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Abstract
One of themost sought-after goals in experimental quantum communication is the implementation
of a quantum repeater. The performance of quantum repeaters can be assessed by comparing the
attained rate with the quantumand private capacity of direct transmission, assisted by unlimited
classical two-way communication. However, these quantities are hard to compute,motivating the
search for upper bounds. Takeoka, Guha andWilde found the squashed entanglement of a quantum
channel to be an upper bound on both these capacities. In general it is still hard tofind the exact value
of the squashed entanglement of a quantum channel, but clever sub-optimal squashing channels allow
one to upper bound this quantity, and thus also the corresponding capacities. Here, we exploit this
idea to obtain bounds for any phase-insensitive Gaussian bosonic channel. This bound allows one to
benchmark the implementation of quantum repeaters for a large class of channels used tomodel
communication acrossfibers. In particular, our bound is applicable to the realistic scenariowhen
there is a restriction on themean photon number on the input. Furthermore, we show that the
squashed entanglement of a channel is convex in the set of channels, andwe use a connection between
the squashed entanglement of a quantum channel and its entanglement assisted classical capacity.
Building on this connection, we obtain the exact squashed entanglement and two-way assisted
capacities of the d-dimensional erasure channel and bounds on the amplitude-damping channel and
all qubit Pauli channels. In particular, our bound improves on the previous best known squashed
entanglement upper bound of the depolarizing channel.

1. Introduction

Optical quantum communication over long distances suffers from innate losses [1–5].While in a classical setting
the signal can be amplified at intermediate nodes to counteract this loss, this is prohibited in a quantum setting
due to the no-cloning theorem [6]. This problem can be overcome by implementing a quantum repeater,
allowing entanglement over larger distances [7, 8]. The successful implementation of a quantum repeater will
form an importantmilestone in the development of a quantumnetwork [9]. At this stage however, physical
implementations performworse than direct transmission [10, 11]. As the experimental results improve it will be
necessary to evaluate whether or not an implementation has achieved a rate not possible via direct
communications. This can be done by comparing the attainable ratewith a quantum repeater [12–19] to the
capacity of the associated quantum channel (i.e. direct transmission) for that task. For future quantum
networks, arguably the twomost relevant tasks are the transmission of quantum information and private
classical communication. The capacity of a quantum channel for these two tasks, assuming that we allow the
communicating parties to freely exchange classical communication, is given by the two-way assisted quantum
and private capacity.We denote these quantities by ( )Q2 and ( )P2 , respectively.
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Finding exact values for ( )Q2 and ( )P2 , however, is highly non-trivial thusmotivating the search for
upper bounds for them [20]. After having shown that the squashed entanglement of a channel is a quantity that is
such an upper bound [21], Takeoka, Guha andWilde showed that there is a fundamental rate-loss trade-off in
quantumkey distribution and entanglement distillation over practical channels [22].

The squashed entanglement r( )E A B;sq of a bipartite state rAB is a quantity defined as

¢r
 ¢

( ) ≔ ( ∣ ) ( )


E A B I A B E;
1

2
inf ; , 1sq
E E

whichwas introduced byChristandl andWinter [23] as an entanglementmeasure for a bipartite state. The
squashed entanglement can be interpreted as the environment E holding some purifying systemof rAB, and then
squashing the correlations betweenA andB asmuch as possible by applying a channel  ¢E E thatminimizes the
conditionalmutual information ¢( ∣ )I A B E; . Extending this idea from states to channels, Takeoka, Guha and
Wilde [21, 22] defined the squashed entanglement ( )Esq of a quantum channel as themaximum squashed
entanglement that can be achieved betweenA andB,

y
r

ñ ¢

( ) ≔ ( ) ( )
∣

E E A Bmax ; , 2sq sq
AA

where r y y= ñá¢ ¢(∣ ∣ )AB A B AA is the state shared betweenAlice and Bob after the ¢A system is sent through
the channel ¢A B.They showed that ( )Esq is an upper bound on the two-way assisted capacities.

Unfortunately, there is no known algorithm for computing the squashed entanglement of a channel. This is
partially due to the fact that the dimension of ¢E is a priori unbounded and that computing the squashed
entanglement of a state is already anNP-hard problem [24] and thusmight even be uncomputable. However,
fixing the channel in (1) in general yields an upper bound on ( )Esq . Exploiting this idea offixing a specific
‘squashing channel’  ¢E E , Takeoka et al derived upper bounds on the squashed entanglement of several
channels. Notably, they used this technique tofind an upper bound for the pure-loss bosonic channel.

Themain contribution of this paper is an upper bound applicable to all phase-insensitive Gaussian bosonic
channels.We apply this bound to the pure-loss channel, the additive noise channel and the thermal channel.

Additionally, we obtain results forfinite-dimensional channels by using tools that we develop here. Thefirst
of these consists of a concrete squashing channel that we call the trivial squashing channel which can be
connectedwith the entanglement-assisted capacity. This connection, first observed by Takeoka et al (see [25]),
allows us to compute the exact two-way assisted capacities of the d-dimensional erasure channel, and bounds on
the amplitude damping channel and general Pauli channels. Second, the squashed entanglement of
entanglement breaking channels is equal to zero. Third, for channels that can bewritten as a convex sumof
channels the convex sumof the squashed entanglement of each channel is an upper bound, i.e. ( )Esq is convex
on the set of channels.We combine all three of these tools to obtain bounds for the qubit depolarizing channel.

2.Notation

In this sectionwe lay out the notation and conventions that we follow in this paper.
For a quantum state rA the vonNeumann entropy of rA is defined as trr r= -( )H A logA A. For convenience

we take all logarithms in base two and set º(·) (·)log log2 . For a quantum state r r≔ AB the conditional
entropy of systemA givenB is defined as = -r r r( ∣ ) ( ) ( )H A B H AB H B . HereH(B) is computed over the state

trr r= ( )B A AB , wherewe denote the partial trace over systemA of a state rAB by tr r( )A AB . For a tripartite state rABE

the conditionalmutual information is defined as = -( ∣ ) ( ∣ ) ( ∣ )I A B E H A E H A BE; .Whenever there is
potentially confusion regarding the state over whichwe are computing an entropic quantity wewill add the state
as a subscript.

A quantum channel ¢A B is a completely positive and trace preservingmap [26] between linear operators
onHilbert spaces ¢A andB. A quantum channel  can always be embedded into an isometry ¢

VA BE that
takes the input to the output systemB together with an auxiliary systemE that we call the environment. This
isometry is called the Stinespring dilation of the channel. The action of the channel is recovered by tracing out
the environment: trr r=( ) ( )† V VE .

We denote the d-dimensionalmaximallymixed state by p. The dimension of p is implicit and should be
clear from the context. Let  be a channel with input and output dimension d. Then  is unital if p p=( ) .

3. Some properties of ( )Esq

In this sectionwe prove several properties of ( )Esq that will be of general use for obtaining upper bounds on
the squashed entanglement of concrete channels. First we define a squashing channel that we call the trivial
squashing channel and connect it to the entanglement assisted capacity of that channel, an observation
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previouslymade in [25] by Takeoka et al. Second, we prove that the squashed entanglement of entanglement
breaking channels equals zero. The third property is that ( )Esq is convex in the set of channels.

