as the latter requires longer sample sizes to be accurate [27].
The time series under investigation for their research is the instantaneous heart rate of subjects before
and after they start meditating. Two data sets are used, one for Chi meditation and one for Kundalini
yoga, with two time series each for a total of four. The metrics that are considered are the Power of
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Figure 2.4: Degree distributions of three fractal Brownian motions with different Hurst exponents. Each visibility graph displays
power law behavior in its degree distribution, but with varying exponents [29]

Scale-freeness of Visibility Graph (henceforth denoted as 𝛾 in accordance with other literature) and the
multi-fractal spectrum 𝑓(𝛼). The two metrics cannot be directly compared as 𝛾 measures fractality,
while 𝑓(𝛼) shows multi-fractality. Multi-fractal series are series that cannot be described with a single
exponent, they require a spectrum of exponents. However, both methods do measure the complexity
of the time series, which is enough for the purposes of differentiating between meditative and non-
meditative states in the subjects.
The MF-DFA analysis yields results in which the difference between the spectra of the meditative and
pre-meditative states are clearly noticeable with increases in width of 32.2-175%. However, the MF-
DFA analysis does not reach conclusive results for the data of the subjects performing yoga. This is
due to the insufficient length of the data. The value of 𝛾 extracted from the VG, on the other hand,
gives reliable results for both data sets. The value of 𝛾 is consistently larger when a subject is either
meditating or performing yoga when compared to the idle state. For the Chi meditation data set, a
positive correlation between the two measured metrics is found. This means the method of using the
visibility graph is a suitable way of determining the fractality of a time series, with the added benefit of
being able to do so for short time series [27].
A similar research was conducted by Jiang et al. who also came to the conclusion that the visibility
graph method can yield reliable results from a time series as short as 400 samples [34].

Improved Power of Scale-freeness VG for diagnosis of Autism Spectrum Disor-
der
Ahmadlou et al. [35] propose an addition to the method of calculating the Power of Scale-freeness
by analyzing the time series at different scales. The original time series is divided into sequences of
different lengths, spanning different time scales. The sequences are constructed as follows:

x𝑘𝑚 = [𝑥𝑚 , 𝑥𝑚+𝑘 , 𝑥𝑚+2𝑘 , ..., 𝑥𝑚+⌊𝑁−𝑚𝑘 ⌋𝑘] (2.6)

The sequence is constructed using samples in the data that are a distance 𝑘 apart, with an initial offset
𝑚 and 𝑚 = (1, 2, ..., 𝑘). This means for the initial value of 𝑘 = 1, only one sequence is constructed,
for 𝑘 = 2, two sequences are constructed that each contain half the data points, and so on. For each
individual sequence, the NVG is constructed and the exponent of the degree distribution of this graph,
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𝛾𝑚(𝑘), is calculated. The values of 𝛾 for each scale 𝑘 are averaged.

𝛾(𝑘) = 1
𝑘

𝑘

∑
𝑚=1

𝛾𝑚(𝑘) (2.7)

The value of 𝑘 is increased with increments of 1, until the resulting 𝛾(𝑘) value falls within some prede-
termined distance of the previous value.
This method is applied to a generated time series with a known fractality. It is shown to be more
sensitive to fractality of the time series than the method that simply calculates 𝛾 using the whole time
series, especially when noise is introduced on the signal. After this successful benchmark, the im-
proved method has been applied to EEG scans for the diagnosis of autism. The improved method
shows better results in discriminating between autistic and non-autistic test subjects [35].

Seismic activity
The visibility graph has also been used to analyze data of seismic activity. It has already been shown
that there is structure in the occurrences of earthquakes using, among other techniques, DFA analysis
[26]. The same authors later investigate whether the visibility graph can give more insight into seismic
sequences.
The research uses data of seismic activity in Italy from 2005 to 2010, with records of all activity of
magnitude 1.9 and up on the Richter scale. A natural visibility graph is created using these data. The
degree distribution of the graph is plotted on a log-log scale. The graph is found to be scale-free,
since the degree distribution obeys a power-law 𝑃(𝑘) ∼ 𝑘−𝛾. The exponent 𝛾 is estimated using the
Maximum Likelihood Estimate (MLE) and found to be almost exactly 3. Using the previously established
relations, the authors conclude that there is long range dependence between the data points in the data
sets [29]. After establishing the dependence, the data are transformed in several ways and the process
is repeated. It is shown that the power-law behavior in the degree distribution persists even if the data
points are shuffled and when a threshold value is introduced that discards a part of the data set [9].

Stock market analysis
The interest in finding long range correlations is ever present in the world of finance. The visibility
graph has been used to analyze behavior of time series in the stock market. In 2010, a research was
conducted that constructed the visibility graph of 30 stock indices. In this case, weights are assigned
to the links of the graph that correspond to the difference of price height over the time between the two
data points. Using the resulting weighted graphs, three spanning trees are constructed for each graph.
The minimum, maximum, and random spanning trees are constructed. It is investigated whether these
trees exhibit allometric scaling behavior. The scaling behavior in the minimum spanning tree is found
to be similar to the scaling behavior in the trees resulting from fractal Brownian motions. Furthermore it
was found that the scaling factors are dependent on the length of the series and on the Hurst exponent
of the Brownian motion [36].
In 2015, Stephen et al. [28] analyzed the behavior of stock indices using visibility graphs. Their work
focuses on the evolutionary behavior of the daily returns of stocks over time. The time series under
investigation are divided into short segments. The visibility graph for each of these segments is con-
structed and the collection of these graphs are represented in a new network. Each unique visibility
graph is seen as a state, which is represented by a node in the new network. Two nodes 𝑖 and 𝑗 are
connected by a uni-directional link if state 𝑖 is followed by state 𝑗 in the time series. This results in a
state transfer network for the whole time series. In this network, the links that occur more often have
a higher weight, and the degree of a node is representative of the occurring frequency of the state it
represents. It is then investigated whether the transfer properties are dependent on the order of the
data by repeating the same process for shuffled versions of the time series in which the samples are
randomly shuffled although the authors fail to mention how the samples are shuffled. The ratio of oc-
curring frequencies between the original time series and the shuffled time series are determined. The
states that occur significantly more often in the original data are as seen the leading motifs for that
series. The times that these states occur are taken as a new time series. It is investigated whether a
pattern in these occurrences can be identified.
The described method is first applied to generated fBm series with different Hurst exponents. It is found
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that the occurrence frequencies are significant against the frequencies in the shuffled series, and multi-
ple motifs can be selected. Through R/S analysis it is shown that the intervals between the occurrences
of the leading motifs have scaling exponents that are positively correlated to the Hurst exponent of the
original time series. Similar results are found for the stock market data from NASDAQ and S&P500. It
is found that the NASDAQ prices exhibit more fractality.
The contributions of Stephen et al. are twofold; the state transfer network yields insight into the evo-
lutionary behavior of the daily stock returns over time, while the R/S analysis of the occurrence times
between the leading motifs gives an indication of the fractality of the series. For a definitive conclusion
on the latter subject, more data is needed [28].

Classification of modulation schemes
A method for differentiating between different modulation schemes, such as Quardature Amplitude
Modulation (QAM) and Binary Phase Shift Keying (BPSK), using the concept of the visibility graph was
introduced by Xuan et al. in 2022 [4]. In the first part of their work, the CLPVG is introduced. This is the
combination of a Circular VG with Limited Penetration as described in Section 2.2. It is shown that this
implementation of the visibility graph is able to more accurately extract information of noisy signals in
time domain when compared to the Limited Penetration VG (LPVG). For the first test, chaotic signals
with and without additive white Gaussian noise are generated. The CLPVG and LPVG algorithms are
used to obtain a degree distribution of the noisy and clean signals. It becomes evident that the degree
distribution of the CLPVGs with noise are closer to the degree distribution of the original signal. The
same can be said for other graph features such as average degree, average path length, and average
clustering coefficient. It is concluded that with the right choice of parameters, the CLPVG is less sen-
sitive to noise for accurate feature extraction compared to the LPVG [4].
In the second part of their research, Xuan et al. make use of sub-graph networks (SGN) for better fea-
ture extraction. The SGN is constructed by defining the sub-graphs in the network. This can be done
in multiple ways, corresponding to different order SGNs. A first order SGN is created by taking all the
links in the original network as nodes for the SGN. These nodes are then connected in the SGN if the
links share a terminal node in the original network. This is also known as a line graph. The resulting
network inherits structural features of the original network and can be used to augment the original
network which can improve classification accuracy [37]. The work of Xuan et al on the CLPVG restricts
itself to first order SGNs.
This method is then put to the test with a use case scenario that is inherently noisy: radio wave com-
munication. A generated data set containing 11 different modulation types with varying noise levels is
used. After some data pre-processing, the CLPVGs of the signals are constructed and subsequently,
the first order SGN of the CLPVGs are constructed. Machine learning algorithms are used to interpret
the graph structures as data and eventually label the signals with a certain modulation scheme. The
whole process is visualized in Figure 2.5. It is found that the combination of SGN and CLPVG in the
method for classifying signals, leads to the highest accuracy of determining the modulation type that
was used. This holds especially for cases with high SNR. The method could be further optimized by
tuning the parameters for the curvature of the arcs and the amount of allowed penetration [4].

Rolling bearing fault diagnosis
The concept of the visibility graph can be used to monitor the status of an object under surveillance.
Gao and Yu [8] applied this to fault diagnosis in rolling bearings in 2019. The vibrations in the ma-
chinery parts are recorded over time, forming a signal. The vibration signals can have non-linear and
non-stationary properties, which limits the effectiveness of classical signal processing measures [8].
Using the algorithm for the Horizontal Visibility Graph (HVG), a visibility graph is constructed for the
signal. This graph is then used to diagnose faults in the rolling bearings. Instead of analyzing typical
graph metrics such as average degree, clustering coefficient, and others, Gao and Yu make use of
graph signal processing. In this field of research, traditional signal processing methods are extended
to be used on graphs [38]. In particular, Gao and Yu use the total variation on graph (𝑇𝑉𝐺), which mea-
sures the smoothness of graph signals. The graph signal, in this case, is the measured vibrations at
the time steps that correspond to the nodes in the HVG. During normal operation of the rolling bearings,
these signals should be smooth, i.e. the differences in measured vibration between connected nodes
are relatively small. The vector containing all the measured vibration values and the adjacency matrix
of the HVG are used to calculate 𝑇𝑉𝐺. The outcome is then compared to previously obtained training
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Figure 2.5: Flowchart demonstrating the classification process of signals based on CLPVG graph transformation and machine
learning algorithms [4]

data where 𝑇𝑉𝐺 values are assigned to known conditions of the rolling bearing. The classification of the
measured state is done using the Mahalanobis distance, which is a measure that compares the differ-
ence between two vectors as compared to variation within the vectors themselves [39]. The measured
state is classified as the known state that is closest according to Mahalanobis distance measure. The
known states have been previously established using training data, the measured state is compared
to these established states of operation of the rolling bearing.
This method is verified using data sets of two universities. It is found that the method can accurately
distinguish the different states of the rolling bearing under supervision. The method is compared to
classical time domain methods approximate entropy (ApEn), permutation entropy (PE), kurtosis (KU),
and root mean square (RMS). From the experimental results, it is evident that the total variation on the
HVG of the vibration signal outperforms those methods. The authors conclude by proposing investiga-
tion into monitoring systems over time with varying conditions [8],

Classification of medical test results
In order to better understand temporal behavior in biological systems, Zheng et al. developed a method
for community detection in networks that represent a time series [40]. A community in a network is a set
of nodes that are more interconnected with themselves than with the rest of the network. Communities
in a network that represents a time series, such as the visibility graph, are representative of a certain
shared temporal behavior. A community in the network can thus be representative of the state of the
biological system.
In order to prove this, Zheng et al. used both simulated time series and various biological data sets.
The time series are converted to complex networks using their proposed Weighted Dual Perspective
Visibility Graph (WDPVG). The advantages of this implementation are that the effects of uneven sam-
pling are diminished, and that events related to troughs in the signal can also be detected. To find
communities in the resulting graphs, the authors propose a community detection algorithm based on
shortest paths in the network. In this algorithm, the shortest path {𝑣𝑠𝑖 } of some length 𝑘 between the
start node (corresponding to the first data point) and the end node (corresponding to the last data point)
is found. In the next steps, all other nodes in the network are divided into hubs. Each hub corresponds
to a node in path {𝑣𝑠𝑖 }. For each node in the network, it is determined which node in path {𝑣𝑠𝑖 } is closest.
The node is then added to the hub corresponding with the closest node in path {𝑣𝑠𝑖 }. If two nodes in
path {𝑣𝑠𝑖 } are equally close, the node that corresponds with the earliest data point is selected. Finally,
hubs can be merged if the distance between the corresponding nodes in path {𝑣𝑠𝑖 } is below a threshold
value 𝜖. This results in all nodes in the graph being allocated to some community and the number of
communities ranges from 1 to 𝑘, depending on the threshold 𝜖.
The method is first applied to the simulated time series, which are a sine wave, a block wave, and a
saw tooth. All three are types of signals are generated with added noise and missing data points to test
the robustness of the method. The method proposed by the authors proves to be better at identifying
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the periods of the generated signals when compared to the Louvain and Girvan-Newman methods for
community detection, especially when noise and missing samples are introduced. The same methods
are then applied to the biological data sets. Here it is also found that the method proposed by Zheng
et al. [40] can more accurately represent the states of the biological systems when compared to the
Louvian and Girvan-Newman methods. The proposed method seems suitable for identifying different
states within a time series, though more research is recommended. It should be explored how missing
peak data would affect the method, especially in the case that the missing data is much larger than other
values. The authors suggest a sliding time window provides smoothing. Furthermore, the process of
hub merging can be further investigated [40].

Synchronization of chaotic signals
VG-based methods for determining a measure of synchronization of chaotic systems was proposed
and found to be successful under certain circumstances [41], [42]. The VG-based methods presented
in [41] work as follows: the output of two systems, vectors 𝑦1 and 𝑦2, are used to construct two visibility
graphs. The degree sequences (DS) of the visibility graphs are stored as one dimensional vectors. The
similarity of the degree sequences is used as a measure for synchronization between the systems. The
similarity is determined as follows:

𝑆 = |
𝑐𝑜𝑣[𝐷𝑆𝑦1, 𝐷𝑆𝑦2]
𝜎𝐷𝑆𝑦1 ⋅ 𝜎𝐷𝑆𝑦2

| (2.8)

This results in a value between 0 and 1, where 0 corresponds to no synchronization and 1 corre-
sponds to total synchronization. The visibility graphs are constructed as NVGs, HVGs as well as NVGs
and HVGs of time series that were embedded in higher dimensions similar to the embedding described
in Section 2.1. These methods were compared to the existing methods for detecting synchronization:
cross-correlation, coherence, imaginary part of coherence, synchronization likelihood, phase coher-
ence and phase lag index. Multiple noise conditions were used.
The test was performed for uncoupled non-identical systems, coupled non-identical systems, uncou-
pled identical systems, and coupled identical systems. Accurate measurements of the synchronization
should show no synchronization for uncoupled identical systems and the level of synchronization should
increase for increasing coupling factor (C) until full synchronization is achieved. For non-identical sys-
tems, the synchronization still increases from near zero for small C, but should never reach full syn-
chronization for any C. The HVG method with no embedding was found to be the most accurate of
the VG methods, outperforming all other methods except synchronization likelihood when determining
the synchronization between two coupled Rössler systems in a noise free environment. When noise is
introduced, however, the VG-based methods have a less accurate performance. They are no longer
able to detect full synchronization between coupled identical systems. Ahmadi et al. [41] state that
the contamination of the system with noise results in a degree distribution skewed towards higher de-
grees. This hinders the ability to detect synchronization between the systems, and therefore suggests
that VG-based methods are not likely to be useful for detecting synchronization in a noisy environment
[41].

Quantify statistical time reversibility
Some processes are statistically time reversible. This means that for a process 𝑋(𝑡) an output
[𝑋(1), 𝑋(2), ..., 𝑋(𝑁−1), 𝑋(𝑁)] is equally probable as the reverse output [𝑋(𝑁), 𝑋(𝑁−1), ..., 𝑋(2), 𝑋(1)].
If a process is time irreversible, this indicates non-stationarity and the presence of chaotic or non-
Gaussian dynamics. A thermodynamic process that falls out of equilibrium may start to exhibit such
dynamics. Using a time directed version of the HVG, the time irreversibility of a time series can be
quantified [24]. The method is proposed as folows. The time directed HVG (dHVG) is constructed from
the time series. This means that the lines of sight only extend forwards in time from each sample in the
series. Two degree distributions are formed as a result: the in-degree and out-degree. The in-degree
of a node is the number of links that lead into that node, the out-degree is the number of links that
extend from that node. The in-degree distribution of the time series 𝑥(𝑡) is by definition equal to the
out-degree distribution of reversed time series 𝑥′(𝑡), and vice versa. The difference between the out-
degree distributions (𝑃𝑜𝑢𝑡(𝑘)) of the time series x(t) and its reverse, is a measure of the irreversibility
of the process. This difference is quantified using the Kullback-Leiber divergence (KLD).
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𝐾𝐿𝐷[𝑃𝑜𝑢𝑡(𝑘)||𝑃𝑖𝑛(𝑘)] =∑
𝑘
𝑃𝑜𝑢𝑡(𝑘)𝑙𝑜𝑔(

𝑃𝑜𝑢𝑡(𝑘)
𝑃𝑖𝑛(𝑘)

) (2.9)

The distribution 𝑃𝑖𝑛(𝑘) of the original series is used instead of 𝑃𝑜𝑢𝑡(𝑘) of the reversed series, be-
cause the distributions are equal and this prevents the need for constructing the dHVG twice. The KLD
is equal to 0 for identical distributions, indicating perfect reversibility. The larger the value for KLD, the
higher the irreversibility of the process.
To verify the method, a process is chosen of which the reversibility can be tuned via parameter 𝑉. It is
shown that the method is accurate at detecting the irreversibility as 𝑉 is increased beyond 𝑉 = 0. The
quantification of the irreversibility is improved when the distributions in Eq. (2.9) are replaced with the
higher order distribution 𝑃𝑖𝑛(𝑘, 𝑘′), which indicates the probability of a degree 𝑘 given that the previous
node has degree 𝑘′. With this method, the time reversibility of a process can be accurately assessed
without the need for coarse graining or making assumptions as is necessary for other methods. This
can be used to monitor processes and recognize when they fall from their equilibrium state [24].

