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Economic Nonlinear Model Predictive Control of
Prosumer District Heating Networks

Max Sibeijn"”, Graduate Student Member, IEEE, Saeed Ahmed", Member, IEEE,
Mohammad Khosravi”, Member, IEEE, and Tamdas Keviczky"™, Senior Member, IEEE

Abstract—In this article, we propose an economic nonlinear
model predictive control (MPC) algorithm for district heating
networks (DHNs). The proposed method features prosumers,
multiple producers, and storage systems, which are essential
components of 4th-generation DHNs. These networks are char-
acterized by their ability to optimize their operations, aiming
to reduce supply temperatures, accommodate distributed heat
sources, and leverage the flexibility provided by thermal iner-
tia and storage—each crucial for achieving a fossil-fuel-free
energy supply. Developing a smart energy management system
to accomplish these goals requires detailed models of highly
complex nonlinear systems and computational algorithms able
to handle large-scale optimization problems. To address this,
we introduce a graph-based optimization-oriented model that
efficiently integrates distributed producers, prosumers, storage
buffers, and bidirectional pipe flows, such that it can be imple-
mented in a real-time MPC setting. Furthermore, we conducted
several numerical experiments to evaluate the performance of the
proposed algorithms in closed loop. Our findings demonstrate
that the MPC methods achieved up to 9% cost improvement
over traditional rule-based controllers while better maintaining
system constraints.

Index Terms—District heating networks (DHNSs), economic
model predictive control (MPC), large-scale systems, nonlinear
MPC.

I. INTRODUCTION

HE energy transition requires a major shift from fossil

fuel-based generation to renewable energy sources. In
particular, the electrification of heat production is expected to
grow enormously, see [1]. Given that the thermal energy sector
contributes roughly 50% to the total final energy consumption
within the EU [2], the need for sustainable heating becomes
ever more substantial. Simultaneously, a global increase in the
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Fig. 1. Schematic of a DHN with multiple substations (consumers) and
production points.

burden on power grids is evident, driven by rising electricity
demand (e.g., heat pumps and electric vehicles) and fluctuating
supply from renewables (e.g., wind and solar).

In order to address the higher demand and capacity
limitations, a possible solution is to expand the existing
infrastructure of power grids. However, expanding power grids
is typically costly, time-consuming, and held back by a lack of
appropriate regulatory frameworks [3]. An alternative solution
is offered by the energy flexibility of district heating networks
(DHNs). DHNs are networks of pipelines that transport heated
water by circulating it around a district or city. Heat is either
taken from or added to the network through heat exchangers
located at consumers and producers, respectively. An example
of a DHN is shown in Fig. 1.

The district heating offers numerous advantages. Economi-
cally, it is cost-effective to implement large installations that
require less capacity due to simultaneous use. In addition,
DHNSs possess significant thermal inertia, allowing them to
efficiently utilize free or inexpensive heat from industrial
processes or underground geothermal sources. This charac-
teristic provides DHNs with a synergistic element, often
referred to as the economy of scope [4]. Moreover, DHNs can
create and exploit flexibility on daily operational timescales
by responding to market conditions, which can, in turn,
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alleviate strain on the electricity grid. Nevertheless, DHNs
are large-scale systems with many distributed controllable
assets. As a result, advanced control strategies are nec-
essary for the effective operational management of these
networks.

In the past, operational management of DHNs used rule-
based controllers that set supply temperatures based on the
outside temperatures [S5], while mass flows were controlled
locally at substations using simple tracking controllers. For the
new generation of DHNS, referred to as 4th-generation district
heating [6], these control methods are insufficient. Several
studies [5], [6], [7] emphasize the need for advanced control to
achieve necessary goals, such as supply temperature minimiza-
tion, creation of flexibility, distribution of heat generation, use
of renewable energy sources, and fair sharing of heat. Closed-
loop optimization-based control methods, such as model
predictive control (MPC), are at the intersection of stabiliz-
ing control and operational optimization [8]. MPC combines
the classical benefits of stabilizing control—such as robust-
ness to demand prediction errors and model mismatch—with
the advantages of optimization techniques. Therefore, MPC
presents itself as a suitable and effective strategy for managing
DHNs [7].

A. State of the Art

Classical control methods for DHNs relied on controlling
the temperature and the differential pressure at central supply
units. For details on these methods, we refer to [4] and [7],
and the references therein. Recently, graph-based modeling
techniques for DHNs have been a useful tool for developing
various stabilizing controllers for both the hydraulic and
thermal management of DHNs. In this context, the pressure
and flow regulation problem was addressed in [9] and [10],
temperature regulation was studied in [11] and [12], and the
stabilizing control of both storage and temperature in a DHN
was studied in [13], [14], and [15]. Moreover, the works [14],
[15] introduced a multiproducer graph model integrating the
dynamic evolution of storage volumes.

Operational optimization of DHNs has been a topic of inter-
est for several decades, with earlier works dating back to the
1990s [16], [17]. These studies highlighted the complexity of
managing load distribution while simultaneously minimizing
supply temperatures, a challenge stemming from the nonlinear
nature of thermal transients and their dependence on flow rates.
Recent studies, such as [18], have addressed thermal transients
and variable flow rates through the development of open-loop
optimization-based controllers using graph-theoretic models
based on partial differential equations (PDEs) governing the
1-D pipe dynamics. This work also employed a complemen-
tary constrained formulation, originating from the literature
on gas transportation networks [19], to manage switching
flow directions. However, the closed-loop implementation and
important 4th-generation DHN features, such as multiple pro-
ducers or storage, were not studied in [18].

Regarding MPC, the nonlinear nature of DHNs often com-
plicates the design of a real-time implementable controller.
Hence, several linearized formulations have been proposed, see
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[20], [21], [22], [23]. Recently, a nonlinear MPC and a mixed-
integer nonlinear MPC were introduced for a small-scale
network [24], [25], allowing the neglect of thermal transients
to maintain a tractable formulation. Similarly, Frison et al.
[26] developed an MPC algorithm for prosumer DHNs with
storage, leaving out thermal transients and heat losses. While
computationally attractive, disregarding thermal transients is
not suitable for large-scale DHNs due to the significant time
delays [16]. A nonlinear MPC scheme that considers thermal
transients, multiple producers, and storage was considered
in [27]. Nonetheless, a stabilizing scheme was employed
instead of an economic scheme, the management of pressure
and Kirchhoff loop constraints was not rigorously addressed,
and prosumers were not included. Finally, La Bella et al.
[28] developed a nonlinear MPC for the AROMA network,
incorporating fixed-volume layered storage, as one subsystem
within a multicarrier energy system. However, this work did
not account for multiple producers, prosumers, or bidirectional
flows.

