
Improving the Anonymity of the Lightning Network using Sub-Optimal Routes

Mihai Plotean1 , Stefanie Roos1 , Satwik Prabhu Kumble1
1TU Delft

Abstract
The Lightning Network is a second layer payment
protocol built on top of Bitcoin, which is scalable
and has reduced transaction fees. It does so by
eliminating the need to broadcast every transaction
to the whole network. When one user wants to send
a payment to another, the routing protocol gener-
ates a path between them that is always fast and
cost efficient. The low degree of randomness in the
existing routing protocols during path selection al-
lows an adversary to compromise the anonymity of
the sender and recipient.
In this work, we propose a new routing algorithm
that is less predictable when creating a transaction
path. We show that this increases the anonymity
of the users of the Lightning Network by creat-
ing an attack on the new routing protocol. The at-
tacker tries to identify the potential source and re-
cipient of a transaction. Our results suggest that
there is a trade-off between the offered anonymity
and transaction fees; it is not possible to get
higher anonymity at no cost by designing a non-
deterministic routing algorithm.

1 Introduction
Blockchain-based payment systems promise fast peer-to-peer
transactions, worldwide payments and low processing fees.
However, the process of passing on transactions, broadcasting
them to each participant and storing them has proven to be
slow. Contrary to centralized payment networks such as Visa,
which supports over 47,000 transactions per second, the limit
for Bitcoin [9], the largest cryptocurrency in the world, is 7
transactions per second [11]. This problem appears due to the
decentralized nature of blockchain.

Lightning [11] is a second layer (also called off-chain
layer) added on top of Bitcoin which has the main purpose
of solving its scalability issue as well as lowering process-
ing fees. The main idea behind is that transactions are not
recorded in the blockchain, which is expensive and time-
consuming. Instead of directly interacting with it, two users
first open a channel and lock an amount as collateral. Then
they locally conduct transactions until someone decides to

close the channel, after which the distribution of funds takes
place. Direct interaction with the blockchain takes place just
in the following situations: opening, closing a channel or re-
solving disputes in the network. When sending a payment, a
direct channel with the receiver is not necessary. A payment
can be routed via multiple intermediaries from the source to
the destination. This route is determined by the source using
a cost function that depends on the routing protocol and is
based on multiple criteria such as fees and delays. There are
three main routing protocols in Lightning: LND, c-Lightning
and Eclair. Each of them chooses one of the best paths in
terms of some globally known network properties. Further-
more, onion routing is used to improve anonymity, which
makes it harder for an intermediary to track off-chain pay-
ments. The Lightning Network was also created to reduce pri-
vacy concerns. Opposite to on-chain transactions, payments
in Lightning are not broadcasted and stored by everyone on
the network, making it more private. The high transaction
throughput, speed and low processing fees make it the most
promising solution to accepting cryptocurrency payments in
daily life.

However, studies have shown that the anonymity of users is
under question because of the highly deterministic nature of
the protocols that Lightning uses for payment routing. By act-
ing as an adversary in a transaction, one can gain sensitive in-
formation such as who are the possible senders and recipients,
which could also disclose payment habits. In [12], the author
states that the endpoints of a transaction can be deanonymized
using timing-based attacks. The results show that an ad-
versary controlling more than 10 nodes could deanonymize
transaction sources and destinations with a precision of over
50%. A paper where it is assumed that the adversary is lo-
cated right after the sender or right before the recipient also
demonstrates that the anonymity of the sender and recipient
is under risk [13]. Furthermore, another work that does not
make any assumptions about the location of the adversary
shows that if any of the nodes in the transaction path is con-
trolled by an adversary, there is a 70% probability of uniquely
identifying the sender or recipient and an 8% probability of
uniquely identifying both the sender and recipient [8]. This
is considering that the adversary only makes use of globally
known properties such as timelock and routing protocol.

The problem tackled in this research project is to improve
on Lightning’s anonymity issue by making it harder to infer

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

the sender and the recipient, as illustrated in Figures 1 and
2. We design a new non-deterministic routing protocol and
create a simulation where every participant in the network
uses this routing strategy. By simulating transactions on two
graphs generated to resemble the Lightning Network and in-
troducing attackers that observe a high proportion of all trans-
actions, our results suggest that we can reduce by a factor of
2.6 the probability of uniquely identifying the receiver and
bring the probability of uniquely identifying the sender close
to zero. However, this leads to an increase in the average hop
count by 66-67% and an increase in fees by 107-110%.

Figure 1: Inferring the sender and recipient anonymity sets consid-
ering that the route is created by an existing routing protocol.

Figure 2: Inferring the sender and recipient anonymity sets consid-
ering that the route is created by a new non-deterministic routing
protocol. The anonymity sets become larger compared to Figure 1.

