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Abstract

One of the most sought-after goals in experimental quantum communication is the implementation
of a quantum repeater. The performance of quantum repeaters can be assessed by comparing the
attained rate with the quantum and private capacity of direct transmission, assisted by unlimited
classical two-way communication. However, these quantities are hard to compute, motivating the
search for upper bounds. Takeoka, Guha and Wilde found the squashed entanglement of a quantum
channel to be an upper bound on both these capacities. In general it is still hard to find the exact value
of the squashed entanglement of a quantum channel, but clever sub-optimal squashing channels allow
one to upper bound this quantity, and thus also the corresponding capacities. Here, we exploit this
idea to obtain bounds for any phase-insensitive Gaussian bosonic channel. This bound allows one to
benchmark the implementation of quantum repeaters for a large class of channels used to model
communication across fibers. In particular, our bound is applicable to the realistic scenario when
there is a restriction on the mean photon number on the input. Furthermore, we show that the
squashed entanglement of a channel is convex in the set of channels, and we use a connection between
the squashed entanglement of a quantum channel and its entanglement assisted classical capacity.
Building on this connection, we obtain the exact squashed entanglement and two-way assisted
capacities of the d-dimensional erasure channel and bounds on the amplitude-damping channel and
all qubit Pauli channels. In particular, our bound improves on the previous best known squashed
entanglement upper bound of the depolarizing channel.

1. Introduction

Optical quantum communication over long distances suffers from innate losses [ 1-5]. While in a classical setting
the signal can be amplified at intermediate nodes to counteract this loss, this is prohibited in a quantum setting
due to the no-cloning theorem [6]. This problem can be overcome by implementing a quantum repeater,
allowing entanglement over larger distances [7, 8]. The successful implementation of a quantum repeater will
form an important milestone in the development of a quantum network [9]. At this stage however, physical
implementations perform worse than direct transmission [10, 11]. As the experimental results improve it will be
necessary to evaluate whether or not an implementation has achieved a rate not possible via direct
communications. This can be done by comparing the attainable rate with a quantum repeater [12—19] to the
capacity of the associated quantum channel (i.e. direct transmission) for that task. For future quantum
networks, arguably the two most relevant tasks are the transmission of quantum information and private
classical communication. The capacity of a quantum channel for these two tasks, assuming that we allow the
communicating parties to freely exchange classical communication, is given by the two-way assisted quantum
and private capacity. We denote these quantities by Q, (NV) and P, (N), respectively.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Finding exact values for Q, (NV) and P, (NV), however, is highly non-trivial thus motivating the search for
upper bounds for them [20]. After having shown that the squashed entanglement of a channel is a quantity that is
such an upper bound [21], Takeoka, Guha and Wilde showed that there is a fundamental rate-loss trade-off in
quantum key distribution and entanglement distillation over practical channels [22].

The squashed entanglement E,q (A; B), of a bipartite state p, ; is a quantity defined as

Ey(A; B), += ~ inf I(A; BIE'), (1)
2 E—E'
which was introduced by Christandl and Winter [23] as an entanglement measure for a bipartite state. The
squashed entanglement can be interpreted as the environment E holding some purifying system of p, 5, and then
squashing the correlations between A and B as much as possible by applying a channel Sg_, i that minimizes the
conditional mutual information I (A; B|E’). Extending this idea from states to channels, Takeoka, Guha and
Wilde [21, 22] defined the squashed entanglement Egq (V) of a quantum channel as the maximum squashed
entanglement that can be achieved between A and B,

Esq (N) = %ﬁEsq (A B)p: (2)
where p,; = Nar—5(|1) (1| 4a) is the state shared between Alice and Bob after the A’ system is sent through
the channel NVy/_ . They showed that Eyq (V) is an upper bound on the two-way assisted capacities.

Unfortunately, there is no known algorithm for computing the squashed entanglement of a channel. This is
partially due to the fact that the dimension of E’ is a priori unbounded and that computing the squashed
entanglement of a state is already an NP-hard problem [24] and thus might even be uncomputable. However,
fixing the channel in (1) in general yields an upper bound on Eq (V). Exploiting this idea of fixing a specific
‘squashing channel” Sg_, g/, Takeoka et al derived upper bounds on the squashed entanglement of several
channels. Notably, they used this technique to find an upper bound for the pure-loss bosonic channel.

The main contribution of this paper is an upper bound applicable to all phase-insensitive Gaussian bosonic
channels. We apply this bound to the pure-loss channel, the additive noise channel and the thermal channel.

Additionally, we obtain results for finite-dimensional channels by using tools that we develop here. The first
of these consists of a concrete squashing channel that we call the trivial squashing channel which can be
connected with the entanglement-assisted capacity. This connection, first observed by Takeoka et al (see [25]),
allows us to compute the exact two-way assisted capacities of the d-dimensional erasure channel, and bounds on
the amplitude damping channel and general Pauli channels. Second, the squashed entanglement of
entanglement breaking channels is equal to zero. Third, for channels that can be written as a convex sum of
channels the convex sum of the squashed entanglement of each channel is an upper bound, i.e. Eyq (V) is convex
on the set of channels. We combine all three of these tools to obtain bounds for the qubit depolarizing channel.

2. Notation

In this section we lay out the notation and conventions that we follow in this paper.

For a quantum state p, the von Neumann entropy of p, is definedas H (A) = —trp, log p,. For convenience
we take all logarithms in base two and set log,(-) = log (). For aquantum state p := p,, the conditional
entropy of system A given Bis defined as H (A|B), = H (AB), — H (B),. Here H(B) is computed over the state
pp = tra(p,p), where we denote the partial trace over system A of a state p, ; by try (p, ). For a tripartite state p, .
the conditional mutual information is defined as I (A; B|E) = H (A|E) — H (A|BE). Whenever there is
potentially confusion regarding the state over which we are computing an entropic quantity we will add the state
as a subscript.

A quantum channel Ny _, p is a completely positive and trace preserving map [26] between linear operators
on Hilbert spaces H,4/ and Hp. A quantum channel A/ can always be embedded into an isometry V/(\/f _ pg that
takes the input to the output system B together with an auxiliary system E that we call the environment. This
isometry is called the Stinespring dilation of the channel. The action of the channel is recovered by tracing out
the environment: N (p) = trz(VpV™).

We denote the d-dimensional maximally mixed state by 7. The dimension of 7 is implicit and should be
clear from the context. Let A be a channel with input and output dimension d. Then N is unital if N(7) = 7.

