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Abstract
This paper reports the design of a part of a genetic algorithm, which is made to design analog filters for
loudspeakers. The part in this report is the part which deals with the representation of electrical filter
circuits, the mutation of these filters, and finding their transfer function. The considered representations
are graph coding [2] and a tree data structure [3]. They are compared on intuitiveness, how well
mutations can be performed, and the complexity of calculating the transfer function. The tree structure
is reasoned to be the most suitable. Described is which mutations can be performed on a filter by
the final program, as well as how embryo circuits are made, how the transfer function is calculated,
and which hyperparameters were designed and how they were set. Finally, the design is implemented
using Python and the operations are tested.
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Glossary
branch A branch is either the right or the left half that comes below a node in a tree.

child A child consists of a filter for each driver. A child is formed by mutating or reproducing a parent.

driver A driver is one of the sound-producing cones in a loudspeaker system.

embryo An initial subcircuit that makes sure the filter is a valid circuit and stays a valid circuit after
mutations.

flag A Boolean signal to signify special occasions.

generation One generation is one cycle of mutation and evaluation.

hyperparameter A fixed parameter that influences the behavior of the program.

leaf A leaf is an end in the data structure tree.

node A node is a connection between two branches in a tree.

parent A parent consists of a filter for each driver. The children that pass the selection (done by the
Evaluation subprogram), become parents.

tree A tree is a data structure that represents a filter circuit.

weight A weight is the probability weight. It is used to determine the probability that something is
chosen

𝑃𝑖 =
𝑤𝑖
∑𝑤

where 𝑃𝑖 = the probability of result i
𝑤𝑖 = the weight for i
𝑤 = the weight

.
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1
Introduction

In a world where Artificial Intelligence (AI) is becoming more and more relevant and new applications
are invented every day, AI has been used to come up with better solutions for problems where only
minor improvements were made in the last few decades. In the field of designing analog filters, AI is
able to come up with multiple solutions that fulfill the requirements in less time than humans could.
In this project, the task is to implement such an AI to design analog passive filters for a loudspeaker
system.

Currently designing such filters is a time-intensive, skill-required task. While it is possible to design
an analog filter that gives a speaker system a flat acoustic response, there is no structured method to
do so, as will be described in the state-of-the-art analysis.

The goal for this Bachelor Graduation Project is to make a program using AI that designs a set of
filters for a speaker system, one analog filter for each driver, that results in a flat acoustic response for
the whole speaker system.

1.1. Background information
An ideal loudspeaker would produce every frequency equally loud, but in reality, this is never the case.
The acoustic frequency response of a speaker is never completely flat due to physical limitations.
Moreover, their physical properties limit loudspeakers to only work effectively in a certain range of fre-
quencies [4], and this range never spans the complete range of audible frequencies (20 Hz to 20 kHz).
To combat this, speaker cabinets are designed with multiple drivers inside. The simplest speaker cab-
inet consists of a driver for low frequencies, also known as a woofer, and a driver for high frequencies,
known as a tweeter. A third driver, called a mid-range driver, could be included for the middle frequen-
cies. These two-way and three-way loudspeakers are most common, but sometimes, for extra low
frequencies, a sub-woofer is added. Additionally, multiple drivers for the same frequency range can be
used. An example of a more extensive loudspeaker cabinet includes two woofers, a mid-range driver
and a tweeter.

Although this solves the problem of limited operating ranges, speaker cabinets still have two prob-
lems. First, even inside the operating range of a driver, the acoustic response of a driver is only
moderately flat. Second, at the boundary of two operating ranges, the corresponding two drivers will
interfere. This is because a driver still produces sound outside its operating range when no filtering is
done. In this case, its frequency response is even less flat, and/or less power is converted into sound.
To solve these problems, filters are used. Especially the second problem can be solved with crossover
networks that only send each driver frequencies inside its operating range. For these filters, it is im-
portant to make sure that when all driver responses are added, their response is actually flat. Due to
overlap, different roll-off characteristics and phase differences, peaks and valleys could be added to
the total response. Solving the first problem with filters is more difficult, and less common. Remov-
ing the imperfections of the acoustic response of a driver cannot be done by simply filtering out some
frequency bands, it requires complex circuits to slightly attenuate some frequencies more than others.
Mostly, these imperfections are minimized in the design phase of the speaker cabinet itself.

2
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1.2. State-of-the-art analysis
In the past, analog circuits were used to obtain a desired frequency response. Designing such audio
filters, however, requires extensive knowledge. These circuits are designed by experts in the field who
use a combination of intuition and trial and error with certain filter modules, like high-pass and low-pass
filters. This, however, is not accurate and it may take a lot of time to tune the frequency response in
order to make it flat. In 1995, Assured and Nielson stated the following [5, p. 6]:

Analog circuit design is known to be a knowledge-intensive, multi-phase, iterative task,
which usually stretches over a significant period of time and is performed by designers with
a large portfolio of skills. It is therefore considered by many to be a form of art rather than
a science.

Before the automation of filter design, the design of analog filters followed a standard procedure [6],
[7]. It consists of three general steps:

1. Approximation
2. Realization
3. Study of imperfections

The approximation step is concerned with the generation of a transfer function that satisfies the desired
specifications, such as the desired amplitude, phase and time-domain response. During the realization
step, the defined transfer function is converted into a circuit that specifies the requirements of the
previous step. In the realization step, ideal circuit elements are assumed. In practice however, the filter
circuits are implemented by means of non-ideal components, which suffer from tolerances, parasitic
elements and non-linearities. During the last step, the effects of non-idealities are studied.

The current situation with regard to filters has changed from analog solutions to digital solutions.
Using digital filters over analog filters has some major advantages: the filters can easily be made by
computers and can make the final response, even if the acoustic response of speakers is highly non-
ideal (i.e. not flat), much flatter than analog circuits can do. However, there is a group of people, audio
hobbyists, or audiophiles, who still use analog filters for audio applications, simply because they prefer
the art of analog designs or the sound of analog components. Besides, the quality of analog audio
filtering is better, since there is no sampling needed to filter the signal, as opposed to digital filters [8].
Next to the advantages of digital filters, analog filters or circuits also have advantages: they are cheap,
relatively small and widely applicable. There are also fields in engineering where there is no other
option than using analog circuits, for example for power decoupling, filtering to prevent anti-aliasing,
and band extraction.

For the cases where analog filters still are needed, there are nowadays different computer algo-
rithms, i.e. AI, that are used to find analog filter circuits and the values of the components. For these
algorithms, the type of filter, and the boundary conditions, like the cut-off frequency and the pass-band
frequency are given as an input and the algorithm gives a circuit with values back, which will satisfy
the given requirements. However, none of these algorithms use the acoustic responses of drivers in
a loudspeaker system to design filters to achieve an overall flat acoustic response. These algorithms
could nonetheless be used to design such filters.

[9] sums up different techniques using AI to optimize analog (integrated) circuits. Neural networks
and reinforced learning make use of machine learning, where neural networks use a large amount of
data examples to train a model that can predict the best result. Reinforcement learning uses rewards
and penalties to encourage finding a solution with the highest reward. The second group of techniques
is optimization algorithms. The most occurring in this group are particle swarm [10], [11], simulated
annealing and genetic algorithm (e.g. [12]–[14]). Particle swarm optimization and simulated annealing
are used for optimizing values when the topology is fixed, while genetic algorithms can both be for
optimizing values in known topologies [14], [15] and designing a topology and optimizing the values
[16], [17]. When optimizing values for components, both optimizing for ideal values and discrete values
is possible [15]. It should be noted that when ideal values are found, they should be rounded to existing
analog components. Another option is to search for a discrete set of values.

To evaluate the performance of a generated circuit, SPICE is often used [2], [18]–[21]. In [18], the
simulation takes around 90 percent of the total computation time, the exact percentage depending on
the complexity of the circuit. [19] shows that by letting the program calculate and evaluate the transfer
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function, the percentage of simulation was brought down.

In the future, AI will become more and more advanced. In addition, analog filters will still be rele-
vant despite the existence of digital solutions. For example, the output of an electrical transducer still
needs to be filtered in order to effectively process it digitally. It is therefore expected that the tools to
automate analog filter design will continue to improve. Analog filters will remain necessary.