The remainder of the paper is structured as follows. In
Section 2, we first analyze how routing works in Lightning
and what are the existing Lightning implementations. In Sec-
tion 3, we design a new non-deterministic routing algorithm
that uses sub-optimal routes with the objective of improv-
ing anonymity. To evaluate the protocol, we create an at-
tack on the new routing strategy in Section 4, followed by
an analysis based on various metrics from the performance
and anonymity aspects in Section 5. These are compared to
the metrics from a current protocol. Section 6 concludes how
the anonymity was impacted and discusses future points of
improvement.

2 The Lightning Network
The paper describing how the Lightning Network works was
published in 2016 [11], and since its launch in 2018, it has
gained over 12.000 active channels and 50.000 nodes as of

21 June 20211. Lightning is a peer-to-peer payment channel
network where parties can make payments in bitcoin with-
out recording them on the bitcoin blockchain. The main
blockchain architecture is called layer-1. Lightning is called
a layer-2 solution as it is built on top of layer-1 and does not
require any changes to the underlying blockchain.

In this section, we describe how the routing in Light-
ning works and what are the existing routing protocols. We
then describe how Hash Time Locked Contracts work as
they make multi-hops payments possible in the absence of
a trusted party.

2.1 Routing
The Lightning Network can be represented as a graph. Each
participant represents a node in the graph and each channel
between two participants is denoted by an edge. When a
payment is made, the funds are transferred directly from the
sender to the receiver in one hop if there is a direct chan-
nel between both parties. The more interesting and com-
mon case is when a direct channel is absent. This is usually
the case as opening a channel requires interaction with the
blockchain layer, which incurs high fees. A payment from
node A to node B can be routed via multiple nodes, which we
call intermediaries. All intermediaries must have sufficient
collateral to forward the payment. This type of payment is
called a multi-hop transaction and allows payments between
all members of the network. When a multi-hop transaction
takes place, edges are chained together by the source to form
a path to the destination. The way this path is created de-
pends on the routing protocol that the source is using. One
of the crucial properties with respect to privacy that the rout-
ing algorithms should satisfy is that routing paths should be
found without disclosing transaction values, the sender and
the receiver [5]. Currently, there are 3 main routing protocols
in Lightning: LND, c-Lightning and Eclair. Each of these is
similar in the fact that they determine the path using a short-
est path algorithm. For LND and c-Lightning this algorithm
is Dijkstra and for Eclair it is Yen’s algorithm [15]. However,
the main difference is that each of them uses a different cost
function. The factors considered in the cost function can be
channel capacity, which is equal to the sum of the balance
held by each participant in the channel, charged fees, delays,
and past channel failures.

LND
LND is the most common Lightning implementation with
over 90% of the nodes in the network using it. It favours
paths with low timelocks and low fees. Furthermore, LND
tries to avoid paths that contain channels that led to payment
failures in the past. The algorithm does so by first finding the
channel where the failure occurred and then assigning a bias
value to it. The bias decreases as more time passes from the
point of failure.

c-Lightning
C-Lightning also gives priority to low fees and delays. At
the same time, it adds some randomization when selecting
paths. This is done through a parameter named fuzz in the

1https://1ml.com/statistics

cost function. Another parameter, bias, has the purpose of
disfavouring long paths. The path is calculated using Dijk-
stra’s shortest path algorithm.

Eclair
Eclair is the only of the three algorithms that does not always
choose the best path based on the cost function. It chooses
randomly one of the three best paths, which are computed us-
ing Yen’s Algorithm [15]. Yen’s Algorithm computes k short-
est paths by using any efficient shortest path algorithm with
Dijkstra in the case of Eclair. Additionally to low timelock
and low fees, the capacity and the age of the channel are con-
sidered.

2.2 HTLC
Multi-hop payments in Lightning where no third party is
trusted are possible due to Hash Time Locked Contracts
(HTLCs) [14]. A HTLC is based on two components:
hashlocks and timelocks. The hashlock prevents a party from
getting its funds until a specified piece of data is revealed.
The timelock allows a party to get their funds locked by the
HTLC back in case the beneficiary does not acknowledge the
receipt of the payment before a predetermined time. The main
idea behind is that the amount to be paid is locked and it is
not given until a secret hash is provided. If the time that the
parties agreed on in the HTLC expires, the locked funds are
given back to the sender.

