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Summary 
 

Carbon capture and sequestration  initiatives make new demands on modern reservoir simulators. 

To find optimal locations and volumes of CO2 to inject into a subsurface to maximize CO2 

storage, we must simulate a large ensemble of injection cases. One possible solution to the 

computational complexity of this task is to employ machine-learning models which, after a one-

off overhead cost of training, can infer and predict future states of a reservoir several orders of 

magnitude faster than traditional methods. 

 

Most previous work in the literature has primarily focused on either convolution-based methods 

or, more recently, neural operator-based methods, to predict the evolution of state variables. 

These architectures have shown promise in predicting on structured reservoir grids but lack the 

capability to extend the same level of accuracy to unstructured grids. Graph neural networks  

(GNNs) overcome this bottleneck by incorporating inductive biases arising from local message-

passing mechanisms, facilitating convolution operations over complex graphs and meshes.  

 

In this work, we present a novel autoregressive GNN autoencoder to predict time-varying state 

variables for an ensemble of CO2 injection cases. We implement a graph convolution network 

for the message-passing protocol and incorporate physics-informed edge weights between cell 

connections to guide flow. An exhaustive set of node features are used to train the model on the 

hyperbolic evolution of phase saturations while preserving the ellipticity in the pressure. 

 

We test the performance of the GNN model for (1) its ability to predict state variables for 

varying injection rates of CO2, (2) for the post-injection phase, and (3) under different unseen 

geological configurations. Training and testing are performed by constructing ensembles of 2D, 

3D, and real field cases that best represent these scenarios. For the 2D regular grid case, we 

observe that the model can capture pressure and saturation values accurately, even for highly 

varying injection rates and with only a limited amount of data. This performance is maintained in 

the post-injection phase. A key advantage of GNNs is that they show a distinct ability for transfer 

learning on ensembles of unseen geological configurations. We observe that the model can 

predict the shape and intensity of wavefronts of certain cases with no prior exposure to the 

specific static properties during training. Similar results are produced for 3D grids and real field 

cases. 



Introduction

In line with global efforts to push for net zero emissions by 2050, the Intergovernmental Panel on Climate
Change (IPCC) has set out strategies in its 1.5◦ report to reduce emissions drastically over the next 25
years. Carbon Capture and Storage (CCS) as a technology for carbon dioxide removal is expected to
play a vital role in these strategies to slow down the rate of climate change. Many challenges still remain
in this area however, for it to scale to the level required in order for it to have an impact on a global
context.

One major challenge in the early stages of the CCS modelling workflow is that of fast numerical simu-
lation of subsurface fluids. In recent years, traditional reservoir simulators have been advanced to more
accurately predict the state of a subsurface reservoir under various injection schemes of CO2 but still
remain computationally very expensive. For tasks such as optimal well placement, optimal injection
schemes, and uncertainty quantification, a large ensemble of cases are required to be simulated to solve
inverse problems within a given confidence interval. This becomes increasingly time consuming when
dealing with uncertainty in the underlying geological structure of the reservoir itself as we are then also
required to simulate an ensemble of different simulation grids for each one of these tasks.

With the rise of machine learning capabilities in recent years, owed predominantly to the increased
sophistication of modern GPUs, training large neural networks has become more feasible. This has in
turn made it possible for the area of reservoir proxy modelling using machine learning to gain increased
traction with many works, described in the related works section, achieving on the order of 1000× speed
up in solution approximation compared to traditional solvers. Significant challenges still persist however,
as many of the previous models are still applicable to only regular grids as opposed to unstructured grids
used in modelling reservoir, and they don’t scale well when grid sizes increase to the order of 106 cells.
Furthermore, these machine learning models do not extrapolate well to geological structures and static
field properties that they have previously not seen in the training dataset, which requires the simulator to
be run a very large number of times to produce a varied enough training set.