1.3. Design and implementation restrictions
The AI will initially be developed for a three-way speaker since this requires a low-pass, band-pass, and
high-pass filter. A two-way speaker has no mid-range driver, so it does not need a band-pass filter, and
four-way and five-way speakers only need more band-pass filters. In other words: if the program can
design filters for a three-way speaker, it is expected to be able to design filters for an N-way speaker with
some minor changes. The component values will be chosen from a discrete set, since the final circuits
should be physically realizable, without combining many components to create non-standard values.
A method is chosen that will not require the use of SPICE. The main advantages of not using SPICE
are that we can keep the whole program inside one environment and it will be beneficial for a lower
runtime. The environment chosen to implement this is Python [22]. Python has some advantages, e.g.
there are many libraries available that can be used for specific functionalities and Python makes use
of classes, which makes developing structures of code more easy.

In order to achieve the required acoustic response, a genetic algorithm (GA) was selected, as it
is often used for this purpose in literature, to design the combination of analog circuits [2], [12]–[14],
[18]–[20].

When using a GA, an initial population is made. Then, using a cost function, the performance of
each individual (child) is measured and a predefined amount of children is selected to go to the next
generation, turning them into parents. These parents are then mutated or reproduced and become
children, after which the children are selected and turned into parents until a child is formed that meets
the predefined requirements.

In the case of a three-way speaker, the initial population consists of three circuits per child, one
circuit for each driver. A total cost is calculated per child, taking the designed filters in combination
with the loudspeaker system into account. To be able to estimate the performance of each set of fil-
ters, the acoustic response (magnitude and phase) and the impedance (magnitude and phase) are
needed. A Graphical User Interface (GUI) will be made to let the user upload the files with the data
and select some options, e.g. the number of generations and some specifications for the final response.

The workload is divided between the subgroups in the following way:

• Mutator: this subgroupwill make children from the parents bymutating or reproducing the parents.
Also making transfer functions that are used to evaluate each child will be done by the Mutator-
group, just as making the embryo (initial) circuits.

• Evaluation: the evaluation subgroup will select some amount of children to become parents for
the next round. This is done by a selection algorithm.

• Controller: the controller will make sure all communication between the other two groups is done
properly. It will take care of designing and evaluating the cost function, removing components of
the final circuit, but also making the GUI.

In Figure 1.1, a block diagram can be found where the signals with data between each subgroup have
been drawn.

The theses of the subgroup Controller and Evaluation can be found in [23] and [24], respectively.

1.4. Analysis Mutator
A suitable data structure is often the trade-off between runtime and the number of possible final filters
that can be made. Solutions in the literature have their own way and own data structure to solve
the problem. However, they also have some similarities and they can be divided into three groups:
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Figure 1.1: A diagram with the subdivision and the signals between the groups

Unlimited possible final filters, limited possible final filters and very limited possible final filters (ladder
format).

Methods that produce final filters that are not limited use data structure like graph coding [25], genes
structure [18], and a chromosome of 32 bits [26]. The disadvantage of these techniques is that they
use SPICE to evaluate the filters or in the case of [26] can only use three components to be able to
calculate the transfer function.

In the literature, there are also some examples of methods that try to avoid the use of SPICE and
therefore limit the search space. Examples of methods with limited search space are [16], [19], [27].
They cascade predefined building blocks. Therefore, only a ladder structure filter can be an output of
these methods.

Two more examples of methods with limited search space are [28] and [3], where [3] is less limited
than [28]. They are using a type of tree data structure that gives them the possibility to calculate the
transfer functions without the use of SPICE. The possibility of creating creative filters is more limited
compared to the listed methods that use SPICE but less limited than the building block methods.

The possible mutations that can be applied to filters depend on the data structure that represents
the filter. The mutations that are used in every method are: insert component(s), change value com-
ponent(s), change type component(s) and crossover. [18] also have a mutation that interchanges the
input and the output and [3], [18] have the option to remove components.

1.5. Problem definition Mutator
The goal of the Mutator is to have a way to represent filters, do mutations on them, and calculate their
transfer function.

1.6. Thesis synopsis
In this thesis, the program of requirements for the entire system and for the mutator specifically is dis-
cussed in Chapter 2. Then in Chapter 3, two different data structures are compared and the design
choices are described. In Chapter 4, the implementation of the final design is explained and its func-
tioning validated. A discussion of the results and the conclusion of the project is given in Chapter 5 as
well as recommendations for future work.



2
Program of Requirements

2.1. Program of Requirements
The product of this project is a program that generates a filter circuit for the given acoustic transfer and
impedance of a speaker system. The requirements for this generated circuit are stated in the program
of requirements, below.

2.1.1. Mandatory Requirements
Here, the mandatory requirements, i.e. the requirements that are at least needed to fulfill the goal of this
project, are stated. First, the requirements for the overall system are given and then the requirements
for the filters to be obtained. These requirements are formulated using SMART, which means that
the requirements are Specific, Measurable, Assignable, Realistic and Time-related. The mandatory
requirements are distributed over the three different subgroups and the subgroups add the time relation.

2.1.1.1. Program requirements
1. The program must take the frequency response of the individual drivers of a three-way loud-

speaker system as an input.
2. The programmust take the impedance of the individual drivers of a three-way loudspeaker system

as an input.
3. The program must identify constraints for the filters based on the frequency responses and

impedances as specified in Section 2.1.1.2.
4. The program must be able to design a passive analog filter for each driver with a minimal perfor-

mance as specified in Section 2.1.1.2.
5. The runtime of the program must not exceed 12 hours on an HP ZBook Studio G5 with an Intel

Core i7-9750H CPU at 2.60 GHz.

2.1.1.2. Filter constraint requirements
6. The programmust determine an operating range of each of the drivers, using the constraints from

Section 2.1.1.1, Item 3.
7. The program must be able to design filters which only contain E12 series resistors (1Ω - 1MΩ),

capacitors (100pF - 100µF) and inductors (1µH - 1H)
8. The analog circuits must filter out frequencies which are outside the operating range of the driver,

found by the program.
9. The combination of filters must be able to create an acoustic frequency response of the loud-

speaker system that is flat from 50 Hz to 20 kHz with a margin of 1.5 dB.
10. The analog circuits must not contain components which do not contribute to the requirements

specified in Section 2.1.1.2.

2.1.2. Trade-off requirements
The requirements in this section of the PoR would improve the usability of the final program. These
requirements are not mandatory, but nice to have. The trade-off requirements, shortly ToR, are not
SMART formulated, since it is not necessary to fulfill these requirements in order to have a working
program. The ToR consist of three sets of requirements: for the program, the user and the filter.

6
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2.1.2.1. Program requirements
1. The program should be able to design analog circuits for speakers systems varying from two to

four drivers.
2. The program should be able to design active filters.
3. The program should indicate acceptable tolerances for components.
4. The program can find the monetary cost of components online.
5. The runtime of the program should be minimized.

2.1.2.2. User requirements
6. The user should be able to specify the amount of drivers in the speaker system.
7. The user should be able to set a different margin around the desired amplitude response than the

standard 1.5 dB.
8. The user should be able to specify whether the program uses specific component values and/or

a range of an existing E-series (e.g. E12) of component values.
9. The user should be able to specify a maximum number of components that can be used for

designing the filters.
10. The user should be able to choose between passive or active filters for the final circuit.
11. The user should be able to choose the shape of the amplitude response of the complete system.
12. The user should be able to specify the monetary cost of components.
13. The user should be able to set a maximum total monetary for the final circuits, based on either

component cost specified by the user or component cost specified by an online webstore.

2.1.2.3. Filter requirements
14. The group delay of the new acoustic response should be included in the cost function
15. The attenuation of the each filter should be included in the cost function.
16. The combination of filters should have a response as close as possible to the shape of the pre-

defined amplitude response.

2.2. Mutator requirements
The Mutator is a subprogram that builds an initial population (parents), and applies changes, partly
random, to create a new set of solutions (children) which will then be evaluated by the evaluation
subprogram. The evaluation group will then send back the selected children (parents) to mutate and
which then sends the children back to evaluation etc. The first two requirements must be completed in
week 3, the rest in week 4.