Suppose Alice wants to transfer an amount equal to 100
satoshis1 to Bob. Let Carol be the only intermediary in the
transaction. Bob, the recipient, generates a random number,
computes its hash, and sends it to Alice. Alice uses this hash
to set up a HTLC with Carol - her successor on the path com-
puted by the routing algorithm. The created contract states
that Alice will pay Carol 105 satoshis if the latter will obtain
the random number, called preimage, that was used to gener-
ate the hash sent by Bob. The extra 5 satoshis is a fee charged
by Carol for acting as an intermediary and forwarding the
payment. The amount of 105 satoshis becomes locked in the
HTLC and nobody can use them for now. To make sure every-
one can get their locked funds back in case the hash is never
provided, there is also a timelock associated with the contract.
If Carol fails to provide Alice the preimage in that timelock,
Alice gets her 105 satoshis back. Now, a new HTLC is set
up between Carol and Bob. The amount of 100 satoshis is
locked and subtracted from Carol’s balance. The conditions
of the contract remain the same as in the HTLC between Al-
ice and Carol, only the amount and timelock being different.
Since Bob was the one to actually create the hash, he has the
preimage and thus uses it to unlock the funds sent by Carol
and obtain 100 satoshis. By doing so, the preimage becomes
available to Carol. Carol uses it to receive her 105 satoshis
as stipulated by the HTLC. The same steps are illustrated in
Figure 3.

As demonstrated, the transaction took place without a di-
rect channel between Alice and Bob. Nobody had to trust
each other in the path. Furthermore, each participant would
get their money back in case somebody would not fulfill their
job in the path.

1A satoshi is equivalent to 100 millionth of a bitcoin.

Figure 3: Alice sends Bob 100 satoshis with no direct channel be-
tween them. Besides the amount to be sent, HTLCs save the time-
lock to keep track if a payment has expired.

3 Designing the Routing Algorithm
To design a routing protocol that improves anonymity, we
need to know the capabilities and the objective of the adver-
sary that tries to compromise it. For this reason, we first in-
troduce the adversarial model. Then, we enumerate the possi-
ble options when designing a new non-deterministic routing
strategy and describe the option that we chose.

3.1 Adversarial Model
An adversary A has the goal of determining the sender and
recipient of a transaction it is a part of. We use the same
assumptions as the adversary model in [8]. A knows the de-
sign of the protocol and its parameters. The adversary is a
computationally bounded node in the network that has access
to the same information as any other node. Furthermore, A
is an honest-but-curious attacker, meaning that the adversary
forwards the payment to the next node in the path as needed,
but also uses publicly available information from the transac-
tion and the network to find out two sets: the set of potential
senders and the set of potential recipients. Note that it is pos-
sible for two or more adversaries to combine their observa-
tions by computing the intersection of the anonymity sets that
they obtained. This would lower the size of the anonymity
sets, making it easier to determine the actual sender and re-
ceiver.

3.2 Routing Algorithm
The three main Lightning implementations described in Sec-
tion 2 choose the best or one of the best paths in terms of fees,
delays, previous node failures and other properties. The route
computation of LND and the low degree of randomness intro-
duced by c-Lightning and Eclair is not enough to make sender
and recipient anonymity sets large enough as described in [8].
Our objective is to create a new non-deterministic routing
protocol that will improve the anonymity of Lightning. At
the same time, we make the algorithm compatible with any
of the cost functions from the existing routing protocols.

When designing a non-deterministic routing protocol with
the use of sub-optimal routes, there are multiple possibilities:
adding Random Hops [7], Hop Change with Partial Route
Computation [3], Length-bounded Random Walk Insertion
[10], Multiple Route-Segments using a ”Dovetail” Node [6].

We believe that even a simple routing strategy can signifi-
cantly improve the anonymity of both the sender and recipient
considering the specified adversarial model. In this section,
we create a protocol that combines two simple strategies that
are applied consecutively. Both of these would not require
major changes to the existing Lightning implementations. In
the first step, n random hops from the source are performed.
In the second one, we randomly choose one of the best k paths
from the node we arrived at in Step I to the destination. Note
that we cannot rule out that performing the steps the other
way around would provide even higher anonymity.

Step I - Random Hops
The first step starts by generating a random number n between
0 and max hops. The impact of the variable max hops on
anonymity is studied in Section 5. However, it should be low
as increasing it would result in longer paths and thus higher
fees for the sender. Then, n random hops are taken starting
from the source. In case cycles exist, they are removed after
the path computation. The algorithm goes on to the second
step. An example of this process is illustrated in Figure 4.

Figure 4: Step I of the algorithm. A wants to make a payment to B.
The random hops are represented by the orange edges. C is the node
after 3 hops.

Step II - k Best Paths
In the second step, Yen’s algorithm is used to compute k
shortest paths to the recipient. The starting node is the fi-
nal one from the path generated by the random hops in Step I.
From k paths, we randomly choose one of them. The impact
of the variable k on anonymity is also studied in Section 5. If
the starting node was the source, we simply return the path.
Otherwise, the path in Step II is appended to the one com-
puted in the first step, giving the final path of the transaction.
We check for cycles once again and remove them if present.
Finally, we make sure that we have obtained a valid path by
checking that the total capacities of the channels on the path
are enough to forward the payment. This cannot be done in
Step I as random hops start from the source, but the amount to
be forwarded by the node where Step II starts, which includes
the fees, has to be calculated from the recipient. Thus, if the
obtained path is not valid, we start again from Step I. A full
path computation example is illustrated in Figure 5.