Time series forecasting
A use for the time directed NVG is described by Hu and Xiao [10], who use a variation of the dNVG
to forecast future entries of a time series. The dNVG of the time series is constructed, following the
standard NVG visibility criterion but only allowing links that move forward in time. Then it departs from
the dNVGmethod proposed by Lacasa et al. [24], as the nodes that are not connected by these forward
or, as the authors call them, ’positive’ links, are connected by ’negative’ links that go backwards in time.
The negative link set 𝐸 = 𝐿𝑛 is thus by definition the complement of the positive link set 𝐿𝑝. An analysis
of the graph based on random walks is conducted as follows. For the resulting graph 𝐺(𝑁, 𝐿𝑝∪𝐿𝑛), two
transition probability matrices are generated. The matrix 𝑃𝑝 indicates the probability of a random walker
to move from one node to another along a positive edge. The matrix 𝑃𝑛 indicates the probabilities for a
random walker to move to another node using a negative edge. Using these matrices, an expression
can be found for the likelihood of a random walker ending up at node 𝑦 when starting from node 𝑥 after
one step. The expressions for each of these nodes are used to compare the similarity of each node in
the network.
Take a series 𝑦(𝑡) of length 𝑁. A new time series is constructed 𝑌(𝑇) to reflect the fluctuations between
the samples in 𝑦(𝑡) so that for any sample entry 𝑚 in the new series the following holds:

𝑌𝑚 = (𝑦𝑚+1 − 𝑦𝑚)/𝑦𝑚 (2.10)

The new time series 𝑌(𝑇) of length 𝑁 − 1 is converted into a graph 𝐺(𝑛, 𝐿𝑝 ∪ 𝐿𝑛) using the afore-
mentioned dNVG method, where 𝑛 is the set of nodes and 𝐿𝑝 ∪ 𝐿𝑛 is the set of links. The transition
matrices are generated, where each element of the matrix is either 0, or 1/𝑘 with 𝑘 being the number
of possible transitions from that node. The probabilities for a random walker to move from a node 𝑥 to
a node within 𝑛 are given by a vector 𝜋𝑥(𝑡). The probabilities are found by

𝜋𝑥(𝑡) = 𝑃𝑇𝜋𝑥(𝑡 − 1) (2.11)

where 𝜋𝑥(0), the initial condition, is a vector of length 𝑁 − 1 with all zero entries except a one at
the 𝑥𝑡ℎ entry. The probability for a random walker to move from node 𝑥 to node 𝑦 in 𝑡 steps and the
probability for a random walker to move from node 𝑦 to node 𝑥 in the same amount of steps are com-
bined to define a local similarity measure between the two nodes. The results for different values of
𝑡 are superimposed to arrive at the final similarity 𝑆𝑆𝑅𝑊𝑥𝑦 where SRW stands for superimposed random
walker.
To forecast the value of the next entry in the time series 𝑦(𝑁 + 1), the similarity scores 𝑆𝑖 between
𝑛𝑁−1 and all previous nodes 𝑛𝑖 are collected. The authors pose that nodes with a high similarity score
are more likely to have a similar future [10]. Recall that the entries in 𝑌(𝑇) reflect fluctuations in the
time series 𝑦(𝑡). An estimation for 𝑦𝑁+1 can now be made by taking a weighted average of all previous
entries in 𝑌(𝑇), where each entry is weighted with the corresponding similarity score. Let the resulting
expected fluctuation be 𝐸𝑓. Then the estimate for the next entry is defined as 𝑦′𝑁+1 = 𝐸𝑓𝑦𝑁.
This method has shown accurate results in experiments with real-world data, outperforming other fore-
casting methods by a small margin [10].
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2.4. Summary
As demonstrated by the discussed papers in this section, wide variety of fields can make use of VGs
in different ways. In the literature that uses the concept of the VG, a clear structure can be identified.
A data set of some time series is taken as the starting point. From there, a type of VG is constructed.
However, from the VG itself and its metrics, hardly any conclusions are drawn. There is another layer
of analysis necessary in order to produce results from which conclusions on the time series can be
asserted. The different materials and methods for all of these steps are shown in Figure 2.6.
This thesis will focus on the second column of Figure 2.6, i.e. the construction of the visibility graph.
Although it is only one step in the process, it is the step that most fundamentally changes the way the
information in the time series is presented and structured and there are still unanswered questions as to
how this restructuring impacts the information [17]. In Chapter 3, this thesis will delve into the way that
different VGs are constructed and attempt to give a mathematical interpretation that can be attributed
to the VG.
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Figure 2.6: Overview of the structure found in literature that uses the concept of the VG



3
VG Methodology and Metrics

Although many methods for constructing visibility graphs have been proposed, the understanding of
what information the graph holds is still lacking. Past works have mostly focused on the practical appli-
cations of the visibility graph, for example to characterize states in a process. Despite the successes
that have been achieved with these methods, none of the works as of the time of writing fully explain the
relation between the time series and the visibility graph [17]. The transformation from a time series to
a visibility graph is a ”lossy” one. Not all information from the time series data is captured in the graph,
especially if the graph uses a binary adjacency matrix [17]. This prevents a possible inverse operation
from correctly mapping the graph back to a series of values. Since this first publication, variations of
the VG have been proposed, each with different criteria for a connection between two nodes. These
result in different graphs which have characteristics that make themmore suitable than other for certain
scenarios. This chapter will introduce the original VG and its later variations briefly. The original VG
and other variations are constructed from time series using MATLAB scripts. Although each variation
has its own script, all follow the same steps described in Algorithm 1.
The variable 𝑖 denotes the sample that is evaluated, and for all values 𝑎 before and after that sample,

Algorithm 1 General VG algorithm
1: for 𝑖 = 1 ∶ 𝑁 do
2: for 𝑎 = 1 ∶ 𝑖 − 1 do
3: if Neighboring node then
4: Add link
5: else
6: for 𝑐 = 𝑎 + 1 ∶ 𝑖 − 1 do
7: Count obstructing samples
8: end for
9: if Obstructions == 0 then
10: Add link
11: end if
12: end if
13: end for
14: Repeat loop for a = i+1:N
15: end for

the visibility criterion is checked. If this criterion is not violated, i.e. Obstructions == 0, a link is added
between node number 𝑎 and node number 𝑖. Not shown in the algorithm are a few tweaks that make
the script run more efficiently by breaking the loop at certain points and adding the links in a sparse
matrix manner to preserve memory. As discussed in Section 2.2, the different variations of VGs have
their own visibility criteria or additional steps in their construction. This chapter shows an implementa-
tion of the different variations and investigates graph metrics for various types of times series and their
VGs, in order to gain more insight into the VG algorithm.

15
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3.1. Natural visibility graph
This is the first implementation of the VG concept, proposed by Lacasa et al. in 2008 [1]. The visibility
criterion is defined in Eq. 2.3. A visualization of how a time series is transformed is shown in Figure
3.1. The randomly generated time series of length 𝑁 = 10 is plotted, and the lines of sight are drawn
in gray between the peaks of each data point. The resulting VG is plotted next to it. When examining
carefully, one can see the structure of the lines of sight between the peaks, is exactly the same as the
structure of the links between the nodes. This is how the NVG is constructed.

(a) Random time series (b) NVG

Figure 3.1: In subfigure (a), a random sequence of 10 numbers on the interval (0,1) is plotted. All lines of sight between the data
points are drawn. Subfigure (b) shows the resulting NVG for the sequence

(a) Sampled sine wave (b) NVG

Figure 3.2: In subfigure (a), a sampled version of a sine wave is plotted. The lines of sight between the data points are ommitted
for readability. Subfigure (b) shows the resulting NVG for the sampled sine wave

In Figure 3.2, the regular nature of the NVG of a periodic series becomes apparent. The phe-
nomenon of VGs with a limited amount of repeating structures arising from periodic sequences has
been described before [1]. When the periodic sequence is a sampled sine function, the relation be-
tween the sampling frequency 𝑓𝑠 and the frequency of the sine function 𝑓 is of importance for the
resulting NVG. If the sampling frequency is chosen such that 𝑓𝑠/𝑓 is not a rational number, this will
cause the signal to not be sampled at the exact same point in each period of the sine function. This
results in higher and lower peaks in the time series, and distorts the neat separation of periods. This
effect can be seen in the Figure 3.4. The addition of two periodic sequences 𝑡1 and 𝑡2 results in another
periodic sequence 𝑡𝑠𝑢𝑚. The period of 𝑡𝑠𝑢𝑚 is the lowest common multiple of the periods of 𝑡1 and 𝑡2
as shown in Figure 3.3. It is therefore expected that the NVG of such a sequence 𝑡𝑠𝑢𝑚 exhibits the
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repetitive behavior as shown in Figure 3.2, but at a larger scale. This is confirmed in Figure 3.4 where
the pattern in subfigure (c) is only repeated a few times.

(a) Two sine functions with frequencies 1 kHz and 1.3 kHz (b) Sum of the two sine fuctions

Figure 3.3: In subfigure (a), two periodic sequences are plotted.Subfigure (b) shows the resulting sum of the two sequences

(a) NVG for f = 1 kHz (b) NVG for f = 1.3 kHz (c) NVG of the sum of the waves

Figure 3.4: The impact of the changing ratio 𝑓𝑠/𝑓 is evident when comparing (a) and (b). In the sequence of 1 kHz, sampled at 32
kHz, the peak is always sampled exactly at the apex. This means there can be no lines of sight into another period. This changes
when the frequency of the sine is 1.3 kHz and is still sampled at 32 kHz. This causes some of the clusters that correspond to
the troughs of the sine are connected to troughs of another period. In subfigure (c) a repeated pattern can be seen but clearly at
a larger scale than the other two NVGs. This is due to the much longer period that the summed sequence has

There are certain characteristics that are shared by all VGs as a result of how the algorithm con-
structs the graph from the time series. As the NVG was the first algorithm to be proposed, this was the
first type of VG in which these features were discovered. Three characteristics that are often mentioned
in literature are that VGs are [1], [17]:

• Connected

• Undirected (in all cases except the dVG)

• Invariant under affine transformations

The latter is not a graph characteristic, rather a characteristic of the function of the algorithm. In later
work, Iacovacci and Lacasa add that by construction, a VG always contains a Hamiltonian path [43].
This is a path that visits all nodes in the graph exactly once. A VG always contains such a path,
because neighboring data points are always connected in the graph. Therefore the path 𝑝 = 1, 2, ..., 𝑁
is a Hamiltonian path for all VGs. These paths are indicated by red lines in the graph and the plots of
the time series. Exact characterizations of NVG graph metrics are as of yet not described in literature,
contrary to horizontal visibility graph’s (HVG) metrics. This is due to the NVG’s relative complexity [17].
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3.2. Horizontal visibility graph
For the HVG, lines of sight are only drawn horizontally. An advantage of this is the lower computational
complexity. The criterion for two nodes to be connected in the graph is defined in Eq. 2.4. The MATLAB
script is changed to reflect this altered visibility condition, but otherwise remains exactly the same as
the implementation used for the NVG. An example of a horizontal visibility graph is shown in Figure 3.5.
The same sequence of 7 random values between 0 and 1 is used as in Figure 3.1, and the lines of sight
are drawn in black. In Figure 3.6, a sampled sine wave is shown along with its HVG. The regularity
that forms in VGs of periodic sequences is very clear in this image.

(a) Random time series (b) HVG

Figure 3.5: In subfigure (a), a random sequence of 10 numbers on the interval (0,1) is plotted. All lines of sight between the data
points are drawn. Subfigure (b) shows the resulting HVG for the sequence

(a) Sampled sine wave (b) HVG

Figure 3.6: In subfigure (a), a sampled version of a sine wave is plotted. The lines of sight between the data points are ommitted
for readability. Subfigure (b) shows the resulting HVG for the sampled sine wave

The horizontal visibility graph can be used to identify randomness in a time series and to discriminate
between chaotic series and independent and identically distributed theory. This is done using, among
other metrics, the degree distribution, clustering coefficients, and average path length [5].

Characteristics of HVGs for specific time series types
Shared characteristics of VGs are found in VGs that are constructed from similar time series. For
example, the exponential behavior of the degree distribution in VGs constructed from fractal series has
been well-documented [1]. The HVG, due to its lower complexity, lends itself well to find analytical
results regarding the relation between time metrics and graph metrics, and between different graph
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metrics [5]. It is possible to determine the mean degree of the HVG from the period T of the time
series. The following theorem is found by Núñez et al. [44]:

𝑘̄(𝑇) = 4(1 − 1
2𝑇) (3.1)

This means the mean degree of a HVG is always within the bounds 2 ≤ 𝑘̄ ≤ 4. The mean degree is
minimal for a constant series, equivalent to period 𝑇 = 1, and maximal for an aperiodic series which is
equivalent to an infinite period length.
For a random time series it is found that the degree distribution of a HVG is always equal to Eq. (3.2)[5].

𝑃(𝑘) = 1
3 (

2
3)

𝑘−2
(3.2)

The degree distribution of the HVG of a random time series is thus not dependent on the probability
distribution function that governs the height of the data points in the time series [5]. The proof arises
from taking a generic data point and investigating the likelihood of that ’seed datum’ (S) having a certain
amount of neighbors. The neighbors are divided into two categories, ’bounding data’ (B) and ’inner data’
(I). The former are data points at either side of the seed that are higher than the seed datum. The latter
are data points that are lower than the seed datum and lie in between the seed datum and the bounding
datum on either side. The likelihood of a certain node having 𝑘 neighbors can then be described [5].

𝑃(𝑘) =
𝑘−2

∑
ℎ=0
[𝑆][𝐵]2[𝐼]ℎ[𝐼]𝑘−2−ℎ (3.3)

In this expression, all square brackets indicate the probability of that event occurring. The proba-
bility of each of these data points occurring is simply described by taking the integral of the probability
distribution function 𝑓(𝑥) and setting appropriate boundaries [5]. Depending on the number of neigh-
bors 𝑘, a multitude of configurations is possible. The inner nodes could be all on the left side, all on the
right side, or divided over both sides of the seed node. The summation in Eq.(3.3) sums the likelihood
of each of these configurations occurring, in which ℎ represents the number of inner data found on the
left side of the seed node.
This illustrates why proofs of this nature are possible for HVGs, but similar relations have not been
found for the NVG algorithm. Finding a bounding data point for a seed datum in an NVG is not as
straightforward as finding the first data point that is higher than the seed.
The findings are consistent with the result found in Eq. (3.1), because 𝐸[𝑃(𝑘)] = ∑∞𝑘=2 𝑘 ⋅ 𝑃(𝑘) = 4.
As 𝑃(𝑘) is the degree distribution for random time series, this finding is in agreement with earlier state-
ment regarding mean degree for aperiodic series. In later research, Lacasa investigated the effects on
the degree distribution of an HVG when using an integer time series instead of a continuous series.
A series of length 𝑁 = 105 would be generated where each sample would be chosen from a set of
integers 𝑥 ∈ [1, .., 𝑛]. It was found that for sufficiently large 𝑛, the results converge to the findings of the
continuous case in Eq. (3.2) [45].
The local clustering coefficient of the HVG of a random time series can also be neatly defined as a
function of the local degree. The local clustering coefficient 𝐶𝑖 of node 𝑖 is a measure of the connectiv-
ity between the neighbors of node 𝑖. The relation between degree and clustering coefficient of a node
is described in Eq. (3.4). Combined with the degree distribution for a random time series, this leads to
the local clustering coefficient distribution given in Eq. (3.5).

𝐶(𝑘) = 𝑘 − 1
(𝑘2)

= 2
𝑘 (3.4)

𝑃(𝐶) = 1
3 (

2
3)

2/𝐶−2
(3.5)

The above relations hold for an infinite random series and are again not dependent on the probability
distribution that governs the height of the data points of the time series. When tested with finite random
time series, the relations are confirmed [5]. The findings are used to discriminate between HVGs that
are constructed from different types of time series, but not to discriminate between graphs that are a
product of the HVG algorithm, and graphs that are not.



20 3. VG Methodology and Metrics

3.3. Effects of limited penetration
When limited penetration is applied to a VG algorithm, it changes the visibility criterion to allow a number
of obstructing samples. The number of samples that is allowed to obstruct the line of sight, while still
resulting in a link in the graph, is known as the penetration distance 𝑚. In Algorithm 1, the condition
Obstructed == 0 is changed to Obstructed <= 𝑚 to effect the change in visibility criterion. An example
of how this affects a VG, is shown in Figure 3.7. The same random sequence of length 7 is plotted
as Figures 3.1 and 3.5. The original lines of sight according to the NVG algorithm are drawn in black,
with the hamiltonian path highlighted red. The introduction of limited penetration with 𝑚 = 1 allows for
additional ”lines of sight” to be added. These are drawn in red. The resulting NVG and Natural Limited
Penetration Visibility Graph (NLPVG) are shown and the added links in the latter are highlighted green.
In this case, not only neighboring nodes are connected by definition, but also the nodes next to the
neighbors. Overall, the NLPVG is much more interconnected.

(a) Random sequence of integers (b) NVG of integer series

(c) NLPVG of integer series

Figure 3.7: Comparison of the resulting VGs when limited penetration with m = 1 is applied

Exact effects of adding limited penetration to an algorithm have been described for the Horizontal
Limited Penetration Visibility Graph (HLPVG). In this case, the HVG algorithm is used with the addition
of some penetrable distance on a random time series. The exact results for the degree distribution,
mean degree, and local clustering coefficient are found. The proofs follow a similar path as the ones
described for the HVG, except the penetrated data point P is introduced into the configuration. Each
seed node will now connect to two bounding data, and at least two penetrated data per definition of the
HLPVG algorithm. The exact expression for the degree distribution 𝑃(𝑘) is now described as:

𝑃(𝑘) =
𝑘−2(𝑚+1)

∑
ℎ=0

(2𝑚 + 1)ℎ[𝑆][𝑃]2𝑚[𝐵]2[𝐼]ℎ[𝐼]𝑘−2(𝑚+1)−ℎ (3.6)
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The expression is similar to Luque’s findings for the HVG [5], with the addition of terms for the penetrated
data occurring 2𝑚 times where 𝑚 is the penetration distance. Using the same method of finding the
probability for each event with the bounded integrals of the probability distribution 𝑓(𝑥), the degree
distribution of the HLPVG of a random series simplifies to the following equation [46].

𝑃(𝑘) = 1
2𝑚 + 3(

2𝑚 + 2
2𝑚 + 3)

𝑘−2(𝑚+1) (3.7)

From this finding, the average degree for a random series can be found by taking:

𝑘̄ =
∞

∑
𝑘=2(𝑚+1)

𝑘𝑃(𝑘) = 4(𝑚 + 1) (3.8)

The expression becomes more complicated for a series that exhibits periodicity. Wang et al. define a
periodic sequence as ’𝑋𝑡 = ..., 𝑥0, 𝑥1, 𝑥2, ..., 𝑥𝑇 , 𝑥1, 𝑥2, ...where 𝑥0 = 𝑥𝑇 with no repeated values in a period’
[46]. Here, 𝑇 is the length of the period and the sample 𝑥𝑇 is the first sample of the next period. It should
therefor have the same value as 𝑥0, the first sample of the first period. Furthermore, the data points 𝑥0
and 𝑥𝑇 are chosen as the highest points in the period. With these definitions, an iterative process of
removing the lowest data point and its associated links is started. The number of links associated with
the node of the lowest data point is always 2(𝑚 + 1). This process is repeated 𝑇 − (2𝑚 + 1) times,
meaning 2(𝑚 + 1) ∗ (𝑇 − (2𝑚 + 1)) links are removed. The result is a complete graph which means
there is a fixed number of remaining links. By counting the number of remaining and removed links,
the number of links within a period can be found and thus the average number of links of a node within
this period. It is found that the average degree of a node in an HLPVG of a periodic sequence is:

𝑘̄(𝑇) = 2(
𝐿𝑟𝑒𝑚𝑜𝑣𝑒𝑑 + 𝐿𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

𝑇 ) = 4(𝑚 + 1)(1 − 2𝑚 + 12𝑇 ),𝑚 << 𝑇 (3.9)

No exact expression for the local clustering coefficient is found, although lower and upper bounds have
been defined and confirmed with numerical results [46].

