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Abstract

Motivation: The development of automated protein function prediction models is
essential in closing the gap between the large amount of protein sequence data available
and the fraction of validly annotated data. Recent approaches to function prediction rely
on unsupervised deep learning models, through which protein sequences are represented as
real-valued embeddings that can be used as input to a machine-learning model. This
study aims to evaluate embedding models in the context of protein function prediction on
bacteria, which are organisms less commonly included in these types of benchmarks. To
this end, we generated embeddings with four recently developed embedding models, and
predicted protein function using a nearest-neighbor search in the embedding space. We
evaluated these predictors on two query sets, with proteins from gram-positive B. subtilis
and gram-negative E. coli.

Results: Our nearest neighbor models outperformed BLAST sequence-based protein
function annotation, according to the evaluation procedure outlined in the CAFA challenges.
The results were also shown to be comparable, and at times better than DeepGOPlus
predictions, thus highlighting the potential of embedding-based predictions as state-of-the
art models. On the B. subtilis dataset, our nearest neighbor model from ESM1b embeddings
scored an Fmax of 0.6 in molecular function predictions, and was able to predict GO terms
with a high information content. Hence unsupervised embedding models were shown to
encode information about a protein sequence that is useful in the task of function prediction.

Availability: The scripts used in this project are available on GitHub.

1 Introduction
Protein function prediction is the process of associating a protein with its role within an

organism (Friedberg, 2006), performed either experimentally or through the use of automated
prediction models. Among others, this has relevant applications in areas of medicine such as
disease prevention, or the development of targeted drugs in personalized treatments (Kulmanov
& Hoehndorf, 2020; Wang et al., 2014; Yan et al., 2020). In recent years, following the onset
of high-throughput sequencing, automated prediction methods have become crucial in bridging
the gap between the large volume of protein sequence data available and the number of proteins
with expert-validated annotations. As of 2018, less than 0.1% of about 180 million proteins in
the UniProt Knowledgebase have been manually annotated (The UniProt Consortium, 2018).

Automated protein function prediction is a multi-label, hierarchical classification task, in
which labels are generally identified by terms belonging to the Gene Ontology (GO) hierarchy.
The terms in this hierarchy are connected by different types of relations, uniquely identified and
associated with a human-readable definition. For instance, GO:0032502 stands for
“developmental process”, which is a type of “biological process” (GO:0008150). GO is further
split into three sub-hierarchies, which describe categories of functions: molecular function,
biological process, and cellular component (Cruz et al., 2017). As of July 2019, the GO
database comprises of more than 45,000 different annotations (Gene Ontology Consortium,
2019). This high number of classes, further connected by hierarchical relationships, is part of
what makes automated protein function prediction a challenging task.

Another challenge of function prediction is the representation of protein sequences as
real-valued feature vectors that become input to a function prediction model. Some recently
developed approaches to this representation learning task rely on principles similar to those
used in the generation of Natural Language Processing (NLP) embeddings. To that end,
protein sequences are regarded as sentences, made of characters that give them meaning, and
set in a specific context, depending on neighboring sequences (Iuchi et al., 2021).
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Previous studies have explored the performance and potential of protein embedders as
unsupervised deep learning models for function prediction. Littmann et al. (2021) proposed
goPredSim, a function prediction model which uses a nearest-neighbor search in an embedding
space, with Euclidean distance. Using embeddings generated by SeqVec (Heinzinger et al.,
2019), this method was shown to perform among the top 10 contestants in the third edition of
the Critical Assessment of Functional Annotation, and significantly outperformed a BLAST
sequence-based similarity search. These experiments suggest that embedding models are able
to capture features beyond sequence similarity. A study conducted by van den Bent et al.
(2021) showed that these features are also relevant in cross-species annotation tasks, through
the use of a multi-layer perceptron trained on SeqVec embeddings. This classifier achieved
more accurate function prediction than DeepGOPlus (Kulmanov & Hoehndorf, 2020), a
supervised model designed as a convolutional neural network. The results additionally
suggested that SeqVec embeddings can encode protein length.

While extensive effort goes towards the evaluation of protein function prediction models,
notably through the large-scale Critical Assessment of Functional Annotation (CAFA) challenges
(Jiang et al., 2016; Radivojac et al., 2013; Zhou et al., 2019), organisms such as bacteria are
studied less frequently. This is especially true in the case of gram-positive bacteria. Although the
third edition of CAFA included gram-positive bacterium B. subtilis in its prediction target set,
results were not reported individually for these proteins, due to the lower amount of sequence
data and experimental annotations available, in comparison to a species such as H. sapiens.
Nonetheless, gram-positive bacteria are closely linked to the study of human disease, particularly
as proven through research in antibiotic resistance and hospital-acquired infections (Jubeh et
al., 2020; Rice, 2006). Protein function prediction for gram-positive bacteria is thus a field of
research with far-reaching applications.