3.1. The trivial squashing channel
One possible squashing channel  ¢E E is the identity channel, whichwewill call the trivial squashing channel.
The state on ¢ABE is pure, fromwhich it can easily be calculated that

fñ ¢

( ) ( ∣ ) ( )
∣

 E I A B Emax
1

2
; , 3sq

AA

= -
fñ ¢

( ( ∣ ) ( ∣ )) ( )
∣

H A E H A BEmax
1

2
, 4

AA

= - - +
fñ ¢

( ( ) ( ) ( ) ( )) ( )
∣

H AE H E H ABE H BEmax
1

2
, 5

AA

= + -
fñ ¢

( ( ) ( ) ( )) ( )
∣

H B H A H ABmax
1

2
, 6

AA

=
fñ ¢

( ) ( )
∣

I A Bmax
1

2
; . 7

AA

Themaximization in the right hand of (7), up to the 1/2 factor, characterizes the capacity of a quantum channel
for transmitting classical information assisted by unlimited entanglement [27]. In otherwords, the squashed
entanglement is bounded from above by one half the entanglement assisted capacity of the channel whichwe
denote by ( )CE . This connection, whichwasfirst observed by Takeoka et al (see [25]), allows us to bound the
squashed entanglement for all channels for which ( )CE is known.

3.2. Entanglement breaking channels
Entanglement breaking channels have zero private and quantum capacities assisted by two-way
communications.We show that the squashed entanglement of these channels is also zero, following a similar
approach as was done for the squashed entanglement of separable states in [28]. In order to see this note that if an
entanglement breaking channel EB is applied to half of a bipartite state, the output is always separable and can
bewritten as a convex combination of product states

y y y= Ä ñá ¢(∣ ∣ ) ( )  , 8AB AAEB

ål a a b b= ñá Ä ñá∣ ∣ ∣ ∣ ( ), 9
i

i i i A i i B

wherewe denote by  the identitymap. A possible purification of yAB is

åy l a bñ = ñ ñ ñ ñ∣ ∣ ∣ ∣ ∣ ( )i i , 10ABE E
i

i i A i B E E1 2 1 2

where ñ{∣ }i E1
and ñ{∣ }i E2

are sets of orthonormal states. If the squashing channel consists of tracing out the E2
system, the resulting state is

ål a a b bñá Ä ñá Ä ñá∣ ∣ ∣ ∣ ∣ ∣ ( )i i , 11
i

i i i A i i B E1

which has zero conditionalmutual information.

3.3. Convexity of ( )Esq in the set of channels
The squashed entanglement of the channel is convex in the set of channels.We prove this in the appendix
following similar ideas to the ones used in [23] to prove that the squashed entanglement is convex in the set of
states. Hence, if = å pj j j with å =p 1j j and p 0j , then

å( ) ( ) ( ) E p E . 12
j

j jsq sq

4. Finite-dimensional channels

To build intuition beforemoving to bosonic channels, let usfirst bound the squashed entanglement offinite-
dimensional channels, i.e. channels where both the input and output dimensions arefinite.

An illustrative example of the effectiveness of the trivial squashing channel is the d-dimensional erasure
channel r r= - + ñá( ) ( ) ∣ ∣ p p e e1p

d , where ρ is a ‐d dimensional state and ñ∣e is an erasureflag orthogonal to

the support of any ρ on the input [26]. It is well known that = -( ) ( ) ( )C p d2 1 logE p
d [26] and that

3
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= -( ) ( ) ( )Q p d1 logp
d

2 [29]. In general we have

( ) ( ) ( ) ( ) ( )     Q P E C
1

2
, 13E2 2 sq

where thefirst inequality holds since the squashed entanglement of a channel is an upper bound on ( )Q2 and
the second inequality follows fromapplying the trivial squashing channel. In the specific case of the erasure
channel, we thenmust have that

= = = -( ) ( ) ( ) ( ) ( ) ( )  Q P E p d1 log . 14p
d

p
d

p
d

2 2 sq

That is, the trivial squashing channel is the optimal squashing channel, yielding both two-way assisted capacities
and the squashed entanglement of the d-dimensional erasure channel. Independently of our work, in [31] the
two-way assisted capacities of the d-dimensional erasure channel are established by computing the relative
entropy of entanglement of the channel, which is also an upper bound onP2.

A second channel we can apply the trivial isometry to is the qubit damping channel g AD, a channel that
models energy dissipation in two-level systems. The qubit amplitude damping channel is defined as

år rg

=

( ) ≔ ( )† A A , 15AD
i

i i
0

1

where

g
g

=
-

= ( )
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥A A

1 0

0 1
,

0

0 0
160 1

with amplitude damping parameter g Î [ ]0, 1 . Since the entanglement assisted classical capacity of the
amplitude damping channel is known [26] to be equal to

g g= + - -g

Î
( ) [ ( ) (( ) ) ( )] ( )

{ }
C h p h p h pmax 1 , 17E AD

p 0,1

where = - - - -( ) ( ) ( ) ( )h x x x x xlog 1 log 1 is the binary entropy, we immediately find the bound

g g g( ) ( ) ( ) ( )   P E C
1

2
. 18AD AD E AD2 sq

A comparison of this boundwith the best known lower bound, given by the reverse coherent information (RCI)
[33] g-[ ( ) ( )]h p h pmaxp , and an upper bound g-g( ) { } P min 1, logAD2 found by Pirandola et al [30]
using a relative entropy of entanglement approach, can be seen infigure 1.

A third interesting example are d-dimensional unital channels for which themaximally entangled state on
¢AA maximizes themutual information ( )I A B; . For these channels the trivial squashing channel gives the

following compact upper bound

( ) ( ) ( ) E I A B
1

2
; , 19sq

= + -[ ( ) ( ) ( )] ( )H A H B H AB
1

2
, 20

Figure 1.Comparison of bounds for the amplitude damping channel. In dashed green the upper bound by Pirandola et al [30], in solid
blue the upper bound found in this paper and the dashed–dottedmagenta line is a lower bound given by the reverse coherent
information [32, 33].
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= -( ) ( ) ( )d H Elog
1

2
. 21

In particular, this bound holds for any Pauli channel, wherewe have that d=2. Any Pauli channel can be
written as

r r r r r= + + +( ) ( ) p p X X p XZ ZX p Z Z , 220 1 2 3

with å == p 1i i0
3 . Choosingwithout loss of generality themaximally entangled state

F ñ = ñ + ñ+
¢ ¢∣ [∣ ∣ ]00 11AA AA

1

2
as input on ¢AA , we see that the output has a purification of the form

F ñ ñ + Y ñ ñ

+ Y ñ ñ + F ñ ñ

+ +

- -

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ( )

p p

p p

00 01

10 11 . 23

AB E AB E

AB E AB E

0 1

2 3

Fromorthogonality of the Bell states, it can be seen that the entropy of the environment coincides with the
classical entropy of the probability vector = ( )p p p p p, , ,0 1 2 3 . That is, =( ) ( )H E H p with

º -å =( )H p p plogi i i0
3 . From this it follows that

-( ) ( ) ( ) E H p1
1

2
. 24sq

Hence, we also obtain that - ( )H p2 is the entanglement assisted classical capacity of a Pauli channel  .
Let us now apply the bound for Pauli channels to a concrete channel, the qubit depolarizing channel p. The

action of this channel is r r pº - +( ) ( ) p p1p for Î [ ]p 0, 1 . This corresponds with the Pauli channel given

by = -( )p 1 , , ,
p p p p3

4 4 4 4
. After this identificationwe find that

+ - -( ) ( ) ( ) ( ) ( ) E
p p p p3 log 4 3 log 4 3

8
. 25psq

The depolarizing channel can also bewritten as a convex combination of two other depolarizing channels,
allowing us to use the convexity of ( )Esq in the set of channels to improve on the upper bound in equation (25).
We can compute the squashed entanglement of each individual channel andmultiply it by the appropriate
weight. Using this idea (see appendix B), we obtain the following stronger upper bound

a-
+ - -( ) ( ) ( ) ( ) ( ) ( )   





 

E min 1
3 log 4 3 log 4 3

8
, 26p

p
sq

0

where a = -
-




p

2 3
. This bound is equal to (25) for  p0 1

3
, after which it linearly goes to zero at =p 2

3
. See

figure 2 for a comparison of this newbound, the bound by Takeoka et al [21, 34], the bound by Pirandola et al
[30], and theRCI [32, 33].

