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Abstract. An automatic sequence is a letter-to-letter coding of a fixed point of a uniform
morphism. More generally, morphic sequences are letter-to-letter codings of fixed points of
arbitrary morphisms. There are many examples where an, a priori, morphic sequence with
a non-uniform morphism happens to be an automatic sequence. An example is the Lysënok
morphism a → aca, b → d, c → b, d → c, the fixed point of which is also a 2-automatic
sequence. Such an identification is useful for describing the dynamical systems generated
by the fixed point. We give several ways to uncover such hidden automatic sequences, and
present many examples. We focus in particular on morphisms associated with Grigorchuk
groups.
Keywords. Morphic sequences, automatic sequences, Grigorchuk groups
Mathematics Subject Classifications. 11B85, 68R15, 37B10

1. Introduction

The purpose of this paper is to describe how to detect whether a sequence given as a fixed point
of a substitution on some alphabet is automatic (the words in italics will be defined a few lines
below). Our starting point is the substitution a → aca, b → d, c → b, d → c used by Lysënok
[40] to provide a presentation by generators and (infinitely many) defining relations of the first
Grigorchuk group. More recently Vorobets [48] proved several properties of the fixed point of
this substitution. In an unpublished 2011 note the first and third authors proved among other
things that the fixed point of this substitution is also the fixed point of the 2-substitution a→ ac,
b→ ad, c→ ab, d→ ac, and so that this fixed point is 2-automatic [3]. This result was obtained
again more recently in [27, 28], also see [7].

But, let us first quickly recall some definitions from combinatorics on words that are used
above or in the sequel (for more details, see [4, 14, 23, 31, 37, 38, 39, 45]).

https://www.combinatorial-theory.org
mailto:jean-paul.allouche@imj-prg.fr
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• An alphabet is a finite set of elements that are called letters. A finite sequence of let-
ters (a1, a2, . . . , ar) on the alphabet A is called a word of length r on A and denoted
a1a2 . . . ar: we write |a1a2 . . . ar| := r. If the sequence is empty, it is called the empty
word and its length is 0. The set of all words, including the empty word, is denoted A∗.
The concatenation of the words a1a2 . . . ar and b1b2 . . . bs on the same alphabet is the word
a1a2 . . . arb1b2 . . . bs of length r + s. The set A∗ equipped with concatenation is a (free)
monoid.

• Given two alphabets A and B, a morphism (also called substitution) ϕ from A∗ to B∗ is a
map from A∗ → B∗ that preserves concatenation, i.e., such that, for all (v, w) ∈ A∗×A∗,
one has ϕ(vw) = ϕ(v)ϕ(w). A morphism from A∗ to itself is called an (endo)morphism
ofA∗ (or by abuse of notation a morphism onA). If the images of all letters by a morphism
ϕ have the same length (q), the morphism is called (q-)uniform or of constant length (q).

• Let ϕ be a morphism of A∗, with A := {a0, a1, . . . , ar−1}. Its incidence matrix is the
matrix M := (mi,j), where mi,j is the number of letters ai in the word ϕ(aj), for all i and
j in {0, 1, . . . , r− 1}. The length vector of ϕ of A∗ is the vector L := (L0, L1, . . . , Lr−1),
whereLj := |ϕ(aj)|, i.e., the sum of the entries of the column indexed by j of the incidence
matrix of ϕ.

• A morphism ϕ of A∗ can be extended to AN, the set of infinite sequences on A, by setting
ϕ(u0u1 . . . ur . . . ) := ϕ(u0)ϕ(u1) . . . ϕ(ur) . . . . If ϕ is a morphism of A∗ to itself, and if
there exist a letter a in A and a word v in A∗ such that ϕ(a) = av, and |ϕk(a)| → ∞ as
k → ∞, then there exists a unique infinite sequence admitting all the ϕk(a) as prefixes.
This sequence is a fixed point of (the extension to infinite sequences of) ϕ. It is called an
(iterative) fixed point1 of ϕ. If a sequence is a fixed point of some morphism it is called
purely morphic.

• If A and B are two alphabets and π is a map from A to B, this map can be viewed also
as a uniform morphism (of length 1) from A∗ to B∗. If ϕ is a morphism from A∗ to
itself, and (un)n>0 is a fixed point of ϕ, the sequence (π(un))n>0 is said to be morphic. If
furthermore the morphism ϕ has constant length q, the sequence (π(un))n>0 is said to be
uniformly morphic or q-automatic.

