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Abstract

With the decrease in sensor and actuator costs decentralized control strategies have become
increasingly attractive, aiming to use multiple simpler robots for achieving a global objec-
tive. The problem of reaching the global objective generally results in a consensus problem
requiring communication amongst the agents. The cooperative manipulation problem, where
a payload is manipulated using multiple robots, poses an attractive alternative: By using the
payload’s motion as the means of communication, the agents can reach consensus without
using explicit communication. The advantage being that no additional bandwidth is required
as the number of participating agents increases and all to all communication is effectively
achieved.

Whereas previous works considered only the translation dynamics this thesis work consid-
ers the use of the full rigid body motion as a means of communication, such that the agents
reach consensus on the desired wrench and the payload is stabilized at any desired config-
uration. As a possible application the towing of an payload by multiple Unmanned Aerial
Vehicles (UAV) via cables is considered. This brings the additional challenge of underactu-
ation from the perspective of each agent, since only forces can be used to control the full
payload’s motion.

The result is a decentralized nonlinear control law for the forces applied to a payload such
that consensus is reached amongst the agents, the leader’s control action is amplified and
the payload is stabilized at any desired configuration. Proofs are constructed via Lyapunov
arguments and the applicability of the control design to the Aerial Towing Problem (ATP) is
validated in simulation.
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Chapter 1

Introduction

This thesis considers the merging of three interesting problems: How to cooperatively ma-
nipulate a payload using Unmanned Aerial Vehicles (UAV), how to reach consensus amongst
the agents and how to accomplish this without explicit communication. Let us start with an
example burrowed from [2] which illustrates how these problems can be solved simultaneously:
Consider several people moving a heavy table. The transportation task of moving the table
is subject to a global objective being the desired position and orientation of the table, which
is known to the owner of the table. Suppose that, excluding the owner of the table, each
person is wearing a blindfold and during the transportation it is not allowed to communicate
in any way. Is it still possible to reach consensus on the desired motion and cooperatively
manipulate the payload? As the owner of the table initiates the motion in the desired direc-
tion the blindfolded people are able to deduce the desired motion of the payload, and support
this motion. Communication is thus still possible through the payload’s motion. Although
this scenario might appear unconventional when helping your friend move a table, consider
the food retrieval observed in ant-colonies. This process has been well studied [3] leading
to the conclusion that no explicit communication is used other than sensing the motion of
the payload. The image of this thesis is completed by taking it one step further: Consider
the transportation of the payload using multiple UAV connected to the payload via cables.
This extends the transportation problem to one in the three-dimensional space and makes
the payload’s motion as a means of communication that much more interesting.

1-1 Aim and Motivation

The UAV have steadily gained popularity over the years, presenting itself as a highly mobile
system and is envisioned to become a part of our every day lives. Due to its small size and
limited energy storage the manipulation tasks are primarily restricted by the weight of the
load. To complement this, the decreasing cost of sensors and actuators fuels the interest in
cooperative systems performing high level tasks, thus making the towing of a payload using
multiple UAV a viable method to overcome the limitations of any single UAV.
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The motivation for decentralized control in general is to create systems that are less prone to
failure or where failure of a single agent is less costly. Consider the use of a single high-end
robot for transporting a given load, where system failure stops the entire process and part
replacement is expensive. This is in direct contrast to the use of multiple simpler robots that
cooperatively perform the same task. This reasoning advocates for investigating decentralized
control methods and consensus protocols in general.

Given that a task is to be carried out using multiple agents it is generally assumed that
the agents can exchange the necessary information required to achieve the global objective.
For cooperative manipulation tasks the agents are dynamically coupled and communication
must be sufficiently fast to prevent internal loading of the payload (squeezing) and loss of
stability. The use of all-to-all communication would bring the control problem back to a cen-
tralized control strategy, but as the number of agents increases this type of communication
rapidly increases in time-consumption and is deemed infeasible. By using the payload itself
as the means of communication, all-to-all communication can be achieved regardless of the
number of participating agents.

It can be concluded that the use of the payload’s motion is a fast means of communica-
tion that scales well for an increasing number of agents, allowing for a fully decentralized
implementation. Application to the Aerial Towing Problem (ATP) using multiple UAV is
worth investigating, and could pave the way to a small-scale experiment.

1-2 Connection with Existing Literature

Towing of a Payload Using Multiple UAV Control methods for a single UAV are well estab-
lished [4], [5], where the geometric control law appears to have become the norm. Solutions to
the ATP using a single UAV can be found in [6] and centralized approaches to the Cooperative
Manipulation Problem (CMP) using multiple UAV has been described in [7], [8] and [9]. A
decentralized approach to the cooperative ATP is shown in [10], where the solution is based
on formation control and Passivity Based Control (PBC). The major difference between the
approach in [10] and the subject of this thesis is that explicit communication is used in [10].

Payload motion as the means of communication during transportation On the subject
of decentralized CMP the use of the transported payload as the means of communication
has not gone unnoticed. This method of communication has been observed in nature while
studying the food retrieval by ants towards their nest [3]. Inspired by these studies on ants
in a series of papers [11], [11], [2], [12] the so called Force-Amplifying N-robot Transport
System (Force-ANTS) framework is proposed. where a swarm of simple robots is used to
manipulate a heavy payload’s linear motion in the plane. In the Force-ANTS framework
the robots use the payload’s acceleration as the means of reaching consensus without using
explicit communication. It is shown that the followers amplify the leaders force, allowing
for control over the payload velocity. The CMP for the linear motion of a payload is also
addressed in [13], as an example case of a general PBC method for distributed systems. In [13]
the intend is to make the follower agents compliant to the leader’s desired motion, rather than
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to amplify the leaders force. The proposed solutions in [12] and [13] consider the translation
dynamics in the plane only with the aim of reaching a desired velocity. No extension to
control of the rotational motion is presented.

1-3 Thesis Scope and Goals

This thesis work considers a Leader-Follower (LF) type CMP where only some of the agents
have access to the desired payload motion. Since the agents, that is the robots, are dynam-
ically coupled through the payload this would require a fast type of communication. The
approach given in [2] presents an elegant solution by considering the payload motion as the
means of reaching consensus. Furthermore, this method allows the leaders’ control effort to
be amplified by the follower agents without communication. Considering the results reported
in the literature, the following conclusion is drawn:

1. The results reported in the literature that use the payload as the means of communi-
cating the desired motion only consider the linear translation dynamics. The problem
of reaching consensus on the desired payload configuration, that is a rotation as well as
position, is not addressed.

2. The Force-ANTS framework showed that, not only consensus can be reached, but that
the leader control effort can also be amplified without communication. It was shown
that this allows the leader to control the linear velocity, but the problem of amplifying
the leaders’ control effort to reach any desired configuration was not addressed.

3. The reported results assume acceleration or force measurements of the payload to be
available. The effect of arbitrary state measurements on the consensus dynamics is not
considered.

The extension of the LF based CMP to control the full rigid body motion opens a path to a
much wider range of possible applications. A human operator can be considered to control
the payload motion, without requiring an interface to the robots. Consider for example a
mechanic that can rotate a heavy car into a position that allows for ease of access, without
any effort. With the decrease in size and cost of commercially available UAV the aerial CMP
could be accomplished using many smaller UAV, and furthermore, allow for a small scale
experiment in the near future. It is thus proposed to investigate the aerial CMP of a payload
towed by multiple UAV via cables, where consensus is reached on the desired configuration
using the payload as the medium of communication.

As a simplification of the problem, the consensus laws will be designed while neglecting
the robot dynamics. This results in a more analytic approach while considering a directly
actuated rigid body. Subsequently, the effectiveness will be evaluated for the ATP by adding
the UAV dynamics to the description. The control law for the UAV will be designed with
the aim of controlling the force at the attachment point of the cable. It thus makes sense to
consider the directly actuated rigid body to be actuated by forces, rather than wrenches. As
the agents apply a force to control the configuration, this brings the challenge of underactu-
ation from the perspective of each agent. With these considerations the goals for this thesis
are defined as follows.
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1. The presented control laws are to be designed for three requirements:

(a) The leader control effort is to be amplified by the follower agents.
(b) The follower agents reach consensus on the applied wrench.
(c) The payload is to be stabilized at any desired configuration.

2. The research goals are defined for a more abstract setting: The underlying consen-
sus dynamics when agents communicate through the motion of a rigid body is to be
investigated. This can be further divided into the following objectives,

(a) Investigate different methods of attitude representation, and the effect on the con-
sensus dynamics.

(b) Investigate the effect of underactuation on the consensus dynamics.
(c) Investigate how consensus can be reached without acceleration measurements.
(d) Proofs of stability are to be provided, and the convergence rate should be derived

wherever possible.

3. The application of the consensus protocols to the ATP is to be investigated. This is
further divided into the following objectives,

(a) Investigate the possibility of using a single leader to control the payload motion.
(b) Give a recommendation for a small scale experiment.

4. All investigative efforts are to amount to a proposed control law, which is to be validated
via simulation.

1-4 Main Assumptions

To emphasize the scope of this thesis, the main simplifications are reviewed in the following.

Neglecting the Robot Dynamics The intention in this thesis work is to apply the consensus
problem to the ATP. The constraint free equations of motion of the complete system shows a
complicated interaction between the UAV and the payload dynamics. It is therefore chosen to
present an academic research into the consensus problem by considering a directly actuated
rigid body, where the robot dynamics is neglected. The effectiveness of the proposed consensus
laws to the ATP is then verified via simulation, rather than analytic expressions.

Simplified Mathematical Description of the ATP When aiming for a realistic mathematical
description of the ATP the increase in complexity appears to know no bounds. A variety of
models can be found in the literature, where the main difference is in the modeling of the
cables. Cable slackening is modeled in [14] through a switched description, whereas in [15]
an elaborate constraint free description is presented where the cables are modeled as a string
of bodies. Even for a single UAV the model can become arbitrarily complex, for example
by considering effects of rotor flapping or drag [16]. In this thesis work the aim is merely to
gap the bridge between abstract consensus problems and the application to a more practical
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example. For this purpose it was deemed that a simplistic description of the ATP would
suffice. The most important assumptions are given as:

1. The cables are modeled as massless rigid links,

2. The UAV are assumed to be fully actuated.

Constant Reference Signal In this thesis work it is assumed that the desired payload config-
uration is constant. This allows all solutions to be evaluated by considering the step response,
and the performance of different solutions is easily compared.

A Model Based Approach In a futuristic setting, one could imagine attaching a few robots
to a payload, instantly allowing it to be transported by any chosen operator. In such a scenario
it indicates that the control laws are either independent of the payload parameters, or can
adapt to it. Although very interesting, the adaptive approach is outside the scope of this
text. Excluding adaptive approaches, it was found that parameter independent approaches
tend to aim at stabilizing at a desired configuration, and not a desired velocity. In this thesis
there is the additional requirement of amplification of the leader’s wrench. This indicates
that consensus must be reached before reaching the desired configuration. Exact results for
convergence during motion imply that the parameters of the payload must be known. This
thesis thus considers a model based approach, and assumes that the payload parameters are
known to the agents.

Global Sensing Capabilities As the payload is the means of communication it can be imag-
ined that the agent’s sensing capabilities effects the underlying communication topology. The
effect of local sensing brings an additional challenge, and forms the main focus in [17]. How-
ever, the consideration of local versus global sensing is only meaningful if the solutions are
model independent. Disregarding the consensus problem, consider that in order to cancel the
gravitational wrench acting on the payload, that the attitude and grasping matrix must be
known to all agents. Thus, assuming these are available, global measurements can then be
obtained from local measurements through forward kinematics. It is therefore concluded that
an investigation into local measurements is only meaningful after investigating an adaptive
control approach, or otherwise remove the parameter dependency. For this reason the agents
are assumed to have global measurements of the payload state.

1-5 Thesis Structure

This chapter introduced the problem of cooperative manipulation while reaching consensus
without communication. This led to the definition of the research goals for this thesis work,
and the main assumptions where defined. The remainder of this thesis is structured as follows.

Chapter 2 considers the simplest case, with respect to the subsequent chapters. The agent
dynamics is neglected, it is assumed that the agents can measure the acceleration of the
payload, and a minimal attitude representation is used. Firstly, the agents are considered to
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apply a wrench at the payload Center of Gravity (CoG), which is referred to as full actuation.
Subsequently, the proposed solution is extended to the case where the followers apply a force
at the attachment point, referred to as the underactuated case. The efficacy of the proposed
control laws is shown in simulation.

Chapter 3 aims for a global system description by using the rotation matrix directly for
control. Otherwise, the same assumptions hold: The agent dynamics is neglected, and ac-
celeration measurements are assumed to be available. With the introduction of the rotation
matrix, a significant increase in complexity is found, despite the simplified scenario. For this
reason the chapter begins with the fully actuated case and the synchronization of the agents
without a leader. Subsequently the leader is added to the problem, after which the proposed
solution is extended to the underactuated case. The proposed solutions are simulated and
the chapter concludes with a discussion on the results.

Chapter 4 relaxes the assumption of requiring acceleration measurements, and aims to re-
construct the desired payload configuration through an observer. Still, the robot dynamics
are neglected and a minimal attitude representation is again used. The fully actuated case
is considered first, after which the more complicated underactuated case is considered. The
control laws are validated through simulations.

Chapter 5 introduces the robot dynamics by considering the ATP where multiple UAV are
towing the payload via cables. A downside of this approach is that at least three leaders are
required to control the payload motion. The chapter begins with the review of a centralized
approach taken from the literature. A decentralized approximation is proposed such that the
agents no longer require the full system state. Subsequently the proposed solution is extended
to the case where the agents have to reach consensus on the desired configuration, i.e. the
follower UAV are introduced. The solution presented in Chapter 4 is applied to the ATP and
the effectiveness is shown via simulation results.

Chapter 6 considers an alternative for the leader design. The aim is to remove the requirement
of three leaders, by considering a single leader attached to the payload via three extendable
cables. The computation of the desired cable lengths introduces the inverse kinematics prob-
lem, for which a solution is proposed. The control law is then designed for the case where a
single UAV is towing the payload. Subsequently, the follower UAV are added to the system.
The follower UAV are still connected via a single cable each, and use the control law of the
previous chapter. Simulation results of the proposed solutions are presented.

Chapter 7 finalizes this thesis work with conclusions and a discussion on the found results.
It includes a recommendation for a small scale experiment, and recommendations for future
research.
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Chapter 2

Payload Acceleration Measurements
as a Means of Communication:
Modified Rodrigues Parameters

This chapter considers the case that all agents have access to the payload acceleration, and
the agent dynamics is neglected. With the use of Modified Rodrigues Parameters (MRPs)
it is shown that the agents can directly exchange information on the desired configuration.
A decoupling strategy is pursued with the aim to isolate the consensus dynamics from the
payload dynamics. Although this allows for a straightforward analysis of the consensus dy-
namics, the boundedness of the payload state can not be guaranteed. For the fully actuated
case this problem is resolved by introducing a small coupling gain, resulting in global conver-
gence to the desired equilibrium. For the underactuated case this problem was not resolved.
Despite the global convergence of the estimation errors, the payload state is only proven to
converge locally. Via simulations it is shown that the proposed solution can handle large
angular rotations.

In the following section the MRPs are introduced. Section 2-2 considers the fully actuated
case, and presents a globally stabilizing solution. In Section 2-3 the more complicated under-
actuated case is considered. Section 2-4 validates the proposed solution through simulation
results. This chapter finalizes with a discussion and conclusion on the proposed solution in
Section 2-5.

2-1 Modified Rodrigues Parameters for Attitude Control

This chapter considers the use of MRPs as a parameterization of the rotation matrix. There
are in fact many representations to choose from, and it often appears that the chosen repre-
sentation is simply a matter of taste. The main motivation for considering the MRPs in this
thesis is that they form a minimal attitude representation allowing for an additive tracking
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8 Payload Acceleration Measurements as a Means of Communication: Modified Rodrigues Parameters

error. By comparison, the additive and nonlinear form of the applied torque to a rigid body
are respectively given as,

τ = Ξ (σ)T (σ − σdes) , and τ = (1−‖σdes‖2)σ−(1−‖σ‖2)σdes+2σ̃σdes

1+‖σ‖2‖σdes‖2+2σTdesσ
, (2-1)

where σ denotes the payload MRPs, σdes denotes the reference MRPs and Ξ (σ) denotes the

kinematic matrix given in (A-28). The nonlinear form should be seen as the proper use of
MRPs for attitude control, as it corresponds to the MRPs that describes the rotation required
to go from σ to σdes. The additive form does not enjoy such an interpretation, but tends to
reduce the mathematical complexity. Nevertheless, both these laws have been applied in the
literature to control and consensus problems (see [18] for the additive form and, amongst
many others, [19] for the nonlinear form), and the additive form is considered in this thesis
work.

Any minimal attitude representation allows for an additive tracking error, thus leaving a
number of parameterizations to choose from [20]. The most popular of which are the Euler
angles, Classical Rodrigues Parameters (CRPs) and Modified Rodrigues Parameters (MRPs).
Of these representations the MRPs have the largest reach, as they allow to describe rotations
up to angles of ±360 deg, whereas this is limited for the Euler angles to ±90 deg about the sec-
ond rotating axis, and up to ±180 deg in any direction for the CRPs. Furthermore, the MRPs
allow for a singularity free kinematic description and show a large region of approximately
linear behavior.

The Singularity of Modified Rodrigues Parameters The use of MRPs for representing the
payload attitude has several implications that require further clarification. The MRPs are
radially unbounded and the kinematic description is singularity free. However, the mapping
from the payload attitude to the corresponding MRPs shows a division by zero type singular-
ity for angles of ±360 deg, for which the MRPs would go to infinity. Supposing that it can be
shown that all signals remain bounded, then it is still possible to speak of global convergence
if the following assumption holds:

Assumption 2-1.1. Considering the use of MRPs as the attitude representation, it is as-
sumed that neither the initial payload attitude nor the desired payload attitude is chosen at the
singular rotation θ = ±360 deg, where θ is the angle of rotation associated with the rotation
matrix.

For the fully actuated system, discussed in the following section, it can be shown that all
signals remain bounded and converge to the desired equilibrium. For the attitude to reach
the singular point it would mean that the MRPs tend to infinity. This directly leads to the
conclusion that the singular point is not reached [21].

From a practical point of view Assumption 2-1.1 holds little value. It is not advisable to
put the reference near the singularity, e.g. 359 deg, where the MRPs are very large and
known to be numerically unstable [20]. Only without control saturation- and sampling time
limits would it be possible to stabilize the payload at 359 deg. A more practical assump-
tion would be that neither the initial attitude nor the desired payload attitude is chosen
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outside ±180 deg. Since any static payload configuration can be described using an angle of
|θ| ≤ 180 deg, this covers all initial and desired payload attitudes. Reaching the singularity
would then indicate an overshoot over 180 deg. Should the attitude still reach the singular
configuration, then it is argued in [21] that any control action results in leaving the singularity.

Finally there should be made a distinction between the payload configuration and the payload
configuration space. The payload configuration refers to any static configuration whereas the
configuration space refers to the nonlinear manifold on which the motion evolves. The MRPs
can be used for rotations up to ±360 deg and are thus not able to globally map the config-
uration space to the parameterized space. However, any static payload configuration can be
described using an angle of |θ| ≤ 180 deg, and is thus well covered by the parameterized space.

To summarize the above considerations regarding the use of MRPs for converging to any
static payload attitude: Theoretically, global convergence results can be obtained if all sig-
nals remain bounded and Assumption 2-1.1 holds. In practice, a well tuned control law is
able to stay well away from the singularity due to the large range of the MRPs.

2-2 Jacobian Transposed Control Approach for the Fully Actuated
Case

This section considers the Cooperative Manipulation Problem (CMP) of a payload that is
rigidly grasped by multiple robots. It is assumed that the robot dynamics can be neglected,
and that they are well approximated as a controlled wrench at the attachment point. This
scenario will be referred to as the fully actuated case, indicating that the participating agents,
i.e. the robots, can apply both a force and a torque to the payload. A single leader is used to
control the desired payload configuration, and an arbitrary number of follower agents are to
amplify the leader’s control effort. It is assumed that the full state and the accelerations of
the payload Center of Gravity (CoG) are available to all agents. Furthermore, it is assumed
that the agents apply a wrench at the payload CoG. This last assumption is relaxed at the
end of this section.

In the following a separation strategy is proposed that aims to isolate the consensus problem
from the payload dynamics. It is shown that with acceleration measurements, and a mini-
mal attitude representation, the resulting consensus dynamics is of first order with all to all
communication. However, due to the nonlinearity of the payload dynamics the separation
theorem for linear systems does not apply. This is resolved by introducing a small coupling
between the consensus- and payload dynamics, such that global convergence to the desired
equilibrium is achieved.

The remainder of this section is structured as follows. The payload dynamics assuming
full actuation is introduced in Subsection 2-2-1. In Subsection 2-2-2 the agent control laws
for the applied wrench is presented, which leads to a simplification of the payload dynamics.
Subsequently, the objective of the CMP is defined in Subsection 2-2-3, followed by the pro-
posed solution in Subsection 2-2-4. This section concludes with a discussion and final remarks
in Subsection 2-2-5.
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2-2-1 Payload Dynamics Assuming Full Actuation

The payload is modeled as a rigid body upon which the agents apply a wrench at the payload
CoG. Let the state of a rigid body be represented in terms of the twist ν =

[
ΩT vT

]T
∈ R6,

where Ω and v denote the angular- and linear velocity, and the configuration coordinates
q =

[
σT rT

]T
∈ R6, where σ ∈ R3 and r ∈ R3 denote the payload MRPs and position

respectively. Let the subscript o refer to the payload, such that the payload equations of
motion are given as

Moν̇o = −Co (νo)−Go +
∑
w

q̇o = Jo (qo) νo
(2-2)

where Mo ∈ R6×6 represents the mass tensor, Co (νo) ∈ R6 the Coriolis terms, Go ∈ R6 the
(gravitational) potential terms, Jo (qo) ∈ R6×6 the payload kinematic jacobian, and w ∈ R6

denotes a wrench, such that
∑
w denotes the total wrench acting at the payload CoG. The

explicit expressions for Mo, Co (νo), Go and Jo (qo) can be found in Appendix A-4-2.

2-2-2 Agent Control Laws and Reduced Payload Dynamics

It is assumed that a single leader and nf -follower agents are participating in the CMP.
Assuming an even distribution of the weight over all agents, let the leader wrench, denoted
by wl, be given as

wl = 1
nf+1 (Co (νo) +Go)−Mo

(
ζlνo +KlJo (qo)T el

)
(2-3)

where the subscript l refers to the leader, ζl ∈ R6×6 and Kl ∈ R6×6 are diagonal, positive
definite gain matrices, and el is the leader tracking error, for which the kinematics is given as

el = qo − qdes, ėl = q̇o = Jo (qo) νo (2-4)

where qdes is the desired configuration. The above shows that the desired configuration, as
known to the leader, is assumed to be constant. The follower control law shows an identical
structure,

wi = 1
nf+1 (Co (νo) +Go)−Mo

(
ζiνo +KiJo (qo)T ei

)
, i ∈ {1, . . . , nf} (2-5)

where the subscript i refers to the ith-agent, ζi ∈ R6×6 and Ki ∈ R6×6 are diagonal positive
definite matrices, and ei is the ith-agent’s estimate of the leader’s tracking error el. For
the proposed control law it must hold that K∗Jo (qo) = Jo (qo)K∗, i.e. these matrices must
commute. From the definition of Jo (qo) given in (A-34) it then follows that, for the leader as
well as the follower agents, the feedback gain K∗ is further restricted as

K∗ =
[
kσ,∗I3×3 0

0 Kr,∗

]
(2-6)

where Kr,∗ > 0 is a diagonal 3 × 3 matrix and kσ,∗ > 0 is a scalar. Substitution of the
leader and follower wrenches, (2-3) and (2-5) respectively, into the dynamics (2-2) allows for
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2-2 Jacobian Transposed Control Approach for the Fully Actuated Case 11

a reduction of the equations of motion,

ν̇o = −ζsumνo − Jo (qo)T
(
Klel +Ki

nf∑
i=1

ei

)
ėl = Jo (qo) νo

(2-7)

where ζsum = ζl +
nf∑
i=1

ζi, i.e. the sum of all control gains, and it was used that the matrices

K∗ and Jo (qo) commute.

2-2-3 Mathematical Objective for the Cooperative Manipulation Problem

Note from the reduced dynamics (2-7) that if the follower estimates of the tracking error ei
converge to that of the leader el, that the leader control action is effectively amplified. The
problem of reaching consensus amongst the agents is then already covered. What remains
is for the payload to converge to the desired configuration qdes. The objectives can thus be
summarized as:

Objectives 2-2.1. Consider the CMP described by the reduced description (2-7). The con-
vergence of the system to the desired equilibrium follows if the

estimation error: ∆ei = ei − el, i ∈ {1, . . . , nf} ,

and tracking error: el = qo − qdes
(2-8)

converge to zero.

2-2-4 Proposed Consensus Law for the Fully Actuated Case

To meet the objectives 2-2.1 the following solution is proposed:

Proposition 2-2.1. Consider the fully actuated CMP to be described by the reduced payload
dynamics given in (2-7). Let the followers update their estimate of the tracking error ei as

ėi = (εi + 1) q̇o − Γi (Ksumei − y) (2-9)

where Ksum = Kl +
nf∑
i=1

Ki ∈ R6 is the sum of the leader and follower feedback gains, Γi ∈ R6

is the ith-agent’s observer gain, ε ∈ R is a small scalar constant, and y is the measurement
given as

y = Jo (qo)−T (ν̇o + ζsumνo) (2-10)

with ζsum = ζl +
nf∑
i=1

ζi is the sum of the damping gains. Then, there exist arbitrarily small
constants εi > 0 such that the Objectives 2-2.1 are globally achieved.
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12 Payload Acceleration Measurements as a Means of Communication: Modified Rodrigues Parameters

The above makes use of the inverse of the transpose of Jo (qo). From the definition of Jo (qo)
(A-34) and the MRPs kinematics in (A-34) it can be seen that the inverse exists for all
bounded configuration states.

Underlying Consensus Dynamics

Due to the explicit definition of the measurement y the underlying consensus law is not di-
rectly apparent from the Proposition 2-2.1. Therefore, before constructing the proof, the
underlying consensus dynamics will be revealed.

From the reduced dynamics (2-7) it can be seen that the measurement y gives access to
the weighted sum of the tracking errors,

y = Klel +
nf∑
i=1

Kiei. (2-11)

Substitution of the above equation into the update law for (2-9) reveals the interaction between
the agents,

˙̂ei = (1 + εi) q̇o − Γi

(
Kl (êi − el) +

nf∑
j=1

Kj (êi − êj)
)
. (2-12)

The above dynamics can be written in terms of the ith-estimation error, ∆ei = êi − el, by
combining the leader error kinematics (2-4) with the above equation to obtain,

∆ėi = −Γi

(
Kl∆ei +

nf∑
j=1

Kj (∆ei −∆ej)
)

+ εiq̇o. (2-13)

The equation above shows that, for εi = 0, the underlying consensus dynamics is reflected in
the estimation error, and shows weighted, all-to-all communication.

Proof of Convergence of the Estimation Error

The approach is to decouple the proof, according to the Objectives 2-2.1, by first showing
that the estimation errors ∆ei = êi − el of all agents converge. In the following it will be
assumed that εi = 0. To this end, consider the Lyapunov candidate given as

V∆ = 1
2

nf∑
i=1

∆eTi KiΓ−1
i ∆ei (2-14)

where KiΓ−1
i is a multiplication of two diagonal matrices, and thus symmetric. Taking the

time derivative of V∆ and substitution of the estimation error dynamics (2-13) gives

V̇∆ = −
nf∑
i=1

∆eTi KiKl∆ei −∆eTL(e)
w ∆e, {εi = 0} . (2-15)
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2-2 Jacobian Transposed Control Approach for the Fully Actuated Case 13

where ∆e =
[
∆eT1 ∆eT2 . . . ∆eTnf

]T
∈ R6nf is the stacking of all local estimation errors

as a single vector and L(e)
w is the weighted Laplacian matrix for the complete graph as given

in Definition A-1.4 by substituting ai = Ki in the definition. From Definition A-1.4 it holds
that L(e)

w ≥ 0. It follows directly that the estimation errors ∆e remain bounded and globally
converge to the origin for εi = 0. For deriving the convergence rate, consider that eTq L

(e)
w eq ≥ 0,

such that (2-15) can be written as,

V̇∆ ≤ −
nf∑
i=1

∆eTi KlKi∆ei ≤ −kl,min
nf∑
i=1

∆eTi Ki∆ei (2-16)

where kl,min denotes the smallest scalar value on the diagonal of Kl. Similarly, let γmin denote
the smallest scalar value on the diagonal of all observer gain matrices Γi, and rewrite the above
equation as,

V̇∆ ≤ −2kl,minγmin
nf∑
i=1

(
1

2γmin
∆eTi Ki∆ei

)
≤ −2kl,minγminV∆ (2-17)

where the last inequality was obtained using V∆ as given in (2-14). From Lemma A-5.3 it then
follows that the convergence rate towards the leader is lower bounded as α = 2kminγe,min.

Proof of Asymptotic Convergence of the Payload Tracking Error

Consider expressing the reduced payload dynamics (2-7) in terms of the estimation errors
∆ei = ei − el,

ν̇o = −ζsumνo − Jo (qo)T Ksumel − Jo (qo)T
nf∑
i=1

Ki∆ei (2-18)

where ζsum = ζl +
nf∑
i=1

ζi and Ksum = Kl +
nf∑
i=1

Ki. The proof of convergence of the estimation
error assumed εi = 0, allowing for the consensus dynamics to be separated, as can be seen
from (2-13). However, the separation theorem generally does not hold for nonlinear systems.
Therefore, to meet the objectives 2-2.1 let εi = Γiε where ε > 0 is taken arbitrarily small, and
consider the Lyapunov candidate given as,

V = Ve + 1
εV∆


Ve = 1

2ν
T
o νo + 1

2e
T
l Ksumel

V∆ = 1
2ε

nf∑
i=1

∆eTi KiΓ−1
i ∆ei

(2-19)

where ε > 0 is taken arbitrarily small and V∆ was proposed in (2-14). Taking the time
derivative and using (2-13) then gives,

V̇ = V̇e +
nf∑
i=1

∆eTi KiJo (qo) νo − 1
ε

( nf∑
i=1

∆eTi KiKl∆ei + ∆eTL(e)
w ∆e

)
. (2-20)

where the last term was given in (2-15). The expression for V̇e is obtained from (2-18),
resulting in,

V̇ = −νTo ζsumνo − 1
ε

( nf∑
i=1

∆eTi KiKl∆ei + ∆eTL(e)
w ∆e

)
≤ 0. (2-21)
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14 Payload Acceleration Measurements as a Means of Communication: Modified Rodrigues Parameters

This shows that all signals νo, el and ∆ei remain bounded. Since qdes is constant, and
el = qo − qdes is bounded, it follows that qo is bounded. From this it follows that also ν̇o,
ėl = q̇o = Jo (qo) νo and ėi remain bounded. It then follows that V̈ is bounded, and thus V̇ is
continuously differentiable and has a finite limit, which allows the use of Barbalat’s Lemma
A-5.2. Thus lim

t→∞
V̇ = 0, and it follows from LaSalle’s invariance principle and the payload

dynamics (2-18) that lim
t→∞

el = 0 since Jo (qo) is invertible. This shows that the payload
globally, asymptotically converges to the desired configuration, and completes the proof.

2-2-5 Remarks and Extensions on the Proposed Solution

A few remarks on the proposed consensus law, followed by the interpretation of the coupling
gain:

• The requirement was for the followers to amplify the leaders control action. From
the payload dynamics (2-7) it can be seen that the leader’s control action is indeed
amplified if ei = el. The idea is that the consensus dynamics is made faster then the
desired payload dynamics, which can be achieved through the observer gain Γ, resulting
in the amplification of the leader wrench.

• The assumption of having a single leader is non-restrictive: Multiple leaders would
appear to the followers as a single wrench appearing at the payload CoG. The resulting
problem has an identical structure, where the leader gain is simply changed to the sum
of the leader gains.

• Note that the update law (2-9) requires knowledge on the control gains used by all other

agents, since Ksum = Kl +
nf∑
i=1

Ki. This is required to obtain a Laplacian matrix with a

zero-row sum in (2-13).

Extension of a Wrench at the Payload CoG to a Wrench at the Attachment Points For
the fully actuated system the case where the agents apply a wrench at the payload CoG can be
directly extended to the case of grasping the payload at the attachment points. Considering
the case of full actuation, the mapping between the wrench at the attachment point, and the
wrench at the payload CoG is given as

wi =
[
I3×3 p̃iR

T

0 I3×3

]
× wpi ↔

[
I3×3 −p̃iRT

0 I3×3

]
× wi = wpi (2-22)

where wpi is the wrench at the ithattachment point, wi is the wrench at the payload CoG, pi
is the position of the attachment point on the payload, the tilde operator is given in Definition
A-2.1, and Ro ∈ SO(3) is the payload rotation matrix. This mapping is always invertible and
can thus be thought of as implicitly being applied to all results presented in this thesis work
that consider full actuation at the attachment points.
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2-3 Jacobian Transposed Control Approach for the Underactuated Case 15

The Effect of the Coupling Gain Clearly, the design was for ε = 0, and then to separate
the consensus- and payload dynamics. As the proof did not allow this, the addition of the
coupling gain was introduced. The intention was to illustrate that ε can be made arbitrarily
small, and effectively allows for a decoupling of the proof. Nevertheless, even non-negligible
ε has a clear interpretation, and could be advocated for:

• The effect of ε is that it injects damping into the payload motion. It can thus be seen as
a trade-off between injecting more damping and amplifying the leader control action.

• It was shown that the estimation error converges globally, and independent of the pay-
load motion. And yet, this does not prove that the MRPs do not escape to infinity before
the estimation error converges. From the simulations it was found that the MRPs are
well behaved, and ε was set to zero. However, one simulation does not cover all possible
situations. It might be that for a poorly tuned observer the gain ε > 0 becomes critical
to ensure the stability of the payload motion while the estimation error converges.

2-3 Jacobian Transposed Control Approach for the Underactuated
Case

The aim of this thesis is to propose a consensus law that is applicable to the Aerial Towing
Problem (ATP) using multiple Unmanned Aerial Vehicles (UAV)s. For the ATP the assump-
tion of full actuation is not realistic, even when the UAV dynamics are neglected. It is thus
desired to design the consensus law for the case that the agents can apply only forces at the
attachment points, rather than a wrench. From the perspective of the agents, this gives the
problem of underactuation. The proposed solution is to assume identical observer gains and
use the generalized inverse of the adjoint matrices [22]. Similar as before, it is assumed that
the agents have access to the payload state and accelerations.

The effect of the underactuation is that the consensus dynamics is described by a state
dependent Laplacian matrix. As was done for the fully actuated case the proposed strategy is
to separate the consensus- from the payload dynamics. This allows global convergence of the
consensus dynamics to be derived, despite the complexity of the Laplacian matrix. However,
due to the nonlinearity of the payload dynamics the separation theorem for linear systems
does not apply, and stability of the payload dynamics is only locally guaranteed.