While significant advancements have been made in the oper-
ational optimization and control of DHNs, current methods
often lack consideration of essential features of 4th-generation
DHNSs, such as multiple producers, prosumers, bidirectional
flows, and thermal transients. In addition, many approaches
do not consider an economic objective or do not consider
the complexity and scalability necessary to manage large-
scale networks in real time. These gaps highlight the need
for further research to develop comprehensive solutions that
integrate these elements and address the computational chal-
lenges inherent in MPC for DHNs.

B. Contributions

In this work, we focus on the economic MPC of DHNS.
Hence, we consider the problem of scheduling and manage-
ment for economic operations. We state our contributions as
follows.

1) We provide a control- and optimization-oriented, graph-
theoretic model for DHNs that includes the following
features: multiple producers, prosumers, storage, bidi-
rectional pipe flow, thermal transients, adaptable model
resolution, and a generalized Kirchhoff loop convexifi-
cation approach that applies to DHNs with all previously
mentioned features. We note that, to the best of the
authors’ knowledge, this is the first work to integrate all
these features. In particular, we highlight the inclusion
of prosumers, formerly only considered without thermal
transients in [26], and the generalization of the Kirchhoff
loop convexification approach, previously limited to
single-producer DHNs [29].

2) We introduce a novel economic nonlinear MPC algo-
rithm for DHNs and we provide numerical analysis of
the convergence properties of the proposed controller.

3) We conduct a comprehensive study into the numeri-
cal performance of the proposed control methods in
a closed-loop setting, specifically examining the added
value of incorporating storage and multiple producers.
In addition, we provide an in-depth analysis of the
computational efficiency of our algorithms.
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This article is structured as follows. In Section II, we
introduce our general approach used to model DHNs. The
following two sections are dedicated to specific modeling
techniques for the hydraulic system (Section III) and the
thermal system (Section IV). In Section V, we formulate
the economic MPC problem and discuss the practical and
theoretical convergence properties of the closed-loop system.
Finally, Section VI contains the simulation results.

II. DHN MODEL

In this section, we detail the fundamental modeling choices
and conventions, certain parts of which have been introduced
in earlier work by Sibeijn et al. [30]. First, we define the graph-
theoretic notions used to model the DHN in Section II-A.
Subsequently, we discuss the transient thermal dynamics of
pipe flow in Section II-B, and conservation constraints that are
enforced through nodes in Section II-C. Finally, we introduce
an example DHN called the AROMA network in Section II-D.

The modeling framework builds upon a fundamental char-
acteristic of DHNs: their symmetric structure consisting of
parallel supply and return pipelines. The supply network
delivers hot water from heat sources to consumers, while the
mirrored return network carries the cooled water back for
reheating. This configuration enables cost-effective installation
through shared infrastructure while supporting various pipe
arrangements for efficient heat distribution [31], [32].

A. Graph Model

The DHN consists of hydraulic and thermal components
such as pipes, junctions, pumps, valves, heat exchangers,
and buffers. We model this network as a strongly connected
directed graph G = (N,&) with a set of nodes A that
represent junctions in the DHN, which are connected by edges
E C N xN, representing pipelines that may be fit with pumps,
valves, or heat exchangers. Note that strong connectivity of G
ensures no mass exits the system.

For the ease of discussion, let A/ be characterized as N :=
{1,2,...,IN1}. The adjacency matrix D € {0, }NXWI of G
describes node-to-node connections, i.e., for any (i, j) € N x
N, we have

1, if(@,j)e€

Dij = .
0, otherwise.

ey

Given an enumeration for the edges of the graph modeling
our DHN, the incidence matrix E € {-1,0, 1}NIXIEl of G
describes the edge-to-node relationship, i.e., for any (i,k) €
N x{1,2,...,|€]}, we have

_1’
Eyp =41,
0, otherwise.

if the kth edge exits node i

if the kth edge enters node i 2)

In our model of the DHN, nodes correspond to volume-
less junctions and edges correspond to pipes that may be
equipped with heat exchangers, valves, or pumps [15]. On
the other hand, for the sake of simplicity, we consider storage
to consist of a fixed volume set of pipe segments, as used
in [28], rather than the varying volume approach adopted by
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Machado et al. [15]. Consequently, the dynamic evolution of
pressure and temperature within junctions reduces to algebraic
equations, with pressure and temperature behavior fully deter-
mined by the edge dynamics.

B. Edge Dynamics

We model the dynamics of an edge representing a pipe,
potentially equipped with a heat exchanger, pump, or a valve,
through an approximation of the 1-D compressible Euler
equations and the thermal energy equation for cylindrical pipes
[18], [33]. Hence, the dynamics of edge e € £ are described
through the following PDEs:

6tpe + ax(peve) =0 (3)
3:(PeVe) + 3x(,0eV§) + 6xpe +,0e82e
+ Koo Irlve =0 )
e Ke
atTe + Ve 6xTe + p_axve - |V6|v§
PeCp 2¢,d,
4U,
+ (T,-T,) =0 3)
PeCpde

which are essentially characterizing the temporal and spatial
evolution of three central variables; temperature T,(t, x) [K],
flow velocity v.(t,x) [m-s™'], and pressure p.(t,x) [Pa] of
water. The other parameters are the density of water p, [kg -
m™], gravity g [m s72], slope of pipe Z, [-], friction coefficient
K, [-], diameter of pipe d, [m], heat transfer coefficient U, [J-
m~2K"'], specific heat capacity of water ¢, [J-kg 'K™'], and
ambient temperature 7, [K].