In this work, we propose to tackle some of these problems by proposing an auto-regressive graph neural
network approach which learns local dynamics of subsurface fluids to speed up solution approximations
of a high-fidelity reservoir simulator for previously unseen static fields during training. We show that our
approach is able to accurately capture the evolution of dynamic variables for various different unseen
injection schemes of CO2 and is also able to produce redirected flow fronts when it is tested on unseen
permeability and porosity configurations of the reservoir in 2D. We extend this study to a 3D case and
show that the model performs similarly when learning local dynamics in an additional direction.

Related Work

First significant work in the area of machine learning applied to reservoir proxy modelling was carried
out using convolution-based methods inspired by the embed-to-control framework Watter et al. (2015),
a model to solve optimal control problems by approximating global non-linear dynamics to be locally
linear. This was applied to 2D reservoir simulation in Jin et al. (2020) and for well output prediction
in Coutinho et al. (2021). The E2CO framework was extended to 3D using 3D convolution blocks in
Atadeger et al. (2022) and the whole training process was sped up using a localized learning method in
Sathujoda and Sheth (2023).

Despite methods to speed up training for convolution-based methods, they still remain impractical to
scale up to large grid sizes. Moreover, new methods for PDE approximation have since been developed
which take into account underlying grids and numerical methods, such as Fourier Neural Operators
Li et al. (2021) and Graph Convolution Networks Veličković et al. (2018). These methods have been
applied to the specific task of reservoir simulation in U-FNO Wen et al. (2022) and Jiang and Guo (2023).
Out of these works, the approach using Graph Neural Networks is the most promising as the method was
designed specifically for the case of unstructured grids and information propagation on graphs. Little
work has been done in this direction however or on the ability of GNNs to predict on grid structures
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beyond which they are trained on.

Background

Figure 1 Subsurface reservoir model constructed using an unstructured grid.

Subsurface Reservoir Simulation

The governing equation of subsurface flow, derived from the law of mass-conservation and Darcy’s law,
relates the fluid flow and flow potential gradients of a multi-phase porous-medium as given below

∇ ·
[

αk kr,m(Sm)
µmBm

(∇pm − γm∇z)
]
−β

∂

∂ t

(
φSm
Bm

)
+∑w

qw
sc,m
Vb

= 0

where k denotes the permeability tensor, kr the relative permeability, µ the viscosity, B the formation
volume factor, p the pressure, S the saturation, φ the porosity, t the time, γ the specific weight, q the
source/sink terms, z the depth and Vb the bulk volume. The subscript sc represents standard conditions,
m the medium, and α and β are unit field constants.

These equations are discretized on a 3D grid, such as in figure 1, and solved over the space and time
domain using numerical methods such as Newton’s method. The discretization scheme used to model
the subsurface reservoir is one of the main challenges when dealing with machine learning proxies for
numerical simulators. Most conventional methods assume a structured rectangular grid but in reservoir
modelling, certain geological scenarios such as pinch points lead to a necessity to construct complex
non-structured grids. This is one of the main reasons Graph Neural Networks are favourable for the task
of proxy modelling.

Graph Neural Networks

Graph Neural Networks (GNNs) are a class of machine learning models designed to incorporate an in-
ductive bias towards graph-structured data. Early ideas behind GNNs were first introduced in Gori et al.
(2005) and later developed in Scarselli et al. (2009), before the rapid growth in recent years. Generally,
GNNs follow a message-passing paradigm which involves aggregating information from neighbouring
nodes and transforming that information with a parameterized function (such as a multi-layer percep-
tron) to create an updated representation of the graph. This message-passing and updating process is
carried out multiple times to widen the range of influence of one node on another in the graph.

European Conference on the Mathematics of Geological Reservoirs 2024
2–5 September 2024, Oslo, Norway



Figure 2 Information spread of a) a single node b) three nodes during over multiple graph convolutions.
Message. a) After 3 convolutions, almost all the nodes have passed information to the starting node
and vice versa. b) Information mix increases as more graph convolutions are performed, in practice
happening for every node in the graph (only 3 nodes shown for simplification).

