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Dedicated to Professor Pravir Dutt on the occasion of his 60th birthday.

Spectral element method for parabolic interface problems
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Abstract

In this paper, an h/p spectral element method with least-square formulation for parabolic interface problem
will be presented. The regularity result of the parabolic interface problem is proven for non-homogeneous in-
terface data. The differentiability estimates and the main stability estimate theorem, using non-conforming
spectral element functions, are proven. Error estimates are derived for h and p versions of the proposed
method. Specific numerical examples are given to validate the theory.

Keywords: Least-squares method, nonconforming, spectral element method, Linear parabolic interface
problems, Sobolev spaces of different orders in space and time

1. Introduction

In this paper, we consider a linear parabolic interface problem of the form

Lu = ut −∇ · (A∇u) = F in (Ω1 ∪ Ω2)× I, (1.1)

u = f on Ω× {0} (initial condition)

u = g on Γ× I, (exterior boundary condition)

which satisfies the interface conditions

[u] = q0 and [n · A∇u] = q1 on Γ0 × I,

where n = (n1, n2)T is a unit outward normal vector to the interface Γ0 and I = (0, T ). Here Ω and
Ω1 (Ω̄1 ⊂ Ω) are open bounded domains in R2 with C2 boundaries ∂Ω = Γ and ∂Ω1 = Γ0, respectively (see
Fig. 1). Further, Ω2 = Ω \ Ω̄1. The symbol [v] denotes the jump of a quantity v across the interface Γ0,
i.e., [v](x, t) = v1(x, t)− v2(x, t), (x, t) ∈ Γ0 × I. Let

A =

{
A1 in Ω1 × I,
A2 in Ω2 × I.

. (1.2)

Then the jump term n · A∇u is defined as follows:

[n · A∇u] = n · (A1∇u1 −A2∇u2) on Γ0 × I,
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where each 2 × 2 matrix Ak (k = 1, 2) is symmetric and positive definite, uniformly on Ωk × I. The
components aki,j(x, t) of Ak are smooth for each k. Here n · Ak∇uk denotes the conormal derivative on Γ0,
i.e.

n · Ak∇uk =

2∑
i,j=1

aki,j
∂uk
∂xi

nj , k = 1, 2.

In engineering and science, many problems can be formulated in terms of parabolic partial differential

Γ

Ω
1

Ω
2

0

Γ

Figure 1: Domain Ω with boundary Γ and its subdomains Ω1, Ω2 with interface Γ0

equations with discontinuous coefficients. Heat diffusion, electrostatics, multiphase and porous media
flow problems are some examples from physics. A special case of parabolic equations with discontinuous
coefficients consists of interface problems (1.1) which arise, for example, in heat conduction.

Several methods have been proposed and analyzed both theoretically and computationally for interface
problems in [24, 25, 26, 29, 31, 32, 33, 34, 36, 37, 38, 39, 40] (and references cited therein) and have been
shown to be very effective.

If the given data, the boundary Γ and the interface Γ0 of parabolic interface problem (1.1) are smooth
then the solution of the problem is also very smooth in the individual regions, while the global regularity
of solution becomes low because of non-homogeneous jump terms (see [16, 32, 31]). Many standard finite
difference methods are not applicable to interface problems because of lack of this global regularity. The
use of an immersed-interface method in the framework of finite difference methods has some disadvantages,
which are discussed in [25]. Immersed-interface finite element methods for elliptic interface problems have
been presented in [24, 25]. In an immersed-interface method, the jump conditions are enforced through
the construction of special finite element basis functions which satisfy homogeneous interface conditions.
Immersed-interface finite element methods can achieve optimal convergent rates with linear finite elements.
Recently, Albright et al. [29] proposed a high-order accurate difference potential method for parabolic
problems. In that paper, they presented two approaches which are second order and fourth order accurate.

Conforming finite element methods are the most used methods to solve interface problems. This requires
the triangulation of different subregions to be geometrically conforming at the interface. Conforming
methods, however impose serious restrictions on the computational domain when the physical solutions of
the interface problems are of different scales in different subregions. Methods that allow relaxation of such
conditions are the nonconforming methods like mortar finite element methods and discontinuous Galerkin
finite element methods. Schötzau et al. [21] presented time discretization of parabolic problems by the
hp-version of the discontinuous Galerkin finite element method. Dutt et al. [8] proposed h− version and
p− version least-squares spectral element methods for parabolic partial differential equations (PDE) with
smooth coefficients on bounded domains. Recently, we proposed the least-squares spectral element method
for parabolic initial value problems with non-smooth data in [11, 12]. The method proposed in this paper
is a nonconforming least-squares spectral element method (see [8, 11, 12, 13, 14, 15]). Sobolev spaces of
different orders in space and time to formulate the results are given in [17].

Bochev and Gunzburger [2] have summarized the least-squares finite element method (LSFEM) for
parabolic problems. The obvious advantage of this class of methods is that the discrete problems are
positive definite and symmetric. Least-square spectral element methods (LSSEM) have been presented by
Proot et al. [20] for the Stokes problem, and Pontaza et al. [19] for the Navier-Stokes equations, combining
the least-square formulation with spectral element approximation. Maerschalck et al. [30] presented the
use of Chebyshev polynomials in a space-time least-squares spectral element method. The advantage of
LSSEM is that it has the generality of finite element methods with the accuracy of spectral methods.
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Over the past three decades, spectral methods have been extensively used for solving partial differential
equations because of high order of accuracy (see [3, 4, 5, 6, 7, 10] and the references therein). Kumar et al.
[26] proposed a least-square spectral element method for two-dimensional elliptic interface problem with a
smooth interface, following the approach proposed in [27]. Recently, we proposed a least-squares spectral
element method for three-dimensional elliptic interface problem with a smooth interface in [15]. In this
method, the domain is divided into a finite number of subdomains such that the sub-divisions match along
the interface. The interface is resolved exactly using blending elements [28].

In this paper, an h/p least-squares spectral element method is presented to solve the two dimensional
parabolic interface problem with smooth interface. One dimensional parabolic interface problem is partic-
ular case of the proposed theory. In numerical section, we present the results based on one dimensional and
two dimensional parabolic interface problem. Our method is based on minimizing the sum of the squares
of a weighted squared norm of the residuals in the partial differential equation and the sum of the residuals
in the boundary conditions in fractional Sobolev norms and the sum of the jumps in the value and its
derivatives across the interface in appropriate fractional Sobolev norms. Our method is nonconforming
because the discrete space is not subset of continuous space H2,1(Ω1∪Ω2× I) (see more details in section 2
and section 3). Thus, the continuity along the inter-element boundary is enforced by adding a term, which
measures the sum of the squares of the jump in the function and its derivatives in fractional Sobolev norms.

The content of the paper is organized as follows: Section 2 is devoted to defining the parabolic interface
problem and to proving regularity results. In Section 3, the discretization of the domain and stability
result are presented. In Section 4, error estimates are given for h and p versions of the proposed method.
Numerical techineque and computational results are given in Section 5.

2. Preliminaries

Let r and s be two non-negative real numbers. As in [17], define

Hr,s
(
Ω× I

)
= H0

(
I;Hr(Ω)

)
∩Hs

(
I;H0(Ω)

)
, (2.1)

which is a Hilbert space with norm T∫
0

‖u(t)‖2Hr(Ω)dt+ ‖u‖2Hs(I;H0(Ω))

1/2

,

where Hr(Ω) denotes the standard Sobolev space of order r. Here H0(Ω) = L2(Ω) and H0,0(Ω × I) =
L2(Ω× I).

Let u1 = u|Ω1×I and u2 = u|Ω2×I . Next, we define following spaces

Hr(Ω1 ∪ Ω2) = {u ∈ L2(Ω) |u|Ωi ∈ Hr(Ωi) for i = 1, 2},
Hr,s(Ω1 ∪ Ω2 × I) = {u ∈ L2(Ω× I) |u|Ωi×I ∈ Hr,s(Ωi × I) for i = 1, 2}.

Let

||u||2r,Ω1∪Ω2
= ||u1||2Hr(Ω1) + ||u2||2Hr(Ω2), (2.2)

||u||2(r,s),Ω1∪Ω2×I = ||u1||2Hr,s(Ω1×I) + ||u2||2Hr,s(Ω2×I). (2.3)

We also use the following notations in throughout paper:

||(·)||Ω = ||(·)||L2(Ω) and ||(·)||Ω×I = ||(·)||L2(Ω×I).

We now define some Gevrey Spaces [18] which are needed for our error analysis.

D1(Ω̄) = {Φ ∈ C∞(Ω) |∃A1, B1 > 0 : sup
x∈Ω

| Dα
xΦ(x)| ≤ A1(B1)i i! , |α| = i, i = 0, 1, · · ·

}
.

D2,1(Ω̄× Ī) =
{
ψ ∈ C∞(Ω× Ī) |∃A1, B1 > 0 :

sup
(x,t)∈Ω×Ī

| Dα
xD

j
tψ(x, t)| ≤ A1(B1)i+j i!(j!)2 , |α| = i,∀ i, j = 0, 1, · · ·

}
.
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2.1. Regularity estimate

In general, the solution of problem (1.1) does not belong to H2,1(Ω × I) due to the presence of a
discontinuity/reduced regularity in A. Moreover, the solution does not belong to H1,0(Ω × I) unless the
jump term at the interface [u] is equal to zero. We can get better local regularity using local smoothness
of the coefficients. An a-priori result for the problem (1.1) is given in Theorem 2.1 with appropriate
assumptions on F, g, q0, q1 and f . First, we prove the following Lemma 2.1 which we use to obtain our
main regularity result.

Lemma 2.1. Consider the problem

Lv = vt −∇ · (A∇v) = F̃ in Ω1 ∪ Ω2 × I, (2.4)

v = v0 on Ω1 ∪ Ω2 × {0} (initial condition)

v = 0 on Γ× I, (exterior boundary condition)

along with the interface conditions

[v] = 0 and [n · A∇v] = 0 on Γ0 × I. (2.5)

Let F̃ ∈ H0,0(Ω1 ∪Ω2× I) and v0 ∈ H1(Ω1 ∪Ω2×{0}). If the interface Γ0 and the boundary Γ are C2 and
the given data satisfy required compatibility condition (see [17]), then the solution v ∈ H2,1(Ω1 ∪ Ω2 × I)
and

||v||2(2,1),Ω1∪Ω2×I ≤C
(
||F̃ ||2(0,0),Ω1∪Ω2×I + ||v0||21,Ω1∪Ω2×{0}

)
. (2.6)

Here C is a generic constant.