2.2.1. Mandatory requirements
1. The Mutator must be able to make a valid circuit (embryo circuit) for initializing the program.
2. The Mutator must generate new filters (children).
3. The Mutator must take a group of filters (parents) as input.
4. The Mutator must take the hyperparameters as input.
5. The Mutator must take a list of available components as input.
6. The Mutator must be able to add components to a parent to form a child.
7. The Mutator must be able to delete components from a parent to form a child.
8. The Mutator must be able to change the values of components of a parent to form a child.
9. The Mutator must be able to work with discrete component values as given by the controller.
10. The Mutator must calculate the transfer function of the children.
11. The Mutator must give the symbolic transfer function of the children as output.
12. The Mutator must give the values of the components as output.

2.2.2. Trade-off requirements
13. The Mutator should find the optimal action, e.g. mutation, reproduction or cross-over.
14. The Mutator should design a specific embryo circuit for each driver.
15. The Mutator should take flags as input that describe what change could be beneficial for the filter.
16. The probability of each action that can be applied to a parent should be variable.
17. It should be tried to improve the speed of calculating the transfer function of a child.



3
Design process

In this chapter, the design process is described. Two solutions are presented: graph coding and tree
structures. They both have an advantage over a third option, cascading building blocks, as can be seen
in Table 3.1. Graph coding, as well as tree structures, can both be used to structure a circuit as data for
AI. In the following sections, they are compared on their fitness for the program. After consideration,
the tree structure was chosen as the design that was implemented in the final program.

Table 3.1: Comparison of different methods

Method Possible creative solution Runtime
Graph coding Yes High
Tree structure Limited Low
Cascading building blocks No Lowa

aExpected value based on the simple computation to calculate the transfer function

3.1. Data structure
This section explains the data structures that are used to represent a filter and their advantages and
disadvantages.

3.1.1. Graph coding
The first method that was implemented is the graph coding method described in [25]. It consists of
a number of nodes, of which some are connected by components. This results in an upper triangle
matrix of admittances. Using graph coding and a matrix representation is very intuitive and allows for
the circuit to easily be drawn. A filter could very well be saved by using this data type. However, the
operations that should be performed on a circuit were not easily implemented using graph coding; more
on this in the following sections.

An example of a graph coding representation is shown in Figure 3.2. It shows an embryo circuit
(see subsection 3.2.1) and two mutations (see subsection 3.3.1).

An example of a matrix is given in Equation 3.1 and the corresponding circuit can be seen in Figure
3.1. A connection between two nodes is represented by an admittance on the row and column of the
two nodes (with node with the lowest number as the row). For instance, the impedance 𝑍5 is between
nodes 1 and 4, so on row 1 column 4 there is the admittance 𝑌5. A node cannot be connected to itself,
so on the diagonal don’t-care’s are placed (𝑥). Only the upper triangle is filled as it accounts for all
connections.

8
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Figure 3.2: Embryo circuit and the two mutations: connecting-two-nodes and inserting-new-node [25]. An edge represents a
component, or source or load. A dot represents a node.

⎡
⎢
⎢
⎢
⎣

𝑥 0 0 𝑌2 0
𝑥 𝑌4 𝑌1 𝑌5

𝑥 𝑌3 𝑌6
𝑥 0

𝑥

⎤
⎥
⎥
⎥
⎦

(3.1)

Figure 3.1: The corresponding circuit

3.1.2. Tree
The next circuit representation method is a tree structure as described by [3]. This method uses a tree
to represent the filter circuit, which is built from two-ports connected in parallel, in series, or cascaded.
Every node, depicted as circles, is a connection of the two two-ports below, resulting in one new two-
port. The leaves of the tree are T-structured circuits, which are depicted as squares.

This form of filter circuit representation is not very intuitive. Understanding its functionality is not
easy by just looking at the tree structure. A tree structure also limits the number of possible filters that
can be created. However, these drawbacks did not outweigh the advantages for calculating the transfer
function and the mutations.

An example of a tree structure and its corresponding filter circuit can be seen in Figure 3.3. The
T-structured circuits and nodes have been color coded to match their corresponding two-ports.

(a) Tree (b) Circuit

Figure 3.3: A tree structure and its corresponding circuit

3.1.2.1. Nodes
The nodes from the tree represent a connection between two two-ports. The connection can be either
series, parallel or cascading. The two two-ports below a node are called the branches.
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Cascade The cascade node connects the input ports of the second two-port network with the output
ports of the first two-port network, as shown in Figure 3.4.

Figure 3.4: Cascade connection [29]

Parallel The parallel node connects the input ports of the two two-port networks in parallel and the
output ports of the two two-port networks in parallel, as shown in Figure 3.5.

Figure 3.5: Parallel connection [30]

Series The series node connects the negative terminals of the first two-port with the positive terminals
of the second two-port, as shown in Figure 3.6. This connection differs from the series connection
described in [3]. The reason for this deviation is described in subsubsection 3.4.2.3.

Figure 3.6: Series connection [31]

3.1.2.2. T-circuits
The leaves of the tree are T-structured circuits consisting of three components, see Figure 3.7. Each
component can be a resistor, a capacitor, or an inductor. Different from [3], the T-structured circuit is
not limited by using each component only once. This deviation was chosen to increase the number of
possible circuits that can be created.
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Figure 3.7: T-structured circuit

3.1.2.3. Mutator
The goal of the GA is to create a combination of three filters (or another number, depending on the
user for the number of drivers). This is done by the Mutator class. It has a list of all the children and
parents, where the children and parents are a combination of three filters. The Mutator also handles the
initialization of the population (making embryos) and keeps track of the cost if no changes are applied.

3.2. Embryo Circuits
An embryo circuit is an initial circuit that is the start of the algorithm. In [18], the conclusion was made,
that using predefined good embryo circuits results in a better final circuit, fewer faulty circuits and lower
runtime. This is only the case if the embryo circuit is made with knowledge of how the final circuit should
behave. In spite of this, the component values for the embryo circuits are randomly chosen from the
component value series. This is done randomly as we do not want to guide the algorithm too much in
a common-known solution.

3.2.1. Graph Coding
In the graph coding implementation, the embryo circuits were made by executing a few mutations, but
these mutations were not chosen at random but predefined. The embryo circuits were used to make
the first generation of a set of valid circuits, by for instance connecting the input and output. The embryo
circuit (initial graph) for graph coding can be found in Figure 3.8.

3.2.2. Tree
In the initialization of the tree, the embryo circuits for the tree are built. The embryo circuits are also
T-structured circuits. The reason for this is that the tree data structure is kept and all mutations can
be applied to the whole filter. If the embryo circuit was not a T-circuit, the mutation would be more
difficult as well as the calculation of the transfer function. The transfer function calculation is based on
the fact that all leaves are T-circuits as will be explained in Section 3.4.2. Moreover, the advantage
of this implementation is that the algorithm still has the possibility to find a better topology itself, by
possibly applying mutation on the embryo circuit. Initially, three types of embryo circuits for the tree
were designed: low-pass, high-pass and band-pass filters. Each embryo is specific for a driver: the
low-pass for a bass, the high-pass for a tweeter, and a band-pass for a mid-range. They all consist only
of resistors and capacitors. The choice for using capacitors instead of inductors is because inductors
are in general lossier and have higher tolerances than capacitors. The topology of the low-pass, high-
pass and band-pass filters is shown in Figure 3.8a, 3.8b and 3.8c, respectively.

(a) Low-pass (b) High-pass (c) Band-pass

Figure 3.8: The embryo circuits

In Section 4.2.3, the impact of the implementation of the embryo circuits is described. The conclu-
sion was made that only the high-pass embryo circuit for the filter for the tweeter is beneficial for the
program. Therefore, that embryo circuit is kept and the embryo circuits for the filters for the bass and
mid-range drivers are randomly generated T- circuits.
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Figure 3.9: The cost fluctuates strongly and does not converge.

3.3. Mutations
In order to create new children from parents mutations need to be applied to the parents. Both graph
coding and Tree have multiple options for forming a child from a parent.

3.3.1. Graph coding
Four mutations have been made for graph coding: connecting two nodes, inserting a node, changing
a component, and changing the value of a component. A crossover function was not made.

3.3.1.1. Connect node
This mutation chooses two nodes and puts a new component between them, see Figure 3.2. If the two
nodes were already connected, the new component is put in parallel.

3.3.1.2. Insert node
Inserting a node is done by choosing two nodes with an existing connection and putting a new com-
ponent in series, thus creating a new node between the existing component and the new component.
The mutation is shown in Figure 3.2. This also results in the matrix getting one more row and column.

3.3.1.3. Component mutations
The last two mutations, change component and change component value, are performed by choosing
a random component and either changing the type or the value, respectively.