5. Phase-insensitive Gaussian bosonic channels

5.1. An upper bound onphase-insensitive channels
In this sectionwe discuss ourmain result, an upper bound on the squashed entanglement of any phase-
insensitiveGaussian bosonic channel. Gaussian bosonic channels are of interest because they are used tomodel a
large class of relevant operations on bosonic systems [35]. Phase-insensitive channels are thoseGaussian bosonic
channels which add equal noise in each quadrature of the bosonic systems. Imperfections in experimental setups

Figure 2.Comparison of bounds for the depolarizing channel. The dotted red line is the upper bound by Takeoka et al [21], the dashed
blue line is the optimized squashed entanglement bound in this paper, the solid green line is the relative entropy of entanglement
upper bound by Pirandola et al [30, 31] and themagenta line is a lower bound given by the reverse coherent information [32, 33].
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for quantum communicationwith photons aremodeled by phase-insensitive channels,motivating us to upper
bound the squashed entanglement of all such channels. In particular thismotivates the search for boundswhere
the input of the channel has a constraint on themean photon numberN.

Any phase-insensitive channel PI is completely characterized by its loss/gain parameter τ and noise
parameter ν. The Stinespring dilation of such a channel consists of a beamsplitter with transmissivity
= t

t n+ +
T 2

1
interactingwith the vacuumonE1, and a two-mode squeezer with squeezing parameter

= ( )r Gacosh with the amplification = t n+ + G 11

2
interacting with the vacuumonE2 [36] (see figure 3

and the appendix for a detailed definition of the channel).T andG also completely characterize any phase-
insensitive channel. Takeoka et al [21, 22, 34] found bounds for such channels by only considering the
beamsplitter part of the Stinespring dilation. To be a valid channel, wemust have that n t-∣ ∣ 1 .We further
have that phase-insensitive channels are entanglement breakingwhenever n t + 1 [37], or equivalently,

-( ) G T1 1. Hence, the squashed entanglementmust be zero for channels with such parameters as discussed
in the tools section.

Sincewe are interested in phase-insensitive Gaussian channels, wemake the ansatz that a good squashing
mapwill be a phase-insensitive channel. Numerical work suggests that, if only phase-insensitive isometries are
considered, the pure-loss channel and the amplification channel separately have as optimal squashing isometry
the balanced beamsplitter interacting with the vacuum. Thismotivates us to use the isometry consisting of two
balanced beamsplitters at the outputs of the first beamsplitter and the two-mode squeezer (see figure 3). Using
this isometry we obtain a bound for all phase-insensitive channels with restrictedmean photon numberN (see
appendix for a derivation and a proof that the equation ismonotonically non-decreasing as a function ofN).
This equation equals

n n n n+ - -¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢(( ) ) (( ) ) (( ) ) (( ) ) ( )g g g g , 27BE E BE E E E E E1 2 1 21 2 1 2 1 2 1 2

with = -+ + - -( ) ( ) ( ) ( )( )g x log logx x x x1

2

1

2

1

2

1

2
[35] and

n

n

n

n

= -

= -

= -

= -

¢ ¢
+ + - + - + - + - + - W

¢ ¢
+ + - + - + - - - + - W

¢ ¢
+ + - + + + + + + + + W

¢ ¢
+ + - + + + + - + + + W

-

-

+

+

( )

( )

( )

( )

( ( )) ( ) ( ( ))

( ( )) ( ) ( ( ))

( ( )) ( ) ( ( ))

( ( )) ( ) ( ( ))

,

,

,

,

E E
G N T GT G N GT G N GT

E E
G N T GT G N GT G N GT

BE E
G N T GT G N GT G N GT

BE E
G N T GT G N GT G N GT

1
1 2 1 1 1 1 1

2

2
1 2 1 1 1 1 1

2

1
1 2 1 1 1 1 1

2

2
1 2 1 1 1 1 1

2

1 2

2 2 2

1 2

2 2 2

1 2

2 2 2

1 2

2 2 2

wherewe have set

W = + -  + - + + ( ) ( )( ) ( ) ( )N NT G N NT G GNT1 4 2 1 1 . 282 2

As  ¥N , the bound above converges to itsmaximumvalue of

- - -

-

+
-

+
-( ) ( )

( )
( ) ( )

( ) E
T G G T

G T

1 log 1 log

1
. 29

T

T

G

G
sq PI

2 1

1
2 1

1

2 2

Figure 3.A squashing isometry for any phase-insensitive Gaussian channel PI taking ¢A toB. The beamsplitter B1 and the two-
mode squeezer S form the Stinespring dilation, while the balanced beamsplitters B2 and B3 form the squashingmap. The
beamsplitter B1 interacts with the vacuumon E1 andA, and the two-mode squeezer S interacts with the output of B2 and the vacuum
on E2. The squashing isometry consists of two balanced beamsplitters B2 and B3 interacting with the vacuumon F1 and F2 and the
output of the beamsplitter B1 and the two-mode squeezer S.
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Rewriting the upper bound as function of the channel parameters τ and ν [35]we obtain the upper bound

z n t n t tz t n t n
n t t

+ + + - - + + + -
+ + -

( ) ( ) ( )
( )( )

( ) E
1 3 , 1 3, 1

2 1 1
, 30sq PI 2

where z = ( )( )a b ab, log a

b
.

5.2. Application to concrete phase-insensitive Gaussian channels with unconstrained photon input
5.2.1. Quantum-limited phase-insensitive channels
Apure-loss channel hasG=1. As a consequence, for pure-loss channels the bound in equation (29) reduces to

+
-( )log T

T

1

1
. This bound coincides with the bound found byTakeoka et al.

In the opposite extremewefind quantum-limited amplifying channels, that is channels withT=1 and
>G 1. For these channels, the bound by Takeoka is equal to infinity while (29) is non-trivial. Concretely, it

reduces to thefinite value of +
-( )log G

G

1

1
. This should be comparedwith the exact capacities independently found

by Pirandola et al [30, 31] using a relative entropy of entanglement approach, = =
-( )Q P log G

G2 2 1
.

5.2.2. Additive noise channel
An additive noise channel only adds noise to the input, without damping or amplifying the signal. For an
additive noise channel add wehave =

+
T

n

1

1
and = = +G n 1

T

1 , where n is the noise variance. Taking the

limit of equation (29) as  = +G n 1
T

1 we show in the appendix that the upper bound becomes

+ +
-

-( ) ( )  ⎜ ⎟⎛
⎝

⎞
⎠E

T

T

T

T

1

2
log

1

1

1

ln 2
, 31sq add

2

=
+ +

+
+

- ( )⎜ ⎟⎛
⎝

⎞
⎠

n n

n

n

n

2 2

2 2
log

2 1

ln 2
. 32

2

This should be comparedwith the upper bound independently found by Pirandola et al [30, 31], --
( )

nlogn 1

ln 2

and the coherent information = - -( )
( )

I nlogC add
1

ln 2
which is a lower bound on ( )P2 [38]. See figure 4

for a comparison of these bounds.