3. Some properties of Ey, (N)

In this section we prove several properties of Esq (V) that will be of general use for obtaining upper bounds on
the squashed entanglement of concrete channels. First we define a squashing channel that we call the trivial
squashing channel and connect it to the entanglement assisted capacity of that channel, an observation
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previously made in [25] by Takeoka et al. Second, we prove that the squashed entanglement of entanglement
breaking channels equals zero. The third property is that Eyq (V) is convex in the set of channels.

3.1. The trivial squashing channel
One possible squashing channel Sg_, g is the identity channel, which we will call the trivial squashing channel.
The state on ABE' is pure, from which it can easily be calculated that

E V) < max 145 BIE), 3)
- lr(;jjf%(H(AlE) — H(AIBE)), 4)
= m%(H (AE) — H(E) — H(ABE) + H(BE)), )
= |13/3)3;%(H(13) + H(A) - H(AB)), ©)
= lrg)iiélm; B). (7)

The maximization in the right hand of (7), up to the 1/2 factor, characterizes the capacity of a quantum channel
for transmitting classical information assisted by unlimited entanglement [27]. In other words, the squashed
entanglement is bounded from above by one half the entanglement assisted capacity of the channel which we
denote by Cg (V). This connection, which was first observed by Takeoka et al (see [25]), allows us to bound the
squashed entanglement for all channels for which Cg (V) is known.

3.2. Entanglement breaking channels

Entanglement breaking channels have zero private and quantum capacities assisted by two-way
communications. We show that the squashed entanglement of these channels is also zero, following a similar
approach as was done for the squashed entanglement of separable states in [28]. In order to see this note thatifan
entanglement breaking channel Afgg is applied to half of a bipartite state, the output is always separable and can
be written as a convex combination of product states

Yap = Z @ Neg(|9) (¥ ]aan), (8)
ZZ)\i lai) (aila @ 18i) (Bils» )

where we denote by 7 the identity map. A possible purification of ¢/ is

|9) aBEE, = Z«/Xl lai)a 18i)s 1D, 1)K, (10)

where { |i)g, } and { |i)g, } are sets of orthonormal states. If the squashing channel consists of tracing out the E,
system, the resulting state is

i lai) (aila @ 16i)(Bils @ 1i) (ilg,» (11)
which has zero conditional mutual information.

3.3. Convexity of Eq () in the set of channels

The squashed entanglement of the channel is convex in the set of channels. We prove this in the appendix
following similar ideas to the ones used in [23] to prove that the squashed entanglement is convex in the set of
states. Hence, if N = ijj/\/j with Yip =1 and p =0, then

Eqq(N) < 30pEyg V). (12)
j

4, Finite-dimensional channels

To build intuition before moving to bosonic channels, let us first bound the squashed entanglement of finite-
dimensional channels, i.e. channels where both the input and output dimensions are finite.

An illustrative example of the effectiveness of the trivial squashing channel is the d-dimensional erasure
channel £ f, (p) = (1 — p)p + p le)(e|, where pisa d-dimensional state and |e) is an erasure flag orthogonal to

the support of any p on the input [26]. It is well known that C (Ef,) = 2(1 — p)log(d)[26] and that

3
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Figure 1. Comparison of bounds for the amplitude damping channel. In dashed green the upper bound by Pirandola et al [30], in solid
blue the upper bound found in this paper and the dashed—dotted magenta line is a lower bound given by the reverse coherent
information [32, 33].

Q, (5}’1,) = (1 — p)log(d)[29]. In general we have

QM) < PN < Eq(N) < écE W), (13)

where the first inequality holds since the squashed entanglement of a channel is an upper bound on Q, (V) and
the second inequality follows from applying the trivial squashing channel. In the specific case of the erasure
channel, we then must have that

Q2(E9) = P,(E9) = Eq(E9) = (1 — p)log(d). (14)

That s, the trivial squashing channel is the optimal squashing channel, yielding both two-way assisted capacities
and the squashed entanglement of the d-dimensional erasure channel. Independently of our work, in [31] the
two-way assisted capacities of the d-dimensional erasure channel are established by computing the relative
entropy of entanglement of the channel, which is also an upper bound on P,.

A second channel we can apply the trivial isometry to is the qubit damping channel N, a channel that
models energy dissipation in two-level systems. The qubit amplitude damping channel is defined as

1
Nop(p) =Y AipAf, (15)
i=0
where

v _[o A
Ao—[o m] Al—[o O] (16)

with amplitude damping parameter «y € [0, 1]. Since the entanglement assisted classical capacity of the
amplitude damping channel is known [26] to be equal to

Ce (N }p) = max [h(p) + h((1 — 1)p) — h(P)], (17)
pef0,1}

where h(x) = —xlog(x) — (1 — x)log (1 — x) is the binary entropy, we immediately find the bound

Py(N ) < Eq (N ) < %CE N7 (18)

A comparison of this bound with the best known lower bound, given by the reverse coherent information (RCI)

[33] max,[h(p) — h(py)],andan upper bound P, (N7 p) < min{1, —log~} found by Pirandola et al [30]
using a relative entropy of entanglement approach, can be seen in figure 1.

A third interesting example are d-dimensional unital channels for which the maximally entangled state on
AA’ maximizes the mutual information I (A; B). For these channels the trivial squashing channel gives the
following compact upper bound

B\ < %I(A; B), (19)

- %[H(A) + H(B) — HAB)], (20)

4
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Figure 2. Comparison of bounds for the depolarizing channel. The dotted red line is the upper bound by Takeoka et al [21], the dashed
blue line is the optimized squashed entanglement bound in this paper, the solid green line is the relative entropy of entanglement
upper bound by Pirandola et al [30, 31] and the magenta line is a lower bound given by the reverse coherent information [32, 33].