3.3.1.4. Crossover
Once these four mutations had been implemented, crossover would be the next function to be made.
No obvious approach was found and at the same time, problems were encountered trying to get the
transfer function. The development of graph coding was therefore halted and thus no implementation
was made for crossover with graphs.

3.3.2. Tree
For the tree structure, six mutations have been made: change component type, change compo-
nent value, mutate node, add node, remove node, and tree crossover. The mutations are
listed in the following sections.

When the first basic mutation was implemented, an interesting observation was made. The mini-
mum cost of the population would strongly fluctuate, such as seen in Figure 3.9. This can be interpreted
as follows: once a relatively good filter was found, it was quickly lost because the mutations were too
harsh. This resulted in some mutations being altered to change less about the filter as well as changes
in the Mutator on how mutations are handled.

The Mutator class generates the children from the parents by making a number of copies of each
parent and mutating every copy. In an earlier version the Mutator would mutate every one of the three
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trees, which was later changed to be only one tree per copy of a parent. This change followed from the
fluctuation of the cost, as explained above. With this random choice between the three trees rises the
opportunity to give weights to the choice. The weights are given by the controller to signal the Mutator
which tree or filter needs some extra mutating.

3.3.2.1. Change component type
The first mutation that was implemented was change component type. The mutation takes one
component of a T-circuit and changes its type (Resistor, Capacitor, Inductor). Multiple versions have
been made to implement this mutation. The first version would change all three of the components, but
to make this mutation less severe, this was adopted to only one component. Moreover, firstly the type
of component would be chosen randomly. In later versions, the hyperparameter weights for the type of
components were used to choose the type of component. More about the hyperparameter weights for
the type of components in Section 3.5.2.

In Figure 3.10 an example is displayed: A capacitor is changed to a resistor (in red).

Figure 3.10: The mutation: change component type

3.3.2.2. Change component value
Themutation change component value gives a new value to one of the components. The new value
of the component is randomly chosen from the component value series within a range (hyperparameter:
step size, see Section 3.5.5) around its previous value, excluding its previous value.

The first implementation of the mutation change component value gave a totally random value
within the component value series. By using this method, it can take a long time before the optimal
value is chosen. Therefore we changed it to picking the component value in ascending order in the
component value series. However, this would also take too long, because if its optimal value would be
lower than the pre-mutation value, it should go through almost all values in the series. Therefore, the
step size was implemented, and the new value is chosen within a range, the step size, of its previous
value. With step size, there is a probability that larger steps are taken than one. As it can take larger
steps, it can go faster through different values. This will cause it converges faster to its optimum value.
It can converge faster because if the new value results in a higher cost than its parent, it has a lower
probability of reproducing. This is further explained in the Section 3.5.5.

3.3.2.3. Mutate node
Another obvious mutation that could be implemented, is changing the type of a node. This means that
two two-ports will change their connection together. An example can be seen in Figure 3.11, where a
parallel connection is changed to a cascading connection (in red). Firstly the new type of node was
chosen randomly, in later versions the node was chosen based on the hyperparameters weights for
the type of node. The chosen weights are explained in Section 3.5.3.

Figure 3.11: The mutation: mutate node
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3.3.2.4. Mutate from list or Mutate from tree
Some mutations have two implementations. mutate node and change component type were
first implemented as recursive functions. This recursive approach is called mutate from tree. For
change component type, the function starts at the top and keeps choosing random branch until
a circuit is found. For mutate node, the random choice at each node also includes the node itself,
which when chosen means the current node is mutated. This meant that deeper nodes and circuits
have a smaller probability of getting mutated.

The other implementation, Mutate from list, chooses randomly from a list of either all nodes or
circuits (for mutate node from list and change component type from list, respectively).
This means that every circuit or node has an equal probability of being mutated.

Using Mutate from tree was reasoned to have more impact because deeper circuits have less effect
on the transfer function. This type of mutation can be used to improve the diversity of the population,
because it changes more of the behavior of a filter with one mutation.

3.3.2.5. Add node
Adding a node is done by selecting a branch of a node and inserting a node. The branch the new
node is replacing, will be one branch of the new node. The other branch of the new node is a newly
generated circuit. Adding a node can thus also be understood as adding a circuit in parallel, series, or
cascaded, to an existing two-port. The type of node was first randomly chosen and later chosen based
on the hyperparameter weights for the type of node.

In the example in Figure 3.12, the left circuit is replaced by a node (in red) and the circuit is moved
to a branch of the new node. The other branch of the new node is a new circuit (also in red).

Figure 3.12: The mutation: add node

3.3.2.6. Remove node
The mutation remove node removes a node from the tree. The place of the removed node is then
taken by one of the branches of the removed node. The other branch is lost.

An example can be seen in Figure 3.13, where the right node (crossed out) is removed. One branch
takes the place of the removed node and the other is not used anymore.

Figure 3.13: The mutation: remove node

3.3.2.7. Tree crossover
Crossover with trees is done by choosing one node or circuit in two trees and swapping them. The
implementation of this function in the Mutator only uses the first tree, as keeping track of the parents of
the second tree is complicated and keeping the second tree would make the code more complicated
than necessary. The crossover mutation can thus be understood as replacing a part of one tree with a
part from another tree.

A graphical example of the crossover function is shown in Figure 3.14. In the example, a child is
created of the blue tree (upper of the two). The black tree (lower of the two) is not changed by the
Mutator.
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Figure 3.14: The mutation: tree crossover

3.3.2.8. Child crossover
This mutation is performed on child level A child consists of one filter (Tree) for each driver in the
loudspeaker system. In child crossover, one of the filters of the child is replaced by a filter for the
same driver from another child. For example, the filter for the bass driver of child two replaces the filter
for the bass of child one.

3.4. Transfer function
3.4.1. Graph coding
Calculating the transfer function for graph coding cannot always be done by simply adding impedances
in parallel or series. This is due to the fact that complicated filter circuits can be formed using this data
structure. Therefore, the transfer function was first calculated using the Python package Lcapy [32].
Lcapy can make a transfer function from a netlist, so the matrix is read out to form the netlist. After
implementation, it was found that calculating one single transfer function of a filter with only a few
components took already long using Lcapy. An example is shown below, where the transfer function
of a relatively simple filter is calculated in 8.69 seconds:

Circuit:
R1 1 3 10
L1 3 2 0.1
R2 3 4 3
C1 4 2 0.01
L2 4 0 0.001
R 0 4 3
Transfer function:
(3*s**3/16 + 45*s**2/8 + 375*s + 562500)/
(s**3 + 19695*s**2/8 + 57250*s + 2437500)
Time it took to calculate the transfer function:
8.685295581817627 seconds

For the program, the transfer function must be calculated over 10000 times. Thus the conclusion
is that it is not possible for the program to use this method to calculate the transfer function for this
application.

An alternative to using Lcapy is to calculate the transfer function using nodal analysis. However,
after testing if matrix inversion of large matrices was fast enough in Python, the conclusion was that
this still takes too long to calculate a single transfer function so this method could also not be used.

3.4.2. Tree
One main advantage of using this tree circuit representation is that the transfer function is easy to cal-
culate. The transfer function is calculated using the same technique as in [3]. This technique calculates
the impedances of components of an equivalent T-circuit from two connected T-circuits. The type of
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connection determines the calculation. This will be further explained in Section 3.4.2.1, Section 3.4.2.3,
and Section 3.4.2.2.

The result is an equivalent T-circuit of the whole tree. The filter is connected to the driver where
the impedance of the driver is denoted as 𝑍𝐿. The resulting equivalent circuit of the filter and driver is
shown in Figure 3.15. The transfer function 𝐻(𝑗𝜔) of this equivalent circuit can be simply derived using
circuit theory. The transfer function of the equivalent filter circuit is:

𝐻(𝑗𝜔) = 𝑍𝐿
(𝑍𝐿 + 𝑍2) ∗ (1 +

𝑍1
𝑍3
) + 𝑍1

(3.2)

Preferably, the transfer function would be fully symbolic, with the load impedance as well as the
frequency and the components as symbols. A fully symbolic transfer function would give the option to
evaluate the influence of a single or group of components purely on the transfer function. However, the
computation time of a fully symbolic transfer function was too long. The Evaluation subgroup originally
needed a partly symbolic transfer function with 𝑍𝐿 and 𝑗𝜔 as symbols, therefore this was implemented.
This reduced the runtime to be acceptable. However, in the end, this was no longer needed for the
Evaluation subgroup. In the third and final design 𝐻(𝑗𝜔) is only calculated numerically. From the
controller, the impedance and frequency are received and these arrays are used to directly calculate the
impedance of the components and thus the transfer function. This results in an array that represents the
transfer. This adjustment resulted in a runtime that decreased by a factor of ten, allowing the program
to run thousands of generations per hour.