5.2.3. Thermal channel
A thermal channel is similar to the pure-loss channel, but instead of the input interactingwith a vacuum state on
a beamsplitter of transmissivity τ, it interacts with a thermal state withmean photon numberNB. For a thermal
channel we have that h= - +( )G N1 1B and = h

h- +( )
T

N1 1B
. Infigure 5 the upper bound is plotted for

NB=1 togetherwith two other bounds and the RCI, which is a lower bound on ( )P2 [32, 39].

5.2.4. Non-quantum limited noise for lossy channels
In experimental setups one does notmeasure ν, but the additional noise c  0.We have the relation
n t c= - +1 where t-1 is theminimumamount of noise that will be introduced for a loss τ (the
quantum-limited noise) [35]. The upper bound from (30) can then be rewritten as

Figure 4.Comparison of the upper boundsmentioned in this paper for the additive noise channel. The dotted red line is the upper
bound byTakeoka et al [21], the dashed blue line is the squashed entanglement bound in this paper, the solid green line is the relative
entropy of entanglement upper bound by Pirandola et al [30, 31] and themagenta line is the coherent information of the channel
which is a lower bound [38].
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z c t c t tz c c
c t

+ + + - - +
+ -

( ) ( )
( )( )

( )2 2 , 2 2 4,

4 2 1
. 33

2

5.3. Finite-energy bounds
For lowmean photon number and certain parameter ranges the finite-energy bound in equation (27) is tighter
than previous upper bounds on the two-way assisted capacities. For any energy the pure-loss bound from
Takeoka et al [21, 34] and equation (86) coincide. Infigure 6 the bound fromTakeoka et al [21, 34], is shown for
an average photon number ofN=0.1 [40, 41] and the two-way assisted private capacity of the pure-loss
channel [30, 31]. The loss-parameter runs from0 to ´ -2 10 20, which is the expected range of losses forfiber
lengths of around 1000 km. Infigure 7we plot the upper bound by Pirandola et al [30, 31], thefinite-energy
bounds of Takeoka et al [21, 34], and equation (86) for the thermal channel withNB=1. For h

+
 N

N 1
b

b
the

thermal channel becomes entanglement breaking, so that the squashed entanglement bounds are equal to zero
for those regimes. This implies that the squashing isometry infigure 3 is not optimal.

6. Conclusion

In this paper we have obtained bounds on the two-way assisted capacities of several relevant channels using the
squashed entanglement of a quantum channel. For practical purposes, themost relevant of the channels
considered are phase-insensitive Gaussian channels. Our bound for these channels is always non-zero, even
when the corresponding channel is entanglement-breaking. This points to the existence of an even better
squashing channel for phase-insensitive Gaussian channels. Futurework could investigate this intriguing
avenue, especially due to its relevance to the squashed entanglement of a bipartite state as an entanglement
measure.

Figure 5.Bounds on the squashed entanglement of the thermal channel withNB=1 as a function of the loss in dB. The red dotted line
shows the upper bound by Takeoka et al [21, 34], the dashed blue line the newbound reported in this paper, in solid green the bound
by Pirandola et al [30, 31], and the dashed–dotted line shows the reverse coherent information [32, 39]which is a lower bound.

Figure 6.Bound for the pure-loss channel with an average photon number of 0.1 and the secret key capacity [30, 31] as a function of η.
The new bound in this paper coincides with the finite-energy variant of the bound by Takeoka et al, see [21, 22]. The loss parameter η
ranges from0 to ´ -2 10 20, which is the range of expected losses for transmissions across fibers with length»1000 kmwith an
attenuation length of 22 km [18].
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Furthermore, we have proven the exact two-way assisted capacities and the squashed entanglement of the d-
dimensional erasure channel, improved the previous best knownupper bound on the amplitude-damping
channel and derived a squashed entanglement bound for general qubit Pauli channels. In particular, our bound
applies to the depolarizing channel and improves on the previous best known squashed entanglement upper
bound.

The only credible way to claimwhether an implementation of a quantum repeater is good enough is by
achieving a rate not possible by direct communication.Our bounds take special relevance in this context,
especially for realistic energy constraints.
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AppendixA. Bounds for convex decomposition of channels

Oneway of obtaining bounds on the squashed entanglement is based on decomposing the channel action as a
mixture of other channels actions and bounding each of them individually.

Let ¢A B be a channel such that its action can bewritten as the convex combination of the action of two
other channels 0 and 1

r f f f= Ä = Ä + - Ä¢ ¢ ¢( )( ) ( )( ) ( )( )( ) ( )     p p1 . 34AB AA AA AA0 1

Thenwe can always purify rAB in the followingway

r r rñ = ñ ñ ñ + - ñ ñ ñ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )( ) ( )p p0 0 1 1 1 , 35ABEF F ABE F F ABE F F
0 1

1 2 1 2 1 2

where

r fñ = ñ¢ ¢∣ ∣ ( )( ) V 36ABE A BE AA
0 0

and

r fñ = ñ¢ ¢∣ ∣ ( )( ) V . 37ABE A BE AA
1 1

That is, r ñ∣ ( )
ABE

0 and r ñ∣ ( )
ABE

1 stand for the state that we obtain after applying the channel isometry to the pure
input state fñ ¢∣ AA .

Let us apply the following channel to rñ∣ ABEF F1 2

trr r

r

Ä Ä Ä

+ Ä Ä Ä

 ¢
ñ

 ¢
ñ

(( )( )

( )( )) ( )

∣

∣

 

 

S P

S P , 38

ABEF F F AB E E F F ABEF F

AB E E F F ABEF F

0 0

1 1

1 2 2 1 2 1 2

1 2 1 2



Figure 7.Comparison of the upper bound found by Pirandola et al [30, 31] for the thermal channel withNB=1 and the two squashed
entanglement finite-energy boundswith average photon number of 0.1 as a function of the loss-parameter η [21, 34].
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wherewe denote by ñ∣PF
v
1
the projector onto the vector ñ∣v . First we trace out F2, then

r r r= Ä ñá + - Ä ñá∣ ∣ ( ) ∣ ∣ ( )( ) ( )p p0 0 1 1 1 . 39ABEF ABE F ABE F
0 1

1 1 1

Now, let us apply the rest of the channel.We obtain

år r

r r

= Ä ñá

= Ä ñá + - Ä ñá

¢  ¢

 ¢  ¢

∣ ∣ ( )

( ) ∣ ∣ ( ) ( ) ∣ ∣ ( )( ) ( )

S i i

pS p S0 0 1 1 1 . 40

ABE F
i

E E
i

F ABEF

E E ABE F E E ABE F
0 0 1 1

1 1 1

1 1

That is, r ¢ABE F1
is a quantum-classical system. For states of this form the conditionalmutual information can be

simplified to

= ¢ + - ¢r r ¢  ¢
( ∣ ) ( ∣ ) ( ) ( ∣ ) ( )( ) ( )( ) ( )I A B EF pI A B E p I A B E; ; 1 ; . 41S S1 E E ABE E E ABE

0 0 1 1

Nowwe can upper bound ( )Esq in the followingway

tr
¢

åf
r

Ä ñá Ä¢  ¢

( ) ( ∣ )) ( )
∣ ∣

 E I A B E Fmax inf ; , 42
S i i

sq 1
AA i E E

i
F F

ABEF
1 2

1

= ¢ + - ¢
f

r rñ ñ
¢  ¢  ¢

( ( ∣ ) ( ) ( ∣ ) ) ( )∣ ∣( ) ( )p I A B E p I A B Emax inf ; 1 inf ; , 43
S SAA E E