= log(d) — %H(E). Q1)

In particular, this bound holds for any Pauli channel, where we have that d = 2. Any Pauli channel can be
written as

P(p) = pyp + P XpX + p,XZpZX + p,ZpZ, (22)

with 37, p; = 1. Choosing without loss of generality the maximally entangled state
[T Yar = % [100) + |11)]44’asinputon AA’, we see that the output has a purification of the form

JPo 125 )ap 100)s + Jp; W H)ap [01)g
+ Py 197 )ap 110) + P 197 )ap [11)e. (23)

From orthogonality of the Bell states, it can be seen that the entropy of the environment coincides with the
classical entropy of the probability vector p = (p,, p;, p,> p5)- Thatis, H(E) = H (p) with
H(p) = —Z? _ ob;logp,. From this it follows that

Eq(P) <1 — %H(f)). (24)

Hence, we also obtain that 2 — H (p) is the entanglement assisted classical capacity of a Pauli channel P.
Let us now apply the bound for Pauli channels to a concrete channel, the qubit depolarizing channel D,. The
action of this channelis D, (p) = (1 — p)p + p for p € [0, 1]. This corresponds with the Pauli channel given

by p = (1 — 2 p2 E).After this identification we find that

3plog(p) + (4 — 3p)log(4 — 3p)

s .
The depolarizing channel can also be written as a convex combination of two other depolarizing channels,
allowing us to use the convexity of Eyq () in the set of channels to improve on the upper bound in equation (25).
We can compute the squashed entanglement of each individual channel and multiply it by the appropriate
weight. Using this idea (see appendix B), we obtain the following stronger upper bound

E (D, < min (1 — ) 3elog(e) + (4 — 3¢)log(4 — 35),
0<e<p 8
21/) ;ff.This bound is equalto (25)for 0 < p < %,afterwhich itlinearly goes to zeroat p = % See

figure 2 for a comparison of this new bound, the bound by Takeoka et al [21, 34], the bound by Pirandola et al
[30], and the RCI[32, 33].

Esq (Dp) < (25)

(26)

where o =

5. Phase-insensitive Gaussian bosonic channels

5.1. An upper bound on phase-insensitive channels

In this section we discuss our main result, an upper bound on the squashed entanglement of any phase-
insensitive Gaussian bosonic channel. Gaussian bosonic channels are of interest because they are used to model a
large class of relevant operations on bosonic systems [35]. Phase-insensitive channels are those Gaussian bosonic
channels which add equal noise in each quadrature of the bosonic systems. Imperfections in experimental setups

5
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Figure 3. A squashing isometry for any phase-insensitive Gaussian channel Np taking A’ to B. The beamsplitter B; and the two-
mode squeezer S form the Stinespring dilation, while the balanced beamsplitters B, and B; form the squashing map. The
beamsplitter B, interacts with the vacuum on E, and A, and the two-mode squeezer S interacts with the output of B, and the vacuum
on E,. The squashing isometry consists of two balanced beamsplitters B, and Bj interacting with the vacuum on F; and F, and the
output of the beamsplitter B, and the two-mode squeezer S.

for quantum communication with photons are modeled by phase-insensitive channels, motivating us to upper
bound the squashed entanglement of all such channels. In particular this motivates the search for bounds where
the input of the channel has a constraint on the mean photon number N.

Any phase-insensitive channel Ajp; is completely characterized by its loss/gain parameter Tand noise
parameter v. The Stinespring dilation of such a channel consists of a beamsplitter with transmissivity

2 . . . . .
T=- " Z+ - interacting with the vacuum on E}, and a two-mode squeezer with squeezing parameter

r = acosh(v/G) with the amplification G = H'T/H > linteracting with the vacuum on E, [36] (see figure 3
and the appendix for a detailed definition of the channel). T'and G also completely characterize any phase-
insensitive channel. Takeoka etal[21, 22, 34] found bounds for such channels by only considering the
beamsplitter part of the Stinespring dilation. To be a valid channel, we must have that v > |1 — 7|. We further
have that phase-insensitive channels are entanglement breaking whenever v > 7 + 1[37], or equivalently,
G(1 — T) > 1.Hence, the squashed entanglement must be zero for channels with such parameters as discussed
in the tools section.

Since we are interested in phase-insensitive Gaussian channels, we make the ansatz that a good squashing
map will be a phase-insensitive channel. Numerical work suggests that, if only phase-insensitive isometries are
considered, the pure-loss channel and the amplification channel separately have as optimal squashing isometry
the balanced beamsplitter interacting with the vacuum. This motivates us to use the isometry consisting of two
balanced beamsplitters at the outputs of the first beamsplitter and the two-mode squeezer (see figure 3). Using
this isometry we obtain a bound for all phase-insensitive channels with restricted mean photon number N (see
appendix for a derivation and a proof that the equation is monotonically non-decreasing as a function of N).
This equation equals

g((war/e) + §((Wpe/E)2) — §((We/e;)) — §((WEE)2), (27)
with g(x) = (XTH)log(“;) — (Xgl)log(xgl)[%]and

N 1+G*+2N(1 — T+ GT(G— 1))+ N*2(GT— 1> +(G—1+N(GT - 1))Q~
WEeE =+~ > ,
C). — 1+G*+2N(1 =T+ GT(G— 1))+ N*(GT— 1> —(G—1+N(GT - 1))Q~
WEE D)=~ > ,
(Vpprp ) = _ 1+4G*+2N(U —T+GT(G+ 1)+ N>(1+GT)* +(1+ G+ N(1+GT)Q"
BE/E; )1 = 2 >
D). — 1+G2+2N(1— T+ GT(G+ 1))+ N*(1+GT)? - (1 + G+ N(1 + GT))Q*+
(WBE/E})2=| A/ — 5 ,
where we have set
QF = J(1 + N)*> — 4NT + 2G(1 + N)(NT — 1) + (G + GNT)?. (28)

As N — 00, the bound above converges to its maximum value of

(1 - T)Glog (1) — (6>~ DTlog(S*1)
1 — G?T? .

Esq (-/VI’I) < (29)
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Figure 4. Comparison of the upper bounds mentioned in this paper for the additive noise channel. The dotted red line is the upper
bound by Takeoka et al [21], the dashed blue line is the squashed entanglement bound in this paper, the solid green line is the relative
entropy of entanglement upper bound by Pirandola et al [30, 31] and the magenta line is the coherent information of the channel
which is alower bound [38].

Rewriting the upper bound as function of the channel parameters 7and v [35] we obtain the upper bound

E (N)<C(1+V+37_:1+V77—)*T§(7—+1/+3 7_+l/*1)
R 20+ v+ 11 — 79

(30)
where ( (a, b) = ablog (%)

5.2. Application to concrete phase-insensitive Gaussian channels with unconstrained photon input
5.2.1. Quantum-limited phase-insensitive channels

A pure-loss channel has G = 1. As a consequence, for pure-loss channels the bound in equation (29) reduces to
log (%) This bound coincides with the bound found by Takeoka et al.