Coming back to the phenomenon described above for the fixed point of the Lysënok mor-
phism, one can ask whether it often happens that a sequence defined as a fixed point of a non-
uniform morphism is also automatic. Actually such a phenomenon is rare, but was already
encountered. One example is the proof by Berstel [13] that the Istrail squarefree sequence [35],
defined as the unique fixed point of the morphism σIS, given by

σIS(0) := 12, σIS(1) := 102 , σIS(2) := 0,

1From now on, we will write fixed point instead of iterative fixed point. But we will keep in mind that the
definition, implying iterating a morphism, rules out “trivial fixed points” not obtained by iteration, e.g., any sequence
with values 0 and 1 is a “trivial fixed point” of the morphism 0→ 0, 1→ 1, 2→ 11012.
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can be obtained also as the letter-to-letter image by the reduction modulo 3 of the fixed point
beginning with 1 of the uniform morphism 0→ 12, 1→ 13, 2→ 20, 3→ 21.

This phenomenon is also interesting since substitutions of constant length d are “simpler”
than general substitutions in particular, because they are related to d-ary expansions of the in-
dexes of their terms.

In view of what precedes, a natural question arises: how to recognize that a fixed point of a
non-uniform morphism is an automatic sequence?

Note. To our knowledge, whether a fixed point of a non-uniform morphism is an automatic
sequence is not known to be decidable. This question is very probably undecidable.

Of course not every fixed point of a non-uniform morphism is q-automatic for some q: a
property of automatic sequences is that, if the frequency of a letter exists, then it must be a
rational number [17]. Thus the Fibonacci binary sequence (i.e., the fixed point of the morphism
0 → 01, 1 → 0) is not q-automatic for any q > 2, since the frequencies of its letters are not
rational. However, it is true that any q-automatic sequence (q > 2) can be obtained as a non-
uniformly morphic sequence, i.e., as the letter-to-letter image of a fixed point of a non-uniform
morphism [5, Theorem 11].

In Section 2 we will revisit a 1978 theorem of the second author to give a sufficient condi-
tion for a fixed point of a non-uniform morphism to be automatic. This is Theorem 2.2 below.
Section 3 will show an interplay between this Theorem 2.2 and the result [5, Theorem 11] cited
above. In Section 4, we will apply Theorem 2.2 (more precisely a particular case, the “Anagram
Theorem”) to prove that several examples of sequences in the OEIS [43] defined as fixed points
of non-uniform morphisms, are actually automatic. We will recall the 2-automaticity of the fixed
point of the Lysënok morphism in Section 5, and give several examples of sequences related to
Grigorchuk groups and similar groups. Finally an Appendix by the second author will give a
simpler proof of the main result in [5].

2. A general theorem revisited

Note that the vector of lengths of the Istrail morphism σIS, which is (2, 3, 1), happens also to
be a left eigenvector of the incidence matrix of the morphism. So Berstel’s result also follows
from [18, Section V, Theorem 1], as noted as an example in the same paper [18, Section IV,
Example 8]2. Since this theorem is stated in [18] in the context of dynamical systems, we will
give an equivalent reformulation in Theorem 2.2 below. Before stating the theorem, we need a
lemma on nonnegative matrices, which does not use any result à la Perron–Frobenius: see, e.g.,
the proof in [34, Corollary 8.1.30, p. 522].

Lemma 2.1. Let M be a matrix whose entries are all nonnegative. If v is an eigenvector of
M with positive coordinates associated with a real eigenvalue λ, then λ is equal to the spectral
radius of M .

2The matrix there is the transpose of what is now considered to be the incidence matrix of a morphism; see our
definition above.
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We invite the reader to verify that the statement in this lemma is not true if v is supposed
only to have nonnegative coordinates.

Theorem 2.2. ([18]) Let σ be a morphism on {0, . . . , r − 1} for some integer r > 1. Let
L := (|σ(0)|, . . . , |σ(r − 1)|) be the length vector of σ. Suppose that σ is non-erasing (i.e., for
all i in {0, . . . , r−1}, one has |σ(i)| > 1). Let x be a fixed point of σ, and letM be the incidence
matrix of σ. If L is a left eigenvector of M , then x is q-automatic, where q is the spectral radius
of M .