The remainder of this section is structured similar to the previous. The payload dynam-
ics for the underactuated case is introduced in Subsection 2-3-1. In Subsection 2-3-2 the
agent control laws are presented, leading to a simplification of the payload dynamics. Subse-
quently, the mathematical objective of the CMP is defined in Subsection 2-3-3, followed by
the proposed solution in Subsection 2-3-4. This section concludes with a discussion and final
remarks in Subsection 2-3-5.

2-3-1 Payload Dynamics Assuming Underactuation

Consider the case were nf -agents are able to apply a force at the attachment point, and a
single leader applies a wrench at the payload CoG. Following the notation given in Subsection
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16 Payload Acceleration Measurements as a Means of Communication: Modified Rodrigues Parameters

2-2-1, let the payload equations of motion be given as

Moν̇o = −Co (νo)−Go + wl +
nf∑
i=1

Jpi (qo)T Fpi

q̇o = Jo (qo) νo
(2-23)

where wl ∈ R6 denotes the leader wrench at the payload CoG, Fpi ∈ R3 denotes the ith-
agent’s force applied at the attachment point on the payload, and Jpi (qo)T ∈ R6×3 denotes
the jacobian transposed of the velocity at the attachment point,

Jpi (qo)T =
[
p̃iR

T
o

I3×3

]
(2-24)

where pi represents the position of the ith-attachment point given in the body fixed frame,
Ro ∈ SO(3) is the rotation matrix (A-26) and the tilde operator is given in Definition A-2.1.

2-3-2 Agent Control Laws and Reduced Payload Dynamics

As it is assumed that the leader still applies a wrench at the CoG, the leader control law is
taken the same as for the fully actuated case (2-3), with the error kinematics given by (2-3)
and the gain matrices K∗ > 0, ζ∗ > 0 are assumed to be diagonal matrices, with K∗ having
the structure given in (2-6).

The proposed method for dealing with the underactuation is to use the generalized inverse of
the collection of Jpi (Ro)T matrices (2-24), given as

Jpi (Ro)† = Jpi (Ro)×
( nf∑
i=1

Jpi (Ro)T Jpi (Ro)
)−1

(2-25)

where Jpi (Ro)† denotes the generalized inverse. The agents compute the applied force at the
attachment point Fpi as,

Fpi = nfJpi (Ro)†wi

= nfJpi (Ro)†
(

1
nf+1 (Co (νo) +Go)−Mo

(
ζνo +KJo (qo)T ei

)) (2-26)

where wi is computed according to (2-5), and nf is the number of follower agents. The agents
are assumed to use identical feedback gains ζi = ζ and Ki = K, but this assumption is relaxed
in Subsection 2-3-5.

Substitution of the leader and follower control laws, (2-3) and (2-26) respectively, into the
payload dynamics (2-23), simplifies the payload dynamics as,

ν̇o = −ζsumνo −KlJo (qo)T el −
nf∑
i=1

Wi (qo)KJo (qo)T ei

ėl = Jo (qo) νo
(2-27)
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2-3 Jacobian Transposed Control Approach for the Underactuated Case 17

where

Wi (qo) = nfM
−1Jpi (qo)T Jpi (qo)†M. (2-28)

Note from the definition of the generalized inverse (2-25) that if wi = wj for all i, j that the

generalized inverse drops from the problem completely, since
nf∑
i=1

Wi (qo) = nfI. This property
is further emphasized by the control objectives stated in the following.

2-3-3 Mathematical Objective for the Cooperative Manipulation Problem

As a means to eliminate the problem of underactuation, consider the following decoupling of
the objectives:

Objectives 2-3.1. Considering the CMP and the system dynamics given in (2-27). The
convergence of the system to the desired equilibrium follows if the

disagreement: δei,= ei − 1
nf

nf∑
j=1

ej ,

mean estimation error: ∆ē = 1
nf

nf∑
i=1

(ei)− el,

and tracking error: el = qo − qdes

(2-29)

all converge to the origin.

Before proceeding with the proposed control law and the proof, consider that the local estima-
tion error ∆ei = ei − el can be expressed in terms of the disagreement and mean estimation
error as ∆ei = δei + ∆ē. Furthermore, the disagreement variable can be related to the
Laplacian matrix for the complete graph as,

δe = 1
nf

(L⊗ I6×6) e (2-30)

where L is given in Definition A-1.3, and δe denotes the stacking of the local variables into a
vector, δe =

[
δeT1 δeT2 . . . δeTnf

]T
and similarly for e.

2-3-4 Proposed Consensus Law for the Underactuated Case

Except for the use of the generalized inverse, the control law for the underactuated case is
similar to the fully actuated case, but instead the control gains are identical for all agents:
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18 Payload Acceleration Measurements as a Means of Communication: Modified Rodrigues Parameters

Proposition 2-3.1. Consider the underactuated CMP as described by the reduced payload
dynamics given in (2-27). Let the followers update their local estimate of the tracking error
ei as

ėi = Jo (qo) νo − Γ (Ksumei − y) (2-31)

where Ksum = Kl + nfK is the sum of the leader and follower feedback gains, Γ is the agent
observer gain, and y is the measurement given as

y = −Jo (qo)−T (ν̇o + ζsumνo) (2-32)

with ζsum = ζl+nfζ. Then, considering the Objectives 2-3.1, the disagreement and estimation
error dynamics converge globally to the origin, while the payload tracking error is shown to
locally converge to the desired equilibrium.

Underlying Consensus Dynamics

The underlying consensus dynamics can be obtained by substitution of the measurement y
into the proposed update law. From the reduced equations of motion (2-27) it can be seen
that y in Proposition 2-3.1 is given as

y = Klel +
nf∑
i=1

Jo (qo)−T Wi (qo) Jo (qo)T Kei. (2-33)

Consider the estimation error ∆ei = ei − el, such that substitution of the expression above
into (2-31) gives,

∆ėi = −ΓKl∆ei − Γ
nf∑
j=1

Jo (qo)−T Wj (qo) Jo (qo)T︸ ︷︷ ︸
state dependent weights

K (∆ei −∆ej) (2-34)

where it was used that
nf∑
i=1

Wi (qo) = nfI. This shows that the estimation errors are still

coupled as in (2-13), but now through state dependent weighting matrices. This would result
in a non-symmetric, state dependent, weighted Laplacian matrix. Furthermore, the weights
are rank deficient- and non-symmetric matrices. This motivates the use of the decoupled
objectives and an identical observer gain Γ.

Proof of Global Convergence of the Disagreement Dynamics

The disagreement dynamics of the follower agents can be obtained from the local update law
(2-31), consider stacking all the update laws into a single vector,

ė = −nfΓKe+ 1nf ⊗ (q̇o + Γy) (2-35)

where e =
[
eT1 eT2 . . . eTnf

]T
∈ R6nf , and εi (qo) = 0. Left multiplication with the Lapla-

cian matrix L gives the disagreement vector,

δė = (L⊗ I6×6) ė = −nf (L⊗ (ΓK)) e = −nf
(
Inf×nf ⊗ (ΓK)

)
δe. (2-36)
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2-3 Jacobian Transposed Control Approach for the Underactuated Case 19

Note that the measurements y and the payload velocity q̇o have dropped, since 1nf ∈ null{L}
for the complete graph. From the above equation it can be seen that the disagreement dynam-
ics of all the agents is decoupled, since Inf×nf ⊗ (ΓKq) is block diagonal. The disagreement
dynamics is then finally obtained as,

δėi = −nfΓKδei (2-37)

From the above it can be seen that the disagreement globally converges to the origin, inde-
pendent of the payload motion. The convergence rate towards the agreement set is bounded
as α ≥ nfγminkmin where γmin, kmin are the minimum scalar entries of the diagonal matrices
Γ and K respectively.

Proof of Global Convergence of the Mean Estimation Error Dynamics

Following the decoupling of the Objectives 2-3.1, let the estimation error dynamics (2-34) be
written in terms of the mean estimation error and the disagreement vector as,

∆ ˙̄e = −ΓKl∆ē− Γ
nf∑
j=1

Jo (qo)−T Wj (qo) Jo (qo)T K (δei − δej) . (2-38)

Consider the Lyapunov candidate given as,

V∆ = 1
2∆ēT∆ē. (2-39)

Taking the time derivative of the expression above gives,

V̇∆ = −∆ēTΓKl∆ē+ ∆ēTΛa (qo) δe (2-40)

with

Λa (qo) = −ΓJo (qo)−T
[
×
(
W1 (qo) Jo (qo)T K

)
. . .
(
Wnf (qo) Jo (qo)T K

)]
(2-41)

From the proof of the disagreement dynamics it was concluded that δe is bounded and con-
verges to zero. The matrix Λa (qo) is in fact bounded for any qo. This can be seen from
the definition of Jo (qo) in (A-34) and the MRPs and the kinematics in (B-29). Even though
Jo (qo) can become very large, the inverse will then decrease just as fast, due to the division
by

(
1 +

(
σTo σo

))2
seen in (B-29). Furthermore the matrices Wi (qo) are bounded, as they

only depend on the rotation matrix, which is bounded. Since Λa (qo) is bounded, and δe
exponentially decreases, this shows that V̇∆ has a finite limit. Furthermore V̈∆ is bounded,
since ∆ ˙̄e is bounded as can be seen from (2-38). Barbalat’s Lemma A-5.2 can thus be applied
to conclude that lim

t→∞
V̇∆ = 0. LaSalle’s invariance theorem is then applicable to conclude

that lim
t→∞

∆ē = 0 from (2-38). The conclusion is that the estimation error dynamics, as given
in the Objectives 2-3.1, globally converges.

Proof of Local Convergence of the Payload Tracking Error

The payload dynamics (2-27) written in terms of δe and ∆ē results in

ν̇o = −ζsumνo −KsumJo (qo)T el + Λb (qo) ∆ē+ Λc (qo) δe (2-42)
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where the expressions for Λb ∈ R6×6 and Λc ∈ R6×6nf are given as

Λb (qo) = Jo (qo)T
nf∑
i=1

Ki

Λc (qo) =
[
W1 (qo)KJo (qo)T . . . Wnf (qo)KJo (qo)T

] (2-43)

Linearizing the payload dynamics (2-42) about the desired equilibrium state gives,[
ν̇o
ėl

]
≈
[
−ζsum −KsumJo (qdes)T
Jo (qdes) 0

] [
νo
el

]
−
[
Λb (qdes) Λc (qdes)

0 0

] [
∆e
δe

]
(2-44)

where the equilibrium state was taken as qdes for the payload configuration and as the origin
for νo, ∆ē and δei. For the linearized system the separation theorem can be used. Since it was
shown that lim

t→∞
∆ē = 0 and lim

t→∞
δei = 0, the separation theorem for linear systems allows

the stability of (2-44) to be assessed considering that ∆ē = 0 and δei = 0. Local asymptotic
stability follows from the Lyapunov candidate given as

Vo = 1
2ν

T
o νo + 1

2e
T
l Ksumel, → V̇o = −νTo ζsumνo, (2-45)

which shows that lim
t→∞

νo = 0. It then follows from LaSalle’s invariance principle and (2-44)
that lim

t→∞
el = 0, since Jo (qo) is invertible, completing the proof.

2-3-5 Remarks and Extensions

the following contains some final remarks on the the proposed solution to the underactuated
CMP:

Distribution of the Control Effort over the Agents using The Weighted Generalized Inverse
The use of identical control gains Ki = K can be relaxed by using a weighted generalized
inverse,

Jpi (qo)† = AiJpi (qo)×
(
nf∑
j=1

Jpj (qo)T AjJpj (qo)
)−1

(2-46)

where Ai is a weighting matrix that can be used to distribute the control effort amongst the
agents. The above weighted generalized inverse can be used for the control action of the agents
(2-26) and Proposition 2-3.1 remains unchanged. The assumption on identical observer gains
is however restrictive for the chosen approach.

The leader as a wrench at the CoG The leader is still represented as a wrench at the
payload CoG, denoted by wl, rather than a force. As the final objective is to apply the
control laws to the aerial towing problem this might seem like an odd choice. However, from
the perspective of the follower agents the leader always appears as a wrench acting at the
payload CoG. Thus, if the leader can only use a force, this means that multiple leaders will
be needed to control the wrench at the CoG. But for the consensus problem there is no
difference.
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Motivation for Assuming Identical Observer Gains The use of identical observer gains
allowed the generalized inverse to be eliminated from the problem. In effect, it is avoided to
consider the Laplacian matrix associated with the consensus dynamics given in (2-34). This
shows that the elements of the adjacency matrix would be constructed from,

Jo (qo)−T Wj (qo) Jo (qo)T = nfJo (qo)−T M−1Jpi (qo)T Jpi (qo)†MJo (qo)T (2-47)
which is a challenging task. Note that the problem is, primarily, that the above matrices
can not be used directly for a Laplacian matrix, because it would result in a non-symmetric
matrix. Furthermore, these matrices would not be used in a Lyapunov candidate, as these
give rise to complicated time derivatives.

Challenge with Kinematics and Matrix Weights A reduction of the problem is achieved by
assuming that the attachment points of the agents are placed symmetrically on the payload,
as was proposed in [11]. This allows the generalized inverse to become state independent.
However, as can be seen from (2-47), the jacobian matrices are still not able to cancel, as
these generally do not commute with arbitrary matrices.

2-4 Simulation Results Assuming Acceleration Measurements and
MRPs

This section presents the simulation results for the underactuated case, i.e. Proposition 2-3.1
where a single leader controls a wrench at the payload CoG and nf = 10 agents control the
force at their corresponding attachment point. The purpose of the simulation is to show that
the objectives 2-3.1 are achieved, even for large angles of rotation. The simulation setting
is very similar for all chapters, and a short description can be found in Appendix C. The
observer gain for the reconstruction of the desired position was taken as Γr = 6.32 × I3×3,
and for the desired attitude as Γσ = 0.40.

The simulation results for the underactuated case, i.e. Proposition 2-3.1, are shown in Fig-
ure 2-1 and Figure 2-2 for the attitude and translation dynamics respectively.

Payload Tracking Error Dynamics From Figure 2-1a and Figure 2-2a it can be seen that the
payload velocities converge to zero, and that the payload configuration depicted Figure 2-1b
and Figure 2-2b converges to the reference. The colored dashed lines shown in Figure 2-1b
and Figure 2-2b correspond to the case were the leader controls the payload without any
followers, and is used as a benchmark for evaluating the performance. It can be seen that the
addition of the followers results in a delay in the step response. This delay is expected, since
the follower agents need time to estimate the desired payload attitude.

Amplification of the Leader Control Effort The leader control effort is shown in Figure 2-
1c and Figure 2-2c, and Figure 2-1d and Figure 2-2d show the leader tracking error. The
colored dashed lines correspond to the benchmark. It can be seen that the leader control
effort is indeed lowered by a factor of approximately the total number of agents, in this case
1 + nf = 11. The leader control effort is thus amplified, without a significant reduction in
performance.
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22 Payload Acceleration Measurements as a Means of Communication: Modified Rodrigues Parameters

Figure 2-1: Simulation results of the attitude dynamics for the underactuated CMP (Proposition
2-3.1): From left to right and top to bottom the plots show, (a) the payload angular velocity,
(b) the payload MRPs, (c) the torque applied by the leader, (d) the leader tracking error, (e) the
mean of the agent’s estimation errors, and (f) the disagreement of the agent’s estimation errors.
The three colors, blue red and yellow, represent the x, y and z directions of the corresponding
three dimensional vectors. The black dashed line in the attitude plot shows the leader reference
MRPs. It can be seen that the leader applies a reference step to the desired payload attitude at
t = 4[s], corresponding to a θ = 60 deg rotation about the ε = [3 2 1]T axis. The colored
dashed lines in the payload attitude and leader torque plot show the simulation result for the case
that the leader is controlling the payload alone.
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Figure 2-2: Simulation results of the translation dynamics for the underactuated CMP (Proposi-
tion 2-3.1): From left to right and top to bottom the plots show, (a) the payload linear velocity,
(b) the payload position, (c) the force applied by the leader, (d) the leader tracking error, (e) the
mean of the agent’s estimation errors, and (f) the disagreement of the agent’s estimation errors.
The three colors, blue red and yellow, represent the x, y and z directions of the corresponding
three dimensional vectors. The black dashed line in the position plot shows the leader’s desired
position, changing from the origin to rdes = [3 2 1]T at t = 4[s]. The colored dashed lines in
the position and force plot show the simulation result for the case that the leader is controlling
the payload alone.
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Consensus Dynamics of the Estimation Errors The mean estimation errors are shown in
Figure 2-1e and Figure 2-2e. From these it can be concluded that the delay in the step response
of the payload attitude is indeed caused by the estimation dynamics. The disagreement
dynamics can be seen to converge much faster to the origin, as was derived in Subsection
2-3-4, having little effect on the performance. Note that the agents are initialized with a very
large estimation error ranging ±180 deg, and that the leader step response corresponds to a
large rotation of 60 deg. These results clearly show that the control and consensus law in
Proposition 2-3.1 allows for large angular rotations, despite the proof of local convergence.

2-5 Conclusion

In this chapter the CMP of the payload was addressed for both the fully actuated and under-
actuated case. It was assumed that the agents have access to the payload accelerations and
full state. The dynamics of the agents were neglected, resulting in a directly actuated rigid
body. For the fully actuated case a consensus law was proposed that allowed for individual
control and observer gains. It was shown that global convergence of the consensus dynamics
can be achieved by separating the consensus dynamics from the payload dynamics, resulting
in weighted all to all communication. However, it could not be shown that the payload state
remains bounded in the time that the estimation errors converge. By introducing a small cou-
pling gain global convergence of both the consensus and payload dynamics was achieved. For
the underactuated case it was proposed to use the generalized inverse of the adjoint matrices
to compute the desired force at the agent attachment points. It was shown that the consensus
dynamics between the agents was governed by a state dependent weighted Laplacian matrix.
By assuming identical observer gains for all follower agents the consensus dynamics could be
separated from the payload motion. Although global convergence of the estimation errors
was derived, the stability of the payload motion could only be guaranteed locally.
Simulation results of the proposed solutions showed that the control and consensus laws allow
for large reference step commands and is able to recover from large initial estimation errors.
It was verified that the leader control effort is indeed amplified and that consensus on the
desired payload configuration is reached.
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Chapter 3

Payload Acceleration Measurements
as a Means of Communication:

Geometric Control

The field of Geometric control concerns itself with globally defined control laws for systems
that evolve on a nonlinear manifold which can not be globally defined using the Euclidean
space [23]. This is of special interest for controlling mechanical systems as the rotational
motion of a body evolves on SO(3) rather than Rn [24]. When speaking of geometric control
this indicates the mathematical characterization of a configuration and motion using group
theory and differential geometry. In practice however, geometric attitude control indicates
that the control law is defined using the rotation matrix, rather than a parameterization
thereof. Since the rotation matrix is globally defined, this will also hold for the control law,
allowing for a global system analysis. When using a parameterization of the rotation matrix,
e.g. Euler angles, quaternions, Classical Rodrigues Parameters (CRPs) or Modified Rodrigues
Parameters (MRPs), the configuration space can not globally, or unambiguously, be defined.
Considering the aim of this thesis, geometric control will simply refer to the control law using
the rotation matrix directly for control, rather than the mathematical framework upon which
it is build.

This chapter explores the use of geometric control, and considering the discussion above, one
would expect that global convergence will be shown. Unfortunately this was not achieved.
The presented consensus laws will be shown to be globally stable, but the proof of convergence
depends on a region of attraction. Through simulations it is illustrated that there is a strong
incentive that the proposed solutions result in global convergence to the desired equilibrium.
Despite the dependence on the convergence region, the proposed consensus laws are still con-
sidered as interesting results, if only to motivate further research in this direction. Regarding
the previous chapter the same assumptions hold: The agent dynamics are neglected, and
acceleration measurements are assumed to be available. In addition it is assumed that the
observer gains of the agents are identical.
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The following section gives a short review on geometric control applied to consensus prob-
lems as a comparison to the proposed solutions in this chapter. Section 3-2 considers the
fully actuated case and the synchronization of the agents without a leader. Subsequently, in
Section 3-3, the leader is added to the problem. The dependency on the found convergence
region is discussed in Section 3-5. In Section 3-4 the proposed solution is extended to the
underactuated case. Section 3-6 presents simulation results, and the chapter concludes with
a discussion in Section 3-7.

3-1 Comparison with the Literature on Geometric Cooperative Con-
trol

Nonlinear attitude control and consensus problems have been brought together in the litera-
ture resulting in what can be described as the attitude synchronization of rigid bodies. The
focus of these results is partly on the properties of the chosen communication topology, which
is of lesser interest for this thesis work. Using the payload as the means of communication
tends to remove most communication problems. Furthermore, the problem of synchronizing
multiple rigid bodies is, in several ways, different from the subject considered in this thesis.
Firstly, the reviewed results considered the control of multiple bodies which are only virtu-
ally coupled. Secondly, in the approaches on attitude consensus there is not the element of
amplification of the leader control action, simply because it does not apply. Nevertheless, it
will be shown that the consensus problem and the proposed solutions have a strong similar-
ity to the proposed consensus laws in this chapter. Disregarding advances in describing the
communication topology allows many of the consensus laws used for attitude control to be
captured by two structures, as discussed in the following.

Coupling the Kinematics of Multiple Agents Through the Dynamics The most general
approach to the attitude synchronization of multiple rigid bodies is to let the motion of the
rigid bodies themselves take part in the consensus dynamics. In a nutshell: The ith-agent
receives the attitudes of his neighbors, and uses the relative attitude error directly as a torque
to control his own attitude. Although different parameterizations are assumed in the literature
(such as MRPs in [19] and [25], or quaternions in [26], [27], [28] and [29]) these control laws
can equivalently be represented using rotation matrices. Considering the attitude dynamics
given in Appendix A-4-1, let the ith-agent torque be taken such that the attitude dynamics
of the ith-agent is given as,

IiΩ̇i = −Ω̃iIiΩi − ζiΩi −
ntot∑
i=1

aijPa
{
RTi Rj

}V
Ṙi = RiΩ̃i

(3-1)

where aij are the elements of the adjacency matrix for a symmetric graph Laplacian, ζi > 0
are the damping matrices, and the index i references the ith-agent. This illustrates that
the motion is coupled to the attitude of the other agents through the information on the
relative attitudes RTi Rj ∈ SO(3). Synchronization is then directly proven by considering the
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Lyapunov candidate given as,

V = kR
2 tr

{
[Ri]Tvec (L⊗ I3×3) [Ri]vec

}
+
ntot∑
i=1

1
2ΩT

i IiΩi, → V̇ = −
ntot∑
i=1

ζsumΩT
i IiΩi (3-2)

where L is the symmetric Laplacian matrix associated with the chosen communication topol-
ogy. and proof of convergence follows from LaSalles’s invariance principle. It must be noted
that the purpose of the consensus law given in (3-1) is to reach consensus on the attitude Ri,
but this is done indirectly through the angular acceleration Ω̇i.

Coupling the Kinematics of Multiple Agents Directly The coupling of the attitude kine-
matics directly is considered in [30], [31], [32], [33], [34]. By assuming that the angular velocity
is directly controlled a purely kinematic consensus law results. The consensus law proposed
in [31] is taken as,

Ṙi = Ri
ntot∑
i=1

aijPa
{
RTi Rj

}
(3-3)

where aij are the elements of the adjacency matrix for a symmetric graph Laplacian, Pa {·} is
the a-symmetric operator given in Definition A-2.2 and Ri ∈ SO(3) is the ith-agent’s rotation
matrix. The proof of convergence is derived from the simple Lyapunov candidate,

V =
ntot∑
i=1

1
2tr {I −Ri} (3-4)

from which can be derived that the agents converge to the agreement set if initially all rotation
matrices are positive definite Ri > 0. This is equivalent to the existence a reference frame
such that all the agent’s orientations are within an angular displacement of θ = ±1

2π of
said reference frame. The convergence region is thus not global, but it can be shown to be
invariant.

Comparison of the Literature with the Cooperative Manipulation Problem (CMP) The
main difference with the approaches considered in the literature is that the agents are not
allowed to communicate in this thesis work. As a result of this restriction the ith-agent does
not have access to the rotation matrix of the jth-agent, and is thus unable to compute the
relative attitude error RTi Rj ∈ SO(3) as is the case in (3-3) and (3-1).

3-2 Follower Synchronization Assuming Full Actuation

Although the leader driven geometric control approach discussed in this chapter is incomplete,
since global converge could not be shown, it is still deemed to be an interesting approach.
To motivate further research in this direction it is shown that the autonomous system, that
is without a leader, is globally asymptotically converging. It is assumed that multiple robots
rigidly grasp the payload, which is referred to as the fully actuated case. Similar to the pre-
vious chapter, it is assumed that the full state and the accelerations of the payload Center of
Gravity (CoG) are available to all agents, and the robot dynamics are neglected.

The remainder of this section is structured as follows. The payload dynamics is introduced
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in Subsection 3-2-1. In Subsection 3-2-2 the follower control laws for the applied wrench is
presented, allowing the payload dynamics to be simplified. The objective of the consensus law
is defined subsequently in Subsection 3-2-3 followed by the proposed solution in Subsection
3-2-4.

3-2-1 Globally Defined Payload Dynamics

Let the state of a rigid body be represented in terms of the angular velocity Ω ∈ R3, the linear
velocity v ∈ R3, the attitude R ∈ SO(3) and the position r ∈ R3. The payload equations of
motion are then given by the payload dynamics,

IoΩ̇o = −Ω̃oIoΩo +
∑
τ

mov̇o = mogb̄3 +
∑
F,

(3-5)

and the payload kinematics
Ṙo = RoΩ̃o

ṙo = vo,
(3-6)

where m and I represent the mass and inertia respectively,
∑
F and

∑
τ respectively rep-

resent the sum of the forces and torques acting on the payload CoG, g denotes the constant
gravitational acceleration, b̄3 =

[
0 0 1

]T
denotes the third basis vector, the tilde operator

{̃·} is given in (A-10), and finally the subscript o denotes the reference to the payload.

3-2-2 Agent Control Laws and Reduced Payload Dynamics

As discussed in section 2-2-5, for the fully actuated case the problem can be simplified by
assuming that the agents apply a wrench at the payload CoG, without loss of generality. The
control structure of the agents is taken as a typical geometric control law,

τi = −Io
(
ζiΩo + kiPa

{
RTdes,iRi

}V )
+ 1

nf
Ω̃oIoΩo

Fi = −mo (βivo +Ki (ri − rdes,i))− 1
nf
mogb̄3

(3-7)

where the payload dynamics is canceled, and the matrices ζi ∈ R3×3, βi ∈ R3×3 andKi ∈ R3×3

are positive definite, diagonal matrices, ki ∈ R is a positive scalar, Pa {·} is the a-symmetric
operator given in Definition A-2.2, and the superscript V denotes the untilde-operator given in
Definition A-2.1. The agents use their local estimate of the desired configuration {rdes,i, Rdes,i}
and these are the variables on which consensus must be reached. Substitution of the control
law (3-7) into the payload dynamics given in (3-5) results in the reduced equations of motion,

Ω̇o = −ζsumΩo −
nf∑
i=1

kiPa {Ei}V

v̇o = −βsumvo −
nf∑
i=1

Kier,i.

(3-8)

where er,i = ro − rdes,i and Ei = RTdes,iRo are the local position and attitude tracking errors

respectively, ζsum =
nf∑
i=1

ζi and βsum =
nf∑
i=1

βi are the sum of the control gains in (3-7).
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3-2-3 Mathematical Objective for Agent Synchronization

In the absence of a leader, it is desired for the agents to synchronize, that is to reach consensus
on the tracking errors. Naturally, the payload should stabilize at the desired configuration.

Objectives 3-2.1. Consider the CMP without a leader described by the reduced description
(3-8). The stability of the system follows if, considering the translation, the

disagreement: δei = ei − 1
nf

nf∑
j=1

ej ,

and tracking error: ei = qo − qi,des
(3-9)

converge to zero for all i ∈ {1, . . . , nf}, and considering the attitude, if the

disagreement: Eij = ETi Ej ,

and tracking error: Ei = RTdes,iRo
(3-10)

converge to the identity matrix for all i, j ∈ {1, . . . , nf}.

3-2-4 Proposed Synchronization Law for the Fully Actuated Case

In the absence of a leader the following update law is proposed to meet the Objectives 3-2.1:
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Proposition 3-2.1 (Desired Attitude Synchronization Assuming Full Actuation). Consider
the CMP of the payload using nf -agents, and no leader, resulting in the reduced payload dy-
namics given in (3-8). Let the agents update the estimate of the desired payload configuration
as

Ėi = EiΩ̃o − γEi (ksumPa {Ei} − ỹR)

ėr,i = vo − Γ (Ksumei − yr)
(3-11)

where γi = γ ∈ R and Γi = Γ ∈ R3×3 are positive definite observer gains, which are assumed
identical for all agents, additionally Γ is assumed to be a diagonal matrix, Ei ∈ SO(3) and

er,i ∈ R3 denote the attitude and position tracking error estimates respectively, ksum =
nf∑
i=1

ki ∈

R and Ksum =
nf∑
i=1

Ki ∈ R3×3 are the sum of the control gains in (3-7), the tilde operator (̃·)
is given in Definition A-2.1, and the measurements yR and yr are given as

yR = −Ω̇o − ζsumΩo

yr = −v̇o − βsumvo

(3-12)

where ζsum =
nf∑
i=1

ζi and βsum =
nf∑
i=1

βi. Then, the Objectives 3-2.1 are almost globally
achieved.

The term almost global convergence is sometimes used for geometric control, and refers to the
different possible equilibria [5]. In the following it will be shown that lim

t→∞
Pa {Ei} = 0, which

holds for θi = cπ and any integer c, where θi is the angle associated with Ei ∈ SO(3). This
situation can be compared to the upward and downwards equilibria of a simple pendulum.
Instability of the equilibria θi = ±π is shown in [35] for a comparable problem by substitution
of quaternions into the rotation matrix, and linearizing about the undesired equilibria. In
the following, this derivation is omitted and the desired attitude Rdes is said to be an almost
globally stable equilibrium of the attitude dynamics.

Underlying Consensus Dynamics The consensus dynamics can be revealed by eliminating
the measurement y from the update law in Proposition 3-2.1. The reduced equations of motion
(3-8) motivate the choice for the measurements y (3-12) as these reduce to yR =

∑
i kiPa {Ei}

V

and yr =
∑
iKiei. This gives the consensus law (3-11) as

Ėi = EiΩ̃o −
nf∑
j=1

γkjEi (Pa {Ei} − Pa {Ej})

ėr,i = vo −
nf∑
j=1

ΓKj (er,i − er,j) .
(3-13)

The interpretation of the above equations as a consensus law is discussed at the end of this
section, but they clearly illustrate the connection to both the other agents and payload motion.
In comparison with the literature it can be seen as a combination of (3-1) and (3-3).
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Proof of Synchronization for the Translation Dynamics

Considering the translation dynamics, the situation is very similar to that considered in
Section 2-2. However, the absence of a leader allows the payload motion to be directly
coupled with the consensus dynamics. For the translation dynamics consider the following
Lyapunov candidate,

V = 1
2v

T
o Γ−1vo +

nf∑
i=1

eTr,iKiΓ−1er,i (3-14)

Taking the time derivative of the expression above, and substitution of the system dynamics
(3-8) and the consensus law (3-13) gives

V̇ = −vTo ζsumΓ−1vo −
nf∑
i=1

er,iKi

nf∑
j=1

Kj (er,i − er,j) (3-15)

The above equation can be rewritten as

V̇ = −vTo ζsumΓ−1vo − eTr L
(e)
w er (3-16)

where L(e)
w is the weighted Laplacian matrix for the complete graph as given in Definition

A-1.4, where ai = Ki ∈ R3×3 in the definition. Considering that the feedback gains K > 0
and observer gains Γ > 0 are positive definite diagonal matrices, it holds that L(e)

w is a
symmetric matrix, and from Definition A-1.4 it follows that L(e)

w ≥ 0. Furthermore it holds
that eTr L

(e)
w er = 0 iff er,i ∈ A, where A is the agreement set given in Definition A-1.1. It

then follows from (3-16) that the agent’s estimates of the tracking error converges to the
agreement set lim

t→∞
er,i ∈ A, and that the payload velocity lim

t→∞
vo = 0. From LaSalle’s

invariance principle and the payload dynamics (3-8) it then follows that the tracking error
converges to zero asymptotically lim

t→∞
ro = rdes where lim

t→∞
rdes,i = rdes.

Proof of Synchronization for the Attitude Dynamics

For ease of exposition the proof for the attitude dynamics is broken into a few steps. To this
end let the Lyapunov candidate for the attitude dynamics be given as,

V = 1
2 ‖Ωo‖2 +

nf∑
i=1

kiVE,i, (3-17)

and begin by considering the terms VE,i given as

VE,i = 1
2tr {I − Ei} . (3-18)

Taking the time derivative of the above equation, and substitution of the proposed consensus
law (3-2.1), gives

V̇E,i = −1
2tr
{
Ei

(
Ω̃o + γ

nf∑
j=1

kjPa {Ej − Ei}
)}

(3-19)

Note that the above equation shows the product of the rotation matrix Ei ∈ SO(3) with a
skew symmetric matrix, since Ω̃o ∈ so(3) and Pa {·} ∈ so(3) , see Definition A-2.2. The above
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expression is thus of the form tr {Eiω̃} where ω̃ ∈ so(3), which allows the use of Lemma A-2.7,
resulting in,

V̇E,i =
(
Pa {Ei}V

)T (
Ωo + γ

nf∑
j=1

kj
(
Pa {Ej}V − Pa {Ei}V

))
(3-20)

Returning to the original Lyapunov candidate for the attitude dynamics,

V = 1
2 ‖Ωo‖2 +

nf∑
i=1

kiVE,i (3-21)

taking the time derivative, substituting the attitude dynamics (3-8) and the expression for
V̇E,i (3-20), gives

V̇ = −ΩT
o ζsumΩo −

nf∑
i=1

kiΩT
o Pa {Ei}

V +
nf∑
i=1

kiV̇E,i

= −ΩT
o ζsumΩo +

nf∑
i=1

nf∑
j=1

γkikj
(
Pa {Ei}V

)T (
Pa {Ej}V − Pa {Ei}V

) (3-22)

The summation can be rewritten using the weighted Laplacian matrix for the complete graph
resulting in,

V̇ = −ΩT
o ζsumΩo − γ

[
kiPa {Ei}V

]T
vec

(
L

(E)
w ⊗ I3×3

) [
kiPa {Ei}V

]
vec
≤ 0 (3-23)

where L(E)
w is the weighted Laplacian matrix as given in Definition A-1.4, where ai = ki ∈ R

in the definition. The first term in V̇ shows that the angular velocities Ωo converge to zero,
and the second term is only zero if Pa {Ei}V ∈ A as follows from the Definition A-1.4 for
L

(E)
w . From LaSalle’s invariance theorem and the attitude dynamics (3-8) it follows that

lim
t→∞

nf∑
i=1

Pa {Ei} = 0. This implies that θi = cπ with c any integer. The undesired equilibria

can be evaluated using quaternions, as was done in [35]. This is omitted here, resulting in
almost global convergence to the desired equilibrium, thus completing the proof.