Concerning the dynamics of DHNS, it is commonly assumed
[18], [33] that the water inside the system is incompressible
and has constant density, i.e., we have d,v, = 0, 9,0, = 0,
and d,p, = 0, for each e € £. Moreover, heat generated
through friction is negligible in practice [33], particularly
compared to other terms in (5). Therefore, we omit the
term (K, /2cpde)|ve|v§ from (5). Moreover, since pipelines are
typically laid underground at constant depth [32], we assume
no elevation differences throughout the network, ie., Z, =
0, Ve € £. In addition, considering the significant separation
in time scales between thermal and hydraulic dynamics, and
since the frictional term in (4) dominates the inertial term [34],
one can neglect dynamics on the flow rate, i.e., 9,v, = 0, for
any e € £. Thus, for the dynamics of edge e € £, we have the
following equations:

P

axpe + Ke ng |Velve =0 (6)
4U
81‘Te + VeaxTe + - T.-T,)=0. @)
peyd,

C. Nodal Constraints

The nodal constraints follow from conservation laws. At
each network node, the conservation of mass principle com-
bined with the incompressibility assumption requires that the
total volumetric flow rate entering the node equals the total
volumetric flow rate exiting the node. More precisely, for any
node n € N, we define the edge sets £_,, = {e € £: e enters n}
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Fig. 2. AROMA DHN with multiple consumers, a prosumer, a storage buffer,
and a loop.

and &,_, = {e € &: e exits n} as the set of entering and exiting
edges, respectively. Subsequently, we obtain

Y a=>" g0 ®)

e, ee&,,

where ¢.(f) = D.v.(f) is the flow rate in pipe e with @,
the cross section of pipe. In addition, energy balance should
also be considered for any node, which can be described as
a mixing rule determining the relationship between the exit
temperature of a node as a function of temperatures of entering
flows. Accordingly, one can employ a mixing rule that takes a
flow-weighted average of the incoming temperatures, as in [15]
and [18], to obtain the temperature of a node. More precisely,
for the temperature of any node n € A/, we have

>ece, 4eOTe(D)
Zeefﬁ,, q.(t)

Also, the temperature of any edge exiting a node is expected
to be the same as the node temperature, i.e., we have

YneN Vecé,,.

Ty(n) = €))

T,(t) = T, () (10)

The equations presented so far give rise to a graph theoretical
model for DHNs. Thus, the system is described through a
set of partial differential-algebraic equations (PDAEs), namely,
(6)—(10), which is used as the base formulation for our future
derivation in this article. It is worth noting the DHN model in
the current form is not applicable for optimization purposes
mainly due to the complex infinite-dimensional nature of the
mentioned PDAEs. Accordingly, in Sections III and IV, we
develop more tractable and yet realistic models, suitable for
optimization-based control strategies.

D. AROMA: A Benchmark for DHNs

Before proceeding, we introduce the AROMA DHN, which
is widely used in the DHN literature as a benchmark example
to evaluate the performance of numerical algorithms, see [18],
[28]. Therefore, we will employ this network to demonstrate
the methodology developed in this article. The network,
depicted in Fig. 2, features multiple consumers, producers,
and a storage unit. Originally, the AROMA network con-
sisted of only a single producer without any storage included
[18]. Recently [28], storage was featured in the network by
augmenting the AROMA network model. Considering that
we are focused on the general case of DHNs, namely, with
multiple producers/prosumers, for the demonstration of the
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Fig. 3. Directed graph abstraction of the AROMA DHN with fixed flow
directions. Double-sided arrows indicate the two opposite-facing edges.

proposed modeling scheme and the numerical validation of
the developed methodology in this article, we additionally
augment the AROMA DHN to accommodate the mentioned
extensions and features. Nevertheless, one should note that our
methodologies are applicable beyond the AROMA network.

III. DHN MODEL: A TRACTABLE REFORMULATION FOR
THE HYDRAULICS

In this section, we improve the tractability of the DHN
model introduced in Section II, with a particular focus on
the hydraulic dynamics described by (6) and (8). To this end,
we first introduce a new graph to accommodate bidirectional
flows. Second, we describe the method used to compute a
set of independent cycles that fully describe the mass flowing
through the network. Third, we address the treatment of the
momentum equation and introduce a convex reformulation for
these constraints.

A. Fixing the Flow Direction

Considering the graph abstraction of a DHN as shown in
Fig. 2, each pipeline is represented by a string of edges
connected in series. Thus, in the coarsest representation of
our system, we have exactly one edge for each pipeline until
it reaches a junction. Hence, we have |£| pipelines, where with
respect to each e € £, we define flow variables g, that belong
to the interval Q, = {q,: q,<4ge < q,}, where g, > 0.

While seemingly a relatively minor detail, allowing the
direction of the flow to switch during the operational phase
has significant implications for the modeling procedure and
complicates the design of a tractable controller. Therefore, for
the edges where directional switching is allowed, i.e., fore € £
with q,< 0 and g, > 0, we decompose the corresponding flow
variable as follows:
with ¢/, ¢, >0, and ¢/ g, = 0.

e =

(1)

In terms of the graph, we obtain a new graph G+ = (N, )
with additional set of edges £T = EUAg, where Ag = {(v,u) ¢
Ele=(u,v)e& and q, < 0}. To illustrate, we depict GT for
the AROMA network in Fig. 3. Here, G* is directed, and
double-sided arrows indicate pipelines that allow bidirectional
flow. The direction matching the original orientation in G will
have the flow qj associated with it, while the newly added
reverse edge has g, associated with it.

Remark 1: In typical DHNs, bidirectional flow is neither
necessary nor practical for all pipeline segments. However, the
bidirectional flow capability is essential for enabling prosumer

qe =g —4q,,
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operation in the network. The determination of flow direction-
ality is made during the design phase through the systematic
analysis of network architecture. Therefore, not all edges in
Fig. 3 are bidirectional. o

B. Independent Flows

We denote the vector of edge flow rates as g = [geloce+-
The flow on an edge depends linearly on the flow on all other
edges in the network due to the conservation of mass. As a
result, we can reduce the number of free flow variables that
we need to optimize for. To this end, we introduce the reduced
loop matrix F, which maps the reduced flow vector ¢, € Rﬁ’
to g through

q=Flq, (12)

with m, < |ET|. Intuitively, the vector g, represents the flow
that circulates the network, meaning that it passes through a
supply section and its mirrored return section reaching back
to its starting point. In the process, these flows pass through
producers, consumers, or storage. In addition, we introduce
the fundamental loop matrix F which maps all fundamental
flows g € R™ 1o g, i.e.,

q=FTqy (13)

with my < m,. The vector g5 depends linearly on the elements
of g,. The matrices F, and F consist of columns that describe
directed cycles within G*. Nonetheless, F is a full column
rank while F, may not be. Similarly, g, is a vector in the
positive orthant, whereas the entries of g, are not required
to be nonnegative. The reason for introducing both F, and F
is that the nonnegativity of g, in (12) significantly improves
the numerical results compared to using (13), while F is
primarily employed for theoretical purposes, as further detailed
in Section III-D.