3.4. Dual Perspective
Although only used in one paper, the Dual Perspective (DP) principle offers a very profound addition
to the VG. It enables the identification of extreme events that present themselves as negative values
in the time series. In Figure 3.8, this is illustrated. Sample number 4 has the largest absolute value
(𝑥4 = −5), but in the NVG shown in Figure 3.8(c) node 4 is rather unremarkable with a degree of 2 and
very low centrality measures. In the DPVG, the time series is reflected in the x-axis as shown in Figure
3.8(b). The NVG of this reflected series is constructed, and combined with the NVG of the original
series. The DPVG is the result of the following operation:

𝐴𝐷𝑃𝑉𝐺 = 𝑜𝑟(𝐴𝑁𝑉𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 , 𝐴𝑁𝑉𝐺𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑) (3.10)

The letter A indicates the adjacencymatrix of the respective graphs. Because these are binarymatrices,
an OR operation can be used to combine them. In the resulting matrix, there will be a link when there
is a link in either the original NVG, the NVG of the reflected series, or both. Figure 3.8(d) shows the
DPVG, and node 4 now has the highest degree and is much more central to the graph.
The authors that proposed this method used the metric of shortest paths in the VG to do community
detection [6]. This metric is heavily affected by the introduction of Dual Perspective, if there are large
negative values in the time series.

3.5. Metrics
Using MATLAB, various VG implementations are scripted and applied to identical sequences. The
differences between the resulting graphs are measured using a collection of graph metrics, specifically
average degree, clustering coefficient, average shortest path and assortativity.

First, a random sequence of length 𝑁 = 103 is generated with each entry chosen from a uniform
distribution in the range 𝑥𝑖 ∈ [0, 1]. The various VG algorithms are applied to this sequence. The
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(a) Sequence with extreme value below 0 (b) The sequence in (a) reflected in the x-axis

(c) NVG of sequence in (a) (d) DPVG constructed using sequences in (a) and (b)

Figure 3.8: The construction and effects of Dual Perspective when there is a negative extreme value present in the data

metrics of these graphs are compared in Table 3.1. Then another sequence is generated using a normal
distribution for 𝑥𝑖, with 𝜇 = 0 and 𝜎 = 1. The various VG algorithms are applied to that time series. The
results for the time series of the normal distribution are shown in Table 3.2. Lastly, a periodic sequence
is generated. One period of this sequence consists of the integers 1 through 10 in a random order.
The period with the same random order is repeated 100 times to form the full sequence, resulting in a
length of 𝑁 = 103 samples. The metrics belonging to the graphs resulting from the periodic sequence
are displayed in Table 3.3.

The values that are found for the nodal properties of HVGs are consistent with the findings in liter-
ature. The average degree 𝑘̄ is almost equal to 4 for the random sequence. This confirms the relation
given in Eq. (3.1) because for random sequences the period is equal to infinity. When changing the
uniformly distributed random series to a normal distribution, the metrics change. All metrics, except
for the average degree and clustering coefficient of the HVG and HLPVG, are somehow dependent on
the probability distribution function of the time series. In previous sections it has been shown that the
degree metrics and clustering coefficient are indeed independent of the distribution of the time series.
However, Tables 3.1 and 3.2 show that this is not true for all metrics. The variance for these values
over 100 realizations of the random time series also indicates that most NVGmetrics are more sensitive
to the stochastic process than the HVG metrics are. From the findings in Section 3.2, it was already
concluded that the average degree and clustering coefficient of the HVG can be exactly determined,
regardless of the probability density function of the time series. The low variance is therefore expected
for the HVG and HLPVG. The length of the average shortest path is the exception. The HVG and
HLPVG have higher significantly variances for this metric, compared to the NVG and NLPVG respec-
tively. The variance for the clustering coefficient is negligible for all VG implementations, being in the
order of 10−5 or lower.
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Table 3.1: Various graph metrics (Average degree, clustering coefficient, average shortest path, assortativity) per VG type for the
same uniformly distributed random sequence (m = 1 for all LP variants). The mean value of all 100 realizations and the variance
are displayed.

avg. degree clustering c. avg. sp. assortativity
Mean Var Mean Var Mean Var Mean Var

NVG 5.44 0.005 0.748 0 5.82 0.060 0.178 0.0003
HVG 3.97 0.000 0.647 0 7.91 0.237 0.157 0.0002
NLPVG 10.87 0.014 0.728 0 4.43 0.013 0.218 0.0002
HLPVG 7.91 0.000 0.654 0 5.58 0.058 0.262 0.0001
DPVG 8.86 0.012 0.580 0 4.98 0.023 0.150 0.0002

Table 3.2: Various graph metrics (Average degree, clustering coefficient, average shortest path, assortativity) per VG type for the
same normal distributed random sequence (m = 1 for all LP variants). The mean value of all 100 realizations and the variance
are displayed.

avg. degree clustering c. avg. sp. assortativity
Mean Var Mean Var Mean Var Mean Var

NVG 5.86 0.006 0.752 0 5.12 0.052 0.165 0.0004
HVG 3.97 0.000 0.647 0 7.91 0.210 0.157 0.0003
NLPVG 11.64 0.012 0.734 0 3.99 0.012 0.177 0.0002
HLPVG 7.91 0.000 0.654 0 5.61 0.051 0.261 0.0001
DPVG 9.65 0.0155 0.581 0 4.39 0.014 0.120 0.0002

For the periodic sequence of period 𝑇 = 20, the relation still holds as the average degree decreases to
around 3.8. The average degree of the HLPVGs also confirms the previous findings. The VGs of the
random series are used to compare the degree distributions that result from the different VG algorithms.
The distributions are shown in Figure 3.10. The exponential decay of 𝑃(𝑘)𝐻𝑉𝐺 that was predicted by
Luque et al. is clearly visible here. Furthermore, the limited penetration leads to distributions that are
skewed towards higher degrees as expected. The peak around degree 2 for the HVG is due to the fact
that any sample that is between two larger samples will always lead to a degree of 2.
When the degree distribution corresponding to the periodic sequences are investigated, the regularity
of the VGs becomes apparent. The degree sequences of all graphs are repeating integer sequences.
The length of the repeating vectors in the degree sequences coincides with the length of the repeating
vector in the sampled sine wave. This holds for all VG implementations, and allows for the estimation
of the period of a series from the VG as has been previously noted in literature [44].

Table 3.3: Various graph metrics per VG type for an identical periodic sequence with period 𝑇 = 20 (m = 1 for all LP variants)

Average degree Clustering coefficient Average shortest path Assortativity
NVG 4.3880 0.7264 35.2270 -0.0598
HVG 3.7900 0.6731 35.6232 -0.0965
NLPVG 9.1620 0.6980 18.3592 0.0481
HLPVG 7.3740 0.6130 18.8505 0.1430

If the resolution of a time series is lowered, and it is made up of a lower amount of unique values, this
has an effect on some metrics of the time series. This is shown in Table A.1, where the sample depth
𝑝 is varied from 𝑝 = 16 to 𝑝 = 1024. Although the average degree and clustering coefficient remain
fairly constant, the Average shortest path and assortativity change drastically when the sample depth
is increased. The lower Average shortest path in combination with the higher assortativity suggests
that a larger sampling depth leads to more connected hub nodes.
To investigate the effects of noise on the VG, a clean sine wave is generated 𝑥𝑡 = 𝑠𝑖𝑛(4∗𝜋∗𝑡). Multiple
levels of additive white Gaussian noise are added to the signal. The resulting metrics are given in Table
A.2. It stands out that the average degree for the HVG and HLPVG hardly varies. The VGs with limited
penetration have metrics that change less as a result of noise than their non-penetration counterparts.
This could explain why the feature extraction on noise signals by Xuan et al. [4] was more effective
using a limited penetration method.
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Figure 3.9: The first three periods of the generated periodic signal that is used for constructing the VGs of which the metrics are
displayed in Table 3.3.

Figure 3.10: Comparison of 4 different degree distributions for the NVG, HVG, NLPVG and HLPVG algorithms on the same
random sequence with values between 0 and 1 chosen uniformly.

3.6. Sequential motifs
Sequential motifs are defined as the subgraphs of a VG that are found along its natural Hamiltonian
path, i.e. the Hamiltonian path that is formed by the consecutive samples in the time series. The set of
nodes in a sequential motif is always of the form 𝑠, 𝑠 + 1, ..., 𝑠 + 𝑛 − 1, where the nodes follow the order
of the natural Hamiltonian path, 𝑠 is an integer between 1 and 𝑁 − 𝑛 + 1, and 𝑛 is the length of the
motif [43]. A template for a sequential motif of length 5 is shown in Figure 3.11. The red lines are links
that are on the natural Hamiltonian path, with the dashed lines leading to nodes that are not part of the
motif. The dotted black lines indicate possible links within the motif.

In their work, Iaovacci and Lacasa use the relative frequency of these motifs to distinguish among
different dynamics of the underlying time series [43]. The motifs of length 𝑛 = 3 and 𝑛 = 4 found in an
HVG are shown in Figure 3.12. Next to the motif types, the corresponding inequality set is displayed.
This is a set of rules that the time series has to fulfil, in order to result in the motif type that is shown.
For example, the first motif of length 𝑛 = 3 is found for all time series in which 𝑥1 > 𝑥0, for any 𝑥0 and
𝑥2. The motif can also be found for time series in which 𝑥1 < 𝑥0, if 𝑥2 < 𝑥1 also holds. The union of
these two situations form the inequality set of that motif. The nature of the VG algorithm leads to a
set of admissible motifs as displayed in Figure 3.12. However, the existence of admissible motifs also
implies the existence of inadmissible motifs. These are motifs that cannot be a part of VG because the
corresponding inequality set has conflicting rules. The lack of such motifs is thus a characteristic that
all VGs share. The description of inadmissible motif warrants further research.

The process of finding the inequailty set that corresponds to a certain motif is shown in Figure 3.13.
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Figure 3.11: Template of a sequential motif where each red line indicates a link that is part of the Hamiltonian path and each
dotted line represents a possible link within the motif

Figure 3.12: All admissible sequential motifs of length 3 and 4 for the HVG [43]

Amotif of length 4 is extracted from an NVG. The nodes are numbered 1 through 4 and the motif can be
considered an NVG of a series 𝑥𝑡 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]. The adjacency matrix of the motif is shown. Certain
entries in the matrix carry information about the time series. For example, the entry (3,1) is equal to 1.
This means that the line of sight between 𝑥1 and 𝑥3 is not obstructed by 𝑥2, i.e. 𝑥2 < 𝑥1 + (𝑥3 − 𝑥1)/2.
Similar deductions about the samples of the time series can be made using the other circled entries in
the matrix.

Figure 3.13: From top to bottom: A motif of length 𝑛 = 4 extracted from an NVG, the adjacency matrix that corresponds to the
motif, the inequality set corresponding to the adjancency matrix

3.7. Information in series and graphs
In practice, time series are mostly digital values in which each data point is represented by a number
of bits. A series with length 𝑁, and sampling depth 𝑝 will have 𝑝𝑁 possible realizations. For a random
time series, the contained information is the amount of samples multiplied by the number of bits per
sample. The measure for the amount of information contained in a single random variable 𝑥 is known
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as the entropy. Shannon’s definition of entropy is displayed in Eq. (3.11).

𝐻(𝑋) = −∑
𝑥𝜖𝑋

𝑝(𝑥)𝑙𝑜𝑔2(𝑝(𝑥)) (3.11)

Here 𝑋 denotes the available alphabet, and 𝑥 the realization of a symbol within that alphabet. The log
base 2 is taken to obtain a measure of information in bits. The expression 𝑝(𝑥) denotes the probability
of realization 𝑥 being chosen out of alphabet 𝑋. For a completely random time series, all symbols are
equally likely and thus entropy is maximized. For example, a variable with 256 equiprobable possible
realizations constitutes 8 bits of information. A random time series with N values ranging between 1
and 256 uniformly thus contains 𝑁 ⋅ 8 bits of information. This is equivalent to stating there are 256𝑁
possible realizations, and they are all equiprobable. More generally, the amount of information con-
tained in a random time series is 𝑁 ⋅ 𝐻(𝑆), where 𝐻(𝑆) denotes the entropy of each individual sample.

Figure 3.14: Theoretical comparison of available information in a uniform random time series of length 𝑁 = 10 and a graph of
10 nodes. The intersection of the two lines occurs between 𝑝 = 22 and 𝑝 = 23.

A simple graph of size 𝑁 has 2𝑁(𝑁−1)/2 possible realizations. If each of these realizations were to be
equiprobable, the graph would contain 𝑁(𝑁−1)

2 bits of information. In this situation, each possible link can
be seen as a bit of information. From the previous section, it would appear that as long as the entropy
of a single sample 𝐻(𝑆) ≤ (𝑁−1)

2 there need not be loss of information. In that case, a particular graph
could ostensibly be mapped to particular realization of the time series and the transformation would
be reversible. The threshold can be seen when the Shannon Entropy of both the time series and the
graph are compared. Since the information content of the graph does not increase with the sampling
depth of the time series, series with high enough 𝑝 will surpass the graph’s information content. In
Figure 3.14, the threshold is surpassed at 𝑝 = 23, meaning a single sample of the uniform random
time series of length 𝑁 = 10 has an entropy of 𝐻(𝑆) = 𝑙𝑜𝑔2(23) = 4.524 >

(𝑁−1)
2 . When larger values

for 𝑁 are considered, the amount of possible graph realizations increases exponentially. For example,
a graph of 𝑁 = 1000 nodes has 2𝑁(𝑁−1)/2 realizations and thus 𝐻𝑔𝑟𝑎𝑝ℎ = 499500 bits of information.
That would lead to the conclusion that a time series of length 𝑁 = 1000 could completely capture the
information of a time series, as long as 𝐻(𝑆) ≤ 499.5 bits. However, the nature of the construction of
the VG does not allow for a scenario in which all realizations of a graph with size 𝑁 are equiprobable
or even possible at all. In Section 3.6, the existence of inadmissible motifs has been discussed. This
means that not all thinkable graphs of size 𝑁 are eligible VGs, leading to further loss of information.
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3.8. Shortcomings of current work
As is described in Chapter 2, there are various applications for using the concept of the VG to extract
information from a time series in ways that are not possible using classical time series analysis methods.
There have also been various alterations in the VG algorithm that have been proposed and used in
different situations to improve the extraction of information from the time series. However, there are
some fundamental features of the concept of the VG that have not been investigated in literature.

Exact results for characteristics of the NVG
In the current literature, exact expressions for manymetrics of the HVG are described. However, similar
expressions for the NVG are still lacking due to the higher complexity of the NVG. Simplifications of
the time series from which the NVG is constructed could lead to the possibility for exact expressions
for NVG metrics too. This has not been sufficiently explored as of yet.

Identifying a VG
There are certain characteristics that are shared by all VGs due to the nature of their construction from
a time series. These characteristics can vary depending on which variation of the algorithm is chosen.
This thesis will mainly focus on the original interpretation of the VG, the NVG, as proposed by Lacasa
et al. [1]. The VG can be seen as a class of graphs, but a specific definition for this class and its
properties is lacking. This thesis attempts to work towards defining when a graph can be considered a
VG, whether there are properties that are shared by all VGs or properties that cannot be present in a
VG.

Information retention in the VG
Although it is clear from previous works that information from the time series is inherited by the VG,
it is not clear how the information is stored or exactly which information is stored in the VG [17]. By
investigating time series with samples of limited precision, this thesis attempts to work towards a defi-
nition of how much information is retained in the VG and how this affects the possibility for an inverse
transformation. It is obvious that in the current form, and inverse transformation is not possible because
multiple time series can map to the same VG. This is shown in Figure 3.15. A measure, or even an
estimate of the amount of lost information has not been the subject of research as of yet. This thesis
will investigate the loss in information and attempt to quantify it.
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(a) First random time series (b) Second random time series

(c) NVG of sequence in (a) (d) NVG of sequence in (b)

Figure 3.15: An example of how two different time series can lead to the construction of the same graph



4
Expected degree for NVG

Exact results have been derived for the degree properties in HVGs, however it has not been done for
NVGs. It is attempted in the following section to find exact results for nodal properties of the NVG of an
infinite uniformly distributed random time series. As a start, the probability of links occurring between
the first node and following nodes is investigated. The condition for a link to occur between the first
node and a node 𝑖, is that all samples 𝑐 for which 𝑡1 < 𝑡𝑐 < 𝑡𝑖 the sample value 𝑥𝑐 lies below the line of
sight of 𝑥1 and 𝑥𝑖. The probability of this happening can be found by integrating the probability density
function 𝑓(𝑥) from bounds 0 to the line of sight which is given by Eq. (2.3). The principle is visualized
in Figure 4.1.

Links:

𝑥1 → 𝑥2

𝑥1 → 𝑥3

𝑥1 → 𝑥4

Probability of link occurring:

1

∫
𝑥1+

𝑥3−𝑥1
2

0
𝑓(𝑥2)𝑑𝑥2

∫
𝑥1+

𝑥4−𝑥1
3

0
𝑓(𝑥2)𝑑𝑥2 ⋅ ∫

𝑥1+2
𝑥4−𝑥1
3

0
𝑓(𝑥3)𝑑𝑥3

Figure 4.1: Visualization of how the probability for a link in an NVG is formulated. The region over which the probability distribution
is integrated depends on the line of sight between two samples and the distance to the sample in between.

29
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The sum of these probabilities amounts to the expected degree of the first node. To stay consistent
with the notation of previous works, 𝑥𝑏 is the sample that may or may not have a line of sight with the
sample under investigation while 𝑥𝑐 is a sample that lies in between the sample under investigation
and 𝑥𝑏. Without loss of generality, the expected degree for the first sample can be written as:

𝐸[𝑘1] = 1 +
𝑁

∑
𝑏=3

𝑐=𝑏−1

∏
𝑐=2

∫
𝑥1+

𝑥𝑏−𝑥1
𝑏−1 (𝑐−1)

0
𝑓(𝑥𝑐)𝑑𝑥𝑐 (4.1)

Where 𝑘1 indicates the degree of node 1. The issue with this expression, when compared to the
case of the HVG, is that the upper bound of the integral depends on multiple values of the time series.
This does not allow for the rewriting of the integral as is done by Luque et al. [5] for the HVG scenario in
which the bound is only dependent on the first node. When the expected degree of a random node 𝑎 is
investigated, the left and right hand side of time series both contribute to the degree. With a guarantee
of one neighbor on each side, the expected degree can be described as:

𝐸[𝑘𝑎] = 2 +
𝑎−2

∑
𝑏=1

𝑎−1

∏
𝑐=𝑏+1

∫
𝑥𝑎+

𝑥𝑏−𝑥𝑎
𝑏−𝑎 (𝑐−𝑎)

0
𝑓(𝑥𝑐)𝑑𝑥𝑐 +

𝑁

∑
𝑏=𝑎+2

𝑏−1

∏
𝑐=𝑎+1

∫
𝑥𝑎+

𝑥𝑏−𝑥𝑎
𝑏−𝑎 (𝑐−𝑎)

0
𝑓(𝑥𝑐)𝑑𝑥𝑐 (4.2)

If the time series 𝑥𝑡 is assumed to be infinite, symmetry between the contributions of the left and
right hand side of node 𝑎 can be expected and the expression of the expected degree becomes:

𝐸[𝑘𝑎] = 2 + 2
∞

∑
𝑏=𝑎+2

𝑏−1

∏
𝑐=𝑎+1

∫
𝑥𝑎+

𝑥𝑏−𝑥𝑎
𝑏−𝑎 (𝑐−𝑎)

0
𝑓(𝑥𝑐)𝑑𝑥𝑐 (4.3)

However, without a method of circumventing the multiple dependencies of the bounds, there is no clear
path to an exact result for the expected degree in an NVG.