3-3 Leader Driven Geometric Control and Full Actuation

The previously discussed method for pose synchronization resulted in the payload stabilizing
at a configuration which depends on the initial values of the participating agents. This sec-
tion discusses the adding of a leader agent as a means of controlling the agreement variable,
that is the final desired configuration. The system is shown to be globally Lyapunov stable
and it is shown that if the agent’s attitude tracking errors Ei ∈ SO(3) are within an angular
displacement of ±1

2π that exponential convergence is achieved. However, the introduction of
the leader complicates the dynamics, and a proof for global asymptotic stability is proposed
as future work.

Other than adding the leader, the scenario under consideration is the same as the previ-
ous section. Most importantly, the agents use identical observer gains, have access to the
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payload acceleration and velocity measurements, and apply a wrench to the payload.

The remainder of this section is structured as follows. The controlled payload dynamics
is given in Subsection 3-3-1. The objective of the consensus law is defined in Subsection
3-3-2, followed by the proposed solution in Subsection 3-3-3.

3-3-1 Agent Control Laws and Reduced Payload Dynamics

The system description, that is the payload dynamics, the control law for the applied wrench,
and the consensus law, follow the same structure as for the synchronization problem. The
leader control law is the same as that of the followers, with the exception of having direct
access to the actual desired payload configuration, rather than a local estimate. Following
the steps outlined in Subsection 3-2-2 this leads to the reduced payload dynamics given as,

Ω̇o = −ζsumΩo − klPa {El}V −
nf∑
i=1

kiPa {Ei}V

v̇o = −βsumvo −Kler,l −
nf∑
i=1

Kier,i.

(3-24)

where er,l and El are the leader position and attitude tracking errors. As it is assumed that
the desired payload configuration is constant the following kinematic relations for the leader
tracking error are derived,

El = RTdesRo, Ėl = ElΩ̃o

er,l = ro − rdes, ėr,l = vo.
(3-25)

3-3-2 Mathematical Objective for the Cooperative Manipulation Problem

The objective for the translation dynamics is omitted in the following, as it shows an identical
structure to that posed in the previous chapter, see Objectives 2-2.1. Considering the attitude
dynamics, the objectives are posed as follows:

Objectives 3-3.1. Consider the CMP without a leader described by the reduced description
(3-8). Regarding the attitude dynamics, the convergence to the desired equilibrium follows if
the

disagreement: Eij = ETi Ej , ∀j ∈ {1, . . . , nf}

ith-estimation error: Eil = ETi El

and tracking error: El = RTdesRo

(3-26)

all converge to the identity matrix, for any ith-agent.
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3-3-3 Proposed Geometric Consensus Law Assuming Full Actuation

As mentioned in the introduction, the proof for globally achieving the Objectives 3-3.1 was
not found. Nevertheless, the following proposition shows promising results:

Proposition 3-3.1 (Geometric Consensus Law). Consider adding a leader to the CMP of
the payload as described in Proposition 3-2.1, such that the payload dynamics are obtained as
(3-24). Let the agents update the estimate of the desired payload configuration as

Ėi = EiΩ̃o − γEi (ksumPa {Ei} − ỹR)

ėr,i = vo − Γi (Ksumer,i − yr)
(3-27)

where the measurements yR and yr are as given in Proposition 3-2.1, γ > 0 and Γi > 0
are the observer gains, with Γi ∈ R3×3 a diagonal matrix, {er,i, Ei} ∈ SE(3) denotes the

estimated configuration tracking error, ksum = kl +
nf∑
i=1

ki and Ksum = Kl +
nf∑
i=1

Ki are the

sum of the control gains in (3-24), and the tilde operator (̃·) is given in Definition A-2.1.

Then, system state remains bounded. The Objectives 3-3.1 are guaranteed to be achieved
if |θi| < 1

2π and |θl| < 1
2π, where θ∗ denotes the angle of rotation associated with E∗.

Furthermore, within that region a bound on the convergence rate can be derived.
Regarding the translation dynamics, the equivalent Objectives posed in 2-2.1 are globally
achieved.

A subtle difference with the proposed consensus law, in comparison with the synchronization
law, is that for the translation dynamics it is allowed to use individual gains γr,i. This has
more to do with the method for constructing the proof than the effect of adding a leader.
By choosing the observer gains as identical, the proof is constructed using a single Lyapunov
function. In the following the proof is decoupled, which allows individual observer gains for
the translation dynamics. For the attitude dynamics none of these considerations apply, as
we are forced by the nonlinearity of the problem to use identical gains.

The Underlying Consensus Law

The reduced equations of motion (3-24) motivate the choice for the measurements y given in
(3-12) as these are equivalent to yR = klPa {El}V +

∑
i kiPa {Ei}

V and yr = Kler,l+
∑
iKier,i.

This shows that the consensus law (3-27) is equivalent to

Ėi = EiΩ̃o − γEi

(
kl (Pa {Ei} − Pa {El}) +

nf∑
j=1

kj (Pa {Ei} − Pa {Ej})
)

(3-28)

and,

ėr,i = vo − Γi

(
Kl (er,i − er,l) +

nf∑
j=1

Kj (er,i − er,j)
)
. (3-29)
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From the above consensus dynamics it can be seen that each agent has direct access to the
leader’s desired configuration. For the translation tracking error the payload velocity can be
eliminated by considering the estimation error dynamics ∆er,i = er,i − epos,l, resulting in

∆ėr,i = −Γi

(
Kl∆er,i +

nf∑
j=1

Kj (∆er,i −∆er,j)
)
. (3-30)

For the attitude consensus law no such simplification can be done, and the description given
in (3-28) must suffice.

Proof of Convergence for the Translation Dynamics

The structure of the consensus- and payload dynamics concerning the payload translation
can be seen as a sub-case of the situation considered in Section 2-2. The estimation error was
shown to converge via the Lyapunov candidate given as

V∆ =
nf∑
i=1

1
2∆eTr,iKiΓ−1

i ∆er,i, (3-31)

and exponential convergence to the origin follows from the time derivative,

V̇∆ = −∆eTr L
(e)
w ∆er −

nf∑
i=1

∆eTr,iKiKl∆er,i (3-32)

where ∆er =
[
∆eTr,1 . . . ∆eTr,nf

]T
denotes the stacking of all the estimation errors into

a single vector, L(e)
w the weighted Laplacian matrix as given in Definition A-1.4, by taking

ai = Ki in the definition. As the system is linear the separation theorem applies, and the
payload can be shown to converge to the desired position, by assuming the consensus dynamics
to have converged already.

Proof of Convergence for the Attitude Dynamics

The proof of Proposition 3-3.1 regarding the attitude dynamics is constructed in several steps.
Firstly it is shown that all signals remain bounded. Subsequently, the proof of convergence
for the attitude dynamics is broken down in three steps, according to the posed Objectives
3-3.1. It is emphasized that the proof holds for a region given as |θi| < 1

2π,∀i and |θl| <
1
2π,

which denote the angle of rotation associated with Ei ∈ SO(3) and El ∈ SO(3) respectively.
This restriction will be further discussed in Section 3-5.

Proof of Stability of the Attitude Dynamics

Boundedness can be shown using the identity Pa {E}V = sin (θ) ε for any E ∈ SO(3), where
ε and θ are the axis and angle of rotation associated with E ∈ SO(3), see Lemma A-5.1. It
follows that ‖Pa {E}‖ ≤ 1, which can be used to show boundedness of the payload angular
velocity Ωo.
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To this end, consider the Lyapunov candidate given as

V = 1
2ΩT

o Ωo. (3-33)

Taking the time derivative, and substituting the reduced dynamics (3-24), gives

V̇ = −ΩT
o ζsumΩo − ΩT

o

(
klPa {El}V +

nf∑
i=1

kiPa {Ei}V
)
. (3-34)

Using ‖Pa {E∗}‖ ≤ 1 this gives,

V̇ ≤ −cminΩT
o Ωo + ksum ‖Ωo‖ =


< 0 if ‖Ωo‖ > ksum/cmin

≥ 0 otherwise
(3-35)

where cmin > 0 is the minimal scalar entry on the diagonal of ζsum. From Lemma A-5.1
it follows that Ωo is a bounded signal. All other dynamic variables are rotation matrices
confined to SO(3), and are thus inherently bounded.

Proof of Synchronization of the Agents

In the following it will be shown that the agents synchronize, i.e. converge to the agreement
set, if |θi| < ±1

2π, where θi is the angle of rotation associated with Ei ∈ SO(3). The attitude
consensus law given in Proposition 3-3.1 is restated here for convenience,

Ėi = EiΩ̃o − γksumEiPa {Ei}+ γEiỹR (3-36)

where γ, ksum > 0. Consider the Lyapunov candidate

Vδ = tr
{

[I − Ei]Tvec (L⊗ I) [I − Ei]vec

} 
= 0 if Ei ∈ A

≥ 0 otherwise
(3-37)

where [I − Ei]vec denotes the stacking of the matrices I −Ei for i = 1, . . . , nf where I = I3×3
denotes the 3× 3 identity matrix, unless otherwise noted, L ∈ Rnf×nf denotes the Laplacian
matrix for the complete graph (A-1.3). The above Lyapunov function is based on the basic
Lyapunov function given in (A-22), with the addition of the Laplacian matrix for the complete
graph to penalize the disagreement. Before taking the time derivative the above expression
can be further simplified: Since 1n ∈ null{L} it also holds that [I]vec ∈ null{L⊗I}. Therefore
the Lyapunov function given above simplifies to

Vδ = tr
{

[Ei]Tvec (L⊗ I) [Ei]vec

}
(3-38)

Taking the time derivative, and substitution of (3-36) gives

V̇δ = tr
{
−γksum [Ei]Tvec (L⊗ I) [EiPa {Ei}]vec + [Ei]Tvec (L⊗ I)

[
Ei
(
Ω̃o + γỹR

)]
vec

}
(3-39)
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This can be rewritten as

V̇δ = tr

−γksum [Ei]Tvec (L⊗ I) [EiPa {Ei}]vec + [Ei]Tvec (L⊗ I) [Ei]vec︸ ︷︷ ︸
symmetric

(
Ω̃o + γỹR

)
(3-40)

The last term is a symmetric matrix multiplied by a skew-symmetric matrix ỹR = −ỹTR, since
the tilde operator produces a skew symmetric matrix, see Definition A-10, and [Ei]Tvec (L⊗ I) [Ei]vec
is symmetric since L = LT . This allows the use of Lemma A-2.1 to show that the last term
drops from the equation. What remains is the first term,

V̇δ = −γksumtr
{

[Ei]Tvec (L⊗ I) [EiPa {Ei}]vec

}
. (3-41)

The asymmetric operator Pa {·} can be expanded using Definition A-2.2, resulting in

V̇δ = −γksum
2 tr

{
[Ei]Tvec (L⊗ I)

[
E2
i − I

]
vec

}
. (3-42)

where the orthonormality property of the rotation matrix was used EiE
T
i = I. Further

simplification is achieved using [I]vec =
(
1nf ⊗ I

)
∈ null{L⊗ I},

V̇δ = −γksum
2 tr

{
[Ei]Tvec (L⊗ I)

[
E2
i

]
vec

}
. (3-43)

The E2
i term forms an obstruction at this point. Begin by adding

[
EiE

T
i

]
vec

= [I]vec to the
right-side, which is allowed as it lies in the null space of L⊗ I,

V̇δ = −γksum
2 tr

{
[Ei]Tvec (L⊗ I)

[
Ei
(
Ei + ETi

)]
vec

}
. (3-44)

Using the definition of Ps {Ei} = 1
2

(
Ei + ETi

)
, Definition A-2.2, rewrite the above equation

as,
V̇δ = −γksumtr

{
[Ei]Tvec (L⊗ I) [Ei]diag [Ps {Ei}]vec

}
. (3-45)

The obtained expression allows the use of Lemma A-2.5 followed by Lemma A-2.6, arriving
at the following expression,

V̇δ ≤ −γksumtr
{

[Ei]Tvec (L⊗ I) [Ei cos(θi)]vec

}
(3-46)

where θi is the angular rotation about the principal axis associated with Ei, that is, it is the
attitude angle error between the estimated desired attitude Rdes,i and the payload attitude
Ro. The right hand side in the above equation can be rewritten as,

tr
{

[Ei]Tvec (L⊗ I) [Ei cos(θi)]vec

}
=

nf∑
i=1

nf∑
j=1

tr {I − Eij} cos (θi) (3-47)

where Eij = ETi Ej ∈ SO(3). From (A-22) it is known that tr {I − Eij} ≥ 0 for any Eij ∈
SO(3). This shows that as long as cos(θi) > 0 it is certain that V̇δ < 0. Thus adding the
assumption that −1

2π < θi <
1
2π gives (3-46) as

V̇δ ≤ −γksum cos(θmin)tr
{

[Ei]Tvec (L⊗ I) [Ei]vec

}
< 0, if − 1

2π < θi <
1
2π (3-48)
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where θmin is the error angle closest to ±1
2π, i.e. θmin =

{
arg min

θi
cos (θi) : |θi| < 1

2π

}
. The

above expression shows that if |θi| < 1
2π, i.e. if the estimation of the attitude tracking

error remains within ±90 deg, that the agents converge to the agreement set lim
t→∞

Ei ∈ A.
Furthermore, note that the above equation can be written in terms of the original Lyapunov
equation given in (3-37),

V̇δ ≤ −γksum cos(θmin)Vδ < 0, if − 1
2π < θi <

1
2π (3-49)

which allows the use of Lemma A-5.3 to show that the convergence rate is bounded by
α ≥ γksum cos(θmin) if |θi| < 1

2π.

Proof of Convergence to the Leader Desired Attitude

As previously stated, the proof depends on remaining within the region of attraction. There-
fore, in the following this is simply assumed to be the case, and posed as an unsolved problem
in this work.

If it is assumed that |θi| < 1
2π, and since it holds that all signals remain bounded, we proceed

by assuming that the agents are synchronized Ei ∈ A, where A is the agreement set. The
consensus law (3-28) is then reduced to,

Ėi = EiΩ̃o − γklEi (Pa {Ei} − Pa {Eo}) , if Ei ∈ A (3-50)

where Eo = RTdesRo is the leader tracking error. The convergence proof starts by considering
the following Lyapunov candidate,

V∆ = 1
2

1
γkR,l

tr
{

(Eo − Ei)T (Eo − Ei)
}

= 1
γkR,l

tr
{
I − ETo Ei

}
≥ 0 (3-51)

Taking the time derivative, and substitution of the leader kinematics (3-25) and the consensus
law (3-50), gives

V̇∆ = tr
{
ETo Ei (Pa {Ei} − Pa {Eo})

}
(3-52)

where the payload angular velocity Ωo has dropped from the equation. Proceed by switching
the asymmetric operator to ETo Ei using Lemma A-2.2 and subsequently expand the resulting
asymmetric operator Pa {R} = 1

2

(
R−RT

)
,

V̇∆ = tr
{
Pa
{
ETo Ei

}
(Ei − Eo)

}
= 1

2tr
{(
ETo Ei − ETi Eo

)
(Ei − Eo)

}
. (3-53)

Further simplification can be achieved by considering the identity (Ei + Eo)T (Ei − Eo) =
ETo Ei − ETi Eo and substituting this in the above equation, resulting in

V̇∆ = −1
2tr
{

(Ei − Eo)T (Ei + Eo) (Ei − Eo)
}

(3-54)

The trace is invariant to transposing the inner matrix, allowing the above expression to be
rewritten as,

V̇∆ = −1
2tr
{

(Ei − El)T (Ps {Ei}+ Ps {El}) (Ei − El)
}

(3-55)

P. van den Bos Master of Science Thesis



3-3 Leader Driven Geometric Control and Full Actuation 39

with Ps {·} given in Definition A-2.2. Additionally assuming that the leader attitude error is
restricted to −1

2π < θl <
1
2π allows the use of Lemma A-2.6 stating that Ps {Ei} ,Ps {El} > 0.

As the trace of a positive definite matrix is positive the above equation gives,

V̇∆ < 0 if



−1
2π < θl <

1
2π, and

−1
2π < θi <

1
2π, and

Ei ∈ A

(3-56)

If the above conditions hold, then all agents converge to the leader lim
t→∞

Ei = El. Further-
more, note from (A-19) that Ps {Ei} = I cos (θi) + (1− cos (θi)) εεT , such that with angles
constrained as above it holds that,

V̇∆ ≤ −1
2 (cos (θl) + cos (θi)) tr

{
(Ei − El)T (Ei − El)

}
(3-57)

Comparing the above to the originally posed Lyapunov function (3-51), shows that,
V̇∆ ≤ −γkR,l (cos (θl) + cos (θi))V∆. (3-58)

and the convergence rate follows from Lemma A-5.3 as α ≥ γkR,l (cos (θl) + cos (θi)), assuming
that |θl| < 1

2π and |θi| < 1
2π.

Proof of Convergence of the Payload Attitude Tracking Error

The convergence of the payload tracking error naturally depends on the previous results.
Again the assumption is made that |θi| < 1

2π and |θl| < 1
2π holds. If so, the attitude

dynamics in (3-24) is reduced to,

Ω̇o = −ζsumΩo − ksumPa {El}V , if Ei = El∀i (3-59)

where ksum = kl +
nf∑
i=1

ki is the sum of the control gains of the agents. Convergence of the
payload to the desired attitude is then proven using the Lyapunov candidate given as

Ve = 1
2ΩT

o Ωo + ksum
2 tr {I − El} . (3-60)

Taking the time derivative and substitution of the leader kinematics (3-25) and the payload
dynamics (3-59) gives,

V̇e = −ΩT
o ζsumΩo − ksumΩT

o Pa {El}
V − 1

2ksumtr
{
ElΩ̃o

}
(3-61)

Lemma A-2.3 allows the above to rewritten as
V̇e = −ΩT

o ζsumΩo ≤ 0, if Ei = El∀i (3-62)
The proof is completed using LaSalle’s invariance principle: If Ωo = 0 for all time then
Pa {El} = 0 from (3-59). The last equality holds for θl = cπ for any integer c and where θl is
the principle angle associated with the attitude tracking error El. Although, it is well known
that the angle error of θl = ±π is an unstable equilibrium of the system [5], it lies outside the
convergence region, and thus the proof of Proposition 3-3.1 is completed.

Evidently, the convergence region forms a restriction for the proof, as it is not shown that the
system is invariant to this region. However, before discussing the difficulties of the proof it
will be shown that the proposed solution can directly be extended to the underactuated case.
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3-4 Extension of the Geometric Consensus Law to the Underactu-
ated Case

This section considers extending the previously proposed solution to the case where the agents
can only apply a force at the attachment point, rather than a wrench. Similarly as was done
in Section 2-3, the proposed approach is to use the generalized inverse and identical observer
gains. This allows the consensus problem to be decoupled from the payload tracking dy-
namics. In the following it is shown that the proposed geometric consensus law for the fully
actuated case can be directly extended to the underactuated case. As such, the proof also
relies on the restrictive assumption of |θ| < ±1

2π.

In the following the controlled payload dynamics is given, followed by the extension of the
geometric approach to the underactuated case.

3-4-1 Reduced Payload Dynamics

To obtain the payload dynamics the same approach as outlined in Section 2-3 can be followed.
To summarize: The leader is still represented as a wrench acting at the payload CoG, applying
(3-7). The followers however, make use of the generalized inverse to convert the control law
for the desired wrench to a force at the agent’s attachment point, using (2-26). Resulting in
the reduced system description given as[

Ω̇o

v̇o

]
= −

[
ζsumΩo

βsumvo

]
−
[
klPa {El}V
Kler,l

]
−

nf∑
i=1

Wi (Ro)
[
kPa {Ei}V
Ker,i

]
(3-63)

where er,l ∈ R3 and El ∈ SO(3) are the leader position and attitude tracking error, er,i ∈ R3

and Ei ∈ SO(3) are the follower tracking errors, ζsum = ζl+nfζ ∈ R3×3 and βsum = βl+nfβ ∈
R3×3 are the sum of the damping gains, k∗ ∈ R and K∗ ∈ R3×3 are positive gains, andWi (Ro)
is given as,

Wi (Ro) = nfM
−1Jpi (Ro)T Jpi (Ro)†M. (3-64)

where Jpi (Ro)T is the adjoint matrix (2-24), and Jpi (Ro)† is the generalized inverse of
Jpi (Ro)T (2-25). By assuming identical control gains, as well as observer gains, the dis-
agreement dynamics can be isolated, as a means to eliminate the generalized inverse. It was
noted in Subsection 2-3-5 that the assumption on identical actuation gains ki = k and Ki = K
can be relaxed by using a weighted generalized inverse.

3-4-2 Proposed Geometric Consensus Law for the Underactuated Case

Except for the use of the generalized inverse, the control law for the underactuated case is the
same as for the fully actuated case, but instead the observer gains γ for both the translation
and attitude dynamics are identical for all agents:
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Proposition 3-4.1. Consider the CMP of the payload for the underactuated case, resulting
in the reduced payload dynamics given in (3-63). Let the agents update the estimate of the
desired payload configuration as

Ėi = EiΩ̃o − γEi (ksumPa {Ei} − ỹR)

ėr,i = vo − Γ (Ksumer,i − yr)
(3-65)

where the measurements yR and yr are as given in Proposition 3-2.1, γ > 0 and Γ > 0 are
the observer gains, {er,i, Ei} ∈ SE(3) denotes the estimated configuration tracking error,
ksum = kl + nfk and Ksum = Kl + nfK are the sum of the control gains in (3-63).

Then, the system state remains bounded. Regarding the attitude dynamics the Objec-
tives 3-3.1, and regarding the translation dynamics the Objectives posed in 2-2.1, are
guaranteed to be achieved if |θi| < 1

2π and |θl| < 1
2π, where θ∗ denotes the angle of rotation

associated with E∗. Within that region a bound on the convergence rate can be derived.

For the underactuated case it can be seen that if the agreement set is reached that
nf∑
i=1

Wi (Ro) =

nfI in (3-63), such that the dynamics are the same as for the fully actuated case.

For the attitude dynamics the proof of convergence to the agreement set is exactly the same
as for the fully actuated case, by starting with the same Lyapunov function given by equation
(3-37):

Vδ,E = tr
{

[I − Ei]Tvec (L⊗ I) [I − Ei]vec

}
(3-66)

which results in the same time derivative (3-48). The time derivative which was shown to be
negative definite if |θi| < 1

2π. For the translation dynamics the proof of convergence to the
agreement set follows from the Lyapunov candidate,

Vδ,r = 1
2e
T
r (L⊗ I) er → V̇δ,r = eTr (L⊗ (ΓKsum)) er (3-67)

where er =
[
eTr,1 . . . eTr,nf

]T
, and the time derivative was obtained following the steps in

Subsection 2-3-4. For the translation dynamics global convergence to the agreement set fol-
lows.

Since the agreement set is reached, globally for the translation dynamics, and within the
convergence region |θi| < 1

2π for the attitude dynamics, the underactuated system reduces to
the fully actuated system. Due to the boundedness of Ei ∈ SO(3) and the linear nature of
the translation dynamics the consensus dynamics and payload tracking dynamics can be sep-
arated, without losing stability. The problem of the convergence region remains, preventing
global convergence results.
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3-5 Discussion on the Dependence of a Convergence Region

In the following it is illustrated what causes the difficulty in proving global convergence, but
before doing so, consider what was provided by the proofs, and what is missing: The solutions
in this chapter resulted in,

• a global system description,

• almost globally converging autonomous dynamics (synchronization),

• boundedness of all signals,

• and a large exponential convergence region.

The difficulty in proving convergence of the consensus dynamics is related to the coupling
with the payload motion, and the evaluation of disagreement on SO(3). These two issues will
be illustrated in the following two subsections.

3-5-1 Inability to Decouple the Consensus Dynamics from the Payload Motion

The convergence region of |θi| < 1
2π is interpreted as the relative attitude error between the

agents desired attitude Rdes,i and the payload’s current attitude Ro. This is different from
that found in [31], i.e. (3-3), where the convergence region only depends on Rdes,i. The
dependence on the payload attitude indicates that the convergence region changes as the
payload attitude changes, thus complicating the analysis. In the following it is clarified why
this coupling can not be easily eliminated. For ease of exposition, this is illustrated for the
synchronization law in Proposition 3-2.1.

The update laws given in (3-11) was given for the attitude tracking error Ei = RTdes,iR,
rather than for the desired attitude Rdes,i directly. The control law could however be equiv-
alently represented using the latter, and this clearly shows the effect of the payload on the
consensus law. The equivalent consensus law is given as,

Ṙdes,i = γRdes,i
(
ksumPa

{
RTdes,iRo

}
− ỹR

)
(3-68)

and the same measurement applies. Elimination of the measurement yR gives the consensus
law as,

Ṙdes,i = −γRdes,i
nf∑
j=1

kj
(
Pa
{
RTo Rdes,i

}
− Pa

{
RTo Rdes,j

})
(3-69)

The same could be done for the translation dynamics, and following the same steps, this gives,

ṙdes,i = −Γ
nf∑
j=1

Kj (rdes,i − rdes,j) (3-70)

where the measurement was changed to yr = −v̇o − βsumvo − Ksumro. Aside from that yr
now requires position measurements, the same Lyapunov function can be used, ans the same
stability results follow: The two representations are simply identical. Clearly the position
tracking law (3-70) is decoupled from the payload motion. For the attitude the given form
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RdesRdes Rdes

(a) (b) (c)

R2R1

θ̇2θ̇1

R1
R2

θ̇2θ̇1
R1

R2
θ̇2

θ̇1

Figure 3-1: Graphical illustration of the convergence region: The three arrows represent three
attitudes Rdes, R1 and R2. In each case the attitudes R1 and R2 move to align with Rdes as
illustrated by the direction of θ̇1 and θ̇2. In case (a) the angle between R1 and R2 is decreasing.
In cases (b) and (c) the angle between R1 and R2 is increasing.

(3-69) shows that the payload attitude, in the form of Ro ∈ SO(3), couples the consensus
dynamics to the payload dynamics. This can be seen by comparison with the consensus law
taken from the literature (3-3). It is however, to the best of my knowledge, not possible to
remove Ro ∈ SO(3) from Pa

{
RTdes,iRo

}V
∈ R3, which would allow the consensus problem to

be separated. The result is that the convergence region rotates with the payload attitude, as
opposed to [34] where the same convergence region is static.

3-5-2 The Challenge With Disagreement Evaluation on SO(3)

The convergence region found in Proposition 3-3.1 is a recurring problem in consensus dy-
namics that are defined in the form of (3-3), see [34], [30], [31], [32], [33]. The interpretation
of this effect is shown in Figure 3-1, where the three dimensional rotations are reduced to a
single dimensional rotation for ease of exposition. Let the arrows radiating outward represent
the attitudes R1, R2 and Rdes, where R1 and R2 represent two agents that converge to the
desired attitude Rdes. Considering Figure 3-1a the agent’s attitudes R1 and R2 move to align
their attitude with Rdes as indicated by the direction of θ̇1 and θ̇2. This means that the angle
difference between the agents decreases. Considering Figure 3-1b both agents again move to
align their attitude with Rdes. In this case the angle difference between the agents increases,
despite that the agents converge to the desired attitude. A similar problem is shown in Fig-
ure 3-1c, where again both agents move to align with Rdes. Since the control action has a
magnitude of sin (θi), the result is that agent 1 moves slower than agent 2, as indicated by the
arrow length of θ̇. This again results in that the angle between the agents increases, despite
the convergence to the desired attitude. This graphical interpretation shows that the dis-
agreement amongst the agents is difficult to evaluate, even if the agents are exactly behaving
as desired. Although the situation considered in this chapter might appear more complicated
than depicted in Figure 3-1, the reason for finding this convergence region is at least caused
by this effect.

Master of Science Thesis P. van den Bos



44 Payload Acceleration Measurements as a Means of Communication: Geometric Control

3-6 Simulation Results of the Geometric Control Law for the Un-
deractuated Case

This section presents the simulation results for the underactuated case, i.e. Proposition 3-4.1.
The simulation settings are as described in Appendix C providing a detailed listing of all
settings. To summarize: The simulation is done with nf = 10 follower agents, applying a
force at the attachment points, and a single leader as a wrench at the payload CoG. The
system step response is simulated by changing the leader’s desired payload configuration at
t = 4 seconds. The observer gains for the follower agents in Proposition 3-4.1 where taken as
γ = 12.64 and Γ = 6.32× I3×3.

The aim is to show via simulations that the convergence region appears to be a limitation of
the proof rather than the proposed control and consensus laws. As such the agent’s initial es-
timates and the leader reference signal are such that these are well outside of the convergence
region. Half the agent’s initial estimates of the desired payload attitude is chosen between
−90 deg and −180 deg, with equal interspacing, and the other half of the agent’s estimated
between +90 deg and +180 deg, again with equal interspacing. All agents are thus initiated
outside of the convergence region |θi| < π. The axes of rotation are chosen randomly. The
leader changes the reference attitude after 4 seconds from the origin to θdes = 135 deg about
an axis given as εdes = [3 2 1]T , which is also outside of the convergence region. The
desired position changes simultaneously to rdes = [3 2 1]T .

Simulation Results for the Translation Dynamics The simulation results for the underac-
tuated case, i.e. Proposition 3-4.1, are shown in Figure 3-2 for the attitude dynamics. The
results for the translation dynamics can be found in Appendix D, Figure D-3, as these are
very similar to the results obtained using MRPs, and the discussion in Subsection 2-4 equally
applies.

Payload Attitude Tracking Error Dynamics The payload angular velocity and MRPs are
shown in Figure 3-2a and Figure 3-2b respectively. The payload attitude is purposefully rep-
resented in terms of MRPs, rather than plotting all nine elements of the rotation matrix. It
can be seen that the payload attitude stabilizes at the desired equilibrium, and the perfor-
mance is seen to be similar to the case where the leader controls the payload alone (illustrated
by the colored dashed lines).

Amplification of the Leader Control Effort Figure 3-2c shows the leader torque, and Fig-
ure 3-2d shows the leader attitude tracking error eR,l = Pa {El} = Pa

{
RTdesRo

}
. The colored

dashed lines, corresponding to the case where the leader is controlling the payload alone, show
that the leader control effort is indeed lowered by a factor of approximately the total number
of agents, without a significant loss of performance. Comparison of the leader tracking error
with the payload attitude clearly illustrates the difference between the geometric approach,
and the use of MRPs. While the MRPs are increasing from 0 deg to 135 deg, the tracking
error eR,l first increases before converging to zero. This is due to the definition of the tracking
error eR,l = sin (θl) εl which has a maximum at θl = 90 deg.
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Figure 3-2: Simulation results of the attitude dynamics for the underactuated CMP (Proposition
3-4.1): From left to right and top to bottom the plots show, (a) the payload angular velocity,
(b) the payload MRPs, (c) the torque applied by the leader, (d) the leader tracking error, (e) the
mean of the agent’s estimation errors, and (f) the disagreement of the agent’s estimation errors.
The three colors, blue red and yellow, represent the x, y and z directions of the corresponding
three dimensional vectors. The black dashed line in the attitude plot shows the leader reference
MRPs. It can be seen that the leader applies a reference step to the desired payload attitude at
t = 4[s], corresponding to a θ = 135 deg rotation about the ε = [3 2 1]T axis. The colored
dashed lines in the payload attitude and leader torque plot show the simulation result for the case
that the leader is controlling the payload alone.
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Consensus Dynamics of the Estimation Error Figure 3-2e shows the mean estimation error,
defined as

∆ēR = 1
nf

nf∑
i=1

Pa
{
ETl Ei

}
= 1

nf

nf∑
i=1

Pa
{
RTdesRdes,i

}
(3-71)

where Rdes,i denotes the ith-agent’s estimate of the desired payload attitude. Figure 3-2f
shows the disagreement vectors of the follower agents, defined as

δeR,i = Pa
{
RTdesRdes,i

}
−∆ēR (3-72)

resulting in many lines of different colors. The difference in tracking performance between
the case where the leader is controlling the payload alone, and the CMP can be seen to be
caused by the time required for the estimation error to converge. Both the estimation error
and disagreement dynamics show the same behavior as the leader tracking error: Since all
agents were initialized at angles larger that ±90 deg it is expected that direct convergence
to the desired equilibrium will result in the errors as defined in (3-71) and (3-72) to first
increase, before converging to zero. This is again due to the definition of the a-symmetric
operator Pa {·} = sin (θ) ε, which has the extrema at ±90 deg. This illustrates the difficulty
in assessing the estimation error and disagreement dynamics on SO(3).

Summary of the Simulation Results From the simulation results Figure 3-2 it can be con-
cluded that the consensus law given in Proposition 3-4.1 can recover from large initial esti-
mation errors and allows for large changes in the desired payload configuration. With the
observer dynamics chosen to be faster than the payload dynamics it is shown that the leader
control effort is amplified. Furthermore, it is shown that the system convergences to the de-
sired equilibrium, even if all signals are chosen outside of the convergence region upon which
the proof depended.

3-7 Conclusion

This chapter considered the use of the rotation matrix for the control law design, resulting in a
global system description. It was shown that without a leader, an almost globally converging
synchronization law could be formulated. With the addition of a leader a proof of global
convergence could not be obtained. The convergence could only be proven if the attitude
tracking errors remained within ±1

2π. Within that region a bound on the convergence rate
was derived. The proposed method for the fully actuated case could directly be extended
to the underactuated case, but depended on the same region of convergence. From the
construction of the consensus law, and the simulations, there is a strong incentive that the
system always converges to the desired equilibrium. The challenge in completing the proof
was traced back to:

• The inability to decouple the payload motion from the consensus dynamics, which
directly obstructed proving invariance of the convergent region.

• The evaluation of the disagreement on SO(3), which can diverge even when the agents
are converging to the desired state.
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Despite the restriction of the proof, the convergence region is relatively large, much larger
than a linear region. In fact, to leave the region of convergence effectively means that the
overshoot is more than 1

2π. For all practical considerations, this region should be large enough.
Nevertheless, further research is required for a completing the proof.
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Chapter 4

Payload State Measurements as a
Means of Communication

The aim of this chapter is to relax the assumption of requiring acceleration measurements.
The proposed approach is to design a local observer for reconstructing the desired payload
configuration. The challenge in reconstructing the desired payload configuration is that this
information appears in the payload dynamics in a nonlinear fashion. Geometric observer
approaches, such as [35], [36], enable to reconstruct rotation matrices on the nonlinear mani-
fold, and are provided with an elegant proof. These methods show similarity to the geometric
approach in Chapter 3, and should be considered as kinematic approaches, requiring direct
information exchange. These methods are not trivially extended to the use of arbitrary
measurements. Nonlinear Kalman filters in combination with quaternions are considered a
powerful tool for attitude reconstruction using arbitrary state measurements [37]. The focus
of these methods is to construct locally optimal estimates of the state through linearization.
This limits the proof to a local convergence region. For these reasons it is chosen to use the
Modified Rodrigues Parameters (MRPs) to represent the attitude of payload. The additive
attitude tracking error again resulting in a significant simplification of the problem. With this
choice, the results suffer from the same limitations as discussed in Section 2-1 and Assumption
2-1.1 is considered to hold. Finally, no method was found to analytically, and globally, recon-
struct the Coriolis terms. As such, the Coriolis terms are canceled from the payload motion,
as was done in the previous chapters. In case of velocity measurements the estimation error
dynamics result in a second order consensus problem, comparable to that seen in cooperative
vehicle control problems. For arbitrary measurements the result is a higher order consensus
problem, which gives rise to a simultaneous stabilization problem. A short literature review
reveals that the problem of finding stabilizing feedback gains is nonlinear and difficult to solve
in general.