3.3 Runtime complexity
The first step has time complexity O(n) as we essentially get
a random node n times, where n is the number of random hops
to perform. The second step involves Yen’s algorithm, which

Figure 5: Step II. Three best paths are computed starting from node
C to the destination (Node B) - denoted by red, blue and green. From
these, one random path is chosen.

computes the k best paths by finding the shortest path first and
then computes k - 1 deviations of the shortest path. The run-
time depends on the shortest path algorithm that it uses. We
assume it to be Dijkstra algorithm. Dijkstra algorithm has a
time complexity of O((V +E)log(V)) when using a priority
queue using binary heaps. In each iteration, Yen’s algorithm
calls Dijkstra at most V times. Considering that there are K
iterations, Dijkstra is called KV times in the worst-case [2].
Thus, the time complexity of the first and second steps of the
routing algorithm together is O(KV (V + E)log(V)).

4 Attacking anonymity
To show that the routing protocol described in Section 3 im-
proves the anonymity of the participants in the Lightning Net-
work, we need to design an attack on it. We first describe the
attack step-by-step and then discuss its run-time complexity.

4.1 Attack design
An adversary A can start the attack when it observes a trans-
action as an intermediary. The attack is split into two phases.
Phase I of our attack does not differ from the one described in
[8]. The only information the adversary has about the trans-
action path is which node is its predecessor, and which node
comes next after itself. We denote these nodes as PRE and
NEXT. In Phase I, the attacker finds all loopless paths start-
ing from NEXT where the sum of subsequent timelocks in the
path add up to the timelock value it knows. It also makes sure
that the total capacity of every channel in the path is enough to
forward the payment. The attack continues in the next phase.

The main idea behind Phase II is that the adversary tries
to find out at which node did the routing algorithm stop the
random hops and chose one of the k best paths. Let X be this
node. Furthermore, we denote as Pi = {p1, p2, ..., pr} a path
found in Phase I, where p1 = NEXT and pr = reci is the
receiver in the path. Prepending PRE and A, the nodes that
come before NEXT, we get P ′

i = {PRE,A, p1, p2, ..., pr}.
Thus, P ′

i represents a potential sub-path of the observed
transaction that goes from the node preceding the attacker,
to the potential receiver. There are three possible cases:

1. There were no hops and one of the best k paths was cho-
sen starting from the source.

2. X is located before PRE in the transaction path.

3. X is one of the nodes in P ′
i .

In Phase II, the attacker determines if P ′
i could be a path

that our routing algorithm would choose, and consequently
include reci into the set of potential receivers. If it is, the
attacker tries to find out who are the potential senders of the
transaction corresponding to that path. One important prop-
erty that is used to find X is that any subpath of a shortest path
is itself a shortest path. Note that when there were no hops
made, this property cannot be used to directly determine a po-
tential sender as the attacker does not know the balance of the
first channel that was used to calculate the path. However, in
this case, it can be used to find the potential second node after
the sender.

• 1: Let N be a node in P ′
i and let P ′

i [N :] be a sub-path
of P ′

i containing all the nodes from N to reci. We also
denote the k shortest paths from N to reci as PN =
{PN

1 , PN
2 , ..., PN

k }.
The attacker first computes the k shortest paths from A
to reci, i.e. PA = {PA

1 , P
A
2 , ..., P

A
k }. If any of the paths

PA
i ∈ PA equals P ′

i [A :], then A is a possible intermedi-
ary in the shortest path chosen by the routing algorithm.
The attack goes to 2 to determine if A is X, PRE is the
sender or X is located before A.
If none of the paths equals P ′

i [A :], it means that X can
only be located after the adversary. Furthermore, if this
is the case, the routing algorithm performed at least 2
random hops, which are: from PRE to A, and from A to
NEXT. If the max hops value is less than that, P ′

i is dis-
carded and reci cannot be the destination. Otherwise,
the attack goes to 3 to check which node after the adver-
sary could be X.

• 2: The attacker computes PPRE - the k shortest paths
from PRE to reci. If none of the paths PPRE

i ∈ PPRE

equals P ′
i , there are two possibilities: either no hops

were made and PRE is the source, or A is indeed X.
Thus, since it is known that one of the hops is from PRE
to A, the possible senders are PRE and all the nodes that
can be reached within max hops - 1 hops from PRE. If
any of the paths equals P ′

i , then X is located before A, or
some of the random hops were identical to a part of one
of the best paths. Since the attacker cannot distinguish
the latter from the former case, the possible senders are
all the nodes from which the shortest path to the recip-
ient contains P ′

i as a sub-path, as well as all the nodes
that are up to distance max hops from them.