We hypothesize that deep-learned embeddings are able to capture information about a
bacterial protein sequence that is relevant in the prediction of its functions. Consequently, this
study provides an evaluation of four commonly used NLP-based protein embedding models on
gram-positive B. subtilis and gram-negative E. coli. While the former is an organism rarely
included in these kinds of evaluations, the latter is more commonly studied, and regarded as a
model organism (Blount, 2015). We include both to provide a more complete overview for the
performance of the prediction models.

To this end, we apply a prediction model based on a k-nearest neighbor (k-NN) search
in the embedding space to predict the function of proteins in three categories: the molecular
function ontology (MFO), the biological process ontology (BPO), and the cellular component
ontology (CCO). Performance is regarded using two approaches, given the metrics proposed as
part of the CAFA challenges (Jiang et al., 2016; Radivojac et al., 2013; Zhou et al., 2019).
Firstly, we investigate prediction accuracy using the maximum F-measure, which summarizes
the rate of false negatives and false positives among the predictions. Secondly, we compute the
minimum semantic distance for the models, to provide insight into the information content of the
predictions. Performance of the k-NN predictors is regarded given a standard baseline method
based on a BLAST search. We note that our approach to this BLAST search is similar to the
one described by Radivojac et al. (2013). While Blast2GO (Conesa et al., 2005) remains the
standard for annotation transfer based on sequence identity, it was not suited as a baseline in
our evaluation, as its pipeline is more complex than standard sequence-based transfer. Lastly, we
also evaluate goPredSim (Littmann et al., 2021), a k-NN model similar to ours, and DeepGOPlus
(Kulmanov & Hoehndorf, 2020), a representative of state-of-the-art prediction models, ranking
among the top entries in the latest CAFA challenge.
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2 Materials and methods
In order to evaluate and compare the performance of different embedding tools in protein

function prediction on bacteria, we designed an experiment to resemble annotating new protein
sequences for gram-positive B. subtilis and gram-negative E. coli. A database and query set
were created for each bacterium, both containing experimentally annotated protein sequences.
We then generated embeddings for all sequences using four different tools, and ran a prediction
algorithm based on a nearest neighbor search. The results were evaluated using the main metrics
introduced in the CAFA challenges (Jiang et al., 2016; Radivojac et al., 2013; Zhou et al., 2019),
and benchmarked against a baseline BLAST search, and two other models, namely goPredSim
(Littmann et al., 2021) and DeepGOPlus (Kulmanov & Hoehndorf, 2020). An overview of this
pipeline is shown in Figure 1.

Figure 1: The evaluation pipeline. A set of experimentally annotated protein sequences was retrieved from
Swiss-Prot, and two query sets were created, for E. coli and B. subtilis. Embeddings were generated from all
protein sequences, with four different models. These were then benchmarked based on k-NN function predictions
in the embedding space.

2.1 The protein sequence dataset

All protein sequences and associated GO terms were retrieved from the Swiss-Prot database,
under release 2021_04 of UniProt. The query was performed on November 10, 2021, and
restricted to protein sequences that had been experimentally annotated at that time, resulting
in a total of 107,818 sequences. The GO annotations for these proteins correspond to those
under release 2021-11-16, where one GO term in the dataset annotations was found obsolete:
GO:2000775. Lastly, protein sequences with lengths shorter than 40 or longer than 1000 base
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pairs were filtered out, as outlined by the methodology proposed by van den Bent et al. (2021).
The focus of this study is on one gram-negative and one gram-positive bacterium, namely

E. coli strain K-12, substrain MG1655, and B. subtilis strain 168, respectively. E. coli protein
sequences were identified from assembly ASM584v2, with NCBI accession GCF_000005845.2,
and B. subtilis protein sequences were retrieved from assembly ASM904v1, with NCBI accession
GCF_000009045.1.

Two sets of sequences were created for each of the two bacteria: the query set and the
database. All proteins from a given bacterium assembly that had been experimentally annotated
in Swiss-Prot were added to the query set, while the database contained the remaining protein
sequences. We denote these sets as DB¬bacillus, DB¬ecoli, Qbacillus and Qecoli, with the latter two
being the query sets, comprised of 1,636 and 3,441 protein sequences, respectively. A summary
of statistics for the protein sets is included in Table 1.

Table 1: Statistics for the databases and query sets created for B. subtilis and E. coli. To compute the weighted
average of GO term depths, we used the number of proteins in the set annotated with a GO term as the weight
for the term’s depth. The depth of a GO term at the root of the GO hierarchy was set to 0, as were the depths
of obsolete GO terms.