We sketch a proof of this result, which will be useful in the sequel. Let Li := |σ(i)| be the
length of σ(i) for i ∈ {0, . . . , r − 1}. The idea is to define a morphism τ on an alphabet of
L0 + · · ·+ Lr−1 symbols (i, j), 0 6 i < r, 1 6 j 6 Li by setting

τ(i, j) := (i∗, 1) . . . (i∗, Li∗) if σ(i)j = i∗.

If σ is non-uniform, then τ is still non-uniform, but the rigid way in which the symbols (i, j) oc-
cur permits one to ‘reshuffle’ τ to a morphism τ ′ which is uniform, and the eigenvector criterion
ensures that this can be done consistently. Here ‘reshuffling’ means that we write the concatena-
tion τ(i, 1) . . . τ(i, Li) as a concatenation of Li words of length q, so that τ ′(i, j) is the j-th such
word. Rather than going into the details, we illustrate the argument with the Istrail morphism
σIS. Here the alphabet is {(0, 1), (0, 2), (1, 1), (1, 2), (1, 3), (2, 1)}. We obtain

τIS(0, 1) = (1, 1)(1, 2)(1, 3), τIS(0, 2) = (2, 1)

τIS(1, 1) = (1, 1)(1, 2)(1, 3), τIS((1, 2)) = (0, 1)(0, 2), τIS(1, 3) = (2, 1)

τIS(2, 1) = (0, 1)(0, 2).

Coding a := (0, 1), b := (0, 2), c := (1, 1), d := (1, 2), e := (1, 3), f := (2, 1), the reshuffled
τ ′IS is given by

τ ′IS(a) = cd, τ ′IS(b) = ef, τ ′IS(c) = cd, τ ′IS(d) = ea, τ ′IS(e) = bf, τ ′IS(f) = ab.

The letter-to-letter projection π is given by a → 1, b → 2, c → 1, d → 0, e → 2, f → 0.
This gives the Istrail sequence as a 2-automatic sequence by projection of a fixed point of the
uniform morphism τ ′IS on a six-letter alphabet. But, since τ ′IS(a) = τ ′IS(c), and π(a) = π(c),
we can merge a and c. Finally, since π(b) = π(e), and the first letters of τ ′IS(b) and τ ′IS(e) are b
and e, and the second letters are equal, also b and e can be merged. After a recoding, this gives
Berstel’s morphism above.

Let q be the constant length of the morphism τ ′. We show in general why q is equal to
the spectral radius of M . Namely, let λ be the eigenvalue associated with the left eigenvector
(L0, L1, . . . , Lr−1), and let r′ := L0 + · · ·+ Lr−1. Then

qr′ =
∑
i

∑
j

|τ ′(i, j)| =
∑
i

∑
j

|τ(i, j)| =
∑
i

(LM)i = λ
∑
i

Li = λr′.

This implies that q has to be equal to λ. But, from Lemma 2.1 above, λ must be equal to the
spectral radius of M . �
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Remark 2.3. The condition about the length vector given in Theorem 2.2 is not necessary. The
Lysënok morphism a → aca, b → d, c → b, d → c is an example, as follows directly from
Proposition 2.4 below. Another example is given in Corollary 5.2.

Proposition 2.4. Let µ be a non-uniform morphism with incidence matrixM . IfM is invertible,
then the length vector of µ cannot be a left eigenvector of M .

Proof. Let us write 1 := (1, 1, . . . , 1). If the length vector L of µ is a left eigenvector ofM , one
hasLM = λL for some eigenvalue λ. But, by definition ofL,L = 1·M . Hence (λ1−L)M = 0.
Since M is invertible, this implies λ1 = L, hence Li = λ for all i, but the morphism was
supposed to be non-uniform.

Remark 2.5. One might ask whether the fact that the spectral radius of the incidence matrix in
Theorem 2.2 is an integer is a priori clear: it is a well-known application of the Gauss lemma that
a root of a monic polynomial with integer coefficients is either irrational or it is an integer (see,
e.g., [32, Theorem 45, p. 41] for a classical proof; also see [24] for an interesting less classical
proof).