4.1. NVG of integer series
In order to arrive at an exact result, some assumptions on the time series have to be made. When the
time series is defined such that the values of 𝑥(𝑡) ∈ [0, 1, 2, ..., 𝑝], more progress can be made. Using a
simplified scenario where

𝑓(𝑥) = {𝑥 = 0𝑥 = 1 (4.4)

it becomes possible to determine the expected degree of any node. The proof is similar to that in the
HVG and is constructed as follows. A sample 𝑥0 is taken as the seed sample. Its neighbors 𝑥−1 and
𝑥1 are always connected to the seed. Then, depending on the order of the samples, there can be two
bounding samples 𝑥𝑏− and 𝑥𝑏+ on respectively the left and right side of the seed sample. Between
the seed and the bounding samples, there can be a number of inner samples denoted with 𝑥𝑖. All
configurations are displayed in Figure 4.2, along with the degree of node 0. The expected degree of
node 0 can be found by finding the probability of each configuration occurring, and multiplying that with
the degree corresponding to that configuration. The sum of these values is the expected degree 𝐸[𝑘0].

In configuration 1 (𝐶1), the neighbors of the seed node are simultaneously the bounds. The proba-
bility 𝑃(𝑥0 = 1 ∩ 𝑥−1 = 1 ∩ 𝑥1 = 1) is equal to

1
2 ⋅

1
2 ⋅

1
2 =

1
8 = 𝑃(𝐶1). With a degree of 𝑘0(1) = 2, this

configuration contributes 1
4 to 𝐸[𝑘0]. The same holds for 𝐶2. 𝐶3 has a degree 𝑘0(3) = 4 and the proba-

bility of it occurring is equal to 𝑃(𝐶3) = 𝑃(𝑥0 = 0∩𝑥−1 = 0∩𝑥1 = 0) =
1
8 . Because this is an infinite time

series, the probability of there being some bounding sample on either side is 1. Thus only the seed
and the neighboring samples are of importance when calculating the probability. Next, it is important to
recognize that 𝐶4 has a symmetrical counterpart that is not shown in Figure 4.2, but the situation could
of course be mirrored in the y-axis at the place of 𝑥0. The probability for 𝐶4 occurring should thus be
doubled. This results in 𝑃(𝐶4) = 2

1
2 ⋅

1
2 ⋅

1
2 =

1
4 . In 𝐶5, there are possible inner samples present. These
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Figure 4.2: All possible configurations surrounding 𝑥0 for a binary time series. The configurations are numbered and the degree
of node 0 is listed per configuration. Configurations 4 and 5 can also occur in their mirrored version. The dotted lines indicate
that there might be more samples in between. For configurations 5 and 6, this leads to an infinite number of permutations with
different degrees for 𝑥0. However, the probability of each of these permutations is known so an expected degree for 𝑥0 can still
be formulated.
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Figure 4.3: Configuration of time series where 𝑥−1 = 𝑥0 = 3 and 𝑥1 = 0, leading to inner samples between the seed and the
bound. The illustration below depicts how this can lead to infinitely many configurations for an infinite time series.

are possibly infinite samples that are visible to 𝑥0, but they all have to be equal to 0. Furthermore,
similar to 𝐶4, 𝐶5 also has a symmetric counterpart. Therefore the probability 𝑃(𝐶5) = 2

1
2 ⋅

1
2 ⋅

1
2 =

1
4 . The

expected degree, due to the 3 guaranteed visible samples in both neighbors and the bound and the
presence of possibly infinite inner samples, is defined as 3 + ∑∞𝑖=1(

1
2)
𝑖 = 4. The final configuration 𝐶6

has inner samples on both sides of 𝑥0, resulting in a degree 𝑘0(6) = 4+2∑
∞
𝑖=1(

1
2)
𝑖 = 6. The probability

is equal to 𝑃(𝐶6) =
1
2 ⋅

1
2 ⋅

1
2 =

1
8 . Combining all these findings:

𝐸[𝑘0] = 𝑃(𝐶1) ⋅𝑘0(1)+𝑃(𝐶2) ⋅𝑘0(2)+𝑃(𝐶3) ⋅𝑘0(3)+𝑃(𝐶4) ⋅𝑘0(4)+𝑃(𝐶5) ⋅𝑘0(5)+𝑃(𝐶6) ⋅𝑘0(6) = 3.5 (4.5)

This value is confirmed by generating a random series of N = 1000 ones and zeros in MATLAB and
constructing its NVG. The average degree of the resulting NVG is equal to 𝑘̄ = 3.514. Similar proofs
falter when the number of possible values for the samples in 𝑥𝑡 is increased. For example take the
case where

𝑓(𝑥) = {
𝑥 = 0
𝑥 = 1
𝑥 = 2

(4.6)

And consider the configuration as displayed in Figure 4.3. While the configuration may seem compara-
ble to 𝐶5 in Figure 4.2, the key difference is that there is now an infinite amount of possible arrangements
for the inner samples. If one of the samples 𝑥𝑖 = 1, then subsequent samples 𝑥𝑖+1,𝑥𝑖+2, etc. will not
be visible if they are equal to 0, but a sample 𝑥𝑖+𝑡 = 0may be visible for large enough 𝑡. Since the time
series is infinite, it is no longer possible to define a finite number of configurations.
The expression for the expected degree as given in Eq. (4.3) changes in the discrete scenario. Be-
cause there is now a finite number of possible values for all samples of 𝑥𝑡, there is also a limited number
of combinations (𝑥𝑎 , 𝑥𝑏) and a limited number of values for 𝑥𝑐 that allow a line of sight. Let all samples
of 𝑥𝑡 be an integer such that 𝑥𝑡 ∈ [1, 2, ..., 𝑝] where each integer has the same likelihood

1
𝑝 of occurring.

For a given combination (𝑥𝑎 , 𝑥𝑏), the probability of an intermediate sample 𝑥𝑐 not blocking the line of
sight is now given as a sum instead of an integral:

𝑃𝑟(𝑥𝑐 < 𝑥𝑎 +
𝑥𝑏 − 𝑥𝑎
𝑏 − 𝑎 (𝑐 − 𝑎)) =

⌊𝑥𝑎+
𝑥𝑏−𝑥𝑎
𝑏−𝑎 (𝑐−𝑎)⌋

∑
1

1
𝑝 (4.7)

The upper bound of the sum is the nearest integer below the line of sight. This can be calculated for
each combination (𝑥𝑎 , 𝑥𝑏), with each of these combinations being equiprobable at 𝑃𝑟(𝑥𝑎 , 𝑥𝑏) =

1
𝑝2 .

The expression for the expected degree in the NVG of an infinite discrete time series then becomes:

𝐸[𝑘𝑎] = 2 +
2
𝑝2

∞

∑
𝑏=𝑎+2

𝑝

∑
𝑥𝑎=1

𝑝

∑
𝑥𝑏=1

𝑏−1

∏
𝑐=𝑎+1

⌊𝑥𝑎+
𝑥𝑏−𝑥𝑎
𝑏−𝑎 (𝑐−𝑎)⌋

∑
1

1
𝑝 (4.8)

The construction of the expression in Eq. (4.8) is further elaborated upon in Figure 4.4.
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Figure 4.4: Step by step illustration of how the expression in Eq. (4.8) is formed. First a single sample is considered, then the
collection of samples between seed 𝑥𝑎 and destination 𝑥𝑏. All combinations of values for samples 𝑥𝑎 and 𝑥𝑏 are then taken into
account. Then all samples on the right hand side of 𝑥𝑎 are considered as possible destinations. The sum of the probabilities of
these destinations having a line of sight with the seed, added to the guaranteed visible node next to the seed, form the expected
right hand side degree of node 𝑎. This must be multiplied by 2 to find the total degree of node 𝑎, due to symmetry on the left
hand side.
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Since there are now a limited number of possible combinations, it is possible to estimate the ex-
pected degree of a random node 𝑎 in the NVG. To test the accuracy of the estimate given in Eq. (4.8),
a MATLAB script is created that calculates the estimate for a given 𝑝. An infinite series is not feasible.
For the sake of limiting computational complexity, a length of 𝑁 = 1000 is selected. The script also
generates a discrete time series with the same sampling depth 𝑝 and length 𝑁. The estimated average
degree can be compared to the average degree that is found in the generated NVG of the discrete
time series. The estimated value 𝐸̂[𝑘] is deterministic and will always produce the same results for the
same parameters 𝑝 and 𝑁, while the calculated average degree from a generated NVG will vary per
realization of the time series. The variations are relatively small for large 𝑁.

4.2. Verification of 𝐸[𝑘]
In order to verify the proposed estimator for the expected degree in an NVG for an integer series, a
MATLAB script is used that compares the results from the estimator to the results from 100 randomly
generated NVGs. As is evident from the first two lines, Algorithm 2 loops through all but the last three

Algorithm 2 Estimate of average degree in discrete time series
1: for 𝑎 = 1 ∶ 𝑁 − 3 do
2: for 𝑏 = 𝑎 + 2 ∶ 𝑁 do
3: for 𝑥𝑎 = 1 ∶ 𝑝 do
4: for 𝑥𝑏 = 1 ∶ 𝑝 do
5: c = [a+1:b-1]
6: x_c_list = [ ]
7: for 𝑖 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐) do
8: for 𝑥𝑐 = 1 ∶ ⌊𝑥𝑎 +

𝑥𝑏−𝑥𝑎
𝑏−𝑎 ⋅ (𝑐(𝑖) − 𝑎)⌋ − 10−14 do

9: x_c_list(i) = x_c_list(i) + 1/p
10: end for
11: 𝑝𝑟𝑜𝑏(𝑥𝑎 , 𝑥𝑏 , 𝑏) = 𝑝𝑟𝑜𝑑(𝑥_𝑐_𝑙𝑖𝑠𝑡)
12: end for
13: end for
14: prob_link(b) = 𝑠𝑢𝑚(𝑝𝑟𝑜𝑏(∶,∶,𝑏))

𝑝2
15: end for
16: end for
17: 𝐸[𝑘](𝑎) = 2 + 2 ∗ 𝑠𝑢𝑚(𝑝𝑟𝑜𝑏_𝑙𝑖𝑛𝑘)
18: 𝑝𝑟𝑜𝑏 = []
19: 𝑝𝑟𝑜𝑏_𝑙𝑖𝑛𝑘 = []
20: end for
21: 𝑎𝑣𝑔_𝑑𝑒𝑔𝑟𝑒𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑚𝑒𝑎𝑛(𝐸[𝑘])
22: 𝑑𝑎𝑡𝑎 = 𝑟𝑎𝑛𝑑𝑖(𝑝, 𝑁, 1)
23: 𝑔𝑟𝑎𝑝ℎ = 𝑁𝑉𝐺(𝑑𝑎𝑡𝑎)
24: 𝑎𝑣𝑔_𝑑𝑒𝑔𝑟𝑒𝑒 = 𝑚𝑒𝑎𝑛(𝑑𝑒𝑔𝑟𝑒𝑒(𝑔𝑟𝑎𝑝ℎ))

entries and only measures the contributions from the right hand side which it doubles, in accordance
with Eq. 4.8. In lines 1 and 2, a pair of entries is chosen, represented by 𝑎 and 𝑏. In the subsequent
two lines, all possible combinations of the values of these entries are considered by looping through
1 to 𝑝 for both 𝑥𝑎 and 𝑥𝑏. Then all entries between 𝑎 and 𝑏 are represented in the array 𝑐. For each
entry between 𝑎 and 𝑏 and for each combination of 𝑥𝑎 and 𝑥𝑏, the probability of an entry 𝑥𝑐 being so
that it does not obstruct the line of sight is calculated. An example for the process of the lines 7 to 11
is worked out for clarity. Take 𝑝 = 3, 𝑎 = 1 and 𝑏 = 4. In this situation there are two entries 𝑐 = [𝑐1, 𝑐2]
in between 𝑎 and 𝑏. The first combination of (𝑥𝑎 , 𝑥𝑏) is (1,1), in which case the limit in line 8 is imme-
diately reached and the for loop is not entered. The for loop in line 8 is analogous with the summation

∑⌊𝑥𝑎+
𝑥𝑏−𝑥𝑎
𝑏−𝑎 (𝑐−𝑎)⌋

1
1
𝑝 and counts the number of possible values of an entry 𝑐 below the line of sight of 𝑎

and 𝑏. The chance of 𝑎 and 𝑏 being connected is equal to 0 for the combination (1,1) which is correct
because both entries 𝑥𝑐1 and 𝑥𝑐2 are at least equal to 1, and therefore obstruct the line of sight. The
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Table 4.1: Table of probabilities for a link occurring between 𝑎 and 𝑏 with two samples in between for the given combinations of
𝑥𝑎 and 𝑥𝑏 and 𝑝 = 3.

𝑥𝑎
𝑥𝑏 1 2 3

1 0 (1/3)2 (1/3)2
2 (1/3)2 (1/3)2 (2/3)2
3 (1/3)2 (2/3)2 (2/3)2

Table 4.2: Comparison of the estimated average degree 𝐸[𝑘] and calculated average degree from 100 realizations of time series
𝑘̄.

𝐸[𝑘] 𝑘̄ % deviation
p = 2 3.4888 3.4860 0.08%
p = 4 4.2644 4.2694 -0.12%
p = 8 4.7789 4.7776 0.027%
p = 16 5.0844 5.0850 -0.012%
p = 32 5.2541 5.2577 -0.068%

next combination is (1,2), in which case there is exactly one value for 𝑥𝑐1 under the line of sight and
exactly one value for 𝑥𝑐2 under the line of sight. The for loop in line 8 is now entered once for both
𝑥𝑐1 and 𝑥𝑐2. Because both entries have 1 possible value out of 𝑝 possible values to be below the line
of sight, the chance of each of them individually being below the line of sight is equal to 1/𝑝. This is
stored in the array x_c_list. But for the line of sight between 𝑎 and 𝑏 to hold, both events of 𝑥𝑐1 and 𝑥𝑐2
being below the line of sight have to happen simultaneously. This is why the product of all entries in
x_c_list in line 11 is taken as the probability for the line of sight to hold for the given combination (𝑥𝑎,
𝑥𝑏). For a given 𝑎, 𝑏 and 𝑝, the probabilities are stored in a 𝑝𝑥𝑝 array as shown in Table 4.1. Because
each of these combinations is equally likely to occur, the sum of the probabilities normalized by 𝑝2 can
be taken as the probability of a link occurring between 𝑎 and 𝑏. This process is done for all pairs in the
series, and thus the expected number of links, i.e. the expected degree, of each node can be estimated.

The estimate proves to be fairly accurate when 𝑝 << 𝑁, as the estimate is based on the assumption
of an infinite series. Due to the computational complexity of the algorithm, the length 𝑁 is chosen at
𝑁 = 1000 and the maximum value for sampling depth at 𝑝 = 32. The results of the estimation can be
compared to the average degrees of actual NVGs that are generated under the same parameters 𝑝 and
𝑁1. For statistical accuracy, the average degrees of 100 realizations of each value 𝑝 are aggregated.
The findings for these parameters are shown in Table 4.2. The estimate is very close to the measured
value of the 100 realizations for each value of 𝑝. The estimator does not consistently over or under
shoot and is always within 0.12% or less of the measured value. It can thus be concluded that the
expected nodal degree of an NVG constructed from a discrete time series of random integers is given
by the expression in Eq. (4.8).

4.3. Degree distribution of the NVG of integer series
Using the assumption of a limited integer series, the expressions for the likelihood of links are simplified.
After the estimator for the average degree, investigating the degree distribution is a logical next step
as this metric has also been worked out for the HVG and could be used as a stepping stone to more
metrics as seen in Section 3.2. For the HVG, the degree distribution 𝑃(𝑘) is determined by identifying
three different types of data from the perspective of some seed datum 𝑆. The first of these three types
are the bound data 𝐵, which are the furthest data that the seed datum has a line of sight with. There
is a bound datum at either side of the seed. The second type are the inner data, which are data points
that share a line of sight with the seed, but do not block the lines of sight to all other data points behind
it. The number of inner data is dependent on the degree of the seed node and the inner data can be
both on the left and right hand side of the seed datum. Lastly, there are the hidden inner data which
are data points that are between the seed and the bound but are hidden from the seed by some other
1Generating discrete time series and NVG for reference in lines 21-24 of Algorithm 2. The NVG is generated using 1 shown here
as the function NVG(). The built-in MATLAB functions mean() and degree() provide the rest.
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inner data point.
With the simplification of the limited integer time series, the likelihood of the occurrence each of these
types of data can be expressed. For the bound data, the probability is denoted as [B], and is equal to
the probability that the datum is higher than the lines of sight that all following data share with the seed
datum. For example, if there is a seed datum 𝑥𝑠 and some datum 𝑥𝑏 on the right hand side of the seed,
then 𝑥𝑏 is a bound datum for 𝑥𝑠 if 𝑥𝑏 > 𝑥𝑠 +

(𝑥𝑛−𝑥𝑠)(𝑡𝑏−𝑡𝑠)
𝑡𝑛−𝑡𝑠

for all 𝑐 > 𝑏 if 𝑥𝑠 and 𝑥𝑏 share a line of sight.
A simpler interpretation is to state that all samples on the right hand side of the seed must be below
the line of sight between 𝑥𝑠 and 𝑥𝑏. This is shown in Figure 4.5.

x-1
x1

xb

x0

xi+

xn

Figure 4.5: A seed datum 𝑥0 and a datum 𝑥𝑏 are shown with their shared line of sight. If all data on the right hand side of 𝑥0 are
smaller than the dashed line of sight, 𝑥𝑏 is the right hand bound for 𝑥0

This event can be described by extending the expression for the probability of line of sight. For a
general expression, let there be a seed datum 𝑥𝑠 and some datum 𝑥𝑑 at a distance 𝑑 on the right hand
side of the seed. All samples on the right hand side must be below the line of sight between 𝑥𝑠 and
𝑥𝑑. The probability of this event for some sample 𝑥𝑑 in for an infinite random discrete time series with
sampling depth 𝑝 is shown in Eq. (4.9).