Formally, let G = (V,E) be a graph with nodes u ∈ V and edges euv ∈ E which represent connections
between nodes u and v. Then Nu = {v : euv ∈ E} is defined to be the neighbourhood of node u. Addi-
tionally, let xu ∈Rn represent features associated with node u and euv ∈Rm the edge features associated
with edge euv. Then we define a Message-Passing Neural Network (MPNN) layer as follows Bronstein
et al. (2021):

hu = φ

(
xu,

⊕
v∈Nu

ψ(xu,xv,euv)

)
(1)

where φ and ψ and differentiable functions (such as neural networks) and
⊕

is a permutation invariant
aggregation operator which can take an arbitrary number of inputs, such as element-wise sum or mean.
Here, hu is the updated representation of the features at u. Graph Neural Networks are defined as l
MPNN layers applied sequentially to the initial features of the nodes.

Some major GNN architectures that have arisen in recent times include the Graph Convolution Network
(GCN) Kipf and Welling (2017), which proposes a localised graph convolution operation that convolves
only over direct neighbours of a node normalised by node degrees, and the Graph Attention Network
(GAT) Veličković et al. (2018), which incorporates an attention mechanism to dynamically learn edge
weights for the message-passing layer. A Graph Convolution Network is defined by the MPNN layer
below,

h(l+1)
u = σ

(
W(l)

∑
v∈Nu

h(l)
v√

|Nu| · |Nv|

)
(2)

where σ is an activation function (such as ReLU) and W(l) are the weights corresponding to the (shallow)
neural network at the lth layer. This can be rewritten in matrix form as following

H = σ

(
D̃− 1

2 ÃD̃− 1
2 XΘ

)
(3)
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where Ã is the adjacency matrix, D̃ is the degree matrix, X are the node features and Θ are the neural
network parameters.

One of the key advantages of GCNs over other variants of GNNs, such as GATs, is that its message-
passing layer is computationally lightweight and training times scale significantly better to larger graphs.
GCNs still suffer from the problem of over-smoothing Li et al. (2018) however, the phenomenon where
the representations of different graph nodes become indistinguishable as the number of message-passing
layers increase. To overcome this bottleneck, residual connections and identity mappings were intro-
duced between the layers to maintain a higher signal-to-noise ratio. This architecture, name the Graph
Convolution Network II (GCN2) architecture, is given below

h(l+1)
u = σ

((
(1−α

(l)) ∑
v∈Nu∪{u}

h(l)
v√

|Nu| · |Nv|
+α

(l)h(0)
u

)(
(1−β

(l))I+β
(l)W(l)

))
(4)

where α is the residual strength and β the identity strength.

Methodology

Problem Setting

Let G = (V,E) be a graph representing the structure of a subsurface reservoir, where V is the set of nodes
signifying the cells of the grid discretization and E the set of edges between connected cells. We assume
the graph structure is static. Let each node u ∈V have node features xt

u ∈Rd , where t ∈N represents the
time step to which the features pertain and d the number of static and dynamic properties of simulation.
For this work, we consider the static and dynamic properties given in table 1 Let yt

u ∈ Rm represent
the dynamic properties of concern, namely pressure p and saturation s, at the time step t + 1. We aim
to develop a model M such that M : (Xt ,G)→ Yt and |M (xt

u,G)− yt
u < ε̃|, ∀u ∈ V and some small

ε̃ ∈ Rm. Here Xt = {xt
u : u ∈V} and Yt = {yt

u : u ∈V}.