In the opposite extreme we find quantum-limited amplifying channels, that is channels with T' = 1 and
G > 1.For these channels, the bound by Takeoka is equal to infinity while (29) is non-trivial. Concretely, it

reduces to the finite value of log ( ) This should be compared with the exact capacities independently found

by Pirandola et al [30, 31] using a relative entropy of entanglement approach, Q, = P, = log (a)

5.2.2. Additive noise channel
An additive noise channel only adds noise to the input, without damping or amplifying the signal. For an
additive noise channel A, 44 wehave T = ﬁ;ﬂ and G = % = 7 + 1, where 7 is the noise variance. Taking the

limit of equation (29)as G — % = 7 + 1 weshowin the appendix that the upper bound becomes

T2 +1 (1+T) 1
Eq (Naga) < lo - —, 31
W) S el ) T Gy
_2 — —
_ a2, (n+2)7 L 32)
2n + 2 7 In2

This should be compared with the upper bound 1ndependently found by Pirandola et al [30, 31], Z— — log 7

In (2)

and the coherent information I (NVqq) = — log 7 which is alower bound on P, (V) [38]. See figure 4

Y} (2)
for a comparison of these bounds.

5.2.3. Thermal channel

A thermal channel is similar to the pure-loss channel, but instead of the input interacting with a vacuum state on
abeamsplitter of transmissivity 7, it interacts with a thermal state with mean photon number Ng. For a thermal
channelwehavethat G = (1 — 7)Ny + land T = (1—0)71\7“ In figure 5 the upper bound is plotted for

N3 = 1 together with two other bounds and the RCI, which is alower bound on P, (V) [32, 39].

5.2.4. Non-quantum limited noise for lossy channels

In experimental setups one does not measure v, but the additional noise x > 0. We have the relation
v=1— 7+ ywherel — 7 isthe minimum amount of noise that will be introduced for aloss 7 (the
quantum-limited noise) [35]. The upper bound from (30) can then be rewritten as

7
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Figure 5. Bounds on the squashed entanglement of the thermal channel with N = 1 asa function of the loss in dB. The red dotted line
shows the upper bound by Takeoka et al [21, 34], the dashed blue line the new bound reported in this paper, in solid green the bound
by Pirandola et al [30, 31], and the dashed—dotted line shows the reverse coherent information [32, 39] which is alower bound.

3 1 0—20
Secret-key capacity [30,31]
o5L= = Finite energy bound Takeoka et al. [21,22]
2 L
g
< 1.5¢
~
1 L
0.5 =TT
0 - - I I I )
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Figure 6. Bound for the pure-loss channel with an average photon number of 0.1 and the secret key capacity [30, 31] as a function of 7).
The new bound in this paper coincides with the finite-energy variant of the bound by Takeoka et al, see [21, 22]. The loss parameter 1
ranges from 0to 2 X 1072, which is the range of expected losses for transmissions across fibers with length ~1000 km with an
attenuation length of 22 km [18].

Cx+2+21, x+2—-21) —7C(x +4, %)
442001 — 7 '

(33)

5.3. Finite-energy bounds

For low mean photon number and certain parameter ranges the finite-energy bound in equation (27) is tighter
than previous upper bounds on the two-way assisted capacities. For any energy the pure-loss bound from
Takeoka et al[21, 34] and equation (86) coincide. In figure 6 the bound from Takeoka et al [21, 34], is shown for
an average photon number of N = 0.1 [40, 41] and the two-way assisted private capacity of the pure-loss
channel [30, 31]. The loss-parameter runs from 0 to 2 x 10~2°, which is the expected range of losses for fiber
lengths of around 1000 km. In figure 7 we plot the upper bound by Pirandola et al [30, 31], the finite-energy
bounds of Takeoka etal [21, 34], and equation (86) for the thermal channel with Ng = 1. For n < Nij N the
thermal channel becomes entanglement breaking, so that the squashed entanglement bounds are equal to zero
for those regimes. This implies that the squashing isometry in figure 3 is not optimal.

6. Conclusion

In this paper we have obtained bounds on the two-way assisted capacities of several relevant channels using the
squashed entanglement of a quantum channel. For practical purposes, the most relevant of the channels
considered are phase-insensitive Gaussian channels. Our bound for these channels is always non-zero, even
when the corresponding channel is entanglement-breaking. This points to the existence of an even better
squashing channel for phase-insensitive Gaussian channels. Future work could investigate this intriguing
avenue, especially due to its relevance to the squashed entanglement of a bipartite state as an entanglement
measure.
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Pirandola et al. [30,31]
------ Finite energy bound Takeoka et al. [21,22]
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n

Figure 7. Comparison of the upper bound found by Pirandola et al [30, 31] for the thermal channel with Ny = 1 and the two squashed
entanglement finite-energy bounds with average photon number of 0.1 as a function of the loss-parameter n[21, 34].

Furthermore, we have proven the exact two-way assisted capacities and the squashed entanglement of the d-
dimensional erasure channel, improved the previous best known upper bound on the amplitude-damping
channel and derived a squashed entanglement bound for general qubit Pauli channels. In particular, our bound
applies to the depolarizing channel and improves on the previous best known squashed entanglement upper
bound.

The only credible way to claim whether an implementation of a quantum repeater is good enough is by
achieving a rate not possible by direct communication. Our bounds take special relevance in this context,
especially for realistic energy constraints.
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Appendix A. Bounds for convex decomposition of channels

One way of obtaining bounds on the squashed entanglement is based on decomposing the channel action as a
mixture of other channels actions and bounding each of them individually.

Let Ay _ 5 be achannel such that its action can be written as the convex combination of the action of two
other channels Ny and M

Pap = Z @ N)(@ga) = p(Z @ No) (@) + (1 — )T @ N)(g00)- (34)
Then we can always purify p, ; in the following way
|p)aserE, = P 1P @)age 10)E 10)e, + VT — p 10 )ase )5 11)E, (35)
where
0@ )ase = VAL e 1G)an (36)
and
lpD)age = VI 4o 1d)anr- (37)

Thatis, | )45 and | pV )¢ stand for the state that we obtain after applying the channel isometry to the pure
input state | §)aa’.
Let us apply the following channel to | p) agr r,

P aer,F, 7 1E ((Zap ® Sg*?E/ ® P 1'??) ® IFz)(pABEFle)
+ (Zap @ Spp @ PR ® T5) (P aper))s (38)




10P Publishing

NewJ. Phys. 18 (2016) 063005 K Goodenough et al

where we denote by Plplv> the projector onto the vector |v). First we trace out F,, then
P aser, = PPyge @ 10) (Ol + (1 = p) oy @ [1) (115 (39)
Now, let us apply the rest of the channel. We obtain

PABE'F, = ZSEHE’ @ 11) (il5, (P apEr,)

= pSp_ (00 @10) (0l + (1 — p)SEp () @ 11) (11, (40)

Thatis, p,ppp, is a quantum-classical system. For states of this form the conditional mutual information can be
simplified to