Figure 3.15: Equivalent filter circuit of the tree

3.4.2.1. Cascading ( > > )
When cascading two T-circuits, the output of the one T-circuit is connected to the input of the other
T-circuit as can be seen in Figure 3.16. An equivalent T-circuit can be made by first adding 𝑍𝑎2 and
𝑍𝑏1, then converting the resulting Π circuit, consisting of 𝑍𝑎3, 𝑍𝑎2 + 𝑍𝑏1 and 𝑍𝑏3, into a T-circuit using
the calculation from Appendix A.2.2. Lastly, 𝑍𝑎1 and 𝑍𝑏2 should be added by their in-series adjacent
impedances. The calculations for the conversion from two cascading T-circuits into their equivalent
T-circuits are in Appendix A.1.1

Figure 3.16: Two T-circuits cascaded

3.4.2.2. Parallel ( || )
Connecting two T-circuits in parallel results in the circuit of Figure 3.17. In order to obtain the resulting
T-structured equivalent circuit, the two T-circuit should be transformed into Π-structured circuits. This is
realized using the T to Π transform equations in Appendix A.2.1. This results in two parallel Π-circuits,
where impedance 𝑍𝑎1 is in parallel with 𝑍𝑏1, 𝑍𝑎2 with 𝑍𝑏2 and 𝑍𝑎3 with 𝑍𝑎1. Adding these impedances
in parallel, results in one Π-circuit. Transforming this Π-circuit using the calculation in Appendix A.2.2,
will result in the equivalent T-circuit.

The calculations for obtaining an equivalent T-circuit from two T-circuit connected in parallel are
shown in Appendix A.1.2.
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Figure 3.17: Two T-circuits in parallel

3.4.2.3. Series ( - - )
Two T-circuits connected in series are shown in Figure 3.18. The equivalent T-circuit is obtained by
adding 𝑍𝑏1 and 𝑍𝑏2 in parallel and adding the resulting impedance with 𝑍𝑎3 and 𝑍𝑏3 in series to form
𝑍3. 𝑍𝑎1 will become the impedance 𝑍1 and 𝑍𝑎2, 𝑍2. The calculation are further explained in Appendix
A.1.3.

Figure 3.18: Two T-circuits connected in series

At first, the series implementation of [3] was used, which can also be seen in Figure 3.19. The
series connection described in the paper connects the two T-circuits as shown in Figure 3.20. The
advantage of connecting the two T-circuits as in [3] instead of the common two-port series is that in the
equivalent T-series, all three impedances change value. According to [3], the equivalent circuit of this
series connection can be calculated by adding in series 𝑍𝑎1 with 𝑍𝑏1, 𝑍𝑎2 with 𝑍𝑏2 and 𝑍𝑎3 with 𝑍𝑏3.

Calculations of the equivalent series connections as done in [3]:

𝑍1 = 𝑍𝑎1 + 𝑍𝑏1 (3.3)
𝑍2 = 𝑍𝑎2 + 𝑍𝑏2 (3.4)
𝑍3 = 𝑍𝑎3 + 𝑍𝑏3 (3.5)

The disadvantage of this series implementation was found during testing. It was discovered that the
equivalent circuit calculations were not always valid when the series connection was in a larger tree.
An example of the difference between the series connection and the way the equivalent circuit of this
series connection is calculated can be seen in Figure 3.22. The resulting output of both circuits can be
found in Figure 3.21. It is clear that they both give different outputs, which proves that the equivalent
circuit calculations are not always valid. This is the reason we used the series connection described
above.
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Figure 3.19: Old implementation of series connection

Figure 3.20: Two T-circuits in old-series

Figure 3.21: Plot of the output voltage of both the circuits from Figure 3.22.

(a) Series (b) Series implemented as equivalent calculation

Figure 3.22: Circuit with two T-circuits in series in parallel with a third T-circuit
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3.5. Hyperparameters
Hyperparameters are input variables of the program that can be tuned to optimize the working of the
program. All values for the hyperparameters are fixed during a run. However, for possible future adjust-
ments, it is possible to change each of them during a run. Seven hyperparameters were implemented.
They will be discussed in the following subsections.

3.5.1. Max depth
The hyperparameter max depth determines the maximum depth of the tree. It, therefore, determines
the maximum amount of T-circuits in a final filter, and thus the maximum amount of components in
a final filter, see Equations 3.6 and 3.7. Moreover, the max depth also influences the runtime of the
program. The higher the maximum depth, the more complicated the filters, the more complex the
transfer function, and the longer it takes for the program to determine the transfer function.
The value of max depth was first set to 4, to minimize the component that could be used. This would
result in a maximum of 24 components per filter. However, after some test runs it was found that amax
depth of 5 would find a lower cost for the three filters faster, see Section 4.2.4.1.

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑠 = 2(𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ−1) (3.6)
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 3 ∗ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑠 (3.7)

3.5.2. Weights for the type of component
This hyperparameter gives weights to each component type (resistor, capacitor and inductor). Due to
this hyperparameter, when a new circuit (not an embryo) is generated, the probability of choosing one
component can be higher than another. To determine the weights, 12 test runs, each of one hour, were
done. In the filters of the best child, the components were counted. The results are displayed in Table
3.2. The final weights are chosen by using the ratio between the percentages which are rounded to
the nearest ten.

Component type Count Percentage of total number of components Final weights
Resistor 90 21.1% 1
Capacitor 154 36.1% 2
Inductor 182 42.7% 2

Table 3.2: Number of components of each type in 12 runs and the final weights for the type of component

3.5.3. Weights for the type of node
The parallel connection was found to appear more often in the final filters than the other two node
types do, as can be seen in Table 3.3. In this table, the number of each type of node appearing in the
final filter was counted. In total 12 runs were done, each of one hour. For this reason, the probability
for the nodes was implemented to help the program converge faster to its optimal filter by giving the
parallel connection a higher weight. This way the node type parallel would be chosen more often and
the program makes more circuits with parallel nodes, which will improve the speed of the program.
Weights for the type of node are set by using the ratio between the percentages which are rounded to
the nearest ten. This results in the weights shown in Table 3.3.

A downside of having non-equal weights for the type of node as well as for the type of component
is that the program is guided toward a certain solution. However, as the population size is 200 (set by
the Evaluation group), each containing 3 filters (assuming a three-way loudspeaker) still in a population
around 200 ∗ 3 ∗ 20% = 120 series nodes will be present, assuming each filter has a node. Therefore,
if a series or cascade node would be more beneficial for a final filter, they will still be passed through
during selection (done by the Evaluation group).

3.5.4. Weights for the type of mutations
Each mutation can receive a weight from this hyperparameter. Some mutations have a larger impact
on a filter than others, therefore it was thought to be useful to do some mutations more often than
others. However, as will be discussed in Section 4.2.4.2, this was not the case. Thus all mutations
have equal probability.
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Node Count Percentage of total number of nodes Final weights
Series (- -) 27 18.5% 1
Parallel (||) 79 60.8% 3
Cascade (») 24 20.8% 1

Table 3.3: Number of the types of nodes in 12 runs and the final weights for the type of node

The weights for the type of mutation was first chosen on trials, then adjusted based on educated
guesses, and changed back after more trials. It is difficult to determine the optimum weights for three
reasons. The first is that there are lots of possible combinations for the weight and testing takes a lot
of time. The second reason is that the perfect weights will differ per cost or per generation, as the next
optimum mutation will differ per current filter. The third is that an optimum value is difficult to determine
as on the one hand, you want the weights to cause the cost to drop as fast as possible, but on the
other hand, you don’t want to go into a local minimum. Multiple runs were done to make an attempt to
determine the optimum weights. The first runs were done in an early stage of the implementation and
the results were discarded as the function that determines the cost did not work properly yet and thus
no valid conclusion could be drawn.