3. From q-automatic to non-uniformly morphic and back

The paper [5] gives an algorithm to represent any q-automatic sequence with associated mor-
phism γ as a morphic sequence, where the morphism γ′ is non-uniform. We call this algorithm
the CUP-algorithm, standing for Create Unique Pair. The question arises: if we are given this
non-uniform representation, how do we find the uniform representation? The answer lies, once
more, directly in the left eigenvector criterion.

In the following we use the short version of the CUP-algorithm as given in Section 7.
We first give an example. We start with a famous 2-automatic sequence: the Thue–Morse

sequence. Since Theorem 7.1 requires q > 3, we take for γ the square of the Thue–Morse
morphism:

γ(0) = 0110, γ(1) = 1001.

The Thue–Morse sequence is the iterative fixed point of γ starting with a = 0, and the letters
b = 1, and c = 1 are the two letters which give two extra letters b′ and c′ in the CUP algorithm.
We define morphisms γ′ on an extended alphabet {0, 1, b′, c′}, where b′ and c′ will be projected
on 1. Define the two non-empty words z and t as any two words of which the concatenation
gives

zt = γ(01) = 01101001,

for example z = 0, t = 1101001. Then define γ′ on {0, 1, b′, c′} by

γ′(0) := 0b′c′0, γ′(1) := γ(1), γ′(b′) := z, γ′(c′) := t.

As in the proof of Theorem 7.1 it is easy to see that the infinite fixed point of γ′ starting with
0 maps to the Thue–Morse sequence under the projection D given by D(0) := 0, D(1) := 1,
D(b′) := 1, D(c′) := 1.
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The incidence matrix of these morphisms is

M ′ :=


2 2 m0 4−m0

0 2 m1 4−m1

1 0 0 0
1 0 0 0

 ,

where m0 is the number of 0’s in z, and m1 is the number of 1’s in z. Let L′ = (4, 4, |z|, |t|) be
the length vector of γ′. Then the following holds for any choice of z and t:

L′M ′ = 4L′.

This is exactly the left eigenvector criterion of Theorem 2.2. The general result is the following
theorem.

Theorem 3.1. Let x be a q-automatic sequence, and let γ′ be the non-uniform morphism turning
x into a (non-uniformly) morphic sequence in the short version of the CUP algorithm. Then the
incidence matrix of γ′ satisfies the left eigenvector criterion.

Proof. Let γ be the uniform morphism of length q on the alphabet {0, 1, . . . , r−1} such that x is
a letter-to-letter projection of a fixed point y of γ. It is easy to see that, as in the proof of Theorem
7.1, we may suppose that y = x. We may also suppose that q > 3. Let L = (q, q, . . . , q) be the
length vector of γ, and letM be the incidence matrix of γ. Note thatM satisfies the eigenvector
criterion: LM = qL. Let b and c be the second and third letter of γ(0), and let b′ = r and
c′ = r+1 be the two extra letters in the CUP algorithm. Let |z| and |t| be the lengths of z and t
in the CUP splitting γ(bc) = zt. Then γ′(r) = z and γ′(r + 1) = t.

The length vector L′ of γ′ is equal to

L′ = (q, q, . . . , q, |z|, |t|).

The first column of M ′ is equal to

(m00 + b+ c− 2,m10 − b− c,m20,m30, . . . ,mr−1,0, 1, 1)
>.

The inner product of the length vector L′ with this first column is equal to

q(m00 + b+ c− 2) + q(m10 − b− c) + qm20 + · · ·+ qmr−1,0 + |z|+ |t| =
q(m00 +m10 +m20 + · · ·+mr−1,0)− 2q + 2q = q2.

Obviously the inner product of L′ with the second through rth column is also equal to q2.
The inner product of L′ with the (r + 1)th column is equal to q|z|, and the inner product of
L′ with the (r + 2)th column is equal to q|t|. This finishes the checking of the left eigenvector
criterion L′M ′ = qL′.
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4. First examples of hidden automatic sequences

We start this section with the following Rank 1 Theorem, which is a linear algebra result for
matrices with nonnegative entries. The interest of this theorem is that it implies a special case of
Theorem 2.2, the Anagram Theorem (Theorem 4.2 below), that permits one to prove that some
fixed points of non-uniform morphisms are automatic in a purely “visual” (but rigorous) way.