ABE

E E

ABE0
0

1
1

+ -( ) ( ) ( ) ( )  pE p E1 . 44sq 1 sq 2

Thefirst inequality holds by restricting the squashing channels to those channels of the form in (38). Equality
(43) follows since for channels of the form (38) the resulting state is a quantum-classical state as indicated in (40),
and for classical quantum states the conditionalmutual information of thewhole state is a convex combination
of the individual conditionalmutual informations as shown in (41). The last inequality follows because the state
that achieves themaximum squashed entanglementmight be different for each channel. Thismethod
generalizes easily to any number of channels, fromwhich it follows that if r r= å( ) ( ) pi i i with å =p 1i i
and p 0i , then

å( ) ( ) ( ) ( ) ( )     Q P E p E . 45
i

i i2 2 sq sq

Appendix B. Improved bound for the depolarizing channel

It is well known that the depolarizing channel becomes entanglement breaking for p 2

3
[42], which implies

thatP2 is zero in that range. For   p 2

3
, we canwrite the output of the channel as a convex combination of

the output of 2 3 and  . That is, there exists some a 0 1 such that

r a r a r= - +( ) ( ) ( ) ( ) ( )  1 . 46p 2 3

By expanding both sides of (46) and identifying the coefficients, we obtain

a =
-
-

( )



p

2 3
47

which is in the range [ ]0, 1 for   p0 .
Using the decomposition of the depolarizing from (46) the action of p on half of a pure entangled state

takes the following form

y y y= Ä ñá ¢(∣ ∣ ) ( )  , 48AB p AA

åa y y p a l a a b b= - - ñá + + ñá Ä ñá( )[( )∣ ∣ · ] ∣ ∣ ∣ ∣ ( ) 1 1 . 49AB
i

i i i A i i B

Let r y y p= - ñá +(( )∣ ∣ · ) 1AB AB . A possible extension of yAB is

åy a r a l y y f f= - Ä + ñá + + ñá Ä ñá Ä ñá¢ ¢
=

¢( ) ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )n n i i1 1 1 . 50ABE AB E
i

n

i i i A i i B E
1

Since y ¢ABE is a valid extension of rAB, thismeans that there exists some squashing channel  ¢E E that takes the
environment of the depolarizing channel to this particular ¢E . This is easy to see, first we can find a state yñ ¢∣ ABE T

that purifies y ¢ABE . Next, since all purifications are related by an isometry there exists some purification  ¢VE E T

that takes the environment of the channel to ¢E T . After this we trace out the systemT and obtain y ¢ABE .
Now, y ¢ABE is a quantum-classical system.Hence, we can decompose the conditionalmutual information

¢( ∣ )I A B E; into the sumof themutual information conditioned on each value ofE

åa a l¢ = - ¢ + ¢y r y y f f
=

ñá Ä ñá Ä ñá ¢( ∣ ) ( ) ( ∣ ) ( ∣ ) ( )∣ ∣ ∣ ∣ ∣ ∣I A B E I A B E I A B E: 1 : : , 51
i

n

i i i
1

i i A i i B E
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a= - ¢ r( ) ( ∣ ) ( )I A B E1 : . 52

Furthermore the input state thatmaximizes (52) is themaximally entangled state on ¢AA . Hence, the following
bound upper bound on ( )E psq holds for   p0

a-
+ - -( ) ( ) ( ) ( ) ( ) ( )   

 E 1
3 log 4 3 log 4 3

8
. 53psq

AppendixC. Squashed entanglement upper bound for any phase-insensitive Gaussian
channel

In this sectionwe discuss a proof of an upper bound for the squashed entanglement of any phase-insensitive
bosonicGaussian channel PI. Herewe use the fact that any such channel can be decomposed as a beamsplitter
with transmissivityT concatenatedwith a two-mode squeezer with squeezing parameter = ( )r Gacosh .We
first show that we can restrict the input states to the class of thermal states withmean photon numberN, after
which the entropic quantity of interest is written as a function ofN.We then show that this function is
monotonically increasing, after whichwe take the asymptotic limit  ¥N of the entropic quantity yielding

- - -

-

+
-

+
-( ) ( )

( )
( ) ( )

( ) E
T G G T

G T

1 log 1 log

1
. 54

T

T

G

G
sq PI

2 1

1
2 1

1

2 2

To show this is true, wefirst use a different formof ( )Esq , whichwas proven byTakeoka et al [21],

= ¢ +
r

w w
¢  ¢

( ) [ ( ∣ ) ( ∣ ) ] ( )E H B E H B F
1

2
max inf . 55

V
sq PI

A E E F

There are two differences between the characterization in (55) and the one in (2). First, themaximization runs
over density operators on ¢A instead of running over pure states on ¢AA . Second, instead of taking the infimum
over the squashingmaps, it is taken over their dilations: squashing isometries  ¢VE E F that take the system E to ¢E
and an auxiliary system F. The entropies are then taken on the stateω on systems ¢BE F .

The total operation, whichwe denote by D, consists of the Stinespring dilation of the channel (B1 and S) and
the squashing isometry consisting of two balanced beamsplitters (B2 and B3), see figureC1 .Wenowwrite

¢ =( ∣ ) ( ∣ )H B E H B E E1 2 , where the systemon ¢E is the output at ¢E1 and ¢E2 after the total transformation ¢ED. 1 is
the state after the vacuum state onE1 has interactedwith the beamsplitter B1 and the balanced beamsplitter B2.
Similar statements hold also for ¢ ¢E F,2 1 and ¢F2. Since the isometry consists of two balanced beamsplitters we have
that ¢ = ¢ ¢ =( ∣ ) ( ∣ ) ( ∣ )H B E H B F F H B F1 2 , so that ¢( ) ( ∣ ) E H B Esq . After having found the state after the

transformationwe calculate the so-called symplectic eigenvalues of the states on ¢ ¢BE E1 2 and ¢ ¢E E1 2, fromwhich
we can find ¢ ¢( ∣ )H B E E1 2 . To get an expression of the upper bound for  ¥N , we calculate for three different
regimes ofG andT the asymptotic behavior of the symplectic eigenvalues, after whichwe show that all three
regimes give rise to the same formof the upper bound.

C.1. Bound forfiniteN
AMathematica file is included in the supplementarymaterial to guide the reader through the calculations
performed in this section. For the proof wefirst need to be able to calculate the entropy of aGaussian state as a

FigureC1.A squashing isometry for any phase-insensitive Gaussian channel PI taking ¢A toB. The beamsplitter B1 and the two-
mode squeezer S form the Stinespring dilation, while the balanced beamsplitters B2 and B3 form the squashingmap. The
beamsplitter B1 interacts with the vacuumon E1 andA, and the two-mode squeezer S interacts with the output of B2 and the vacuum
on E2. The squashing isometry consists of two balanced beamsplitters B2 and B3 interacting with the vacuumon F1 and F2 and the
output of the beamsplitter B1 and the two-mode squeezer S.
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function of its covariancematrix. The entropy of an M-modeGaussian state ρ can be calculated byfinding theM
symplectic eigenvalues n  1k of the covariancematrix G of ρ [43]. It turns out that the M2 eigenvalues of the
matrixWG are of the form ni k [44], where

W
-=

≔ ⨁ ( )⎡
⎣⎢

⎤
⎦⎥

0 1
1 0

. 56
k

M

1

The entropy of the state is then nå = ( )gk
M

k1 , where = -+ + - -( ) ( ) ( ) ( )( )g x log logx x x x1

2

1

2

1

2

1

2
[35].