As in the previous chapters, the robot dynamics are neglected, and the MRPs are used
to represent the payload attitude. The fully actuated case is considered first, leading to a
globally converging solution. Similarly to Subsection 2-3 the underactuated case results in a
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state dependent Laplacian matrix, and the system is shown to converge only locally. Alter-
natively, a Nonlinear Dynamic Inversion (NDI) based control law is proposed which allows
for a separation of the disagreement, mean estimation error and tracking dynamics. Global
convergence could be derived, at the cost of further dependency on model parameters.

The remainder of this chapter is structured as follows. In section 4-1 the fully actuated
case is considered, resulting in global convergence. Subsequently, the proposed solution is
extended to the underactuated case in Section 4-2 , but results in a restriction of the proof.
The effect of assuming position measurements is discussed in Section 4-4. In Section 4-5 the
simulation results are presented. This chapter concludes with a discussion on the presented
results in Section 4-6.

4-1 Reconstructing the Desired Payload Configuration Assuming
Velocity Measurements and Full Actuation

This section considers the fully actuated case, where the agents apply a wrench at the payload
Center of Gravity (CoG). It is assumed that the payload velocities, as well as the attitude,
are measurable for all agents. A separation of the estimation error dynamics from the pay-
load motion results merely in boundedness of the estimation errors. Similarly as was done
in Subsection 2-2, a small coupling gain is introduced to prove global convergence. Although
the control- and observer gains can be chosen individually, it is shown that the observer gains
must satisfy a constraint related to the control gains of the other agents. The observer gain
can always be chosen to satisfy this constraint, and is thus considered to be non-restrictive.

The remainder of this section is structured as follows. The agent control laws, and the reduced
payload dynamics are introduced in Subsection 4-1-1. The objectives for the Cooperative Ma-
nipulation Problem (CMP) are defined in Subsection 4-1-2, and subsequently the proposed
consensus law is given in Subsection 4-1-3. This section concludes with a short discussion on
the proposed solution, and a comparison with cooperative vehicle control in Subsection 4-1-4.

4-1-1 Agent Control Laws and Reduced Payload Dynamics

The payload equations of motion are as given in Subsection 2-2-1, and it is assumed that
the agents apply a wrench at the payload CoG without loss of generality. The leader control
law is as given in Subsection 2-2-2, equation (2-3). The follower agent’s control law has the
same structure as that of the leader, but partially relies on the estimates obtained from the
observer,

wi = 1
nf+1 (C (νo) +G)−M

(
ζiν̂i +KiJo (qo)T êi

)
, i ∈ {1, . . . , nf} (4-1)

where ν̂i and êi are the local estimates of the payload velocity and the leader tracking error, as
indicated by the hat1 , and otherwise the variables are as introduced in Subsection 2-2-2. For
the proposed control law in the following, it should hold that KJo (qo) = Jo (qo)K, i.e. these

1The hat is used in this chapter to explicitly indicate the local estimates. In the previous chapters this was
assumed to be clear from context, and the hat was omitted.
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matrices must commute, resulting in the structure given in (2-6). Furthermore, it is assumed
that the control gains are positive definite, diagonal matrices. Substitution of the leader and
follower control laws into the payload dynamics gives the reduced payload equations of motion
as,

ν̇o = −ζlνo − Jo (qo)T Klel −
nf∑
i=1

[
ζiν̂i + Jo (qo)T Kiêi

]
ėl = Jo (qo) νo

(4-2)

where el = qo−ql is the leader tracking error and all other variables are as defined in Subsection
2-2-2.

4-1-2 Mathematical Objectives for the Cooperative Manipulation Problem

With the introduction of an observer it is chosen to decouple the objective as follows,

Objectives 4-1.1. Consider the CMP described by the reduced description (4-2). The sta-
bility of the system follows if the

estimation errors: ∆ei = êi − el,

∆νi = ν̂i − νo,

and tracking error: el = qo − qdes

(4-3)

converge to zero.

4-1-3 Proposed Consensus Law Assuming Full Actuation and Velocity Measure-
ments

It is proposed to design an observer for meeting the Objectives 4-1.1. The observer can be
constructed as a local copy of the payload dynamics given in (4-2), with an observer correction
term. This leads to the following proposed consensus law:
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Proposition 4-1.1. Consider the CMP of the payload using nf follower agents and a single
leader, resulting in the reduced payload dynamics given in (4-2). Assume the agents to have
access to measurements of the payload velocities νo =

[
ΩT
o vTo

]T
and payload attitude σo. Let

the follower agents locally update the estimates ν̂i and êi as

˙̂νi = −ζsumν̂i −KsumJo (qo)T êi − Γv,i∆νi + εν,iνo

˙̂ei = Jo (qo) ν̂i + Γe,iJo (qo) ∆νi + εe,iJo (qo) νo
(4-4)

where ∆νi = ν̂i − νo is the measurement error, Ksum = Kl +
nf∑
i=1

Ki > 0 is the sum of the
control gains, εe,i ≥ 0 and εν,i ≥ 0 are diagonal coupling matrices, and Γe,i is a gain matrix
structured as given in (2-6). Furthermore, Γv,i ∈ R6×6 is a diagonal matrix for which the
following inequality holds,

Γv,i > −ζl − 1
2

nf∑
j=1

ζj + 1
2K
−1
i (Γe,i + I)−1

(
nf∑
j=1

(Γe,j + I)Kj

)
ζi. (4-5)

Then, there exist arbitrarily small εe,i > 0 and εν,i > 0 such that the Objectives 4-1.1 are
globally achieved.

Underlying Consensus Law

The Exchange of local information can be made visible through the estimation error dynamics.
Considering the payload dynamics (4-2) and the observer dynamics (4-4) the estimation error
dynamics is obtained as

∆ν̇i = − (ζl + Γv,i) ∆νi −KlJo (qo)T ∆ei −
nf∑
j=1

[
ζj (∆νi −∆νj) +KjJo (qo)T (∆ei −∆ej)

]
+ εν,iνo

∆ėi = (I6×6 + Γe,i) Jo (qo) ∆νi + εe,iq̇o
(4-6)

with ∆νi and ∆ei as defined in the Objectives 4-1.1. Setting εe,i = 0 and εν,i = 0 reveals a
second order consensus problem, where all agents exchange information on ∆ei and ∆νi, and
use this to control the acceleration ∆ν̇i. The similarities and differences with the literature
will be further discussed at the end of this section, after the proof has been completed.

Proof of Convergence

The complete proof of boundedness of the estimation error dynamics in (4-6) is shown in
Appendix B-2-1. The proof is constructed via the Lyapunov candidate given as,

V∆ = Ve + Vν


Ve = 1

2∆eT
(
L

(e)
w + Pe

)
∆e

Vν = 1
2

nf∑
i=1

∆νTi (Γe,i + I6×6)Ki∆νi
(4-7)
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where Pe ∈ R6nf×6nf and (Γe,i + I6×6)Ki are diagonal positive definite matrices, and L
(e)
w

is the weighted Laplacian matrix for the complete graph as given in Definition A-1.4 by
substituting ai = Ki in the definition. Taking the time derivative of V∆ with εe,i = 0 and
εν,i = 0 gives

V̇∆ = −∆νT
(
L

(ν)
w +Qν

)
∆ν (4-8)

where L(ν)
w is a weighted Laplacian matrix associated with the complete graph. If the con-

straint (4-5) holds it follows that the matrix Qν is a diagonal positive definite matrix, see
Appendix B-2-1. From V∆ and V̇∆ it merely follows that ∆ν is bounded. LaSalle’s invariance
principle can not be applied due to the dependency of the estimation error dynamics (4-6)
on the payload state qo. Barbalat’s Lemma A-5.2 can not be applied, because unbounded qo
leads to unbounded V̈ . Similarly as was done in Section 2-2 the consensus dynamics will be
coupled to the payload motion through εe,i and εν,i, as a means to guarantee that qo remains
finite. This allows for a global proof of convergence to the desired equilibrium for arbitrarily
small εe,i and εν,i. The complete proof is provided in Appendix B-2-2.

4-1-4 Remarks on the Proposed Solution for the Fully Actuated Case

Interpretation of the Coupling Gain As discussed in Chapter 2, the intention was to de-
couple the consensus dynamics from the payload motion. However, in constructing the proof
it was found that the coupling must be reestablished through a small gain ε, and the same
discussion posed in Subsection 2-2-5 applies.

Interpretation of the Constraint on the Observer Gain The posed inequality constraint
(4-5) shows that the observer gain should be chosen such that it captures the dynamics of
agents that are faster. This can be seen from the summation over Kj and Γe,j for the ithagent.
Furthermore, note from the above expression that if all gains Ki, Γe,i, ζi are chosen equal for
all i, that the observer gain reduces to

Γv,i > −ζl (4-9)

For the case of all gains chosen equal any positive definite observer gain suffices. The fact that
a negative gain is possible is correct, but it would be unwise, as this removes the damping
that is injected by the leader.

Comparison with Cooperative Vehicle Control It should be noted that the estimation error
dynamics show a great similarity to that considered in general cooperative vehicle control,
such as [29] for attitude control of multiple satellites via quaternions. The estimation error
dynamics was shown to be given as

∆ν̇i = − (ζl + Γv,i) ∆νi −KlJo (qo)T ∆ei −
nf∑
j=1

[
ζj (∆νi −∆νj) +KjJo (qo)T (∆ei −∆ej)

]
∆ėi = (I6×6 + Γe,i) Jo (qo) ∆νi

(4-10)
The interpretation when comparing to [29] is that the local estimation errors take the role of
distinct vehicles. The vehicles are then coupled by exchanging their velocities and positions
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and using their relative difference directly as the control input to the vehicle. There are two
main differences: Firstly, the individual scaling in the kinematics is unusual, here caused by
Γe,i, since the kinematics are the same for each vehicle. Secondly, the kinematics are seen
to be coupled to the payload through Jo (qo), while the payload motion does not effect the
consensus dynamics otherwise. Naturally, in cooperative vehicle control the matrix Jo (qo)
would be replaced by the individual vehicle jacobian matrix.

4-2 Reconstructing the Desired Payload Configuration Assuming
Velocity Measurements and Underactuation

This section extends the approach outlined in the previous section to the underactuated case,
where the agents can apply forces at the attachment points, rather than a wrench. The pro-
posed approach is identical to that in Section 2-3: The agents use the generalized inverse to
compute the desired force at the attachment point, and by taking identical observer gains the
disagreement problem can be isolated. It will be shown that, due to the nonlinear system
description only local stability can be concluded, forming a restriction of this solution. The
method of adding a small coupling gain is not applicable due to the complexity of the Lapla-
cian matrix associated with the consensus dynamics.

The remainder of this section is structured as follows. The reduced payload dynamics is
presented in Subsection 4-2-1. The objective for achieving cooperative manipulation of the
payload is defined in Subsection 4-2-2, after which a solution is proposed in Subsection 4-2-3.

4-2-1 Reduced Payload Dynamics Assuming Underactuation

The payload dynamics for the underactuated case was given in (2-23), and the design approach
follows the same steps as outlined in Section 2-3. To this end, let the followers make use of
the generalized inverse to convert the control law for the desired wrench given in (4-1) to a
force at the agent’s attachment point. Whereas the leader is still represented as a wrench
acting at the payload CoG. This results in the reduced payload dynamics given as

ν̇o = −ζlνo − Jo (qo)T Klel −
nf∑
i=1

Wi (qo)
[
ζν̂i + Jo (qo)T Kêi

]
ėl = Jo (qo) νo

(4-11)

where
Wi (Ro) = nfM

−1Jpi (Ro)T Jpi (Ro)†M. (4-12)

and it is assumed that the follower control gains ζ and K are identical.

4-2-2 Mathematical Objective for the Cooperative Manipulation Problem

Let the objectives for the proposed consensus law be given as,
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Objectives 4-2.1. Consider the CMP with underactuation as described by the reduced de-
scription (4-11). Define the payload state and local estimated state as,

xo =
[
νTo eTl

]T
, x̂i =

[
ν̂Ti êTi

]T (4-13)

respectively. The stability of the system follows if the

disagreement: δxi = x̂i − 1
nf

nf∑
j=1

x̂j ,

mean estimation error: ∆x̄i = 1
nf

nf∑
i=1

x̂j − xo,

and tracking error: el = qo − qdes

(4-14)

all converge to zero.

4-2-3 Proposed Consensus Law Assuming Underactuation and Velocity Mea-
surements

The observer for the underactuated case is similar to the fully actuated case, but instead the
observer gains are identical for all agents:

Proposition 4-2.1. Consider the CMP of the payload using nf agents with underactuation
and a single leader, resulting in the reduced dynamics (4-11). Let the followers apply the
proposed observer given in Proposition 4-1.1, but with identical observer gains for all agents:

˙̂νi = −ζsumνi −KsumJo (qo)T êi − Γν∆νi

˙̂ei = Jo (qo) ν̂i + ΓeJo (qo) ∆νi
(4-15)

where ∆νi = ν̂i−νo is the measurement error, Ksum = Kl+nfK > 0 is the sum of the control
gains, Γv, > 0 and Γe, > 0 are the observer gain matrices, where Γe, > 0 is structured as given
in (2-6). Then, considering the Objectives 4-2.1, local convergence to the desired equilibrium
is achieved.

Underlying Consensus Dynamics The interconnection between the agents is revealed by
following the same steps outlined in Subsection 2-3-4. From the payload dynamics (4-11) and
the observer dynamics (4-15) the estimation error dynamics is obtained as

∆ν̇i = − (ζl + Γν) ∆νi −KlJo (qo)T ∆ei −
nf∑
j=1

Wj (qo)
[
ζ (∆νi −∆νj) +KJo (qo)T (∆ei −∆ej)

]
∆ėi = (I6×6 + Γe) Jo (qo) ∆νi

(4-16)
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where the matrices Wi (qo) are defined in (4-12). Similarly to the previous section, the result
is a second order consensus problem, where the associated Laplacian matrix would be charac-
terized as a state dependent, weighted non symmetric Laplacian matrix with non-symmetric,
rank-deficient matrix weights.

Local Convergence of the Disagreement Dynamics

The disagreement dynamics of the follower agents can be obtained from the local update law
(4-15) by left multiplication of the estimation error dynamics with the Laplacian matrix for the
complete graph, as was done in Subsection 2-3-4. Since the observer gains were assumed to be
identical the measurement νo drops from the dynamics, resulting in the following disagreement
dynamics for the ith-agent,

δν̇i = − (ζsum + Γν) δνi −KsumJo (qo)T δei

δėi = (I6×6 + Γe) Jo (qo) δνi
(4-17)

Consider the Lyapunov function given as

Vδ,i = 1
2δν

T
i δνi + 1

2δe
T
i Peδei ≥ 0 (4-18)

where Pe = (I6×6 + Γe)−1Ksum which is symmetric positive definite. Taking the time deriva-
tive of Vδ,i, and substitution of the disagreement dynamics (4-17), gives

V̇δ,i = −δνTi (ζsum + Γν) δνi ≤ 0 (4-19)

where it was used that Jo (qo) commutes with Ksum, as it abides by the structure given
in (2-6). From V̇δ,i and Vδ,i it can be concluded that δνi and δqi are bounded. However,
LaSalle’s can not be used, as the payload configuration state form an exogenous signal to
the disagreement dynamics (4-17). Linearizing about the equilibrium state given as δxi = 0,
νo = 0 and qo = qdes allows for the proof of local convergence.

Local Convergence of the Estimation Error Dynamics

Since the system must be linearized to obtain the proof of convergence, the separation theorem
for linear systems can be applied. Therefore, in the following the disagreement vectors are
simply set to zero. Following the decoupling of the objectives, the mean estimation error
dynamics can be obtained from the complete estimation error dynamics (4-16), resulting in

∆ ˙̄ν = − (ζl + Γν) ∆ν̄ −KlJo (qo)T ∆ē

∆ ˙̄e = (I6×6 + Γe) Jo (qo) ∆ν̄

 if {δνi, δei} = 0 (4-20)

Note the similarity between the above dynamics, and the disagreement dynamics (4-17). It
thus follows that linearization about the equilibrium state results in local convergence of the
mean estimation errors.
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Local Convergence of the Payload to the Desired Configuration

It remains to show that the payload reaches the desired configuration, that is, that the leader
tracking error converges to zero. From the payload dynamics (4-11), it can be seen that if
ei = el, ∀i, i.e. all agents have converged to the leader, the payload dynamics reduce to

ν̇o = −ζsumνo −KsumJo (qo)T el, if


{δνi, δei} = 0,

{∆νi,∆ei} = 0
(4-21)

which is again similar to (4-20) and (4-17). Through similar arguments it can be shown that
local convergence of the payload tracking error follows, i.e. lim

t→∞
νo = 0 and lim

t→∞
el = 0. This

completes the proof of Proposition 4-2.1.

4-3 Nonlinear Dynamic Inversion (NDI) for the Underactuated
Case

The previously outlined strategy proposed to separate the consensus dynamics from the pay-
load dynamics. It was found to be difficult to show that the payload state remains bounded
during the convergence of the consensus dynamics. With the introduction of the coupling
gains this could still be guaranteed. However, for the underactuated system such a coupling
gain is not easily introduced. As an alternative, this section considers NDI to remove the
kinematics from the problem, and impose linear dynamics onto the configuration state. Al-
though this further simplifies the system dynamics, all the complexity is concentrated in the
applied wrench instead. For this reason the proposed method is considered as less favorable
to that of the previous section. Nevertheless, it was found to lead to a guarantee of global
convergence for the underactuated case. The problem setting is the same as outlined in the
previous section.

The agent control laws and the reduced payload dynamics is shown in the following sub-
section. The objective for the CMP is similar to the Objectives 4-2.1, and the proposed
solution is presented in Subsection 4-3-2.

4-3-1 Agent Control Laws and the Reduced Payload Dynamics

The payload equations of motion can be given in terms of the configuration coordinates as

M̆o (qo) q̈o = −C̆o (q̇o, qo)−Go + Jo (qo)−T
(
wl +

nf∑
i=1

Jpi (qo)T Fpi
)

(4-22)

with M̆o (qo) and C̆o (q̇o, qo) denote the mass tensor and Coriolis terms, which are explicitly
given in Appendix A-4-3, Jo (qo) is given in (A-34), Jpi (qo)T is the adjoint matrix given in
(A-38), and Fpi is the ith-agent’s force at the corresponding attachment point. Let the leader
wrench be given as

wl = 1
1+nf Jo (qo)T

(
C̆o (q̇o, qo) +Go

)
− Jo (qo)T M̆o (qo) (ζlq̇o −Klel) (4-23)
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with el = qo − qdes the leader tracking error. The followers compute the force at the ith-
attachment point using the generalized inverse (2-25) as,

Fpi = nfJpi (qo)†wi (4-24)

where wi is the ith-agent’s estimate of the desired wrench at the payload CoG, and is computed
using a similar structure as (4-23). This reduces the underactuated payload dynamics (4-22)
to,

q̈o = −ζlq̇o −Klel −
nf∑
i=1

Wi (qo)
(
ζ ˙̂qi +Kêi

)
ėl = q̇o

(4-25)

where êi and ˙̂qi are the ith-agent’s local estimates of the tracking error and generalized veloc-
ities respectively, and the matrices Wi (qo) are given as

Wi (qo) = nfM̆o (qo)−1 Jo (qo)−T Jpi (qo)T Jpi (qo)† Jo (qo)T M̆o (qo) (4-26)

The expression above is rather unwieldy, but important to note is that
nf∑
i=1

Wi (qo) = nfI6×6

and that it is bounded even for unbounded qo. The boundedness of Wi (qo) is derived in
Appendix B-2-3.

4-3-2 Proposed Consensus Law Assuming Velocity Measurements and NDI

Consider the Objectives 4-2.1 with xo =
[
q̇To eTl

]T
, and x̂i =

[
˙̂qTi êTi

]T
. The proposed

solution to meet these objectives is then given as:

Proposition 4-3.1. Consider the CMP of the payload using nf follower agents and a single
leader, resulting in the reduced payload dynamics given in (4-25). Assume the agents to have
access to measurements of the payload velocities q̇o and payload attitude σo. Let the follower
agents locally update the estimates ˙̂qi and êi as

¨̂qi = −ζsum ˙̂qi −Ksumêi − Γν∆q̇i

˙̂ei = ˙̂qi + Γe∆q̇i
(4-27)

where ∆q̇i = ˙̂qi− q̇o is the measurement error, Γe, Γν , Ksum = Kl +nfK and ζsum = ζl +nfζ
are diagonal positive definite matrices of dimension 6 × 6. Then, the Objectives 4-2.1 are
globally achieved.

The proof in the following is constructed following the separation of the disagreement, mean
estimation error and payload tracking dynamics, as reflected by the Objectives 4-2.1.
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Underlying Consensus Dynamics

The consensus dynamics is obtained from the payload dynamics (4-25) and the consensus law
(4-27), resulting in the estimation error dynamics given as

∆q̈i = − (ζl + Γν) ∆q̇i −Kl∆ei −
nf∑
j=1

Wj (qo) (ζ∆q̇j +K∆ej)

∆ėi = (I6×6 + Γe) ∆q̇i
(4-28)

where ∆q̇i = ˙̂qi − q̇o and ∆ei = êi − el are the local estimation errors, and Wi (qo) is given in
(4-26).

Proof of Global Convergence of the Disagreement Dynamics

The disagreement dynamics of the follower agents can be obtained from the local update law
(4-27) by left multiplication with the Laplacian matrix for the complete graph, as was done in
Subsection 2-3-4. Since the observer gains were assumed to be identical the measurement q̇o
drops from the dynamics, resulting in the following disagreement dynamics for the ith-agent,

δq̈i = − (ζsum + Γν) δq̇i −Ksumδei

δėi = (I6×6 + Γe) δq̇i
(4-29)

The disagreement dynamics given above are linear in δq̇i and δei, and all matrices ζsum, Ksum,
Γν and Γe are assumed to be positive definite diagonal matrices. Considering Objectives 4-2.1,
it can thus be concluded that the disagreement dynamics globally converge to the origin.

Proof of Global Convergence of the Estimation Error Dynamics

The estimation error dynamics given in (4-28) can be written in terms of the mean estimation
error and the disagreement vectors as defined in the Objectives 4-2.1, resulting in,

∆¨̄q = − (ζsum + Γν) ∆ ˙̄q −Ksum∆ē−
nf∑
j=1

Wj (qo) (ζδq̇j +Kδej)

∆ ˙̄e = (I6×6 + Γe) ∆ ˙̄q
(4-30)

Consider the Lyapunov candidate given as

V∆ = 1
2∆ ˙̄qTP1∆ ˙̄q + 1

2∆ēTP2∆ē+ 1
2
∥∥∆ ˙̄q + P3∆ē

∥∥2 (4-31)

with P1, P2 and P3 diagonal positive definite matrices, explicitly given in Appendix B-2-4.
Taking the time derivative of V∆, and substitution of (4-30) gives,

V̇∆ = −∆ ˙̄qTQ1∆ ˙̄q −
∥∥∆ ˙̄q + P3∆ē

∥∥2
Q2

−
(
P1∆ ˙̄q +

(
∆ ˙̄q + P3∆ē

))T × nf∑
j=1

Wj (qo) (ζδq̇j +Kδej)︸ ︷︷ ︸
bounded

(4-32)
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where ‖ · ‖2Q2
denotes (·)TQ2(·), and Q1 and Q2 are positive definite diagonal matrices, ex-

plicitly given in Appendix B-2-4. As it was established that Wj (qo) remains bounded (see
Appendix B-2-3), and the disagreement vectors δq̇i and δei remain bounded it can be con-
cluded that the braced term in (4-32) indeed remains bounded. It then follows from V∆
and V̇∆ that ∆ ˙̄q and z = ∆ ˙̄q + Q3∆ē must remain bounded. This shows that ∆ē remains
bounded, leading to the conclusion that all signals in the estimation error dynamics (4-30)
remain bounded. Since the disagreement vectors converge globally to the origin it holds that
lim
t→∞

V̇∆ ≤ 0. This shows that lim
t→∞

∆q̇i = 0 and lim
t→∞

(
∆ ˙̄q +Q3∆ē

)
= 0, and thus lim

t→∞
∆ē = 0.

Considering Objectives 4-2.1, the conclusion is that the mean estimation errors globally con-
verge to the origin.

Proof of Global Convergence of the Payload Tracking Dynamics

The convergence of the payload tracking error follows the same steps as for the mean estima-
tion error dynamics. Consider writing the reduced payload dynamics given in (4-25) in terms
of the estimation errors,

q̈o = −ζsumq̇o −Ksumel −
nf∑
i=1

Wi (qo) (ζ∆q̇i +K∆ei)

ėl = q̇o

(4-33)

where ∆q̇i = δq̇i + ∆ ˙̄q and ∆ei = δei + ∆ē, which were previously shown to be bounded.
Consider the Lyapunov candidate given as

V = 1
2 q̇
T
o P4q̇o + 1

2e
T
l P5el + 1

2 ‖q̇o + P6el‖2 (4-34)

with P4, P5, and P6 positive definite diagonal matrices given as,

P4 = ζ−2
sumKsum + I, P5 = Ksum, P6 = ζ−1

sumKsum. (4-35)

Taking the time derivative of V , and substitution of (4-33) gives,

V̇∆ = −q̇To ζsumq̇o − ‖q̇o + P6el‖2Q3

− (P4q̇o + (q̇o + P6el))T ×
nf∑
i=1

Wi (qo) (ζ∆q̇i +K∆ei)︸ ︷︷ ︸
bounded

(4-36)

where ‖ ·‖2Q3
denotes (·)TQ3(·), and with Q3 = ζ−1

sum. Note that the obtained equations V and
V̇ are of the same form as V∆ and V̇∆ given in (4-31) and (4-32) respectively. Following a
similar reasoning, the boundedness of the braced term in (4-36) leads to the conclusion that
lim
t→∞

q̇o = 0 and lim
t→∞

(q̇o +Q3el) = 0, and thus lim
t→∞

el = 0. Considering the Objectives 4-2.1,
this completes the proof.
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4-4 The Simultaneous Stabilization Problem for Arbitrary State
Measurements

It was shown in Chapter 2 that with acceleration measurements the estimation error dynamics
give a first order consensus problem. It is not surprising that with velocity measurements a
second order consensus problem arises. Naturally, for arbitrary state measurements a higher
order consensus problem is found. However, in the latter case a new problem is encountered.
Considering Objectives 4-2.1 it can be shown that the disagreement dynamics and the mean
estimation error dynamics give two different systems, which should be simultaneously sta-
bilized by the observer gains. In case of acceleration or velocity measurements any positive
definite observer gain suffices, rendering the simultaneous stabilization problem irrelevant.
For arbitrary state measurements this is no longer the case, and the observer gain should be
chosen to simultaneously stabilize two plants.

The simultaneous stabilization problem received considerable attention in the literature, dat-
ing back to the 1980’s [38]. From the literature it can be concluded that the simultaneous
stabilization problem is in fact nonlinear and difficult to solve in general [39], [40], [41]. Meth-
ods that rely on root locus or Nyquist arguments tend to assess stability after the design,
rather than present a guarantee before the design. For this reason the main focus is in nu-
merical approaches. These approaches tend to consider a general class of systems, and since
the problem is nonlinear and NP-hard [41], these solutions give no guarantee for solving the
problem relevant for this thesis. A popular approach is to use a common Lyapunov function,
which renders the problem convex [39], [42]. But, again, it is unclear how restrictive the use of
a common Lyapunov function is, and whether it exists for an arbitrary system. Additionally
these methods consider linear systems, and can not trivially be extended to nonlinear system
descriptions. Given these findings, it is chosen not to further investigate global convergence
results for the CMP assuming arbitrary state measurements. In Appendix B-2-5 it is shown
that the Objectives 4-2.1 give rise to the simultaneous stabilization problem, by considering
the linear translation dynamics.

4-5 Simulation Results for the Underactuated Case Assuming Ve-
locity Measurements

This section presents the simulation results of Proposition 4-2.1, i.e. for the underactuated
case. The results for Proposition 4-3.1, using the NDI based approach were found to be very
similar and can be found in Appendix D.

The CMP is simulated with nf = 10 follower agents applying a force at the attachment
points, and a single leader as a wrench at the CoG. The aim of the simulation is to verify
that consensus is reached and the leader control effort is amplified. Additionally it is illus-
trated that the system is able to handle large angles of rotation, despite the local convergence
result. To this end, the agents are initialized with large attitude estimation errors ranging
±180 deg, and the leader applies a large reference step of 60 deg for the desired attitude. The
observer gains obtained using Linear Quadratic (LQ)-optimal pole placement, resulting in
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Γν = 2.27× I6×6 and Γe = 9.04× I6×6. A detailed description of the simulation settings can
be found in Appendix C.

Payload Tracking Error Dynamics The simulation results for the attitude dynamics and
translation dynamics are presented in Figure 4-1 and Figure 4-2 respectively. It can be seen
in Figure 4-1a and Figure 4-2a that the payload velocities converge to zero, and from Figure 4-
1b and Figure 4-2b that the configuration converges to the reference. The colored dashed
lines show the response of the system were the leader controls the payload alone, serving as
a benchmark. The delay with respect to the benchmark can be traced to the time required
for the estimation errors to converge.

Amplification of the Leader Control Effort The leader control effort and tracking errors
are shown in the second row of plots in Figure 4-1 and Figure 4-2. Comparison of the leader
control effort with the benchmark shows that the leader control effort is indeed lowered, with
little performance loss.

Consensus Dynamics of the Estimation Error The consensus dynamics is reflected by the
mean estimation error dynamics and the disagreement dynamics, shown in plots (e)-(h) in
Figure 4-1 and Figure 4-2. The mean estimation error and disagreement for the angular
velocity depicted in Figure 4-1e is computed as,

∆Ω̄ = 1
nf

nf∑
i=1

(
Ω̂i

)
− Ωo, δΩi = Ω̂i − 1

nf

nf∑
j=1

(
Ω̂j

)
(4-37)

and a similar definition holds for the estimation error and disagreement of, the attitude
tracking error eσ, the payload linear velocity v and the position tracking error er. From
the disagreement dynamics it can be seen that the consensus dynamics is indeed of second
order. The attitude dynamics show more chaotic behavior in the first few seconds of the
simulation. This can be traced to the convergence of the disagreement dynamics, which takes
more than a second. Note that, as long as the agents have not reached the agreement set that
the attitude and translation dynamics are coupled through a complicated state dependent
Laplacian matrix. After the disagreement dynamics have converged, it can be seen that the
estimation error dynamics, and the payload state behave much more smoothly.

4-6 Conclusion

This chapter considered the use of state measurements for reaching consensus amongst the
agents. It was shown that the use of velocity measurements resulted in a second order
consensus problem, closely related to cooperative vehicle control problems. For the fully
actuated case a nonlinear Proportional Derivative (PD)-type control law was proposed, and
the agents could use individual control and observer gains. With the use of a small coupling
gain a global proof of convergence was established. The extension to the underactuated case
required identical observer gains and showed a restriction in the proof. It was shown to be
difficult to separate the consensus dynamics from the payload motion, leading to a proof of
local stability. It was shown that NDI could be used to overcome this problem, allowing for a
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Figure 4-1: Simulation results of the attitude dynamics for the underactuated CMP (Proposition
4-2.1): From left to right and top to bottom the plots show, (a) the payload angular velocity, (b)
the payload MRPs, (c) the torque applied by the leader, (d) the leader tracking error, the mean
of the agent’s estimation errors regarding the (e) angular velocity and the (f) tracking error, and
the disagreement of the agent’s estimation errors in (g) and (h). The three colors, blue red and
yellow, represent the x, y and z directions of the corresponding three dimensional vectors. The
black dashed line in the attitude plot shows the leader reference MRPs. The leader applies a
reference step to the desired payload attitude at t = 4[s], corresponding to a θ = 60 deg rotation
about the ε = [3 2 1]T axis. The colored dashed lines in the payload attitude and leader torque
plot show the simulation result for the case that the leader is controlling the payload alone.
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Figure 4-2: Simulation results of the translation dynamics for the underactuated CMP (Proposi-
tion 4-2.1): From left to right and top to bottom the plots show, (a) the payload linear velocity,
(b) the payload position, (c) the force applied by the leader, (d) the leader tracking error, the
mean of the agent’s estimation errors regarding (e) the linear velocity and (f) the position tracking
error, and the disagreement of the agent’s estimation errors in (g) and (h). The three colors,
blue red and yellow, represent the x, y and z directions of the corresponding three dimensional
vectors. The black dashed line in the position plot shows the leader’s desired position, changing
from the origin to rdes = [3 2 1]T at t = 4[s]. The colored dashed lines in the position and
force plot show the simulation result for the case that the leader is controlling the payload alone.
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separation of the disagreement, mean estimation error and tracking dynamics. Although the
resulting Laplacian matrix is state dependent it could be shown to remain bounded, allowing
for the proof to be completed. However, it was argued that the use of NDI further increases
the dependency on an accurate model description. Through simulations it was shown that
the PD-type control law was able to describe large angles of rotation, and recover from large
initial errors, despite the proof of local convergence. The proposed nonlinear PD-type control
law is considered preferable over the NDI approach, but global convergence was found difficult
to achieve.
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Chapter 5

Aerial Cooperative Towing Problem
with Multiple Leaders

The aim of this chapter is to relax the assumption of directly controlling the wrench or force
acting on the payload. The problem setting is the Aerial Towing Problem (ATP) where
multiple Unmanned Aerial Vehicles (UAV) are towing the payload via cables, as depicted in
Figure 5-1. The centralized approach, where all agents have access to the desired payload
configuration and the complete system state, has been studied in the literature [7], [43]. More
specifically, in [44] a control law for the UAV is derived that aims to control the wrench at the
payload Center of Gravity (CoG). This approach is reviewed in this chapter by first consider-
ing all agents to be a leader, i.e. to have access to the desired configuration. A decentralized
approximation is proposed such that the agents no longer require the full system state. The
approximate solution is directly extendable to the follower agents, relaxing the assumption
of a controlled force acting on the payload. A downside of this approach is that at least
three leaders are required to control the payload motion. The solution presented in Chapter
4 is applied to the ATP and the effectiveness is shown via simulation results, rather than an
analytic proof. This chapter concludes with a discussion on the results.