The educated guesses are based on some known properties of a Tree. If we take for example a
Tree of max depth 4, then the Tree has a maximum of 7 nodes, 8 circuits, and 24 components. Both
a node and a component can be one of three types. The number of values the components can have
depends on the possible component values (E-series) chosen by the user. The most common series is
the E12 series. If, for example, a range of 5 decades is chosen, with an E12 series, there are 5∗12 = 60
component values per component type. There can thus be more options to be tested for component
values than for components type and even fewer for the node type. With this knowledge the weights
were chosen as shown in Table 3.4. However, as stated these are not the final weights chosen.

Table 3.4: Possible values for the hyperparameter: weights for the type of mutation

Mutation Weight
Change component type from list 2
Change component type from tree 1
Mutate node from list 1
Mutate node from tree 1
Remove node 1
Add node 2
Change component value 10
Tree crossover 2

3.5.5. Step size
This hyperparameter influences the mutation: change component value. The new value for the
component is randomly chosen within this step size. A wide step size will result in going through
different value ranges faster, as it can take bigger steps. However, once it is close to its optimal value
it will take longer to get to the optimal value, as it also has a lot of other values in the range it can pick.
A narrow step size, results in the opposite. The value for the step size is chosen at 10. This means
that the values chosen can be 1 of the 5 values below its previous value or 1 of the 5 values above its
previous value in the component value range. This is thought to be a value that balances the pros and
cons of wide and narrow step sizes.

3.5.6. Number of parents/selection size
The size of the initial populations and the size of the selected children, who became parents from the
evaluation. This hyperparameter is set to 70 by the Evaluation subgroup.

3.5.7. Number of children/population size
The number of children that are formed from parents. This hyperparameter is set to 200 by the Evalu-
ation subgroup



4
Prototype implementation and validation
4.1. Prototype implementation
A child consists of as many trees as the number of drivers. A tree consists of nodes and circuits
and a circuit consists of three components. The program, to create and mutate these trees is written
in Python, using object-oriented programming. The classes and methods and their connections are
shown in Figure 4.1. A hierarchical structure is used to implement the program. On top of the hier-
archical structure is the Mutator class. The Mutator class takes all the hyperparameters, component
value series, and the number of drivers as input and initializes the list of parents by calling the class
Tree. The only method in Mutator is create_children, this method is called by the subgroup Con-
troller. This method creates the children in two ways. The first is by reproducing and the second is by
calling the method mutate of one of the Trees the initial parents or the parents (selected children) that
are chosen by the evaluation. Only after a mutation of a Tree, the new transfer function is calculated,
by calling the method get_transfer of the class Tree. Because only one Tree of a child is changed
at a time, it saves run time to only calculate the transfer function when a child is mutated. Another
function of the Mutator class is that it saves the cost of a child and this cost is only amended when the
child is changed. On top of this, the Mutator class builds a list of possible trees to do the crossover
with that is, together with the hyperparameter weights for the type of mutations, passed on when the
method mutate is called.

The class Tree receives the hyperparametersmax depth,weights for the type of component,weights
for the type of node, and step size and the number of drivers. Examples of attributes of the class are
a list of the circuits, a list of nodes, depth, and the transfer function. When the class is called the
embryo circuit is made, by calling the class GenotypeCircuit. The method mutate, makes a list of mu-
tations (other methods of Tree) that are possible on this specific Tree and chooses one of them based
on the hyperparameters weights for the type of mutations. Another method of Tree is the method
get_transfer, it calls the method get_equivalent. This method illustrates the advantages of
object-oriented programming. It first calculates the equivalent T-circuit of the whole Tree and then its
transfer function. The method does this by going to the top of the Tree, see the Psuedo code in Listing
4.1. If the top of the Tree, is a GenotypeCircuit (T-circuit), the method get_equivalent of the class
GenotypeCircuit is called and the impedances of the equivalent circuit are returned. If the start of the
Tree is a GenotypeNode (node), the method get_equivalent of the class GenotypeNode is called.
This method first looks if its left branch is a node. If this is the case it goes to get_equivalent of
that GenotypeNode and so on until it is a GenotypeCircuit. The methods get_equivalent of Geno-
typeCircuit returns the impedances of GenotypeCircuit. Then get_equivalent from GenotypeNode
calculates the equivalent impedances when working its way up again by also getting the impedances
of the right branch. This way the equivalent T-circuit of the whole Tree is calculated.

The class GenotypeNode is the class for a node in the Tree. It includes among others the type of
the node (parallel, series or cascade), the depth of the node and the branches of the node. When the
class is called, the type of node is chosen based on the hyperparameter weights for the type of node,
and its branches are made. They can be either another node of a circuit. The possibility for a node is
zero when the depth of the node equals the max depth minus one.

21
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Figure 4.1: Classes and methods and their connections of the subprogram the Mutator
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Listing 4.1: Psuedo code for getting equivalent circuit

class Tree
def ge t_equ iva len t ( )

Z [ 0 ] , Z [ 1 ] , Z [ 2 ] = s t a r t . ge t_equ iva len t ( ) # s t a r t o f the t ree
t r a n s f e r = Z_L / ( ( Z_L + Z [ 1 ] ) * (1 + Z [ 0 ] / Z [ 2 ] ) + Z [ 0 ] )
return z , t r a n s f e r

class GenotypeNode :
def ge t_equ iva len t ( )

Za1 , Za2 , Za3 = branch [ 0 ] . ge t_equ iva len t ( )
Zb1 , Zb2 , Zb3 = branch [ 1 ] . ge t_equ iva len t ( )
i f se r i es :

Z0 , Z1 , Z2 = . . .
else i f cascade :

Z0 , Z1 , Z2 = . . .
else i f p a r a l l e l :

Z0 , Z1 , Z2 = . . .
return Z0 , Z1 , Z2

class GenotypeCi rcu i t :
def ge t_equ iva len t ( )

Z0 = component0
Z1 = component1
Z2 = component2
return Z0 , Z1 , Z2

The class GenotypeCircuit are the leaves of the Tree and is the class for the T-structured circuits.
One of its attributes is a list of its three Components.

The class Component includes the type of a Component and its value. When the class is called,
the component receives a type and a value.

4.2. Subprogram validation
4.2.1. Mutations
The validation of the functions for the mutations was done by inspecting trees before and after the
mutation. An example of a textual representation is given below, which is how a tree is displayed when
printed.

Tree:
:Node 1; Depth 1; Type: >>

:Node 2; Depth 2; Type: >>
:Circuit 1; Depth 3: Type LRC
:Circuit 2; Depth 3: Type CLR

:Node 3; Depth 2; Type: ||
:Circuit 3; Depth 3: Type LRC
:Circuit 4; Depth 3: Type CLR

After this tree was generated, the mutation change component type is performed on the tree.
As can be seen below, a random Component changed type: the capacitor of circuit 4 was changed to
a resistor. This is the same mutation as in Figure 3.10.

Tree:
:Node 1; Depth 1; Type: >>

:Node 2; Depth 2; Type: >>
:Circuit 1; Depth 3: Type LRC
:Circuit 2; Depth 3: Type CLR

:Node 3; Depth 2; Type: ||
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:Circuit 3; Depth 3: Type LRC
:Circuit 4; Depth 3: Type RLR

Using this method, all mutations could be validated in a controlled environment.

4.2.2. Transfer function
It is crucial that the transfer function is correctly calculated for the filters. That is why it was thoroughly
tested. To test the code for producing the transfer function, a filter would be generated together with its
transfer function. The filter would then be built in LTspice and the result of LTspice would be compared
with calculated transfer function. The calculation of the transfer function was tested using three meth-
ods: first, by setting the load impedance to a constant in the code. Secondly, by using the measured
driver impedance and simulating in LTspice with multiple load impedances. And thirdly, by modelling
the impedance of the driver with an electrical circuit.

The simplest way to verify that the transfer function that is calculated by the code is correct, is by
setting the driver impedance to a constant. This means that the output transfer functions will be made
with a load of constant impedance. A constant load is easily simulated in LTspice. This method of
validation was used when the first results were created. An example of this approach can be seen in
Figures 4.2 and 4.3. In Figure 4.2 the filter that is being tested is shown and in Figure 4.3 the calculated
and simulated transfer functions can be seen.

Figure 4.2: The filter under test in LTspice.