I(A; BIEF) = pI(A; BIE)sy .00, + (1 — p)I(A; BIE)sL (0 )- (41)
Now we can upper bound E, () in the following way
EqWN) < IBSXZ G éﬁf«n.@trh I(A; BIE'F)) > (42)
= max (p inf I(4; BIE")| p0y,, + (1 — p) inf I(A; BIE")| p0,5)5 (43)
b Spp g
< PE,(ND + (1 = p)Eq(AD). (44)

The first inequality holds by restricting the squashing channels to those channels of the form in (38). Equality
(43) follows since for channels of the form (38) the resulting state is a quantum-classical state as indicated in (40),
and for classical quantum states the conditional mutual information of the whole state is a convex combination
of the individual conditional mutual informations as shown in (41). The last inequality follows because the state
that achieves the maximum squashed entanglement might be different for each channel. This method
generalizes easily to any number of channels, from which it follows that if N(p) = >, p.N;(p) with 3", p; = 1
and p, > 0, then

QZ (-A/) S P2 (M S Esq (M < ZpiEsq (-/\[z) (45)

Appendix B. Improved bound for the depolarizing channel

Itis well known that the depolarizing channel becomes entanglement breaking for p > % [42], which implies

that P, is zero in that range. For ¢ < p < %, we can write the output of the channel as a convex combination of
the output of D, /3 and D). That is, there exists some 0 < o < 1such that

Dy(p) = (1 = )De(p) + aD2y3(p)- (46)
By expanding both sides of (46) and identifying the coefficients, we obtain
p—c€
o= — 47
2/3 — € “7

which isin the range [0, 1]for 0 < € < p.
Using the decomposition of the depolarizing from (46) the action of D, on half of a pure entangled state
takes the following form

tup = I @ Dp(|1)) (1] aan)s (48)
=1 -l - aY)(Plas + - 7] + OKZAi lai) (aila ® 16i) (Bils- (49)

Let pys = (1 — €)|Y) (¥]ap + € 7). Apossible extension of ¢yp is

n
Uape = (1 — @) pup @ [n + 1) (n + 1 + ad i [0i) (ila @ |¢;) (Sils @ 17) (il (50)
i=1
Since s ppr is a valid extension of p, , this means that there exists some squashing channel Sg_, g that takes the
environment of the depolarizing channel to this particular E’. This is easy to see, first we can find a state [}/ T
that purifies ¢ pp'. Next, since all purifications are related by an isometry there exists some purification Vg_ g1
that takes the environment of the channel to E’T. After this we trace out the system T'and obtain ¥ gg'.

Now, ¥ g is a quantum-classical system. Hence, we can decompose the conditional mutual information
I (A; B|E') into the sum of the mutual information conditioned on each value of E

I(A:BIE")y = (1 — a)I(A: BIE), + a ) NI(A 2 BIEy) (15016 (6,151 ile (51)

i=1

10
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Figure Cl. A squashing isometry for any phase-insensitive Gaussian channel Np; taking A’ to B. The beamsplitter B; and the two-
mode squeezer S form the Stinespring dilation, while the balanced beamsplitters B, and B; form the squashing map. The
beamsplitter B, interacts with the vacuum on E, and A, and the two-mode squeezer S interacts with the output of B, and the vacuum
on E,. The squashing isometry consists of two balanced beamsplitters B, and Bj interacting with the vacuum on F; and F, and the
output of the beamsplitter B, and the two-mode squeezer S.

= (1 — a)I(A: BIE"),. (52)
Furthermore the input state that maximizes (52) is the maximally entangled state on AA’. Hence, the following
bound upper bound on Esq (Dp) holdsfor 0 < e < p

3elog(e) + (4 — 3¢)log(4 — 3¢)
. .

EqDy) <1 -0 (53)

Appendix C. Squashed entanglement upper bound for any phase-insensitive Gaussian
channel

In this section we discuss a proof of an upper bound for the squashed entanglement of any phase-insensitive
bosonic Gaussian channel Afp;. Here we use the fact that any such channel can be decomposed as a beamsplitter
with transmissivity T concatenated with a two-mode squeezer with squeezing parameter r = acosh(~/G). We
first show that we can restrict the input states to the class of thermal states with mean photon number N, after
which the entropic quantity of interest is written as a function of N. We then show that this function is
monotonically increasing, after which we take the asymptoticlimit N — oo of the entropic quantity yielding

(1— T%Glog(%) — (G — 1)Tlog(%>

Esq (/\/PI) < 1 — G2T2 (54)
To show this is true, we first use a different form of Eq (W), which was proven by Takeoka et al [21],
1 .
Egq (Npp) = > maxvlnf [H (BIE"),, + H (B|F).]. (55)
Par VE—E'F

There are two differences between the characterization in (55) and the one in (2). First, the maximization runs
over density operators on A’ instead of running over pure states on AA’. Second, instead of taking the infimum
over the squashing maps, it is taken over their dilations: squashing isometries Vi_, g/ that take the system Eto E’
and an auxiliary system F. The entropies are then taken on the state w on systems BE'F.

The total operation, which we denote by D, consists of the Stinespring dilation of the channel (B, and S) and
the squashing isometry consisting of two balanced beamsplitters (B, and Bs), see figure C1 . We now write
H (B|E') = H (B|E,E,), where the system on E’ is the output at E{ and E; after the total transformation D. E/ is
the state after the vacuum state on E, has interacted with the beamsplitter B; and the balanced beamsplitter B,.
Similar statements hold also for E;, F, and F;. Since the isometry consists of two balanced beamsplitters we have
that H (B|E’) = H (B|F| F;) = H (B|F), so that Eyq (N) < H (B|E"). After having found the state after the
transformation we calculate the so-called symplectic eigenvalues of the states on BE; E, and E, E,, from which
we can find H (B|E/ E;). To getan expression of the upper bound for N — oo, we calculate for three different
regimes of G and T the asymptotic behavior of the symplectic eigenvalues, after which we show that all three
regimes give rise to the same form of the upper bound.

C.1.Bound for finite N
A Mathematica file is included in the supplementary material to guide the reader through the calculations
performed in this section. For the proof we first need to be able to calculate the entropy of a Gaussian state as a

11
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A
Tl < .
AA’

E% B

Figure C2. Alice can perform alocal operation A on one half of O that yields a state on A and a classical outcome k. The state
conditioned on the outcome k on systems ABE] E, is, up to a unitary displacement on B and E; E3, equal to the state p' . Aliceand
Bob can thus simulate any lower energy scenario.

function of its covariance matrix. The entropy of an M -mode Gaussian state p can be calculated by finding the M
symplectic eigenvalues v > 1 of the covariance matrix I of p [43]. It turns out that the 2M eigenvalues of the
matrix QI are of the form +ivy [44], where

M
Q= [0 1]. (56)
e[, |

=1

The entropy of the state is then " | g (1), where g (x) = (x; 1) log (x; 1) — (x 5 1) log (x 5 1) [35].