Theorem 4.1. [“Rank 1 Theorem”] Let M be a matrix whose entries are all nonnegative. Sup-
pose that the vector L of the column sums of M is positive. If M has rank 1, then L is a left
eigenvector of M , associated with an eigenvalue that is equal to the spectral radius of M .

Proof. If M has rank 1, then there exist vectors k and r such that M = kT r. Since M is non-
negative, k and r can also be supposed to be non-negative. Let t := rkT , then t is a positive real
number. Let L = 1M be the vector of the column sums. Then

LM = 1MkT r = 1kT rkT r = 1kT tr = t1kT r = tL.

Now Lemma 2.1 implies that t is the spectral radius of M .

A combination of Theorem 4.1 and Theorem 2.2 yields the following result.

Theorem 4.2. [“Anagram Theorem”] Let A be a finite set. Let W be a set of anagrams on A
(the words inW are also said to be abelian equivalent; they have the same Parikh vector). Let ψ
be a morphism onA admitting a fixed point, such that the image of each letter is a concatenation
of words in W . Then any fixed point of ψ is q-automatic, where q is the quotient of the length of
ψ(w) by the length of w, which is the same for all w ∈ W .

Proof. The conditions imply that the incidence matrixM of ψ has rank 1, and so any fixed point
of ψ is q-automatic, for some integer q. To determine q, let k and r be such that M = kT r. The
natural choices for k and r are the frequency vector of any word from W , and the vector that
counts the number of words from W used to form the ψ words. Now note that

|ψ(w)| = 1MkT = 1kT rkT = |w|rkT = |w|t,

where t := rkT is the spectral radius of M , as shown in the proof of Theorem 4.1. Moreover,
Theorem 4.1 yields that L = 1M , is a left eigenvector of M , and so by Theorem 2.2, any fixed
point of ψ is q-automatic, where q = t.

Example 4.3. Let ψ be the morphism on a three-letter alphabet given by

ψ(a) = aabc, ψ(b) = bacaaabc, ψ(c) = bacabacabaca.

By taking the setW = {aabc, baca}, we see immediately from Theorem 4.2 that the fixed points
of ψ are 7-automatic.
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Example 4.4. The sequence A285249 from [43] is called the 0-limiting word of the morphism
f which maps 0→ 10, 1→ 0101 on {0, 1}∗, i.e., A285249 is the fixed point of f 2 starting with
0, where f 2 is given by f 2(0) = 010110, f 2(1) = 100101100101. The images of 0 and of 1
by f 2 can be respectively written www′ and w′www′ww, with w = 01 and w′ = 10. Again,
Theorem 4.2 gives that the fixed points of f 2 are 9-automatic, which is equivalent to being 3-
automatic.

More examples like sequence A285249 are collected in the following corollary to Theo-
rem 4.2.

Corollary 4.5. The following automaticity properties for sequences in the OEIS hold.

• The four sequences A284878, A284905, A285305, and A284912 are generated by mor-
phisms f , where f(0) and f(1) can be written as concatenations of one, respectively two
of the two words w = 01 and w′ = 10. So Theorem 4.2 immediately implies that they are
all 3-automatic.

• The sequences A285252, A285255 and A285258, are fixed points of squares of such mor-
phisms, and so they are 9-automatic (hence 3-automatic).

• Finally the fact that A284878 is 3-automatic easily implies that A284881 is 3-automatic.

Remark 4.6. Other sequences in the OEIS that do not satisfy the hypotheses of Theorem 4.2
can be proved automatic because they satisfy the hypotheses of Theorem 4.1: for example the
sequences A285159 and A285162 (replace the morphism given in the OEIS by its square to
obtain these two sequences as fixed points of morphisms), A285345, A284775 and A284935 are
3-automatic.

5. Hidden automatic sequences and self-similar groups

The substitution τ defined by τ(a) = aca, τ(b) = d, τ(c) = b, τ(d) = c was used by Lysënok
to provide a presentation by generators and (infinitely many) defining relations of the first Grig-
orchuk group. Note that this substitution does not satisfy the “left eigenvector criterion”. The
proof given in [3] relied on the morphism ψ defined by

ψ(a) := ac, ψ(b) := ad, ψ(c) := ab, ψ(d) := ac,

which satisfies the relation τ ◦ ψ = ψ ◦ ψ. This relation easily implies that τ and ψ have the
same fixed point beginning with a. A similar proof was given in [27].