• 3: The adversary computes PN , where N is in the range
starting from the second up to including max hops-th
node in P ′

i . The nodes after are not considered as the
random hops cannot start after PRE. If any of the k best
paths equals to P ′

i [N :], then N could be X. The possi-
ble senders are all the nodes that up to max hops - index
hops away from PRE, where index is the index of N in
P ′
i . That is because all the hops up to N are known.

Note that it could happen that some of the random hops
were identical to a part of one of the best paths, which
would allow considering nodes that are at a closer dis-
tance from PRE than max hops - index. However, since
the attacker cannot know that this actually happened, it

still needs to consider as potential sources all the nodes
that are up to max hops - index hops away from PRE.
In case that no equal path is found for the nodes in the
range, P ′

i is discarded and reci cannot be the destina-
tion.

There is no proof that the attack we propose is the strongest.
Hence, with a better attack, we might find the potential
sources and recipients even more accurately, making the
anonymity lower.

4.2 Attack Complexity
Phase I of the attack has a time complexity of O((Degmax)

d)
[8], where d is the maximum hop count that we consider start-
ing from NEXT to find the potential recipients, and Degmax

is the maximum degree of any node in the network.
In Phase II, in the worst case we have to calculate k best

paths for every node besides the last in the sub-path obtained
from Phase I, which is equal to d + 2 times. Considering that
we use Yen’s algorithm, which as discussed in Section 3.3
takes O(KV (V +E)log(V)) time, it means that the run-time
complexity is O((d+ 2)KV (V + E)log(V)). Furthermore,
we have to calculate k cheapest paths from all nodes to the
destination. This can be done with a generalized version of
Dijkstra, which has a time complexity of O((V +E)log(V)).
Thus, the total time complexity for all the destinations is
O((d + 2)KV 2(V + E)log(V)). The complexity of both
Phase I and Phase II is the product of their complexities, that
is O((Degmax)

d(d+ 2)KV 2(V + E)log(V))

5 Evaluation
In this section, we show how the anonymity and efficiency of
Lightning are impacted if our new non-deterministic routing
algorithm is used. Most importantly, we study how the source
and recipient anonymity sets change and what are the trade-
offs. The routing algorithm described in Section 3 contains
two parameters: k and max hops. We show how the change
of these parameters impacts various metrics.

5.1 Metrics
For attack evaluation we use the following metrics from [8]:

• Number of attacked transactions divided by the total
number of transactions, which we denote as Ratt.

• The correlation CorrDS of the size of the sender
anonymity set to the distance between the adversary and
the sender. CorrDR is a similar metric, but for the re-
ceiver.

• The proportion of attacks SingS which returned a singu-
lar source anonymity set, singular recipient SingR, both
singular sender and recipient Singboth.

• The proportion of the attacks that completed Phase I of
the attack CompI .

In addition to these, we also use the following metrics:

• Average size of the recipient anonymity set Avg|R| and
sender anonymity set Avg|S|.

• The proportion of attacks where the correct source was
not included in the source anonymity set, denoted as
FPS . Similarly, for the recipient, we have FPR.

• The average fee Avgfee that was paid by the sender.

• The average number of hops Avghops in the transaction
path.

5.2 Simulation Model
To simulate the transactions and our attack, we use as a basis
the code2 written in Python3 and the simulation model de-
scribed in [8]. It allows using either a snapshot of the Light-
ning Network or a randomly generated graph for simulation.
Furthermore, the code contains all three routing algorithms
discussed in Section 2.1. We extend4 the present generalized
version of Dijkstra that computes 3 best paths to any num-
ber of k best paths. To find the nodes that are at a maximum
distance of max hops, we implement the Breadth-first search
algorithm.

5.3 Dataset and Parameters
To study how the fees and the number of hops are impacted by
the new routing algorithm, we used a snapshot of the Light-
ning Network from lnchannels5. It contains all the public in-
formation available in Lightning such as which are the con-
nected edges, total capacities, delays and charged fees. The
simulation model that we use removes all the inactive nodes
and channels that did not publish their policies or have been
closed. After this operation, we obtain a network with 4.791
nodes and 28.997 channels. 92% of the nodes use LND as the
routing algorithm.

Running the attack on a snapshot of Lightning is time-
consuming. Given the limited time available that we have in
hand, we use two different randomly generated small graphs
to resemble the Lightning Network: one according to the
Barabási–Albert preferential attachment model [1] and an
Erdős-Rényi graph [4]. These are generated using the Net-
workX6 Python library. Each of the graphs contains 200
nodes and around 800 edges. The properties that are globally
known in Lightning are also generated uniformly and ran-
domly. The base fee that the node charges is between 0.1 and
1. The fee rate is between 0.0001 and 0.001. The timelocks
are between 10 and 100 and the channel balances are between
100 and 10000 satoshis.