This chapter is structured as follows. Section 5-1 reviews the centralized solution for the
ATP found in the literature. In section 5-2 an approximation is proposed that allows for a
decentralized implementation. In Section 5-3 the approximate solution is extended to the
follower agents. Simulation results of the complete system, that is the consensus problem and
the ATP combined, are presented in Section 5-4. This chapter concludes with a discussion
on the results in Section 5-5.

5-1 Centralized Nonlinear Dynamic Inversion (NDI) for the ATP

This section reviews the UAV tracking law designed in [44] for controlling the wrench at the
payload CoG assuming all agents have access to the desired configuration. This design is
reviewed extensively for two reasons,
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Figure 5-1: Illustration of the ATP: The payload is towed by three UAV, which are attached to
the payload via cables.

1. The proposed control law in [44] appears to be less complicated than it actually is. The
downside of this approach is made clear by considering what is required to compute the
control action.

2. At first glance, the presented control law in [44] appears to be of decentralized design.
In this chapter it will be shown that it is in fact a centralized design, i.e. each agent
requires knowledge on the payload state as well as the states of all other agents.

This last point follows from a derivation that was not provided in [44], and will be derived in
this work. For the system model the following assumptions are made:

1. The cables are modeled as massless rigid links.

2. The cables are attached at the CoG of the corresponding UAV.

3. The UAV are assumed to be fully actuated. This effectively reduces the UAV dynam-
ics to that of a point mass, as it decouples the attitude dynamics from the problem
completely. This assumption can be relaxed following [44], without any changes to the
overall design, and the same results hold.

It is assumed that the agents have access to acceleration measurements of the payload as
well as the individual UAV. Furthermore, the solution posed in [44] is of centralized design,
indicating that each agent requires knowledge on the state of the complete system. With
these assumptions the proposed tracking law in [44] enables the wrench acting on the payload
CoG to asymptotically converge to the desired wrench at the payload CoG.

The remainder of this section is structured as follows. Subsection 5-1-1 gives a descrip-
tion of the system geometry. The equations of motion required for deriving the control law
is given in Subsection 5-1-2. The objective of the tracking law is stated in Subsection 5-1-3.
In Subsection 5-1-4 the proposed tracking law given in [44] is restated.
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pi

li

ri

{ro, Ro}

ηi

Figure 5-2: Geometry of the payload towed by n = 3 UAV: The payload configuration is denoted
by {ro, Ro} ∈ SE(3), the cables are modeled as rigid links with length li and direction ηi, the
cables are attached to the payload at the relative positions pi w.r.t. the payload CoG.

5-1-1 Description of the Geometry for the ATP

The system geometry is depicted in Figure 5-2 for n = 3 UAV. Let the payload position and
attitude, i.e. the configuration, be given by the pair {ro, Ro} ∈ SE(3). Let the position of
the attachment point of the cable on the payload be given by pi. The ith-cable direction is
given by the unit vector ηi and the cable length is given by li. The position of the ith-UAV,
denoted by ri, is then given as

ri = ro +Ropi + ηili. (5-1)

It is assumed that the UAV are fully actuated, i.e. a controlled torque and force act on the
UAV body. A direct consequence of this assumption is that the attitude dynamics of the
UAV are completely decoupled from the rest of the system. Therefore the UAV are modeled
as having point mass dynamics, and are not assigned any attitude dynamics.

5-1-2 Equations of Motion for the ATP

For the control design the unconstrained equations of motion is used in [45], which requires
the elimination of the cable tension forces from the description. Although very interesting [46]
this is not required. Instead, a simple force and momentum balance of each body suffices,
which can be derived using Figure 5-3.

Considering Figure 5-3, the gravitational attraction acts at the payload CoG and at the
UAV positions, resulting in the forces mogb̄3 and migb̄3 respectively. The cable tensions are
scalars denoted by λi ∈ R and the controlled force of the ith-UAV is denoted by Fi ∈ R3.
Using a force balance for the ith-UAV it must hold that

mir̈i = migb̄3 − λiηi + Fi (5-2)

where mi is the mass of the ith-UAV. For the payload the momentum and force balance are
given as

IoΩ̇o = −Ω̃oIoΩo +
n∑
i=1

p̃iR
T
o λiηi

mor̈o = mogb̄3 +
n∑
i=1

λiηi

(5-3)
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Fpi = ηiλi

−ηiλi migb̄3

Fi

mogb̄3

Figure 5-3: Illustration of the forces acting on the ATP system: The gravitational attraction
acts on the CoG of the payload and the UAV with magnitudes of mogb̄3 and migb̄3 respectively.
The force at the attachment point, denoted by Fpi

, equals the cable tension λi multiplied by the
cable direction ηi. The UAV is modeled as a fully actuated point mass, upon which the controlled
force Fi acts.

where the mass and inertia of the payload are given bymo and Io respectively. The kinematics
of the ith-cable direction ηi is given as,

ωi = η̃iη̇i (5-4)

where the tilde operator is given in Definition A-2.1, and ωi denotes the angular velocity of
the ith-cable.

5-1-3 Mathematical Objective for the UAV Control Law

As previously stated the control law for the UAV should be designed such that the wrench
at the payload CoG can effectively be controlled. The desired wrench at the payload CoG
is assumed to be of the form given in (2-3) for the leader, or given by (4-1) in the prospect
of adding the followers. From this the corresponding forces at the attachment points can
be derived using the generalized inverse as was done in Subsection 2-3-2. This gives the
motion inducing component of the force. With the addition of the UAV dynamics the force
components resulting in a zero net-wrench at the payload CoG can be used to control the
system pose in static equilibrium. The following force at the ith-attachment point is proposed
to control the direction of the ith-cable in static equilibrium,

Fµ,i = µRo

(
pi − 1

n

n∑
j=1

pj

)
= µRop

c
i (5-5)

where µ ∈ R can be chosen to design the radial tension and angle of the cables and the
superscript c in pci refers to the point as being relative to the geometric center of all points
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pi. Note that a force equal to Fµ,i acting at the ith-attachment point indeed does not induce
motion, as can be seen by substituting Fµ,i = ηiλi into the dynamics (5-3) and considering
static equilibrium. Combining the desired wrench with the radial component (5-5) gives the
desired force at the ith-attachment point as,

Fpi,des (xo) = µRop
c
i + Jpi (qo)†wdes (xo) (5-6)

where Jpi (qo)† denotes the generalized inverse of Jpi (qo)T as given in (2-25), wdes (xo) denotes
the desired wrench at the payload CoG, and xo denotes the payload state. Note that this is
the desired force at the attachment point, not the actual force at the attachment point. The
purpose of the UAV control law is to generate Fpi,des at the attachment point:

Objectives 5-1.1. Consider the ATP described by equations (5-1)-(5-4) and assume all
agents to have access to the desired wrench at the payload CoG, denoted by wdes (xo). Then,
the resultant wrench at the payload CoG converges to the desired wrench if

lim
t→∞

ηiλi = Fpi,des (xo) (5-7)

where ηi denotes the cable direction, λi denotes the cable tension, and Fpi,des denotes the
desired force at the attachment point given in (5-6).

5-1-4 N-Leader Nonlinear Dynamic Inversion Control Law

In the previous chapters it was assumed that the forces at the attachment points could be
controlled directly by each agent. However, it can be seen from Figure 5-3 that the force at
the attachment point is constrained to be in the direction of the cable given by ηi. The control
law for the UAV thus attempts to align the cable direction with the force that is currently
desired to act at the attachment point, and then to pull along the cable direction with the
desired force magnitude. This control strategy is considered in [45], resulting in the following
control law:
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Theorem 5-1.1 (Leader UAV NDI control law). Consider the objective of controlling the
wrench at the payload CoG by towing the payload via multiple UAV as depicted in Figure 5-
1. Assuming that the UAV are fully actuated, let the control law for the force acting on the
ith-UAV body be given as

Fi = Fi,tension + Fi,direction + Fi,cancel (5-8)

with each component given as,

Fi,tension = ηiη
T
i Fi,des

Fi,direction = −miliη̃i$i

Fi,cancel = mi

(
−gb̄3 + r̈o +RoΩ̃2

opi −Rop̃iΩ̇o − li ‖ωi‖2 ηi
) (5-9)

where the cable direction kinematics is controlled through $, which is given as

$ = ω̇i,des − kd (ωi − ωi,des)− kpη̃i,desηi + η̃iω̃i,desω̃iηi (5-10)

where the desired cable direction ηi,des and desired cable angular velocity ωi,des are given as

ηi,des = 1
‖Fpi,des‖Fpi,des

ωi,des = η̃i,desη̇i,des

(5-11)

and the desired force at the attachment point, denoted as Fpi,des is given as,

Fpi,des = µRop
c
i + Jpi (qo)†wdes (xo) (5-12)

where wdes (xo) is the desired wrench at the payload CoG. Then, the Objective 5-1.1 is globally
achieved [45].

The proof of convergence of the cable direction dynamics is given in Appendix B-3-1 as it
is not given in [45], and leads to the conclusion that the above control law is of centralized
design.

5-2 Decentralized Approximate Computation of the Desired Cable
Direction

Considering the Objectives 5-1.1, the control law in Theorem 5-1.1 would appear to be a
good choice for relaxing the assumption of having either a controlled force at the attachment
point, or a controlled wrench at the CoG. However, in the following it will be shown that
this control law requires global state knowledge to compute the expressions for the reference
state-trajectories of the cable dynamics, given by {ηi,des, ωi,des, ω̇i,des} in (5-10). Subsequently
an approximation for computing {ηi,des, ωi,des, ω̇i,des} is proposed that allows for local compu-
tation of (5-8).
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5-2-1 Centralized Computation of the Reference Cable Direction State

The reference cable direction ηi,des was given by the direction of the desired force at the
attachment point Fpi,des given in (5-12). To simplify further analysis, let the reference force
at the attachment point be represented as a function hi(·) of the velocities νo =

[
ΩT
o vTo

]T
and configuration coordinates qo =

[
σTo rTo

]T
,

Fpi,des = hi(νo, qo) = hi(xo). (5-13)

The reference state for the cable dynamics can then be computed from Proposition 5-1.1,
equation (5-12) as,

ηi,des = hi(xo)
‖hi(xo)‖

ωi,des = h̃iḣi
‖h‖2

ω̇i,des = 1
‖hi‖2

(
h̃iḧi − 2

(
hTi ḣi

)
ωi,des

) (5-14)

where ηi,des is the desired cable direction and ωi,des is the corresponding cable angular velocity
reference. This means that the cable reference state should be computed using the higher-
order time derivatives of the function hi(νo, qo) given in (5-13). Let the complete system state
be defined as

χ =
[
νTo qTo ωT1 ηT1 . . . ωTn ηTn

]T (5-15)

Using the equations of motion (5-2) and (5-3) this gives the closed loop dynamics as

χ̇ =


ν̇o
q̇o
ω̇1
η̇1
...

 =



−Co (νo)−Go −M−1
ntot∑
i=1

Jpi (qo)T η̃iη̃Ti hi(νo, qo)

J(qo)νo
η̃1η̃

T
1 $1

ω̃1η1
...


= f(χ) (5-16)

where the cable dynamics ηi and ωi follow from the derivation given in Appendix B-3-1.
The higher order derivatives of hi(xo) given in (5-13), which are required for computing the
reference state (5-14), can thus be computed as

ḣi(χ) = ∂hi(xo)
∂χ f(χ)

ḧi(χ) = ∂
∂χ

[
∂hi(xo)
∂χ f(χ)

]
f(χ)

(5-17)

This shows that the proposed control law in Theorem 5-1.1 is of a centralized design, since
the computation of the reference state trajectory for the cable direction requires all current
cable directions ηi as can be seen from ν̇o in (5-16). Note that for computing ḧi(χ) even the
time derivatives of all cable directions is required.
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5-2-2 Approximate Computation of the Reference Cable Direction State

NDI is often accompanied by an offline computed state trajectory that serves as the refer-
ence trajectory for the system. The offline computed trajectory assumes that at each time
instant the NDI control was successfully applied with zero tracking error and determines the
corresponding state trajectory. A good approximation would thus be to compute the cable
reference state while assuming zero cable tracking error. Note that zero cable tracking error
means that the desired wrench at the CoG is successfully applied. Successful application of
the wrench reduces the payload dynamics significantly. To this end, consider the desired state
equations,

ẋo,des =
[
ν̇o,des
q̇o

]
=
[
−ζνo − kJ(qo)T (qo − qdes)

J(qo)νo

]
= fdes(xo) (5-18)

which are obtained from the payload dynamics and the desired wrench. Note that fdes(xo)
does not depend on the cable directions ηi of the other agents, and can thus be computed
locally by each agent. The desired force at the attachment point is still computed the same
way (5-6), but the time derivatives are computed along the desired trajectory,

hi(xo) = Fpi,des

ḣi,des(xo) =∆ ∂hi(xo)
∂xo

fdes(xo)

ḧi,des(xo) =∆ ∂
∂xo

[
∂ohi(xo)
∂xo

fdes(xo)
]
fdes(xo)

(5-19)

with Fpi,des defined in Theorem 5-1.1, in (5-1.1). The reference state for the cable dynamics
{ηi,des, ωi,des, ω̇i,des} is then computed using the desired time derivatives

ηi,des(xo) = hi(xo)
‖hi(xo)‖

ωi,des(xo) =∆ h̃iḣi,des
‖h‖2

ω̇i,des(xo) =∆ 1
‖hi‖2

(
h̃iḧi,des − 2

(
hT ḣi,des

)
ωi,des

)
.

(5-20)

The motivation for this approximation is that the reference state is computed as the desired
state, i.e. assuming zero tracking error. Furthermore, the centralized computation of the
reference state converges to the approximate computation if the tracking error converges to
zero. Although this method allows for a decentralized computation of the desired cable direc-
tion, it is still an approximation of the exact solution, and as such it is not guaranteed that
the Objectives 5-1.1 are met. The proposed approximation for the UAV control law can be
summarized as:

Proposition 5-2.1 ( Decentralized Approximate NDI Control Law for the Leader UAV).
Consider the objective of controlling the wrench at the payload CoG by towing the payload via
multiple UAV as depicted in 5-1. Let the agents apply the control law as given in Theorem
5-1.1, but let the reference cable trajectory {ηi,des, ωi,des, ω̇i,des} be computed using equations
(5-18) - (5-20), instead of using (5-11).
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Although this approximate computation of the desired cable trajectory is much less com-
putationally expensive than the centralized version, it would still be categorized as very
computationally expensive. The equations (5-18) - (5-20) are a short description of a series of
computations that have to be executed at each sampling time of the UAV. The complete list-
ing of these computations that have to be made is shown in Appendix B-3-2. Although these
computations are not particularly complicated, they illustrate a requirement for accurate
knowledge on system parameters, a very fast on-board computer.

5-3 Extension to the Follower UAV Control Law

It is chosen to extend the consensus law derived in Chapter 4, i.e. Proposition 4-2.1 to the
ATP. This extension is straightforward: The UAV tracking law aims to cooperatively control
the wrench at the payload CoG, while the consensus law aims to reach consensus on the
applied wrench. The assumption is then that both succeed.

The followers thus use Proposition 4-2.1 to determine the UAV control action, where the
desired wrench in (5-19) is replaced by the ith-agent’s local estimate of the desired wrench
given in (4-1). The local estimates are then updated using Proposition 5-2.1. For the leaders
a similar approach is taken, but without the use of local estimates, as the leaders have direct
access to the desired configuration.

5-4 Simulation Results of the ATP

This section presents the simulation results for the ATP where three leader UAV are used to
control the payload motion. The construction of the model used in simulation is described
in Appendix C-3. The payload parameters are as described in Appendix C-2. It was argued
that the pose of the system could be controlled through the parameter µ in (5-5), which sets
the desired radial tension. By choosing µ = −mog

1
n , i.e. equal to the payload weight divided

by the number of agents, the cables will be at an approximate angle of 45 deg.

Firstly, the results for the system without follower UAV are presented, after which the fol-
lowers are added. The followers apply the consensus law given in Proposition 4-2.1, which
used Modified Rodrigues Parameters (MRPs) and velocity measurements. In both cases,
the system performance is evaluated by changing the desired payload configuration at t = 4
seconds to a desired rotation of θdes = 60 deg about the axis given as εdes = [3 2 1]T ,
and the desired position to rdes = [3 2 1]T meters. The simulation results show that the
decentralized approximation given in Proposition 5-2.1 is well applicable to both cases.

The control gains for the desired payload tracking dynamics are given in Table C-2. Di-
vision of these gains by the number of agents gives the ith-agent’s control gains. The gains
used for the cable dynamics in Theorem 5-1.1, equation (5-11), were taken as kp = 100 and
kd = 14.14. The observer gains for the follower agents are as given in Subsection 4-5.
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5-4-1 Simulation Results of the ATP: Three Leader UAV and no Followers

The simulation results of Proposition 5-2.1 for the ATP with three leaders, and no followers,
is shown in 5-4. This situation will serve as the benchmark for the case where the follower
agents are added.

Payload Tracking Error Dynamics From Figure 5-4a and Figure 5-4b it can be seen that
the payload attitude and position stabilize at the desired values. The simulation of the ATP
was compared to the ideal case where the payload is controlled by a wrench at the CoG
directly, without UAV dynamics. The ideal case is shown in the top two plots by the dashed
colored lines, but is almost indistinguishable from the ATP results. The reason is that the
cable direction dynamics were tuned to be faster than the observer (used in the following),
which was tuned to be faster than the payload dynamics.

Figure 5-4c shows the norm of the cable direction error, computed as

ecable,i =
∥∥η̃2
i ηdes,i

∥∥ . (5-21)

Note that the tilde operator is related to the cross-product which shows that ecable,i = 0 if
ηi = ηdes,i. The norm of the actuation force of each agent is given in Figure 5-4d. In Figure 5-
4e two snap-shots of the system configuration are shown, at t = 4 and t = 10 seconds. The
cable direction error is shown to converge in about 0.6 seconds, after which the UAV behaves
as a controlled force at the attachment point.

5-4-2 Simulation Results of the ATP: Three Leader and Ten Follower UAV

The simulation results of the ATP with three leader UAV and ten follower UAV are shown
in Figure 5-5, Figure 5-6 and Figure 5-7, where the followers use Proposition 4-2.1 to reach
consensus on the desired wrench. The results are compared to the case where three leader
UAV are towing the payload, without any followers. The aim is to show that the design
requirements 1-3 are met, and that the system is able to achieve large angle deflections,
despite the local convergence result of Proposition 4-2.1.

Payload Tracking Error Dynamics The payload attitude and position are shown in Figure 5-
5a and Figure 5-5b. The dashed colored lines correspond to the case where the payload is
towed by three leaders, as also shown in Figure 5-4, serving as the benchmark. It can be seen
that the step response is very similar, where the delay can be explained by the time required
to reach consensus on the desired payload configuration. The follower cable direction errors
are shown in Figure 5-4c, and are computed using (5-21). The smoothness of these lines, in
comparison to Figure 5-4, is due to the fact that the follower agents determine the desired
cable direction based on the estimated desired payload configuration. The time required for
the cable direction error to converge should thus be comparable to the time required for
the estimation errors to converge. A small error in the cable direction indicates that the
UAV behaves similar to a controlled force at the attachment point. The system configuration
at t = 4 and t = 10 seconds is shown in Figure 5-5e, where the three colors indicate the
leader UAV. It can be concluded that the system is able to achieve tracking of the desired
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Figure 5-4: Simulation results for the ATP using three leader UAV: Plots (a) and (b) show the
payload MRPs and position. The three colors, blue, red and yellow, represent the x, y and z
components of the three dimensional vectors. The dashed black line shows the reference signal,
which is known to all UAV. Plot (c) shows the norm of the cable tracking error. Plot (d) shows
the norm of the force that each agent applies to the UAV body. The three colors, purple, green
and orange, refer to one of the agents. Plot (e) illustrates the system configuration at t = 4 and
t = 10 seconds, with corresponding colors for indicating the agents. The payload is illustrated by
the grey area and the UAV by the circles.
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payload configuration, with comparable performance as shown in Subsection 4, where the
UAV dynamics was neglected.

Leader Amplification The norm of the leader UAV actuation effort is shown in 5-5d. With
the addition of ten follower UAV the leaders control efforts should be lowered by approximately
a factor four, compared to the benchmark. Note that the control effort is more difficult to
compare to the case of no followers: The sudden change in the desired payload configuration
causes the leader UAV to suddenly change the desired cable direction. The UAVmass prevents
this, which causes a peak in the applied force, which is very similar for both cases, as it
depends mostly on the UAV mass. Furthermore, the change in the payload configuration
causes a change in the distribution of the weight over the three leaders, where the bottom
two leaders require a much lower force in static equilibrium. Nevertheless it can be seen that
the control effort is lowered for all leaders, with little loss of performance.

Consensus Dynamics The follower agents use the consensus law in Proposition 4-2.1 to
estimate the leader’s desired payload configuration. The mean estimation errors are shown
in Figure 5-6 and the disagreement between the agents is shown in Figure 5-7. It can be seen
that the estimation errors for the attitude dynamics are slightly disturbed in comparison to
the results found in Subsection 4-5. It can be seen that large cable direction errors cause a
disturbance in the estimation dynamics. The interpretation is that, if the cable direction error
is large, that the UAV does not behave as a controlled force at the attachment point. This
results in a disturbance of the estimation dynamics. The disagreement dynamics shown in
Figure 5-7 show similar results as seen in 4-5. This is due to the fact that the measurements
drop from the disagreement dynamics, as can be seen from (4-17), with the only coupling to
the payload dynamics through the jacobian matrices Jo (qo).
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Figure 5-5: Simulation results for the ATP with three leader UAV and ten follower UAV: Plots
(a) and (b) show the payload MRPs and position respectively. The black dashed lines show
the reference signal known to the leader UAV. Plot (c) shows the norm of the cable direction
errors of the follower UAV. Plot (d) shows the norm of the leader UAV forces. The three colors,
purple, orange and green correspond to each of the three leader UAV. The colored dashed lines
correspond to the case where three leaders are towing the payload without followers, shown in
Figure 5-4. Plot (e) depicts the system configuration at t = 4 and t = 10 seconds. The payload
is illustrated by the grey areas, the UAV by the circles, and the cables by the lines connecting the
circles to the payload. The leaders are indicated by the corresponding colors.
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Figure 5-6: The mean estimation errors of the follower UAV during the ATP depicted in Figure 5-
5. The mean estimation errors are shown for: (a) the payload angular velocity, (b) the attitude
tracking error, (c) the payload linear velocity, and (d) the position tracking error. The three colors,
blue, red and yellow correspond to the x, y and z components of the corresponding vectors.
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Figure 5-7: The disagreement vectors of the follower UAV during the ATP depicted in Figure 5-
5. The disagreement vectors are shown for: The mean estimation errors are shown for: (a) the
payload angular velocity, (b) the attitude tracking error, (c) the payload linear velocity, and (d)
the position tracking error. The many different colors correspond to the different agents.

5-5 Conclusion

This chapter considered the application of the consensus laws derived in Chapters 2-4 to the
ATP using UAV. It was shown that the assumption of a controlled wrench acting at the pay-
load CoG can be relaxed by using multiple UAV. The UAV use a tracking law for the desired
force at the attachment point with the aim to cooperatively control the resultant wrench act-
ing on the payload. The solution to this problem as presented in [45] was reviewed, and it was
shown to be of centralized design. A decentralized tracking law for the UAV was proposed,
which approximated the desired cable trajectory. Simulation results of the ATP using three
leader UAV, and no followers, were presented. Comparison to the case where the payload
is directly controlled by a wrench at the CoG showed that the decentralized approximation
was very effective in controlling the wrench at the payload CoG. The UAV control law was
designed such that the UAV behaves as a controlled force at the attachment point. This
allows for a straightforward application of the consensus laws presented in Chapters 2-4. The
efficacy of the solution presented in Chapter 4 for reaching consensus on the desired payload
configuration without communication was shown in simulation. Despite positive results in
simulation the presented approach was argued to suffer from several downsides:
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• Three leaders are required to control the payload motion.

• The control law is fairly complex, posing as a potential problem for practical implemen-
tations.

• The presented solution additionally requires knowledge on all local UAV parameters,
and local state measurements.

Although the last two points require further investigation, the requirement of three leaders is
inherent to the chosen approach, preventing a small scale experiment.
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Chapter 6

Aerial Towing Problem using a Single
Leader with Three Extendable Cables

The Aerial Towing Problem (ATP) as described in the previous chapter requires a minimum
of three leaders to control the payload motion. This raises the question on how these three
(or more) leaders have access to the desired configuration, and whether or not this requires
communication. By towing the payload using three extendable cables it is possible to con-
trol the configuration using a single leader Unmanned Aerial Vehicles (UAV), see Figure 6-1.
With three (scalar) tension forces to control the full motion of the payload, the leader-payload
system is underactuated. Consequently, the leader control law is not aimed at controlling the
wrench at the payload Center of Gravity (CoG) as was done in the previous chapter. The
idea is that the leader UAV will behave similarly enough compared to a controlled wrench,
allowing the follower agents to estimate the desired payload configuration.

This chapter is structured as follows. A qualitative description of the control law is given
in Section 6-1. For the control law the leader requires the desired cable lengths and desired
cable tensions. These can be obtained by solving the Inverse Kinematics Problem (IKP),
which will be discussed in Section 6-2. The control law for a single UAV towing the payload
is derived in Section 6-3. The follower UAV are added to the description in Section 6-4. The
simulation results are presented in Section 6-5. Simulation results for the leader towing the
payload alone are shown in Subsection 6-5-1. Subsequently simulation results are shown for
the complete ATP including the follower UAV in Subsection 6-5-2. This chapter concludes
with a discussion on the results in Section 6-6.

6-1 Control Design Approach for the ATP with a Single Leader

The system, consisting of the payload towed by the leader UAV via three cables, and the
follower UAV via a single cable each, is depicted in Figure 6-1. It is assumed that the leader
can vary the cable lengths such that the payload’s attitude can be changed. Instead of con-
trolling the cable lengths directly, the leader can control the tension forces in the cables and
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Figure 6-1: Illustration of the ATP with three follower UAV and a single leader UAV: The leader
UAV is located in the middle and is attached to the payload via three extendable cables. The
follower UAV are attached via a single cable each, along the edge of the payload.

the lengths will vary as a consequence of this.

The control law for the leader UAV is designed without considering the follower UAV. The
follower UAV will be added to the system using the tracking law derived in the previous
chapter, and Proposition 4-2.1 is used to reach consensus on the desired payload configura-
tion. The performance of the complete system is tested in simulation, rather than proven
analytically. The design of the leader control law can be seen to comprise of three parts: The
control law for the leader body, the control law for the cable tension forces, and the generation
of the reference signals. These will be shortly discussed in the following.

The Control Law for the Leader Body The leader UAV is modeled as a fully actuated rigid
body. The leader uses a tracking law for his own body, with the aim to stabilize at a specified
static configuration in the inertial reference frame. The relative configuration of the payload
is then controlled through the cable tensions. Even though full actuation is assumed it would
in reality not be possible to hover at a desired position if the leader body has a nonzero pitch
or roll angle. Therefore the attitude of the leader body is controlled such that it remains
upright, stabilizing at the desired yaw angle, with zero pitch or roll angles.

The Control Law for the Cable Tension Forces The leader controls the cable lengths
indirectly by setting the tension forces in the cables. This requires a conversion of the desired
payload attitude to a set of desired cable lengths and pre-tensions. The tension force in the
cable is designed such that the cable behaves as a virtual spring-damper, see Figure 6-2,
driving the cable length to the reference length. A reference cable tension must be computed
such that in static equilibrium the gravitational pull on the payload is canceled and the cable
lengths acquire the desired cable lengths. The problem of computing the reference cable
length and cable tension given a desired configuration is introduced in the next section.
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kp

kd

τl Fl

mlgb̄3

mogb̄3

Figure 6-2: Illustration of the applied control for the relative orientation of the two bodies: The
leader controls the tension force λi in each of the three cables such that the cables behave as
virtual spring-damper systems, with spring and damping constants kp and kd respectively.

6-2 Computation of the Desired Cable Lengths Given the Desired
Payload Attitude

The required reference signals for the leader are obtained by solving the Inverse Kinematics
Problem (IKP), which is that of finding the cable lengths that correspond to the desired
relative payload configuration with respect to the leader in static equilibrium. In this Section
the IKP is defined and a method is proposed to solve it. It is assumed that the leader is
towing the payload, without any follower UAV. The extension of the IKP to the case with
follower UAV can be done by dividing the payload weight by the total number of agents.

The remainder of this section is structured as follows. Subsection 6-2-1 presents the ge-
ometry of the system. In Subsection 6-2-2 the IKP is defined, and the conditions for static
equilibrium are presented in Subsection 6-2-3. A method for solving the IKP is proposed in
Subsection 6-2-4, followed by a numerical example in Subsection 6-2-5. This section concludes
with an overview of the reference signals that result from solving the IKP.

6-2-1 Geometry of the Leader and Payload System

In the following the index l and o will be reserved for indicating the leader and payload
respectively, as was done throughout this thesis work. As depicted in Figure 6-3 let the
configuration of the payload and leader body be denoted by the pair {ro, Ro} ∈ SE(3) and
{rl, Rl} ∈ SE(3) respectively. The cables are modeled as massless links attached to the
payload and leader body at the body fixed positions poi and pli, respectively, for i = {1, 2, 3}.
Let the direction of the cables be denoted by ρ̄i = 1

‖ρi‖ρi where ρi is the vector from the
ith-attachment point at the payload to the ith-attachment point at the leader body:

ρi =
(
rl +Rlp

l
i

)
− (ro +Rop

o
i ) , i ∈ {1, 2, 3} . (6-1)
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poi

pli

{ro, Ro}

{rl, Rl}

ρ̄i

Figure 6-3: Geometry of the payload towed by a single leader via three cables: The cables are
attached to the payload at the points po

i and pl
i, for i ∈ {1, 2, 3}, on the payload and leader body

respectively. The leader and payload configuration is given by the pair {rl, Rl} and {ro, Ro}
respectively. The cables have a variable length with a direction given by ρ̄i.

6-2-2 Definition of the Inverse Kinematics Problem (IKP)

In the following the IKP is defined specifically for the system depicted in 6-3. It must be
emphasized that the IKP is considered in static equilibrium, because the solution is used as
the reference signal for reaching the desired equilibrium. The actual motion is not constrained
as described in this section. With this consideration the IKP can be formally stated:

Definition 6-2.1 (Inverse Kinematics Problem). Consider a given desired payload attitude
Ro,des ∈ SO(3), a desired relative vertical distance between the payload and leader body ∆zdes,
and the system geometry depicted in Figure 6-4. The inverse kinematics problem is then
defined as finding the relative planar position ∆x, ∆y, the leader yaw angle ψ and the cable
tensions λi for i = {1, 2, 3} such that the static equilibrium conditions for the payload body
are met.

This definition of the IKP can be derived from Figure 6-4, depicting the relevant configuration
coordinates, together with the following observations:

• The payload attitude is constrained to the reference attitude Ro,des for which the prob-
lem is to be solved.

• The IKP is independent of the desired inertial position of the payload ro,des, since the
leader can always translate the complete system in any direction.

• The relative position between the payload and leader body, denoted as rlo = ro − rl is
clearly relevant to solving the IKP as shown in Figure 6-4. However, the IKP can be
solved for any relative vertical distance between the payload and leader body. Therefore
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rlo

Ro,des

−∆zdes

∆x ∆y

Rz (ψ)

x

y
z

Figure 6-4: Illustration of the important geometric variables for solving the Inverse Kinematics
Problem (IKP): The leader body (top triangle) attitude is given by Rz(ψ). The payload (lower
triangle) attitude is given by Ro,des. The relative position between the two bodies is given by
rl

o = [∆x ∆y ∆zdes]T .

the desired relative vertical distance between the leader and payload, denoted by ∆zdes,
should be chosen. The relative position is thus given by rlo =

[
∆x ∆y ∆zdes

]T
, with

∆zdes fixed, and ∆x, ∆y free variables.

• The leader body represents an UAV and as such it is desired that the leader attitude
remains parallel to the horizontal plane in static equilibrium (hovering). Therefore the
leader body is only free to rotate about the third body axis, indicated by the yaw angle
ψ, and pitch or roll angles are constrained to zero. The rotation matrix for rotations
about the yaw angle is denoted by Rz (ψ), as depicted in Figure 6-4.

• The IKP only considers the static equilibrium conditions for the payload, and not for
the leader body.

From these considerations it can be concluded that the IKP can be solved by choosing the
desired payload attitude and the desired relative vertical distance. The free variables for
solving the IKP are then given by the leader yaw angle, the payload planar position, and the
cable tensions. This leads to the IKP as given in Definition 6-3.1.

6-2-3 Static Equilibrium Conditions of the Payload Suspended by Three Cables

The problem under consideration is to find the desired cable tensions such that the payload
remains in static equilibrium. The equilibrium conditions are given by setting the sum of the
forces

∑
F and torques

∑
τ acting on the payload to zero, using Figure 6-5 this gives

∑
F =

3∑
i=1

ρ̄iλi +mogb̄3 = 0

∑
τ =

3∑
i=1

p̃oiR
T
o,desρ̄iλi = 0

(6-2)
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ρ̄iλi

−ρ̄iλi

mogb̄3

mlgb̄3

τl Fl

Figure 6-5: Depiction of the forces and torques acting on the leader and payload in static
equilibrium: The tension forces λi in the cables act along the cable direction ρ̄i on both the
leader and payload body. The gravitational force indicated by mlgb̄3 and mogb̄3 act on the leader
and payload body respectively. It is assumed that the leader body is fully actuated through the
controlled force Fl and τl.

where ρ̄i is the unit vector in the direction of the ith-cable, λi is the tension force in the
ith-cable, mogb̄3 is the gravitational force acting on the towed payload and poi is the position
of the attachment point of the ith-cable on the payload, as depicted in Figure 6-3. The cable
directions are given as ρ̄i = ρi/|ρi| with ρi given as

ρi = Rl (ψl) pli −Rdes,opoi −

 ∆x
∆y

∆zdes

 , i ∈ {1, 2, 3} (6-3)

which can be found from ρi as defined in (6-1) and substituting the relative position ro− rl =
rlo =

[
∆x ∆y ∆zdes

]T
. The rotation matrix Rz (ψl) ∈ SO(3) is the rotation matrix for the

leader body such that it can rotate about the third body axis:

Rl (ψl) = Rz (ψl) =∆
cos(ψl) − sin(ψl) 0

sin(ψl) cos(ψl) 0
0 0 1

 . (6-4)

The equilibrium conditions (6-2) with the variables (6-3) and (6-4) substituted form a set
of nonlinear equality constraints, depending on constant parameters and free variables. The
constant parameters denoted by Θ, are then given as,

Θ =
{
Ro,des,∆zdes, p

l, po,mo

}
(6-5)

where, with slight abuse of notation, pl denotes
{
pl1, p

l
2, p

l
3

}
and similarly for po. The free

variables are collected in X which is given as,

X = {ψl,∆x,∆y, λ} (6-6)
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where λ =
[
λ1 λ2 λ3

]T
. The constraints for static equilibrium can then be written in terms

of Θ and X by substitution of (6-3) and (6-4) into the force and momentum balance (6-2),

c (Θ, X) =


3∑
i=1

ρ̄iλi +mogb̄3

3∑
i=1

p̃oiR
T
o,desρ̄iλi

 = 0 (6-7)

The problem is then to find X given Θ such that the above constraint holds, which is a
nonlinear root finding problem.