To obtain the state at the end of the isometry we determine first the optimal state for a specified mean photon
number N, after which we apply the Gaussian transformations of the Stinespring dilation of the channel and the
isometry, shown in figure C1. To find the maximizing input state on A’, we follow the same approach [21, 34] as
Takeoka et al. Since the concatenation of multiple Gaussian transformations is still a Gaussian transformation,
having a Gaussian state as input will always give a Gaussian state on any of the outputs. From the extremality of
Gaussian states for conditional entropy [45], we get that the optimal input state is a Gaussian state.

To find the optimal Gaussian state, we note that the covariance matrix of all single-mode Gaussian states can
be written as [46]

(57)

(1 + 2N) [cosh 2r + cos 8 sinh 2r sin @ sinh 2r ]

sin 6 sinh 2r cosh2r — cos @ sinh 2r

forsome r > 0and 6 € R. Since the channel from A’ to BE/ E, F| F, is covariant with displacements and all
unitaries U such that the corresponding symplectic matrices Sy act on the thermal state as

) T cosh 2r + cos 8 sinh 2r sin 6 sinh 2r
So(L+2NESG = (1 + ZN)[ sin 6 sinh 2r cosh2r — cos  sinh Zr]’ (58)
we have that H (B|E"), = H (B|E)g,g. We set p equivalent to UpU", defining an equivalence relation. Itis clear
that all states with fixed N in equation (57) define an equivalence class with respect to the equivalence relation.
Since H (B|E"), = H (B|E")g,0+> we can set the thermal state (1 + 2N)I to be the representative of that
equivalence class, and we only have to consider thermal states for the optimization.

The total system I'y/g/F, g/, consists then of a thermal state I’y with mean photon number Non A’ and

vacuum states on all the other inputs:

Luerer =Y ® 1y © I @ I, @ Ip, (59)

[1+2N o0
'YA’—I: 0 1+2N]' (60)

The operations of the isometry are then the first beamsplitter B; with transmissivity Ton A’ and E;

JT 0 JI=T o0

0 T 0 JI=T
B, = VT B I &I, @ g, (61)
J1-T 0 JT 0
0 —1-T 0 NE

12
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the second beamsplitter B, with transmissivity % onE;and F,
- : .
7z 0 70
0 —= 0 —
B, =14 @ ) 2 . ﬁ @ I, @ I, (62)
—% 0 =0
0 —-L o L
V2 V2 lg g,
the two-mode squeezer S on A’ and E, with the relation G = cosh? (r)
E 0 0000 JG—1 0
0 JG6 0000 0o —JG-1
0 0 1000 0 0
_ 0 0 0100 0 0
=1 o 0 0010 0 0 © Ies (63)
0 0 0001 0 0
G- 1 0 0000 <G 0
| o —JG-10000 0 NICH o
and finally the last beamsplitter B; on E, and F, with transmissivity %
- : .
el 0 7 0
0 — 0 -
B=Lyolgolye|l 7> | (64)
—= 0 = 0
0 —— o0 %
| V2 A2 —EZ/FZ
We then have that the total symplectic transformation matrix D is
D = B;SB,B, (65)
JGT 0 JGa -1 0 0 0 JG-1 0 0 0|
0 JGT 0 JG(1 = T) 0 0 0 —~G—-1 0 0
1-T T 1
5 0 \/; 0 7 0 0 0 0 0
1-T T 1
0 5 0 5 0 i 0 0 0 0
=T T 1
— 0 =7 0 i 0 0 0 0 0
= =T T 1
0 — 0 —\/; 0 i 0 0 0 0
[G=DT [G=Da-T) G 1
B 0 — 0 0 0 5 0 il 0
[G=DT [G=Da-T) G 1
0 — B 0 B A e— 0 0 0 5 0 el
[G=DT [G=Da-T) G 1
— P 0 B A e— 0 0 0 —\/; 0 il 0
G-DT G-DI-T) G 1
|0 - 0 =D 0 00 0 —\/; 0 =
(66)
The covariance matrix T gg/p/ g1y = DLurg, r,g,r, DT after the transformation is then
al bl bl co, —co,
bl dl el —Hfo, fo,
bl el dl fo, —fo,|, (67)
o, - fUz fUz gH hH
—co, fo, —fo, Kl gl

1
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where 0, = [1 0 ], I= [1 0]and

0 -1 01
a=2G(1 + NT) — 1, (68)
b=NJ2(GT(1 — T)), (69)
c=(1+ NT){2(G — DG, (70)
d=1+N@ —T), 71)
e=N(T - 1), (72)
f=NJ@G-1Da - DT, (73)
g=G+ (G- 1)NT, (74)
h=—(G— 1)1 + NT). (75)
The covariance matrix on the subsystems E, E, is then
T = [_‘ji gfcﬂr] (76)
Multiplying by 2 gives
0 d 0 f
QTpp = 0o (77)
v 0 f 0 ¢
f 0 =<0

Nowset QF = \/(1 + N)> — 4NT + 2G(1 + N)(NT — 1) + (G + GNT)?. Taking the covariance matrix
corresponding to E{ E, we find using Mathematica the symplectic eigenvalues to be

1+ G*+2N(1 — T+ GT(G—1)) + N>(GT — 1)> + (G — 1 + N(GT — 1))~
(VEI’EZ’)I = - > >
(78)
1+ G*+2N(1 - T+ GT(G—1)) + N>(GT — 1)> = (G— 1+ N(GT — 1)Q2~
WEED2 = | 4 — 5 .
(79)
The covariance matrix corresponding to BE, E, is
al —bl co,
I‘BEI’EZ’ =|-bl dl *fO’z 5 (80)
co, —fo, gl
so that
[0 a 0 —b 0 —]
—a 0 b 0 — 0
0 b 0 4 0 f
QUi =1 4 0 —d o Fool (81)
0 — 0 f 0 ¢
|—< 0 f 0 —g 0]
From this the symplectic eigenvalues can be calculated to be
s = \/_1 +G*+2NQA - T+ GT(G+ D) +N>Q+GT)?>+(1Q+G+ N+ GD)HQ
BE/E} 1 5 >
(82)
Van'at)s = \/_1 +G*+2N(1 — T+ GT(G+ 1)) + N*(1 + GT)> — (1 + G + N(1 + GT))Q+
BE/E} )2 3 )
(83)
(vBe/E))s = 1. (84)
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We can now calculate H (B|E| E),
H (B|E{E;) = H(BE(E;) — H(E(E)), (85)
=g ((wpe/ps)) + §((WaE/E)2) — §((WEED) — §((WEED), (86)
where we used that ¢ (1) = 0.