For our evaluation, we consider that all the nodes use the
routing algorithm that we described in Section 3 combined
with the LND cost function. This is a good baseline as almost
all nodes use LND as their client. We simulate 300 transac-
tions between random senders and recipients. The amount to
be sent is distributed uniformly with a minimum of 1 and a

2https://github.com/SatwikPrabhu/Attacking-Lightning-s-
anonymity

3https://python.org/
4https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-51/

rp-group-51-mplotean
5https://ln.fiatjaf.com/
6https://networkx.org/documentation/stable/reference/

generators.html

maximum of 1.000 satoshis. In the attack, we consider as po-
tential recipients all the nodes that are at a distance of at most
4 from the adversary. Increasing the depth is possible, but
would lead to a significant increase in the computational com-
plexity, making the attack unfeasible considering the compu-
tational resources that we have in hand.

As adversaries, we assign 10 nodes with the highest cen-
trality. Nodes that have a high centrality are more likely to be
chosen as intermediaries and thus observe a transaction.

5.4 Results
We first check the impact on anonymity of each of the two
strategies that our routing protocol combines. We use the
Barabási–Albert graph to illustrate the results in Figures from
6 to 10. On the left, we keep k = 1 fixed, meaning that af-
ter the random hops are performed, the best path is chosen.
When max hops = 0, we get the same transaction path as in
LND. On the right, we keep max hops = 0 fixed, meaning
that we skip the random hops step and randomly choose from
the source one of the k best paths. Hence, when k = 1, the
transaction path is the same as in LND. If we used Eclair cost
function, we would get the same transaction path as in Eclair
for k = 3. Furthermore, we provide the 95% confidence in-
terval CI0.95 for the data samples that were used to generate
each graph.

In Figure 6, we can see that the proportion of destination
anonymity sets that are singular decreases approximately by
a factor of 2, from 60-65% to 30%, when max hops = 7 or
k = 10.

Figure 6: The change of the proportion of singular destination
anonymity sets. Left: CI0.95 = [32.9, 49.9], Right: CI0.95 =
[34.92, 48.47]

In Figure 7, we plot the same graphs for singular source
anonymity sets. The decrease is much more significant com-
pared to the one depicted in Figure 6. A max hops value of 5
is enough to almost eliminate the source anonymity sets con-
sisting of only one node. There is also a decreasing trend
for the right graph. The proportion of source anonymity sets
consisting of one node is around 2% when k ≥ 5.

In Figure 8, we see that the proportion of attacks that re-
turned both only one sender and recipient decreases since
there is a decreasing trend for both these metrics separately.
The metric is close to zero for the maximum value that we
have chosen for max hops and around 1 for the maximum
value of k.

In Figure 9, we represent the average number of hops in the
transaction path. As the number of hops in the first step of the
routing is generated from a uniform distribution, the expected

Figure 7: The change of the proportion of singular source anonymity
sets. Left: CI0.95 = [0.07, 3.81], Right: CI0.95 = [1.75, 4.73]

Figure 8: The change of the proportion of both singular source
and destination anonymity sets. Left: CI0.95 = [0.00, 1.5], Right:
CI0.95 = [0.37, 2.22]

value is max hops/2. However, since when performing ran-
dom hops we do not keep track of the visited nodes and we
remove the cycles only after the path is computed, the actual
average number of hops from the random hops step is lower
than max hops/2. When no hops are performed and the best
path is chosen, the destination can be reached in approxi-
mately 4 hops. Adding more random hops before choosing
the best path increases the hop count. In this case, it goes to
around 5.75 when max hops = 7. In the case of increasing
k, we see that the average number of hops increases from 4
when k = 1 to 5.2 when k = 10. Even though a cheap path
is not always one with a low number of nodes, this is usually
the case. Consequently, the hop count tends to increase as
we choose randomly of the k best paths. A higher hop count
means that there is a bigger chance of payment failure. An-
other downside of longer path lengths is that there is a bigger
probability that there can be an adversary in the path which
could try to deanonymize the sender and recipient.

Figure 9: The change in the amount of hops in the transaction path.
Left: CI0.95 = [4.29, 5.15], Right: CI0.95 = [4.46, 5.08]

In Figure 10, we show that the increased anonymity comes
at a cost. When choosing the best path directly, we see that the
average fee is around 1.3. As max hops increases, it reaches

a value between 2.3 and 2.4 when max hops = 7. Similarly,
the average fee is around 1.8 when k = 10. For the same path
length, performing random hops leads to a higher fee than
directly choosing one of the k best paths. For instance, the
number of hops is around 4.4 for both max hops = 10 and
k = 6 as can be seen in Figure 9, but the fee is lower for k = 6
with the difference being approximately 0.3. This is because
the charged fees is one of the main criteria in the cost function
used to compute the best paths. When performing random
hops, the fees are ignored, which leads to a more expensive
transaction.