6-2-4 Nonlinear Root Finding Program for Solving the IKP

It is here chosen to solve the nonlinear root finding problem by sequentially solving a quadratic
problem multiple times. Starting from an initial guess for X a step δX is chosen as the
minimizer of a quadratic problem, which is obtained by approximating the problem as a
linear least squares problem in the unknown iteration step δX. To this end define the cost
function V as

Vk = 1
2 ‖ck + JkδXk‖2 (6-8)

where the subscript k indicates the kth-iteration, ck = c (Θ, Xk) is the constraint (6-7) evalu-
ated at the kth-iteration and Jk is the jacobian of the constraint,

Jk = ∂c(Θ,X)
∂X

∣∣∣
X=Xk

. (6-9)

The solution Xk is then updated as Xk+1 = Xk + δXk where δXk is chosen to minimize Vk.
The minimum of Vk can be found by setting the gradient of Vk to zero,

∂Vk(δX)
∂δX = JTk (ck + JkδX) = 0, → δXk = −

(
JTk Jk

)−1
JTk ck. (6-10)

After each iteration the norm of the constraint ck is used as the stopping criteria. The root
finding program can be summarized as follows,

Proposition 6-2.1. Consider the IKP as given in Definition 6-2.1. Given the system geom-
etry and desired payload attitude, collected in Θ (6-5), and a desired solution precision ε > 0.
Then, the proposed solution to solving the IKP is to follow these steps:

1. Initialize the program: Guess Xk given in (6-6) and set the iteration number k = 1.

2. Evaluate the constraint ck and the jacobian Jk using (6-7) and (6-9) respectively.

3. If ‖ck‖ < ε stop, otherwise go to the next step.

4. Determine the minimizing step: δXk = −
(
JTk Jk

)−1
JTk ck

5. Update the solution: Xk+1 = Xk + δXk

6. Update the iteration number k = k + 1 and go to step 2.
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Choosing the Initial Guess For choosing the initial guess a good option is to choose the
equilibrium condition for a symmetric geometry and zero attitude angle displacement, i.e.
λ1 = λ2 = λ3, and all other values in X set to zero. It was found that the algorithm
typically converges in 2-3 iterations, for rotations smaller than 90 deg. As the problem is of
so little size, and is solved in so few iterations it was concluded that this simple root finding
program was sufficient. Suppose that one encounters a choice of Θ for which the program
has difficulty finding the solution, then, the parameters can incrementally be changed to the
desired parameters. This method is illustrated in the following, where the desired attitude is
incrementally changed.

6-2-5 Numerical Example of the IKP

The efficacy of Proposition 6-2.1 for solving the IKP is shown via a numerical example. The
payload mass is taken as 10.0[kg], the cables are attached to the payload in a circle of radius
90[cm], and to the leader body in a radius of 50[cm], with equal spacing. The desired vertical
distance was set to ∆z = 1.5 meter. The solution precision was set to ε = 10−8.

The IKP is solved for different desired payload attitudes. The desired payload attitude is
incrementally increased from 0 deg to a desired rotation of θdes = 60 deg about the axis given
as εdes = [3 2 1]T in ten steps. The IKP is solved for each desired angle of rotation, using
the previous solution as the initial estimate. The initial guess for the cable tension at 0 deg
is taken as the payload weight divided by three (which is incorrect). A final step is added,
which drops the desired angle from 60 deg back to 0 deg in a single step. This illustrates a
large error in the initial guess.

The results are shown in Figure 6-6, where Figure 6-6a and Figure 6-6b show the resulting
configuration at θdes = 0 deg and θdes = 60 deg. Figure 6-6c shows the incremental increase
in the desired payload angle. The computed leader yaw angle is shown in Figure 6-6d, and
the cable lengths in Figure 6-6e. Note that the cable lengths can be computed using (6-3)
if the IKP is solved. The number of iterations that the algorithm requires to solve the IKP
is shown in Figure 6-6f. It can be seen that for large desired payload angles the situation
becomes more extreme, and the algorithm tends to require an extra iteration. Clearly, the
most iterations are required for the large drop from θdes = 60 deg to θdes = 0 deg. It can be
concluded that for the considered geometry, the proposed algorithm is sufficiently fast and
robust to solve the IKP.

6-2-6 Complete Reference Signal Available to the Leader

The algorithm in Proposition 6-2.1 allows the leader to convert a reference signal for a desired
payload configuration {ro,des, Ro,des} into the required reference signals for the actual control
law. Before deriving the leader control law, the results obtained from solving the IKP are
summarized here.

The algorithm in Proposition 6-2.1 returns the optimal solutionX = X∗ = {ψ∗l ,∆x∗,∆y∗, λ∗}.
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Figure 6-6: Numerical example of Proposition 6-2.1 for solving the IKP: The payload desired
attitude is rotated with an angle that increases from θdes = 0 deg and θdes = 60 deg in 10
steps. An additional step is added that drops the desired angle back to 0 deg. Plots (a) and
(b) illustrate the system configuration at θdes = 0 deg and θdes = 60 deg. Plot (c) shows the
incremental increase in the desired payload attitude. Plots (d) and (e) show the corresponding
leader yaw angle and the cable lengths, as computed by the IKP. Plot (f) shows the number of
iterations that the algorithm in Proposition 6-2.1 requires for solving the IKP.
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This optimal solution contains the following important results:

Cable tension force: λdes,i = λ∗i ≥ 0

Cable direction (see (6-3)): ρ̄i,des = 1
‖ρi(Θ,X∗)‖ρi(Θ, X

∗)

Cable length: li,des = ‖ρi(Θ, X∗)‖

Leader yaw angle: ψdes = ψ∗

Leader reference position: rl,des = ro,des +
[
∆x∗ ∆y∗ ∆z∗

]T
Additional force on the leader body: F ∗l = −

3∑
i=1

ρ̄des,iλdes,i = mogb̄3

Additional torque on the leader body: τ∗l = −
3∑
i=1

p̃liRz(ψdes)T ρ̄des,iλdes,i

(6-11)

The leader control law, as designed in the following subsection, requires the above constants
as reference signals such that the payload is stabilized at the desired configuration.

6-3 Control Law for a Single UAV Towing the Payload via Three
Extendable Cables

In this section the control law is designed for the leader towing the payload alone. The
combined payload and leader body system is underactuated: The tension forces give three
scalar variables to control the full motion of the payload. Consequently the control law is
designed such that the desired cable lengths are achieved. The gravitational attraction then
ensures a minimum potential energy at the desired configuration. This would result in a
very poorly damped system. Although the follower UAV are not yet added, it is known in
advance that these can provide the necessary damping. For this reason it is assumed that
an external damping acts on the payload during the design of the leader control law. This
external damping is later removed, when considering the follower UAV.

A globally converging control law is designed for the leader UAV. Evaluation of the equi-
librium state gives rise to the Direct Kinematics Problem (DKP), which states that given
the cable lengths there are multiple configurations possible that satisfy the static equilibrium
conditions. For the problem under consideration it is argued that the DKP has little practical
value, and it is assumed that the desired equilibrium is the unique system equilibrium.

The remainder of this section is structured as follows. The problem of uniqueness of the
equilibrium state is introduced in Subsection 6-3-1. Subsection 6-3-2 states the equations of
motion of the system. Subsection 6-3-3 presents the proposed control law and the proof of
convergence to the desired equilibrium.
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6-3-1 Assumption on Configuration Uniqueness

The control law is designed to set the lengths of the cables to the desired lengths as computed
by the IKP. However, even if the cable lengths are stabilized at their desired lengths this
does not mean that the system has acquired the desired configuration. This problem is well
known in the literature, and referred to as the Direct Kinematics Problem (DKP) [43]:

Definition 6-3.1 (Direct Kinematics Problem). Given the cable lengths, find all possible
configurations of the payload, that satisfy the equilibrium conditions (6-2).

What can be concluded from studies on parallel manipulators and the towing of payloads is
that the solution to the DKP is not unique, see [43] and references therein. This has impli-
cations for the convergence proof of the proposed control law: Even though the system can
be shown to be stable and converging, it can not be shown that the desired equilibrium is
reached, since the DKP does not have a unique solution in general. For practical considera-
tions this problem is less significant as most configurations can not be reached. For example,
consider Figure 6-7 which depicts three possible configurations for given cable lengths. The
inverted pendulum type configuration in Figure 6-7b can not be achieved since the cables
can not push on the payload. The cables can in practice not move through one another,
and neither can the payload and leader body. This means that configurations as depicted in
Figure 6-7c are difficult to achieve. Lastly, assuming the leader has access to the configuration
state of the payload, it is relatively straightforward to determine a reference trajectory that
guides the payload to the desired equilibrium state. These considerations lead to the following
simplifying assumption:

Assumption 6-3.1 (Uniqueness of the Direct Kinematics Problem). Suppose that a stabiliz-
ing control law is designed for the system depicted in Figure 6-3 for which it can be shown that
the system converges to an equilibrium state. If it can be shown that the solution to the IKP
is a valid equilibrium state for the controlled system, then, as a simplification, it is assumed
that the equilibrium state found from solving the IKP is the unique equilibrium state of the
system.

The above assumption is, simply put, incorrect for an arbitrary system geometry. But for the
purpose of this thesis it is not considered to be restrictive.

6-3-2 Equations of Motion for the ATP

Consider Figure 6-5 which illustrates the forces and torques acting on the two bodies. As
a simplification the leader is assumed to be fully actuated, i.e. a controllable force Fl and
torque τl act on the leader body through the CoG. Furthermore the leader is able to control
the tension forces in the cables, denoted by λi ∈ R. The equations of motion for the leader
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(a) (b) (c)

Figure 6-7: Illustration of the Direct Kinematics Problem (DKP): A side-view of three possi-
ble equilibrium configurations is shown, where the leader and payload body are represented by
the horizontal bars. (a) illustrates the desired configuration. (b) and (c) show two undesired
configurations with the same cable lengths.

body are then given as

IlΩ̇l = −Ω̃lIlΩl + τl −
3∑
i=1

p̃liR
T
l ρ̄iλi

mlv̇l = mlgb̄3 + Fl −
3∑
i=1

ρ̄iλi

(6-12)

where the notation is as given in Section 6-2-1 and Appendix A-4. The equations of motion
for the payload are given as

IoΩ̇o = −Ω̃oIoΩo +
3∑
i=1

p̃oiR
T
o ρ̄iλi − ΛΩΩo

mov̇o = mogb̄3 +
3∑
i=1

ρ̄iλi − Λṙvo
(6-13)

where Λṙ ∈ R3×3 and ΛΩ ∈ R3×3 are external damping matrices. These damping matrices are
removed when adding the follower UAV in the next section. Without the external damping, or
the follower UAV, the system is extremely poorly damped, resulting in almost pendulum-like
behavior.

6-3-3 Proposed Control Law for a Single UAV Towing the Payload

The following control law is proposed for the leader towing the payload as depicted in 6-3:
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Proposition 6-3.1 (Control Law for the Leader Towing the Payload via Three Cables).
Consider the system depicted in Figure 6-3 and Figure 6-5 with the corresponding equations
of motion (6-12) and (6-13). Assume that for the system geometry and a desired payload
configuration the IKP can be solved using Proposition 6-2.1. Let the cable tension be given as

λi = kp (‖ρi‖ − li,des) + λi,des + kdρ̇
T
i ρ̄i (6-14)

the leader controlled force be given as

Fl = − (ml +mo) gb̄3 − βvl −K (rl − rl,des) . (6-15)

and the leader controlled torque be given as

τl =
3∑
i=1

[
p̃liR

T
l ρ̄des,iλdes,i

]
− ζΩl − kPa

{
RTl,desRl

}V
(6-16)

where the scalars k > 0 and matrices K, ζ, β > 0 are control gains, ρdes, λdes and Rl,des are
the desired cable vector, tension force and leader attitude respectively, as obtained from solving
the IKP. Then, the system is globally stable. If Assumption 6-3.1 is assumed to hold, then,
the system globally converges to the desired equilibrium state.

The proof is shown in Appendix B-4-1. The above proposition assumes a geometric control
law for the leader torque. The control law using Modified Rodrigues Parameters (MRPs) is
very similar, and is given in Appendix B-4-2 for completeness.

6-3-4 Comparison of the Proposed Control Law to Nonlinear Dynamic Inversion
(NDI)

Comparison of the proposed control law in this section with that of the previous chapter
shows that the implementation is much less dependent on system parameters. The IKP does
depend on the geometry of the system, but parameter uncertainty will merely result in other
cable lengths than was intended. Integral action could be used to keep the UAV in the
upright position, and reduce the effect of parameter uncertainty on the UAV attitude. With
these considerations it can be seen that the computation of the leader control law given in
Proposition 6-3.1 is much less demanding than the NDI-type control law posed in Proposition
5-1.1, which includes the required computations given in Appendix B-3-2 to be executed at
every sampling time.

6-4 Addition of the Follower UAV to the ATP

The consensus problem is added by considering multiple UAV to be attached to the payload as
depicted in Figure 6-1. Due to the complexity of the complete system, the consensus dynamics
is not evaluated in an analytic fashion, as reflected by the research goals for this thesis, see
Section 1-3. The tracking law for the follower UAV is taken as proposed in Subsection 5-3.
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Table 6-1: Selected control gains for the leader towing the payload alone (Proposition 6-3.1)

Symbol Value
Cable tracking kp 31.62
Cable damping kd 25.35
Leader tracking K, k 31.62
Leader damping ζ, β 2.53
External Payload damping ΛΩ,Λṙ 25.35

For the leader control law given in Proposition 6-3.1 the only modification is that the payload
mass is divided by the total number of participating agents.

6-5 Simulation Results of the ATP

This section presents the simulation results for the ATP where the leader is towing the pay-
load via three cables, i.e. Proposition 6-3.1. The case where a single leader is towing the
payload is considered first, and subsequently the follower UAV are added. The follower UAV
apply Proposition 4-2.1 for estimating the leader’s desired payload configuration, and apply
the tracking law introduced in Chapter 5 for determining the actuation force.

The simulation setting is described in Appendix C, with the numerical values of the pay-
load and UAV as given in Appendix C-2. The extendable cables are attached to the payload
in a circle of radius 90[cm], and to the leader body in a radius of 50[cm], with equal spacing.
The desired vertical distance was set to ∆z = 1.5 meter. The control gains for the case that
the leader is towing the payload alone are listed in Table 6-1. Note that the leader damping
of the leader body is relatively low, and a high external damping is applied to the payload.
Together, these gains were designed for a desired performance. With the addition of the
follower UAV the gains listed in Table 6-1 are divided by the total number of agents, except
for the damping on the leader body. The control gain selection for the follower UAV is as
described in Section 5-4.

6-5-1 Simulation Results of a Single UAV Towing the Payload

In the following the simulation results for the case where the leader is towing the payload
alone are presented. It was noted that the proposed control law is not aimed to control the
wrench at the payload CoG, and it is expected that certain motions are more difficult to
control than others. This was partly resolved by adding external damping to the payload
motion. This damping was added such that the performance can be compared to the case
where the follower UAV are added. With the addition of the follower UAV this external
damping is removed. The motions that are difficult in the current situation are rotations
about the third body axis, i.e. a yaw angle, and the sideways motion of the payload. These
two motions are considered first in the following, before the complete system step response is
shown. The control gains for the leader UAV are given in Table 6-1, with the symbols given
in Proposition 6-3.1.
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Figure 6-8: Simulation result for a desired payload yaw angle rotation (Proposition 6-3.1): Plots
(a) and (b) show the payload MRPs and position respectively. The three colors, blue, red and
yellow correspond to the x, y and z components of the presented vector. The black dashed line
shows the payload reference signal, which is a reference step to the desired yaw angle of 60 deg.
Plot (c) shows a depiction of the system configuration during the motion.

System Response for a Desired Payload Yaw Angle The simulation results for a reference
step to the desired payload yaw angle is shown in Figure 6-8. For the purpose of this simulation
the desired vertical distance between the payload and leader is set to 2.5 meter. The left plots
show the payload attitude and position and on the right the system configuration during
motion is depicted. It can be seen that the UAV simply rotates his own body, causing
the wires to twist. This causes the payload to rise a few centimeters. The gravitational
attraction essentially causes the payload to rotate, such that it has the least potential energy
at the desired yaw angle. The speed of the response is determined by the system geometry,
rather than the chosen control gains.

System Response for Planar Translation The simulation results for a reference step in the
x-direction is shown in 6-9. The desired vertical distance between the payload and leader
body is kept at 2.5 meter, to illustrate the disturbances. The left plots show the payload
attitude and position, and a depiction of the system configuration during motion is shown
on the right. The leader applies a reference step to the desired payload position at t = 4
seconds. In reality, this would result in sustained oscillations, but with the external damping
the translation of the payload is very well controlled. The problem can be seen in the payload
attitude plot. As illustrated by the system configuration in the right hand plot, the sideways
motion causes the payload to roll. Although this effect quickly diminishes, due to the added
damping, it can be expected that the follower UAV will mistake the disturbance for a desired
rotation, and amplify this motion.

Combined System Step Response The simulation results for the ATP for a combined
desired translation and rotation is shown in 6-10. The desired vertical distance between
the leader and payload body has been decreased to 1.5 meters, to decrease the disturbing
effects shown in Figure 6-8 and Figure 6-9. The payload attitude and position are shown in
6-10a and 6-10b respectively. It can be seen that the payload eventually converges to the
desired configuration. By comparison, the ideal case where the leader acts as a controlled
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Figure 6-9: Simulation results for a desired payload translation in the x-direction (Proposition
6-3.1): Plots (a) and (b) show the payload MRPs and position respectively. The three colors,
blue, red and yellow correspond to the x, y and z components of the presented vector. The black
dashed line shows the payload reference signal, which is a reference step to the desired position
of 3 meter in the x-direction. Plot (c) shows a depiction of the system configuration during the
motion.

wrench at the payload CoG is shown by the colored dashed lines. The payload motion shows
several disturbances, which are related to the combined effects of the sideways motion and
the desired yaw rotation. These disturbances also effect the torque and force applied to the
leader UAV body, as can be seen from 6-10c and 6-10d. From Figure 6-10e it can be seen
that the cable lengths converge to the desired lengths without much disturbance. The cable
tensions, shown in Figure 6-10(f) show a large spike due to the reference step signal. This
spike could potentially be decreased by a simple saturation limit. Note from the depiction of
the system configurations that Assumption 6-3.1 can safely be assumed to hold.

6-5-2 Simulations of a Single Leader and Ten Follower UAV

Ten follower UAV are added to the system description, by considering each to be attached to
the payload via a single cable. The follower UAV apply the tracking law given in Proposition
5-2.1, and apply the consensus law given in Proposition 4-2.1 for estimating the desired
payload configuration. The external damping is removed from the payload, since the follower
agents are able to provide this. The simulation results are given in Figure 6-11, Figure 6-12
and Figure 6-13. It is found that the disturbances seen in 6-10 are amplified by the follower
agents, resulting in much slower convergence. Nevertheless, eventually, all requirements posed
in 1-3 are achieved. Furthermore, it must be noted that the leader towing the payload alone
is unable to damp the motion of the payload, without the added external damping. It can
thus be argued that the complete system still performs better than nothing at all.

Payload Tracking Dynamics and Leader Amplification From Figure 6-11a and Figure 6-11b
it can be seen that the payload eventually stabilizes at the desired configuration. Comparison
with the leader towing the payload alone, represented by the colored dashed lines, shows
significant disturbances as well as a much slower response. It was found that the disturbances
shown in Figure 6-8 and Figure 6-9 have a large impact on the performance. These undesired
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Figure 6-10: Simulation results for the ATP with a single UAV (Proposition 6-3.1: In plots
(a) and (b) the payload MRPs and position are shown respectively. The leader leader reference
signals are shown by the black dashed lines, corresponding to a θ = 60 deg rotation about the
ε = [3 2 1]T axis, and a translation to rdes = [3 2 1]T [m], applied at t = 4 seconds. Plots
(c) and (d) show the leader torque and force applied to the UAV body. Plots (e) and (f) show the
cable length error and the cable tension. The three colors, orange, purple and green, correspond
to each of the three cables. Plot (g) shows the system configuration at t = 4 and t = 10 seconds,
where the leader UAV is represented by the small triangle.
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motions are amplified by the followers, and require some time to settle down. Nevertheless,
it can be seen that the leader control effort is significantly lowered, by comparison with
Figure 6-10.

Consensus Dynamics of the Estimation Errors The mean estimation errors of the follower
agents are shown in 6-12. The follower agents expect the leader to be a controlled wrench at
the CoG, and a significant deviation from that presumption will lead to significant estimation
errors. Notably, the disagreement dynamics shown in 6-13 are very similar to the ideal case,
shown in Figure 4-1 and Figure 4-1. This is because the disagreement dynamics are still
described by (4-17).

6-6 Conclusion

This chapter considered the case where a single leader controls the payload motion via three
extendable cables. The control law was designed for the leader towing the payload alone.
The three leader cables where controlled to behave as virtual spring dampers, stabilizing the
relative configuration of the payload with respect to the leader. This allowed the leader to
control the full motion of the payload, despite the underactuation of the system. The IKP
was introduced as the problem of finding the desired cable lengths for controlling the relative
payload configuration. A method for solving the IKP was proposed, and the efficacy was
shown via a numerical example. The control law for the leader towing the payload alone
was proposed, and convergence to an equilibrium state was proven via Lyapunov arguments.
The existence of multiple equilibrium states was argued to be of little practical relevance,
and convergence to the desired equilibrium was assumed to hold. Simulation results of the
leader towing the payload alone were presented. It was shown that the system step response
deviates significantly from the benchmark, which can be traced back to the underactuation
of the system. Nevertheless, the payload was shown to stabilize at the desired configuration,
which included an angle of rotation of 60 deg.

The consensus problem was addressed by adding the follower UAV to the system using the
approach outlined in the previous chapter. The complete system performance was evaluated
via simulation rather than through analytic expressions. From the simulation results it was
found that the performance loss is similar to the case where the leader is towing the payload
alone. Nevertheless, it was shown that, the payload is stabilized at the desired configuration,
the agents converge to the agreement set, and that the leader control effort was amplified.

In comparison to the approach outlined in the previous chapter, which was of NDI-type,
the proposed approach was argued to be much less computationally demanding and depen-
dent on an accurate model. Furthermore, the control law is independent of both the payload
and leader UAV inertia. The use of a single leader allows for the Cooperative Manipulation
Problem (CMP) to be achieved without any communication between the agents. The un-
deractuation results in performance deterioration for rotations about the yaw axis, and for
translation in the horizontal plane. Despite these disturbances it was shown that the proposed
consensus law does not destabilize the system, showing a certain robustness to unmodelled
disturbances.
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Figure 6-11: Simulation results for the ATP using 10 follower UAV and a single leader: Plot
(a) and (b) show the payload attitude and position respectively. The dashed black lines are the
reference signals of the leader, corresponding to a θ = 60 deg rotation about the ε = [3 2 1]T

axis, and a translation to rdes = [3 2 1]T [m], applied at t = 8 seconds. Plot (c) and (d) show
the leader torque and force applied to the UAV body. Plot (e) shows the system configuration at
t = 8 and t = 20 seconds, where the follower UAV are represented by the black circles, and the
leader UAV by the small triangle.
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Figure 6-12: Simulation results of the follower mean estimation errors during the ATP as depicted
in Figure 6-11: The mean estimation errors are shown for the, (a) payload angular velocity, (b)
attitude tracking error, (c) payload linear velocity, and (d) for the position tracking error. The
three colors, blue, red and yellow correspond to the x, y and z components.

Figure 6-13: Simulation results of the follower disagreement vectors during the ATP as depicted
in Figure 6-11: The disagreement vectors are shown for the, (a) payload angular velocity, (b)
attitude tracking error, (c) payload linear velocity, and (d) for the position tracking error. The
many different colors correspond to the different agents.
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Chapter 7

Conclusion and Recommendations

The main goal of this thesis was to investigate the consensus dynamics for the Cooperative
Manipulation Problem (CMP) where consensus is reached without using explicit communi-
cation. This problem was addressed in a general setting by considering a directly actuated
rigid body, and subsequently applied to the Aerial Towing Problem (ATP) where multiple
Unmanned Aerial Vehicles (UAV) are towing the payload. A summary of the results is pro-
vided next, followed by a conclusion and the contributions of this thesis work. This chapter
finalizes with recommendations for future research.

7-1 Summary

Using multiple robots for the CMP of a payload couples the robot dynamics. For a Leader-
Follower (LF) based approach, where only some of the agents have knowledge on the desired
configuration, this would require a fast type of communication to avoid high tension forces and
ensure stability of the system. By using the payload motion as the means of reaching consensus
this problem is resolved, leading to all-to-all communication regardless of the number of
participating agents. With the decrease in size and cost of commercially available UAV this
approach was considered applicable to the ATP. For the control law the following design
requirements where set:

1. The leader control effort must be amplified.

2. The agents must reach consensus on the desired payload configuration.

3. The payload must be stabilized at any desired configuration, that is a position and an
attitude.

To make this problem more amenable it was chosen to split the problem into two parts: The
consensus laws were designed while the robot dynamics were neglected, and subsequently, the
resulting consensus laws were applied to the ATP. With the robot dynamics neglected the
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design requirements could be investigated for a general rigid body which is directly actuated.
This resulted in a more general problem setting such that parallels could be drawn between
existing results on cooperative control and the problem at hand.

Even disregarding the consensus problem, it was found that a great number of parameters
were required to simply stabilize the payload. In order to cancel the gravitational wrench
and the Coriolis terms it was concluded that all payload parameters must be known. This
led to the choice of canceling these terms, resulting in a much simplified description of the
payload motion. Three subjects were chosen as the topic of investigation, that directly effect
the consensus dynamics:

1. The choice of attitude representation.

2. The measurements that are available to the agents.

3. The ability to apply a wrench or a force to the payload, i.e full- or underactuation.

These three problems allowed for a further division of the thesis work.

The simplest combination of these three was identified as the use of Modified Rodrigues
Parameters (MRPs), acceleration measurements, and full actuation. The MRPs were chosen
as these give a minimal attitude representation allowing for an additive tracking error. A
nonlinear Proportional Derivative (PD)-type control law was proposed where each agent uses
his local estimate of the payload tracking error. Assuming acceleration measurements this
allowed for a direct communication of the local estimates between the agents. A separation
approach was considered, with the intent to isolate the consensus problem from the payload
dynamics. This allowed for a structured design of the consensus law, and convergence of the
consensus dynamics was achieved. Despite global convergence of the estimation errors it was
shown that boundedness of the payload state could not be guaranteed. For the fully actuated
case this problem could be resolved by adding a small coupling between the consensus dy-
namics and the payload dynamics. This coupling could be chosen arbitrarily small, such that
the performance remains unaffected but the proof could be completed. For the underactuated
case it was shown that the associated Laplacian matrix is state dependent, and stability of the
payload configuration could only be locally guaranteed. It was illustrated via simulations that
the proposed solution is able to describe large rotations, despite the proof of local stability.

The disadvantage of the MRPs is that they become singular at angles of ±360 deg, preventing
arbitrary motion descriptions. Furthermore, an additive tracking error can not be regarded
as a proper attitude error metric. For these reasons a geometric control approach was inves-
tigated. A globally defined consensus law was proposed through the use of rotation matrices.
Acceleration measurements where assumed available to the agents, and the fully actuated
case was considered first. It was shown that, without a leader, almost global convergence
could be derived. With the addition of a leader it was proposed to separate the disagreement,
mean estimation error and tracking dynamics. As opposed to the use of MRPs it could be
shown that all signals remain bounded, but not that the state reaches a limit. For attitude
tracking errors within ±90 deg of the current payload attitude it was shown that convergence
to the desired equilibrium results, and a bound on the convergence rate was provided. Global
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convergence could not be derived, and it was graphically illustrated that the disagreement
evaluation on SO(3) causes this problem. Through simulations it was illustrated that there
is a strong incentive that the proposed geometric control law always reaches the convergent
region. A direct extension to the underactuated case was provided, but the same limitation
in the proof remained.

The requirement of acceleration measurements was relaxed by designing a nonlinear observer
requiring velocity measurements. The MRPs were chosen as a simplification of the problem.
A separation of the consensus dynamics from the payload dynamics resulted in a similar
problem: While this separation is intuitive for the control law design, it complicates the proof
of convergence. For the fully actuated case the problem was similarly resolved by adding a
small coupling gain, but for the underactuated case a mere proof of local convergence resulted.
Through simulation results it was shown that the decoupling strategy could be advocated for,
as the payload configuration state shows no danger of growing unbounded. Alternatively
it was shown that a complete Nonlinear Dynamic Inversion (NDI) of the payload dynamics
resulted in almost linear consensus dynamics. For the underactuated case this allowed for
a separation of the consensus and payload dynamics, leading to global convergence. It was
noted that NDI further increases the dependency on an accurate model description, reducing
its practical value.

The consensus laws were designed under the assumption that the agents can control the
force acting on the payload. To apply these results to the ATP the tracking law for the
UAV was designed to approximate this assumption. A centralized approach taken from the
literature was modified to allow for a decentralized implementation. This approximation of
the centralized approach was proposed such that the consensus laws could be applied to the
ATP. It was shown in simulation that this approach indeed allows the consensus laws to be
applied to the ATP where the payload is towed via cables attached to the UAV. A downside
to this approach is that three or more leaders are required to control the payload motion.
Furthermore, it was shown that the tracking law is very dependent on an accurate model
description.

As an alternative to the use of three or more leader UAV it was considered to use a sin-
gle specialized leader UAV. By towing the payload via three extendable cables a single UAV
is able to control the payload motion. In this case the leader is not able to completely control
the wrench at the payload Center of Gravity (CoG), resulting in a slower convergence to the
desired equilibrium state. This loss of performance is complemented by a decrease in control
law complexity.

7-2 Discussion and Conclusions

The main research question can be answered as positive: For a general rigid body it can be
concluded that a LF based approach to the CMP can be accomplished by communicating
through the motion of the payload. This allows for the leader control effort to be amplified,
constitutes a fast means of communication, and scales well for an increasing number of partic-
ipating agents. A nonlinear system description allows for the payload to be stabilized at any
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desired configuration. Regarding the posed objectives in Section 1-3 the following conclusions
are drawn:

The Effect of Full- Versus Underactuation If the agents can apply only a force to the
payload the generalized inverse of the adjoint matrix can be used to control the full payload
motion. With the addition of the consensus problem the use of the generalized inverse results
in a matrix-weighted graph Laplacian. These matrix weights are rank deficient, state depen-
dent, and non-symmetric, which makes the underactuated case a challenging problem. The
rank deficiency would indicate that some of the local information can not be communicated
to the other agents. It was however shown that for identical observer gains the disagree-
ment dynamics still show all-to-all communication. This property was used to separate the
disagreement problem, removing the state dependent Laplacian matrix from the consensus
problem. A final obstacle is then formed by the nonlinear description of the payload dynamics.
Even if global convergence of the consensus dynamics can be shown, this can in general not
be separated from the payload dynamics. Only through the use of NDI was it found possible
to account for both the complicated Laplacian matrix, as well as the payload dynamics.

Minimal versus Global Attitude Description The use of MRPs allows for global conver-
gence properties to be derived, as long as neither the initial condition nor the reference is
chosen at the singularity. The absence of a constraint simplifies the control design, and from
simulations it can be seen that they are well behaved for large rotations. A disadvantage is
that arbitrary motions, such as multiple rotations, can not be described without switching to
another set of MRPs. The main challenge when using MRPs is to show boundedness, which
is the price for a constraint free representation.

A geometric approach shows many advantages, but simply complicates the mathematical
analysis. The proposed solutions are shown to be applicable to both the fully actuated as
the underactuated case, and allow for global motions to be described. Boundedness of all
signals is more easily shown, as opposed to the use of MRPs, but the difficulty lies in proving
the convergence of the state to a limit. Convergence was proven within a region of ±90 deg,
for which a bound on the convergence rate can be derived. The provided solutions are lim-
ited, firstly due to the assumption of acceleration measurements, and secondly due to the
restriction of the convergence region. Nevertheless, this approach showed promising results,
motivating further investigation.

Effect of Available Measurements on the Consensus Dynamics The order of the consen-
sus problem was shown to be determined by the available measurements. The information
exchange between the agents could be revealed through the estimation error dynamics. For
acceleration measurements a first order consensus problem results and any positive gains were
found to be stabilizing. In case of velocity measurements a constraint on the observer gain
was found, but this was considered to be non-restrictive. For arbitrary measurements a higher
order consensus problem arises, where the search for stabilizing control gains gives rise to a
simultaneous stabilization problem. This simultaneous stabilization problem is nonlinear, and
difficult to solve in general.
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Parameter Dependency of the Proposed Solutions The proposed methods were shown to
be dependent on all the payload parameters. Proof of convergence could only be obtained by
canceling both the gravitational wrench as well as the Coriolis terms. It can be concluded
that this is caused by the posed requirements: If it is desired to amplify the leader’s control
effort, then consensus must be reached during the motion. This indicates an observer problem,
which is challenging to solve without a system model. Similarly, the agents require knowledge
on all the control gains used by the other agents, in order to reconstruct the estimated state.
This can be related to the Laplacian matrix, as a requirement for a zero-row sum.

Application to the ATP The assumption of a controlled force acting on the payload could
be relaxed through a proper tracking law for the UAV. It was shown that the exact solution
for controlling the force at the attachment point requires centralized knowledge. This solution
could be approximated allowing for a decentralized implementation. For simulation purposes
it can be concluded that a nonlinear tracking law for the UAV can be used to apply the
consensus problem to the ATP. From a practical point of view this method requires many
computations and shows a high degree of parameter dependency. Furthermore, for a small-
scale experiment the requirement of three or more leaders is restrictive. The use of a single
leader with three extendable cables was shown to be a good alternative to reduce the controller
complexity and the number of leaders required. The downside of this approach is that the
leader-payload system is underactuated, resulting in loss of performance.

7-3 Thesis Contributions

The main contributions of this thesis comprises of two parts, the first considering the CMP
of a general rigid body, and the second the application to the ATP:

1. A decentralized control approach for the LF based CMP is presented that requires
no communication amongst the agents. The followers reach consensus, and estimate
the desired payload configuration through the motion of the payload. This allows the
leader’s control effort to be amplified, and the payload to be stabilized at any desired
configuration.

(a) The effect of available measurements on the consensus dynamics has been investi-
gated. In case of acceleration or velocity measurements globally converging con-
sensus laws were developed. In case of acceleration measurements the convergence
rate was derived.

(b) The effect of underactuation on the Laplacian matrix has been investigated, leading
to several proposed solutions. Control laws for global convergence were developed
which assumed accurate knowledge on model parameters. More practical control
laws were developed leading to local convergence.