B. subtillis E. coli

Query set (Qbacillus) Database (DB¬bacillus) Query set (Qecoli) Database (DB¬ecoli)

Number of proteins 1,636 106,182 3,441 104,377

Average number of 
annotations per protein 2.75 6.54 5.81 6.51

Molecular function 1.19 1.79 2.27 1.76

Biological process 0.97 2.78 2.03 2.78

Cellular component 0.59 1.98 1.51 1.97

Number of distinct GO 
terms in the annotations 1,373 25,140 3,476 24,565

Molecular function 696 6,303 1,732 6,006

Biological process 602 16,274 1,502 16,087

Cellular component 75 2,563 242 2,472

Weighted average of 
GO term depths 5.27 5.33 5.03 5.34

Molecular function 4.70 4.61 4.68 4.61

Biological process 7.49 6.88 7.07 6.88

Cellular component 2.81 3.80 2.83 3.82

2.2 Protein sequence embedders

We benchmarked four state-of-the-art embedding models commonly used in the literature.
This selection was made up of SeqVec (Heinzinger et al., 2019), ESM1b (Rives et al., 2021),
ProtBert, and ProtT5XLU50, T5XLU50 for short. The latter two are part of the ProtTrans suite
(Elnaggar et al., 2020). All embedders were run with default settings, using version 0.2.2 of the
bio_embeddings conda package (Dallago et al., 2021).

Each model first produced an embedding for every amino-acid in a given protein sequence,
which was then reduced per protein. This was done with the use of the bio_embeddings toolkit,
by averaging the amino-acid components (Dallago et al., 2021; van den Bent et al., 2021).
Following this method, SeqVec, ProtBERT, and T5XLU50 mapped every protein sequence to a
vector in a 1024-dimensional space, while ESM1b created embeddings of length 1280. Each of
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the four embedders generated feature vectors with a mean approximately equal to 0.

2.3 Predicting protein function

2.3.1 Nearest neighbor search in the embedding space

We predicted protein function with a k-NN search in the embedding space. We retained the
GO annotations for the proteins in DB¬ecoli and DB¬bacillus, and regarded those in Qecoli and
Qbacillus as proteins with unknown function. For each query protein, this method resulted in a
multi-label prediction, where each GO term was assigned with a certainty ranging from 0 to 1,
depending on its similarity to the sequences in the database. We determined similarity between
two embeddings e⃗1 and e⃗2 using cosine similarity:

sim(e⃗1, e⃗2) =
e⃗1 · e⃗2

||e⃗1|| · ||e⃗2||
, (1)

where e⃗1 and e⃗2 are both real-valued vectors, e⃗1 · e⃗2 represents the dot product between e⃗1 and
e⃗2, and ||e⃗i|| is the Euclidean norm of vector e⃗i, where i = 1, 2.

A query protein with an associated embedding was annotated from multiple neighboring
embeddings in the database, which were selected based on a similarity threshold. For a given
set of embeddings, after computing the pairwise distances between a query protein and the
proteins in the database, we computed this threshold as the xth percentile among all positive
similarities, where x is a parameter that can be optimized. Compared to a fixed threshold, this
approach was adapted to each embedder, and was a better choice in providing a fair
comparison between embedding models. In our experiments, we chose the 99.999 percentile, as
lower values resulted in too many predictions, while higher values were too restrictive on the
number of neighbors considered. Minor tuning of this parameter did not significantly affect
performance. The maximum F-measure, mean precision and recall were recorded for different
values of parameter x (see Supplementary Tables S1, S2 and S3).

Normalized pairwise cosine similarities were set as the certainty of each prediction. We
mapped all similarities above the threshold to the range [0, 1]. Normalization was performed
within each of the three GO classes, taking into account all pairwise similarities between proteins
in the query set and those in the database. When predicting a common GO term from multiple
neighboring sequences, we retained the maximum similarity as the probability of the prediction.

2.3.2 DeepGOPlus predictions

We trained DeepGOPlus v1.0.1 (Kulmanov & Hoehndorf, 2020) on each of the two databases,
namely DB¬bacillus and DB¬ecoli, and generated predictions for the query sets containing proteins
from the two bacteria. DeepGOPlus uses one-hot encoding to represent protein sequences, and
makes predictions based on the output of a deep convolutional neural network (CNN), combined
with BLAST sequence similarity. As shown in an evaluation performed by the authors on the
CAFA3 target set (Zhou et al., 2019), DeepGOPlus would have ranked among the three best
predictors in the latest edition of the CAFA challenge. To run the model, we used default
parameters for the train/validation split, the batch size, the number of training epochs, and the
prediction threshold. We also followed the authors’ recommendations for other hyperparameters,
such as the learning rate and the number of convolutional filters, which were all kept as the default
values set for version 1.0.1 of the model.
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2.3.3 Function prediction with goPredSim

The goPredSim model was developed by Littmann et al. (2021), as a k-NN search with a
fixed number of neighbors, using Euclidean distance. We ran goPredSim with default parameters:
k = 1 (the number of neighbors), and Euclidean distance as the distance metric. The query
sets and databases constructed for each bacterium were used as the target and look-up proteins,
respectively. Although the original goPredSim model used Seqvec embeddings (Heinzinger et al.,
2019), we ran the model with T5XLU50 embeddings (Elnaggar et al., 2020), as per the updated
recommendation of the authors.