Figure 10: The change in the fees charged by the nodes in the
transaction path. Left: CI0.95 = [1.47, 2.05], Right: CI0.95 =
[1.48, 1.75]

Now, in Tables 1 and 2 we compare metrics of 3 different
parameter pairs based on the two randomly generated graphs.
The first pair corresponds to the metrics we would obtain if all
the nodes used LND as their client for routing. The last pair
showcases high values for max hops and k that could be con-
sidered reasonable. The second one represents an in-between
parameter pair. The key results that can be observed are as
follows:

• The number of attacked transactions increases as we
choose higher parameter values. This is most likely
linked to the increasing average number of hops.

• The proportion of attacks that have a singular sender
anonymity set decreases by a factor of 12 for
max hops = 3, k = 5, and goes to zero for
max hops = 7, k = 10 in case of the Barabási–Albert
graph. For the Erdős-Rényi graph, the decrease is by
a factor of 2 and 2.3 for max hops = 3, k = 5 and
max hops = 7, k = 10 respectively.

• The proportion of attacks that have both a singular
sender and recipient anonymity set is 0 or close to 0 for
the pair max hops = 7, k = 10.

• For both graphs, the proportion of attacks that have
a singular recipient anonymity set decreases by a fac-
tor of 2 for max hops = 3, k = 5 and by 2.6 for
max hops = 7, k = 10. The decrease between the
second and third pairs is smaller than between the first
and second due to the low distance between the adver-
sary and the recipient. We found out that the adversary
is located right before the recipient in 80% of the cases
when a singular recipient anonymity set is returned. In
95% of the cases, it is at a distance of at most 2.

• In case of the Barabási–Albert graph, the average size of
the recipient anonymity set increases by a factor of 4.5

Metric max hops = 0
k = 1

max hops = 3
k = 5

max hops = 7
k = 10

Ratt 0.87 0.91 0.95
CorrDS 0.63 0.24 0.06
CorrDR 0.41 0.44 0.36
SingS 0.06 0.005 0.00
SingR 0.60 0.32 0.23
Singboth 0.26 0.002 0.00
CompI 0.33 0.13 0.07
FPS 0.02 0.07 0.14
FPR 0.04 0.14 0.24
Avg|R| 2.03 9.2 9.64
Avg|S| 20.5 19.1 17.7
Avghops 3.93 5.28 6.55
Avgfee 1.26 1.96 2.65

Table 1: Attack metrics for 3 parameter pairs based on the
Barabási–Albert graph.

for max hops = 3, k = 5, and by a factor of 4.8 for
max hops = 7, k = 10. The increase is less significant
for the Erdős-Rényi graph. The factors are 2 and 3 for
the same parameter pairs.

• There is an increase in the false positives for both the
sender and recipient, which could be linked to the de-
crease in the proportion of attacks that completed Phase
I. This means that an adversary is less likely to include
the true sender and recipient in the anonymity sets.

• The correlation between the size of the sender
anonymity set and the distance between the adversary
and the sender becomes negligible for the second and
thirds pairs.

• For both graphs, the average hop count increases by 35-
36% in the second pair and by 66-67% in the third pair.
The average number of hops increases as the expected
value of the random hops that are performed increases.
Furthermore, by increasing k, the random path chosen is
likely to be longer.

• The increased anonymity comes at a cost. The average
fee increases by 46-55% in the second pair, and by 107-
110% in the third pair.

Last, we show how our new non-deterministic routing
strategy impacted the average fee and hop count based on the
snapshot of the Lightning Network. The results are repre-
sented in Table 3. We can see that these are slightly different
from the results we got based on the random graphs. The fee
increase from max hops = 0, k = 1 to max hops = 3,
k = 5 is equal to 72%. From max hops = 0, k = 1 to
max hops = 7, k = 10, it is equal to 130%. The average
hop count increases by 60% in the case of the second param-
eter pair, and by 107% in the case of the third.

5.5 Ethical Implications
The anonymity evaluation of the routing protocol described
in Section 3 requires designing and performing an attack on
the Lightning Network. To achieve more accurate results, a
live attack on the network is preferred. However, this could
disclose the anonymity and payment habits of participants in
the network.

Metric max hops = 0
k = 1

max hops = 3
k = 5

max hops = 7
k = 10

Ratt 0.52 0.62 0.61
CorrDS 0.55 0.29 0.21
CorrDR 0.48 0.49 0.34
SingS 0.03 0.015 0.013
SingR 0.59 0.30 0.23
Singboth 0.03 0.005 0.004
CompI 0.44 0.23 0.15
FPS 0.06 0.16 0.19
FPR 0.08 0.24 0.31
Avg|R| 1.49 3.08 3.56
Avg|S| 26.63 50.8 43.5
Avghops 4.49 6.15 7.52
Avgfee 1.57 2.30 3.25

Table 2: Attack metrics for 3 parameter pairs based on the
Erdős-Rényi graph.

Metric max hops = 0
k = 1

max hops = 3
k = 5

max hops = 7
k = 10

Avghops 3.27 5.24 6.78
Avgfee 1.41 2.18 3.26

Table 3: Average hops and fees based on the Lightning snapshot.