(c) A geometric control approach is presented that allows for a global system descrip-
tion. Assuming acceleration measurements, the proposed consensus law was shown
to have a large region of convergence, and a bound on the convergence rate was de-
rived. This method was shown to be applicable to both the full- and underactuated
case.
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2. The proposed consensus laws were applied to the ATP, leading to a decentralized coop-
erative towing of a payload using multiple UAV. A control law for a single UAV towing
the payload via three extendable cables was developed. The resulting system is poorly
damped. The result is a decentralized control approach for the ATP using an arbitrary
number of followers, and a single leader UAV.

7-4 Recommendations

This section provides recommendations for extending this thesis work. Recommendations for
a small scale experiment are given next, followed by recommendations for future research.

7-4-1 Recommendations for a Small Scale Experiment

The following contains recommendations for applying the proposed consensus laws to the
ATP through a small scale experiment.

Mechanical Considerations One conclusion that could be drawn from the tracking law
design for the UAV in Chapter 5 is that this approach is too dependent on system parameters,
and too computationally expensive for implementation on UAV. It was initially assumed that
the control law could be simplified to the point of a simple PD-type control for the cable
direction. This was found to be insufficient, even in simulation. For a small scale experiment
the approach in [1], and depicted in Figure 7-1 might provide a much more practical solution.
The main simplification is that the robot dynamics can indeed be neglected, and one can
consider the rigid body to be directly actuated. This brings several other challenges, but the
general approach considered in this thesis work still applies.

Figure 7-1: Images from an experiment conducted in [1]: Left: shows the quadrotor with the
gripping mechanism. Right: Four quadrotors carrying a payload.

Sensing Considerations Considering the ATP as described in Chapter 5, it would be chal-
lenging to obtain the payload attitude through forward kinematics. This would require in-
volved rotation sensors to be mounted on both ends of the cable. A simple alternative is to
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mount a small Inertial Measurement Unit (IMU) on the payload which transmits the measure-
ments to all follower agents. In [47], [36] a simple filter is shown that allows the reconstruction
of the rotation matrix from a gyroscopic, acceleration, and magnetic field sensor. Although
provided with a very elegant proof, it is based on the assumption that the acceleration sensor
points towards earth on average. This assumption should be incorrect, but claims of suc-
cessful results in the literature have been reported. This would provide a cheap and simple
method of obtaining the payload’s attitude, provided it works.

7-4-2 Recommendations for Future Research

The provided solutions in this thesis work can be seen to have several limitations. The
limitations, and possible improvements are discussed next:

1. Decentralized adaptive control: The dependency on model parameters could po-
tentially be reduced through adaptive control. An additional challenge is to derive a
decentralized adaptive control law. See [48] for a decentralized adaptive approach to
the CMP using robotic manipulators.

2. Geometric control approach: The presented geometric solution in Chapter 3 de-
pended on a region of convergence. Further investigation is required to investigate
global convergence.

3. State Dependent Weighted Laplacian Matrix: The underactuated case resulted in
a complicated state dependent Laplacian matrix, see (4-16) and (4-12). Due to the non-
symmetry and state dependency of this matrix it was found to be challenging to relax
the assumption of identical observer gains. In case of individual observer gains a method
is required for analyzing a Laplacian matrix with non-symmetric state dependent matrix
weights. Additionally, it must be applicable to a second order consensus problem where
the jacobian of the kinematics in general does not commute with these matrix weights.
This is a challenging problem.

4. Shadow set for MRPs: The use of shadow parameters is mentioned in the literature,
as a means to overcome the singularity problem of the MRPs [49], [50], [51], [25]. The
intention is to use two different sets of MRPs and to switch at θ = ±180 to the other
set. This causes the used MRPs to always remain norm-bounded, and at the switching
surface both sets have the same norm. The possible interest for application to the
CMP is that all agents can switch to the shadow set simultaneously, since it can be
deduced from the payload state. This shows a clear advantage over multi vehicle control
scenarios, such as [25], where this would have to be communicated. However, a proper
Lyapunov based argument was only provided in [49] for the case where the reference
attitude is at the origin. This result can not be directly extended to general reference
signals, simply because it must be decided whether or not to also map the reference
signal to the shadow set. This must be done via heuristics to prevent injection of energy
into the system, and a convincing mathematical support appears to be missing.

5. Human Operator: A human operator as the leader of the CMP would make a very
strong case, since in that case the leader can not communicate the intended trajectory
to the other agents. The proposed control laws are difficult to combine mathematically
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with this scenario, since it was assumed that the leader control action fits a certain
model. Impedance based control methods pose an interesting approach to human-
robot interactions, and shows several similarities to this thesis work. By measuring the
payload’s motion the interaction to external disturbances can be regulated, see [52], [53].

6. Effect of Time Delays and Acceleration Measurements: The acceleration mea-
surements were considered unpractical. However, in [54] use is made of acceleration
measurements and a butterworth filter is used to reduce the noise. This introduces a
time delay which should be accounted for. The effect of time-delays is a well studied
subject in consensus theory, and this would make a great practical case.

7. Passivity Based Control: If the requirement that the leader control effort must be
amplified is removed this opens a path to the use of Passivity Based Control (PBC).
In [13] it is shown that PBC can be used for the CMP, where consensus is reached using
the payload motion. This approach is not aimed at amplifying the leader control effort,
but allows for compliant behavior. This approach is not considered for the rotational
motion, which would make for an interesting subject.
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Appendix A

Background Theory

A-1 Graph Theory: The Complete Graph

Graph theory [55] presents a high-level description of the network topology and plays an
essential role in the analysis of consensus dynamics. The following contains only the required
definitions for analyzing consensus in this thesis work.

The agreement set can be considered as the definition of reaching consensus amongst the
follower agents:

Definition A-1.1. Let the agreement set be defined as

A = {xi|xi = xj ,∀i ∈ {1, . . . , nf}} (A-1)

For multiplications of large matrices with a repetitive structure the Kronecker product allows
for a compact notation:

Definition A-1.2 (Kronecker Product). Consider matrices A ∈ Rm×n and B ∈ Rp×q, the
Kronecker product is the defined as

A⊗B =

a11B . . . a1nB
... . . . ...

am1B . . . amnB

 (A-2)

where aij denote the elements of A.
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For this thesis essentially all communication topologies considered are that of a complete
graph, which can be represented with the associated Laplacian matrix. Let 1n ∈ Rn denote
a vector with elements equal to 1, and consider the Laplacian matrix for the complete graph
defined as:

Definition A-1.3. Let the n× n Laplacian matrix for the complete graph be defined as

L = nIn×n − 1n1Tn (A-3)

for which it holds that 1n ∈ null{L} and the eigenvalues are given by λ = {0, n, n, . . . , n}.

A specific weighted Laplacian matrix for the complete graph is used various times in this
thesis:

Definition A-1.4. Let the n×n weighted Laplacian matrix for the complete graph be defined
as Lw {ai}, where ai > 0 for i ∈ {1, . . . , nf} are scalars or diagonal matrices ai ∈ Rm×m
specified by the problem. For given ai the Laplacian matrix Lw {ai} is constructed as,

Lw {ai} = D {ai} − A{ai} , ∈ Rmnf×mnf (A-4)

where D {ai} and A{ai} denote the weighted degree and adjacency matrix, given as

D {ai} = [Di]diag ∈ Rmnf×mnf , Di = ai
nf∑
j=1

aj ∈ Rm×m

A{ai} = [Aij ] ∈ Rmnf×mnf , Aij = aiaj ∈ Rm×m
(A-5)

for which it holds that 1n spans the nullspace of Lw and Lw = LTw ≥ 0.

A-2 Rotation Matrix Properties

For rigid body motions the configuration space is defined on a manifold, which is a curved
subspace of the euclidean space. Group theory can be used to define global formulations of the
configuration and motion on the manifold [24]. Of special importance is the rotation matrix,
denoted by R, which evolves on the special orthogonal group SO(3). Many properties can be
found in the excellent books [56] and [24], or the survey on attitude representations [20], of
which a selection will be presented in this section.

The Rotation Matrix The space of the rotation matrices R is defined as the special orthog-
onal group SO(n) [24],

SO (n) =
{
R ∈ Rn×n : RTR = In×n,detR = +1

}
(A-6)

It is assumed throughout this thesis that the rotation matrix maps a vector from the body
frame towards the inertial frame, as is the convention in [24]. The position r ∈ R3 and
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orientation R ∈ SO(3) of a rigid body gives together the configuration {r,R}. The space of
rigid body motions is the configuration space SE(3), called the special Euclidean group,

SE(3) =
{
{r,R} : r ∈ R3, R ∈ SO(3)

}
= R3 × SO(3) (A-7)

The space of skew symmetric matrices S is defined as so(n) [24],

so(n) =
{
S ∈ Rn×n : S = −ST

}
(A-8)

which is related to the angular velocity. Consider the time derivative of the rotation matrix
associated with a rigid body,

Ṙ = RΩ̃ (A-9)
where Ω ∈ R3 is the angular velocity, and the tilde operator is defined as:

Definition A-2.1 (Tilde and Untilde Operator). The tilde operator accepts a vector a =[
a1 a2 a3

]T
∈ R3 and returns a skew symmetric matrix

ã =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 ∈ so(3) (A-10)

The untilde operator {·}V accepts a skew symmetric matrix S ∈ so(3) and returns a vector
a ∈ R3,

SV = ãV = a ∈ R3, S ∈ so(3) (A-11)

Trace Properties The trace of a matrix, denoted as tr {·}, plays an important role in the
construction of Lyapunov candidates using rotation matrices. The following is a listing of the
most important of these properties.

The following operator is useful in deriving the torque applied to a rigid body, and for de-
composing a matrix in the symmetric and anti-symmetric part:

Definition A-2.2 (Symmetric and Anti-Symmetric Operator). Considering any matrix A ∈
Rn×n, define the symmetric and anti symmetric operator, Ps {A} and Pa {A} respectively, as

Ps {A} = 1
2

(
A+AT

)
Pa {A} = 1

2

(
A−AT

)
(A-12)

and note that A = Ps {A}+ Pa {A}.

Lemma A-2.1. Consider a symmetric matrix A = AT ∈ R3×3 and an anti-symmetric matrix
S = −ST ∈ R3×3, then

tr {AS} = 0. (A-13)
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This gives the useful lemma:

Lemma A-2.2. Consider the matrices A ∈ R3×3 and B ∈ R3×3, then

tr {Pa {A}B} = tr {Pa {A}Pa {B}} = tr {APa {B}} . (A-14)

The trace relates the dot-product and cross-product as,

Lemma A-2.3. Consider the vectors a ∈ R3 and b ∈ R3, then

aT b = 1
2 tr
{
ãT b̃

}
. (A-15)

From the above, and the previous lemmas the following useful relation is obtained,

Lemma A-2.4. Consider any matrix A ∈ R3×3 and any vector b ∈ R3, then

1
2 tr
{
Ab̃
}

= −
(
Pa {A}V

)T
b. (A-16)

The above lemma follows from

1
2tr
{
Ab̃
}

= 1
2tr
{

(Pa {A}+ Ps {A}) b̃
}

= 1
2tr
{
Pa {A} b̃

}
= −1

2tr
{
Pa {A}T b̃

}
= −

(
Pa {A}V

)T
b

(A-17)

The following two lemmas can be used to find bounds on the Lyapunov functions,

Lemma A-2.5. For any symmetric A ∈ Rm×m and any matrix B ∈ Rm×m the following
holds,

tr {AB} ≥ λmin {A} tr {B} (A-18)

where λmin {A} is the minimal eigenvalue of A [34].
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Lemma A-2.6 (Minimum Eigenvalue of R ∈ SO(3)). For any R ∈ SO(3) the minimal
eigenvalue of Ps {R} = 1

2

(
R+RT

)
, denoted as λmin {Ps {R}} is equal to cos θ [34].

Rodrigues’ Rotation Formula Many interesting properties of the rotation matrix can be
derived from the Rodrigues formula,

Definition A-2.3 (Rodrigues Formula). The rotation matrix can be related to the axis ε and
angle θ of revolution as,

R (ε, θ) = I + sin (θ) ε̃− (1− cos (θ)) ε̃ε̃T (A-19)

Using the Rodrigues formula and Definition A-2.2 one can directly derive that

Pa {R} = sin θε (A-20)

which is often used as the torque to control a rigid body. Considering that tr
{
ε̃ε̃T
}

=

tr
{
I − εεT

}
= 3 − εT ε = 2 gives tr {R} = 3 − (1− cos (θ)) 2 = 1 + 2 cos (θ). This gives the

following basic Lyapunov candidate:

Lemma A-2.7. Consider the rotation matrix R (ε, θ) ∈ SO(3) with the kinematics given as

Ṙ = Rω̃ (A-21)

Then, the following function is non-negative,

1
2 tr {I −R} = 1− cos (θ) ≥ 0 (A-22)

with a time derivative equal to

d
dt

[
1
2 tr {I −R}

]
=
(
Pa {R}V

)T
ω = sin (θ) εTω. (A-23)

The above lemma forms the basis of most Lyapunov functions using the rotation matrix. The
time derivative is derived as

d
dt

[
1
2tr {I −R}

]
= −1

2tr {Rω̃} (A-24)

and application of Lemma A-2.4 gives (A-23).
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A-3 Modified Rodrigues Parameters

The Modified Rodrigues Parameters (MRPs) can be used to parameterize the rotation ma-
trix [56]:

Definition A-3.1 (Modified Rodrigues Parameters). Given the attitude of a frame in terms
of MRPs, denoted as σ. The MRPs in terms of the axis and angle of revolution, ε and θ
respectively, are given as

σ = tan θ
4ε (A-25)

And the rotation matrix in terms of MRPs is given as

R (σ) = I + 1
(1+σT σ)2

(
8σ̃2 + 4

(
1− σTσ

)
σ̃
)

(A-26)

The MRPs are a minimal and constraint free attitude representation, as can be seen from the
attitude kinematics:

Definition A-3.2 (MRPs Kinematics). Consider the attitude kinematics of a rigid body given
as Ṙ = RΩ̃ with R ∈ SO(3), and Ω the angular velocity. The attitude kinematics in terms of
MRPs is then given as,

σ̇ = Ξ (σ) Ω (A-27)

where Ξ (σ) denotes the kinematic matrix given as

Ξ (σ) = 1
4

((
1− σTσ

)
I + 2σ̃ + 2σσT

)
. (A-28)

The kinematic matrix is almost orthogonal, with the inverse given as,

Ξ (σ)−1 = 16
(1+σT σ)2 Ξ (σ)T (A-29)

A-4 Rigid Body Dynamics of the Payload

The rigid body dynamics play a central role in this thesis work, as it is used to describe the
payload dynamics.

A-4-1 Explicit Rigid Body Dynamics

Let the state of a rigid body be represented in terms of the angular velocity Ω ∈ R3, the
linear velocity v ∈ R3, the attitude R ∈ SO(3) and the position r ∈ R3. The explicit payload
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equations of motion consist of the payload dynamics,

IoΩ̇o = −Ω̃oIoΩo +
∑
τ

mov̇o = mogb̄3 +
∑
F,

(A-30)

and the payload kinematics
Ṙo = RoΩ̃o

ṙo = vo,
(A-31)

wherem and I represent the mass and inertia respectively,
∑
F and

∑
τ respectively represent

the sum of the forces and torques acting on the payload Center of Gravity (CoG), g denotes
the constant gravitational acceleration, b̄3 =

[
0 0 1

]T
denotes the third basis vector, the

tilde operator {̃·} is given in (A-10), and finally the subscript o denotes the reference to the
payload.

A-4-2 Compact Rigid Body Dynamics

The use of MRPs allows the payload dynamics to be written in a compact notation. To this
end, let the state of a rigid body be represented in terms of the twist ν =

[
ΩT vT

]T
∈ R6

and the configuration coordinates q =
[
σT rT

]T
∈ R6, where σ denotes the MRPs. The

compact payload equations of motion are then given as

Moν̇o = −Co (νo)−Go +
∑
w

q̇o = Jo (qo) νo
(A-32)

where Mo ∈ R6×6 represents the mass tensor, Co (νo) ∈ R6 the Coriolis terms, Go ∈ R6 the
(gravitational) potential terms, Jo (qo) ∈ R6×6 the payload kinematic jacobian, and w ∈ R6

denotes a wrench, such that
∑
w denotes the total wrench acting at the payload CoG. The

expressions for Mo, Co (νo) and Go can be related to the explicit notation as,

Mo =
[
I 0
0 moI3×3

]
, Co (νo) =

[
Ω̃oIoΩo

0

]
, Go =

[
0

−mogb̄3

]
(A-33)

and the kinematics Jo (qo) as

Jo (qo) =
[
Ξ (σo) 0

0 I3×3

]
(A-34)

where Ξ (σo) is the kinematic matrix associated with the MRPs as given in (A-28).

A-4-3 Parameterized Rigid Body Dynamics

Finally the rigid body dynamics can be represented completely using the configuration coor-
dinates qo and higher order derivatives. The equations of motion are then given in a similar
form as (A-32), resulting in

M̆o (qo) q̈o = −C̆o (q̇o, qo)−Go + Jo (qo)−T
∑
w (A-35)
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where Go is given in (A-33), Jo (qo) is given in (A-34), and the mass tensor M̆o (qo) ∈ R6×6

and Coriolis terms C̆o (q̇o, qo) ∈ R6 are given as

M̆o (qo) = Jo (qo)−T MoJo (qo)−1

C̆o (q̇o, qo) = −Jo (qo)−T
(
MoJo (qo)−1 J̇ (qo) + ρ̃

)
Jo (qo)−1 q̇o

(A-36)

with ρ = MoJo (qo)−1 q̇o.

A-4-4 The Adjoint Matrix for the Underactuated Case

The underactuated case refers to the case where the agents apply a force to the payload. The
resulting wrench at the payload CoG due to the ith-agent’s force is then given as

wi = Jpi (Ro)T Fpi (A-37)

where Fpi is the force at the attachment point, and Jpi (Ro)T ∈ R6×3 denotes the adjoint
matrix given as

Jpi (Ro)T =
[
p̃iR

T
o

I3×3

]
(A-38)

where pi represents the position of the ith-attachment point given in the body fixed frame.

A-5 Stability Analysis Tools for Time Varying Systems

The following theorem can be used to show boundedness of the system state.

Theorem A-5.1 (Uniform Boundedness). Suppose a function V (x, t) is defined on ‖x‖ >
l > 0 and t ∈ [0,∞) with continuous first order partial derivatives with respect to x and t for
which it holds that

V (x, t) > 0

V̇ (x,w(t)) < 0
(A-39)

for all ‖x‖ > l and t ∈ R+ then x is uniformly bounded.

For the purpose of this thesis, the lemma above is made more specific,
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Lemma A-5.1. Consider the non-autonomous system with state x ∈ Rn described by the
ordinary differential equation,

ẋ = f (x) + w(t) (A-40)

where w(t) ∈ Rn is a bounded signal, i.e. it holds that ‖w(t)‖ < l for some l > 0 and all
t ∈ R+. Suppose a function V (x) is defined with continuous first order partial derivatives
with respect to x for which it holds that

V (x) > 0, ∀x\ {0}

V (0) = 0.
(A-41)

Furthermore, suppose that the time derivative gives,

V̇ (x,w(t)) = −xTx+ xTw(t) (A-42)

then x is uniformly bounded.

The above follows directly from Theorem A-5.1 by noting that −xTx + xTw(t) < 0 for any
‖x‖ > ‖w(t)‖ < l. Barbalat’s Lemma can be applied to non-autonomous systems proving
convergence, rather than boundedness.

Lemma A-5.2 (Barbalat’s Lemma). Let f : R → R be a differentiable function with a finite
limit as t→∞. If ḟ(t) is uniformly continuous then lim

t→∞
ḟ(t) = 0.

The following lemma taken from [34] will be useful for deriving a bound on the convergence
rate.

Lemma A-5.3. Let V : R+ → R be a differentiable function, satisfying V̇ (t) ≤ −aV (t) for
some a > 0 and for all t ∈ R+. Then, V (t) ≤ V (0)e−at holds for all t ∈ R+.
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Appendix B

Proofs

B-1 Proofs in Chapter 2

B-1-1 Explicit Expression of the Generalized Inverse

Considering the adjoint matrix given in (A-38), this gives the generalized inverse as

Jpi (Ro)† = Jpi (Ro)×
( nf∑
i=1

Jpi (Ro)T Jpi (Ro)
)−1

(B-1)

Jpi (Ro)† =
[
Rop̃

T
i I

] [I 0
0 Ro

](
n∑
i=1

[
p̃ip̃

T
i p̃i

p̃Ti I

])−1 [
I 0
0 RTo

]
(B-2)

Consider defining the following constant matrices,

Pi =
[
Pi,τ Pi,F

]
=

[
p̃Ti I

]( n∑
i=1

[
p̃ip̃

T
i p̃i

p̃Ti I

])−1
(B-3)

this gives the generalized inverse as

Jpi (Ro)† = RoPi,τ +RoPi,FR
T
o (B-4)

B-2 Proofs in Chapter 4

B-2-1 Proof of Boundedness of the Estimation Errors: Proposition 4-1.1

The estimation error dynamics, as was given in (4-6), is repeated here for convenience,

∆ν̇i = − (ζl + Γv,i) ∆νi −KlJo (qo)T ∆ei −
nf∑
j=1

[
ζj (∆νi −∆νj) +KjJo (qo)T (∆ei −∆ej)

]
+ εν,iνo

∆ėi = (I6×6 + Γe,i) Jo (qo) ∆νi + εe,iq̇o
(B-5)
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with ∆νi and ∆ei as defined in the Objectives 4-1.1. In the following it is derived how to
choose the Lyapunov candidate V , such that V̇ ≤ 0. Consider the Lyapunov candidate to be
composed as

V∆ = Ve (∆e) + Vν (∆ν) , (B-6)

and consider obtaining an expression for Ve and V̇e first. To this end, define Ve as

Ve = 1
2∆eT

(
L

(e)
w + Pe

)
∆e (B-7)

where ∆e =
[
∆eT1 . . . ∆eTnf

]T
denotes the stacking of the estimation errors, Pe is a block

diagonal matrix, with diagonal blocks P (e)
i chosen as

Pe =
[
P

(e)
i

]
diag
∈ R6nf×6nf , P

(e)
i = KiKl ∈ R6×6 (B-8)

and L(e)
w is the weighted Laplacian matrix for the complete graph as given in Definition A-1.4

by substituting ai = Ki in the definition. Note that, since all gains K∗ > 0 are assumed to
be diagonal matrices that L(e)

w and Pe > 0 are symmetric matrices. From Definition A-1.4
it follows that L(e)

w is positive semi-definite with the agreement set spanning the null space.
Taking the time derivative of Ve, and substitution of (B-5), gives

V̇e = ∆eT
(
L

(e)
w + Pe

)
×
(
[Γe,i]diag + I6nf×6nf

) (
Inf×nf ⊗ Jo (qo)

)
∆ν (B-9)

where it was assumed that εe,i = 0 and εν,i = 0, and ∆ν =
[
∆νT1 . . . ∆νTnf

]T
. Consider

that the jacobian matrix Jo (qo) commutes with all premultiplied matrices above, because of
the structure given in (2-6). This can be used to connect Jo (qo) to ∆e,

V̇e = ∆eT
(
Inf×nf ⊗ Jo (qo)

) (
L

(e)
w + Pe

)
×
(
[Γe,i]diag + I6nf×6nf

)
∆ν. (B-10)

With these expressions for Ve and V̇e obtained the complete Lyapunov candidate can be con-
sidered.

Using the expression for Ve defined above (B-7) let the Lyapunov candidate be given as

V∆ = Ve + Vν = Ve + 1
2

nf∑
i=1

∆νTi (Γe,i + I6×6)Ki∆νi (B-11)

Taking the time derivative gives a rather lengthy expression. For this reason the emerging
terms that are quadratic in ∆ν will be collected in a single step using the matrices L(ν)

w

and Qν , which will be defined after the expression is somewhat simplified. Thus, assuming
εe,i = 0 and εν,i = 0, taking the time derivative of V∆ and substitution of the estimation error
dynamics (B-5) gives,

V̇∆ = V̇e −∆νT
(
L

(ν)
w +Qν

)
∆ν

−
nf∑
i=1

∆νTi (Γe,i + I6×6)Ki

(
KlJo (qo)T ∆ei +

nf∑
j=1

KjJo (qo)T (∆ei −∆ej)
)
(B-12)
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Note that the summation term obtained above is exactly equal to V̇e as defined in (B-10),
which reduces the expression above to

V̇∆ = −∆νT
(
L

(ν)
w +Qν

)
∆ν (B-13)

where it remained to define the matrices L(ν)
w and Qν . Consider Qν to be a diagonal positive

definite matrix. This allows L(ν)
w to be constructed such that taking the time derivative of

V∆ given in (B-11), results in (B-12). This shows that L(ν)
w can be constructed as

L
(ν)
w = D(ν) −A(ν), ∈ R6nf×6nf (B-14)

where D(ν) =
[
D(ν)
i

]
diag
∈ R6nf×6nf and A(ν) =

[
A(ν)
ij

]
∈ R6nf×6nf are composed as,

D(ν)
i = (Γe,i + I)Ki

(
ζl + Γv,i +

nf∑
j=1

ζj

)
−Qν,i

A(ν)
ij = 1

2 (Γe,i + I)Kiζj + 1
2 (Γe,j + I)Kjζi

(B-15)

The intention is for L(ν)
w to be a symmetric weighted Laplacian matrix, with a zero row sum.

For this to hold it must be true that the diagonal elements of the degree matrix equals the
row sum of the adjacency matrix. From the above equation this gives

D(ν)
i =

nf∑
j=1
A(ν)
ij (B-16)

Using the expressions given in (B-15) the above equality can be solved for the observer gain
Γv,i via algebraic manipulations:

(Γe,i + I)Ki

(
ζl + Γv,i +

nf∑
j=1

ζj

)
−Qν,i =

nf∑
j=1

[
1
2 (Γe,i + I)Kiζj + 1

2 (Γe,j + I)Kjζi
]

(Γe,i + I)Ki

(
ζl + Γv,i + 1

2

nf∑
j=1

ζj

)
−Qν,i =

nf∑
j=1

1
2 (Γe,j + I)Kjζi

ζl + Γv,i + 1
2

nf∑
j=1

ζj = 1
2K
−1
i (Γe,i + I)−1

(
nf∑
j=1

(Γe,j + I)Kjζi + 2Qν,i

)
(B-17)

and finally,

Γv,i = −ζl − 1
2

nf∑
j=1

ζj + 1
2K
−1
i (Γe,i + I)−1

(
nf∑
j=1

(Γe,j + I)Kjζi + 2Qν,i

)
(B-18)

From the fact that all matrices above are diagonal and positive definite, the inequality given
in (4-5) shows that indeed Qν,i > 0 and that the matrix L

(ν)
w given in (B-14) is indeed a

Laplacian matrix.

To summarize the proof: The Lyapunov candidate was taken as

V∆ = 1
2∆eT

(
L

(e)
w + Pe

)
∆e+ 1

2

nf∑
i=1

∆νTi (Γe,i + I6×6)Ki∆νi (B-19)
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and setting εe,i = 0 and εν,i = 0, the time derivative was shown to be given as

V̇∆ = −∆νT
(
L

(ν)
w +Qν

)
∆ν (B-20)

where L(e)
w and L(ν)

w are weighted Laplacian matrices associated with the complete graph, and
the matrices Pe > 0 and Qν > 0 are diagonal matrices.

B-2-2 Proof of Global Asymptotic Convergence of the System State: Proposi-
tion 4-1.1

The payload dynamics given in (4-2) can be rewritten in terms of the estimation errors as,

ν̇o = −ζsumνo −KsumJo (qo)T el −
nf∑
i=1

(
ζi∆νi +KiJo (qo)T ∆ei

)
ėl = Jo (qo) νo

(B-21)

where ζsum = ζl +
nf∑
i=1

ζi and Ksum = Kl +
nf∑
i=1

Ki. Supposing that the estimation errors have

converged, lim
t→∞

∆e = 0 and lim
t→∞

∆ν = 0, then the dynamics given above reduce to a stable
system, and the leader tracking error el can be shown to converge asymptotically to zero.
Clearly, the intention was to decouple the estimation dynamics from the payload dynamics
given above, but it was previously shown that this only holds if qo can be assumed to remain
bounded. Therefore, the coupling gains will be used to couple the estimation dynamics with
the payload dynamics, thus preventing the Modified Rodrigues Parameters (MRPs) from
growing unbounded while the observer dynamics converge.

Let the coupling gains εν,i ∈ R3×3 and εe,i ∈ R3×3 be taken as

[εe,i]vec = ε
(
L

(e)
w + Pe

)−1
[Ki]vec ∈ R3nf×3

εν,i = ε ((Γe,i + I6×6)Ki)−1 ζi ∈ R3×3
(B-22)

where ε ∈ R is an arbitrarily small scalar constant, Pe > 0 is the diagonal matrix as defined in
(B-8), and L(e)

w is the Laplacian matrix appearing in (B-7), which was obtained from Definition
A-1.4 by substituting ai = Ki in the definition. Since the null space of L(e)

w is spanned by the
agreement set, and Pe > 0 is a diagonal full-rank matrix, it can be concluded that L(e)

w + Pe
is indeed invertible. Consider adding to the previously proposed Lyapunov candidate (B-6)
a potential and kinetic energy term for the payload,

V = Ve + 1
εVν + 1

εVo



Ve = 1
2∆eT

(
L

(e)
w + Pe

)
∆e

Vν = 1
2

nf∑
i=1

∆νTi (Γe,i + I6×6)Ki∆νi

Vo = 1
2ν

T
o νo + 1

2e
T
l Ksumel

(B-23)
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where (B-7) was used to obtain Ve and Vν , and ε ∈ R is the small positive scalar appearing
in (B-22). Taking the time derivative of V gives,

V̇ = V̇o +
nf∑
i=1

(
∆eTi KiJo (qo) νo + ∆νTi ζiνo

)
− 1

ε∆ν
T
(
L

(ν)
w +Qν

)
∆ν (B-24)

where (B-20) was used to obtain the last term, and the coupling gains were chosen to obtain
the middle term. Using (B-21) to derive V̇o gives,

V̇ = −νTo ζsumνo − 1
ε∆ν

T
(
L

(ν)
w +Qν

)
∆ν ≤ 0 (B-25)

By proposing a single Lyapunov candidate it is now allowed to use LaSalle’s invariance prin-
ciple. From V and V̇ it can be concluded that lim

t→∞
νo = 0 and lim

t→∞
∆ν = 0. Furthermore ∆e

and el = qo − qdes are bounded. Since qdes is constant this shows that qo is bounded, and in
turn that Jo (qo) is bounded. From (4-6) follows that ∆ėi = 0,∀i, since Jo (qo) is invertible.
To show that lim

t→∞
∆ei = 0∀i, consider the multiplication of all error estimation dynamics

(4-6) on the left hand side by a diagonal matrix as follows,

lim
t→∞

[Ki]diag ×∆ν̇ =
(
L

(e)
w + Pe

)
∆e = 0 (B-26)

where the velocities have been set to zero in the limit. Since L(e)
w + Pe is invertible it follows

that lim
t→∞

∆e = 0, i.e. all agents correctly reconstruct the payload state νo and the leader’s
tracking error el. From the payload dynamics (B-21) it finally follows that lim

t→∞
el = 0, i.e.

the payload tracking error converges to zero. This shows that, if Assumption 2-1.1 holds, the
Objectives 4-1.1 are indeed globally achieved, completing the proof.

B-2-3 Proof of Boundedness of the State Dependent Weighting Matrices

In the following it is shown that the weighting matrices in (4-26) are bounded. The weighting
matrices are repeated here for convenience,

Wi (qo) = nfM̆o (qo)−1 Jo (qo)−T Jpi (qo)T Jpi (qo)† Jo (qo)T M̆o (qo) (B-27)

where M̆o (qo) is given as,

M̆o (qo) = Jo (qo)−T MoJo (qo)−1 (B-28)

It can be seen from Jo (qo) that it depends only on the MRPs, denoted as σo, rather than
qo =

[
σTo rTo

]T
. The kinematic matrix is almost orthogonal, as the inverse is given as

Jo (σo)−1 = 16
(1+σT σ)2Jo (σo)T (B-29)

which can be derived from the definition of Jo (qo) in (A-34) and the MRPs kinematics (A-28).
This allows the weighting matrices to be rewritten as

Wi (σo) = 16
(1+σTo σo)

2Jo (σo)nfM−1
o Jpi (σo)T Jpi (σo)†Mo︸ ︷︷ ︸

bounded

Jo (σo)T (B-30)
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Note that the braced term is bounded since Mo is constant, see (A-33), and Jpi (σo)T and
Jpi (σo)† are bounded, as derived in Appendix B-1-1. Collecting the braced term in a bounded
matrix B,

Wi (qo) = 16
(1+σT σ)2Jo (σo)BJo (σo)T (B-31)

Multiply this equation by
(
σTσ

)2
×
(
σTσ

)−2
= 1,

Wi (qo) = 16(
1

σT σ
+1
)2

(
1

σT σ
Jo (σo)

)
×B ×

(
1

σT σ
Jo (σo)

)T
(B-32)

It can be seen from the definition of Jo (qo) in (A-34) and the MRPs kinematics (A-28) that(
1

σT σ
Jo (σo)

)
is bounded for any σo, completing the proof on boundedness of the weights in

(B-27).

B-2-4 Proof of Convergence of the Estimation Error: Proposition 4-3.1

The estimation error dynamics was given as,

∆¨̄q = − (ζsum + Γν) ∆ ˙̄q −Ksum∆ē−
nf∑
j=1

Wj (qo) (ζδq̇j +Kδej)

∆ ˙̄e = (I6×6 + Γe) ∆ ˙̄q
(B-33)

and the Lyapunov candidate was taken as,

V∆ = 1
2∆ ˙̄qTP1∆ ˙̄q + 1

2∆ēTP2∆ē+ 1
2
∥∥∆ ˙̄q + P3∆ē

∥∥2 (B-34)

The explicit expressions for P1, P2 and P3 are given as,

P1 = (ζsum + Γν)−2Ksum (I + Γe) + I

P2 = Ksum (I + Γe)−1

P3 = (ζsum + Γν)−1Ksum.

(B-35)

Taking the time derivative of V∆, and substitution of (B-33) and the above matrix definitions,
gives

V̇∆ = −∆ ˙̄qTQ1∆ ˙̄q −
∥∥∆ ˙̄q + P3∆ē

∥∥2
Q2

−
(
P1∆ ˙̄q +

(
∆ ˙̄q + P3∆ē

))T × nf∑
j=1

Wj (qo) (ζδq̇j +Kδej)
(B-36)

where ‖ · ‖2Q2
denotes (·)TQ2(·), and the matrices Q1 and Q2 are given as,

Q1 = ζsum + Γν

Q2 = (ζsum + Γν)−1
(B-37)

which follows from substitution.
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B-2-5 The Simultaneous Stabilization Problem for Arbitrary State Measure-
ments

In the following the simultaneous stabilization problem is illustrated for a simple case, re-
vealing that the disagreement and mean estimation error dynamics must be stabilized by
two different plants. This is done by considering full actuation, such that the attitude and
translation dynamics can be separated. The simultaneous stabilization problem will then be
illustrated for the (linear) translation dynamics. Furthermore, for ease of exposition all agents
use identical control and observer gains.