2.3.4 BLAST search based on embedding similarity

Our k-NN models were also compared with a baseline BLAST method. To determine the
pairwise similarity between protein sequences, commonly known as the BLAST identity, we ran
BLASTP v2.12.0. The database sets were used as the subject sequences, while Qbacillus and Qecoli
were used as the query sequences. Similarly to the cosine similarities in the k-NN predictions,
pairwise BLAST identities were then mapped to the range [0, 1], normalized separately for each
of the three GO classes, and used as the prediction probabilities. No threshold was set for the
sequence similarity, but pairwise identities with an Expect (E) value larger than 10−3 were filtered
out, as commonly done in practice (Jones & Swindells, 2002). A lower E-value suggests that
the “hit” in the database was more significant, with a value of 0 indicating a perfect match with
regard to the BLAST identity between the query sequence and the database sequence.

2.4 Evaluation of predictions

One of the main evaluation metrics used in this study was the maximum F-measure, which
combines the precision and recall of a prediction model. On the one hand, high precision implies
that the prediction model rarely identifies GO annotations that are not part of the ground-truth
set of labels. This corresponds to a low rate of false positives. On the other hand, high recall
values suggest that the rate of false negatives is low, that is, most of the ground-truth GO
annotations for a given protein were also identified as part of the prediction set. Consequently,
a high value of the F-measure is meant to convey that a model has both optimal precision and
recall, and thus produces reliable predictions.

These metrics were computed as proposed by Radivojac et al. (2013):

pr(t) =
1

m(t)

m(t)∑
i=1

|Pi(t) ∩ Ti|
|Pi(t)|

, (2)

rc(t) =
1

n

n∑
i=1

|Pi(t) ∩ Ti|
|Ti|

, (3)

Fmax = max
t

{
2 · pr(t) · rc(t)
pr(t) + rc(t)

}
. (4)

In equations 2 - 4, t is defined as a threshold value. Precision, pr(t), and recall, rc(t), were
calculated over multiple threshold values, determined by discretizing the interval [0, 1]. The total
number of proteins for which at least one prediction was made with probability above threshold
t is denoted by m(t), while n represents the total number of query proteins. For a given protein
i, Ti is the set of ground-truth, experimentally determined functions, and Pi(t) is the set of
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functions (GO terms) predicted with certainties higher than threshold t. Precision and recall
were used to computed the maximum F-measure (Fmax) across all thresholds.

While the F-measure gives insight into the accuracy of a prediction model, it does not
account for the hierarchical relationships between GO labels and how often they occur among
all annotations in the dataset. GO annotations at the top of the hierarchy are easier to predict,
more general, and thus less informative than those further down the hierarchy. Performance
indicators should include information about whether a model can predict terms that are less
frequent among the dataset annotations, or have a higher depth in the hierarchy.

To convey this information in the evaluation, we computed the minimum semantic distance,
using remaining uncertainty and misinformation, as defined by Jiang et al. (2016):

ru(t) =
1

n

n∑
i=1

∑
f

ic(f) · I(f /∈ Pi(t) ∧ f ∈ Ti), (5)

mi(t) =
1

n

n∑
i=1

∑
f

ic(f) · I(f ∈ Pi(t) ∧ f /∈ Ti), (6)

Smin = min
t

{√
ru(t)2 +mi(t)2

}
. (7)

As in the case of precision and recall, we calculated the remaining uncertainty, ru(t), and
misinformation, mi(t), for different values of the threshold t, and afterwards determined the
minimum semantic distance, Smin, across all thresholds (equations 5 - 7). For a protein i, Pi(t)
and Ti are defined as in equations 2 and 3. The indicator function I is 1 when the condition
inside the parentheses is met, and 0 otherwise, while ic(f) stands for the information content of
GO term f . This was calculated as follows:

ic(f) = − log2

(
1

Nc

∑
d∈Df

nd

)
, (8)

where Nc is the total number of annotations in the dataset that belong to class c, with c being
the GO class of GO term f , that is, c stands for either “molecular function”, “biological process”,
or “cellular component”. Df represents the set of descendants of term f , including f itself, and
nd is the total number of proteins in the dataset annotated with term d. We calculated the
information content of a GO term based on the directed acyclic graph (DAG) implementation
provided by the GOATOOLS library (Klopfenstein et al., 2018). We considered that two GO
terms from the dataset annotations were connected if and only if a relationship existed between
them in the DAG generated from the ontology file. The ic of obsolete GO terms was set to 0.