Proof. Our proof is a generalization of the approach of [32, 33]. For a.e. t ∈ I, v = v(x, t) solves

−∇ · (A∇v) = F̃ − vt in Ω1 ∪ Ω2 × I, (2.7)

v = 0 on Γ× I, (exterior boundary condition)

along with the interface conditions

[v] = 0 and [n · A∇v] = 0 on Γ0 × I. (2.8)

Applying the regularity result for the elliptic interface problems of [31], it follows:

||v||22,Ω1∪Ω2
≤ C||F̃ − vt||20,Ω1∪Ω2

. (2.9)

Multiplying vt both side in equation (2.4) and integrating w. r. to x over Ω1 ∪ Ω2, we obtain

||vt||20,Ω1∪Ω2
−
∫

Ω1∪Ω2

∇ · (A∇v)vtdx =

∫
Ω1∪Ω2

F̃ vtdx. (2.10)

Here v ∈ H1,0((Ω1 ∪ Ω2)× I) and [v] = 0 on Γ0, it follows

[vt] = 0 on Γ0. (2.11)

Using integration by parts and the equation (2.11), we obtain∫
Ω1∪Ω2

∇ · (A∇v)vtdx =

∫
Ω1∪Ω2

2∑
i,j=1

(ai,jvxj )xivtdx

= −
∫

Ω1∪Ω2

2∑
i,j=1

(ai,jvxj )(vt)xidx

= −1

2
∂t

∫
Ω1∪Ω2

2∑
i,j=1

(ai,jvxj )vxidx+
1

2

∫
Ω1∪Ω2

2∑
i,j=1

(ai,j)tvxjvxidx. (2.12)
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Inserting the equation (2.12) into the equation (2.10), implies

||vt||20,Ω1∪Ω2
+

1

2
∂t

∫
Ω1∪Ω2

2∑
i,j=1

(ai,jvxj )vxidx =

∫
Ω1∪Ω2

F̃ vtdx+
1

2

∫
Ω1∪Ω2

2∑
i,j=1

(ai,j)tvxjvxidx. (2.13)

Integrating the equation (2.13) w. r. to t over I, it follows:∫
I

||vt||20,Ω1∪Ω2
dt+

1

2

∫
(Ω1∪Ω2)×{T}

2∑
i,j=1

(ai,jvxj )vxidx

=

∫
(Ω1∪Ω2)×I

F̃ vtdxdt+
1

2

∫
(Ω1∪Ω2)×I

2∑
i,j=1

(ai,j)tvxjvxidxdt

+
1

2

∫
(Ω1∪Ω2)×{0}

2∑
i,j=1

(ai,jvxj )vxidx. (2.14)

Using Cauchy-Schwarz inequality and applying a standard kickback argument, it holds:

||vt||2(0,0),(Ω1∪Ω2)×I + ||v||21,(Ω1∪Ω2)×{T} ≤C
(∫

I

||F̃ ||20,Ω1∪Ω2
+ ||v||21,(Ω1∪Ω2)×{0}

)
+ C

∫
I

||v||21,(Ω1∪Ω2)dt. (2.15)

Applying an application of Gronwall’s lemma, implies the desired result.

We are now in a position to state the main regularity result.

Theorem 2.1. Let F ∈ H0,0(Ω1 ∪ Ω2 × I), g ∈ H 3
2 ,

3
4 (Γ × I), q0 ∈ H

3
2 ,

3
4 (Γ0 × I), q1 ∈ H

1
2 ,

1
4 (Γ0 × I) and

f ∈ H1(Ω1 ∪ Ω2 × {0}). If the interface Γ0 and the boundary Γ are C2 and the given data satisfy required
compatibility condition (see [17, 35]), then the solution u ∈ H2,1(Ω1 ∪ Ω2 × I) and

||u||2(2,1),Ω1∪Ω2×I ≤C
(
||F ||2(0,0),Ω×I + ||g||2( 3

2 ,
3
4 ),Γ×I + ||q0||2( 3

2 ,
3
4 ),Γ0×I

+||q1||2( 1
2 ,

1
4 ),Γ0×I + ||f ||21,Ω1∪Ω2×{0}

)
. (2.16)

Here C is a generic constant.

Proof. First, we define ū2 ∈ H2,1(Ω2 × I), which satisfies

ū2 = g on Γ× I, and n · A2∇ū2 = ū2 = 0 on Γ0 × I. (2.17)

If g ∈ H 3
2 ,

3
4 (Γ×I) and ū2(x, 0) ∈ H1(Ω2×{0}), and satisfy the compatibility condition, then from Theorem

2.1 of [17], the following estimates hold:

||g||( 3
2 ,

3
4 ),Γ×I ≤ C||ū2||(2,1),Ω2×I ,

||ū2||1,Ω2×{0} ≤ C||ū2||(2,1),Ω2×I . (2.18)

Further, using Theorem 2.4 of [35], the following estimate holds:

||ū2||2(2,1),Ω2×I ≤C||g||
2
( 3
2 ,

3
4 ),Γ×I . (2.19)

Similarly, we define ū1 ∈ H2,1(Ω1 × I), which satisfies

ū1 = q0 on Γ0 × I, and n · A1∇ū1 = q1 on Γ0 × I. (2.20)

If q0 ∈ H
3
2 ,

3
4 (Γ0 × I), q1 ∈ H

1
2 ,

1
4 (Γ0 × I) and ū1(x, 0) ∈ H1(Ω1 × {0}), and satisfy the compatibility

condition, then from Theorem 2.3 of [17], the following estimate holds:

||q0||( 3
2 ,

3
4 ),Γ0×I ≤ C||ū1||(2,1),Ω1×I ,

||q1||( 1
2 ,

1
4 ),Γ0×I ≤ C||ū1||(2,1),Ω1×I , (2.21)

||ū1||1,Ω1×{0} ≤ C||ū1||(2,1),Ω1×I .
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Similarly, using Theorem 2.4 of [35], the following estimate holds:

||ū1||2(2,1),Ω1×I ≤C
(
||q1||2( 1

2 ,
1
4 ),Γ0×I + ||q0||2( 3

2 ,
3
4 ),Γ0×I

)
. (2.22)

Now we define ū as in ((Ω1 ∪ Ω2)× I) which satisfies the following conditions

1. ū|Ω1
= ū1 and ū|Ω2

= ū2

2. ū = g on Γ× I.
3. At interface, ū is defined as

[ū] = ū1 − ū2 = q0 and [n · A∇ū] = n · (A1∇ū1 −A2∇ū2) = q1 on Γ0 × I.

Using the definition of the norm (2.3), we obtain

||ū||2(2,1),(Ω1∪Ω2)×I = ||ū1||2(2,1),Ω1×I + ||ū2||2(2,1),Ω2×I . (2.23)

From equations (2.19) and (2.22), we establish the following estimate

||ū||2(2,1),(Ω1∪Ω2)×I ≤C
(
||g||2( 3

2 ,
3
4 ),Γ×I + ||q0||2( 3

2 ,
3
4 ),Γ0×I + ||q1||2( 1

2 ,
1
4 ),Γ0×I

)
. (2.24)

Finally, we define v = u − ū, where u solve the problem (1.1). Then v satisfies the following interface
problem

Lv = F − Lū in Ω1 ∪ Ω2 × I, (2.25)

v = v(x, 0) on Ω1 ∪ Ω2 × {0} (initial condition)

v = 0 on Γ× I, (exterior boundary condition)

along with the interface conditions

[v] = 0 and [n · A∇u] = 0 on Γ0 × I. (2.26)

From Lemma 2.1, v ∈ H2,1((Ω1 ∪ Ω2)× I) and satisfies the following estimate:

||v||2(2,1),Ω1∪Ω2×I ≤C
(
||F − Lū||2(0,0),Ω1∪Ω2×I + ||v||21,Ω1∪Ω2×{0}

)
. (2.27)

Moreover, we get

||u||2(2,1),(Ω1∪Ω2)×I ≤||u− ū||
2
(2,1),Ω1∪Ω2×I + ||ū||2(2,1),Ω1∪Ω2×I . (2.28)

From equation (2.27), it follows:

||u||2(2,1),(Ω1∪Ω2)×I ≤C
(
||F − Lū||2(0,0),Ω1∪Ω2×I + ||v||21,Ω1∪Ω2×{0}

)
+ ||ū||2(2,1),Ω1∪Ω2×I

≤C
(
||F ||2(0,0),Ω1∪Ω2×I + ||ū||2(2,1),Ω1∪Ω2×I + ||u||21,Ω1∪Ω2×{0}

)
. (2.29)

Combining equations (2.24) and (2.29), the final result follows.

Theorem 2.2. Let F ∈ H2r,r(Ω1 ∪ Ω2 × I)), g ∈ H
3
2 +2r, 34 +r(Γ × I), q0 ∈ H

3
2 +2r, 34 +r(Γ0 × I), q1 ∈

H
1
2 +2r, 14 +r(Γ0× I) and f ∈ H2r+2,r+1(Ω1∪Ω2×{0}). If the interface Γ0 and boundary Γ is C2r+2 and the

given data satisfy the required compatibility condition (see [17]), then the solution u ∈ H2r+2,r+1(Ω1∪Ω2×I)
and

||u||2(2r+1,r+1),Ω1∪Ω2×I ≤ Cr
(
||F ||2(2r,r),Ω1∪Ω2×I + ||g||2( 3

2 +2r, 34 +r),Γ×I

+ ||q0||2( 3
2 +2r, 34 +r),Γ0×I + ||q1||2( 1

2 +2r, 14 +r),Γ0×I + ||f ||22r+1,Ω1∪Ω2×{0}

)
.

Proof. The idea of proof is the same as in Theorem 2.1.
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Figure 2: (a) Discretization, (b) Mesh imposing on Ωi, i = 1, 2..

3. Discretization and Stability Estimate

First, the domains Ω1 and Ω2 are partitioned into quadrilaterals Ω1
1,Ω

2
1, · · · ,Ω

r1
1 and Ω1

2,Ω
2
2, · · · ,Ω

r2
2

such that the subdomain divisions match on the interface. We define a smooth function M l
i = (X l

1,i, X
l
2,i)

that maps the unit square S to Ωli, i = 1, 2 as in [1, 22] and is given by

xl1,i = X l
1,i(η1, η2) and xl2,i = X l

2,i(η1, η2). (3.1)

We now divide S into a mesh of squares of side h. Consequently, the image Ωli, which is divided into
a quasi-uniform mesh of curvilinear rectangles of side proportional to h, is the grid of squares S under
the mapping M l

i as shown in Fig 2(b). Moreover, the domains Ω1 and Ω2 are divided into curvilinear
rectangles Ω1

1,h,Ω
2
1,h, · · · ,Ω

o1
1,h and Ω1

2,h,Ω
2
2,h, · · · ,Ω

o2
2,h of width proportional to h such that the subdomain

divisions match on the interface as shown in Fig 2(a). Thus, Ωli,h is the image of ((j1 − 1)h ≤ η1 ≤
j1h) × ((j2 − 1)h ≤ η1 ≤ j2h) under the mapping M l

i . We choose the time step k proportional to h2.
We introduce new coordinates s = t/k, yi = xi/h and define ũ(y1, y2, s) = u(hy1, hy2, ks). In this new
coordinate system the differential equation becomes

L ũ = kF̃ , (3.2a)

where

L ũ = ũs −
2∑

i,j=1

(αij(y, s)ũyj )yi . (3.2b)

Clearly the coefficients satisfy the following condition:

|Dµ
yD

γ
sαi,j | = O(h|µ|kγ). (3.3)

Let Ω̃i and Ω̃li,h be the images of Ωi and Ωli,h in the y-coordinates. Further, let γ̃m be the image of the size

γm common to Ωli,h and Ωlj,h. Now we define a map N l
i where N l

i : S → Ω̃li,h for every l in i = 1, 2. The

form of N l
i is as follows:

N l
i (ξ1, ξ2) =

1

h
M l1
i ((l2 − 1)h+ hξ1, (l3 − 1)h+ hξ2).

Let J li be the Jacobian of the map N l
i . Then there exist two uniform constants V1 and V2, which depend

on the decomposition of Ωi (i = 1, 2) into Ωli,h, and satisfy the following

V1 ≤ |J li (ξ1, ξ2)| ≤ V2. (3.4)

for all l = 1, 2, · · · , o1 with i = 1 and l = 1, 2, · · · , o2 with i = 2.
Furthermore, the step nk ≤ t < (n+ 1)k is mapped to n ≤ s < (n+ 1) by the transformation s = t/k.