C.2. Monotonicity of the bound
For this section we restrict ourselves to the picture of calculating the squashed entanglement on the systems
ABE] E; instead of BE/ E; F| F;, where V1,5 £/EjF F, =V is the total isometry (see figure C1). In this picture the
optimization is over the purification of the thermal state, the two-mode squeezed vacuum state UV, To show
monotonicity of equation (86) in N, we use that, up to a displacement on B (conditioned on a measurement
outcome kat A’), it is possible to transform the state ¥, to \Ifﬁ/, using a local operation A4 on Alice (where
N’ < N)[47], see figure C2.

Suppose now that A performs the operation A, on the state pIIZBE], g = UEE (VUNVT) after the isometry,

(A @ Leti) sy = [ AR 1K) (KT @ ((Ta © UE @ Uyig) pllppes s © UE © Ufge)), (87)

= [k 1K) (Kl @ Pk (88)
Here we used that displacement operations can always be removed by local operations [48], so that for fixed
outcome k the state pﬁ’ég, El is related to pIIZBEl, g = R (VUN'V) by unitary displacements on Band E| E;.

The conditional mutual information evaluated on the state Ay ® g/ g/ prE, B = pY then satisfies
1

1(4; B|E{}35){)33}51,5é > I(A; BIE[Ep) v, (89)
> f dk I(4; BIE/E}) xs, (90)
- f dk I(A; BIEE}) v, 1)
=1 (A; B|E1/E2/)/)N'. (92)

In equation (89) we used that the conditional mutual information can never increase under local operations on
A[23].In equation (90) we use the fact that the states pi]];]ifl, p) are flagged on the classical outcome k, and that the
conditional mutual information of the whole state can not be smaller than the sum of the values of the
conditional mutual information of the individual states [23]. In equations (91) and (92) we use the fact that all
the pﬁ’ég{ g, Statesare related to pIX I;E{ El by local unitaries on Band E/ E, and that the conditional mutual
information of those states thus must be equal.

That is, the conditional mutual information computed over the isometry V with input state U is always
greater than the conditional mutual information computed over the isometry Vwith input state UNIfN' < N.
This thus implies that equation (86) is a bound for all phase-insensitive Gaussian bosonic channels and all energy
restrictions.

C.3. Expressionas N — oo

To obtain an explicit form for the expression in (86) as N — 0o, we expand the eigenvalues around N = oo for
three different regimes of G and T using Mathematica. For G = ~ we have

T
[G?—1
WeEh = G JN + O, (93)
[G? -1
WEE)2 = G JN + O(1), (94)

(vee/eh = 2N + O(1), (95)
G*+1
(W/E )2 = 22 + o(1). (96)

Here we used the notation that f (N) = o(h(IN)) for two functions f(N) and h(N) ifand onlyif V ¢ > 0, AN’
suchthat VN > N/, f(N) < ¢h(N).

Now let us introduce the equivalence relation = for two functions f{N) and h(N), so that f (N) = h(N)if
andonlyiflimy_,o |f(IN) — h(IN)| = 0,i.e. we can safely replace f{lN) by h(N) as N — oo. For example, we
havethat g(N + ¢) = g(N) = log (%) + ﬁ In particular, if f (N) = h(N) + o(1), then
g(f(N)) = g(h(N)). Furthermore, this also means thatif we have f (N) = h(N) + O(1)and
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limy oo f (N) = limy_oh(N) = 0o, then g(f (N)) = log (h(N)) + ﬁ We will call these relations the
asymptotic entropic relations for short.
Using these asymptotic entropic relations, we find

H(BE(E;) — H(E/E) = g((wse,e,)) + §((asE)2) — §((Wee ) — §((WEE)) (97)
G2+1 G* -1
= + ¢(2N N}, 98
g( e ) g@2N) — [ J—] [ - J—) (98)
G*+1 1 G*—1
= + log(N) + — —1 - — -1 —_ 99
g( c ) og(N) — og(,/ e J_J og( «/—] (99)
G>+1 ( 4G ) 1
= + log| —— | — —, 100
e R (e (o)
G2+ 1 G2+ 1 G2+ 1 G*—1
+1 +1 - + 4G 1
— 2G 1 2G _ 2G 1 2G 1 ( )_ —_— 101
2 °8 2 2 °8 2 +log G?—1 In2 (101)
2 2 _ 2 _ 2
_ G+ 1Og((G+ 1) )_ (G-1 log((G 1) )+ log( 4G )_ 1 (102)
4G 4G 4G 4G G* -1 In2
1)2 - 1)
G D (6 + 1) - %bguc )
(G+1? (G- 1) 1
+1- + 1|log(4G) — log(G* — 1) — — 103
( 1G Ve 0g (4G) — log( ) 3 (103)
0
(G + 1)? (G — 1)? 1
=T 7 Jog(G+ 1) — — log(G — 1) — log(G*> — 1) — —, 104
e og( ) G og( ) — log( ) 0o (104)
G*+2G+1 G?-2G+1 1
=|———|log(G+1) - | ——— G—-1) —log(G*—1) — —, 105
( e )Og( ) ( e ) g( ) — log( ) 2 (105)
2
_G+1 log(G + 1) log(G + 1) + log(G — 1) — log(G?> — 1) — L (106)
2G - ; In2’
2 2
:G+110g(G+1)_L:T+110g(1+T)—L. (107)
2G G-1 In2 2T 1-T In2

Here we used the asymptotic entropic relations in equations (98) and (99). Equation (100) is basic rewriting,
equation (101) follows directly from the definition of g (-), and equation (102) follows from rewriting the terms
In equation (103) we collect the terms proportional to log (4G), from which we can see that these terms sum up
to zero. In equation (105) we expand the quadratic terms, collect corresponding terms in equation (106) and
write the upper bound both as a function of G and T'in the last equality.