To obtain the state at the end of the isometry we determine first the optimal state for a specifiedmean photon
numberN, after whichwe apply theGaussian transformations of the Stinespring dilation of the channel and the
isometry, shown infigure C1. Tofind themaximizing input state on ¢A , we follow the same approach [21, 34] as
Takeoka et al. Since the concatenation ofmultipleGaussian transformations is still a Gaussian transformation,
having aGaussian state as input will always give aGaussian state on any of the outputs. From the extremality of
Gaussian states for conditional entropy [45], we get that the optimal input state is aGaussian state.

Tofind the optimal Gaussian state, we note that the covariancematrix of all single-modeGaussian states can
bewritten as [46]

q q
q q

+ +
-

( ) ( )
⎡
⎣⎢

⎤
⎦⎥N r r r

r r r
1 2 cosh 2 cos sinh 2 sin sinh 2

sin sinh 2 cosh 2 cos sinh 2
57

for some r 0 and q Î . Since the channel from ¢A to ¢ ¢ ¢ ¢BE E F F1 2 1 2 is covariant with displacements and all
unitaries Ũ such that the corresponding symplecticmatrices ˜SU act on the thermal state as

q q
q q

+  + +
-

( ) ( ) ( )˜ ˜
⎡
⎣⎢

⎤
⎦⎥S N S N r r r

r r r
1 2 1 2 cosh 2 cos sinh 2 sin sinh 2

sin sinh 2 cosh 2 cos sinh 2
, 58U U

T

wehave that ¢ = ¢r r( ∣ ) ( ∣ ) ˜ ˜ †H B E H B E U U .We set ρ equivalent to r˜ ˜ †U U , defining an equivalence relation. It is clear
that all states with fixedN in equation (57) define an equivalence class with respect to the equivalence relation.
Since ¢ = ¢r r( ∣ ) ( ∣ ) ˜ ˜ †H B E H B E U U , we can set the thermal state +( )N1 2 to be the representative of that
equivalence class, andwe only have to consider thermal states for the optimization.

The total system G ¢ ¢ ¢A E F E F1 1 2 2
consists then of a thermal state G ¢A withmean photon numberN on ¢A and

vacuum states on all the other inputs:

gG = Å Å Å Å¢ ¢ ( )    , 59A E F E F A E F E F1 1 2 2 1 1 2 2

g = +
+¢ ( )

⎡
⎣⎢

⎤
⎦⎥

N
N

1 2 0
0 1 2

. 60A

The operations of the isometry are then the first beamsplitter B1with transmissivityT on ¢A andE1

=

-
-

- -
- -

Å Å Å

¢ ¢

( )  

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

T T

T T

T T

T T

B

0 1 0

0 0 1

1 0 0

0 1 0

, 61

A E

F E F1

1

1 2 2

FigureC2.Alice can perform a local operationΛ on one half of Y ¢AA
N that yields a state on A and a classical outcome k. The state

conditioned on the outcome k on systems ¢ABE E1 2 is, up to a unitary displacement on B and ¢ ¢E E1 2, equal to the state r
¢N . Alice and

Bob can thus simulate any lower energy scenario.
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the second beamsplitter B2 with transmissivity 1

2
onE1 and F1

= Å
-

-

Å Å¢ ( )  

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

B

0 0

0 0

0 0

0 0

, 62A

E F

E F2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
1 1

2 2

the two-mode squeezer S on ¢A andE2 with the relation = ( )G rcosh2

=

-
- -

-
- -

Å

¢ ¢ ¢

( )

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

G G

G G

G G

G G

S

0 0 0 0 0 1 0

0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

, 63

A E F

F

1 1

2

andfinally the last beamsplitter B3 onE2 and F2 with transmissivity 1

2

= Å Å Å
-

-

¢ ¢

¢

( )  

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

B

0 0

0 0

0 0

0 0

. 64A E F

E F

3

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1 1

2 2

We then have that the total symplectic transformationmatrix D is

= ( )D B SB B 653 2 1

=

- -

- - -

-

-

-

-

- -

- - -

-

-

-

-

-

- - -

- - -

- - -

- - -

( )
( )

( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

GT G T G

GT G T G

0 1 0 0 0 1 0 0 0
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

.
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T T

T T

T T

T T

G T G T G

G T G T G

G T G T G

G T G T G

1

2 2

1
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1

2 2

1

2

1

2 2

1

2

1

2 2

1

2

1

2
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2 2
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2

1

2

1 1

2 2

1

2

1

2

1 1
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1

2

1

2
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1

2

The covariancematrix G G=¢ ¢ ¢ ¢ ¢D DBE F E F A E F E F
T

1 1 2 2 1 1 2 2
after the transformation is then

s s
s s
s s

s s s
s s s

- -
- -

-
-

- -

( )

  
  
  

 
 

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

a b b c c
b d e f f

b e d f f

c f f g h

c f f h g

, 67

z z

z z

z z

z z z

z z z
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where s =
-

=⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

1 0
0 1

, 1 0
0 1z and

= + -( ) ( )a G NT2 1 1, 68

= -( ( )) ( )b N GT T2 1 , 69

= + -( ) ( ) ( )c NT G G1 2 1 , 70

= + -( ) ( )d N T1 1 , 71

= -( ) ( )e N T 1 , 72

= - -( )( ) ( )f N G T T1 1 , 73

= + -( ) ( )g G G NT1 , 74

= - - +( )( ) ( )h G NT1 1 . 75

The covariancematrix on the subsystems E E1 2 is then

s
s

G =
-

-
¢ ¢ ( )




⎡
⎣⎢

⎤
⎦⎥

d f

f g
. 76E E

z

z
1 2

Multiplying byW gives

WG =
-

-

¢ ¢ ( )

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

d f

d f

f g

f g

0 0

0 0

0 0

0 0

. 77E E1 2

Now set W = + -  + - + + ( ) ( )( ) ( )N NT G N NT G GNT1 4 2 1 12 2 . Taking the covariancematrix
corresponding to ¢ ¢E E1 2 we find usingMathematica the symplectic eigenvalues to be

n = -
+ + - + - + - + - + - W

¢ ¢
-

( ) ( ( )) ( ) ( ( ))

( )

G N T GT G N GT G N GT1 2 1 1 1 1 1

2
,

78

E E 1

2 2 2

1 2

n = -
+ + - + - + - - - + - W

¢ ¢
-

( ) ( ( )) ( ) ( ( ))

( )

G N T GT G N GT G N GT1 2 1 1 1 1 1

2
.

79

E E 2

2 2 2

1 2

The covariancematrix corresponding to ¢ ¢BE E1 2 is

s
s

s s
G =

-
- -

-
¢ ¢ ( )

 
 



⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

a b c
b d f

c f g

, 80BE E

z

z

z z

1 2

so that

WG =

- -
- -

-
-

-
- -

¢ ¢ ( )

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

a b c
a b c

b d f

b d f

c f g

c f g

0 0 0
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

. 81BE E1 2

From this the symplectic eigenvalues can be calculated to be

n = -
+ + - + + + + + + + + W

¢ ¢
+

( ) ( ( )) ( ) ( ( ))

( )

G N T GT G N GT G N GT1 2 1 1 1 1 1

2
,

82

BE E 1

2 2 2

1 2

n = -
+ + - + + + + - + + + W

¢ ¢
+

( ) ( ( )) ( ) ( ( ))

( )

G N T GT G N GT G N GT1 2 1 1 1 1 1

2
,

83

BE E 2

2 2 2

1 2

n =¢ ¢( ) ( )1. 84BE E 31 2
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Wecannow calculate ¢ ¢( ∣ )H B E E1 2 ,

¢ ¢ = ¢ ¢ - ¢ ¢( ∣ ) ( ) ( ) ( )H B E E H BE E H E E , 851 2 1 2 1 2

n n n n= + - -¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢(( ) ) (( ) ) (( ) ) (( ) ) ( )g g g g , 86BE E BE E E E E E1 2 1 21 2 1 2 1 2 1 2

wherewe used that =( )g 1 0.