Another proof (essentially the one in [28] and [7]) uses a non-overlapping-2-block mor-
phism. A non-overlapping-2-block-morphism is a morphism that, starting from a sequence
u0, u1, u2, u3 . . . , yields the sequence (u0u1)(u2u3) . . . , on the new “letters” u0u1, u2u3, . . . .
This proof introduces the morphism (coding ab = 1, ac = 2, ad = 3)

1→ 23, 2→ 21, 3→ 22
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(one can see that 1 = ab → acad = 23, etc.). The fixed point 21232122 . . . of this new
morphism is also the image of the fixed point of τ by a 2-block morphism. Looking at the
even-indexed terms and at the odd-indexed terms of the fixed point of τ gives that the Lysënok
sequence is also a fixed point of a morphism of constant length 2.

We may ask whether this second approach works in other “similar” situations, i.e., for mor-
phisms related to the Grigorchuk group or Grigorchuk-like groups. Before we address this
question, it is worthwhile to give a general result on automatic sequences in terms of “non-
overlapping-k-block morphisms”.

Theorem 5.1. Let q > 2 and let u = (u(n))n>0 be a sequence with values in A. Then, u is
q-automatic if and only if there exist a positive integer r and a q-uniform morphism µ on Aqr

such that the sequence of qr-blocks (u(qrn), u(qrn+ 1), . . . , u(qrn+ qr − 1))n>0, obtained by
grouping in u the terms qr at a time, is a fixed point of µ.

Proof. This is essentially Theorem 1 in [17].

Theorem 5.1 is indeed illustrated by the Lysënok fixed point, and by the following example
(which, contrary to the Lysënok morphism, is primitive).

Corollary 5.2. Let σ be the morphism defined by

σ : a→ acaba, b→ bac, c→ cab.

Then the fixed point of σ beginning with a is 4-automatic (hence 2-automatic).

Proof. There are only the 2-blocks ac, ab occurring at even positions in the fixed point x :=
acabacab . . . of σ. In fact σ induces the following morphism σ[2] on non-overlapping-2-blocks:

σ[2] : ab→ ac ab ab ac, ac→ ac ab ac ab.

The fact that σ[2] has constant length 4 implies that x is a 4-automatic sequence, hence a 2-
automatic sequence.

Another general result will prove useful.

Proposition 5.3. If the incidence matrix of a primitive non-uniform morphism has an irrational
dominant eigenvalue, then a fixed point of this morphism cannot be automatic.

Proof. Since the morphism is primitive, the frequency of each letter exists, and the vector of
frequencies is the unique normalized eigenvector of the matrix for the dominant eigenvalue.
If the sequence were automatic, all the frequencies of letters would be rational, which gives a
contradiction with the irrationality of the eigenvalue and the fact that the entries of the matrix
are integers.

We present a list giving the nature (i.e., whether they are automatic or not automatic) of fixed
points of morphisms related to Grigorchuk-like groups.



10 Jean-Paul Allouche et al.

1. The fixed point of the morphism a → aba, b → d, c → b, d → c (see, e.g., [10, Proposi-
tion 5.6]) is 2-automatic (with the same proof as for the fixed point of the Lysënok mor-
phism).

2. The fixed point of the morphism a→ aca, b→ d, c→ aba, d→ c (see [11, Theorem 4.1])
is not automatic. (Namely the matrix of this morphism is primitive and its characteristic
polynomial, which is equal to x4 − 2x3 − 2x2 − x + 2, clearly has no rational root; the
result follows from Proposition 5.3 above.)

3. The fixed point of the morphism x → xzy, y → xx, z → yy (see [9, Proof of Proposi-
tion 4.7]) is not automatic. (Again this is an application of Proposition 5.3 above, since the
characteristic polynomial of the (primitive) incidence matrix is equal to x3− x2− 2x− 4
which has no rational root.)