3 Results and discussion

3.1 Predictions from embedding similarity were more accurate than
sequence-based annotations, and comparable to results from state-
of-the art models

To evaluate the accuracy of protein function prediction from embeddings, we predicted protein
function from the output of four different embedders, and calculated the maximum F-measure
of the resulting models, Fmax for short (Figure 2). Embeddings were generated with ESM1b
(Rives et al., 2021), SeqVec (Heinzinger et al., 2019), ProtBERT and T5XLU50 (Elnaggar et al.,
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2020), and protein function was predicted with a k-NN model. We also included an evaluation
of predictions from goPredSim (Littmann et al., 2021), a nearest neighbor model with Euclidean
distance, and DeepGOPlus (Kulmanov & Hoehndorf, 2020), a state-of-the-art prediction model
that uses a deep convolutional neural network. Overall, the top-performing models across all
three GO categories, and for both bacteria query sets, were those that used ESM1b and T5XLU50
embeddings. On the B. subtilis query set, ESM1b consistently scored Fmax values over the 0.5
threshold, reaching as far as 0.6 for MFO. Overall, predictions from goPredSim were similar to
the ones generated by our k-NN models. Lastly, in all categories except for CCO, our k-NN
predictions from ESM1b embeddings outperformed DeepGOPlus with regard to the Fmax.

T5XLU50 SeqVecProtBERT DeepGOPlusBLAST goPredSim

Benchmarks on B. subtilis query set

Benchmarks on E. coli query set

ESM1b

Figure 2: The maximum F-measure of the prediction methods included in the benchmark, on the B. subtilis and
E. coli query proteins. Predictions were made from ESM1b, ProtBERT, SeqVec and T5XLU50 embeddings using
a nearest neighbor function transfer, as outlined in subsection 2.3.

To illustrate the performance of these models in a broader context, and support our main
hypothesis, we also included results from a baseline BLAST model that uses protein sequence
identity. The k-NN prediction models that rely on pairwise embedding similarity were shown
to outperform this baseline method in most cases, which implies that unsupervised embeddings
capture information additional to raw sequence similarity, suited to the transfer of protein function
annotations. This increase in performance was less significant on the gram-negative E. coli
proteins, but notably overall predictor performance decreased as well on this query set, even for
MFO and BPO predictions from DeepGOPlus. We expect that this was partially caused by the
difference in the average number of annotations for the two query sets (see Table 1). While,
on average, E. coli proteins in the query set were annotated with 5.81 ground-truth GO terms,
the average for B. subtilis protein annotations was less than half of that. We investigated this
difference in performance further by looking at the precision and recall of the predictors.

9



3.2 The performance of all prediction models was brought down by
high rates of false negatives

We studied the precision and recall values of the nearest neighbor models by computing an
average performance for all thresholds, and comparing it to the precision and recall of the BLAST
baseline model and of DeepGOPlus (Figure 3). For each threshold t, defined as in equations
2 and 3, we averaged the precision and recall of goPredSim and our four k-NN models, based
on SeqVec, ProtBERT, T5XLU50 and ESM1b embeddings. For precision, these models scored
considerably higher than the BLAST baseline, although below DeepGOPlus, which maintained
nearly perfect precision in its predictions for the B. subtilis query set. Recall was notably lower,
making this difference in performance less apparent, particularly for the E. coli query set. This
further enforced the fact that lower performance in prediction accuracy for this bacterium was in
part caused by the higher number of ground-truth annotations available per protein (Table 1).
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Molecular function

Biological process

Cellular component

Threshold (t) Threshold (t) Threshold (t) Threshold (t)

Average for k-NN models DeepGOPlus predictions BLAST predictions

B. subtilis query set E.coli query set B. subtilis query set E.coli query set

B. subtilis query set E.coli query set B. subtilis query set E.coli query set

B. subtilis query set E.coli query set B. subtilis query set E.coli query set

Figure 3: Precision and recall for the k-NN models, the BLAST baseline, and DeepGOPlus, on the B. subtilis
and E. coli query sets. Precision and recall values were averaged for all four of our models that rely on embedding
similarity, as well as goPredSim. The threshold t, as introduced in equations 2 and 3, ranges from 0 to 1.

Overall, the k-NN prediction models generally scored high for the maximum F-measure, but
further examining their performance showed that the recall for their predictions was not as reliable
as the precision. Even though the rate of false positives was low, the models comparatively
failed to predict all GO terms associated with a protein. While this could be tackled by lowering
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the threshold for the nearest neighbor search, with the desired effect of lowering the rate of
false negatives, a possible effect could be lower precision values (see Supplementary Tables
S2 and S3). Additionally, as previously shown in Figure 2, the small difference in performance
between goPredSim and our prediction models indicated that the choice between cosine similarity
and Euclidean distance would not significantly affect recall values, making this parameter a
less suitable candidate for optimization. Nonetheless, we note that low recall values were also
registered for DeepGOPlus, whose pipeline is more optimized than a standard k-NN search. We
attribute part of this to the design of our experiment, which required the prediction of protein
function for a given bacterium with no knowledge of annotated proteins from the same organism.