C.2.Monotonicity of the bound
For this sectionwe restrict ourselves to the picture of calculating the squashed entanglement on the systems

¢ ¢ABE E1 2 instead of ¢ ¢ ¢ ¢BE E F F1 2 1 2, where ¢ ¢ ¢ ¢ ¢ ≔V VA BE E F F1 2 1 2
is the total isometry (see figureC1). In this picture the

optimization is over the purification of the thermal state, the two-mode squeezed vacuum state YN . To show
monotonicity of equation (86) inN, we use that, up to a displacement onB (conditioned on ameasurement
outcome k at ¢A ), it is possible to transform the state Y ¢AA

N to Y ¢
¢

AA
N , using a local operation LA onAlice (where

¢ <N N ) [47], seefigureC2.
Suppose now thatA performs the operation LA on the state trr Y¢ ¢ ¢ ¢≔ ( )†V VABE E

N
F F

N
1 2 1 2

after the isometry,

òr rL Ä = ñá Ä Ä Ä Ä Ä¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢

¢ ¢( ) ∣ ∣ (( ) ( ) ) ( )†  k k k U U U Ud , 87A BE E ABE E
N

A B
k

E E
k

ABE E
N

A B
k

E E
k

1 2 1 2 1 2 1 2 1 2

ò r= ñá Ä ¢ ¢
¢∣ ∣ ( )k k kd . 88ABE E

N k,

1 2

Herewe used that displacement operations can always be removed by local operations [48], so that forfixed
outcome k the state r ¢ ¢

¢
ABE E
N k,

1 2
is related to trr Y¢ ¢

¢
¢ ¢

¢≔ ( )†V VABE E
N

F F
N

1 2 1 2
by unitary displacements onB and ¢ ¢E E1 2.

The conditionalmutual information evaluated on the state r rL Ä =¢ ¢ ¢ ¢ ˜A BE E ABE E
N N

1 2 1 2
then satisfies

¢ ¢ ¢ ¢
r r

¢ ¢
( ∣ ) ( ∣ ) ( )˜I A B E E I A B E E; ; , 891 2 1 2

ABE E

N N

1 2

ò ¢ ¢
r

¢( ∣ ) ( ) k I A B E Ed ; , 901 2 N k,

ò= ¢ ¢
r

¢( ∣ ) ( )k I A B E Ed ; , 911 2 N

= ¢ ¢
r

¢( ∣ ) ( )I A B E E; . 921 2 N

In equation (89)weused that the conditionalmutual information can never increase under local operations on
A [23]. In equation (90)weuse the fact that the states r ¢ ¢

¢
ABE E
N k,

1 2
areflagged on the classical outcome k, and that the

conditionalmutual information of thewhole state can not be smaller than the sumof the values of the
conditionalmutual information of the individual states [23]. In equations (91) and (92)weuse the fact that all
the r ¢ ¢

¢
ABE E
N k,

1 2
states are related to r ¢ ¢

¢
ABE E
N

1 2
by local unitaries onB and ¢ ¢E E1 2 and that the conditionalmutual

information of those states thusmust be equal.
That is, the conditionalmutual information computed over the isometryVwith input state YN is always

greater than the conditionalmutual information computed over the isometryVwith input state Y ¢N if ¢ <N N .
This thus implies that equation (86) is a bound for all phase-insensitive Gaussian bosonic channels and all energy
restrictions.

C.3. Expression as  ¥N
To obtain an explicit form for the expression in (86) as  ¥N , we expand the eigenvalues around = ¥N for
three different regimes ofG andT usingMathematica. For =G

T

1 we have

n =
-

+¢ ¢( ) ( ) ( )
G

G
N

1
1 , 93E E 1

2

1 2

n =
-

+¢ ¢( ) ( ) ( )
G

G
N

1
1 , 94E E 2

2

1 2

n = +¢ ¢( ) ( ) ( )N2 1 , 95BE E 11 2

n =
+

+¢ ¢( ) ( ) ( )G

G
o

1

2
1 . 96BE E 2

2

1 2

Herewe used the notation that =( ) ( ( ))f N o h N for two functions f(N) and h(N) if and only if " > $ ¢ N0,
such that " > ¢ ( ) ( )N N f N h N, .

Now let us introduce the equivalence relation� for two functions f(N) and h(N), so that ( ) ( )f N h N if
and only if - =¥ ∣ ( ) ( )∣f N h Nlim 0N , i.e. we can safely replace f(N) by h(N) as  ¥N . For example, we

have that + +( )( ) ( )g N c g N log N

2

1

ln 2
  . In particular, if = +( ) ( ) ( )f N h N o 1 , then

( ( )) ( ( ))g f N g h N . Furthermore, this alsomeans that if we have = +( ) ( ) ( )f N h N 1 and
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= = ¥¥ ¥( ) ( )f N h Nlim limN N , then +( )( ( )) ( )g f N log h N

2

1

ln 2
 .Wewill call these relations the

asymptotic entropic relations for short.
Using these asymptotic entropic relations, we find

n n n n¢ ¢ - ¢ ¢ = + - -( ) ( ) (( ) ) (( ) ) (( ) ) (( ) ) ( )H BE E H E E g g g g , 97BE E BE E E E E E1 2 1 2 1 2 1 21 2 1 2 1 2 1 2

+
+ -

-
-

-( ) ( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟g

G

G
g N g

G

G
N g

G

G
N

1

2
2

1 1
, 98

2 2 2



+
+ + -

-
- -

-
-( ) ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟g

G

G
N

G

G
N

G

G
N

1

2
log

1

ln 2
log

1

4

1

ln 2
log

1

4

1

ln 2
, 99

2 2 2



=
+

+
-

- ( )⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠g

G

G

G

G

1

2
log

4

1

1

ln 2
, 100

2

2

=
+ +

-
- +

+
-

-
+ + + -

( )⎜ ⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝

⎞
⎠

G

G

1

2
log

1

2

1

2
log

1

2
log

4

1

1

ln 2
, 101

G

G

G

G

G

G

G

G

1

2

1

2

1

2

1

2
2

2 2 2 2

=
+ +

-
- -

+
-

-
( ) ( ) ( ) ( ) ( )⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

G

G

G

G

G

G

G

G

G

G

1

4
log

1

4

1

4
log

1

4
log

4

1

1

ln 2
, 102

2 2 2 2

2

=
+

+ -
-

-

+ -
+

+
-

+ - - -

( ) (( ) ) ( ) (( ) )

( ) ( ) ( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟

G

G
G

G

G
G

G

G

G

G
G G

1

4
log 1

1

4
log 1

1

4

1

4
1 log 4 log 1

1

ln 2
, 103

2
2

2
2

2 2

0

2

  

=
+

+ -
-

- - - -
( ) ( ) ( ) ( ) ( ) ( )G

G
G

G

G
G G

1

2
log 1

1

2
log 1 log 1

1

ln 2
, 104

2 2
2

=
+ +

+ -
- +

- - - -( ) ( ) ( ) ( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

G G

G
G

G G

G
G G

2 1

2
log 1

2 1

2
log 1 log 1

1

ln 2
, 105

2 2
2

=
+ +

-
- + + - - - -( ) ( ) ( ) ( )⎜ ⎟⎛

⎝
⎞
⎠

G

G

G

G
G G G

1

2
log

1

1
log 1 log 1 log 1

1

ln 2
, 106

2
2

0
  

=
+ +

-
- =

+ +
-

- ( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

G

G

G

G

T

T

T

T

1

2
log

1

1

1

ln 2

1

2
log

1

1

1

ln 2
. 107

2 2

Herewe used the asymptotic entropic relations in equations (98) and (99). Equation (100) is basic rewriting,
equation (101) follows directly from the definition of (·)g , and equation (102) follows from rewriting the terms
In equation (103)we collect the terms proportional to ( )Glog 4 , fromwhichwe can see that these terms sumup
to zero. In equation (105)we expand the quadratic terms, collect corresponding terms in equation (106) and
write the upper bound both as a function ofG andT in the last equality.