In [9], a method is presented to compute the fundamental
loop matrix F by setting the free flow variables as they flow
through the chords of the spanning tree of G. Consequently,
a fundamental loop is defined as the loop that is formed
whenever a chord is reconnected to the spanning tree. Then,
the fundamental loop matrix F has elements F;; € {-1,0, 1},
for all i and j, depending on the orientation of the chord and
whether an edge is part of a fundamental loop.

To preserve the nonnegativity of all elements in F, we
develop a slightly different approach to compute F. To this
end, we need the notion of a directed cycle [35].

Definition 1 (Directed Cycle) A directed cycle C in G is a
sequence of nodes and edges as (ng, 1,1y, €z, ..., ek, n;) such
that the following hold.

1) ng,ny,...,n; are different nodes.

2) e = (n,-_l,n,') for i = 1,...,](.

3) ng = ny.

where two sequences are an equivalent cycle if one can be
obtained from the other by a cyclic permutation.

Let S(G) = {Ci(G)} be the set of all directed cycles within G.
The matrices F, and F can be computed through the following
procedure.

1) Compute all directed cycles S(G') in GT.
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2) Remove any cycles that consist of at most two nodes.

3) Remove any asymmetric cycles, i.e., cycles for which
their path is not mirrored between the supply and return
network. We call this reduced set S.(GT).

4) Define reduced loop matrix F, with elements

1, if edge j € Ciand cycle C; € S, (GT)

F,ij=
Sl .
0, otherwise

where F, has m, = |S(GT)| rows and |£T| columns.
5) Compute F by performing a pivoted QR factorization on
F as follows:

F'P=QR (14

where R € RETIXm g ap upper triangular matrix,
Q€ RIETIXIETT s an orthonormal matrix, P € R"™*"r
is a permutation matrix, and the columns of FP are
projected onto an orthonormal basis spanned by the
columns of Q. If rank(F,) = my < m,, all elements R;;
with i > my are 0, indicating that corresponding columns
of FP lie in the subspace of all prior columns. Hence,
we obtain the fundamental loop matrix by taking only
the first my columns of F|P as follows:

_ T Imf '
(oofi)

The set of remaining cycles is denoted by Sp(G™).

(15)

Matrix F, constructed via QR factorization with column piv-
oting on F, inherits nonnegativity from F, and possesses full
column rank, ensuring mass conservation within the network.

Remark 2: We note that, in principle, the rows of the
computed fundamental loop matrix span the same basis as
the row space of the matrices introduced in [9] and [15]. The
only difference is that, in this context, we exclude asymmetric
cycles without the loss of generality. o

C. Treatment of the Momentum Equation

In practice, due to the significant time scale separation
between the hydraulic and thermal dynamics, the control of
corresponding components within the DHN is executed over
different time intervals. Thus, the dynamic behavior of flows
and pressure throughout the network is less of a concern
here. Nonetheless, one needs to certify the feasibility of the
hydraulic operation. More precisely, we want to identify a set
Q, such that for all g € Q, pressure remains within the limits at
all nodes of the network, and Kirchhoff’s second law, stating
that the sum of pressure differences along each loop in the
network equate to 0, is satisfied.

One can approximate the conservation of momentum equa-
tion (6) by substituting v, with v, = (4q./nd>) and discretizing
0xp = (Ap./L.), where L, denotes the pipe length, for each
e € £'. Accordingly, one obtains the equation describing
pressure drop over pipe segment e caused by friction as

follows:
K,
Ape=8pLem|qe|qe=Rﬂ,eq’:‘ Vee T (16)

where R, . is a combined constant term representing the fric-
tional resistance in the pipe. Additionally, the sign dependency
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for g, is removed according to (11), i.e., the flow direction on
each edge is fixed.

We define the sets P ¢ £ and V C £T that contain the
edges with a pump and a valve, respectively. Then, for each
edge e € P, the pressure change over e is described by

Ap, = Ru,qu = he(re)

with h,(r.) = c.r. being the pressure difference induced by the
pump, c, being the maximum pumping power capacity, and
r. € [0, 1] being the normalized pump speed. In addition, for
each edge e € V, the pressure drop over e is described by

(18)

a7

Ap, = y,eqz + Rv,e(ve)‘ﬁ

where 0 < R,.(v,) < oo is a time-varying control variable
and v, € [0,00) is the position of the valve such that
R,.(0) = O corresponds to the full opening of the valve and
lim,, e Ry.(v.) — oo corresponds to the full closing of the
valve. Here, we are not considering specific valve types and
characteristics. It is sufficient to only assume that any increase
in v, will increase the resistance over the valve such that R, ,
is strictly monotone. Nonetheless, for ease of discussion, one
can consider R,, to be linear in v, € [0, o), i.e., we have
R,.(v.) = R,.v., where R, is a positive scalar indicating the
resistance coefficient of the valve.

D. Convex Reformulation of the Kirchhoff Loop Constraints

The constraints imposed by (16)—(18) are nonconvex with
respect to the flow rate due to the quadratic friction terms,
and therefore, they need to be reformulated. More precisely,
defining ST(GT) as the set of all cycles in GT independent of
the direction of the edges, Kirchhoft’s second law states that

> Ap;=0 VC eST(GT)

eeC;

19)

i.e., for each cycle, we need to satisfy a quadratic equality
constraint, which is essentially nonconvex.

The pressure is defined pointwise in space, and therefore, we
consider a pressure variable p,, for each n € A Let p, € RWI
be the vector of nodal pressures and Ap, € RE" be the vector
of pressure differences over all edges. Combining (16)—(18),
we have

—E"p, = Ap. =R(v)(q© q) — H(r) (20)

where © denotes the elementwise product of two vectors,
R(v) = R, +R,(v) is a diagonal matrix that has on its diagonal
the sum of resistances due to friction and valve effects on
each edge, and H(r) is the vector of induced pump pressure
difference for each edge. As in [15], we multiply (20) from
the left by F' to obtain the sum of pressure difference overall
fundamental cycles as follows:

—FE'p, =Y Ap.=0 VCieS;(G"). 1)
eeC;
Subsequently, combining (20) and (21) leads to
FR(v)(q©q) = FH(r) (22)

implying that the sum of all pressure drops due to valve effects
and friction in any directed cycle of the graph should be equal
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to the sum of all induced pump pressure differences within that
same cycle. Similarly, we introduce the inequality

F/R.(q0q) < F.H() (23)

where 1 denotes the vector of all ones, ie., 1 =[1,...,1]".
Equation (23) represents an upper bound on the induced
pressure difference along each loop and corresponds to the
scenario, where all valves are maximally open and all pumps
are operated at maximum capacity, i.e., v, = 0, Ve € V, and
ro=1,VeeP.