3.3 GO terms with a high information content were transferred
through embeddings

To evaluate the effectiveness of using embedding similarity to predict informative protein
functions, we compared the minimum semantic distance (Smin) of the k-NN models with the
ones computed for the baseline BLAST predictor and DeepGOPlus (Figure 4). The rankings of
the models for the Smin evaluation were consistent with those established by the Fmax metric,
as the models relying on T5XLU50 and ESM1b embeddings remained among the top scoring
methods for the Smin, and goPredSim still achieved comparable results. Another consistency
was kept with regard to the difference in performance between the two query sets, as performance
in predicting the function of E. coli proteins was comparatively lower for this metric as well.

T5XLU50 SeqVecProtBERT DeepGOPlusBLAST goPredSim

Benchmarks on B. subtilis query set

Benchmarks on E. coli query set

ESM1b

Figure 4: The minimum semantic distance, Smin, of the prediction methods included in the benchmark, on the
B. subtilis and E. coli query proteins. Predictions were made from ESM1b, ProtBERT, SeqVec and T5XLU50
embeddings using a k-NN function transfer (see subsection 2.3). A lower Smin indicates better performance.

11



Most notably for gram-positive bacterium B. subtillis, the models that used pairwise
embedding similarity scored lower minimum semantic distances than the BLAST
sequence-based search. Consequently, they were able to predict GO terms with a higher
information content. Such GO terms were either located further down the GO hierarchy,
meaning that they provided more precise definitions for the functions of a protein, or they
occurred more rarely among the database and query set annotations, making them more
difficult to predict.

4 Conclusion
The main conclusion of this study confirms our initial hypothesis, namely that unsupervised

protein embeddings encode information that aids in the prediction of function for bacteria. We
evaluated four embedding models by generating predictions based on a k-NN search in the
embedding space, using cosine similarity as a metric and a varying threshold. With regard to
the maximum F-measure and minimum semantic distance, the two main metrics used in the
latest CAFA challenge (Zhou et al., 2019), these models consistently outperformed a BLAST
database search, which relies only on the pairwise identity between raw protein sequences. We
also showed that predictions from embedding similarity have an accuracy comparable to state-
of-the-art models such as DeepGOPlus (Kulmanov & Hoehndorf, 2020). This suggests that
unsupervised embeddings encode features of a protein beyond sequence, and such features are
suited for the task of automated protein function prediction.

This conclusion supports the findings of a similar study conducted by Littmann et al. (2021),
who developed goPredSim, a nearest neighbor model that uses Euclidean distance. The authors
showed that even without optimizing the number of neighbors considered, goPredSim would
have ranked among the top ten models of the third CAFA challenge (Zhou et al., 2019). We
also included this model in our evaluation, and found that its performance was comparable to
that of our k-NN models.

We note that a limitation of the nearest neighbor model itself was reflected by the higher rate
of false negatives among the predictions. However, the fact that DeepGOPlus predictions also
had low recall suggests that the function prediction task in itself was also challenging. This was
likely caused, in part, by the setup of the experiment, which entailed the prediction of function
for B. subtilis and E. coli proteins without any knowledge regarding other proteins belonging
to the same organisms. Consequently, this highlights potential directions for future work in the
design of automated protein function prediction models, particularly regarding the annotation of
novel protein sequences.

5 Responsible research
This study was conducted and documented in a way that allows for the results to be

reproducible, by following the procedures outlined in the section on “Materials and methods”.
We described that our dataset was retrieved from Swiss-Prot, with restrictions on protein
length and the validity of the provided GO annotations. The time the query was performed is
also specified, alongside the assembly accession numbers for the identification of B. subtilis and
E. coli proteins. The libraries and models that were used in the experiments were referenced
with their version, and the approach to the nearest neighbor prediction models, including all
relevant parameters, was explained as well. Lastly, we provided the formulas for all metrics that
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were used in the evaluation. The implementation of the prediction models and evaluation
metrics are made publicly available.
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Supplementary notes

Table S1: Fmax values for 10 values of the parameter x, on the B. subtilis and E. coli query sets. The values
x1, x2, ..., x10 were chosen as equidistant in the interval [99.99, 100], with x1 = 99.99 and x10 = 100. Fmax

values are reported separately for the molecular function, biological process and cellular component. Recall that
we use the xth percentile among the pairwise similarities between a query protein and the database proteins to
determine the similarity threshold used in the nearest neighbor search (as described in section 2.3). Note that
x = 99.999 ∈ (x9, x10) is the value used in our evaluation.