Property Type Description

p Dynamic Pressure
s Dynamic Saturation
kx Static Permeability in X
ky Static Permeability in Y
kz Static Permeability in Z
Vp Static Pore Volume
dk Static Depth

Table 1 Simulation properties

Model

Let ε : Rn×d → Rn×h be an ‘encoder’ function parameterized by a multi-layer perceptron of le layers,
each with ni neurons in the ith layer transformed by a LeakyReLU, where n= |V | and d is the dimension-
ality of the data. Similarly, let δ : Rn×k → Rn×m be a ‘decoder’ function parameterized by a multi-layer
perceptron of ld layers, each with m j neurons in the jth layer transformed by a LeakyReLU. Finally, let
γ : Rn×h → Rn×k be a ‘processor’ function which is parameterized by l custom Graph Convolution II
Layers. The total model is hence M ∼ δ ◦ γ ◦ ε , where M : Rn×d → Rn×m.

Here, we modify the GCN II layers to operator only with residual connections and apply a heuristic edge
weight of the harmonic mean of the permeabilities of the two nodes being connected by the edge. The
new MPNN layer is given below.

h(l+1)
u = σ

(
αh(0)

u +(1−α)W(l)
∑

v∈Nu∪{u}

2kukv

ku + kv
h(l)

v

)
(5)
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Figure 3 Representation of model architecture and forward pass.

Here ku and kv are the permeabilities of the two nodes in the spacial direction of the connected edge.

Training procedure

The model is trained to autoregressively predict the next time step given the previous solution but during
training we perform a roll-out of predictions for k steps into the future and aggregate the losses over
these timesteps to control accumulating errors. The loss function we use is the mean square error loss
aggregated over the roll out period.

L =
1
k

t+k

∑
i=t

(ŷi −yi)
2 (6)

Hyperparameter tuning for the model was performed using Raytune. The best parameters we tested for
during training are given in table 2.

Experiments

In the experiments, we are concerned with three main capabilities of the model in 2D: its ability to auto-
regressively predict future states of the reservoir for variable injection rates, variable shale compositions
and unseen permeability fields. For 3D tests, we assume constant injection rates and test directly for the
models ability to predict future states for unseen permeabilities.
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Parameter Value

Learning rate 0.0005
Batch size 8

Res. α 0.15
LReLU 0.1

GCN Layers 6
Mult. k 3

Hidden dim. 128

Table 2 Best hyperparameters from raytune.

Datasets

For the experiments, we consider 2D and 3D simulation results from a high-fidelity simulator. The
2D case consists of a 37× 50 rectangular grid simulated over 1000 years, ∼12 years of 143 monthly
timesteps and the remainder being post-injection steps, with one well at the grid cell (31,0). The post-
injection phase timesteps increase progressively from 1, 10, 100 to eventually 500 years to model long-
term containment behaviour. Two ensembles are created for the 2D case, namely variable injection rates
and variable shale compositions. Static properties for a specific case of the 2D dataset is given in figure
4. The 3D dataset consists of a 40× 80× 10 grid with 100 different permeability and porosity fields
generated using Perlin Noise to simulate channels and other geological structures. We simulate water
injection for this case to theoretically test the model on a simple workflow. Permeability values below a
threshold are zeroed out to give complexity to the reservoir so as to not just test on a rectangular grid. A
high-fidelity simulator is run for each of these 100 cases for 10 monthly timesteps at constant injection
rates with 2 injector and 2 producer wells placed at (39,20), (69,7) and (11,19), (62,30) respectively,
where the wells are vertically connected through all z layers.

2D Auto-regressive and variable injection capabilities

In the first experiment, we test for the GNN model’s auto-regressive capabilities and its ability to capture
varying injection rates. The variable injection ensemble consists of different constant inject rates sam-
pled from a uniform distribution. To aid with this, we also pass into the model the change in pressure and
saturation values from the previous timestep (accumulation speed terms), to give information on flow
rates. The results from this experiment are given in figures 5 and 6. From the results, we see that the
model is able to auto-regressively predict future states of the system accurately, even for varying injec-
tion rates. This injective expressivity is largely attributed to the introduction of the accumulation speed
features. Without them, models initially tended to converge to a more or less fixed propagation speed.
In those models, a node likely struggled to spread its state rate of change to neighbouring nodes during
message-passing, given that the injection rate information is not passed as a feature. Message-passing
of the accumulation features enables the nodes to pass around their state’s rate of change, providing all
the grid nodes with a sense of how quickly CO2 is entering and saturating the system.