Before proceeding to the main result of this section, we
need to introduce the following assumption.

Assumption 1: There are [V| > m edges with a valve placed
throughout the network, and the position of these edges is such
that rank(FII) = my, where II € {0, 1}'5+|X|V| is a selection
matrix with entries

1, if valve k is on edge e

Hek = .
0, otherwise

for any e € {1,2,...,|£7|} and any k € {1,2,...,|V|}. Since
FII is full row rank, it can be mapped back to F through a
linear transformation, i.e., we have

F = FII¥ 24)

where ¥ = (FIT)'F and (-)" denotes the Moore-Penrose pseu-
doinverse. Let mg be the dimension of the null space of matrix
FII. We assume that there exist matrices Z;,7Z, € RmoxI€7I
such that

¥ +0OrmZ)HQA) > (Y + OrnZ) Ri(g© q)

where @ppy := I — (FII)TFII denotes the kernel of FII.

Before proceeding further, we need to highlight several
remarks about the introduced assumption.

Remark 3: Multiplying (25) from the left by F,II yields
(23). In the majority of cases, the validity of (23) implies
that (25) is also satisfied. Nonetheless, (25) can be explicitly
guaranteed by imposing it as a constraint within the MPC
formulation introduced in Section V. Note that, to ensure
convexity, it may be required to determine Z, a priori such
that ¥ + ®pp1Z;, is a matrix with nonnegative entries. o

Remark 4: One can easily ensure the existence of matrix Z,
such that the right-hand side of (25) is elementwise nonnega-
tive. To this end, we need to consider only the supply section
of the DHN. Then, the corresponding graph consists of source
nodes coming from producers, sink nodes reaching consumers,
and intermediate nodes that represent junctions. In addition,
we consider networks where the degree of each intermediate
node is at most three, meaning that each junction is either
a splitting node or a merging node. Valves are positioned in
reverse cascading order from consumers to intermediate nodes.
At splitting nodes, valves are required on outgoing edges,
except when an edge connects directly to another splitting
node. For merging nodes, valve placement is only necessary on
edges originating from producer nodes; otherwise, the analysis
proceeds to the subsequent node. This process is repeated until
all edges are traversed. We illustrate this procedure in Fig. 4.
The rationale for this valve-checking strategy is that it ensures

(25)
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Fig. 4. Valve checking procedure, described in Remark 4, illustrated by
showing the flow from producers (p) to consumers (c) going through the
supply network consisting of merging nodes (m) and splitting nodes (s).

the flow on any edge lacking a valve becomes a nonnegative
linear combination of the flows on edges equipped with valves.
Formally, this implies the existence of a matrix ¥ + ®pZ,
with exclusively nonnegative entries. o

Remark to Practitioners: While the valve placement strategy
may appear extensive, it reflects the fundamental requirement
that a high degree of freedom in flow control requires a suffi-
ciently high number of strategically placed pumps or valves.
In practical situations, where valve placement is restricted
by physical or economic constraints, analyzing (25) helps
determine where fewer valves can still preserve convexity. In
cases where achieving convexity is not feasible, it serves as
a practical tool for practitioners to uncover inherent system
limitations. These insights can support the design phase by
identifying the most impactful valve placements or guide the
development of operational constraints that satisfy (25) within
practical limitations. o

Remark 5: The valve placement approach described in
Remark 4 extends naturally to networks with bidirectional
edges, where nodes connect to edges that can experience flow
in both directions are treated as both merging and splitting
nodes to account for all operational modes. Nevertheless, for
bidirectional edges, a single physical valve suffices since only
one flow direction is active at any given time. Furthermore,
one should note that the introduced assumption on the total
number of required valves aligns with the literature on DHNs
[9], [15], where each chord of the graph’s spanning tree is
equipped with a valve. o

The following proposition guarantees that (23) is a sufficient
condition for (22).

Proposition 1: Let Assumption 1 hold. Then, for any ¢ that
satisfies (23), there exist v € R'}:' and r € [0, 1]'"! such that
(22) is satisfied.

Proof: Recall that, for any valve openings v, we have R(v) =
R, + R,(v), where R(v) is a diagonal matrix that has on its
diagonal the sum of resistances due to friction and valve effects
on each edge. Hence, we have

FR(v)(q© q) = FR, (O q) + FR,(v)(q © ). (26)

Furthermore, we know that, for any v, ¢, and II, there exists a
positive semidefinite diagonal scaling matrix Dg, and a vector
y = Dr,4v, where y represents a scaled substitute of the valve
openings, such that we can write R, (v)(q©®¢q) = Ily. Therefore,
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we have

FR(v)(q© q) = FR,(q © q) + FTly. (27)

Accordingly, to show that (22) holds for some y and r, we
need to verify the same argument for the following equation:

FH(r) = FR,(q © q) + FTly. (28)

If we set r = 1, then it is enough to show that there exists
y € [0, )VI such that

Flly=F (H1) - R,(q©¢)). (29)

From (23), we have that the right-hand side of (29) is ele-
mentwise nonnegative, which is necessary for the existence of
nonnegative solutions to y. Following Assumption 1, we know
that (29) can be written as follows:

FII(y—YH@) + YR, (g0 ¢q)) = 0. (30)

Hence, the solutions to (30) lie inside the null space of FII.
Accordingly, we know that, for each y satisfying (30), there
exists z € R™® such that

y=YH(1) -Y¥YR,(q©q) + Ornz

=W +0rmZ)HQ) - (¥ + OrnZ) Ri(q © q) (€1))

where 7,7, € RmMXET are the matrices introduced in
Assumption 1. Thus, due to (25), we have that y is a vector
with nonnegative entries, which implies that v > 0. More
precisely, there exist v € R'}:‘ and r € [0, 11! such that (22)
is satisfied. This concludes the proof. [

The previous proposition guarantees, for any ¢ satisfying
(23), the existence of v and r satisfying (22), and, therefore,
satisfying (21). In the following proposition, we show that (21)
implies (19), meaning that Kirchhoff’s second law is fulfilled.