(a) Calculated with the code (b) Simulated with LTspice

Figure 4.3: The transfer function as calculated and simulated

Once validation of the transfer function with a constant load was concluded, a different method was
used for validation with a variable load. The method to test the transfer functions with the impedance
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characteristics of the driver is simulating the filter with different loads. Two load impedances were
chosen: one at the DC resistance of the driver and one at resonance impedance of the driver. The
resulting graph would contain two traces and could be compared with the calculated transfer function.
The general shape of the graphs could be compared, as well as the gain at the frequencies where the
driver impedance would be exactly equal to one of the two chosen load impedances. An example of
this method is given below: A filter is shown in Figure 4.4 which is simulated with two different load
impedances (𝑍𝐿), 5Ω and 10Ω. The two load impedance correspond to the DC impedance and the
resonance impedance of the driver. The impedance of the driver is shown in Figure 4.5. In Figure 4.6
can be seen that the general shape of the calculated transfer function corresponds with the simulation
and that at the frequencies where the impedance of the driver is 5Ω or 10Ω the gain is the same.

Figure 4.4: The filter for the mid-range driver under test.

Figure 4.5: The impedance of the mid-range driver.

Figure 4.6: The simulated transfer function with two different load impedances and the simulated transfer function.

A second method of testing with variable load impedance, was to model the electrical character-
istics of the driver. This was done using the simplification given by [4]. The electrical model of the
woofer which was used for testing is shown in Figure 4.7. The impedance of the model and the actual
impedance of the driver are shown together in Figure 4.8. It can be seen that the inductance of the
coil (L1), makes the impedance increase too quickly and at too high frequency. This means that when
looking at LTspice simulation of the filters the transfer function is less accurate at higher frequencies.
However, if the code models the transfer function around the resonance peak the same as LTspice, it
is assumed that the code for calculating the transfer function works as intended.
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Figure 4.7: The electrical model for the driver impedance in LTspice.

Figure 4.8: The measured impedance of the woofer and
the impedance of the model.

Figure 4.9: The simulated and calculated transfer func-
tions of the filter shown in Figure 4.10

The results of the validation test of the filter shown in Figure 4.10 are shown in Figure 4.9. The
model and the measured plots correspond well around the resonance peak. At frequencies where the
model and the real driver have the exact same impedance, like for example at 400 Hz, the gain of the
filter is exactly the same. The differences in the transfer function between the model and the code can
be explained by the approximation of the electrical model of the driver.

Figure 4.10: The filter under test with the electrical model of the driver as load

4.2.3. Embryo
If the program has to do fewer mutations to reach its final filter, an embryo circuit is useful. As the
component values of an embryo circuit are chosen randomly, the places of the type of components are
most important to determine if an embryo circuit is useful. An embryo circuit appearing in the final filter
will indicate that the embryo circuits are constructed in a useful way, as the program had to do less
mutation to get that specific T-circuit in the filter. In the following output code, it can be seen that the
embryo circuit (RRC) fot the filter for the bass is present in the best child after 100 generations.
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Tree:
:Node 1; Depth 1; Type: >>

:Circuit 1; Depth 2: ; Type LLC
:Node 2; Depth 2; Type: ||

:Circuit 2; Depth 3: ; Type LRC
:Node 3; Depth 3; Type: --

:Circuit 3; Depth 4: ; Type RRC
:Circuit 4; Depth 4: ; Type LRL

:Circuit 1; Depth 2: ; Type LLC

More trials were done to determine whether these embryo circuits are useful. In total 12 runs were
done, each of one hour. After each run, the final filters for each driver of the best child were printed.
In these filters, the number of embryo T-circuits present was counted. The results are shown in Table
4.1.

The probability of a specific T-circuit topology that is present in a final filter is the probability of
specific topology times the number of T-circuits present in the final filters. There are three components
and three places for components in a T-circuit. Therefore, there are 33 = 27 different T-circuit topology.
These trial runs were done with the hyperparameters weights for a component type set to all equal
weights. Therefore, the probability for each T-circuit topologies is equal, 1

27 ≈ 3.70%. In the last
column of Table 4.1, the percentages of the number of embryo circuits present compared with the total
number of T-circuits are shown. Comparing the probability of a specific T-circuit to these numbers, only
the embryo circuit for the filter for the tweeter is functional as it appears more often in the final filter
than if it was chosen randomly. Therefore, the other embryo topologies are discarded and replaced
with randomly chosen topologies. The embryo circuits for the filter for the tweeter are kept.

Table 4.1: Test runs for validation embryo circuits

Max
Depth Driver

Total number of embryo
T-circuits in the final
filter in 6 runs

Total number of
T-circuits in 6 runs

Percentage of embryo
T- circuits present

4
Bass 1 48 2.08%

Mid-range 0 48 0.00%
Tweeter 2 41 4.88%

5
Bass 1 94 1.06%

Mid-range 3 96 3.13%
Tweeter 4 93 4.30%

4.2.4. Hyperparameters
In this section, the values chosen for the hyperparameters max depth and weights for the type of
mutation will be validated. The values for the hyperparameters number of parents and the number
of children are determined by the subgroup Evaluation. The value for the step size, weights for the
type of node, and weights for the type of component are explained in Section 3.5.5, 3.5.3, and 3.5.2,
respectively.

4.2.4.1. Max depth
The max depth was tested by running the program for one hour, on two different laptops (one with
clock speeds of the CPU of 1.60 GHz and the other of 2.60 GHz), in total 12 times. Six of these runs
were performed with a max depth of four and six with a max depth of five. The results are shown in
Table 4.2. Two important conclusions can be drawn from these results. The first is that a higher max
depth does indeed result in less number of generations that can be executed during a run of one hour.
The second is that even though fewer generations are run, the cost of the best child is found to be
significantly better with a max depth of 5 than of 4.

4.2.4.2. Weights for the type of mutation
Twelve test runs were executed to validate that the weights for the type of mutation are more optimum
than having no weights. Six runs were executed with the weights of Table 3.4 and six with equal weights.
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Table 4.2: Test runs for validation max depth

Max depth Run Number of generations Clock speed of CPU (GHz) Cost of best child

4

1 2973 1.60 5.37
2 2593 1.60 4.66
3 2493 1.60 2.34
4 3477 2.60 2.28
5 3544 2.60 2.00
6 3269 2.60 4.61

5

7 1874 1.60 1.80
8 1895 1.60 1.52
9 1823 1.60 0.83
10 2363 2.60 1.16
11 2512 2.60 1.31
12 2528 2.60 1.32

The resulting costs are shown in Table 4.3. After the last generation, the program optimizes the values
of the components (done by the Controller [23]). The value before this optimization is chosen in order
to compare only the effects of the mutations. The average cost of the best child before optimization of
component values for the runs with equal weights is approximately 2.98. For the runs with non-equal
weight, this is approximately 2.60. This favors the weights as in Table 3.3. However, the equal weights
are chosen for the type of mutation for two reasons. The first is that after running more generations, run
4-6 and 10-12, the costs of the best child are approximately equal. And because the program will do at
least this number of generations, this should be taken into account. The second reason is that, if not
significantly beneficial for the program, leading the AI should be avoided. Therefore the final weights
for the type of mutation are all set to one. As child crossover was later implemented the weight was
not taken into account doing these test runs.

Table 4.3: Test runs for weights for type of mutation

Weights Run Number of
generations

Clock speed
of CPU (GHz)

Cost of best child
before optimization
component values

Equal weights

1 1840 1.60 2.84
2 2006 1.60 3.44
3 1848 1.60 4.01
4 2510 2.60 2.68
5 2383 2.60 2.56
6 2334 2.60 2.33

Weights as in
Table 3.4

7 1946 1.60 2.27
8 1795 1.60 2.66
9 1795 1.60 2.80
10 2237 2.60 2.41
11 2124 2.60 2.66
12 2124 2.60 2.77

4.3. Program validation
To conclude this chapter, the results of the best run thus far are shown. This is run 9 of Table 4.2.
Each filter response and the acoustic response of each driver, combined with the filter, as well as the
overall acoustic response of the loudspeaker system is shown in Figure 4.11. It can be seen that the
final acoustic response of the load speaker system stays within the required margin of 1.5𝑑𝐵, except
for a few small spikes. The runtime was one hour, with 1823 generations, for an average of 2 seconds
per generations. The filters circuits are shown in Appendix B.
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Figure 4.11: The final result



5
Discussion and Conclusion

5.1. Discussion
Having validated that the data structure, mutations, calculation of the transfer function, embryo circuits,
and hyperparameters operate as intended, the program of requirements must be referred back to, to
see whether they are met.