𝑃(xd bounds xs) =
1
𝑝2

𝑝

∑
𝑥𝑠=1

𝑝

∑
𝑥𝑑=1

∞

∏
𝑛=𝑠+1
𝑛≠𝑑

𝑥𝑛=⌊𝑥𝑠+
𝑥𝑛−𝑥𝑠
𝑛−𝑠 (𝑑−𝑠)⌋

∑
1

1
𝑝 (4.9)

When applying this to a time series of length 𝑁 = 1000 and sampling depth 𝑝, the probability
for blocking samples at a certain distances can be found. The first datum (𝑥0) of the time series is
considered the seed datum. Then the probability is calculated for each datum to its right (𝑥1, 𝑥2,...𝑥𝑁)
being the bound datum. The results for time series with varying 𝑝 are shown in Figure 4.6. The first
entry to the right of the seed has a probability of approximately 37% to be the bound for the seed.
The shape of the distribution does not seem to depend on the value of 𝑝. A verification of the result is
done by finding the distances between seed and bound for each node in 100 NVG realizations of size
𝑁 = 1000 and 𝑝 = 64. In Figure 4.7, it is shown that the found distribution very closely resembles the
predicted distribution in Figure 4.6. The distance-to-bound distribution also shows howmany inner data
there typically are, namely the distance between the bound and the seed. That moves one step closer
to finding an expression for the degree distribution. What remains is an expression for the expected
amount of inner data that are visible to the seed.

4.4. Conclusions
This chapter has shown that using certain limitations to the time series, which are not far fetched for
real world scenarios, progress can be made towards finding exact metrics of the NVG. The average
degree of a random limited integer time series can be accurately predicted. Strides are made towards
finding an expression for the degree distribution 𝑃(𝑘). It is possible to find the distribution of distance
at which a bounding datum occurs. This in turn means that there is a distribution of the number of inner
data. What remains to be found is an expression for the amount of inner data that are visible to the
seed.
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Figure 4.6: The distribution of distances from the seed datum to the right hand bounding datum for varying 𝑝 as a result of the
expression in Eq. (4.9).

Figure 4.7: The distribution of distances from the seed datum to the right hand bounding datum as a result of 100 realizations of
a uniformly distributed time series of length 𝑁 = 1000 with sampling depth 𝑝 = 64. The apparently missing bars are a result of
the MATLAB implementation of histograms, not a reflection of distances that are never a bound for a seed.





5
Identifying a VG

As described in Chapter 3, the graphs resulting from a VG algorithm share certain characteristics. The
VGs can be said to form a class of graphs, although this class has not been strictly defined as of yet.
This chapter works towards a definition of such class of graphs by investigating the features that iden-
tify a graph as an NVG. The chapter focuses on the NVG, because it is the most ubiquitous of the VG
methods along with the HVG. On the latter there is already more knowledge such as a description of
motifs. The admissible motifs described in Section 3.6 are used as a starting point. For the purposes of
the identification of VGs, three types of motifs are defined: the admissible motif, the inadmissible motif,
and the unavoidable motifs. The first type has already been described. The second type contains the
motifs that, if found in a graph, disqualify that graph from belonging to the class of VGs. The last type
are the motifs that will always occur in a VG.

5.1. Sequential motifs in the NVG
Expanding on the work done by Iovacci and Lacasa [43], this chapter investigates the motifs of any
graph up to a length of 𝑛 = 5. Then, it is investigated which information about the time series these
motifs would carry, if they were constructed using the NVG algorithm. This information comes in the
form of an inequality set, akin to the inequality sets in Figure 3.12. Similar to the motifs in Figure
3.12, only the sequential motifs (i.e. the motifs along the natural Hamiltonian path) are considered in
this chapter. Using MATLAB, all sequential motifs of lengths 𝑛 = 3, 4, 5 are generated, along with the
inequality sets. The number of sequential motifs possible increases with the length of the motif. This
becomes evident when examining the adjacency matrix of a generic NVG. The diagonal of a VG is all
zeros, because there are no self loops. The second diagonal, i.e. (2,1), (3,2) ... (N,N-1), is all ones
because two neighboring samples are always connected in the graph. Therefore, the triangle below1

the second diagonal of the adjacency matrix is where differences can start to occur. This is visualized
in Figure 5.1.

The number of conceivable sequential motifs will thus scale with the number of entries below the
second diagonal. Let 𝐿𝑇𝐸 be the number of lower triangle entries. Then as 𝑁 grows, 𝐿𝑇𝐸 grows with

𝐿𝑇𝐸 = (𝑁 − 2)(𝑁 − 1)
2 , (5.1)

meaning that the number of sequential motifs will grow as

𝑛𝑠𝑒𝑞.𝑚𝑜𝑡𝑖𝑓𝑠 = 2𝐿𝑇𝐸 . (5.2)

The number of conceivable sequential motifs, scales quadratically with 𝐿𝑇𝐸 for unweighted graphs
because each entry can only take the value of one or zero. The scaling properties are seen when the
motifs for lengths 𝑛 = 3, 4, 5 are examined in Figure 5.2. However, not all motifs that are conceivable
in a graph, are also admissible in a VG. When generating VGs for a large number of sequences with
1For undirected graphs, the same holds for the upper triangle

39
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Figure 5.1: The adjacency matrix of any visibility (sub)graph

length 𝑛 = 4, two motifs remain absent. These are the inadmissible motifs. For length 𝑛 = 5, the
number of inadmissible motifs is 49. Of the 64 motifs that are conceivable, only 25 (marked green in
Figure 5.2) are a possible result of the NVG algorithm being applied to a time series of 5 entries. This
can be deduced from their corresponding inequality sets.

Figure 5.2: Collection of all sequential motifs theoretically possible for lengths 𝑛 = 3, 4, 5, admissible motifs marked green
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Generating the inequality set
The inequality sets of the motifs are not shown in Figure 5.2, because they get increasingly more
complex for longer motifs. For the two motifs of length 𝑛 = 3 the inequality sets are just one line each:
𝑥2 ≥ 𝑥1 + (𝑥3 − 𝑥1)/2 and 𝑥2 < 𝑥1 + (𝑥3 − 𝑥1)/2 for motifs one and two respectively. The adjacency
matrix and inequality set for motif #62 of length 𝑛 = 5 are shown. Such a set of inequalities can be
derived from the adjacency matrix of the VG, as shown in Figure 3.13. Each entry in the lower triangle
of the matrix provides one or more lines in the inequality set.

Figure 5.3: Motif number 62 of length 𝑁 = 5 (above), and its
Adjacency matrix (below)

⎡
⎢
⎢
⎢
⎣

0 1 1 0 1
1 0 1 1 1
1 1 0 1 1
0 1 1 0 1
1 1 1 1 0

⎤
⎥
⎥
⎥
⎦

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑥2 ≥ 𝑥1 +
𝑥4−𝑥1
3 ||𝑥3 ≥ 𝑥1 +

2(𝑥4−𝑥1)
3

𝑥2 < 𝑥1 +
(𝑥3−𝑥1)

2
𝑥2 < 𝑥1 +

(𝑥5−𝑥1)
4

𝑥3 < 𝑥2 +
𝑥4−𝑥2
2

𝑥3 < 𝑥1 +
2(𝑥5−𝑥1)

4
𝑥3 < 𝑥2 +

(𝑥5−𝑥2)
3

𝑥3 < 𝑥2 +
(𝑥5−𝑥2)

3
𝑥4 < 𝑥1 +

3(𝑥5−𝑥1)
4

𝑥4 < 𝑥2 +
2(𝑥5−𝑥2)

3
𝑥4 < 𝑥3 +

(𝑥5−𝑥3)
2

(5.3)

These sets can be deduced from inspecting the adjacency matrix of the VG, as shown in Figure
3.13. This process can be automated using a MATLAB script. The function takes the VG as input.
Each entry in the lower triangle of the adjacency matrix is analyzed. If a 0 is found at entry (a,b), this
means that there is at least one sample 𝑥𝑐 for which

𝑥𝑐 ≥ 𝑥𝑎 +
(𝑥𝑏 − 𝑥𝑎)(𝑡𝑐 − 𝑡𝑎)

𝑡𝑏 − 𝑡𝑎
(5.4)

with (𝑡𝑎 < 𝑡𝑐 < 𝑡𝑏). This sample 𝑥𝑐 blocks the line of sight between 𝑥𝑎 and 𝑥𝑏. A string is stored in
a cell. The string describes Equation (5.4) for each of the samples between 𝑥𝑎 and 𝑥𝑏. An OR operator
is placed in between each of the inequalities to indicate that any only one of the inequalities needs to
hold, but multiple may be true. The first line of set (5.3) is an example of such a string. The line of sight
between 𝑥1 and 𝑥4 is blocked. This can be due to 𝑥2 or 𝑥3, which is described in the inequality set.
When a 1 is found at an entry (a,b), it means that all samples 𝑥𝑐 are lower than the line of sight between
𝑥𝑎 and 𝑥𝑏. This means that the following must hold for all samples 𝑥𝑐 that are in between 𝑥𝑎 and 𝑥𝑏

𝑥𝑐 < 𝑥𝑎 +
(𝑥𝑏 − 𝑥𝑎)(𝑡𝑐 − 𝑡𝑎)

𝑡𝑏 − 𝑡𝑎
(5.5)

The expression in (5.5) is generated as a string for each 𝑥𝑐, with AND operators in between because
all expressions need to hold. The strings resulting from the 0 and 1 entries in the adjacency matrix can
be combined as is done in set (5.3).

5.2. Inadmissible motifs
As discussed in Section 3.6, the existence of admissible motifs also implies the existence of inadmis-
sible motifs. These are shapes or patterns that can never appear in a VG. In this section, these motifs
are further investigated. By inspection of Figure 5.2, two common patterns are found in all inadmissi-
ble motifs, i.e. the motifs that are not marked. The patterns are further elaborated on in the following
subsections.

Overlapping pairs
The graph in Figure 5.4 is given and it is to be determined whether it could be a VG of a certain
time series. The nodes are numbered in this graph, as the ordering of the nodes is important when
determining whether the motif can be found in a VG. Just like the motifs shown in Figure 3.12, the
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straight line across all nodes follows what would be the natural Hamiltonian path of the VG. The motif
is henceforth referred to as ’overlapping pairs’.

Figure 5.4: Graph of four nodes and five edges, the Hamiltonian path is indicated by the dashed arrows

Because node 0 and node 2 are connected, 𝑥1 must lie beneath the line of sight between 𝑥0 and 𝑥2.
The same can be concluded about 𝑥2, with respect to the line of sight between 𝑥1 and 𝑥3. The lack of a
connection between node 0 and node 3, implies that either 𝑥1 or 𝑥2 breaks the line of sight between 𝑥0
and 𝑥3. Thus the situation as described in Figure 5.4 leads to the sets of inequalities described in (5.6)
and (5.7), one of which needs to hold for the time series [𝑥0, 𝑥1, 𝑥2, 𝑥3]. If there is no series for which
one of the inequality sets holds, it can be concluded that the graph cannot be a VG or a motif in a VG.

⎧
⎪

⎨
⎪
⎩

𝑥1 <
1
2𝑥0 +

1
2𝑥2

𝑥2 <
1
2𝑥1 +

1
2𝑥3

𝑥1 ≥
2
3𝑥0 +

1
3𝑥3

(5.6)
⎧
⎪

⎨
⎪
⎩

𝑥1 <
1
2𝑥0 +

1
2𝑥2

𝑥2 <
1
2𝑥1 +

1
2𝑥3

𝑥2 ≥
1
3𝑥0 +

2
3𝑥3

(5.7)

The case for inequality set (5.6) is examined first. The first and third term are combined to find a
strict upper bound for 𝑥0 in terms of 𝑥2 and 𝑥3.

2
3𝑥0 +

1
3𝑥3 <

1
2𝑥0 +

1
2𝑥2

1
6𝑥0 <

1
2𝑥2 −

1
3𝑥3

𝑥0 < 3𝑥2 − 2𝑥3 (5.8)

The expression for 𝑥1 in the third inequality of (5.6) can be substituted in the second inequality,
because if 𝑥1 ≥

2
3𝑥0 +

1
3𝑥3, then substituting

2
3𝑥0 +

1
3𝑥3 for 𝑥1 will never violate the upper bound for 𝑥2.

This yields the following:

𝑥2 <
1
2(
2
3𝑥0 +

1
3𝑥3) +

1
2𝑥3

𝑥2 <
1
3𝑥0 +

2
3𝑥3

Some basic rearrangement to isolate 𝑥0 leads to a strict lower bound:

𝑥0 > 3𝑥2 − 2𝑥3 (5.9)

It is evident that Equations (5.8) and (5.9) cannot hold at the same time, and therefore the case in (5.6)
is not possible. A similar proof can be performed for the inequalities in (5.7), meaning that a graph like
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(a) Added link (b) Generalized case

Figure 5.5: Two additions to the previous graph: on the left a link is added, indicated by the dotted line. The addition of the link
makes it so that it is no longer impossible for this graph to be a motif in a VG. On the right, the generalized case for this motif is
presented, where there is room for other nodes to be in between the nodes that are part of the overlapping pairs

the one shown in Figure 5.4 cannot be a VG or a part of a VG. When an additional link is placed in the
graph as shown in Figure 5.5, the motif does become possible.

A more general case is considered when there is distance between the nodes of the overlapping
pairs. This is shown in Figure 5.5, where the distances 𝑑01, 𝑑12, and 𝑑23 are indicated between each
of the nodes. Although the nodes are still labeled 0 through 3, they are not necessarily adjacent on
the natural Hamiltonian path. However, their order of occurrence is still the same i.e. the data point
corresponding to node 0 occurs before the data point corresponding to node 1 and so on. Although
not all conditions for the time series are known, due to there being an unknown number of nodes in
between nodes 0 through 3, it is possible to investigate a part of the inequality set for contradictions.
There are now three possibilities for the lack of a connection between node 0 and node 3. Either 𝑥1
obstructs the line of sight, or 𝑥2 does. The third option is that there is some 𝑥𝑖 lying in between that
obstructs the line of sight. First, the cases for 𝑥1 and 𝑥2 obstructing the line of sight between 𝑥0 and 𝑥3
are considered in inequality sets (5.10) and (5.11), respectively.

⎧
⎪

⎨
⎪
⎩

𝑥1 < 𝑥0 +
𝑥2 − 𝑥0
𝑑01 + 𝑑12

⋅ 𝑑01

𝑥2 < 𝑥1 +
𝑥3 − 𝑥1
𝑑12 + 𝑑23

⋅ 𝑑12

𝑥1 ≥ 𝑥0 +
𝑥3 − 𝑥0

𝑑01 + 𝑑12 + 𝑑23
⋅ 𝑑01

(5.10)

⎧
⎪

⎨
⎪
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𝑥1 < 𝑥0 +
𝑥2 − 𝑥0
𝑑01 + 𝑑12

⋅ 𝑑01

𝑥2 < 𝑥1 +
𝑥3 − 𝑥1
𝑑12 + 𝑑23

⋅ 𝑑12

𝑥2 ≥ 𝑥0 +
𝑥3 − 𝑥0

𝑑01 + 𝑑12 + 𝑑23
⋅ 𝑑12

(5.11)

Using a similar proof as for the case in (5.6), two bounds for 𝑥0 are formulated in terms of 𝑥2 and 𝑥3
and distances 𝑑01, 𝑑12, and 𝑑23 as a result of the inequalities in (5.10). They are an upper and a lower
bound, shown in (5.12) and (5.13), respectively.

𝑥0 <
𝑑01

𝑑01+𝑑12
𝑑01

𝑑01+𝑑12
− 𝑑01
𝑑01+𝑑12+𝑑23

⋅ 𝑥2 −
𝑑01

𝑑01+𝑑12+𝑑23
𝑑01

𝑑01+𝑑12
− 𝑑01
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⋅ 𝑥3 (5.12)
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1
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𝑑12+𝑑23
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−
𝑑01
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+ 𝑑12
𝑑12+𝑑23

− 𝑑01
𝑑01+𝑑12+𝑑23

⋅ 𝑑12
𝑑12+𝑑23

1 − 𝑑01
𝑑01+𝑑12+𝑑23

− 𝑑12
𝑑12+𝑑23

+ 𝑑01
𝑑01+𝑑12+𝑑23

⋅ 𝑑12
𝑑12+𝑑23

⋅ 𝑥3
(5.13)

The bounds are in the form of 𝑥0 < 𝑎𝑥2 − 𝑏𝑥3 and 𝑥0 > 𝑐𝑥2 − 𝑑𝑥3. Through rearrangement it is
found that in this case, 𝑎 = 𝑐 and 𝑏 = 𝑑. Therefore, the bounds cannot hold and the possibility of 𝑥1
obstructing the line of sight between 𝑥0 and 𝑥3 is disqualified. A similar proof can be conducted for 𝑥2
with the inequality set (5.11). This leaves the possibility for some 𝑥𝑖, located between 𝑥0 and 𝑥3 that
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obstructs the line of sight between 𝑥0 and 𝑥3. This 𝑥𝑖 can be located either between 𝑥0 and 𝑥1, 𝑥1 and
𝑥2, or 𝑥2 and 𝑥3. Each of these locations for 𝑥𝑖 would lead to a new inequality set. The implications for
𝑥0 < 𝑥𝑖 < 𝑥1 and 𝑥2 < 𝑥𝑖 < 𝑥3 are the same due to symmetry so the latter option will not be included
in the proof. This leads to the following sets of inequalities:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑥1 < 𝑥0 +
𝑥2 − 𝑥0
𝑑01 + 𝑑12

⋅ 𝑑01

𝑥2 < 𝑥1 +
𝑥3 − 𝑥1
𝑑12 + 𝑑23

⋅ 𝑑12

𝑥𝑖 < 𝑥0 +
𝑥2 − 𝑥0
𝑑01 + 𝑑12

⋅ 𝑑0𝑖

𝑥𝑖 ≥ 𝑥0 +
𝑥3 − 𝑥0

𝑑01 + 𝑑12 + 𝑑23
⋅ 𝑑0𝑖

(5.14)

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑥1 < 𝑥0 +
𝑥2 − 𝑥0
𝑑01 + 𝑑12

⋅ 𝑑01

𝑥2 < 𝑥1 +
𝑥3 − 𝑥1
𝑑12 + 𝑑23

⋅ 𝑑12

𝑥𝑖 < 𝑥0 +
𝑥2 − 𝑥0
𝑑01 + 𝑑12

⋅ (𝑑01 + 𝑑1𝑖)

𝑥𝑖 < 𝑥1 +
𝑥3 − 𝑥1
𝑑12 + 𝑑23

⋅ (𝑑01 + 𝑑1𝑖)

𝑥𝑖 ≥ 𝑥0 +
𝑥3 − 𝑥0

𝑑01 + 𝑑12 + 𝑑23
⋅ (𝑑01 + 𝑑1𝑖)

(5.15)

Starting with the set in Eq.(5.14), the third and fourth line are contradictory. From these lines it can
be deduced that:

𝑥0 +
𝑥2 − 𝑥0
𝑑01 + 𝑑12

⋅ 𝑑0𝑖 > 𝑥𝑖 ≥ 𝑥0 +
𝑥3 − 𝑥0

𝑑01 + 𝑑12 + 𝑑23
⋅ 𝑑0𝑖

𝑥2 − 𝑥0
𝑑01 + 𝑑12

≥ 𝑥3 − 𝑥0
𝑑01 + 𝑑12 + 𝑑23

𝑥2 − 𝑥0 ≥
𝑥3 − 𝑥0

𝑑01 + 𝑑12 + 𝑑23
⋅ (𝑑01 + 𝑑12) (5.16)

The result in Eq. (5.16) can be substituted back to replace the term (𝑥2−𝑥0) the third line of Eq. (5.14)
because it describes the upper bound for 𝑥𝑖 and using the expression in Eq. (5.16) still satisfies this
bound as all distances are greater than 0. Substitution yields the following:

𝑥𝑖 < 𝑥0 +
𝑥3−𝑥0

𝑑01+𝑑12+𝑑23
⋅ (𝑑01 + 𝑑12)

𝑑01 + 𝑑12
⋅ 𝑑0𝑖

This simplifies to:

𝑥𝑖 < 𝑥0 +
𝑥3 − 𝑥0

𝑑01 + 𝑑12 + 𝑑23
⋅ 𝑑0𝑖

Which directly contradicts the fourth line of the inequality set shown in Eq. (5.14). A similar proof can
be conducted using the third and fifth lines of the inequality set shown in Eq.(5.15). It can therefore be
concluded that there can be no such sample 𝑥𝑖 anywhere in between 𝑥0 and 𝑥3 that would give rise to
a pattern of links as shown in Fig. 5.5. This is an inadmissible motif.