Considering the translation dynamics, define the augmented payload dynamics as v̇oṙo
ṙdes

 =

 0
vo
0

+

I0
0

× (gb̄3 + 1
mo
Fl + 1

mo

nf∑
i=1

Fpi

)
(B-38)

where rdes is the desired constant payload position, as known to the leader, and the other
variables are as introduced in Appendix A-4. Consider the following matrices,

xo =

 voro
rdes

 , A =

 0 0 0
I3×3 0 0

0 0 0

 , B =

I3×3
0
0

 (B-39)

where the zeros are of dimension 3 × 3, which gives the translation part of the payload
dynamics as

ẋo = Axo +B

(
gb̄3 + 1

mo
Fl + 1

mo

nf∑
i=1

Fpi

)
y = Cxo

(B-40)

where C is a matrix of appropriate dimensions, and y is the measurement available to all
agents. Let the leader apply a force given as,

Fl = − 1
nf+1mog −moKxo (B-41)

and similarly define the force applied by the follower agents as,

Fi = − 1
nf+1mog −moKx̂i (B-42)

where x̂i denotes the ith-agent’s local estimate of the augmented payload state,

x̂i =
[
v̂Ti r̂Ti r̂des,i

]T (B-43)

Consider achieving Objectives 4-2.1, that is, convergence of the disagreement, mean estima-
tion error and tracking error dynamics:
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Proposition B-2.1. Consider the Cooperative Manipulation Problem (CMP) for the trans-
lation dynamics described by equations (B-40)-(B-42). Consider nf -follower agents and a
single leader. Let the follower agents update the estimated state as

˙̂xi = (A− (1 + nf )BK) x̂i − ΓC∆xi (B-44)

with Γ ∈ R9×3 chosen such that the following two plants are simultaneously stabilized:

A−BK − ΓC

A− (1 + nf )BK − ΓC.
(B-45)

Then the Objectives 4-2.1 are achieved.

Disagreement Dynamics The disagreement dynamics of the follower agents can be obtained
from the local update law (B-44). To this end, consider stacking all the update laws into a
single vector,

˙̂x =
(
Inf×nf ⊗ (A− (1 + nf )BK − ΓC)

)
x̂+ 1nf ⊗ (ΓCxo) (B-46)

where x̂ =
[
x̂T1 x̂T2 . . . x̂Tnf

]T
∈ R9nf . Left multiplication with the Laplacian matrix L

gives the disagreement dynamics δẋ = (L⊗ I9×9) ˙̂x resulting in

δẋ =
(
Inf×nf ⊗ (A− (1 + nf )BK − ΓC)

)
δx (B-47)

where the measurements xo have dropped, since 1nf ∈ null{L} for the complete graph.
Noting that the above matrix is block diagonal gives,

δẋi = (A− (1 + nf )BK − ΓC) δxi (B-48)

which is indeed the plant given in (B-45).

Mean Estimation Error Dynamics The payload translation dynamics can be obtained from
the dynamics given in (B-40) and substitution of the leader and follower control laws,

ẋo = (A−BK)xo − nfBKx̄ (B-49)

where x̄ = 1
nf

nf∑
i=1

xi. Using (B-44) the mean estimation error dynamics are then obtained as,

∆ ˙̄x = (A−BK − ΓC) ∆x̄ (B-50)

which is the plant given in (B-45), and completes the proof.

B-3 Proofs in Chapter 5

B-3-1 Proof of Theorem 5-1.1

The following contains the proof for controlling the cable direction of the Unmanned Aerial
Vehicles (UAV).
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Cable Direction Kinematics The kinematics of the ith-cable direction ηi is given as

ωi = ηi × η̇i = η̃iη̇i

η̇i = ωi × ηi = ω̃iηi

(B-51)

where ωi denotes the angular velocity of the ith-cable and the tilde operator is given in
Definition A-2.1. Taking the second time derivative of the last expression gives the cable
direction acceleration as,

η̈i = ˙̃ωiηi + ω̃iη̇i = −ηi × ω̇i + ω̃iω̃iηi (B-52)

The last term in the above equation can be further simplified: Using ããb =
(
aaT − (aTa)I

)
b

and the fact that ωTi ηi = 0, gives the acceleration of the cable direction ηi as

η̈i = −η̃iω̇i −
(
ωTi ωi

)
ηi (B-53)

which will be used in the control law derivation.

Inverting the UAV Dynamics for Control of the Cable Direction and Cable Tension The
control over the cable direction and tension can be derived using a simple force balance of
the ith-UAV body. Consider taking the second time derivative of the ith-UAV position (5-1),
and substitution of η̈i given in (B-53) then gives,

r̈i = r̈o +RoΩ̃2
opi −Rop̃iΩ̇o − liη̃iω̇i − li ‖ωi‖2 ηi (B-54)

Substitution of the above expression into the force balance (5-2) gives

mi

(
r̈o +RoΩ̃2

opi −Rop̃iΩ̇o − liη̃iω̇i − li ‖ωi‖2 ηi
)

= migb̄3 − λiηi + Fi (B-55)

Substitution of the proposed force Fi given in (5-8) gives

λiηi − η̃iω̇i =
(
ηTi Fpi,des

)
ηi − η̃i$i. (B-56)

Multiplication on both sides of the equality sign by η̃Ti gives,

η̃Ti η̃iω̇i = η̃Ti η̃i$i, (B-57)

and on both sides of the equality sign by ηTi gives,

λi = ηTi Fi,des (B-58)

where it was used that η̃iηi = 0. The above equation states that if the cable direction ηi is
parallel to the desired force Fpi,des, that the desired force is applied to the payload. This can
be achieved using (B-57), which states that the cable direction dynamics can be controlled
via $i. In the following the expression for $ is derived such that the cable becomes parallel
to the desired force at the attachment point.
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Proof of Controlling the Cable Direction Dynamics The idea is then to control the cable
direction such that it is aligned with Fpi,des given in (5-12). To this end consider the following
Lyapunov function,

V = Vω + Vη (B-59)

where
Vω = 1

2 (ωi − ωi,des)T η̃Ti η̃i (ωi − ωi,des)

Vη = kp
2 ‖ηi − ηi,des‖

2 .

(B-60)

where ηi,des and ωi,des are desired cable direction and desired cable angular velocity respec-
tively. Taking the time derivative of Vω and substitution of (B-57) gives

V̇ω = (ωi − ωi,des)T η̃Ti (η̃i (ω̇i − ω̇i,des)− (ω̃i − ω̃i,des) η̇i)

= (ωi − ωi,des)T η̃Ti η̃i
(
$i − ω̇i,des − η̃Ti (ω̃i − ω̃i,des) η̇i

)
= (ωi − ωi,des)T η̃Ti η̃i

(
$i − ω̇i,des − η̃Ti (ω̃i − ω̃i,des) ω̃iηi

)
= (ωi − ωi,des)T η̃Ti η̃i

(
$i − ω̇i,des + η̃Ti ω̃i,desω̃iηi

)
(B-61)

where the cable kinematics given in (B-51) where used, as well as the rules for cross-product
multiplications. Taking the time derivative of Vη gives,

V̇η = kp (ηi − ηi,des)T (η̇i − η̇i,des)

= kp (ηi − ηi,des)T (ω̃iηi − ω̃i,desηi,des)

= kp (ηi − ηi,des)T (−η̃iωi + η̃i,desωi,des)

= kp
(
ηTi,desη̃iωi + ηTi η̃i,desωi,des

)
= kpη

T
i,desη̃i (ωi − ωi,des)

= −kp (ωi − ωi,des)T η̃iηi,des

(B-62)

And thus

V̇ = V̇ω + V̇η

= (ωi − ωi,des)T η̃Ti η̃i ($i − ω̇i,des − η̃iω̃i,desω̃iηi + kpη̃i,desηi)
(B-63)

By taking $ as

$ = ω̇i,des − kd (ωi − ωi,des)− kpη̃i,desηi + η̃iω̃i,desω̃iηi (B-64)

thus drives the cable direction towards the desired cable direction.
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B-3-2 Explicit Computation of the Desired Cable Reference State

In the following it will be shown how to compute the desired cable angular velocity and
angular acceleration {ωi,des, ω̇i,des} if the desired cable direction ηi,des is given as the direction
of the desired force F ppi,des at the attachment point:

Fpi,des = Roλp
c
i + nJi(R)†

[
τi,des
Fi,des

]
, ηi,des = 1

‖Fpi,des‖
Fpi,des (B-65)

where τi,des and Fi,des are the ith-agent’s estimate of the desired torque and force at the
payload Center of Gravity (CoG). In the derivation it is assumed that only the current state
of the payload is known, and the computations that have to be made are given sequentially,
rather than substituted to obtain an explicit expression (this was found to be infeasible). The
computation of {ωi,des, ω̇i,des} given the current payload state is divided into 4 steps:

Step 1. Time Derivatives of the Desired Force

Considering the control gains for the translation dynamics, kv and kr, define the following,

KF =
[
kv kr

]
⊗ I3×3, AF =

[
− n
mkv −

n
mkr

1 0

]
⊗ I3×3 (B-66)

The desired force at the payload CoG is then given as

Fi,des = − 1
n+1mgb̄3 −KF

[
v
er

]
(B-67)

where er = r − rdes, and the time derivatives are computed as

Ḟ oi,des = −KFAF

[
v
er

]
, F̈i,des = −KFA

2
F

[
v
er

]
(B-68)

Step 2: Time Derivatives of the Torques

Define, and compute, the following,

JΩ (Ω) = ∂
∂Ω

[
Ω̃IΩ

]
+ (1 + n)KΩ, Jσ (Ω, σ) = ∂

∂σ [Ξ (σ) Ω]

Jτ (σ, σdes) = ∂
∂σ

[
Ξ (σ)T (σ − σdes)

]
, J̇τ (σ̇, σ, σdes) =

3∑
i=1

(
∂Jτ
∂σi

)
σ̇i

(B-69)

Then compute sequentially the angular acceleration and MRPs velocity,

Ω̇ = I−1
(
−Ω̃IΩ− (n+ 1) kΩΩ− (n+ 1) kRΞ (σ)T (σ − σdes)

)
σ̇ = Ξ (σ) Ω

(B-70)
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and their time derivatives,

Ω̈ = −I−1JΩΩ̇− (n+ 1) kRI−1Jτ σ̇

σ̈ = Jσσ̇ + Ξ (σ) Ω̇
(B-71)

Which can be used to compute the time derivatives of the desired torque at the payload CoG

τi,des = −KΩΩ− kRΞ (σ)T (σ − σdes)

τ̇i,des = −KΩΩ̇− kRJτ σ̇

τ̈i,des = −KΩΩ̈− kRJτ σ̈ − kRJ̇τ σ̇

(B-72)

Step 3: Force at the attachment point

Consider rewriting (B-65) using (B-4) as

hi = Fpi,des = Ro
(
nPi,ττi + λpci + nPi,FR

T
o Fi

)
(B-73)

Compute the current rotation matrix and the higher order derivatives,

Ṙ = RΩ̃, R̈ = RΩ̃2 +R ˙̃Ω (B-74)

Define and compute, for simplicity,

b = nPi,ττi + λpci + nPi,FR
TFi

ḃ = nPi,τ τ̇i + nPi,F
(
ṘTFi +RT Ḟi

)
b̈ = nPi,τ τ̈i + nPi,F

(
R̈TFi + 2ṘT Ḟi +RT F̈i

) (B-75)

Compute the time-derivatives of the force at the attachment point

ḣi = Ṙb+Rḃ

ḧi = R̈b+ 2Ṙḃ+Rb̈
(B-76)

Step 4: Desired Angular Velocity and Acceleration of the Cable

Finally the desired cable direction, velocity and acceleration can be computed,

ηi,des = hi
‖hi‖

ωi,des = h̃iḣi
‖hi‖2

ω̇i,des = 1
‖hi‖2

(
h̃iḧi − 2

(
hTi ḣi

)
ωi,des

) (B-77)

completing the computation.
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B-4 Proofs of Chapter 6

B-4-1 Proof of Proposition 6-3.1

The proof is constructed via Lyapunov arguments. For ease of exposition the proposed Lya-
punov function will be constructed as the sum of three Lyapunov functions,

V = Vkin + Ve + Vpot (B-78)

where Vkin contains the kinetic energy terms, Ve contains the tracking error terms, and Vpot
contains the potential energy terms of the system. In the following the time derivative of each
term will be determined after which the complete Lyapunov function given in (B-78) will be
constructed.

Kinetic Energy Term Before defining Vkin let the definition of the cable-vector ρi from (6-1)
be restated here, together with the time derivative of this vector,

ρi =
(
rl +Rlp

l
i

)
− (ro +Rop

o
i )

ρ̇i =
(
vl +Rl

(
p̃li

)T
Ωl

)
−
(
vo +Ro (p̃oi )

T Ωo

)
.

(B-79)

Let Vkin be taken as the kinetic energy of the system, that is the leader and payload body,

Vkin = 1
2ΩT

l IlΩl + ml
2 v

T
l vl + 1

2ΩT
o IoΩo + mo

2 v
T
o vo. (B-80)

Taking the time derivative, and substituting (6-12) and (6-13), gives

V̇kin =
3∑
i=1

[
ΩT
o p̃

o
iR

T
o ρ̄iλi + vTo ρ̄iλi − ΩT

l p̃
l
iR

T
l ρ̄iλi − vTl ρ̄iλi

]
+vTo mogb̄3 + vTl

(
mlgb̄3 + Fl

)
+ ΩT

l τl.

(B-81)

Using the time derivative of the cable vector ρ̇i as defined in (B-79) the above equation can
conveniently be written as

V̇kin =
3∑
i=1

[
−ρ̇Ti ρ̄iλi

]
+ vTo mogb̄3 + vTl

(
mlgb̄3 + Fl

)
+ ΩT

l τl − ΩT
o ΛΩΩo − vTo Λṙvo

(B-82)

The Tracking Error Term The tracking error potential term Ve in (B-78) is given as

Ve =
3∑
i=1

[
kp
2 (‖ρi‖ − li,des)2

]
+ 1

2e
T
r,lKer,l + k

2 tr {I − El} (B-83)

where er,l = rl − rl,des and El = RTl,desRl are the leader attitude and position tracking errors,
with rl,des the reference position for the leader body as given in (6-11), and Rl,des is the
reference attitude for the leader body. The latter is determined from the desired yaw angle
ψdes as Rl,des = Rz (ψdes) using (6-4). Taking the time derivative of Ve in (B-83) gives

V̇e =
3∑
i=1

[
kpρ̇

T
i ρ̄i (‖ρi‖ − li,des)

]
+ vTl Ker,l + kΩT

l Pa {El}
V (B-84)

where Lemma A-2.7 was used for the attitude tracking error term.
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The Potential Energy Term The potential term Vpot in (B-78) is taken as

Vpot =
3∑
i=1

[
ρTi (ρ̄i − ρ̄des,i)λdes,i − (poi )

T Roρ̄des,iλdes,i
]

+ c. (B-85)

where c > 0 is a positive scalar constant. It is not directly clear whether Vpot as defined above
is a non-negative function. The first term in the above equation, given as ρTi (ρ̄i − ρ̄des,i)λdes,i
is nonnegative since λdes,i > 0 from (6-11), and the minimum is attained at ρi = ρdes,i for
which this term reduces to zero. The second term, given as − (poi )

T Roρ̄des,iλdes,i, depends
only on the rotation matrix Ro as a dynamic variable. Since the rotation matrix evolves on
SO(3) all the columns of Ro are norm bounded, and it must therefore always be possible to
choose the constant c > 0 such that

c >
3∑
i=1

[
(poi )

T Roρ̄des,iλdes,i
]
, ∀Ro ∈ SO(3) (B-86)

holds for all ∀Ro ∈ SO(3), and thus Vpot > 0. Before computing the time derivative of Vpot
consider rewriting it using (B-79), to obtain

Vpot =
3∑
i=1

[
‖ρi‖λdes,i −

(
rl +Rlp

l
i − ro

)T
ρ̄des,iλdes,i

]
+ c. (B-87)

The time derivative of Vpot is then given as,

V̇pot =
3∑
i=1

[
ρ̄i
T ρ̇iλdes,i −

(
vl −Rlp̃liΩl − vo

)T
ρ̄des,iλdes,i

]
. (B-88)

The above equation can be further simplified using
3∑
i=1

ρ̄des,iλdes,i = −mogb̄3 as stated in

(6-11),

V̇pot =
3∑
i=1

[
ρ̄i
T ρ̇iλdes,i − ΩT

l p̃
l
iR

T
l ρ̄des,iλdes,i

]
+ vTl mogb̄3 − vTo mogb̄3. (B-89)

Complete Lyapunov Function The time derivative of the total Lyapunov function (B-78)
can be found by adding the separate terms given in (B-82), (B-84) and (B-89), resulting in

V̇ = V̇kin + V̇e + V̇pot

=
3∑
i=1

[
−ρ̇Ti ρ̄iλi + kpρ̇

T
i ρ̄i (‖ρi‖ − li,des) + ρ̇Ti ρ̄iλdes,i

]
+vTl

(
mlgb̄3 +mogb̄3 +Ker,l + Fl

)
+ΩT

l

(
kPa {El}V −

3∑
i=1

[
p̃liR

T
l ρ̄des,iλdes,i

]
+ τl

)
−ΩT

o ΛΩΩo − vTo Λṙvo

(B-90)

Substitution of the proposed control laws (6-14), (6-15) and (6-16) into (B-90) reduces V̇ to

V̇ = −
3∑
i=1

[
kd
(
ρ̇Ti ρ̄i

)2
]
− vTl βvl − ΩT

l ζΩl − ΩT
o ΛΩΩo − vTo Λṙvo ≤ 0. (B-91)
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From the above equation it can be concluded that the system state remains bounded. From
this it can be concluded that the leader and payload accelerations given in (6-12) and (6-13)
respectively remain bounded. This shows that also the acceleration of the cable vector, ρ̈i
obtained from (B-79), is bounded. It follows that V̈ remains bounded, since the system
configuration, velocities and accelerations are bounded. This allows the use of Barbalat’s
Lemma A-5.2 to conclude that lim

t→∞
V̇ = 0. It can thus be concluded that the system velocities

converge asymptotically to zero, and that an equilibrium configuration will be reached.

LaSalle’s Invariance Principle for Finding the Equilibrium State As it was established that
the system velocities go to zero asymptotically, LaSalle’s invariance principle can be used to
evaluate the system equilibrium state. However, this brings us to the Direct Kinematics
Problem (DKP) given in Definition 6-3.1. The DKP was considered to be outside the scope
of this text, and instead Assumption 6-3.1 is assumed to hold. In the following it will thus
be shown that the solution of the Inverse Kinematics Problem (IKP) is a valid equilibrium
state of the controlled system, and under Assumption 6-3.1, it is considered to be the unique
equilibrium.

Consider the system dynamics (6-12) and (6-13), and substitute the controlled force (6-15)
and torque (6-16) to obtain

IoΩ̇o = −Ω̃oIoΩo − ΛΩΩo +
3∑
i=1

p̃oiR
T
o ρ̄iλi

mov̇o = −Λṙvo +mogb̄3 +
3∑
i=1

ρ̄iλi

IlΩ̇l = −Ω̃lIlΩl − ζΩl − kPa
{
RTl,desRl

}V
−

3∑
i=1

p̃liR
T
l (ρ̄iλi − ρ̄des,iλdes,i)

mlv̇l = −βvl −mogb̄3 −Kr (rl − rl,des)−
3∑
i=1

ρ̄iλi

(B-92)

Using LaSalle’s invariance principle all velocities and accelerations are set to zero. Further-
more, the control law for the cable tension (6-14) can be substituted, reducing the equations
above to,

0 =
3∑
i=1

p̃oiR
T
o (kpρ̄i (‖ρi‖ − li,des) + ρ̄iλdes,i)

0 = mogb̄3 +
3∑
i=1

ρ̄i (kp (‖ρi‖ − li,des) + λdes,i)

0 = −kPa
{
RTl,desRl

}V
−

3∑
i=1

p̃liR
T
l (kpρ̄i (‖ρi‖ − li,des) + (ρ̄i − ρ̄des,i)λdes,i)

0 = −mogb̄3 −Kr (rl − rl,des)−
3∑
i=1

ρ̄i (kp (‖ρi‖ − li,des) + λdes,i)

(B-93)
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The second and last of the above equations can be rewritten using
3∑
i=1

ρ̄des,iλdes,i = −mogb̄3

as given in (6-11), which gives the following set of equations

0 =
3∑
i=1

p̃oiR
T
o (kpρ̄i (‖ρi‖ − li,des) + ρ̄iλdes,i)

0 =
3∑
i=1

(kpρ̄i (‖ρi‖ − li,des) + (ρ̄i − ρ̄des,i)λdes,i)

0 = −kPa
{
RTl,desRl

}V
−

3∑
i=1

p̃liR
T
l (kpρ̄i (‖ρi‖ − li,des) + (ρ̄i − ρ̄des,i)λdes,i)

0 = −Kr (rl − rl,des)−
3∑
i=1

(kpρ̄i (‖ρi‖ − li,des) + (ρ̄i − ρ̄des,i)λdes,i)

(B-94)

From the second and last of the above equations it can be concluded that rl → rl,des. Applica-
tion of Assumption 6-3.1, i.e. substitution of the solution of the IKP sets all above equations

to zero: The first equation is set to zero since
3∑
i=1

p̃oiR
T
o,desρi,desλi,des = 0. The second equa-

tion is trivially set to zero for ρi = ρi,des. The third equation is set to zero since the solution
to the IKP sets Rl = Rl,des. This shows that the desired equilibrium as computed from the
IKP is a valid equilibrium for the system, and it is for simplicity assumed to be the unique
equilibrium. This completes the proof of Proposition 6-3.1.

B-4-2 Proof of Proposition 6-3.1 When Using MRPs

The control law given in Proposition 6-3.1 assumed a geometric control law for the leader
torque. If instead MRPss are to be used, then the leader torque given in (6-16) can be taken
as

τl = −kΞ (σl)T (σl − σl,des)− ζΩl +
3∑
i=1

[
p̃liR

T
l ρ̄des,iλdes,i

]
(B-95)

where σl denotes the leader body MRPss and Ξ (σl) is given in (A-28). The tracking error
potential term Ve in equation (B-78) is then given as

Ve =
3∑
i=1

[
kp
2 (‖ρi‖ − li,des)2

]
+ 1

2e
T
r,lKer,l + k

2 e
T
σ,leσ,l (B-96)

where er,l = rl − rl,des and eσ,l = σl − σl,des are the leader attitude and position tracking
errors, rl,des is the leader reference position as given in (6-11) and σl,des is the leader reference
attitude. The reference attitude for the leader was found from solving the IKP, resulting in
a desired yaw angle ψdes, from which the desired MRPs can be found using (A-25) as

σl,des = tan
(
ψdes

4

) [
0 0 1

]T (B-97)

Taking the time derivative of Ve gives

V̇e =
3∑
i=1

[
kpρ̇

T
i ρ̄i (‖ρi‖ − li,des)

]
+ vTl Ker,l + kΩT

l Ξ (σl)T eσ,l (B-98)

where it was used that d
dt‖ρi‖ = ρ̇Ti ρ̄i and σ̇l = Ξ (σl) Ωl with Ξ (σl) given in (A-28). Substi-

tution of the above expression into (B-90) clearly results in (B-91) if the torque is taken as
(B-95).
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Appendix C

Numerical Values used for Simulation

This appendix gives an overview of how the simulation results where obtained. The system
parameters where taken the same for all simulations. In C-1 a short description of the
simulation setting is presented. In C-2 a detailed listing of the payload properties and initial
conditions is given. The model used for simulating the Aerial Towing Problem (ATP) is
described in C-3.

C-1 Short Description of the Simulation

The payload is modeled as a thin solid disc with radius 1.59 [m] and mass 10.0 [kg]. The
Center of Gravity (CoG) of the payload is placed 0.1 [m] out of the center. The positions of
the agent attachment points are placed on the edge of the payload with equal spacing. The
payload is given a small initial angular and linear velocity, and the initial configuration is
chosen at the origin.

The system is simulated using nf = 10 follower agents, and with the exception of Chap-
ters 5 and 6, a single leader controls a wrench at the payload CoG. The control gains were
designed for the centralized case where the leader controls the payload alone, i.e. without any
follower agents participating. This situation serves as the benchmark for evaluating the pro-
posed consensus law. The control gains were obtained using Linear Quadratic (LQ)-optimal
pole placement for the linearized system. For the Cooperative Manipulation Problem (CMP)
the individual control gains of the agents were then obtained by dividing these centralized
gains by the total number of agents. The agent observer gains were chosen such that the
consensus dynamics is approximately a decade faster than the tracking dynamics.

To show that the system can recover from large initial rotation errors the agent’s initial
estimates of the desired payload rotation range from −180 deg to +180 deg with equal spac-
ing. The axis of rotation is generated randomly using a standard normal distribution. The
effect is that initially the agent’s estimates of the desired attitude are scattered across a
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θpi

pi
lo

li

{mo, Io}

li

{mi, Ii}

Figure C-1: Geometry of the payload with the variables given in Table C-1.

sphere. All remaining estimation variables are generated randomly.

The step response of the system is simulated by changing the desired configuration of the
leader. The leader initially keeps the desired configuration at the origin such that the system
stabilizes. After 4 seconds the desired attitude is changed to an angle of θdes = 60 deg about an
axis given as εdes =

[
3 2 1

]T
. The corresponding Modified Rodrigues Parameters (MRPs)

are given as σdes =
[
0.21 0.14 0.07

]T
. The desired position changes simultaneously to

rdes =
[
3 2 1

]T
meters.

C-2 Numerical Values Used in Simulation

Payload Properties The payload properties and their numerical values are given in Table
C-1, and are illustrated in Figure C-1. The Unmanned Aerial Vehicles (UAV) properties are
relevant to Chapters 5 and 6. Considering Figure C-1 the attachment points of the cables
were taken to lie on a circle with equal interspacing, and an offset of b = [0.1 0 0]T from
the payload CoG,

pi =
[
lo cos (θpi) lo sin (θpi) 0

]T
+ b, θpi = 2π

nf+1 × i, i ∈ {1, . . . , nf} (C-1)

Payload Initial Conditions The payload initial configuration is chosen at the origin. The
initial angular velocity was taken as Ωo(0) = [0.3 0.2 0.1]T [rad/s], and the initial linear
velocity as vo(0) = [0.3 0.2 0.1]T [m/s].

C-2-1 Selection of the Control Gains for the Payload Tracking Dynamics

The control gains for the payload tracking error were obtained via LQ-optimal pole placement
using the linearized system. All entries on the diagonal of the matrix gains were chosen to be
equal. The control gains were designed for the leader controlling the payload alone, such that
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Table C-1: Numerical parameters used in simulation. The corresponding variables are illustrated
in Figure C-1.

Symbol Value Units
Payload mass mo 10.0 kg
Payload radius lo 1.59 m

Payload Inertia
Ixx 6.333

kgm2Iyy 6.333
Izz 12.665

UAV mass mi 1.0 kg

UAV Inertia
Ixx 0.062

kgm2Iyy 0.062
Izz 0.125

Cable length li 1.0 m

Table C-2: Table with the control gains for the payload tracking dynamics: In case of matrix
gains the listed value was taken on all diagonal entries.

Description symbol value
Configuration tracking Ksum, ksum 2.53
Velocity damping ζsum, βsum 3.16

a desired performance was achieved. These values are given by Ksum and ζsum in Table C-
2. For MRPs the tracking gain kσ must be multiplied by a factor of 16, due to the linearization.

With the addition of the follower agents the control effort was evenly distributed over the
agents, e.g. if the centralized design gave Ksum this gives the ith-agent’s control gain as
Ki = Ksum/n, where n is the total number of agents. The leaders’ gain was taken equal to
that of the followers, Kl = Ki = Ksum/n.

C-3 Simulation Model of the Payload Towed by UAV

This section describes the construction of the model used to simulate the ATP, where the UAV
are connected to the payload via cables. It is here chosen to use a constrained representation,
where the system is modeled as multiple unconstrained bodies, and the constraints are added
via Lagrange multipliers. For the interested reader, the constraint free model is derived in [15].
The aim is to obtain a set of ordinary differential equations that can be numerically integrated
to obtain the system motion.

Unconstrained Equations of Motion Consider the payload and UAV as depicted in Fig-
ure 5-2 and Figure 5-3. The unconstrained equations of motion consist of the rigid body
motion of the payload, and the point mass dynamics of the nf -UAV. This gives autonomous
unconstrained motion as,

MẊ = F (C-2)

Master of Science Thesis P. van den Bos



140 Numerical Values used for Simulation

whereM, X and F are defined as

M =



Io 0 . . . . . . 0

0 moI
...

... m1I
. . .

mnf I

I
I

I
...

... . . . 0
0 . . . . . . 0 I



, X =



Ωo

vo
v1
...
vnf
σo
ro
r1
...
rnf



, F =



−Ω̃oIoΩo

mogb̄3
m1gb̄3

...
mnf gb̄3

Ξ (σo) Ωo

vo
v1
...
vnf


(C-3)

where I = I3×3 and the zeros are of appropriate dimension.

Addition of the Cable Constraints The UAV are connected to the payload via the cables,
for the geometry see 5-2. This gives the constraint connecting the ith-UAV to the payload as,

Di = 1
2 ‖ro +Ropi − ri‖2 − 1

2 l
2
i = 0 (C-4)

The jacobian of the above constraint to the state X is given as,

Ji (X ) = (ro +Ropi − ri)T
[
−Rp̃i I 0 . . . 0 −I 0 . . . 0

]
(C-5)

where the left-most identity matrix above selects the velocity vi of the ith-UAV. The time
derivative of the jacobian is given as,

J̇i (X ) = (vo −Rop̃iΩo − vi)T
[
−Rp̃i I 0 . . . 0 −I 0 . . . 0

]
+ (ro +Ropi − ri)T

[
−RΩ̃op̃i 0 0 . . . 0 0 0 0 0

] (C-6)

The acceleration of the constraints can then be represented as,

D̈ = J (X ) Ẋ + J̇ (X )X = 0 (C-7)

Constrained Equations of Motion The constraints are added to the unconstrained equations
of motion using Lagrange multipliers. Adding the constraints to the equations of motion gives,[

M J (X )T
J (X ) 0

] [
Ẋ
λ

]
=
[
F (X )
−J̇ (X )X

]
+
[
Uext

0

]
(C-8)

where the Lagrangian multipliers λi will equal the tension forces in the cable, and the vector
Uext allows for external forces and torque to be applied to the system.
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Numerical Integration For the numerical integration of (C-8) consider bypassing the com-
putation of λ by computing the inverse of the left hand matrix as,[

A11 A12
A21 A22

] [
M J T
J 0

]
=
[
I 0
0 I

]
(C-9)

where the dependency on X is omitted for ease of exposition. Solving the above for A gives

A11 =M−1 −M−1J T
(
JM−1J T

)−1
JM−1, A12 =M−1J T

(
JM−1J T

)−1

A21 =
(
JM−1J T

)−1
JM−1, A22 = −

(
JM−1J T

)−1

(C-10)
The motion of the aerial towing system is then described by the following ordinary differential
equations,

Ẋ = A11 (F + Uext)−A12J̇ X (C-11)

Equation (C-11) is integrated numerically using the Runge and Kutta 4 scheme.

Coordinate Projection The numerical integration is not perfect and will result in the buildup
of integration errors. This will cause the bodies to drift away from one another. To prevent
this the system state is projected back to the constrained surface after each integration step.
Using linear least squares the point on the surface that is closest to the current state can
be found. Since the constraints are nonlinear this linear projection is iterated until the error
is sufficiently small. For the velocities the problem is linear, and thus a single linear least
squares step suffices.
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Appendix D

Additional Simulation Results

This appendix shows additional simulation results. These results were found to be comparable
to the results already presented, but are added for completeness. In D-3 the translation
dynamics for the underactuated geometric appraoch is shown. These results are comparable
to those discussed in Section 2-4. In D-1 and D-2 the simulation results for the Nonlinear
Dynamic Inversion (NDI) based approach in Proposition 4-3.1 are shown. Again, these results
are similar to those discussed in Section 4-5, and the same conclusion follows.
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Figure D-1: Simulation results of the attitude dynamics for the under actuated CMP with NDI
(Proposition 4-3.1): From left to right and top to bottom the plots show, (a) the payload MRPs
velocity, (b) the payload MRPs, (c) the torque applied by the leader, (d) the leader tracking
error, (e) and (f) the mean of the agent’s estimation errors regarding the angular velocity and the
tracking error, and (g) and (h) the disagreement of the agent’s estimation errors. The three colors,
blue red and yellow, represent the x, y and z directions of the corresponding three dimensional
vectors. The black dashed line in the attitude plot shows the leader reference MRPs. The leader
applies a reference step to the desired payload attitude at t = 4[s], corresponding to a θ = 60 deg
rotation about the ε = [3 2 1]T axis. The colored dashed lines in the payload attitude and
leader torque plot show the simulation result for the case that the leader is controlling the payload
alone.
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Figure D-2: Simulation results of the translation dynamics for the under actuated CMP with
NDI (Proposition 4-3.1): From left to right and top to bottom the plots show, (a) the payload
linear velocity, (b) the payload position, (c) the force applied by the leader, (d) the leader tracking
error, (e) and (f) the mean of the agent’s estimation errors, and (g) and (h) the disagreement
of the agent’s estimation errors. The three colors, blue red and yellow, represent the x, y and z
directions of the corresponding three dimensional vectors. The black dashed line in the position
plot shows the leader’s desired position, changing from the origin to rdes = [3 2 1]T at t = 4[s].
The colored dashed lines in the position and force plot show the simulation result for the case
that the leader is controlling the payload alone.
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Figure D-3: Simulation results of the translation dynamics for the underactuated CMP using the
geometric control law (Proposition 3-4.1): From left to right and top to bottom the plots show,
(a) the payload linear velocity, (b) the payload position, (c) the force applied by the leader, (d)
the leader tracking error, (e) the mean of the agent’s estimation errors, and (f) the disagreement
of the agent’s estimation errors. The three colors, blue red and yellow, represent the x, y and z
directions of the corresponding three dimensional vectors. The black dashed line in the position
plot shows the leader’s desired position, changing from the origin to rdes = [3 2 1]T at t = 4[s].
The colored dashed lines in the position and force plot show the simulation result for the case
that the leader is controlling the payload alone.
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Glossary

List of Acronyms

CoG Center of Gravity

CMP Cooperative Manipulation Problem

ATP Aerial Towing Problem

UAV Unmanned Aerial Vehicles

Force-ANTS Force-Amplifying N-robot Transport System

PBC Passivity Based Control

MRPs Modified Rodrigues Parameters

CRPs Classical Rodrigues Parameters

NDI Nonlinear Dynamic Inversion

LQ Linear Quadratic

IKP Inverse Kinematics Problem

DKP Direct Kinematics Problem

IMU Inertial Measurement Unit

LF Leader-Follower

PD Proportional Derivative
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