3.1. Stability Estimate

Define the spectral element functions w̌lκ(ξ1, ξ2, s), κ = 1, 2., which are polynomials of degree p in each
of the space variables ξ1 and ξ2 and of degree q in the time variable s, i.e.

w̌lκ(ξ1, ξ2, s) =

p∑
i1=0

p∑
i2=0

q∑
i3=0

δl,n,κi1,i2,i3
ξi11 ξ

i2
2 (s− n)i3
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for (ξ1, ξ2) ∈ S and n ≤ s < n+ 1. Here δl,n,κi1,i2,i3
denote the coefficients. Then

w̃lκ(y1, y2, s) = w̌lκ((N l
κ)−1(y1, y2), s).

Choosing η = Kh2 and ṽlκ = w̃lκe
−ηs, where K is a positive constant, then (L w̃lκ)e−ηs = (L +η)ṽlκ. Using

the chain rule, we can write

∂w̃lκ
∂y1

= (w̌lκ)ξ1(ξ1)y1 + (w̌lκ)ξ2(ξ2)y1 and
∂w̃lκ
∂y2

= (w̌lκ)ξ1(ξ1)y2 + (w̌lκ)ξ2(ξ2)y2 .

Define ξ = (ξ1, ξ2). Assume that (ξ̂1)y1(ξ), (ξ̂2)y1(ξ), (ξ̂1)y2(ξ) and (ξ̂2)y2(ξ) are the orthogonal projections
of (ξ1)y1(ξ), (ξ2)y1(ξ), (ξ1)y2(ξ) and (ξ2)y2(ξ), respectively, into the space of polynomials of degree p with
respect to the inner product in H2(S). Let(

∂ṽlκ
∂y1

)a
= (v̌lκ)ξ1(ξ̂1)y1 + (v̌lκ)ξ2(ξ̂2)y1 and

(
∂ṽlκ
∂y2

)a
= (v̌lκ)ξ1(ξ̂1)y2 + (v̌lκ)ξ2(ξ̂2)y2 .

Let γ̃m be a side common to Ωmκ,h and Ωlκ,h which is the image of ξ1 = 1 under the map Nm
κ and the image

of ξ1 = 0 under the map N l
κ. Now, we define the jump term at the inter element boundary γ̃m:

||[ṽ]||2(r,s),γ̃m×In = ||v̌mκ (1, ξ2, s)− v̌lκ(0, ξ2, s)||2(r,s),(0,1)×In (3.5)

and the derivative of the jump term at the inter element boundary γ̃m∣∣∣∣∣∣∣∣[( ∂ṽ

∂yj

)a]∣∣∣∣∣∣∣∣2
(r,s),γ̃m×In

=

∣∣∣∣∣∣∣∣[(∂ṽmκ∂yj
)a

(1, ξ2, s)−
(
∂ṽlκ
∂yj

)a
(0, ξ2, s)

]∣∣∣∣∣∣∣∣2
(r,s),(0,1)×In

for j = 1, 2, where In = (n, n+ 1). We then define∫
Ω̃lκ,h×In

|L ṽlκ|2dy1dy2ds =

∫
S×In

|L l
κv̌
l
κ|2dξ1dξ2ds = ||L l

κv̌
l
κ||2S×In , (3.6)

where L l
κ = Ľ

√
J l
κ and Ľ is the differential operator L in ξ1, ξ2 and s coordinates. Here J l

κ denotes the

Jacobian of the map N l
κ from S to Ω̃lκ,h. Define a new differential operator (L l

κ)a, so that its coefficients
are polynomials of degree p in each of the space variables ξ1 and ξ2 and of degree q in the time variable s
defined as the orthogonal projections of the coefficients of the corresponding differential operator L l

κ into
the space of polynomials with respect to the usual inner product in H2,1(S × In). Moreover∫

Ω̃lκ,h×In
|L ṽlκ|2dy1dy2ds =

∫
S×In

|(L l
κ)av̌lκ|2dξ1dξ2ds = ||(L l

κ)av̌lκ||2S×In , (3.7)

up to a negligible error term [8, 23].

Let F (n)
v1,v2 be the spectral element representation of the function v i.e.

F (n)
v1,v2 =

{
{v̌l1(ξ1, ξ2, s)}1≤l≤o1 , {v̌l2(ξ1, ξ2, s)}1≤l≤o2

}M−1

n=0
, whereMk = T.

By S(n)
p,q (F (n)

v1,v2), we denote the space of spectral element functions.

Define F lκ(ξ, s) = (J l
κ)

1
2 F̃ lκ(N l

κ(ξ1, ξ2)h, sk) and assume F̂ lκ(ξ, s) to be the orthogonal projection of F lκ(ξ, s)
into the space of polynomials of degree 2p in each of the space variables ξ1 and ξ2 and of degree 2q in the time
variable s with respect to the usual inner product in L2(S×In). Similarly, we define f lκ(ξ) = f lκ(N l

κ(ξ1, ξ2)h)

and let f̂ lκ(ξ) be the orthogonal projection of f lκ(ξ) into the space of polynomials of degree p in ξ1 and ξ2
with respect to the usual inner product in H1(S). For the boundary and interface terms, let γ̃m belong
to either Γ or Γ0 and assume that γ̃m is the image of ξ1 = 1 under the mapping N l

κ : S → Ω̃lκ,h.

Define gl(ξ2, s) = g(N l
κ(1, ξ2)h, sk), ql0(ξ2, s) = ql0(N l

κ(1, ξ2)h, sk) and ql1(ξ2, s) = q1(N l
κ(1, ξ2)h, sk). Let

ĝl(ξ2, s), q̂
l
0(ξ2, s) and q̂l1(ξ2, s) denote the orthogonal projection of gl(ξ2, s), q

l
0(ξ2, s) and ql1(ξ2, s) into the

space of polynomials of degree p in ξ2 and q in s.
To initialize the scheme, we define

w̌lκ(ξ, s = 0−) = f lκ(ξ).
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To obtain the solution for 0 ≤ s < n, where n is an integer, we define our approximate solution for

n ≤ s < n+ 1 to be the unique F (n)
w1,w2 which minimizes the functional

R(n)(F (n)
v1,v2) =RInitial(F (n)

v1,v2 , f) +
1

h2

(
RPDE(F (n)

v1,v2 , F ) + RJump(F (n)
v1,v2)

+ RBoundary(F (n)
v1,v2 , g) + RInterface(F (n)

v1,v2 , q)
)

(3.8)

over all S(n)
p,q (F (n)

v1,v2), where

RInitial(F (n)
v1,v2 , f) =

2∑
κ=1

oκ∑
l=1

(∫
S×{n+}

|v̌lκ − w̌lκ(ξ, n−)|2Ĵ l
i dξ

+

2∑
i,j=1

∫
S×{n+}

(v̌lκ − w̌lκ(ξ, n−))ξi(Â
l
κ)i,j(v̌

l
κ − w̌lκ(ξ, n−))ξjdξ

)
,

RPDE(F (n)
v1,v2 , F ) =

o1∑
l=1

||(L l
1)av̌l1 − F̂ l1||2S×In +

o2∑
l=1

||(L l
2)av̌l2 − F̂ l2||2S×In ,

RJump(F (n)
v1,v2) =

2∑
κ=1

∑
γ̃m⊆Ω̃κ

(
||[v̌]||(0,3/4),γ̃m×In +

2∑
j=1

||[(v̌yj )a]||(1/2,1/4),γ̃m×In

)
,

RBoundary(F (n)
v1,v2 , g) =

∑
γ̃m⊆Γ

(
||v̌ − ĝm||(0,3/4),γ̃m×In + ||(v̌)aτ − (ĝm)aτ ||(1/2,1/4),γ̃m×In

)
,

RInterface(F (n)
v1,v2 , q) =

∑
γ̃m⊆Γ0

(
||[v̌]− q̂0||( 3

2 ,
3
4 ),γ̃m×In +

∣∣∣∣∣∣[(∂v̌
∂ν

)
α

]
− q̂1

∣∣∣∣∣∣
( 1
2 ,

1
4 ),γ̃m×In

)
.

Here, (v̌)τ and ∂v̌
∂ν denote the tangential and normal derivatives on γ̃m same as defined in [8, 11, 12]. As

defined in (3.8), we choose our approximate solution to be the unique F (n)
w1,w2 which minimizes the functional

R(n)(F (n)
v1,v2) over all S(n)

p,q (F (n)
v1,v2). Now, we define the functional

W (n)(F (n)
w1,w2

) =RInitial(F (n)
w1,w2

, 0) +
1

h2

(
RPDE(F (n)

w1,w2
, 0) + RJump(F (n)

w1,w2
)

+ RBoundary(F (n)
w1,w2

, 0) + RInterface(F (n)
w1,w2

, 0)
)
. (3.9)

From equations (3.8) and (3.9), it is clear that W (n)(F (n)
v1,v2) is the functional R(n)(F (n)

v1,v2) with zero data.
We are now in a position to state the main stability theorem.

Theorem 3.1 (Stability theorem). The estimate

g4

2∑
κ=1

( oκ∑
l=1

(
h2||w̌lκ||2S×In + ||∂sw̌lκ||2S×In +

∑
1≤|α|≤2

||Dα
y w̌

l
κ||2S×In + ||w̌lκ||2S×(n+1)−

+

2∑
i,j=1

∫
S×(n+1)−

(w̌lκ)ξi(Â
l
κ)i,j(w̌

l
κ)ξjdξ1dξ2

)
≤ (1 + c1h

2)W (n)(F (n)
w1,w2

)

holds for large enough 1
h and p with ln p = o(1/h). Here g4 and c1 are constants.

3.2. Proof of the stability theorem

To calculate the estimate of higher order derivatives of ṽ as in [23], we decompose the problem, which
is as follows:

L ṽ = ṽs − E ṽ, where E ṽ =

2∑
i,j=1

(αi,j ṽyj )yi . (3.10)

Assume ν = (ν1, ν2) to be the outward normal to the curve γ̃m at the point ξ. Now, we define
(
∂ṽ
∂ν

)
α

(ξ) =∑2
i,j=1 νiαi,j

(
∂ṽ
∂yj

)
(ξ) which denotes the conormal derivative at a point on γ̃m. Furthermore, let dµ be an

element of arc length along γ̃m.
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Lemma 3.1. The estimate

2∑
κ=1

oκ∑
l=1

(
||ṽlκ||2Ω̃lκ,h×(n+1)−

+ b1

2∑
i=1

||(ṽlκ)yi ||2Ω̃lκ,h×In +
3

2
Kh2||(ṽlκ)||2

Ω̃lκ,h×In

)
−

2∑
κ=1

∑
γ̃m⊆Ω̃κ

∫
γ̃m×In

2
[
ṽ
(∂ṽ
∂ν

)
α

]
dµds−

∑
γ̃m⊆Γ0

∫
γ̃m×In

2
[
ṽ
(∂ṽ
∂ν

)
α

]
dµds

−
∑
γ̃m⊆Γ

∫
γ̃m×In

2ṽ
(∂ṽ
∂ν

)
α
dµds ≤ 1

h2

2∑
κ=1

oκ∑
l=1

(
||(L + η)ṽκl ||2Ω̃lκ,h×In + ||ṽκl ||2Ω̃lκ,h×{n+}

)
holds for large enough K, where η = Kh2. Here m− and m+ denote respectively limt↑m t and limt↓m t.
b1 > 0 is a constant.