4. The fixed point beginning with 2∗ of the cube of the morphism 1 → 2, 1∗ → 2∗, 2 →
1∗2∗, 2∗ → 21 (see [42]) is not automatic. This follows from Proposition 5.3. A more
detailed analysis is the following. Put A := 2∗2 and B := 11∗, then the sequence can be
written ABABAABAABA . . . which is a fixed point of the morphism A → ABABA,
B → ABA, that is easily seen to be Sturmian from the criterion [47, Proposition 1.2]
since

AB → ABABAABA = ABA(BA)ABA

while
BA→ ABAABABA = ABA(AB)ABA.

Actually a more precise result holds: this morphism is conjugate to f 3 where f is the
Fibonacci morphism A → AB, B → A (see the comments of the second author for the
sequences A334413 and A006340 in [43], where the alphabet {1, 0} corresponds to our
{A,B} here).

5. The fixed point of the morphism a → aba, b → c, c → b (see, e.g., [41, p. 40]) can
also be generated by the morphism on the non-overlapping-2-blocks 0 = ab and 1 = ac
defined by 0→ 01, 1→ 00, i.e., the “period-doubling” morphism, and so this fixed point
is 2-automatic.

6. The morphism a → b, b → c, c → aba (see, [29, Theorem 3.1], also see [41, p. 40])
has the property that its cube has a fixed point. This fixed point is not automatic by an
application of Proposition 5.3.

7. The morphism a→ c, b→ aba, c→ b (see, e.g., [41, p. 46]) has the property that its cube
has three fixed points. None of them is automatic. (Namely, the characteristic polynomial
of the (primitive) incidence matrix is equal to x3 − x2 − 2, which has no rational root.)

Remark 5.4. There exist fixed points of morphisms which are non-automatic for reasons other
than Proposition 5.3, that is, such that the dominant eigenvalue of the corresponding incidence
matrix is an integer. An example suggested by one of the referees is the fixed point of the
morphism 1 → 2, 2 → 211, (see [1, Section 3.2]). Other examples can be found in the recent
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paper [46], which gives, for example, the morphism a→ ad, b→ adc, c→ b, d→ bc. Here the
dominant eigenvalue is 2, but its fixed point is proved to be not automatic.
Remark 5.5. In the case of a morphic sequence which is not purely morphic, it can happen that
the frequencies of letters are rational, while the dominant eigenvalue is irrational, two examples
are given by the sequence of moves for the cyclic Hanoi tower [2] and by the sum of digits of the
expansions of integers [20] in base (1 +

√
5)/2.

We end this section with a theorem which will apply to two morphisms related to other
Grigorchuk-like groups (see our Corollary 5.8 below).

Theorem 5.6. Let x = (xn)n>0 be a sequence on some alphabet A. Let A′ be a proper subset
of A. Suppose that there exists a sequence y = (yn)n>0 on A′ with the property that each of
its prefixes is a factor of x. Let d > 2. If no sequence in the closed orbit of y under the shift is
d-automatic, then x is not d-automatic.

Proof. Define an order onA such that each element ofA\A′ is larger than each element ofA′.
The set of sequences on A is equipped with the lexicographical order induced by the order on
A. Let z = (zn)n>0 be the lexicographically least sequence in the orbit closure of x. Since the
sequence y has its values in A′ and since each prefix of y is a factor of x, the orbit closure of y
under the shift is included in the orbit closure of x. Now, since the elements ofA\A′ are larger
than the elements of A′, the least element of the orbit closure of y is equal to the least element
of the orbit closure of x, i.e., is equal to z. Now, if x were d-automatic for some d > 2, then z
would be d-automatic [6, Theorem 6], which contradicts the hypothesis on the orbit of y.

Corollary 5.7. Let x = (xn)n>0 be a sequence on some alphabet A. Let A′ be a proper subset
of A. Suppose that there exists a sequence y = (yn)n>0 on A′ with the property that each of its
prefixes is a factor of x. Suppose that y is Sturmian, or that y is uniformly recurrent3 and that
its complexity is not O(n), then x is not d-automatic for any d > 2.

Proof. If y is Sturmian, all sequences in its orbit closure are Sturmian (they have complexity
n + 1), hence cannot be d-automatic. If y is uniformly recurrent, all the sequences in its orbit
closure have the same complexity —which is not O(n)— and thus none of them can be d-
automatic.

We are ready for our last corollary about the two fixed points of morphisms respectively
given in [12, Theorem 2.9] and [8, Theorem 4.5].