Value of parameter x

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

B. subtilis

Molecular function

ESM1b 0.405 0.424 0.441 0.459 0.500 0.525 0.548 0.576 0.602 0.610

ProtBERT 0.222 0.233 0.245 0.261 0.295 0.319 0.349 0.375 0.398 0.415

T5XLU50 0.376 0.392 0.407 0.431 0.471 0.493 0.520 0.544 0.568 0.565

SeqVec 0.363 0.379 0.394 0.417 0.458 0.485 0.507 0.538 0.562 0.580

Biological process

ESM1b 0.376 0.390 0.407 0.422 0.457 0.480 0.502 0.526 0.552 0.565

ProtBERT 0.204 0.211 0.223 0.239 0.272 0.293 0.316 0.337 0.358 0.375

T5XLU50 0.353 0.366 0.380 0.397 0.432 0.451 0.472 0.488 0.514 0.526

SeqVec 0.322 0.338 0.357 0.376 0.410 0.430 0.448 0.476 0.506 0.532

Cellular component

ESM1b 0.387 0.396 0.405 0.415 0.440 0.455 0.472 0.492 0.510 0.518

ProtBERT 0.294 0.306 0.313 0.323 0.344 0.356 0.374 0.389 0.400 0.397

T5XLU50 0.385 0.396 0.407 0.419 0.443 0.457 0.471 0.486 0.499 0.492

SeqVec 0.340 0.352 0.365 0.378 0.405 0.421 0.438 0.454 0.469 0.484

E. coli

Molecular function

ESM1b 0.340 0.349 0.357 0.378 0.389 0.401 0.410 0.413 0.419 0.409

ProtBERT 0.180 0.187 0.197 0.215 0.226 0.239 0.251 0.263 0.278 0.285

T5XLU50 0.264 0.273 0.282 0.307 0.320 0.334 0.345 0.360 0.369 0.367

SeqVec 0.305 0.313 0.320 0.339 0.347 0.358 0.367 0.374 0.378 0.367

Biological process

ESM1b 0.304 0.313 0.320 0.335 0.344 0.352 0.358 0.366 0.375 0.376

ProtBERT 0.165 0.172 0.180 0.199 0.210 0.222 0.235 0.247 0.261 0.275

T5XLU50 0.243 0.252 0.263 0.285 0.296 0.311 0.323 0.333 0.345 0.349

SeqVec 0.251 0.259 0.266 0.285 0.294 0.305 0.314 0.326 0.337 0.344

Cellular component

ESM1b 0.381 0.391 0.401 0.418 0.424 0.432 0.437 0.438 0.438 0.431

ProtBERT 0.367 0.374 0.383 0.401 0.410 0.417 0.421 0.417 0.410 0.385

T5XLU50 0.391 0.400 0.408 0.427 0.432 0.440 0.440 0.444 0.440 0.428

SeqVec 0.335 0.344 0.353 0.373 0.384 0.389 0.395 0.400 0.401 0.394
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Table S2: Mean precision values for 10 values of the parameter x, on the B. subtilis and E. coli query sets. The
values x1, x2, ..., x10 were chosen as equidistant in the interval [99.99, 100], with x1 = 99.99 and x10 = 100.
Precision values are reported separately for the molecular function, biological process and cellular component.
Mean precision was calculated over different values of threshold t, as defined in equation 2. Recall that we
use the xth percentile among the pairwise similarities between a query protein and the database proteins to
determine the similarity threshold used in the nearest neighbor search (as described in section 2.3). Note that
x = 99.999 ∈ (x9, x10) is the value used in our evaluation.