Mutual visibility
When two non-adjacent data points share a line of sight, there must at least be one other data point in
between them that they also both share a line of sight with. This means that a VG cannot be a cycle
graph, like the one shown in Figure 5.6. Such patterns also cannot emerge as a motif in a VG. This can
be proven by examining the set of inequalities that arises from such a graph. The set of inequalities
belonging to the graph in Figure 5.6 is shown in (5.17). From the connection between node 0 and node
3, it can be concluded that both 𝑥1 and 𝑥2 are below the line of sight between 𝑥0 and 𝑥3, hence the first
two terms of (5.17). Furthermore, the absence of a connection between node 0 and node 2 implies
that 𝑥1 interrupts the line of sight between 𝑥0 and 𝑥2. The same holds for 𝑥2 with respect to the line of
sight between 𝑥1 and 𝑥3. This leads to the last two terms in (5.17).
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Figure 5.6: A cycle graph consisting of four nodes. The Hamiltonian path in this graph is indicated by the dashed arrows.

⎧
⎪
⎪

⎨
⎪
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𝑥1 <
2
3𝑥0 +

1
3𝑥3

𝑥2 <
1
3𝑥0 +

2
3𝑥3

𝑥1 ≥
1
2𝑥0 +

1
2𝑥2

𝑥2 ≥
1
2𝑥1 +

1
2𝑥3

(5.17)

The contradiction within this set of inequalities can quickly be found by substituting the fourth term
expression for 𝑥2 into the third term. Because the fourth term gives the lower bound for 𝑥2, substituting
that value into 𝑥1 ≥

1
2𝑥0 +

1
2𝑥2 will not violate the lower bound for 𝑥1. The substitution yields the

following:

𝑥1 ≥
1
2𝑥0 +

1
2(
1
2𝑥1 +

1
2𝑥3)

𝑥1 ≥
2
3𝑥0 +

1
3𝑥3 (5.18)

The expression in (5.18) is in direct conflict with the first term of (5.17), and therefore the graph cannot
be a VG.

5.3. VG identification using MATLAB
Using the knowledge of VGs and their characteristics, it is possible to rule out whether a given graph is
the product of the VG algorithm performed on some time series. Characteristics found in literature [1],
[43], and the characteristics described in the previous section can be combined to make a set of criteria
that a graph needs to obey for it to be a possible VG. So far, three criteria have been found that can
help rule out whether a graph can be a VG. The first criterion is the existence of a Hamiltonian path, as
all VGs have at least one such path. This immediately covers the criterion that the VG is connected.
The second and third criteria are related to the inadmissible motifs from the previous section. If these
are detected in the graph, it cannot be a VG.
The MATLAB script takes randomly generated graphs of size N and an amount of edges 𝑒. The edges
will be placed randomly between the N nodes, so that a simple graph is formed using the ’graph’ function
in MATLAB. The graph is then tested for all three criteria and it becomes evident whether the graph
can be a VG or not. For testing, a set of small graphs like the motifs in Figure 5.2 is used that goes
up to size 𝑛 = 6. All possible graphs with 5 or 6 nodes are generated and tested for being a VG. This
is done in two ways, firstly by using the three mentioned criteria, secondly by generating the inequality
set and finding a series of 6 samples that could fit the boundaries of the inequality set. Both methods
give the same results, showing 25 VGs in all possible graphs of size 𝑛 = 5 and 138 possible VGs in all
graphs of 𝑛 = 6. Because the complexity grows exponentially with size, it is not currently possible to
examine larger graphs.

The natural Hamiltonian path
Finding a Hamiltonian path on a graph is a computationally complex task, but there is a MATLAB
function for it called ’hamiltonian’. This function takes three inputs, the adjacency matrix, a start node,
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and a destination node. If a Hamiltonian path exists between start and destination, the function returns
an array with the visited nodes in order. If no path exists, the function returns a string.
It is important that finding the presumed natural Hamiltonian path of the graph is the first step of the
process, as this will induce a node order. When the graph is created, the nodes are numbered randomly.
When a Hamiltonian path is found, the first node in the path is renamed node 1, the second node 2,
and so on. This new node order is essential for the other criteria. It is possible that there are multiple
Hamiltonian paths in the same graph, therefore the script follows the steps shown in Algorithm 3.

Algorithm 3 Check for Hamiltonian path and VG criteria
1: for 𝑖 = 1 ∶ 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴) do
2: for 𝑗 = 1 ∶ 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴) do
3: Check for a Hamiltonian path between nodes 𝑖 and 𝑗
4: if Hamiltonian path exists then
5: Reorder nodes to follow path order,
6: Check mutual visibility criterion,
7: Check the overlapping pair criterion
8: else
9: Return graph is not a VG
10: if All criteria hold then
11: Return graph can be a VG
12: else
13: Return graph is not a VG
14: end if
15:
16:

The checks for the two criteria are done in separate scripts that are called by the script described
above. The checks are described in the next paragraphs. If both criteria are met, the loop is broken
and the script returns a TRUE value. If one or both of the criteria are not met for a certain Hamiltonian
path, the script finds the next Hamiltonian path for which it can check the criteria, until all options have
been explored.

Overlapping pairs

The criterion for ’overlapping pairs’ is related to the inadmissible motif described in Section 5.2. A
MATLAB script is constructed to check for the occurrence of such motifs. When one is found, the
graph in question is immediately dismissed as a possible VG. Let there be a graph of N = 10 nodes in
which the links (3,7) and (5,9) exist. The adjacency matrix of this graph is shown in Matrix 5.19. If this
graph is a visibility graph, the entry marked with an 𝑥 will always be 1. So in order to identify a graph
as being the product of the NVG algorithm, the adjacency matrix of the graph under investigation can
be used. If the matrix has an entry 𝐴(𝑖, 𝑗) = 0 while also having entries 𝐴(𝑖, 𝑛) = 1 and 𝐴(𝑚, 𝑗) = 1
with 𝑗 < 𝑛 < 𝑚 and 𝑛 < 𝑚 < 𝑖, the graph in question cannot be the result of the NVG algorithm. In
Figure 5.7, the graph that corresponds to the adjacency matrix is visualized. The link (3,7) corresponds
with matrix entry 𝐴(7, 3) = 1 and the link (5,9) corresponds with matrix entry 𝐴(9, 5) = 1. There is an
overlapping pair because in this case 𝑛 = 5 and 𝑚 = 7 while 𝑖 = 9 and 𝑗 = 3. Thus both 𝑗 < 𝑛 < 𝑚
and 𝑛 < 𝑚 < 𝑖 hold, and the entry 𝐴(𝑖, 𝑗) = 1 is expected. The dotted line represents the missing link,
the absence of which prohibits this graph from being the product of the NVG algorithm. A method of
finding such an inadmissible pattern in a graph is described in 4.
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Algorithm 4 Steps to detect overlapping pairs
1: for 𝑖 = 1 ∶ 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴) do
2: for 𝑗 = 1 ∶ 𝑖 − 2 do
3: if Link is found between non-neighboring nodes 𝑖 and 𝑗 then
4: for 𝑏 = 𝑗 + 1 ∶ 𝑖 − 1 do
5: Find nodes after node 𝑖 that are connected to nodes between 𝑖 and 𝑗
6: if No connections are found then
7: Criterion holds
8: else
9: Check the whether node 𝑗 is also connected to the nodes that are
10: connected with the node 𝑏
11: if Connection does not exist then
12: Criterion does not hold
13: return
14: else
15: Criterion holds
16: end if
17: end if
18: end for
19: end if
20: end for
21: end for=0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1 0

1 0
1 0

1 0
1 0

1 1 0
1 0

𝑥 1 1 0
1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.19)

Matrix 5.3.1: Adjacency matrix of a graph with some key links shown while omitting the rest for clarity. The entry marked with 𝑥
must be equal to 1 for this to be an adjacency matrix of a VG.

876 109321 54

j in m

Figure 5.7: A case of overlapping pairs, placed as described in the adjacency matrix above. Similar to the adjacency matrix,
only the links relevant to this example are shown. The absence of link (3,9), while links (3,7) and (5,9) are present, shows that
this graph cannot be the result of the NVG algorithm.

Mutual visibility
Similar to the previous criterion, the MATLAB script check for the occurrence of an inadmissible motif.
When an edge is found that skips over more than one other node, so for example a connection between
node 1 and node 5, it is checked whether nodes 1 and 5 are both connected to at least one of the
intermediate nodes 2, 3 and 4. In the following example, there is a graph with N = 10 nodes. There
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Algorithm 5 Steps to detect mutual visibility between nodes
1: for 𝑖 = 3 ∶ 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴) do
2: for 𝑗 = 1 ∶ 𝑖 − 1 do
3: if Non-neighboring nodes 𝑖 and 𝑗 are connected then
4: Search for mutual neighbor in range 𝑏 ∈ (𝑗, 𝑖)
5: if Mutual neighbor is not found then
6: Criterion does not hold
7: return
8: else
9: Criterion holds
10: end if
11: end if
12: end for
13: end for

is a link between node 2 and node 8, as indicated in the adjacency matrix A. For the mutual visibility
criterion to hold, at least one of the entries marked by a question mark have to be a 1. It is not possible
for all the question mark entries to be 0. In terms of entries in the adjacency matrix shown in Matrix
5.20, it means that for an entry 𝐴(𝑖, 𝑗) = 1, there must be at least one entry 𝐴(𝑖, 𝑛) = 1 or 𝐴(𝑚, 𝑗) = 1,
with 𝑗 < 𝑛 < 𝑖 − 1 and 𝑗 + 1 < 𝑚 < 𝑖. If one such entry is not present, the graph in question is not
the result of the NVG algorithm. The algorithm that can identify this inadmissible pattern is shown in
Algorithm 5.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1 0

1 0
? 1 0
? 1 0
? 1 0
? 1 0
1 ? ? ? ? 1 0

1 0
1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.20)

Matrix 5.3.2: Adjacency matrix of a graph with some key links shown while omitting the rest for clarity. At least one of the entries
marked with ? must be equal to 1 for this to be an adjacency matrix of a VG.

5.4. Conclusions
The central question to this chapter is whether, when presented with a graph, one can identify this graph
as being the product of the NVG algorithm. Three indicators are found that can disqualify a graph from
being an NVG. The first indicator, is the lack of a Hamiltonian path. The Hamiltonian path is the only
characteristic that resembles an unavoidable motif. If no path is present that visits all the nodes exactly
once, the graph under investigation cannot be an NVG. When there is such a path in the graph, the
graph can be renumbered to have the node numbers coincide with the order of the Hamiltonian path.
The nodes 𝑛1, 𝑛2, ..., 𝑛𝑁 now also coincide with samples 𝑥1, 𝑥2, ..., 𝑥𝑁 of a possible time series that could
have been converted to the graph under investigation. It is in this form that the next two indicators can
be used. Two motifs have been found to be inadmissible for an NVG. If either of these motifs is present
anywhere in the graph, it cannot be the product of the NVG algorithm. These motifs are overlapping
pairs and a lack of mutual visibility, described in Section 5.2. A mathematical description is provided
of how these motifs were found to be inadmissible according to the algorithm that constructs the NVG.
It is possible that there are more motifs or patterns that are not admissible, but they have not become
apparent from the motifs for 𝑛 = 3, 4, 5. For those lengths, the only motifs that do not appear in the
generated NVGs are characterized by the overlapping pairs or lack of mutual visibility.
The chapter did not find a new feature that is an inherent or unique part of the NVG. No metric or pattern
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has been found that can be used to definitively answer the question whether a given graph is the NVG
of a time series, only patterns that disqualify a given graph from being an NVG. However, through the
analysis of what makes the motifs inadmissible, some limitations in the adjacency matrix of an NVG are
found. These limitations restrict the degree of freedom of how an NVG can be constructed, and thus
also limit the amount of information that can be contained in an NVG. This concept is further explored
in Chapter 6.





6
Reversibility of the transformation

As stated in previous literature, the VG operation is non-reversible [17]. This is due to the loss of
information that occurs when creating a VG from a time series. Reversibility of the algorithm could lead
to new applications for the VG, for example in filtering [17]. To work towards such goals, it is important to
distinguish how much information is lost, and how information is stored in the VG. The current chapter
will examine the loss of information in the NVG algorithm and to what extent the transformation can be
reversed.

6.1. Lossiness of transformation
In Chapter 3, it has been established how much information can be captured in a sampled time series.
The number of possible graphs for size 𝑁 is also given and the amount of information that can be stored
in the graph is deduced from this number. However, not all realizations of a graph of size 𝑁 are VGs,
as was shown in Section (5.2). Each time series does not map to a unique VG. When using infinitely
precise sample values, there is an infinite amount of time series that map to each VG realization which
leads to a loss of information. When the data points in a time series are chosen from a finite pool of
values, an alphabet 𝒳, this limits the amount of time series that map to a particular VG. However, the
amount of VGs of size 𝑁 will always remain smaller than the amount of time series of length 𝑁. Take
for example a time series 𝑥𝑡 of length 2, where each data point 𝑥𝑖𝜖𝒳 and 𝒳 = [0, 1]. There are 4
possible realizations of 𝑡 but they all result in the same VG; two connected nodes. The length of 𝑡 can
be extended, resulting in more possible realizations. If 𝑡 is extended to length 𝑁 = 3, there are two
possible VGs; a line graph of length 3 and a triangle shape. To illustrate how quickly the amount of
possible VGs increases as a function of both 𝑁 and the size of𝒳 (p), a MATLAB script was used to find
the values for 𝑁 = 2 through 𝑁 = 8 and 𝑝 = 2 through 𝑝 = 8. The pseudocode of the MATLAB script is
shown in Algorithm 6. By generating all possible sequences for a given length 𝑁 and sample depth 𝑝,
it becomes too demanding very quickly for higher values. The results of this script are shown in Table
6.1 and Figure 6.1. For a constant length N and increasing sample depth 𝑝, the number of possible
VGs grows towards a limit. For 𝑁 = 2, 3, 4 this limit is reached immediately at 1,2 and 6 respectively.
For 𝑛 = 5, 6 the limits are found at 𝑝 = 4 and 𝑝 = 6 respectively. For 𝑁 > 6, the limit is found at 𝑝 > 8
and is therefore not visible in these results.
For 𝑝 = 2, each increase in 𝑁 almost exactly doubles the amount of possible VGs. This relation starts
at 𝑁 > 4 ànd continues beyond 𝑁 = 8. Overall it is evident that the amount of possible VGs does not
increase as quickly as the number of possible time series for the values of 𝑛 and 𝑝. Furthermore, the
increase in possible VGs as a function of 𝑁 for constant 𝑝 seems exponential, whereas the increase in
possible VGs as a function of 𝑝 for constant 𝑁 grows towards a certain limit. The data are very limited
due to the computational complexity of the problem. It is therefore not feasible to estimate a trend using
these data in order to reach conclusions about the relation between sampling depth and the number
of possible VGs. Furthermore, it is not clear to what extent the results for these integer series are
indicative of the behaviour of continuous series. In previous work on VGs from integer series, it was
concluded that certain graph metrics only converged to the continuous case for 𝑝 > 100 [45].

51
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Algorithm 6 Algorithm to find all possible VGs for given length 𝑁 and sampling depth 𝑝
for 𝑛 = 2 ∶ 𝑁 do

for 𝑝 = 2 ∶ 𝑃 do
Generate all possible integer sequences for the values of 𝑛 and 𝑝
Construct NVG of the first sequence and use it as the first entry of NVG collection
for 𝑖 = 2 ∶ number of sequences do

Construct 𝑁𝑉𝐺_𝑖 of sequence 𝑖
if 𝑁𝑉𝐺_𝑖 has not yet occurred in NVG collection then

Add 𝑁𝑉𝐺_𝑖 to NVG collection
end if

end for
Store length of NVG collection in location (𝑛, 𝑝)

end for
Empty NVG collection

end for

Table 6.1: The number of unique possible VGs as a result of time series with length 𝑁 and entries chosen from an alphabet 𝒳,
where 𝒳 = [1,2,..,p-1,p]

N
p 2 3 4 5 6 7 8

2 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2
4 6 6 6 6 6 6 6
5 12 24 25 25 25 25 25
6 24 82 124 134 138 138 138
7 48 250 542 759 889 925 945
8 99 730 2112 3774 5454 6667 7371

To determine the measure of information that is contained in the VGs, Shannon’s definition of entropy
in Eq. (3.11) is used. The probability of occurrence for each VG is calculated, and used to calculate
the entropy. The steps in the MATLAB script that are taken to find the entropy at the given length and
sample depths, are described in Algorithm 7.
The small graphs that are generated are similar to the motifs discussed in Chapter 5. There is a
finite number of NVG motifs that can be generated for given length 𝑁 and sampling depth 𝑝. Not all
motifs are equally likely to occur as a result of a random series of that length and sampling depth. As
an example, the probability distributions of the motifs for 𝑁 = 2 through 𝑁 = 6 at 𝑝 = 6 are shown
in Figure A.1. These values are chosen because the maximum amount of unique VGs is reached
for those lengths at 𝑝 = 6 as is evident from Table 6.1. These probability distributions are used to
calculate the entropy of the graphs that are constructed from each set of sequences. For example,
only one graph is constructed from the set of 36 sequences with 𝑁 = 2 and 𝑝 = 6. This is shown in
Figure A.1(a). For all the cases where 𝑁 = 2, the entropy is equal to 0 because there is only one VG
possible. From the set of 66 sequences that can be formed with 𝑁 = 6 and 𝑝 = 6, 138 unique VGs
can be constructed. Not all VGs are equally likely, as is shown in Figure A.1(e). Overall, it is clear that
information is lost with the operation and the amount of information lost depends on the length of the
signal as well as the sampling depth. The amount of lost information for each case is given in bits in
Table 6.2.
For each increase in 𝑝, more information is lost because the number of VGs is not increasing as
quickly as the number of combinations of the time series. For increases in 𝑛 more information is lost
for sampling depths 𝑝 > 2. However, at 𝑝 = 2 the loss of information converges to 1.5 bits as the
length of the series increases. At 𝑝 = 8 and 𝑁 = 8, the difference in entropy is largest with 14.4 out of
24 bits being lost in the transformation.
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Algorithm 7 Algorithm to find entropy in generated VGs
1: for 𝑛 = 2 ∶ 𝑁 do
2: for 𝑝 = 2 ∶ 𝑃 do
3: Generate all possible integer sequences for the values of 𝑛 and 𝑝
4: Construct NVG of the first sequence and use it as the first entry of NVG collection
5: Initialize counter to keep track of occurrences of identical NVGs
6: for 𝑖 = 2 ∶number of sequences do
7: Construct 𝑁𝑉𝐺_𝑖 of sequence 𝑖
8: if 𝑁𝑉𝐺_𝑖 has not yet occurred in NVG collection then
9: Add 𝑁𝑉𝐺_𝑖 to NVG collection
10: else
11: Increase occurrence counter
12: end if
13: end for
14: Store length of NVG collection in location (𝑛, 𝑝)
15: end for
16: Determine probability distribution based on occurrence counter
17: Empty NVG collection
18: end for
19: Calculate Shannon entropy (𝐻(𝑋) = −∑𝑥𝜖𝑋 𝑝(𝑥)𝑙𝑜𝑔2(𝑝(𝑥)))1 using probability distribution

Table 6.2: The absolute difference (Htime series - HNVG) in the amount of information (bits) that is captured in the time series and
the amount of information that is captured by the VG for values of N and p ranging from 2 to 8.