Proof. From the equation (3.10), we have∫
Ω̃lκ,h×In

ṽlκ
(
(ṽlκ)s − E ṽlκ + ηṽlκ

)
dyds =

∫
Ω̃lκ,h×In

ṽlκ((L + η)ṽlκ)dyds. (3.11)

Using integration by parts, it follows:

2

∫
Ω̃lκ,h×In

ṽlκ(ṽlκ)sdyds =

∫
Ω̃lκ,h×{(n+1)−}

|ṽlκ|2dy −
∫

Ω̃lκ,h×{n+}
|ṽlκ|2dy, (3.12)

−
∫

Ω̃lκ,h×In
ṽlκ(E ṽlκ)dyds =

∫
Ω̃lκ,h×In

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdyds

−
∫
∂Ω̃lκ,h×In

ṽlκ

(∂ṽlκ
∂ν

)
α
dµds. (3.13)

Inserting the equations (3.12)- (3.13) into (3.11), we obtain

1

2

∫
Ω̃lκ,h×(n+1)−

|ṽlκ|2dy +

∫
Ω̃lκ,h×In

( 2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yj + η|ṽlκ|2

)
dyds

−
∫
∂Ω̃lκ,h×In

ṽlκ

(∂ṽlκ
∂ν

)
α
dµds =

∫
Ω̃lκ,h×In

ṽlκ((L + η)ṽlκ)dyds+

∫
Ω̃lκ,h×{n+}

|ṽlκ|2
dy

2
.

Summing over l for each Ωlκ,h, κ = 1, 2, gives

2∑
κ=1

oκ∑
l=1

( ∫
Ω̃lκ,h×(n+1)−

|ṽlκ|2
dy

2
+

∫
Ω̃lκ,h×In

( 2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yj + η|ṽlκ|2

)
dyds

)
−

2∑
κ=1

∑
γ̃m⊆Ω̃κ

∫
γ̃m×In

[
ṽ
(∂ṽ
∂ν

)
α

]
dµds−

∑
γ̃m⊆Γ0

∫
γ̃m×In

[
ṽ
(∂ṽ
∂ν

)
α

]
dµds

−
∑
γ̃m⊆Γ

∫
γ̃m×In

ṽ
(∂ṽ
∂ν

)
α
dµds =

2∑
κ=1

oκ∑
l=1

(∫
Ω̃lκ,h×In

ṽlκ((L + η)ṽlκ)dyds+

∫
Ω̃lκ,h×{n+}

|ṽlκ|2
dy

2

)
.

From (3.3) and choosing K large enough, where η = Kh2, the result holds.

In the following Lemma 3.2, we obtain estimates for higher order derivatives of ṽlκ.

Lemma 3.2. The estimate

e1

( o1∑
l=1

(∫
Ω̃l1,h×In

∑
|α|=2

|Dα
y ṽ

l
1|2dyds

)
+

o2∑
l=1

(∫
Ω̃l2,h×In

∑
|α|=2

|Dα
y ṽ

l
2|2dyds

))
≤ E1.
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holds, where

E1 =

2∑
κ=1

( oκ∑
l=1

∫
Ω̃lκ,h×In

|E ṽlκ|2dyds+
∑

γ̃m⊆Ω̃κ∪Γ0

(∫
γ̃m×In

[Φ(ṽ)]dµds+

∫
In

[H(ṽ)]ds
∣∣
∂γ̃m

)

+ f1h
2
oκ∑
l=1

∫
Ω̃lκ,h×In

∑
|α|=1

|Dα
y ṽ

l
κ|2dyds+ f1h

∑
γ̃m⊆Γ∪Γ0∪Ω̃κ

∫
γ̃m×In

∑
|α|=1

|Dα
y ṽ

l
κ|2dµds

)
+
∑
γ̃m⊆Γ

∫
γ̃m×In

Φ(ṽ)dµds+
∑

γ̃m⊆Γ0

∫
In

H(ṽ)ds
∣∣
∂γ̃m

,

H(ṽ) = d1
2 ṽν(−2Dṽt − Eṽν) and Φ(ṽ) = d1

∂ṽ
∂τ

d
dµ

(
E ∂ṽ
∂τ +G ∂ṽ

∂ν

)
. Here d1, e1 and f1 are positive constants

and D,E and F are defined as:[ D E
E F

]
=
[ τ1 τ2
ν1 ν2

][ α11 α12

α21 α22

][ τ1 τ2
ν1 ν2

]−1

and the matrix
[
τ1 τ2
ν1 ν2

]
is orthogonal matrix and αij = αji for each Ωκ, κ = 1, 2.

Proof. To prove the above lemma, we use the result of equation (3.25) from [8], which is as follows:

c

4

∫
Ω̃lκ,h

∑
|α|=2

|Dα
y ṽ

l
κ|2dy ≤

1

c

∫
Ω̃lκ,h

|E ṽlκ|2dy + Ch2

∫
Ω̃lκ,h

∑
|α|=1

|Dα
y ṽ

l
κ|2dy


+ Ch

4∑
j=1

∫
γ̃j

∑
|α|=1

|Dα
y ṽ

l
κ|2dµ+

4∑
j=1

∫
γ̃j

(ṽlκ)τ
d

dµ
(E(ṽlκ)τ +G(ṽlκ)ν)dµ

+

4∑
j=1

1

2
(ṽlκ)ν(−2D(ṽlκ)τ − E(ṽlκ)ν)

∣∣∣∣
∂γ̃j

(3.14)

by choosing a small enough c > 0. Here G = F +D, and C is a generic constant.
Integrating the equation (3.14) w.r. to s over In and summing over l for Ω̃lκ,h, κ = 1, 2, the desired result
follows.

Next, we prove the following Lemma 3.3, which we directly use to obtain the main stability result.

Lemma 3.3. The estimate holds

2∑
κ=1

oκ∑
l=1

((
Kh2||ṽlκ||2Ω̃lκ,h×In + e2

(
||∂sṽlκ||2Ω̃lκ,h×In +

∑
1≤|α|≤2

||Dα
y ṽ

l
κ||2Ω̃lκ,h×In

))

+
(
||ṽlκ||2Ω̃lκ,h×(n+1)−

+

2∑
i,j=1

∫
Ω̃lκ,h×(n+1)−

(ṽlκ)yiαi,j(ṽ
l
κ)yjdy

))
≤ E2 + E3

for small enough h. Where

E2 =

2∑
κ=1

( oκ∑
l=1

(
||ṽlκ||2Ω̃lκ,h×(n)+

+

2∑
i,j=1

∫
Ω̃lκ,h×(n)+

(ṽlκ)yiαi,j(ṽ
l
κ)yjdy

+
1

h2
(1 + 2h2)

oκ∑
l=1

||(L + η)ṽlκ||2Ω̃lκ,h×In
)
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and

E3 =

2∑
κ=1

∑
γ̃m⊆Ωκ

(∫
γ̃m×In

[
J(ṽ) + 2ṽ

(∂ṽ
∂ν

)
α

]
dµds+

∫
In

[H(ṽ)]ds
∣∣∣
∂γ̃m

))
+
∑

γ̃m⊆Γ0

(∫
γ̃m×In

[
J(ṽ) + 2ṽ

(∂ṽ
∂ν

)
α

]
dµds+

∫
In

[H(ṽ)]ds
∣∣∣
∂γ̃m

))

+
∑
γ̃m⊆Γ

(∫
γ̃m×In

J(ṽ) + 2ṽ
(∂ṽ
∂ν

)
α
dµds+

∫
In

H(ṽ)ds

∣∣∣∣
∂γ̃m

)
. (3.15)

Here J(ṽ) = 2ṽs
(
∂ṽ
∂ν

)
α

+ d1

(
ṽτ

d
dµ (Eṽµ +Gṽν)

)
= 2ṽs

(
∂ṽ
∂ν

)
α

+ Φ(ṽ) and H(ṽ) = d
2 ṽν(−2Dṽt − Eṽν).

Proof. Firstly, we calculate∫
Ω̃lκ,h×In

|L ṽlκ|2dyds =

∫
Ω̃lκ,h×In

|(ṽlκ)s − E ṽlκ|2dyds,

=

∫
Ω̃lκ,h×In

(|(ṽlκ)s|2 − 2(ṽlκ)sE ṽ
l
κ + |E ṽlκ|2)dyds. (3.16)

Using integration by parts, we rewrite the following term

−2

∫
Ω̃lκ,h×In

(ṽlκ)s(E ṽ
l
κ)dyds = 2

∫
Ω̃lκ,h×In

2∑
i,j=1

(ṽlκ)yisαij(ṽ
l
κ)yjdyds

−
∑

γ̃m⊆∂Ω̃lκ,h

2

∫
γ̃m×In

(ṽlκ)s

(
∂ṽκl
∂ν

)
α

dµds. (3.17)

Again using integration by parts the first term of R.H.S. in (3.17) w. r. to s, gives:

2

∫
Ω̃lκ,h×In

2∑
i,j=1

(ṽlκ)yisαij(ṽ
l
κ)yjdyds =

∫
Ω̃lκ,h×{(n+1)−}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy

−
∫

Ω̃lκ,h×{n+}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy −

∫
Ω̃lκ,h×In

2∑
i,j=1

(ṽlκ)yi(αij)s(ṽ
l
κ)yjdyds. (3.18)

Inserting the equation (3.18) into (3.17), it follows

−2

∫
Ω̃lκ,h×In

(ṽlκ)s(E ṽ
l
κ)dyds =

∫
Ω̃lκ,h×{(n+1)−}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy

−
∫

Ω̃lκ,h×{n+}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy − 2

∑
γ̃m⊆∂Ω̃lκ,h

∫
γ̃m×In

(ṽlκ)s

(
∂ṽκ

∂ν

)
α

dµds

−
∫

Ω̃lκ,h×In

2∑
i,j=1

(ṽlκ)yi(αij)s(ṽ
l
κ)yjdyds. (3.19)

From equation (3.3), we have∫
Ω̃lκ,h×In

2∑
i,j=1

(ṽlκ)yi(αij)s(ṽ
l
κ)yjdyds ≤ Ch2

∫
Ω̃lκ,h×In

∑
|α|=1

|Dα
y ṽ

l
κ|2dyds.. (3.20)

12



Substituting the result of the equation (3.20) into (3.19), the estimate is as follows:

−2

∫
Ω̃lκ,h×In

(ṽlκ)s(E ṽ
l
κ)dyds ≥

∫
Ω̃lκ,h×{(n+1)−}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy

−
∫

Ω̃lκ,h×{n+}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy − 2

∑
γ̃m⊆∂Ω̃lκ,h

∫
γ̃m×In

(ṽlκ)s

(
∂ṽκ

∂ν

)
α

dµds

− Ch2

∫
Ω̃lκ,h×In

∑
|α|=1

|Dα
y ṽ

l
κ|2dyds. (3.21)

Inserting the equation (3.21) in (3.16), the estimate holds:∫
Ω̃lκ,h×In

|L ṽlκ|2dyds ≥
∫

Ω̃lκ,h×In
(|(ṽlκ)s|2 + |E ṽlκ|2)dyds

+

∫
Ω̃lκ,h×{(n+1)−}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy −

∫
Ω̃lκ,h×{n+}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy

− 2
∑

γ̃m⊆∂Ω̃lκ,h

∫
γ̃m×In

(ṽlκ)s

(
∂ṽlκ
∂ν

)
α

dµds− Ch2

∫
Ω̃lκ,h×In

∑
|α|=1

|Dα
y ṽ

l
κ|2dyds. (3.22)

After rearranging the equation (3.22), we obtain∫
Ω̃lκ,h×In

(|(ṽlκ)s|2 + |E ṽlκ|2)dyds+

∫
Ω̃lκ,h×{(n+1)−}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy

≤
∫

Ω̃lκ,h×{n+}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy +

∫
Ω̃lκ,h×In

|L ṽlκ|2dyds

+ 2
∑

γ̃m⊆∂Ω̃lκ,h

∫
γ̃m×In

(ṽlκ)s

(
∂ṽlκ
∂ν

)
α

dµds+ Ch2

∫
Ω̃lκ,h×In

∑
|α|=1

|Dα
y ṽ

l
κ|2dyds. (3.23)