Value of parameter x

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

B. subtilis

Molecular function

ESM1b 0.294 0.315 0.336 0.358 0.415 0.452 0.489 0.544 0.607 0.690

ProtBERT 0.138 0.151 0.167 0.184 0.237 0.274 0.329 0.395 0.465 0.563

T5XLU50 0.290 0.312 0.331 0.363 0.436 0.471 0.520 0.574 0.638 0.725

SeqVec 0.244 0.261 0.279 0.305 0.357 0.403 0.439 0.495 0.556 0.647

Biological process

ESM1b 0.280 0.301 0.325 0.348 0.402 0.436 0.475 0.528 0.604 0.700

ProtBERT 0.125 0.138 0.151 0.168 0.221 0.261 0.311 0.386 0.457 0.563

T5XLU50 0.293 0.311 0.333 0.362 0.430 0.471 0.513 0.559 0.628 0.741

SeqVec 0.213 0.230 0.250 0.285 0.335 0.369 0.404 0.456 0.528 0.667

Cellular component

ESM1b 0.317 0.335 0.355 0.372 0.422 0.457 0.498 0.558 0.638 0.737

ProtBERT 0.240 0.255 0.269 0.288 0.328 0.358 0.403 0.462 0.523 0.626

T5XLU50 0.364 0.384 0.405 0.432 0.500 0.544 0.581 0.629 0.691 0.768

SeqVec 0.234 0.248 0.269 0.292 0.338 0.373 0.409 0.455 0.520 0.641

E. coli

Molecular function

ESM1b 0.307 0.324 0.342 0.393 0.423 0.459 0.514 0.560 0.621 0.700

ProtBERT 0.120 0.131 0.146 0.180 0.215 0.246 0.289 0.340 0.410 0.516

T5XLU50 0.226 0.242 0.259 0.307 0.342 0.382 0.422 0.495 0.581 0.668

SeqVec 0.267 0.284 0.301 0.346 0.373 0.406 0.449 0.492 0.552 0.636

Biological process

ESM1b 0.262 0.281 0.299 0.343 0.372 0.405 0.449 0.492 0.559 0.661

ProtBERT 0.095 0.104 0.116 0.153 0.189 0.222 0.266 0.319 0.393 0.498

T5XLU50 0.193 0.210 0.231 0.281 0.312 0.355 0.396 0.455 0.534 0.647

SeqVec 0.209 0.223 0.242 0.289 0.317 0.348 0.385 0.432 0.498 0.603

Cellular component

ESM1b 0.369 0.389 0.413 0.460 0.487 0.518 0.554 0.594 0.664 0.751

ProtBERT 0.311 0.333 0.349 0.389 0.416 0.446 0.481 0.516 0.567 0.671

T5XLU50 0.369 0.388 0.408 0.466 0.493 0.530 0.577 0.631 0.687 0.759

SeqVec 0.286 0.302 0.324 0.371 0.402 0.432 0.485 0.533 0.589 0.680
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Table S3: Mean recall values for 10 values of the parameter x, on the B. subtilis and E. coli query sets. The values
x1, x2, ..., x10 were chosen as equidistant in the interval [99.99, 100], with x1 = 99.99 and x10 = 100. Recall
values are reported separately for the molecular function, biological process and cellular component. Mean recall
was calculated over different values of threshold t, as defined in equation 3. Recall that we use the xth percentile
among the pairwise similarities between a query protein and the database proteins to determine the similarity
threshold used in the nearest neighbor search (as described in section 2.3). Note that x = 99.999 ∈ (x9, x10) is
the value used in our evaluation.

Value of parameter x

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

B. subtilis

Molecular function

ESM1b 0.646 0.641 0.637 0.634 0.623 0.616 0.604 0.586 0.563 0.512

ProtBERT 0.440 0.437 0.430 0.426 0.413 0.405 0.394 0.374 0.360 0.326

T5XLU50 0.545 0.543 0.539 0.535 0.521 0.515 0.504 0.489 0.472 0.415

SeqVec 0.617 0.613 0.606 0.604 0.590 0.582 0.566 0.554 0.532 0.486

Biological process

ESM1b 0.530 0.529 0.525 0.524 0.519 0.517 0.512 0.499 0.482 0.444

ProtBERT 0.368 0.364 0.363 0.359 0.347 0.343 0.335 0.320 0.311 0.283

T5XLU50 0.454 0.453 0.452 0.449 0.436 0.429 0.424 0.413 0.404 0.363

SeqVec 0.506 0.504 0.501 0.497 0.489 0.484 0.474 0.468 0.455 0.396

Cellular component

ESM1b 0.442 0.441 0.441 0.440 0.435 0.433 0.430 0.424 0.409 0.381

ProtBERT 0.387 0.385 0.382 0.379 0.366 0.360 0.353 0.337 0.321 0.281

T5XLU50 0.391 0.390 0.389 0.387 0.383 0.376 0.373 0.369 0.356 0.329

SeqVec 0.434 0.433 0.431 0.428 0.426 0.422 0.416 0.408 0.393 0.365

E. coli

Molecular function

ESM1b 0.383 0.378 0.372 0.362 0.354 0.349 0.340 0.325 0.311 0.284

ProtBERT 0.288 0.283 0.278 0.266 0.258 0.251 0.243 0.235 0.226 0.208

T5XLU50 0.337 0.333 0.328 0.317 0.309 0.304 0.297 0.281 0.270 0.249

SeqVec 0.363 0.355 0.348 0.336 0.327 0.318 0.308 0.297 0.280 0.254

Biological process

ESM1b 0.314 0.310 0.308 0.304 0.300 0.298 0.294 0.288 0.279 0.262

ProtBERT 0.247 0.244 0.241 0.236 0.232 0.229 0.224 0.220 0.213 0.202

T5XLU50 0.289 0.288 0.285 0.280 0.277 0.273 0.269 0.262 0.255 0.237

SeqVec 0.288 0.287 0.281 0.276 0.272 0.268 0.262 0.258 0.249 0.235

Cellular component

ESM1b 0.402 0.399 0.393 0.381 0.371 0.363 0.352 0.338 0.317 0.292

ProtBERT 0.441 0.436 0.431 0.416 0.405 0.391 0.371 0.345 0.314 0.260

T5XLU50 0.402 0.398 0.392 0.379 0.370 0.359 0.335 0.321 0.303 0.279

SeqVec 0.399 0.395 0.383 0.366 0.357 0.344 0.330 0.314 0.294 0.267
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