Variable Shale ensemble

Along with good injective expressivity, a proper reservoir simulation model should be capable of han-
dling geological variability. The variable shale ensemble consists of a distribution of regions with low
permeability and high porosity to represent shale characteristics in the geology. The results presented in
figures 7 and 8 show that the model is able to accurately predict dynamic variables for varying geolog-
ical cases and that the values of magnitude within the flow front align closely with the true values. The
model limits the CO2 flow through the shale layers for the cases with lower porosity/permeability, and
builds up more pressure in the areas with high saturation under the shale layers. In some cases the model
tends to ‘lag’ at the start of the injection and builds up some under-expressive error. The model then
corrects for this and produces a stable flow. The error generally increases gradually during the stable
flow, as some parts of the saturation front become slightly over- or under-expressed when predicting
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Figure 4 Static properties of a general 2D sample from the variable injection ensemble (constant across
the ensemble). It shows the general structure with horizontal shale layers found in every 2D sample.
PORV increases steadily in the x-direction. DEPTH increases in the increasing z-direction. PORO
influences the input property PORV. PERMY is preconfigured nonzero, but is not encoded in any edge
weight. Transmissibility depends on the cell dimension in its specific direction, making TRANY zero
in the xz-dimensional grid. TRANX/TRANZ are influenced by PERMX/PERMZ, PORO and PORV. The
variable shale ensemble is identical in the non-shale surroundings, but has varying PORO and randomly
decaying PERMX/PERMZ in the shale layers.

further out in time auto-regressively. The overall results in this experiment show that the model does
respond accurately to parametric variability in the geological features and performs particularly well for
saturation predictions, as expected.

Unseen Geologies

To test the transfer learning capabilities of the model to new geological structures which the model
has not seen during training, we construct three different permeability fields in the z direction. The
three fields which we tested on are given in figure 9. The corresponding pressure and saturation values
which the model has predicted are given in figures 10, 11 and 12. We expect saturation values to be
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Figure 5 Gas saturation (SGAS) simulation, roll-out prediction and error at t = 80 for the variable
injection ensemble. a) Low injection rate, b) medium injection rate, c) high injection rate

predicted better than pressure variables as saturation is governed by a hyperbolic partial differential
equation which is more dependent on local dynamics, whereas pressure is governed by an elliptical
partial differential equation which is more affected by long distance interactions. Graph neural networks,
in their nature, capture only short distance interactions unless significantly rewired or a large number of
message-passing layers are stacked on top of one and another, hence lending themselves to saturation
predictions.

As we can see from each of the cases, the new unseen shapes of the permeability/porosity fields are
captured accurately. The flow learns to go around boundaries where there is a sharp gradient in the field.
There is some leakage in areas of narrow low permeability channels however, as when multiple GCN
layers are stacked, they end up propagating information over the narrow low permeability channels. A
potential fix to this is to drastically reduce information propagation when this behaviour is encountered
with a scaling factor. The networks capture magnitudes of pressure and saturation values well with errors
within flow fronts almost resulting in zero error.
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Figure 6 Pressure (PRES) simulation, roll-out prediction and error at t = 80 for the variable injection
ensemble. a) Low injection rate, b) medium injection rate, c) high injection rate