We perform the attack on randomly generated graphs.
These graphs have the purpose of simulating a real network,
where balances, fees, delays, and other globally known prop-
erties are random. A more realistic scenario is performing
the attack on a snapshot of the Lightning Network, where the
aforementioned properties are real, which leads to a more re-
alistic scenario. In both cases, the transactions are generated
so that the sender, receiver, and amount to be paid are random.
Thus, we believe that due to this randomness, we do not put
at risk the anonymity of any participant of Lightning.

6 Conclusions and Future Work
In this paper we have studied how the anonymity of the Light-
ning Network can be improved by introducing a new non-
deterministic routing protocol. Our evaluation indicates that
combining one or two simple routing strategies can signifi-
cantly improve the anonymity of the participants in the net-
work, but leads to an increase in the fees.

Our results are promising and should be validated by con-
sidering other graphs and the possibility of colluding attack-
ers. Given that we only considered two types of random
graphs of small size, an open question remains how does
the anonymity we got differ from the one we would obtain
by running the same attack on larger graphs, a snapshot of
Lightning, or even in a real-world scenario. Moreover, we
have not investigated the anonymity in case of colluding at-
tackers. Multiple adversaries could combine their observa-
tions, making the anonymity lower. Further studies are also
needed to estimate what are the optimal parameters in our
routing algorithm that offer the best trade-off between fees
and anonymity. Finally, there could be a better algorithm that
could provide a better trade-off; for instance, one that per-
forms the steps of our strategy the other way around.

References
[1] Albert-László Barabási and Réka Albert. Emergence of

scaling in random networks. Science, 286(5439):509–
512, 1999.

[2] Eric Bouillet, Georgios Ellinas, Jean-François Labour-
dette, and Ramu Ramamurthy. Path routing in mesh
optical networks, pages 128–129. John Wiley & Sons,
2007.

[3] Rick de Boer, Stefanie Roos, and Satwik Prabhu
Kumble. Improving blockchain anonymity using hop
changes with partial route computation. 2021.

[4] P. Erdös and A. Rényi. On random graphs. Publica-
tiones Mathematicae Debrecen, 6:290, 1959.

[5] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie
Roos, Patrick McCorry, and Arthur Gervais. Sok:
Layer-two blockchain protocols. In Financial Cryptog-
raphy and Data Security (FC), 2020.

[6] Joran Heemskerk, Stefanie Roos, and Satwik Prabhu
Kumble. Improving anonymity of the lightning network
using multiple path segment routing. 2021.

[7] Paolo Arash Kazemi Koohbanani, Stefanie Roos, and
Satwik Prabhu Kumble. Improving the anonymity of
layer-two blockchains adding random hops. 2021.

[8] Satwik Prabhu Kumble, Dick Epema, and Ste-
fanie Roos. How lightning’s routing diminishes its
anonymity. In Proceedings of the 16th International
Conference on Availability, Reliability and Security,
2021.

[9] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008. Available at: https://bitcoin.org/
bitcoin.pdf.

[10] Mehmet Emre Ozkan, Stefanie Roos, and
Satwik Pradhu Kumble. Improving the anonymity
of blockchains: The case of payment channel networks
with length-bounded random walk insertion. 2021.

[11] Joseph Poon and Thaddeus Dryja. The bitcoin
lightning network: Scalable off-chain instant pay-
ments. 2016. Available at: https://lightning.network/
lightning-network-paper.pdf.

[12] Elias Rohrer and Florian Tschorsch. Counting down
thunder: Timing attacks on privacy in payment channel
networks. In Proceedings of the 2nd ACM Conference
on Advances in Financial Technologies, 2020.

[13] Sergei Tikhomirov, Pedro Moreno-Sanchez, and Matteo
Maffei. A quantitative analysis of security, anonymity
and scalability for the lightning network. In 2020 IEEE
European Symposium on Security and Privacy Work-
shops (EuroS&PW), 2020.

[14] Bitcoin Wiki. Hashed timelock contracts. 2019. Avail-
able at: https://en.bitcoin.it/wiki/Hash Time Locked
Contracts.

[15] Jin Y Yen. An algorithm for finding shortest routes from
all source nodes to a given destination in general net-
works. Quarterly of Applied Mathematics, 27(4), 1970.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

	Introduction
	The Lightning Network
	Routing
	LND
	c-Lightning
	Eclair

	HTLC

	Designing the Routing Algorithm
	Adversarial Model
	Routing Algorithm
	Step I - Random Hops
	Step II - k Best Paths

	Runtime complexity

	Attacking anonymity
	Attack design
	Attack Complexity

	Evaluation
	Metrics
	Simulation Model
	Dataset and Parameters
	Results
	Ethical Implications

	Conclusions and Future Work