Combining the equation (3.14) and (3.23), implies

c1

∫
Ω̃lκ,h×In

∑
|α|=2

|Dα
y ṽ

l
κ|2 + |(ṽlκ)s|2

 dyds+

∫
Ω̃lκ,h×{(n+1)−}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy,

≤
∫

Ω̃lκ,h×In
|L ṽlκ|2dyds+

∫
Ω̃lκ,h×{n+}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy,

+ Ch2

∫
Ω̃lκ,h×In

∑
|α|=1

|Dα
y ṽ

l
κ|2dyds+ g1h

∫
Ω̃lκ,h×In

∑
1≤|α|≤2

|Dα
y ṽ

l
κ|2dyds

+
∑

γ̃m⊆∂Ω̃lκ,h

(∫
γ̃m×In

J(ṽ)dµds+

∫
In

H(ṽ)ds

∣∣∣∣
∂γ̃m

)
. (3.24)

with the following estimate∑
γ̃m⊆∂Ω̃lκ,h

∫
γ̃m×In

∑
|α|=1

|Dα
y ṽ

l
κ|2dµds ≤ g1

∫
Ω̃lκ,h×In

∑
1≤|α|≤2

|Dα
y ṽ

l
κ|2dyds,

where g1 is a uniform constant and c1 is a positive constant.
From equation (3.10), we obtain:∫

Ω̃lκ,h×In
|L ṽlκ|2dyds =

∫
Ω̃lκ,h×In

|(L + η)ṽlκ − ηṽlκ|2dyds

≤ 2

∫
Ω̃lκ,h×In

|(L + η)ṽlκ|2dyds (3.25)
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with the following estimate ∫
Ω̃lκ,h×In

|ηṽlκ|2dyds ≤
∫

Ω̃lκ,h×In
|(L + η)ṽlκ|2dyds. (3.26)

Inserting equation (3.25) in (3.24) and summing over l on Ω̃lκ,h, κ = 1, 2, the estimate is as follows:

2∑
κ=1

oκ∑
l=1

(∫
Ω̃lκ,h×In

∑
|α|=2

c1|(Dα
y ṽ

l
κ|2 + |(ṽlκ)s|2)dyds+

∫
Ω̃lκ,h×{(n+1)−}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy

)

≤
2∑

κ=1

oκ∑
l=1

(
2

∫
Ω̃lκ,h×In

|(L + η)ṽlκ|2dyds+

∫
Ω̃lκ,h×{n+}

2∑
i,j=1

(ṽlκ)yiαij(ṽ
l
κ)yjdy

+ Ch

∫
Ω̃lκ,h×In

∑
1≤|α|≤2

|Dα
y ṽ

l
κ|2dyds+ Ch4

∫
Ω̃lκ,h×In

|ṽlκ|2dyds
)

+ I (v)

+

2∑
κ=1

∑
γ̃m⊆∂Ω̃κ

(∫
γ̃m×In

[J(ṽ)]dµds+

∫
In

[H(ṽ)]ds

∣∣∣∣
∂γ̃m

)

+
∑

γ̃m⊆Γ0

(∫
γ̃m×In

[J(ṽ)]dµds+

∫
In

[H(ṽ)]ds

∣∣∣∣
∂γ̃m

)

+
∑
γ̃m⊆Γ

(∫
γ̃m×In

J(ṽ)dµds+

∫
In

H(ṽ)ds

∣∣∣∣
∂γ̃m

)
. (3.27)

Combining Lemma 3.1 with (3.27), the desired result follows.

Now, we estimate the bound for E3, which is defined in equation (3.15).

Lemma 3.4. The estimate

E3 ≤ E4 + E5 (3.28)

holds for a constant K, such that, 1
h and p large enough and ln p = o( 1

h ). Where

E4 =

2∑
κ=1

(7

8

oκ∑
l=1

(
Kh2||ṽlκ||2Ω̃lκ,h×In + e1

(
||∂sṽlκ||2Ω̃lκ,h×In +

∑
1≤α≤2

||Dα
y ṽ

l
κ||2Ω̃lκ,h×In

))
and

E5 =
1

h2

(
RJump(F (n)

v1,v2) + RBoundary(F (n)
v1,v2 , 0) + RInterface(F (n)

v1,v2 , 0)
)
.

Proof. Using the equaion (3.32) from [8], we conclude∣∣∣∣∣ ∑
γ̃m⊆Ω̃κ

(∫
γ̃m×In

[Φ(ṽ)]dµds+

∫
In

[H(ṽ)]ds

∣∣∣∣∣
∂γ̃m

)∣∣∣∣∣ (3.29)

≤ e

16

oκ∑
l=1

∑
1≤|α1|≤2

||Dα1
y ṽlκ||2Ω̃lκ,h×In + C(ln p)2

∑
γ̃m⊆Ω̃κ

( 2∑
i=1

||[(v̌)ayi ]||
2
(1/2,0),γ̃m×In

)
for each κ = 1, 2, and∣∣∣∣∣ ∑

γ̃m⊆Γ

(∫
γ̃m×In

Φ(ṽ)dµds+

∫
In

H(ṽ)ds

∣∣∣∣∣
∂γ̃m

)∣∣∣∣∣ ≤ e

16

o2∑
l=1

∑
1≤|α1|≤2

||Dα1
y ṽl2||2Ω̃l2,h×In

+ C(ln p)2
( ∑
γ̃m⊆Γ

||(v̌)aτ ||2(1/2,0),γ̃m×In +
∑

γ̃m⊆Ω̃2

2∑
i=1

||[(v̌)ayi ]||
2
(1/2,0),γ̃m×In

)
. (3.30)
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From equations (3.29) and (3.30), the following estimate holds for interface (Γ0)∣∣∣∣∣ ∑
γ̃m⊆Γ0

(∫
γ̃m×In

[Φ(ṽ)]dµds+

∫
In

[H(ṽ)]ds

∣∣∣∣∣
∂γ̃m

)∣∣∣∣∣
≤ e

16

2∑
κ=1

oκ∑
l=1

∑
1≤|α1|≤2

||Dα1
y ṽlκ||2Ω̃lκ,h×In (3.31)

+C(ln p)2
( ∑
γ̃m⊆Γ0

∣∣∣∣∣∣∣∣[(∂v̌∂ν
)a
α

]∣∣∣∣∣∣∣∣2
(1/2,0),γ̃m×In

+

2∑
κ=1

∑
γ̃m⊆Ω̃κ

2∑
i=1

||[(v̌)ayi ]||
2
(1/2,0),γ̃m×In

)
.

Using the equation (3.33) of [8], it follows that∑
γ̃m⊆Ω̃κ

∫
γ̃m×In

[
2ṽ
(∂ṽ
∂ν

)
α

]
dµds

≤ 1

8

oκ∑
l=1

(
Kh2||ṽlκ||2Ω̃lκ,h×In + e1

∑
1≤|α1|≤2

||Dα1
y ṽlκ||2Ω̃lκ,h×In

)

+
∑

γ̃m⊆Ω̃κ

( 1

2h2

2∑
i=1

||[(v̌)ayi ]||
2
(1/2,0),γ̃m×In + C||[v̌]||2(0,0),γ̃m×In

)
(3.32)

for each κ = 1, 2. Moreover∑
γ̃m⊆Γ

∫
γ̃m×In

2ṽ
(∂ṽ
∂ν

)
α
dµds

≤
o2∑
l=1

e1

8

( ∑
1≤|α1|≤2

||Dα1
y ṽl2||2Ω̃l2,h×In

)
+ C

∑
γ̃m⊆Γ

||[v̌||2(0,0),γ̃m×In . (3.33)

Similarly, the following estimate holds for the interface (Γ0)∑
γ̃m⊆Γ0

∫
γ̃m×In

[
2ṽ
(∂ṽ
∂ν

)
α

]
dµds

≤ 1

8

2∑
κ=1

oκ∑
l=1

(
Kh2||ṽlκ||2Ω̃lκ,h×In + e1

∑
1≤|α1|≤2

||Dα1
y ṽlκ||2Ω̃lκ,h×In

)

+
∑

γ̃m⊆Γ0

(
1

2h2

∣∣∣∣∣∣∣∣[(∂v̌∂ν
)a
α

]∣∣∣∣∣∣∣∣2
(1/2,0),γ̃m×In

+ C||[v̌]||2(0,0),γ̃m×In

)
. (3.34)

Using equations (3.36) and (3.38) from [8], we obtain∑
γ̃m⊆Ωκ

∫
γ̃m×In

[
2ṽs

(∂ṽ
∂ν

)
α

]
dµds

≤ 1

2h2

∑
γ̃m⊆Ωκ

(
||[v̌]||2(0,3/4),γ̃m×In +

2∑
j=1

||(v̌yj )a||2(0,1/4),γ̃m×In

)

+
e1

8

oκ∑
l=1

(
||∂sṽlκ||2Ω̃lκ,h×In +

∑
1≤|α1|≤2

||Dα1
y ṽlκ||2Ω̃lκ,h×In

)
(3.35)

for each κ = 1, 2. Moreover∑
γ̃m⊆Γ

∫
γ̃m×In

2ṽs

(
∂ṽ

∂ν

)
α

dµds ≤ 1

2h2

∑
γ̃m⊆Ω2

||v̌||2(0,3/4),γ̃m×In

+
e1

8

o2∑
l=1

(
||∂sṽl2||2Ω̃l2,h×In +

∑
1≤|α1|≤2

||Dα1
y ṽl2||2Ω̃l2,h×In

)
. (3.36)
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In same way, it follows that∑
γ̃m⊆Γ0

∫
γ̃m×In

[
2ṽs

(∂ṽ
∂ν

)
α

]
dµds

≤ 1

2h2

∑
γ̃m⊆Γ0

(
||[v̌]||2(0,3/4),γ̃m×In +

∣∣∣∣∣∣∣∣[(∂v̌∂ν
)a
α

]∣∣∣∣∣∣∣∣2
(0,1/4),γ̃m×In

)

+
e1

8

2∑
κ=1

oκ∑
l=1

(
||∂sṽlκ||2Ω̃lκ,h×In +

∑
1≤|α1|≤2

||Dα1
y ṽlκ||2Ω̃lκ,h×In

)
. (3.37)

Combining the equations (3.29)− (3.37), imply the desired result.

Combining the results of Lemma 3.3 and 3.4, implies that

g4

2∑
κ=1

oκ∑
l=1

(
h2||ṽlκ||2Ω̃lκ,h×In + ||∂sṽlκ||2Ω̃lκ,h×In +

∑
1≤|α|≤2

||Dα
y ṽ

l
κ||2Ω̃lκ,h×In + ||ṽlκ||2Ω̃lκ,h×(n+1)−

+

2∑
i,j=1

∫
Ω̃lκ,h×(n+1)−

(ṽlκ)yiαi,j(ṽ
l
κ)yjdy

)
≤ W(n)(F (n)

v1,v2) (3.38)

holds for large enough 1
h and p with ln p = o(1/h). Here g4 is a constant independent of h, p and q, and

W(n)(F (n)
v1,v2) =

2∑
κ=1

oκ∑
l=1

||ṽlκ||2Ω̃lκ,h×(n+1)−
+

2∑
i,j=1

∫
Ω̃lκ,h×{(n+1)−}

(ṽlκ)yiαi,j(ṽ
l
κ)yjdy


+

1

h2
(1 + 2h2)

(
o1∑
l=1

||(L + η)ṽl1||2Ω̃l1,h×In +

o2∑
l=1

||(L + η)ṽl2||2Ω̃l2,h×In

)

+
1

h2

(
RJump(F (n)

v1,v2) + RBoundary(F (n)
v1,v2 , 0) + RInterface(F (n)

v1,v2 , 0)
)
.