Proposition 2: Under Assumption 1, we have that (21) is a
necessary and sufficient condition for (19), i.e., if there exists
a (g,v,r) such that (21) holds, then (19) is also satisfied.

Proof: Considering Sy € ST, from the definition of (19) and
(21), we know that (19) implies (21). Therefore, we only need
to prove the sufficiency part of the claim.

Let F; be the ith row of F, i.e., F; is a vector with elements
equal to F;; = 1 if j € C; and O otherwise. All cycles
Ci,Co,.. .,Cmf form a cycle basis for G+, which means that
there are my linearly independent basis vectors F Lseeos Fy
spanning the basis of all other cycles in the graph. As a result,
any vector F(©), which corresponds to a cycle C € ST\ Sy, can
be constructed by Fy,..., Fo, as the following integer linear

combination:
my
FO =" aF, (32)
i=1
where ai,...,a,, € Z. Therefore, for the sum of pressure

differences over C, we have

Z Ap, = F(C)Ape

eeC m my
= ZaiFiApe = Zai ZAPe-
i=1 i=1

ecC;

(33)
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Subsequently, from (21), it is implied that

2 Ape=0 (34)
eeC
which concludes the proof. [ |

In the following proposition, we present the key result
regarding the convexity of (23).

Proposition 3: Equation (23) is convex with respect to flow
vectors g and g,.

Proof: For i = 1,...,my, let matrix RL be defined as
follows:

R = diag(F,,)R, (35)

which is a diagonal matrix with nonnegative entries, and thus,
positive semidefinite. According to the definition of F,, R,
and h,, and (23), we have

q"R,q =) Reeq; <) h(1)=) c.

eeC; eeC; eeC;

(36)

for any i = 1,...,m,, which is equivalent to (23) and implies
that it is convex with respect to g. For any i = 1,...,m,, define
matrix Z' as follows:

Z' = F,RF]. (37)

Note that the positive semidefiniteness of RL implies the same
property for Z, for each i = 1,...,m,. From q = Fq,, one
has

4/ Zq, = (FTq,) R, (FTq) =q"R,q. (38)

Accordingly, we can write (36), or equivalently (23), as
follows:
@ 2q <) ¢ Yi=1,....m,

eeC;

(39)

which implies the convexity of (23) with respect to g,. This
concludes the proof. [ ]

The proposed propositions indicate the presence of a convex
reformulation of Kirchhoft’s second law through (23). Propo-
sition 1 shows that this reformulation ensures the existence
of a feasible set of valve openings necessary to achieve the
specified flow vector g. Moreover, Proposition 2 describes the
sufficiency of (21) for satisfying (19). Finally, we demonstrate
the convexity of (23) through a straightforward transformation
as detailed in Proposition 3.

Remark 6: More generally, we expect the results to hold
for other convex pressure-flow relationships, e.g., Ap = R,(q),
not just the quadratic one typical for turbulent flow in DHNS.
When replacing (16) with such a function, the optimization
problem preserves convexity, since the left-hand side of (23)
remains a sum of convex functions. Since Propositions 1 and
2 are independent of the specific form of R,(q), the arguments
should still apply. o

IV. DHN MODEL: A TRACTABLE REFORMULATION FOR
THE THERMAL DYNAMICS

To obtain a tractable formulation for the thermal dynamics
in the network, a suitable discrete spatial approximation of (7)
is required, for which we apply an upwind scheme. Therefore,
the dynamics of the ith finite volume cell of water can be
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Fig. 5. Illustration of TN model and mesh refinement of the DHN graph.
(a) Conceptual TN model with its dynamics defined by (41) and (b) injection
of TNs in a refinement of the AROMA network.

described by the following scalar continuous-time ordinary
differential equation (ODE):

ViTi = —qi(T; = Tiz1) — ai(Ti — T,) + wi
yi=qi(T; =T,)

(40)

where V; = ®;7,, denotes the cell volume, ¢; denotes the
mass flow of water, T; denotes the temperature of water in
the cell, 7;_; is the temperature of the inflow into the cell,
«; = 4U,V;/pc,d; is the heat loss coefficient, T, is the ambient
temperature, w; is a variable denoting the transfer of heat
from or to the environment, and y; is the output which is
proportional to the exergy. Note that, similar to [15], when
the cell represents a heat exchanger, w; indicates the transfer
of heat from one side to the other side, and otherwise, the term
w; can be dropped from (40). Hence, w; is a control variable
if it corresponds to a controllable producer, and a disturbance
if it corresponds to an uncontrollable producer or consumer.
We define the state variable x; as x; = T;—T,, assuming that
the ambient temperature is equal and constant for all cells, and
consider the corresponding dynamics described as follows:

Viki = =(gi + @i)xi + u; + w;

Vi = qiX;. (41)

Note that (40) is equivalent to (41) when u; = ¢;x;—;. From
here on, we consider any finite volume cell as a node, or more
precisely, a thermal node (TN), in the graph. The TN has a
compartmental structure as shown in Fig. 5(a).

Remark 7: The energy transfer rate w; and flow rate ¢g; in
(41) appear decoupled at first glance, however, their relation-
ship becomes evident under steady-state conditions (V; = 0),
where the energy balance shows that w; increases with g;,
leading to greater heat transfer at higher flows. o

A. State-Space Representation of the DHN Interconnection

To construct the model of the thermal system, we approx-
imate the spatial evolution of temperature along pipelines,
described by (7), through a finite sequence of partitions. We
adopt an approach similar to [36], where nodes represent
volumes of water and edges represent flow rates.
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1) Updating the Graph: We introduce intermediate nodes
on all edges of the original graph to increase the granularity
of the model and improve the approximation of (7). These
nodes follow the compartmental dynamics of (41), i.e., TNs.
Given the original graph G+ = (N, £1) with adjacency matrix
D%, we add [,; TNs to each edge i, creating m, = Z'lilﬂ Ly
total new nodes. The resulting augmented graph has adjacency
matrix D of dimension |N| + m,, as partially shown in
Fig. 5(b). Further details and explanation on how to obtain
D are provided in [37].