For G > % we get in the asymptotic limit that equations (78), (79), (82) and (83) become

(Weieth = N(GT — 1) + O(D), (108)
G-T

)y = LoD, 109

(VEE)2 T — 1 o(1) (109)

(e h = N(1 4+ GT) 4+ O(1), (110)
G+T

1)y = + o(1). 111

(VBE/E})2 T+ aT o(l) (111)

For G < %we have

- T

It = + 1 5 112

Wegh = T o(1) (112)

(VE/E))2 = N(l — GT) + 0Q1), (113)

(veg/eh = N(1 4+ GT) 4+ O(1), (114)
G+ T

1gl)y = + o(1). 115

(VBE/E})2 T+ GT o(1) (115)

For both regimes, the eigenvalues and in particular their leading terms are always positive. We see that for both
G> % and G < % the absolute value of the eigenvalues are the same up to ordering, so that
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G+ T G-T
H(BE/E)) — H(E/E) = +¢(NA +GT)) — ¢g(N|1 —GT)) — gl ———1|, @16
(BE Ey) (E, Z)Hg(l—&—GT) g(N( ) g(N | D) —¢ 11— GT| (116)
:g(G+T)+log(N(l+GT))+L10g(N|1—GT|)Lg G-T )
1+ GT 2 In2 2 In2 [1 — GT|
G+T G-T 1+ GT
= — + log| ——2~|, 118
g(l+—GT) g(u——GTl) ghl——GT|) e
G+ T G-T 1+ GT
- ol =] +1 , 119
g(1+GT) g(lfGT) Og(l—GT) 1

where in the first and second step we again used the asymptotic entropic relations. Equation (118) is basic
algebraic rewriting of the logarithms. We can drop the absolute signs going from equations (118) and (119). To
see this, note that log (—x) = log (x) + = for x > 0, where we choose the branch cut along the negative

. . . . .. y + 1 —y+1 —y —y—1\_
imaginary axis, and in a similar way we ﬁnd that g(—y) = lo ( 3 ) log( )—
4 ; 1log(—%l) — —1 (——) =g() + —fory l.Fromthisweﬁndthat

—g(—y) + log(—x) = —g(y) + log(x)for x > 0, y > 1.Since ¥ i GT| > land H(é];l > Ofor

G >1, 0 < T < 1,wehavethat g(

We can rewrite equation (119) as

GT|)+10g( 1+g§|):7g(1 )+10g(l+GT)

G+T G-T 14+ GT
- 1 , 120
g(1+GT) g(l—GT)+ Og(l—GT) (120
G+T G+T G+T G+T
:1+GT+llog rror 1 _ 1+GT log 1+ GT
2 2 2 2
G-T G-T G-T G-T
+1 +1 —1 —1 1+ GT
_1-GT 1 1-GT _ 1-GT 1 1-GT 1 ( ), 121
B B s i A e N
_G+na+1n, [(G—i— D+ T)) _G-na-1 ((G - D - T))
2(1 + GT) 2(1 + GT) 2(1 + GT) 2(1 + GT)
G4+ na-1 log((G + D@ - T)) L G-na+ T 1Og((c; - DA+ T)) N log(l + GT)’
2(1 — GT) 2(1 — GT) 2(1 — GT) 2(1 — GT) 1 - GT
(122)

where we have used the definition of g () in the first equality and simplified the terms in the second step.
We can expand the logarithms and collect the different terms and simplify to rewrite equation (122). Let us
consider one by one the terms proportional to each logarithmic term. The terms proportional to log (G + 1) are

G+DU+T) _ (G+DA-T)

> (123)
2(1 + GT) 2(1 — GT)
(G* = DT
_ , 124
1 — G*T? (2
the terms proportional to log (G — 1) are
_G-1Ha -1 G-DA + T)) (125)
2(1 + GT) 2(1 — GT)
(G2 — 1T
=z 126
1 - GT? (126)
the terms proportional to log (1 + T)are
G+DA+T1 +(G—1)(1+T)’ (127)
2(1 + GT) 2(1 = GT)
e Ye
— -1y 128
1 — G*T? (128)
the terms proportional to log (1 — T') are
_G-1Ha-17 (G+DHd - T)’ (129)

2(1 + GT) 2(1 — GT)
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(1 —-T»HG
= L= 130
1 — G*T? (130
the terms proportional to log (m) —log(1 + GT) — lare
G+HaA+T7T) (G-1HA-=-T) (131)
2(1 + GI) 2(1 + G
=1, (132)
and finally the terms proportional to log (m) —log(1 — GT) — 1lare
G+nad-7  (G-DA+ T), (133)
2(1 — GT) 2(1 — GT)
= 1. (134)
Collecting all these terms and the log (1 a GT) term, equation (122) becomes
(G*— 1T (G*— 1T 1-TH»G
——l G+1) 4+ —T"1og(G— 1)+ ———Tlog(1 + T
= ore o8 VT 8 TG o8t )
(1 TZ)G (1 + GT)
-— 1—-T)—log(1+GT)—1+1log(1 —GT)+1+1 ) 135
o og( ) —log( ) 0g ( ) ¢\ T —or (135)
0
G* 1 - THG
= —%(log(G + 1) — log(G — 1)) + ﬁ(log(l + T) — log(1 — T)), (136)
1+T G+1
G- T2)Glog( ) (G* — 1)Tlog ( 1)
> (137)
1 — G*T?

where in the first equality we regrouped terms and used the fact that the sum of the last five terms equals zero.
The second equality follows from rewriting the logarithm terms.
Setting G = i, the denominator of equation (137) becomes zero. Luckily, the numerator

= 7 28(322) (= i ) =~ () - 2 - s (322) 00

becomes zero, implying that we can use L'Hopital’s rule to retrieve the limit. Differentiating the numerator from
equation (137) with respect to G gives

14T 2T G+1
1 —-T?»lo (—) 4+ — —2GTlo ( ), 138
( log 1-T In2 G — (138)
while differentiating the denominator from equation (137) gives
—2GT?2. (139)
so that the quotient of equations (138) and (139) gives
—(1 — T?log (%) _ 2T L 56T g(G+i)
In2 . (140)
2GT?
Setting G = %we retrieve that
(1 - T)Glo (”T) (G2~ DTlo (Gﬂ)
lim , (141)
G-l 1 — G’T?
—(1 = T)log (L) — 2L 4 2GT log (&L
_ hm ( T) 2 (G*l), (142)
G-+ 2GT2
(T? — 1log T 2L + 2log wr
— ( ) n2 (1 - T) , (143)
2T
2
:T+110g(1+T)_L‘ (144)
2T 1-T In2
We see that for all three regimes (G = %, G > % and G < %) equation (86), yields equation (137) in the
asymptotic limit of N — oco. From this we retrieve our claim that
H (B|E/E;) + H (B|F/F,
Qa (b, Pa (N < Eyg (N < TLEEED + HBIRE) (145)

2
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- T2)Glog(%) (G- 1)Tlog(%>
N 1 — G?T? .

(146)
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