Let J l
κ be the Jacobian of the map N l

κ from S to Ω̃lκ,h in each Ω̃κ, κ = 1, 2, then there exist matrices

{(A l
κ)i,j} such that

2∑
i,j=1

∫
Ω̃lκ,h×{s}

(ṽlκ)yiαi,j(ṽ
l
κ)yjdy =

2∑
i,j=1

∫
S×{s}

(v̌lκ)ξi(A
l
κ)i,j(v̌

l
κ)ξjdξ1dξ2.

Now we define Ĵ l
κ and (Â l

κ)i,j which are orthogonal projection of J l
κ and (A l

κ)i,j into the space of
polynomial as before. Recall that η = Kh2 and w̃lκ = ṽlκe

ηs. Using these arguments in equation (3.38), we
obtain the final result.

4. Error estimate

In this section, we prove a priori error estimate for parabolic interface problems. Let ulκ(ξ, s) =
u(N l

κ(ξ1, ξ2), s), where l = 1, 2, · · · , o1 for κ = 1 and l = 1, 2, · · · , o2 for κ = 2. Now we prove the
following approximation result.

Lemma 4.1. For each κ = 1, 2, let uκ be a smooth function which is defined on Ω̄κ × [0, T ]. Then
there exist functions ψlκ(ξ, s) defined on S × [0,M] (where Mk = T ). Moreover, ψlκ(ξ, s) is continuous
function of s and is a polynomial in ξ1 and ξ2 of degree p separately and in s of degree q for s ∈ In with
n = 0, 1, · · · ,M− 1. Then the following error estimate(

2∑
κ=1

oκ∑
l=1

M−1∑
n=0

||ulκ − ψlκ||2(2,1),S×In

) 1
2

≤ Cqh2q||u||(2q+6,q+3),Ω1∪Ω2×(0,T ) (4.1)
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holds, provided p = 2q + 1 and k is proportional to h2 as h→ 0.
If uκ ∈ D2,1(Ω̄κ × [0, T ]) for each κ = 1, 2, then(

2∑
κ=1

oκ∑
l=1

M−1∑
n=0

||ulκ − ψlκ||2(2,1),S×In

) 1
2

≤ Ke−ρ1phρ3p (4.2)

provided q is proportional to p2, as p tends to infinity and ln p = o(1/h). Where K, ρ1 and ρ3 are positive
constants.

Proof. Let πp,qξ,sv(ξ, s) = πpξπ
q
sv(ξ, s) be an operator from

H2q+6,q+3(S × I0)→ (Pp × Pp × Pq)(S × I0)

defined as [8, 22]. Now, we define ψlκ(ξ, s+ n) = πpξπ
q
su
l
κ(ξ, s) for 0 ≤ s < 1. Thus ψlκ(ξ, s) is a continuous

function of s for 0 ≤ s <M and separately for κ = 1, 2.
Using the approximation results from equations (5.6) and (5.7) in [8], we obtain

||ulκ − ψlκ||2(0,1),S×I0 ≤C2−2σ (q − σ)!

(q + σ)!
||∂σ+1

s ulκ||2(0,0),S×I0 + C2−2λ (p− λ)!

(p+ λ+ 2)!( 2∑
j=0

(||∂λ+1
ξ1

∂jξ2u
l
κ||2(0,1),S×I0 + ||∂jξ1∂

λ+1
ξ2

ulκ||2(0,1),S×I0)
)

(4.3)

and

||Dα1

ξ (ulκ − ψlκ)||2(0,0),S×I0 ≤ C
(

2−2ν (p− ν)!

(p+ ν − 2)!

( 2∑
j=0

(||∂ν+1
ξ1

∂jξ2u
l
κ||2(0,0),S×I0

+ ||∂jξ1∂
ν+1
ξ2

ulκ||2(0,0),S×I0)
)

+
2−2µ

q(q + 1)

(q − µ)!

(q + µ)!
||Dα1

ξ πpξ∂
µ+1
s ulκ||2(0,0),S×I0

)
(4.4)

for 0 ≤ |α1| ≤ 2 and separately for κ = 1, 2.
For proving the first estimate, where uκ is smooth in Ωκ× (0, T ) and h tends to zero (p and q are fixed),

we choose p = 2q + 1, λ = 2q + 1, σ = q, ν = 2q + 1 and µ = q in equations (4.3)-(4.4) as in [22]. Adding
equations (4.3)-(4.4) and summing over l for Ωlκ, κ = 1, 2, the desired result holds.

For proving the second estimate, where uκ ∈ D2,1(Ω̄κ × [0, T ]) and the map M l
κ are analytic, we obtain

sup
(ξ,s)∈S×(0,M)

|Dα
ξD

β1
s u

l
κ(ξ, s)| ≤ A2(B2)j+β1j!(β1!)2h2β1+j ,

for |α| = j. Here A2 and B2 are constants.
Now, we choose q ∝ p2, λ = d1p, σ = d2p, ν = d3p and µ = d4p in equations (4.3)-(4.4) as in [22], where

0 < dι < 1 for ι = 1, · · · , 4. Adding equations (4.3)-(4.4) and summing over l for Ωlκ, κ = 1, 2, the desired
result holds.

Finally, we prove our main result of this section.

Theorem 4.1. Let F (n)
w1,w2 ∈ S

p,q
(n) minimize the functional R(n)(F (n)

v1,v2) over all F (n)
v1,v2 ∈ S

p,q
(n). If uκ is

smooth in Ω̄κ × [0, T ] for each κ = 1, 2, then there exist a constant Cq such that the estimate

( 2∑
κ=1

oκ∑
l=1

M−1∑
n=0

||ulκ − wlκ||2(2,1),Ωlκ,h×In

) 1
2 ≤ Cqh2q−1||u||(2q+6,q+3),Ω1∪Ω2×(0,T ) (4.5)

holds, provided p = 2q + 1 and k is proportional to h2 as h→ 0.
If uk ∈ D2,1(Ω̄κ × [0, T ]) for each κ = 1, 2, then

( 2∑
κ=1

oκ∑
l=1

M−1∑
n=0

||uκl − wκl ||2(2,1),Ωlκ,h×In

) 1
2 ≤ Ke−ρ1phρ3p (4.6)

provided q is proportional to p2, as p tends to infinity and ln p = o(1/h). Where K, ρ1 and ρ3 are positive
constants.
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Proof. First, we divide the error into the following terms:

||ulκ − wlκ||2Ωlκ,h×In ≤ C(||ulκ − ψlκ||2Ωlκ,h×In + ||ψlκ − wlκ||2Ωlκ,h×In),

for some positive constant C. Here the first term of R.H.S. is already estimated from the previous Lemma

4.1. Now, we estimate the second term of R.H.S. Let F (0)
w1,w2 minimizes R(0)(F (0)

v1,v2). Then we have

R(0)(F (0)
ψ1,ψ2

) = R(0)(F (0)
w1,w2

) + W (0)(F (0)
ψ1−w1,ψ2−w2

). (4.7)

Therefore, we conclude that

W (0)(F (0)
ψ1−w1,ψ2−w2

) ≤ R(0)(F (0)
ψ1,ψ2

). (4.8)

Replacing the approximate solution F0
w1,w2

by exact solution F0
u1,u2

in the equation (4.7) then we obtain

R(0)(F (0)
ψ1,ψ2

) ≡ W (0)(F (0)
ψ1−u1,ψ2−u2

), (4.9)

using R(0)(F (0)
u1,u2) ≈ 0.

Define

Tn =

2∑
κ=1

oκ∑
l=1

(
h2||w̌lκ − ψlκ||2S×In + ||∂s(w̌lκ − ψlκ)||2S×In +

∑
1≤|α|≤2

||Dα
ξ (w̌lκ − ψlκ)||2S×In

)
and

Υn =

2∑
κ=1

oκ∑
l=1

(
||(w̌lκ − ψlκ)||2S×n− +

2∑
i,j=1

∫
S×n−

(w̌lκ − ψlκ)ξi(Â
l
κ)i,j(w̌

l
κ − ψlκ)ξjdξ1dξ2

)
.

Using Theorem 3.1, the following estimate holds:

g4(T0 + Υ1) ≤ eλkW (0)(F (0)
ψ1−w1,ψ2−w2

) ≤ eλkR(0)(F (0)
ψ1,ψ2

) (4.10)

for choosing λ such that 1 + ch2 = eλk. Now we define

R̃(n)(F (n)
v1,v2) = R(n)(F (n)

v1,v2)− In,

where

In =

2∑
κ=1

oκ∑
l=1

(
||v̌lκ||2S×n+ +

2∑
i,j=1

∫
S×{n+}

(v̌lκ)ξi(Â
l
κ)i,j(v̌

l
κ)ξjdξ1dξ2

)
.

From equation (4.8), it follows:

W (1)(F (1)
ψ1−w1,ψ2−w2

) ≤ R(1)(F (1)
ψ1,ψ2

). (4.11)

Again using Theorem 3.1, the following estimate holds as in (4.10):

g4(T1 + Υ2) ≤ eλkW (1)(F (1)
ψ1−w1,ψ2−w2

) ≤ eλkR(1)(F (1)
ψ1,ψ2

) ≤ eλk
(
R̃(1)(F (1)

ψ1,ψ2
) + I1

)
. (4.12)

Here ψlκ(ξ, s) is continuous in s. Multiplying by eλk in equation (4.10) and adding equations (4.10) & (4.12),
imply:

g4(eλkT0 + T1 + Υ2) ≤ e2λkR0(Fψ1,ψ2) + eλkR̃(1)(Fψ1,ψ2). (4.13)

Continuing this process upto M− 1 times, the final result is as follows:

g4

M−1∑
n=0

Tn ≤ eλT
(
R0(Fψ1,ψ2) +

M−1∑
n=1

R̃(n)(Fψ1,ψ2)
)
. (4.14)
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Combining the equations (4.9) and (4.14), we obtain the following result

g4

M−1∑
n=0

Tn ≤ eλT
M−1∑
n=0

W n(Fψ1−u1,ψ2−u2
). (4.15)

Using trace theorem from [17], the following result holds

W (n)(F (n)
v1,v2) ≤ K

h2

2∑
κ=1

oκ∑
l=1

||v̌lκ||2(2,1),S×In , (4.16)

where K is a constant. Inserting the equation (4.16) in (4.15), implies

g4

M−1∑
n=0

Tn ≤ eλT
C

h2

2∑
κ=1

( oκ∑
l=1

M−1∑
n=0

||ulκ − ψlκ||2(2,1),S×In

)
. (4.17)

Applying Lemma 4.1 in equation (4.17), implies the estimates (4.5) and (4.6).

5. Numerical techineque and Computational results

5.1. Symmetric formulation

The approach which is used to solve the problem, is based on least squares. The solution to the
least-squares problem can be found using the PCGM for the normal equations. Let the normal equation
be

ATAU = ATG, (5.1)

Let

Up,q,κ(p+1)2k+(p+1)i+j = uκl (ξp1,i, ξ
p
2,j , s

q
k) for 0 ≤ i, j ≤ p, 0 ≤ k ≤ q, κ = 1, 2.

Similarly, we define

U2p,2q,κ
(p+1)2k+(p+1)i+j = uκl (ξ2p

1,i, ξ
2p
2,j , s

2q
k ) for 0 ≤ i, j ≤ 2p, 0 ≤ k ≤ 2q, κ = 1, 2.

Integrals which occur in the minimization formulation, are computed by the Guass-Lobatto-Legendre (GLL)
quadrature formula. Then the minimization formulation for each element is as follows:

(V 2p,2q)TO2p,2q,

where O2p,2q is a (2p + 1)2(2q + 1) vector which can be easily calculated. Now there exists a matrix Gp,q

such that V 2p,2q = Gp,qV p,q. Then it follows:

(V 2p,2q)TO2p,2q = (V p,q)T
(

(Gp,q)TO2p,2q
)
.