Remark 8: The extension of the graph does not change
the independent flow distribution in the network presented in
Section III. Without the loss of generality and for the ease of
notation, we use ¢ to denote the extended mass flow variable.
Nonetheless, considering the introduced graph augmentation,
the precise definition of the flow variable in the new setting
isg=[qi®1,] o ) o o

2) From Graph to State Space: Let G = (N,E) be the
resulting graph with IV = IN]+m, nodes and incidence matrix
E, where || and m, denote the number of junctions and TNs,
respectively. To model energy flow rates between nodes, we
define edge variable ¢.(g., x.) = g.x., which requires the root
node temperature for each edge since temperatures are node-
specific quantities. We obtain the network-wide energy flows
by

1 O
¢=50(E-E) x (42)
where |E| denotes the elementwise absolute value operator
of E, ie., |E| = [|Exll, x is the vector of state variables
defined as x = [x;];c5r, and Q is a diagonal matrix defined
as Q = diag(g;);cz- Subsequently, by multiplying ¢ with the
full incidence matrix, we obtain the energy balance on each
node. More precisely, we have

¢ =Eg (43)
where ¢ € RWI represents the nodal rate of change in
energy due to in-flows and out-flows. By including external
effects from heat exchangers and the environment, we can
introduce the complete state-space description through the
thermal dynamics of the network. To this end, given flow
vector g, we define matrix A(q) as follows:

1. O

Alg) = 3EQ(E|-E)" - D, (44)
where D, is the diagonal matrix of heat loss coefficients
characterized as D, = diag(a;);cxr. Also, let WV be the set of
nodes corresponding to heat exchangers in the network, i.e.,
W = {i € N : w; # 0}. Furthermore, we define a |N| x |W)|
matrix, denoted by B, with the entry in the ith row and jth
column given by

1
—, ifj=1,...,[Wland i = i;
PCp
0, otherwise

Bij = (45)

where iy,is,..
an increasing order, i.e.,

., are the elements of WV sorted in
i < I < -0 < i‘W|.
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Accordingly, the thermal dynamics of the network can be
described by

Vi =A(g)x + Bw

z=Cx (Pcr)
where V = diag(V;);c v is the volume matrix, and w = [w;liewy
is the vector of external inputs and disturbances. Note that
W can be partitioned into disjoint subsets W¢ and Wp
to distinguish between consumer and producer interactions,
respectively.

Remark 9: The volume matrix V is singular since V; = 0
for i € A/. One might suggest using a Schur decomposition to
eliminate the algebraic equations associated with the network
junctions. However, this approach requires inverting a sub-
matrix of A(g) and though A(g) is diagonal and invertible, it
depends on the control variable ¢, introducing nonlinear terms
that significantly complicate the optimization problem. o

B. Time Discretization

A discrete-time model is required for the MPC problem.
Due to the slow thermal dynamics of DHNs, online com-
putational constraints, and demand measurement intervals,
practical implementations typically use time steps 7, ranging
from 15 min to 1 h [18]. For explicit discretization schemes,
satisfying the Courant-Friedichs-Lewy (CFL) condition, i.e.,
qi(k)t, < V; Vi, k € N, is difficult when modeling with large
time steps. Hence, we employ the numerically stable implicit
Euler method

x(k+ 1) = x(k) + 7 fo (x(k + 1), u(k + 1)) (46)
where f is the continuous-time dynamics. The application
of the implicit Euler method to (Pcr) results in the following
discrete-time system:

Vx(k + 1) = Vx(k) + 7, [A(g(k)x(k + 1) + Bw(k)]  (47)
or, equivalently, we can split the algebraic part from the
equation by introducing a subset of variables x°(k) € R™
to denote the state of TN cells with positive volume and
X (k) e R to denote the state of junctions with zero volume.
As a result, we can describe the system through a discrete-time
differential-algebraic equation (DAE) as follows:

xXtk+1)= f(x” k), x/ (k),u(k),d(k))

0=g(x k), x (k),u(k),d (k). (Ppr)
The system’s dynamics are governed by the functions f and
g, which relate the state vector x(k) = [x°(k)T xj(k)T]T,
input vector u(k) = [q,(k)T P(k)T]T, and disturbance d(k).
A description of these variables is detailed in Table I. Note
that, in (Ppr), the previously mentioned external input w(k)
has been split into a controllable power injection part P(k)
considered in u(k) and a disturbance part considered in d(k),
which represents the consumer demand.
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TABLE 1
DESCRIPTION OF SYSTEM VARIABLES

Symbol Description Dimension
z¢(k) State: Thermal node temperature me
@ (k) State: Junction temperature [N
qr (k) Control input: Volume flow rate my
P(k) Control input: Power injection Wpe|
d(k) Disturbance: Consumer demand We|
z(k) Combined state vector N
u(k) Combined input vector mr + Wp]|

V. EcoNoMIC MPC FORMULATION FOR DHN's

In this section, we introduce our economic MPC scheme
for optimizing the performance of DHNs. To this end, we
formulate the MPC optimization problem, discuss the rele-
vant design choices for the objective function, and present
various computational techniques to improve the numerical
performance of the employed solvers.

A. Problem Formulation

Consider the discrete-time dynamics (Ppr). The receding
horizon optimal control problem (OCP) at time k is defined
as follows:

min  Jy ()N, )Nz
(x,)ﬁl,(u,)ﬁal N (( 1)1_1 ( f)t—O)

st.oxp =f (xf,Xf,Mr, df+k>

0=g (xf,x,j, uf,dt+k)

X € Xy4x (OCP)

u,EUH_k
Yte{0,...,N—1}
xo = x(k)

where x(k) is the current state at time k, the sets X, :=
{x 1 Fi(x) < 0} are time-varying constraint sets representing
operational bounds on the state, and the sets U, := {u : H,(u) <
0} represent the time-varying operational constraints on the
inputs, including the hydraulic constraints as defined in (11),
(12), and (39) from Section III. Let the solution of the OCP
for horizon N be denoted by (x}kv’k, “;v,k)’ where the subscripts
are included to stress the dependence of optimal solutions on
N and k. In MPC, the optimal control problem in (OCP) is
solved iteratively. In each step, the feedback control law is

(un)(x(k)) = ug

where uj is the first element of the optimal sequence uy ;.
Remark 10: The OCP yields an optimal volume flow rate
sequence, ¢g(k). However, direct actuation of valves by the
high-level MPC is impractical. Therefore, g(k) serves as a
setpoint for a lower level valve controller. o
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B. Objective Function

The objective function is a critical component in the design
of economic MPC schemes, allowing for the selection of a
cost function that accurately represents our practical goals or
specifications. Given the current objective of optimizing the
performance of the DHN, we define the objective function as
follows:

Iy = T4 I 4 gy e 4 gk (48)

where each of these terms reflects a desirable operational
feature or aspect, which are discussed as follows.