Corollary 5.8. The fixed point beginning with a of the morphism a → aca, b → bc, c → b is
not automatic. The fixed point beginning with a of the morphism a → aca, c → cd, d → c is
not automatic.

Proof. Note that the fixed point of the morphism b → bc, c → b (respectively c → cd, d → c)
is a Sturmian sequence and apply Corollary 5.7 above.

Remark 5.9. As suggested by two of the referees, Theorem 5.6 can also be deduced from [16,
Theorem A]. Furthermore this approach does not need that A′ be a proper subset of A.

3Uniformly recurrent sequences are also called minimal.
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6. Final remarks

For more on the Grigorchuk group or similar groups, the reader can also consult, e.g., [33, 26,
25, 36, 30]. Note that automata groups appear to be close to morphic or automatic sequences,
while automatic groups (see, e.g., [22]) seem to be rather away from these sequences. Note
that substitutions can also be used, in a different context, to characterize families of groups: for
example it is proved in [15] that a finite group is an extension of a nilpotent group by a 2-group
if and only if it satisfies a Thue–Morse identity for all elements x, y, where the nth Thue–Morse
identity between x and y is defined by ϕn

x,y(x) = ϕn
x,y(y) for every n > 0, and the Thue–Morse

substitution ϕx,y is defined by ϕx,y(x) := xy and ϕx,y(y) := yx.

7. Appendix: CUP by F. M. Dekking

The second author of the present paper is in an excellent position to take a fresh look at the CUP
algorithm, as he gave 7 years ago a simple version of this construction for the special case of
higher order Thue–Morse morphisms (see [19]).

Theorem 7.1. (Theorem 11 from [5]) Let (an)n>0 be an automatic sequence taking values
in the alphabet A. Then (an)n>0 is also non-uniformly morphic. Furthermore, if (an)n>0 is the
iterative fixed point of a uniform morphism, then there exist an alphabetA′ of cardinality #A+2
and a sequence (a′n)n>0 with values in A′, such that (a′n)n>0 is the iterative fixed point of some
non-uniform morphism with domain A′∗ and (an)n>0 is the image of (a′n)n>0 under a coding.

Proof. Since the sequence (an)n>0 is the pointwise image of the iterative fixed point (xn)n>0
of some uniform morphism, we may suppose, by replacing (an)n>0 with (xn)n>0, that (an)n>0
itself is the iterative fixed point of a uniform morphism γ of length q.

Let a := a0, b := a1, c := a2. Since (an) is the iterative fixed point of γ starting with a0 = a,
we have γ(a) = abcw, where w = a3 . . . aq−1 (by replacing γ with γ2, we may assume that
q > 3).

Now introduce two new letters b′ and c′, and define a morphism γ′ on A′ = A ∪ {b′, c′} by

γ′(y) := γ(y) for y ∈ A′ \ {a, b′, c′}, γ′(a) := ab′c′w, γ′(b′) := z, γ′(c′) := t,

where z and t are (any) two non-empty words of unequal length such that zt = γ(bc).
By construction, γ′ is not uniform. Its iterative fixed point beginning with a clearly exists,

and we denote it by (a′n)n>0. This sequence has the property—which we call the UP-property—
that each b′ in it is followed by a c′ and each c′ is preceded by a b′. We let D denote the coding
that sends each letter of A to itself, and sends b′ to b and c′ to c. For every letter y belonging to
A′ \ {a, b′, c′} we have γ(y) = γ′(y). Hence D ◦ γ′(y) = D ◦ γ(y) = γ(y) = γ ◦D(y).
For the letter a, and the word b′c′ we have

D ◦ γ′(a) = D(ab′c′w) = abcw = γ(a) = γ ◦D(a),

D ◦ γ′(b′c′) = D(zt) = zt = γ(bc) = γ ◦D(b′c′).

We see from this, that if u is a word from A′∗ which has the UP-property, then D ◦ γ′(u) =
γ ◦D(u).
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Claim: D([γ′]n(a) = γn(a) for all n > 1.
Proof of the claim: this is true for n = 1. Suppose true for n. Then

D([γ′]n+1(a)) = D(γ′([γ′]n(a)) = γ(D([γ′]n(a)) = γ(γn(a)) = γn+1(a),

since u = [γ′]n(a) has the UP-property. Finally the Claim of course implies that D((a′n)n>0) =
(an)n>0.
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