3D Unseen Geological

We finally test the GNN architecture for 3D cases. Here we generate 100 different geological fields of
permeability and porosities using Perlin noise algorithms and create inactive cells at various regions to
better approximate real field cases in a synthetic manner. We connect each cell (node) to all its directly
adjacent cells in 3D and remove edges when there is an inactive cell. Furthermore, we only test for
propagation of saturation in the case as pressure is an elliptic variable. The results for various layers for
different timesteps (0− 9 months) are given in figures 13, 14, 15, 16, and 17. We can see from these
results that the saturation propagation fronts are captured accurately. The magnitudes are also within the
same range for the prediction and ground truth values from the simulator. These results are more accurate
in comparison to other convolution or neural operator-based methods as we see the flow is dynamically
able to adapt to the geometry of the underlying grid. For instance, in the results presented, we show
the saturation predictions on a completely unseen permeability and porosity field and the model has no
prior information during training of this specific configuration, but is still able to predict the direction
and boundaries of the flow. Most of the errors appear near the fronts of the flows which signals that the
model is not able to capture fully the rate of flow, suggesting we may need additional rate information
like in the variable injection rate experiments. Still, this stands as a significant milestone for transfer
learning on 3D reservoir grids.
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Figure 7 Gas saturation (SGAS) simulation, roll-out predictions and errors of 4 cases from the validation
set of the variable shale composition ensemble, in order of decreasing permeability. a) Permeability
shale ∼14mD, b) Permeability shale ∼0.7mD, c) Permeability shale ∼0.04mD, d) Permeability shale
∼0.005mD)

Conclusion

In this work, we have presented a Graph Neural Network approach to predict solutions to high-fidelity
simulators used in modelling CO2 injection into subsurface reservoirs. We have further studied the abil-
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Figure 8 Pressure (PRES) simulation, roll-out predictions and errors of 4 cases from the validation
set of the variable shale composition ensemble, in order of decreasing permeability. a) Permeability
shale ∼14mD, b) Permeability shale ∼0.7mD, c) Permeability shale ∼0.04mD, d) Permeability shale
∼0.005mD)

ity of GNNs to generalize to new geological configurations which they have not been exposed to during
the training procedure and showed that they are able to accurately capture flow fronts and magnitudes
for unseen permeability and porosity fields, in both a 2D and 3D context. We also observe that the
message-passing nature of GNNs are able to accurately capture local dynamics in the form of different
flow rates for variable inject rates.
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Figure 9 Permeability in z-direction (PERMZ) for structurally modified cases of the P7 dataset. Reser-
voir A includes holes in the shale layers allowing easy propagation of CO2, combined with zero perme-
ability blocks resembling impermeable rock formations. Reservoir B contains a diagonal shale layer to
evaluate the diagonal flow. Reservoir C extends B with a mirrored shale layer to evaluate the effect of
the CO2 flow downward.

Figure 10 Simulation, roll-out predictions and errors of untrained reservoir case A at final injection
phase state at t = 143.

In the future, we aim to extend our work on 3D grids by studying truly unstructured grids, which GNNs
have a strong inductive bias towards, and introduce variable injection rates to our analysis. We also aim
to analyse whether GNNs are able to accurately capture flow when trained on a fixed set of well location
configurations and are tested on a new set of unseen well locations, whether it be adding additional wells
or relocating existing ones.
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Figure 11 Simulation, roll-out predictions and errors of untrained reservoir case B at final injection
phase state at t = 143.

Figure 12 Simulation, roll-out predictions and errors of untrained reservoir case C at final injection
phase state at t = 143.
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Figure 13 3D simulation case for case 23. Saturation prediction for an unseen permeability/porosity
field. Full grid prediction for time step 4.
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Figure 14 Saturation predictions for case 23 to demonstrate flow in the reservoir. Values of saturation
above 0.3 are displayed to show fonts and magnitudes of flow.
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Figure 15 3D simulation case for case 23. Saturation prediction for an unseen permeability/porosity
field. Layer 2 of 10 for the 3D grid.
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Figure 16 3D simulation case for case 23. Saturation prediction for an unseen permeability/porosity
field. Layer 5 of 10 for the 3D grid.
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Figure 17 3D simulation case for case 23. Saturation prediction for an unseen permeability/porosity
field. Layer 8 of 10 for the 3D grid.
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