𝑁
𝑝 2 3 4 5 6 7 8

2 2 3.1699 4 4.6439 5.1699 5.6147 6
3 2.0456 3.7798 5.0113 5.9736 6.7599 7.4259 8.0028
4 1.7256 3.9732 5.6244 6.9003 7.9485 8.8385 9.6090
5 1.6128 4.0291 6.0411 7.6247 8.9276 10.0343 10.9953
6 1.5564 4.0301 6.3273 8.2012 9.7555 11.0768 12.2273
7 1.5282 4.0419 6.5637 8.7058 10.5020 12.0339 13.3704
8 1.5141 4.0678 6.7694 9.1495 11.1749 12.9122 14.4331
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Figure 6.1: The number of unique possible VGs as a result of time series with length 𝑁 and entries chosen from an alphabet 𝒳,
where 𝒳 = [1,2,..,p-1,p]. This is denoted on the axis labeled ’sample depth’.

Table 6.3: The absolute difference (Htime series - HWNVG) in the amount of information (bits) that is captured in the time series and
the amount of information that is captured by the VG for values of N and p ranging from 2 to 7.

𝑁
𝑝 2 3 4 5 6 7

2 0.5000 1.5850 2.4387 3.219 3.6866 4.1659
3 0.2500 1.4866 2.5682 3.5213 4.3282 5.0278
4 0.1250 1.4024 2.6378 3.7738 4.7739 5.6642
5 0.0625 1.3580 2.7043 3.9939 5.1547 6.2084
6 0.0313 1.3524 2.7855 4.2001 5.5057 6.7059
7 0.0156 1.3782 2.8937 4.4193 5.8553 7.1892

Information in weighted VG
The results of Table 6.2 indicate the information lost when using the NVG algorithm as it was first
proposed. However, literature has shown more robust results for the extraction of information from
VGs when the algorithm is altered to include link weights [20], [22]. To put this to the test, a simple
link weight addition is proposed. The link weights will indicate which is the largest of the samples
corresponding to the connected nodes. The links will only take four possible values 𝑤𝑖𝑗 ∈ [0, 1, 2, 3].
An entry of 0 indicates no link, the weight of 1 indicates a link from a high sample to a low sample, the
weight of 2 indicates that the samples are equal, and the weight of 3 indicates a link from a low sample
to a high sample. For example, if node 𝑎 is connected to node 𝑏 and 𝑥𝑎 < 𝑥𝑏, then entry 𝑊(𝑎, 𝑏) = 3
in the weighted adjacency matrix 𝑊. This means that the entry 𝑊(𝑏, 𝑎) = 1 by definition. Instead of a
binary adjacency matrix, each entry now has 4 options and thus up to 2 bits of information. One could
thus expect the information retained in the graph to be doubled. Using Algorithm 7 with the weighted
NVG (WNVG) function, shows that the doubling of information is not achieved. The results of the lost
entropy are shown in Table 6.3.
It is clear that the WNVG includes more information about the time series. The losses are smaller than
those for the NVG. For a binary series (𝑝 = 2), there is only a small of information at for 𝑁 > 2. This is
not surprising, since the weights indicate which samples are smaller and which are larger. When there
are only two possible sample values, this is enough information to almost fully describe the time series.
However, for a length of 𝑁 = 7 this method uses 10 entries of 4 bits each to represent a series of 7
ones and zeros. The time series is not fully described partly because there is no way to differentiate
between the constant time series 𝑥𝑡 = [1, ..., 1], 𝑥𝑡 = [0, ..., 0] and so on. For the situation where 𝑝 = 2,
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this uncertainty represents the only loss of information. As the likelihood of a constant time series
decreases with larger 𝑛, the amount of entropy lost also decreases.

6.2. Attempt at the reverse operation
The NVG algorithm in its original form clearly loses information. Many time series can lead to the con-
struction of the same VG, making it impossible to construct the original time series from its VG. If the
original time series is not known, the VG by itself does not contain enough information to reconstruct
it. The inequality set poses a set of limitations that the time series has to comply with. From these
limitations, a set of time series can be identified as the original time series from which the VG was con-
structed. This is demonstrated in a MATLAB script in which a random series of length 𝑛 and sampling
depth 𝑝 and its NVG are constructed. The inequality set is then generated as per the method detailed in
Section 5.1. The inequality set is tested against all 𝑝𝑁 possible time series with length 𝑛 and sampling
depth 𝑝 to find which series could be the original to the graph under investigation.
When testing for a time series with length 𝑛 = 8 and 𝑝 = 8, the scope of the number of possibilities
becomes clear. The series 𝑥𝑡 = [6, 3, 8, 1, 4, 4, 7, 7] was randomly generated, along with its NVG. The
graph (𝑁𝑉𝐺𝑥) is shown in Figure 6.2. The goal is to find an estimate of 𝑥𝑡 using only the information in
𝐺𝑥. The inequality set is generated and 27 inequalities are found. These inequalities define the space
in which the solution may lie. It forms a set of boundaries for each entry of the estimate 𝑥′𝑡. When
generating all 𝑝𝑁 time series, it is found that 9819 of them are within the set boundaries. In the current
form, there is no method of discriminating between all these options to find the original time series 𝑥𝑡.

Figure 6.2: NVG associated with time series 𝑥𝑡

If the same series is transformed into a WNVG, as detailed in Section 6.1, the number of eligible time
series is significantly reduced. From the 9819 valid time series in the unweighted, to 981 valid time
series when the WNVG is used. This means that it is still not possible to reverse the operation, but
using only a minimal addition of information the range of possible time series corresponding to a graph
has been reduced tenfold. The number is not always reduced by exactly the same factor, but especially
for low values of 𝑝 the reconstruction of the weighted graph works better than the unweighted version.
As expected from the results in Table 6.3, for 𝑝 = 2 the time series can be perfectly reconstructed
barring the situations where all samples have the same value.

The issue with link weights
It has been shown that the introduction of link weights allows for more information to be stored in the
NVG. A theoretical threshold of information stored in the entries adjacency matrix to ensure complete
description of the time series is possible. As long as the number of bits described in the adjacencymatrix
is larger than the number of bits in the time series, one could think an inverse operation is possible. The
introduction of link weights adds more information to the adjacency matrix. As presented in Section



56 6. Reversibility of the transformation

2.2, multiple methods of implementing link weights have been presented. These mostly revolve around
the relations between samples in the form of height difference, Euclidean distance, or angle of the line
of sight. The issue with measures like these with respect to information retention is twofold. Firstly,
there is redundancy in the link weight information. Imagine a scenario where the link weight is the
height difference of samples, and three consecutive samples are 𝑥𝑡 = [𝑥1, 𝑥2, 𝑥3] = [5, 0, 5]. The links
𝑊(1, 2) = −5 and 𝑊(2, 3) = 5 already imply that link 𝑊(1, 3) = 0. Although more information is now
available about the time series, the effects on information retention of replacing the Boolean values
of a binary adjacency matrix with infinite precision values, is limited. Secondly, taking another look at
the example for 𝑥𝑡 = [𝑥1, 𝑥2, 𝑥3] = [5, 0, 5], it is clear that any version of 𝑥𝑡 that is wholly shifted in the
vertical direction will produce the same adjacency matrix. The VG process being invariant under affine
transformations also applies to weighted versions, even when using angles or Euclidean distance.
The issue can be circumvented by using the actual values of the samples in the link weights. For
example, for a series of 8-bit samples, a link 𝑙𝑎.𝑏 between node 𝑎 and node 𝑏 could be weighted such
that 𝑙𝑤𝑎,𝑏 = [𝑥𝑎 , 𝑥𝑏]. So that the weighted link is a 16-bit word that consists of the two concatenated
sample values 𝑥𝑎 and 𝑥𝑏. In this case, all information of the time series is captured in the graph. The
use of such a graph is limited however, because the link weights are meaningless for metrics such as
path length. The method does allow for an inverse transformation back to the time domain, but not in
way that utilizes the concepts of the VG in a meaningful way.

6.3. Conclusions
All literature regarding the VG describe it as a ’lossy’ process, in which some of the information in the
time series is lost. However, a measure of the amount of lost information has not been presented. In
this chapter, the Shannon definition of entropy has been used to attempt to quantify the information that
is lost. It has been established that more information lost in the NVG transformation for time series with
a higher precision. From the way an unweighted NVG is constructed, with (𝑁−1)(𝑁−2)

2 binary entries, it
is clear that the graph cannot completely capture the information in the time series. However, because
not all graphs can occur as VGs and some VGs are more likely to occur then others, even more entropy
is lost when using the Shannon definition.
A trend that is seen in Figure 6.1, is that there is a practical maximum of unique VGs for a series with
length 𝑛 and sampling precision 𝑝. The number of VGs that are found seem to grow asymptotically to
some limit. Due to computational limitations, these limits are too high to assess, even for very short
time series. The existence of a practical maximum of unique VGs of size 𝑛 being generated from an
infinite amount of possible time series of length 𝑛 is not surprising, given how the binary adjacency
matrix has a clear limit. However, what determines this practical maximum has not been found in this
chapter.
Assigning weights based on sample height difference to the links alleviates the loss of information to
some extent, but still fails to completely represent the information in the time series. As such, it is not
possible to reverse the operation to regain the time series from a VG with the methods presented in
this chapter.
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Discussion & Conclusions

This chapter recounts the findings of the thesis in chronological order. The knowledge gap in the current
literature is framed, and it is assessed to what extent the findings of the thesis provide new information
regarding the concept of the VG.

7.1. Discussion
As described in Chapter 2, there is a variety of VG algorithms with different conditions for visibility. The
contexts in which the concept of the VG is used also vary widely from seismic activity, to stock market
analysis, to diagnoses from biological data sets. In each of these researches, the VG serves as a way
to convert the time series data to a new domain in which some form of analysis is done on the graph to
find results. The VG is used as a means to an end, but the transformation itself is not always the subject
of the research. The intrinsic characteristics of the HVG have been explored but the same cannot be
said for the other VG implementations. The family of graphs that are VGs have been found to share
some characteristics, but a formal definition or set of conditions for a graph to be a VG has not been
put forward. Furthermore, the interpretation of the VG as a mathematical operation or transformation
of information, is still lacking.
In Chapter 4 it is attempted to find out more about the intrinsic characteristics of the NVG in the form
of degree metrics. It soon became clear that the same method that was used for the HVG would not
suffice. A restriction had to be applied to the time series that is used for the construction of the NVG.
The infinite uniformly distributed time series 𝑥𝑡 was bounded by the assumption that 𝑥𝑡 ∈ [1, 2, 3, ...𝑝],
i.e. the series becomes an integer series. The introduction of a limited number of sample values greatly
simplifies the analysis of the degree metrics, while not being an unreasonable assumption. Any digitally
sampled real-life data set will have a limited number of sample values depending on the precision of the
digital measurement instrument. Using the simplification, it is possible to predict the average degree of
an NVG given the length of the time series, the number of possible sample values and the probability
distribution.
In order to gain more insight in the class of graphs that are VGs, Chapter 5 looks into the characteristics
that define a VG. This process was started by inspection of a set of generated VGs for very short time
series. It was evident that not all possible graphs of size 𝑛 appeared as a possible NVG of a time series
with length 𝑛. Rather than finding a feature that all VGs have in common, two motifs were identified
in the graphs that could not be a VG of a time series. One or both of these motifs are present in each
of the non-VG graphs. By converting all graphs into inequality sets, it was shown that the inequality
sets for the non-VG graphs were indeed contradictory. As such, two characteristics are found that can
disqualify a graph from being a VG from analyzing the adjacency matrix. The way these restrictions
present themselves in the adjacency matrix is interesting, as the entries at the intersection of rows and
columns plays a part in both. However, no new characteristic common to all the VGs is identified to be
added to a description of the VGs as a class of graphs.
The retention of information when transforming a time series to a VG has not been thoroughly investi-
gated in literature. In Chapter 6, the widely used Shannon definition of entropy is used to try to quantify
the loss of information during the transformation. Because of the relatively low number of unique VGs

57



58 7. Discussion & Conclusions

for a time series of large length, the information that is retained in the VG is low by that definition. The
time series used in this thesis were limited to integer series length 𝑛 = 8 and a maximum sample value
of 𝑝 = 8. The limitations are due to the computational complexity of generating more than 88 possible
time series and identifying the unique VGs for each of them. The introduction of link weights alleviates
the issue of information loss slightly with more unique VG configurations being possible. However,
even with various link weight definitions, it is impossible to completely capture all the information in the
VG. It is shown in literature that the VG can be used to make conclusions about time series, in some
cases being more accurate than conventional time series analysis methods. It seems that the classical
outlook of information theory that is put forward in this thesis is not adequate to describe how the VG
captures structural information of the time series.
The thesis has taken some previously unexplored pathways into investigating the concept of the VG,
with varying success. A definition for many metrics of the NVG are still lacking, there is no formal set
of rules that can be used to identify a graph as being part of the class of VGs and the nature of the
information that is stored in the VG is unclear.

7.2. Conclusions
It is found that, using the assumption of a limited integer series, metrics for the NVG can be expressed in
an exact manner. This thesis has defined an expression for the average degree in the NVG constructed
from a random limited integer time series. The findings are verified by comparing the outcome of the
exact expression to an average of many NVG realizations.
The characteristics that make a graph part of the VG class are explored. Two motifs are found which,
when present in a graph, disqualify that graph from being a VG. The proof that these motifs are indeed
impossible in a VG is found in the inequality set that describes that graph. Using the two motifs, a
MATLAB script is written that successfully returns whether a given graph is a VG or not. However, no
conclusion is reached on a formal definition that describes all graphs in the VG class.
According to the Shannon definition of entropy, almost all information in a time series is lost when
transforming it to a VG. This is due to there being a limited number of VGs of length 𝑛, while there are
potentially infinite time series 𝑥𝑡 of length 𝑛 depending on how the sample values of 𝑥𝑡 are chosen.

7.3. Recommendations
Future work that might explore the concept of the VG further could focus on some aspects that were
not fully worked out in this thesis. For example, the method of using a limited integer series for the
analysis of the NVG can yield more exact results for different metrics. That would allow for a more
extensive mathematical description of the NVG, as has been done for the HVG. From the expression
of the degree distribution for the HVG, an expression for the clustering coefficient distribution was
formulated by Luque et. al [5]. A similar thread for the NVG is worth exploring. When more definitions
for the NVG of random signals are found, it could ostensibly be used to distinguish between stochastic
and chaotic signals using different methods than the already established analysis of the degree
distribution [33].
The patterns that are found in the adjacency matrices of NVGs in Chapter 5 were noted in this thesis,
but not investigated further. This could be a starting point for a new research that analyses whether
the a given adjacency matrix is the result of a VG operation on a time series and perhaps give insight
into the class of graphs that are the VGs in that manner.
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Further Exploration

In addition to the recommendations given in the previous chapter, there are several other avenues to
explore that were found during the making of this thesis. This chapter presents the basis of four topics
that could be further explored in future works.

8.1. Sample height and (neighbor) degree correlation
An exact relation between the height of a certain sample and the average degree of the corresponding
node has been formulated for the HVG [5]. This is derived from the degree distribution of the HVG
that is given in Chapter 6. When investigating the conditional probability of a node having degree 𝑘 for
a given sample 𝑥 (𝑃𝐻𝑉𝐺(𝑘|𝑥)), the result can be described exactly. To find the average degree 𝑘̄ of a
node for a given sample 𝑥, it simply holds that;

𝑘̄(𝑥) =
∞

∑
𝑘=2

𝑘 ⋅ 𝑃𝐻𝑉𝐺(𝑘|𝑥) (8.1)

The expression in Eq. (8.1) is verified by generating a random time series of length 𝑁 = 106, construct-
ing the HVG and taking the average of degrees of all the nodes that correspond to the samples with
equal value in the time series. The results form this numerical approach suggest that the proposed
expression is accurate, as shown in Figure 8.1(a).Since there is no singular expression for the degree
distribution 𝑃𝑁𝑉𝐺(𝑘), the theoretical method of finding an average degree for a given sample 𝑥 is not yet
possible. However, the numerical approach can be used to investigate whether a similar trend occurs
in the degree and sample height correlation for the NVG.
A time series is created of length 𝑁 = 106, with uniformly distributed random samples between 0 and 1
at 0.0001 intervals. The NVG is constructed for this time series and the degree sequence is extracted.
In an Nx2 array, the degree sequence is stored together with the time series. For each unique sample
height in the time series, the average corresponding degree is calculated. The findings are shown in
Figure 8.1(b).
The relation between sample height and nodal degree is similar for the HVG and NVG. For both VGs,
only the highest samples have the tendency to be hub nodes. From these results, it can be inferred
that altering the higher samples of the time series has a larger effect on the topology of the graph when
compared to altering the lower samples. The average nodal degree tends to an exponential curve in
Figure 8.1(b), just as it does in Figure 8.1(a). However, the values in Figure 8.1(b) are more dispersed
along the trend line. This could be due to the higher influence of stochastic events that is alluded to in
Chapter 4, when working towards a description for 𝑃𝑁𝑉𝐺(𝑘). The similarity between ∑

∞
𝑘=2 𝑘 ⋅ 𝑃𝐻𝑉𝐺(𝑘|𝑥)

and ∑∞𝑘=2 𝑘 ⋅ 𝑃𝑁𝑉𝐺(𝑘|𝑥) is indicative of some similarity between 𝑃𝐻𝑉𝐺(𝑘) and 𝑃𝑁𝑉𝐺(𝑘). This could be
another entry point for the research towards the degree distribution of the NVG.
It is clear that higher sample values tend to lead to higher degree nodes. However, a high sample value
is likely to block lines of sight from its neighbors to other samples. It can therefore be interesting to
assess how the presence of high samples affects the average degree in the neighborhood of the high
sample. This can also be done using MATLAB and leads to the distribution shown in Figure 8.2. There
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(a) Relation between degree and sample height for
HVG

(b) Relation between degree and sample height for NVG

Figure 8.1: Left: The relation 𝐾(𝑥) between the height of a sample and the average degree of the corresponding sample in the
HVG constructed from a random time series. On the x-axis are all unique values that occur in the time series. On the y-axis is
the average nodal degree for nodes that correspond with the samples of the height on the x-axis. In an HVG, the hub nodes are
the nodes that correspond to high sample values and the average degree for a node that corresponds to a sample with value 𝑥
can be perfectly described using theory [5]. Right: The relation 𝐾(𝑥) between the height of a sample and the average degree
of the corresponding sample in the NVG constructed from a random time series of length 𝑁 = 105. On the x-axis are all unique
values that occur in the time series. On the y-axis is the average nodal degree for nodes that correspond with the samples of
the height on the x-axis.

is a large spread in the results, however it is clear that samples in the neighborhood of low samples
on average have a degree 𝑘 > 4. The size of the neighborhood is arbitrarily chosen as 8, a smaller
neighborhood amplifies the effect that is seen in Figure 8.2 while a larger neighborhood dilutes it.