It can be shown, as in [23], and references therein that there is no need to evaluate any mass and stiffness
matrices and the residuals in the normal equation can be computed inexpensively and efficiently. Next, we
discuss the steps used in computing the discrete Legendre transform. Let γpi and γqk be the normalizing
factors

γpi =

{
1

i+ 1
2

, if i < p
2
p , if i = p

.

and

γqk =

{
1

k+ 1
2

, if k < q
2
q , if k = q

.

Let {Oi,j,k}0≤i,j≤2p,0≤k≤2q be denoted as Oi,j,k = O2p,2q
k(2p+1)2+j(2p+1)+i. Next we perform the following

operations.
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1. Define Oi,j,k ← Oi,j,k/w
2p
i w

2p
j w

2q
k .

2. Compute {Λi,j,k}0≤i,j≤2p,0≤k≤2q the Legendre tranforms of {Oi,j,k}0≤i,j≤2p,0≤k≤2q. Then

Λi,j,k ← γ2p
i γ

2p
j γ

2p
k Λi,j,k.

3. Compute µi,j,k ← Λi,j,k/γ
p
i γ

p
j γ

q
k, 0 ≤ i, j ≤ 2p, 0 ≤ k ≤ 2q.

4. Compute Ψ, the inverse Legendre transform of µ. Then

Ψi,j,k ← w2p
i w

2p
j w

2q
k Ψi,j,k, 0 ≤ i, j ≤ 2p, 0 ≤ k ≤ 2q.

5. Define a vector J of dimension (p+ 1)2(q + 1) as

Jk(p+1)2+j(p+1)+i = Ψi,j,k for 0 ≤ i, j ≤ p, 0 ≤ k ≤ q.

Hence J = (GW )TO2W which gives us AT (G − AU). Thus we see that we can compute AT (G − AU) in
twice the time it takes to compute (G − AU). Furthermore storing AT (G − AU) takes less time memory
that it takes to store (G − AU). We can also conclude that the proposed method can be used to cheaply
and efficiently compute the residual for the hp-version of FEM. Clearly, we need O(p2q) operations to
compute the residual vector on a parallel computer. Each element is mapped to a single processor for ease
of parallelism. During the PCGM process, communication between neighbouring processors is confined
to the interchange of information consisting of the value of function and its derivatives at inter-element
boundaries. In addition we need to compute two global scalars to update the approximate solution and
the search direction. Hence inter-processor communication is quite small.

5.2. Computational results

Let uapprox be the spectral element solution obtained from the minimization problem and u be the exact
solution. Error in norm is denoted as follows:

||e||2 =
||u− uapprox||H2

||uexact||H2

, ||e||∞ = ||u− uapprox||L∞ and |e|1,∞ = |u− uapprox|W 1,∞ .

The numerical results presented in this section have been obtained with a FORTRAN90 code. All our
computations are carried out on a 372-node HPC cluster which is based on an Intel Xeon Quadcore
processors with a total of 2944 cores and high- speed Infiniband network and it has a peak performance of
34.5 TF. To show the exponential rate of convergence the error is plotted on a log−scale. In computational
results, we use the notation P (−Q) = P ×10−Q for real numbers P,Q. O deontes the order of the h-version
methods.
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Γ
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Γ

(a)

Ω
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Ω
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Γ
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Γ

(b)

Ω
2

Ω
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Γ
0

Γ

(c)

Figure 3: Space domain for (a) Example 5.1 and 5.4, (b) Example 5.2, (c) Example 5.3.

Remark 5.1. In general singularities arise at the corners for 2D square domain. However, we choose our
data selectively so that the solution is not singular at the corners.

Example 5.1 (1-D parabolic interface problem). Consider the following interface problem

ut − (βux)x = F in Ω× (0, 1), u = f on Ω× {0}, u = g on Γ× (0, 1),

and the following interface conditions:

[u] = 0 and

[
β
∂u

∂n

]
= 0 on Γ0 × (0, 1), where β =

{
1 in Ω1,

W in Ω2.

20

Arbaz Khan




The domain of the problem is Ω = (0, 1) with the interface as a plane x = 0.5 as shown in Figure 3(a). In
this case, we choose the exact solution with homogeneous interface condition. The exact solution u of the
parabolic interface problem is as follows:

u =

{
e−t(x2 + (W − 1)x) in Ω1,

e−t(x2 + (W−1
2 )) in Ω2.

W = 2
q = 1 q = 2 q = 3 q = 4

h ||e||2 O ||e||2 O ||e||2 O ||e||2 O
1/2 1.76(−02) - 4.14(−04) - 8.41(−06) - 1.40(−07) -
1/4 4.44(−03) 1.99 4.00(−05) 3.37 2.57(−07) 5.02 1.04(−09) 7.06
1/8 1.66(−03) 1.41 4.15(−06) 3.26 5.67(−09) 5.50 8.12(−12) 7.01
1/16 6.55(−04) 1.34 3.98(−07) 3.38 1.58(−10) 5.15 6.13(−14) 7.04

Table 1: Performance of the h-version method for Example 5.1

W = 10
q = 1 q = 2 q = 3 q = 4

h ||e||2 O ||e||2 O ||e||2 O ||e||2 O
1/2 1.83(−02) - 5.77(−04) - 1.06(−05) - 1.43(−07) -
1/4 5.58(−03) 1.71 3.90(−05) 3.88 1.65(−07) 6.01 1.05(−09) 7.09
1/8 1.49(−03) 1.89 2.89(−06) 3.75 4.84(−09) 5.08 8.27(−12) 6.98
1/16 6.50(−04) 1.20 3.42(−07) 3.07 1.35(−10) 5.16 6.27(−14) 7.04

Table 2: Performance of the h-version method for Example 5.1

W = 100
q = 1 q = 2 q = 3 q = 4

h ||e||2 O ||e||2 O ||e||2 O ||e||2 O
1/2 1.64(−02) - 5.78(−04) - 1.15(−05) - 1.73(−07) -
1/4 5.04(−03) 1.70 4.09(−05) 3.82 1.97(−07) 5.87 1.30(−09) 7.05
1/8 1.91(−03) 1.39 3.97(−06) 3.36 5.29(−09) 5.21 9.44(−12) 7.11
1/16 8.72(−04) 1.13 4.30(−07) 3.20 1.44(−10) 5.19 6.72(−14) 7.13

Table 3: Performance of the h-version method for Example 5.1

W = 2 W = 10 W = 100
p ||e||2 ||e||2 ||e||2
2 2.98058(−05) 3.34184(−05) 3.68437(−03)
3 6.54282(−08) 7.43653(−08) 9.53064(−08)
4 6.72184(−11) 7.35442(−11) 8.90168(−11)
5 1.20951(−13) 3.24169(−13) 9.18346(−13)
6 1.22336(−14) 2.74610(−14) 8.50310(−14)

Table 4: Performance of the p-version method for Example 5.1

Discretization of domain is done as in Figure 3(a). Thus the discretization matches along the interface.
In Tables 1, 2 and 3, the computed results are shown in the relative error in H2,1-norm against q. From
Tables 1, 2 and 3, decay in the error is of the order O(h2q−1) for different polynomial order q and different
values of W . Hence the proposed h-version method validates the error estimate (4.5).
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Figure 4: ||e||2 vs. p for p-version method.

Computational results are presented for p-version method in Table 4 and Figure 4. The error is plotted
against polynomial order p on a log−scale. The curve is almost a straight line and it confirms the theoretical
estimates obtained. Hence the error decays exponentially for different polynomial order p and different
values of W .

Example 5.2 (2-D parabolic interface problem). Consider the following interface problem

ut −∇ · (β∇u) = F in Ω× (0, 1), u = f on Ω× {0}, u = g on Γ× (0, 1),

and the following interface conditions:

[u] = q0 and

[
β
∂u

∂n

]
= q1 on Γ0 × (0, 1), where β =

{
1 in Ω1,

W in Ω2.

The space domain of the problem is Ω = (0, 1)2 with the interface as a line y = 0.5 as shown in Figure 3(b).
In this case, we choose the exact solution with non-homogeneous interface condition. The exact solution u
of the interface problem is as follows:

u =

{
et+x(y2 + 2(W − 1)y + 0.5) in Ω1,

et+x(y2 + y + (W − 1)) in Ω2.

The domain is divided as shown in Figure 3(b). The approximate solution is computed for different
values of W . In Tables 5, 6 and 7, the computed results are shown in the relative error in H2 -norm against
q. From Tables 5, 6 and 7, the order of error decays O(h2q−1) for all values of q. Hence the proposed
h-version method validates the error estimate (4.5).

In Table 8 and Figure 5, computational results are provided for p-version method . In Figure 5, the
curve is almost a straight line and it confirms the theoretical estimates obtained. Hence the error decays
exponentially for all values of p and all different values of W .

W = 2
q = 1 q = 2 q = 3 q = 4

h ||e||2 O ||e||2 O ||e||2 O ||e||2 O
1/2 2.15(−02) - 6.62(−04) - 1.32(−05) - 1.94(−07) -
1/4 5.70(−03) 1.92 4.38(−05) 3.91 2.18(−07) 5.91 1.22(−09) 7.30
1/8 2.32(−03) 1.29 4.57(−06) 3.26 5.74(−09) 5.24 9.11(−12) 7.07
1/16 9.86(−04) 1.23 5.03(−07) 3.18 1.56(−10) 5.19 6.47(−14) 7.13

Table 5: Performance of the h-version method for Example 5.2

Example 5.3 (2-D parabolic interface problem with lipschitz interface). Consider the same PDE as in
Example 5.2 on a domain which is a square Ω = (0, 1.5)2 with the lipschitz interface as shown in Figure
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W = 10
q = 1 q = 2 q = 3 q = 4

h ||e||2 O ||e||2 O ||e||2 O ||e||2 O
1/2 1.52(−02) - 4.88(−04) - 1.04(−05) - 1.62(−07) -
1/4 4.52(−03) 1.74 3.59(−05) 3.76 1.90(−07) 5.78 7.28(−10) 7.80
1/8 1.87(−03) 1.27 4.14(−06) 3.11 5.38(−09) 5.14 4.81(−12) 7.23
1/16 8.46(−04) 1.14 5.06(−07) 3.03 1.55(−10) 5.11 3.13(−14) 7.26

Table 6: Performance of the h-version method for Example 5.2

W = 100
q = 1 q = 2 q = 3 q = 4

h ||e||2 O ||e||2 O ||e||2 O ||e||2 O
1/2 1.96(−02) - 4.82(−04) - 1.02(−05) - 1.59(−07) -
1/4 5.56(−03) 1.82 3.52(−05) 3.77 1.84(−07) 5.79 9.00(−10) 7.46
1/8 2.21(−03) 1.32 4.10(−06) 3.09 4.96(−09) 5.21 6.98(−12) 7.01
1/16 9.84(−04) 1.17 5.01(−07) 3.03 1.40(−10) 5.13 5.44(−14) 7.00

Table 7: Performance of the h-version method for Example 5.2

W = 2 W = 10 W = 100
p ||e||2 ||e||2 ||e||2
2 2.70796(−02) 7.98550(−02) 1.07851(−01)
3 1.34210(−03) 4.69518(−03) 1.04582(−02)
4 7.92309(−05) 2.61409(−04) 2.05084(−03)
5 3.16206(−06) 7.04598(−06) 6.68395(−05)
6 9.24865(−08) 1.76085(−07) 1.73570(−06)
7 2.18785(−09) 3.48131(−09) 2.72895(−08)
8 4.20310(−11) 6.11652(−11) 4.72828(−10)

Table 8: Performance of the p-version method for Example 5.2
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Figure 5: ||e||2 vs. p for p-version method.