For >G
T

1 we get in the asymptotic limit that equations (78), (79), (82) and (83) become

n = - +¢ ¢( ) ( ) ( ) ( )N GT 1 1 , 108E E 11 2

n =
-
-

+¢ ¢( ) ( ) ( )G T

GT
o

1
1 , 109E E 21 2

n = + +¢ ¢( ) ( ) ( ) ( )N GT1 1 , 110BE E 11 2

n =
+
+

+¢ ¢( ) ( ) ( )G T

GT
o

1
1 . 111BE E 21 2

For <G
T

1 we have

n =
-
-

+¢ ¢( ) ( ) ( )G T

GT
o

1
1 , 112E E 11 2

n = - +¢ ¢( ) ( ) ( ) ( )N GT1 1 , 113E E 21 2

n = + +¢ ¢( ) ( ) ( ) ( )N GT1 1 , 114BE E 11 2

n =
+
+

+¢ ¢( ) ( ) ( )G T

GT
o

1
1 . 115BE E 21 2

For both regimes, the eigenvalues and in particular their leading terms are always positive.We see that for both
>G

T

1 and <G
T

1 the absolute value of the eigenvalues are the same up to ordering, so that
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¢ ¢ - ¢ ¢ +
+

+ + - - -
-
-

( ) ( ) ( ( )) ( ∣ ∣))
∣ ∣

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟H BE E H E E g

G T

GT
g N GT g N GT g

G T

GT1
1 1

1
, 1161 2 1 2 

+
+

+
+

+ -
-

- -
-
-

( ) ∣ ∣
∣ ∣

( )⎜ ⎟⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟g

G T

GT

N GT N GT
g

G T

GT1
log

1

2

1

ln 2
log

1

2

1

ln 2 1
, 117

=
+
+

-
-
-

+
+
-∣ ∣ ∣ ∣

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟g

G T

GT
g

G T

GT

GT

GT1 1
log

1

1
, 118

=
+
+

-
-
-

+
+
-

( )⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠g

G T

GT
g

G T

GT

GT

GT1 1
log

1

1
, 119

where in the first and second stepwe again used the asymptotic entropic relations. Equation (118) is basic
algebraic rewriting of the logarithms.We can drop the absolute signs going from equations (118) and (119). To
see this, note that - = + p( ) ( )x xlog log i

ln 2
for >x 0, wherewe choose the branch cut along the negative

imaginary axis, and in a similar waywe find that - = -- + - + - - - -( ) ( )( )g y log log
y y y y1

2

1

2

1

2

1

2
=

- - - = + p+ + - -( ) ( ) ( )g ylog log
y y y y1

2

1

2

1

2

1

2

i

ln 2
for y 1. From this we find that

- - + - = - +( ) ( ) ( ) ( )g y x g y xlog log for > x y0, 1. Since >-
-∣ ∣

1G T

GT1
and +

-∣ ∣
 0GT

GT

1

1
for

  G T1, 0 1, we have that- + = - +-
-

+
-

-
-

+
-( ) ( ) ( ) ( )∣ ∣ ∣ ∣

g glog logG T

GT

GT

GT

G T

GT

GT

GT1

1

1 1

1

1
.

We can rewrite equation (119) as

+
+

-
-
-

+
+
-

( )⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠g

G T

GT
g

G T

GT

GT

GT1 1
log

1

1
, 120

=
+ +

-
- -

-
+ +

-
- -

+
+
-

+
+

+
+

+
+

+
+

-
-

-
-

-
-

-
- ( )⎜ ⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝

⎞
⎠

GT

GT

1

2
log

1

2

1

2
log

1

2

1

2
log

1

2

1

2
log

1

2
log

1

1
, 121

G T

GT

G T

GT

G T

GT

G T

GT

G T

GT

G T

GT

G T

GT

G T

GT

1 1 1 1

1 1 1 1

=
+ +

+
+ +

+
-

- -
+

- -
+

-
+ -

-
+ -

-
+

- +
-

- +
-

+
+
-

( )

( )( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

122

G T

GT

G T

GT

G T

GT

G T

GT

G T

GT

G T

GT

G T

GT

G T

GT

GT

GT

1 1

2 1
log

1 1

2 1

1 1

2 1
log

1 1

2 1

1 1

2 1
log

1 1

2 1

1 1

2 1
log

1 1

2 1
log

1

1
,

wherewe have used the definition of (·)g in thefirst equality and simplified the terms in the second step.
We can expand the logarithms and collect the different terms and simplify to rewrite equation (122). Let us

consider one by one the terms proportional to each logarithmic term. The terms proportional to +( )Glog 1 are

+ +
+

-
+ -

-
( )( )

( )
( )( )

( )
( )G T

GT

G T

GT

1 1

2 1

1 1

2 1
, 123

= -
-

-
( ) ( )G T

G T

1

1
, 124

2

2 2

the terms proportional to -( )Glog 1 are

-
- -

+
+

- +
-

( )( )
( )

( )( )
( )

( )G T

GT

G T

GT

1 1

2 1

1 1

2 1
, 125

=
-

-
( ) ( )G T

G T

1

1
, 126

2

2 2

the terms proportional to +( )Tlog 1 are

+ +
+

+
- +

-
( )( )

( )
( )( )

( )
( )G T

GT

G T

GT

1 1

2 1

1 1

2 1
, 127

=
-
-

( ) ( )T G

G T

1

1
, 128

2

2 2

the terms proportional to -( )Tlog 1 are

-
- -

+
-

+ -
-

( )( )
( )

( )( )
( )

( )G T

GT

G T

GT

1 1

2 1

1 1

2 1
, 129
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Collecting all these terms and the +
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1
term, equation (122) becomes
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where in the first equality we regrouped terms and used the fact that the sumof the lastfive terms equals zero.
The second equality follows from rewriting the logarithm terms.

Setting =G
T

1 , the denominator of equation (137) becomes zero. Luckily, the numerator

- - - = - - - =+
-

+

-

+
-

+
-( ) ( ) ( )( ) ( ) ( )( )

⎛
⎝⎜

⎞
⎠⎟T T T T1 log 1 log log log 0

T

T

T T T

T

T T

T

T
2 1 1

1

1 1

1

1 1

1

1 1

1
T

T
2

1

1 , also

becomes zero, implying that we can use L’Hôpital’s rule to retrieve the limit. Differentiating the numerator from
equation (137)with respect toG gives
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while differentiating the denominator from equation (137) gives

- ( )GT2 . 1392

so that the quotient of equations (138) and (139) gives
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Setting =G
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1 we retrieve that
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We see that for all three regimes = > <( )G G G, and
T T T

1 1 1 equation (86), yields equation (137) in the
asymptotic limit of  ¥N . From this we retrieve our claim that
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