Figure 8.2: The relation between the height of a sample 𝑥0 and the average degree of the neighborhood [𝑥−4 ...𝑥4] (excluding
𝑥0) in the NVG constructed from a random time series of length 𝑁 = 105. On the x-axis are all unique values that occur in the
time series. On the y-axis is the average nodal degree for nodes that correspond with the samples in the neighborhood of 𝑥0,
the height of which is shown on the x-axis.

8.2. Time domain assortativity
The concept of assortativity in a graph is the measure of how likely nodes with a certain degree are to
connect to other nodes of a similar degree. If a graph has a positive assortativity, nodes of similar degree
are likely to be connected to each other. For negative assortativity, nodes of high degree are likely to
connect to nodes with low degree and vice versa. Through the NVG this concept can be extended to
use the time domain data. The likelihood of data entries of a certain height seeing other data entries
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Table 8.1: Different assortativity values for graph and time domain of the four time series as presented in Figure 8.3

Degree assortativity Time domain assortativity
subfigure (a) -0.111 NaN*
subfigure (b) -0.4161 -0.3846
subfigure (c) -0.3273 -0.3714
subfigure (d) -0.5787 -0.0667

of similar height would be the time domain interpretation of assortativity. This metric might be used to
gain more insight in the positions of relative peaks in the time series. When high sample values are
generally surrounded by relatively low sample values, this will lead to negative assortativity. Both the
graph assortativity and the time domain assortativity will be negative in this case. Some variations of
this scenario are depicted in Figure 8.3. In subfigure (a) there is a constant time series, the NVG of
which is always a line graph. The degree assortativity for such a graph is given by Equation 8.2 [47].

𝜌𝐷 = −
1

𝑁 − 2 (8.2)

The degree assortativity for a line graph of length 𝑁 = 11 should thus be equal to −19 = −0.111̄. This
is consistent with the value that is found using a MATLAB script. The found values for both degree
assortativity and the time domain assortativity are shown in Table 8.1. The time domain assortativity
for the line graph is undefined for MATLAB, it is trying to find the correlation between two perfectly
identical sequences. There are discrepancies between the graph and time domain metrics, especially
in the final scenario where peaks are clustered together. Further research could be devoted to how
this new metrics can analyse the placement of high valued samples in a time series.

(a) Constant time series (b) Time series with one peak

(c) Time series with spread peaks (d) Time series with centered peaks

Figure 8.3: Four time series with a varying amount of peaks and different positioning of peaks, leading to different degree
assortativity and time domain assortativity.

The different implementations of the VG also give varying results for time domain assortativity. The
findings for the assortativity of VGs of a random time series of length 𝑁 = 1000 are given in Table 8.2.
It stands out that all values are positive for each VG implementation. This means that, on average,
high degree nodes see other high degree nodes and low degree nodes see other low degree nodes.
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Table 8.2: Different assortativity values for graph and time domain for graphs constructed from a random time series of length N
= 1000 using varying VG implementations

Degree assortativity Time domain assortativity
NVG 0.1787 0.2122
HVG 0.1565 0.3112
NLPVG 0.2174 0.2038
HLPVG 0.2621 0.3116
DPVG 0.1461 0.4228

One might expect that the hubs of the graph, which tend to correspond with peaks in a random time
series, can see many lower degree nodes around them. This is the case in the examples in Figure 8.3,
yielding negative degree assortativity. The question remains how the assortativity can be positive in a
random time series. For further investigation, a distinction is made between the degree assortativity of
the low degrees and the high degrees. For each category, the assortativity is determined as shown in
Algorithm 8.

Algorithm 8 Assortativity difference between low and high degrees
Construct NVG of a random time series
Generate link list (L) with rows [𝑠𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒, 𝑒𝑛𝑑_𝑛𝑜𝑑𝑒]
Replace node numbers in L with degree of corresponding node such that rows are
[𝑑𝑒𝑔𝑟𝑒𝑒(𝑠𝑡𝑎𝑟𝑡_𝑛𝑜𝑑𝑒), 𝑑𝑒𝑔𝑟𝑒𝑒(𝑒𝑛𝑑_𝑛𝑜𝑑𝑒)]
Sort values in L from low to high in column 1 (or column 2, this is arbitrary) to obtain 𝐿_𝑠𝑜𝑟𝑡𝑒𝑑
Divide 𝐿_𝑠𝑜𝑟𝑡𝑒𝑑 in a lower half and upper half
Find assortativity of both halves

It is found that the degree assortativity in the lower half is close to 0, while the assortativity in the upper
half is generally higher than the degree assortativity of the graph as a whole. This means that while low
degree nodes have no clear preference for low or high degree nodes, the nodes with high degree are
more likely to be connected with other nodes of high degree. When viewing this from the perspective of
the time domain, and keeping in mind that high degree nodes are likely to correspond to high samples,
this phenomenon can be explained. The low degree nodes are more likely to correspond to low value
samples. These samples only have a line of sight with a few samples in their direct vicinity. Because the
time series is completely random, the samples in the vicinity could be higher samples (corresponding
to higher degree nodes) or lower samples (corresponding to lower degree nodes) and thus no clear
preference can be discerned. On the other hand, high samples tend to have further reaching visibility
and thus are not dependent on their direct neighbors as much as low samples are. For a high sample
𝑥ℎ to see another sample 𝑥𝑡 at a distance, all samples 𝑥𝑏 in between have to be below the line of sight
that is shared by 𝑥ℎ and 𝑥𝑡. This bound is very strict if 𝑥𝑡 is a low value, and less strict if 𝑥𝑡 is a high
value. Therefore it is more likely for high value samples to see other high values samples at a distance,
causing a positive degree assortativity in the graph. This phenomenon is even more prominent for
the time domain assortativity, hence the higher positive values. Limited penetration seems to lessen
the gap between graph and time domain assortativity, while the dual perspective graph widens the
discrepancy. Further research can be conducted to find the most suitable VG implementation to find
the most relevant information from the new metric of time domain assortativity.

8.3. Effects of rewiring
The VG is a representation of the time series in the graph domain. Alterations in the time domain will
lead to a different VG. However, it is unclear how alterations in the VG would change the set of time
series that it represents. It is reasonable to assume that a single change in the graph will have an
impact on the inequality set of the graph. This means the space in which the represented time series
lie is changed. This could be better explored if there is a method of reversing the VG operation. How-
ever, there is another issue which is to determine the ways a VG can be changed to another VG that
represents another time series. In Chapters 5 and 6, it became clear that relatively few graphs are
actually visibility graphs. Finding ways to rewire such that a VG will be rewired into another VG could
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give more insight into the nature of VGs. The restrictions of the adjacency matrix that are posed in
Chapter 5 could be a starting point to find legal rewirings.
Lacking a theoretical framework for legal rewirings, empirical results are another avenue worth inves-
tigating. A random time series (𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) is generated, and its VG (𝑁𝑉𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) is constructed. An
alteration in the time series is applied by changing a single sample, leading to a time series 𝑥𝑎𝑙𝑡𝑒𝑟𝑒𝑑.
The VG of this time series, 𝑁𝑉𝐺𝑎𝑙𝑡𝑒𝑟𝑒𝑑, is of the same size as the original but has different links. There-
fore the difference between 𝑁𝑉𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 and 𝑁𝑉𝐺𝑎𝑙𝑡𝑒𝑟𝑒𝑑 is an example of a legal rewiring by definition.
In order to recognize patterns in the rewiring, the method is applied to a time series of length 𝑁 = 100
with 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑡) ∈ [0, 1]. The time series is then altered by setting a random sample to the maxi-
mum value, creating a peak at that position in the time series 𝑥𝑎𝑙𝑡𝑒𝑟𝑒𝑑. The resulting 𝑁𝑉𝐺𝑎𝑙𝑡𝑒𝑟𝑒𝑑 is
constructed and the adjacency matrices of both VGs are compared using an XOR operation, which
highlights where the matrices differ and so which links have appeared or disappeared. The changes
are logged in a 100𝑥100 matrix named 𝐴𝑟𝑒𝑤𝑖𝑟𝑒. Because of the stochastic nature of this process, it is
repeated 105 times and all results are aggregated. The sum of all matrices 𝐴𝑟𝑒𝑤𝑖𝑟𝑒 accumulates all the
changes that happen in the matrix as a result of legal rewirings. Figure 8.4(a) shows a heatmap of the
changes that have occurred over 105 runs. It is unsurprising that most rewirings happen close to the
diagonal, as the effects of a changed sample is most noticeable for its near neighbors. However, no
patterns can be discerned from the aggregated heatmap.
Instead of raising a random sample to the maximum value, another approach is to select the most
connected node of 𝑁𝑉𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 and changing its corresponding sample. In 𝑥𝑎𝑙𝑡𝑒𝑟𝑒𝑑, the entry that cor-
responds to the most connected node is set to 0. This will ostensibly induce a large rewiring as lower
samples are more likely to have lower degree, and thus many links will disappear. The heatmap of ag-
gregated results for this method is shown in Figure 8.4(b). In this instance, the changes occur around
the diagonal and away from the first and last nodes of the graph. This is also unsurprising, as the
affected entry is selected by highest degree. The node with the highest degree is likely to be more
central in the graph than somewhere on the edge of the graph.

(a) Random sample rewiring (b) Highest degree rewiring

Figure 8.4: Left: Heatmap of the changes that occur as a result of rewiring by setting a random sample in 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 to be equal
to 1. Right: Heatmap of the changes that occur as a result of rewiring by setting the sample corresponding to the node with
highest degree in 𝑁𝑉𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 to be equal to 0.

There are no discernible patterns for either method. The number of changes in the VG is also seemingly
random, as shown in Figure 8.5.
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(a) Random sample rewiring: number of
changes

(b) Distribution of number of changes

Figure 8.5: Left: Number of changes in the adjacency matrix as the result of a rewiring by changing a random sample. Right:
Distribution of how often the number of changes occur.

8.4. Sliding window
Some authors have chosen to analyze the time series as a set of sub-sequences. The series is divided
into segments of length 𝑛 and a visibility graph of each segment is constructed. The segments are often
defined by sliding a window with length 𝑛 across the whole time series. This can be used to express
developments over time in the time series, as the constructed graphs will lose and gain one node at
a time when the sliding window is moved. In one of his later works, Lacasa took a different route with
the sliding window technique. Instead of finding a temporal pattern in states, Lacasa looked into the
probability of states occurring and what these probabilities say about the process with which the initial
time series was generated [43].
The sliding window is an essential concept for the use of real-time analysis of time series. As shown in
Chapter 2, there are applications that can identify the state of a subject from a series of measurements
and analysis with a VG. However, these are analysed after the fact. A method in which a time series is
continually monitored is still lacking. A sliding window of size 𝑠 could be utilized to monitor a process.
The latest samples 𝑠 of a time series are used to construct an NVG, and new samples continually
replace the oldest ones. An example of this is shown in Figure 8.6. A time series that is formed by
a concatenation of 1000 random samples, followed by a sine squared of 1000 samples, followed by
another 1000 random samples is used. A sliding window of size 𝑠 = 50 is implemented. It is visible that
the average graph metrics change with the nature of time series, as expected. However, the change
in metric only becomes completely obvious after a whole window length has passed as seen in Figure
8.7. Furthermore, as noted from the literature discussed in Chapter 2, these simple metrics are not
necessarily the best indicators of the state of the time series. For example, in the paper on rolling
bearing fault diagnosis [8], a graph function is added to the HVG that is created in order to identify
faulty bearings. A topic for future research could be how such analysis methods work when the VGs
are much shorter as a result of the window size 𝑠, and how the window size could be optimized. A
longer window is more likely to produce an accurate representation when the time series is in a certain
state. However, the transition between states will take longer to become evident if the window is longer.
Finding an optimum for this balance will depend on the time series, graph implementation and graph
analysis tools that are used.
When utilizing a sliding window for real-time applications, the complexity of the algorithm should also
be considered. The algorithm should be able to calculate and analyze the VG of the current window
before the next sample is received. In the current implementation of the VG that is used in the creation
of Figure 8.6, the construction of the VG and finding the average metrics takes time about 𝑡𝑤 = 3𝑚𝑠.
This holds for a window length 𝑠 = 50. When the window length is extended to 𝑠 = 500, the time it takes
to construct and analyze the VG of a full window increases to about 𝑡𝑤 = 0.15𝑠 on average, where the
windows for the sine function take significantly longer to construct than the windows for the random
function. This is due to some optimization in the algorithm where samples with low visibility are quicker
to calculate. But it seems that time complexity scales quadratically with the length of the window, which
is logical because every sample needs to be compared to every other sample, leading to 𝒪(𝑠2). A new
implementation that uses the VG of the previous window as a base for the next window, with the oldest
node dropping out and a new node being added, could be much more efficient. It is likely that such an
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implementation only has a complexity 𝒪(𝑠) as only one sample, the newest one, has to be compared
with all other samples in the window. Such an implementation is a useful tool when considering the VG
for the analysis of real-time data from a source that quickly generates new samples.

(a) Time series data (b) Average degree in window

(c) Average clustering coefficient in window (d) Average shortest path in window

Figure 8.6: An example of how a time series formed by various processes can be monitored using a sliding window and con-
structing the NVG for each window
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(a) Time series data (b) Average degree in window

(c) Average clustering coefficient in window (d) Average shortest path in window

Figure 8.7: An example of how a time series formed by various processes can be monitored using a sliding window of size 𝑠 = 50
and constructing the NVG for each window (zoomed)
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Table A.1: Random time series of length 𝑁 = 104 are generated, where each entry can take p values. This corresponds to
samples with log2(p) precision. Some metrics exhibit a clear dependence on the value for p

Average degree Clustering coefficient Average shortest path Assortativity
p = 16 5.1174 0.7429 207.8 0.0679
p = 32 5.2976 0.7462 111.0 0.1017
p = 64 5.3630 0.7479 54.10 0.1378

NVG p = 128 5.3976 0.7476 29.66 0.1652
p = 256 5.4620 0.7482 19.86 0.1802
p = 512 5.4542 0.7486 14.36 0.1909
p = 1024 5.4602 0.7481 10.30 0.1947
p = 16 3.5764 0.5559 209.5 0.0296
p = 32 3.3792 0.5976 113.0 0.0618
p = 64 3.8500 0.6242 56.30 0.0931

HVG p = 128 3.9104 0.6333 32.00 0.1291
p = 256 3.9534 0.6403 22.39 0.1531
p = 512 3.9700 0.6451 17.48 0.1618
p = 1024 3.9828 0.6468 13.69 0.1657
p = 16 10.3434 0.7268 104.8 0.1078
p = 32 10.6824 0.7257 56.50 0.1512
p = 64 10.8224 0.7267 28.27 0.1908

NLPVG p = 128 10.8180 0.7267 16.18 0.2185
p = 256 10.9532 0.7270 11.44 0.2337
p = 512 10.9610 0.7265 8.86 0.2366
p = 1024 10.9800 0.7282 7.01 0.2450
p = 16 7.1596 0.6286 105.8 0.1479
p = 32 7.4788 0.6407 57.77 0.1755
p = 64 7.7014 0.6467 29.57 0.2157

HLPVG p = 128 7.8242 0.6522 17.59 0.2362
p = 256 7.9028 0.6519 13.03 0.2572
p = 512 7.9360 0.6529 10.67 0.2653
p = 1024 7.9620 0.6533 8.93 0.2764
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Table A.2: Sine wave time series of length 𝑁 = 103 generated with added white Gaussian noise at different levels. The series
is generated as 𝑥𝑡 = 𝑠𝑖𝑛(4 ∗ 𝜋 ∗ 𝑡) with SNR levels 0 dB, 5 dB, 10 dB and 20 dB

Average degree Clustering coefficient Average shortest path Assortativity
NVG SNR = 0 6.0719 0.7537 5.0132 0.1914

SNR = 5 6.7712 0.7647 4.7743 0.1565
SNR = 10 7.3866 0.7543 5.1308 0.1734
SNR = 20 8.2098 0.7438 5.4982 0.2858

HVG SNR = 0 3.9660 0.6369 7.7137 0.1693
SNR = 5 3.9740 0.6168 7.7717 0.1816
SNR = 10 3.9740 0.5916 8.4360 0.2189
SNR= 20 3.9640 0.5601 9.1711 0.3297

NLPVG SNR = 0 11.8442 0.7495 3.9952 0.2185
SNR = 5 12.1399 0.7613 3.8642 0.2191
SNR = 10 12.3716 0.7805 3.9597 0.2509
SNR = 20 11.7163 0.7828 4.2771 0.3321

HLPVG SNR = 0 7.9121 0.6542 5.5992 0.2898
SNR = 5 7.9281 0.6600 5.6509 0.3612
SNR = 10 7.9321 0.6682 5.6311 0.4165
SNR = 20 7.8981 0.6842 6.0044 0.4724

DPVG SNR = 0 10.1818 0.5706 4.3233 0.1366
SNR = 5 11.6284 0.5823 4.1680 0.1423
SNR = 10 12.7712 0.5907 4.4229 0.1350
SNR = 20 14.5435 0.6172 4.3671 0.1843
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(a) Distribution of motifs for length 𝑛 = 2 (b) Distribution of motifs for length 𝑛 = 3

(c) Distribution of motifs for length 𝑛 = 4 (d) Distribution of motifs for length 𝑛 = 5

(e) Distribution of motifs for length 𝑛 = 6

Figure A.1: On the x-axis of each of the plots, the number of unique VGs for that length 𝑛 is shown. The probability of the unique
VG occurring as a result of a random sequence of length 𝑛 and sampling depth 𝑝 = 6 is plotted
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