From the program of requirements, the mandatory requirements have all been met. To elaborate
on a few: Requirement 11 was implemented, but removed again. Requirements 11 and 12 are not
outputs, but can be read from the Mutator class.

The results of the program show that using computers to design filters for loudspeakers is not
hindered by the implementation of the representation of circuits or finding their transfer function. This
is promising, as it means that the step to having AI design speaker filters is not impossible because
of computer technicality. The filters can be understood and modified by artificial intelligence. It shows
that by making a smart algorithm, the goal of this project could be achieved.

A part that could be improved upon is removing some of the limitations imposed by using a tree
data structure. For instance, allowing open and closed circuits as components, and having more types
of connections (nodes) by making combinations of connections already used.

The hyperparameters is also a part that could be improved. The hyperparameters have been shown
to make a difference, but their effect has not been fully investigated. By doing more and well thought-
out testing, by for instance looking at their effect at runs of a different number of generations, improved
hyperparameters could make the program more efficient.

5.2. Conclusion
The design of the mutation part of a genetic algorithm for designing loudspeaker filters is explained.
The data structure chosen for filter circuit representation is a tree structure, which has the advantage
of working well for crossover and it can be easily analyzed to find the transfer function. However, it has
the disadvantage of being limited in the number of possible filter circuits and not being intuitive.

The tree structure is explained, together with how the mutations are performed on the trees, what
embryo circuits are created and which hyperparameters were worked into the design and how these
are set.

The code for creating trees is tested and output examples of a textual representation for a tree are
given. The mutations have been tested and found to be working as intended. The calculation of a
transfer function from a tree is explained and shown in pseudo-code, showing an implementation of
functions acting on a tree. The calculation of transfer functions is shown to be correct using LTspice.

The design satisfies the mandatory requirements. The Mutator makes embryos, it has the correct
inputs and outputs, and it can perform the needed operations. From the trade-off requirements some
have been completed: An embryo circuit is designed for each driver, the weights for the type of mutation
are variable, and the calculation of the transfer function is fast enough to be performed thousands of
times per hour.

From this can be concluded that passive analog filter design can be implemented. Filter circuit
representation, mutation and analysis for AI can be implemented. This paves the way to make design
programs for passive filters in any application.

30
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5.3. Recommendation
Efficiency
Testing and design of the hyperparameters step size, the weights for the type component, and the
weights for the type of node are lacking and should be further investigated. This is something that
could make the algorithm more efficient. An approach could be to run the program many times and
look at the programmany times using different hyperparameters, as done formax depth and theweights
for the type of mutation.

Something else that could be explored is to make the choice of the mutation less random by chang-
ing the weights for the type of mutation to be dependent on, for example, the cost, the generation, or
the previous mutation. The type of mutation could also be determined by working more closely together
with the evaluation part of the project to look at what parts of a parent could be improved.

Improving the efficiency could also be done by making better embryo circuits. This could be done
by looking at which T-circuits appear often in the final filters.

For child crossover, the replacing filter is chosen randomly, but this could be done by looking
at the cost of the other filters.

The recommendations above all try to lead the AI in a certain direction, which can improve the
runtime, but it could also degrade the quality of the solutions. Because the AI is given hints on which
way to go, the creative solutions found by the randomness of the design are lost.

Features
Apart from efficiency improvements, other improvements could be made that add functionality.

An interesting approach that could be explored is designing filters with one input and three outputs,
one for each driver. This could save components as some parts could be used for multiple drivers.

Something that could greatly improve the usefulness, is if the program would be able to work with
tolerances and non-idealities of components. A sensitivity analysis per component would be very nice
to implement.

The solution space (number of possible filter designs) could be improved, by for instance the addition
of more types of nodes like series-parallel hybrid connections.

Another simple feature that could be added is making the max depth of a tree dependent on user
input.
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Transfer function

A.1. Equivalent circuit calculations
A.1.1. Cascading

Figure A.1: Two T-circuits cascaded

𝑍1 = 𝑍𝑎1 +
𝑍𝑎2 + 𝑍𝑏1 ∗ 𝑍𝑎3

𝑍𝑎2 + 𝑍𝑎3 + 𝑍𝑏2 + 𝑍𝑏3
(A.1)

𝑍2 = 𝑍𝑏2 +
𝑍𝑎2 + 𝑍𝑏1 ∗ 𝑍𝑏3

𝑍𝑎2 + 𝑍𝑎3 + 𝑍𝑏2 + 𝑍𝑏3
(A.2)

𝑍3 =
𝑍𝑎3 ∗ 𝑍𝑏3

𝑍𝑎2 + 𝑍𝑎3 + 𝑍𝑏2 + 𝑍𝑏3
(A.3)

A.1.2. Parallel

Figure A.2: Two T-circuits in parallel
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Π1 =
1

1
𝑍𝑎1+𝑍𝑎3+

𝑍𝑎1∗𝑍𝑎3
𝑍𝑎2

+ 1
𝑍𝑏1+𝑍𝑏3+

𝑍𝑏1∗𝑍𝑏3
𝑍𝑏2

(A.4)

Π2 =
1

1
𝑍𝑎2+𝑍𝑎3+

𝑍𝑎2∗𝑍𝑎3
𝑍𝑎1

+ 1
𝑍𝑏2+𝑍𝑏3+

𝑍𝑏2∗𝑍𝑏3
𝑍𝑏1

(A.5)

Π3 =
1

1
𝑍𝑎1+𝑍𝑎2+

𝑍𝑎1∗𝑍𝑎2
𝑍𝑎3

+ 1
𝑍𝑏1+𝑍𝑏2+

𝑍𝑏1∗𝑍𝑏2
𝑍𝑏3

(A.6)

𝑍1 =
Π1 ∗ Π3

Π1 + Π2 + Π3
(A.7)

𝑍2 =
Π2 ∗ Π3

Π1 + Π2 + Π3
(A.8)

𝑍3 =
Π1 ∗ Π2

Π1 + Π2 + Π3
(A.9)

A.1.3. Series

Figure A.3: Two T-circuits connected in series

𝑍1 = 𝑍𝑎1 (A.10)
𝑍2 = 𝑍𝑎2 (A.11)

𝑍3 = 𝑍𝑎3 +
1

1
𝑍𝑏1

+ 1
𝑍𝑏2

+ 𝑍𝑏3 (A.12)

A.2. Π-T structure transform
In this appendix, the equation for the conversion from Π to T-circuit and visa versa are given. Π-circuits
are also known as Δ-circuits and T-circuits as Y-circuits.

Figure A.4: Π to T-circuit conversion and visa versa
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A.2.1. From T-structure to Π-structure circuit

𝑍1Π =
𝑍1𝑇 ∗ 𝑍2𝑇 + 𝑍2𝑇 ∗ 𝑍3𝑇 + 𝑍1𝑇 ∗ 𝑍3𝑇

𝑍3𝑇
(A.13)

𝑍2Π =
𝑍1𝑇 ∗ 𝑍2𝑇 + 𝑍2𝑇 ∗ 𝑍3𝑇 + 𝑍1𝑇 ∗ 𝑍3𝑇

𝑍2𝑇
(A.14)

𝑍3Π =
𝑍1𝑇 ∗ 𝑍2𝑇 + 𝑍2𝑇 ∗ 𝑍3𝑇 + 𝑍1𝑇 ∗ 𝑍3𝑇

𝑍1𝑇
(A.15)

A.2.2. From Π-structure to T-structure circuit

𝑍1𝑇 =
𝑍1Π ∗ 𝑍2Π

𝑍1Π + 𝑍2Π + 𝑍3Π
(A.16)

𝑍1𝑇 =
𝑍1Π ∗ 𝑍3Π

𝑍1Π + 𝑍2Π + 𝑍3Π
(A.17)

𝑍1𝑇 =
𝑍2Π ∗ 𝑍3Π

𝑍1Π + 𝑍2Π + 𝑍3Π
(A.18)



B
Final Results

Below are the three filters corresponding to the results described in 4.3. These are from before com-
ponents could be removed in the final optimization from [23].

35
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Figure B.1: The filter for the bass driver
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Figure B.2: The filter for the mid-range driver
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Figure B.3: The filter for the tweeter
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