3(c). Here Ω1 = (0.5, 1)2 and Ω2 = Ω \ Ω1. The exact solution u of the interface problem is as follows:

u =

{
et+x sin y in Ω1,

et+xy in Ω2.

Computational results for h-version are provided in Tables 9, 10 and 11, where the relative error in H2

-norm against q is given. It is immediate that the relative error decays O(h2q−1) for different values of q
and W .

Results of numerical simulations for p-version method are presented in Table 12 and Figure 6. The
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error profile in Figure 6 is nearly a straight line for p = 2, 3, · · · , 8. This shows exponential convergence.

W = 2
q = 1 q = 2 q = 3 q = 4

h ||e||2 O ||e||2 O ||e||2 O ||e||2 O
1/2 3.01(−02) - 7.42(−04) - 1.31(−05) - 1.15(−07) -
1/4 8.12(−03) 1.89 5.10(−05) 3.86 2.28(−07) 5.84 5.05(−10) 7.83
1/8 3.29(−03) 1.30 4.90(−06) 3.38 6.18(−09) 5.20 3.58(−12) 7.14
1/16 1.43(−03) 1.20 5.31(−07) 3.20 1.75(−10) 5.13 2.65(−14) 7.07

Table 9: Performance of the h-version method for Example 5.3

W = 10
q = 1 q = 2 q = 3 q = 4

h ||e||2 O ||e||2 O ||e||2 O ||e||2 O
1/2 3.08(−02) - 8.12(−04) - 1.44(−05) - 2.05(−07) -
1/4 8.33(−03) 1.88 6.20(−05) 3.71 2.44(−07) 5.88 8.90(−10) 7.84
1/8 3.31(−04) 1.33 7.19(−06) 3.10 6.28(−09) 5.28 6.21(−12) 7.16
1/16 1.42(−04) 1.21 8.26(−07) 3.12 1.91(−10) 5.03 4.52(−14) 7.10

Table 10: Performance of the h-version method for Example 5.3

W = 100
q = 1 q = 2 q = 3 q = 4

h ||e||2 O ||e||2 O ||e||2 O ||e||2 O
1/2 3.85(−02) - 2.42(−03) - 4.85(−05) - 1.19(−06) -
1/4 6.22(−03) 1.82 9.95(−05) 3.77 5.01(−07) 5.79 3.08(−09) 7.46
1/8 8.62(−04) 1.32 3.44(−06) 3.09 4.40(−09) 5.21 2.04(−12) 7.01
1/16 1.12(−04) 1.17 1.10(−07) 3.03 4.30(−10) 5.13 1.89(−14) 7.00

Table 11: Performance of the h-version method for Example 5.3

W = 2 W = 10 W = 100
p ||e||2 ||e||2 ||e||2
2 2.00663(−02) 6.57936(−02) 6.05050(−01)
3 1.61447(−03) 4.82205(−03) 4.65751(−02)
4 1.38776(−04) 7.54586(−04) 1.32663(−03)
5 7.24588(−06) 3.77340(−05) 6.17291(−05)
6 1.86029(−07) 8.97469(−07) 1.53728(−06)
7 2.46535(−09) 3.57993(−09) 4.80914(−09)
8 6.56092(−11) 7.73195(−11) 1.90471(−10)

Table 12: Performance of the p-version method for Example 5.3

Example 5.4 (1-D parabolic interface problem with variable coefficients). Consider the following interface
problem

ut − (K(x)ux)x = F in Ω× (0, 1), u = f on Ω× {0}, u = g on Γ× (0, 1).

The exact solution u and K(x) of the parabolic interface problem are as follows:
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Figure 6: ||e||2 vs. p for p-version method.

Case 1:

u =

{
u1(x, t) = 1

1+3t2
5

1+(x− 1
4 )2

in Ω1,

u1(x, t) = 1
1+3t2

10
1+(x− 1

4 )2
in Ω2.

, K(x) =

{
1 + x2 in Ω1,

1 + (x− 1
4 )2 in Ω2.

and the following interface conditions:

2u1(0.5, t) = u2(0.5, t) and 2(u1)x(0.5, t) = (u2)x(0.5, t).

Case 2:

u =

{
u1(x, t) = e−t sin(5πx) in Ω1,

u1(x, t) = e−t(2(x− 0.5)7 + 1) in Ω2.
, K(x) =

{
3e−10(x−0.5)4x4

in Ω1,

3 in Ω2.

and the following interface conditions:

u1(0.5, t) = u2(0.5, t) and (u1)x(0.5, t) = (u2)x(0.5, t).

The domain of the problem is Ω = (0, 1) with the interface as a line x = 0.5 as shown in Figure 3(a).

Case 1
q = 1 q = 2 q = 3 q = 4

h ||e||2 O ||e||2 O ||e||2 O ||e||2 O
1/2 1.82(−01) - 5.16(−02) - 6.24(−03) - 4.96(−04) -
1/4 6.43(−02) 1.50 6.55(−03) 2.97 1.52(−04) 5.35 2.47(−06) 7.64
1/8 2.68(−02) 1.25 7.37(−04) 3.15 4.15(−06) 5.19 1.74(−08) 7.15
1/16 1.18(−02) 1.18 8.18(−05) 3.17 1.20(−07) 5.10 1.31(−10) 7.04

Table 13: Performance of the h-version method for Example 5.4.

This example is addressed in [29]. In Tables 13 and 15, computed results are shown in the relative
error in H2 -norm with the number of iterations against q. In [29], they proposed second and fourth order
methods. In from Tables 13 and 15, the order of error is O(h2q−1) for polynomial order q and all different
values of W . Hence the proposed h-version method validates the error estimate (4.5) of Theorem 4.1.

Computational results are provided for p-version method in Tables 14 and 16. From Figures 7(a) and
7(b), error profiles are nearly a straight line for polynomial order p. This shows exponential convergence.

6. Conclusion

In this paper, we presented a least-square spectral element method for parabolic interface problem.
A regularity result for non-homogeneous interface is given. Stability estimates and error estimates are
discussed rigorously. In examples 5.1 5.2 and 5.3, the proposed h-version method, where p is propositional
to 2q+ 1, demonstrates the efficiency to achieve the O(h2q−1) accuracy with all different possibilities of W .
The p-version method, where q is propositional to p2, also shows exponential accuracy with all different
possibilities of W in examples 5.1 5.2 and 5.3. The proposed methods also show the efficiency to achieve
the O(h2q−1) accuracy in heterogeneous media for h-version method and exponential accuracy for p-version
method.
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Case 1
p ||e||2 ||e||∞ |e|1,∞
2 1.77623(−01) 8.85098(−02) 3.11828(−01)
3 3.44708(−02) 2.93338(−03) 2.93401(−02)
4 4.48005(−03) 1.41836(−04) 2.63731(−03)
5 2.32242(−04) 1.47777(−05) 8.22163(−05)
6 1.75278(−05) 9.25665(−07) 8.78009(−06)
7 6.58670(−06) 1.47145(−07) 1.45143(−06)
8 7.53524(−07) 1.12611(−08) 3.33826(−07)
9 3.53628(−08) 1.60152(−09) 2.35901(−08)
10 2.50891(−09) 1.07116(−10) 1.20554(−09)

Table 14: Performance of the p-version method for Example 5.4.

Case 2
q = 1 q = 2 q = 3 q = 4

h ||e||2 O ||e||2 O ||e||2 O ||e||2 O
1/2 6.90(−01) - 2.94(−01) - 6.90(−02) - 6.04(−03) -
1/4 2.01(−01) 1.77 2.17(−02) 3.75 1.57(−04) 5.45 3.71(−05) 7.34
1/8 8.27(−02) 1.28 2.24(−03) 3.27 4.16(−05) 5.24 2.60(−07) 7.15
1/16 3.65(−02) 1.17 2.53(−04) 3.14 1.16(−06) 5.15 1.96(−09) 7.05

Table 15: Performance of the h-version method for Example 5.4

Case 2
p ||e||2 ||e||∞ |e|1,∞
2 2.82873 9.88182(−01) 5.80097
3 7.14666(−01) 2.90238(−01) 6.05743(−01)
4 1.43963(−01) 4.96748(−02) 9.47035(−02)
5 2.94926(−02) 5.57105(−03) 1.82059(−02)
6 1.69955(−03) 3.78693(−04) 1.03667(−03)
7 3.90637(−04) 6.11339(−05) 2.18598(−04)
8 2.19920(−05) 1.50945(−06) 1.07759(−05)
9 6.04102(−06) 2.35132(−07) 2.01087(−06)
10 1.45700(−07) 4.28934(−08) 9.45694(−08)

Table 16: Performance of the p-version method for Example 5.4.
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Figure 7: Error vs. p for (a) Case 1 (b) Case 2.
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[1] I. Babuška and B. Guo, The h − p version of the finite element method on domains with curved

26



boundaries, SIAM J. Numer. Anal., 25 (1988), pp. 837-861.

[2] P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods, Appl. Math. Sci.,
Springer, 166 (2009).

[3] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics, Springer,
1988.

[4] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Application SIAM.,
(1977).

[5] G. Karniadakis and J. Sherwin, Spectral/h p Element Methods for CFD, Oxford University Press, 1999.

[6] J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, 2006.

[7] J. Shen, T. Tang, L.L. Wang Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin
(2011).

[8] P. Dutt, P. Biswas and S. Ghorai, Spectral element methods for parabolic problems, J. Comput.
Appl. Math., 203 (2007), pp. 461-486.

[9] P. Dutt, P. Biswas and G. N. Raju, Preconditioners for Spectral element methods for elliptic and
parabolic problems, J. Comput. Appl. Math., 215 (2008), pp. 152-166.

[10] J. S. Hesthaven, S. Gottlieb and D. Gottlieb, Spectral methods for time-dependent problems,
Cambridge University Press, 21, 2007.

[11] A. Khan, P. Dutt and C. S. Upadhyay, Nonconforming Least-Squares Spectral Element Method
for European options, Comput. Math. Appl., 70 (2015), pp. 47-65.

[12] A. Khan, P. Dutt and C. S. Upadhyay, Spectral element method for parabolic initial value problem
with non-smooth data: analysis and application, J. Sci. Comput., 73 (2-3),(2017), pp. 876-905.

[13] A. Khan and C. S. Upadhyay, Exponentially accurate nonconforming least-squares spectral element
method for elliptic problems on unbounded domain. Comput. Methods Appl. Mech. Engrg. 305 (2016),
pp. 607-633.

[14] A. Khan and A. Husain, Exponentially Accurate Spectral Element Method for Fourth Order Elliptic
Problems, J. Sci. Comput., 71 (2016), pp. 303-328.

[15] A. Khan, A. Husain, S. Mohapatra and C. S. Upadhyay, Spectral element method for three
dimensional elliptic problems with smooth interfaces, Comput. Methods Appl. Mech. Engrg. 315 (2017),
pp. 522-549.

[16] O. A. Ladyzhenskaya, V. Ya. Rivkind, and N. N. Uraltseva, The classical solvability of
diffraction problems, Proc. Steklov Inst. Math., 92 (1966), pp. 63104.

[17] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications II,
Springer, Berlin (1973).

[18] J. L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications III, Springer,
Berlin, (1973).

[19] J. P. Pontaza and J. N. Reddy, Space-time coupled spectral/hp least-squares finite element formu-
lation for the incompressible NavierStokes equations, J. Comput. Phys., 197 (2004), pp. 418-459.

[20] M. M. J. Proot and M. I. Gerritsma, Least-squares spectral elements applied to the Stokes problem,
J. Comput. Phys., 181 (2002), pp. 454-477.
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