1) Price Term: The operational management requires min-
imization of operational costs. In addition, we assume
that part of the generating mechanism is linked to
a market, such as a heat pump purchased from the
electricity grid. Hence, we use a linear cost function

N-1
J]];\)]nce — ZR;)HCCPI (49)
t=0

where RP" represents the time-varying price, or relative
price, of generating P;.

2) Temperature Term: It is desired to operate DHNs at low
temperatures to improve their efficiency. Therefore, we
include a state term in the objective as follows:

N
I = DR (50)
t=1

with the penalty coefficient R™ and power index
p € {1,2} suggesting that the function can be linear or
quadratic in x.

3) Input Variation Term: It is undesirable to have fast
switching in supply temperatures in DHNs, primarily
due to the pipeline deterioration from the resulting
thermal stress [38]. Therefore, we consider a cost term
as follows:

N-2
S = YRS (P - P
1=0

(G

which penalizes input deviations between any successive
timesteps.

4) Storage Term: Minimization of operating costs and the
temperature usually do not favor the charging of a
storage buffer. Therefore, without any storage term, the
MPC typically stays in the discharging mode for all of
the storage units. To address this issue, we introduce
a terminal tracking cost on the temperature of storage
nodes as follows:

2
RS[O

(52)

Jls\}o — ”x?\t,o _ )_CS[()’

which is similar to the one employed in [28]. This
term will encourage the MPC to charge situationally
depending on the size of R*°.

5) Slack Term: The optimization is a large-scale nonlinear
program, where the dynamics and constraints change
in each iteration due to time-varying elements. Accord-
ingly, guaranteeing feasibility in every iteration is not
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always possible. On the other hand, certain constraints,
e.g., temperature bounds and demand satisfaction, may
not be hard constraints, meaning that a certain degree
of violation is allowed. For this, we introduce variables
o and a cost term as follows:

J}s\}ack = ||0-||??>Imck (53)

with R¥2k chosen to be large enough penalizing unde-
sired constraint violations.

C. Improving Numerical Performance

The design of MPC algorithms, which inherently involve
the iterative solution to an OCP, depends on the convergence
speed of the numerical solvers used to obtain the solution.
To this end, we implement various methods to improve the
computational performance, as discussed in the following.

1) Warm Starting: This technique can improve com-
putational speed by providing the numerical solver
with a near-optimal initial guess. After a single iter-
ation, we possess the N-step prediction of the state
x. Thus, in the next iterate, we initialize the solver
with xfTH AT b e ke ke where &
denotes the index for the current iteration. This process
is repeated for all subsequent iterations.

2) Objective Terms: Certain objective terms can assist the
numerical solver in finding a solution. In particular, we
noted that the input variation term (51) significantly
improves the speed of convergence.

Other approaches to reduce complexity include implement-
ing a control horizon or move blocking, which fix control
inputs over certain time periods, but may lead to restrictive
solutions, see [8], [39].

VI. NUMERICAL EXPERIMENTS AND RESULTS

In this section, to assess and verify the economic and com-
putational performance of our proposed methods, we perform
suitably designed numerical experiments and simulation stud-
ies. To this end, we compare the proposed method to existing
control strategies in the literature, including single-producer
MPCs (SP-MPC) algorithms, which are based on, or similar
to, optimization-based controllers used in [18] and [28]. In
addition, we compare with a rule-based control (RBC) scheme
implementation, which is close to the widely adopted approach
in practice for the control of DHNs. Furthermore, we perform
a numerical study to evaluate the computational tractability of
the proposed methods. In particular, we assess the impacts of
spatial oversampling and changing the prediction horizon on
the computational load and performance of the algorithms. The
DHN considered in our numerical experiments is the AROMA
network, introduced in Section II-D and illustrated in Fig. 6.

For our numerical experiments, we employ a standard laptop
with an Intel 17-1185G7 processor to run the simulations and
Julia creates the models. We use the mathematical program-
ming package JuMP,jl [40] to build the optimization problems,
Ipopt [41] to solve the problems, and DifferentialEquations.jl
[42] to simulate the DHN between iterations.
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Fig. 6. AROMA network is labeled with five consumers (labeled C), two
producers (labeled P), and a storage (labeled S). Dashed lines indicate pipes
on which bidirectional flows are allowed.
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Fig. 7. MPC feedback loop.

Before proceeding with the results, we introduce the ground
truth reference model to which we apply the generated
inputs, and, second, we discuss the physical parameters, load
profiles, and electricity price profiles that were used in all
simulations.

A. High-Fidelity Model

To assess the performance of the controller, we will apply
the inputs uy[x(k)] to a high-resolution simulator that accu-
rately describes the system. This simulator model, called here
the high-fidelity model, acts as a representation of the real
system. In [36], a detailed study on the accuracy of these
graph-theoretic simulation models for district heating systems
is provided along with a comparison to the other high-fidelity
simulators that have been verified using real measurements.
It is shown in [36] that, even for reduced-order models, their
method exhibits high accuracy.

We refer to the high-fidelity model by PE%, which is a
continuous-time system obtained using the same method as
in (Pcr). Nonetheless, the dimension of xHF, the state vector
in the high-fidelity model, is equal to |N|+Bm,, where 8 € N,
and T?’_F = 7,,/B to compensate for pipe length. This change
suggests that for large values of 8, we achieve a much higher
spatial resolution, which leads to a better approximation of
the original system. Finally, the resulting system PP% is a
system of differential-algebraic equations that we solve using
dedicated solvers in Julia [42]. In each iteration, the solver
computes the evolution of the states for 7, seconds. Every
iteration is initialized using the final step of the previous
simulation xHF(kr, — 7,) and the optimal inputs (uy)(x(k))
remain constant for the duration of the simulation, i.e., on
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TABLE I
LIST OF PHYSICAL SYSTEM PARAMETERS

Parameter Value Units

Ta 10 °C

p 981 kg-m?

cp 4182 JkgK
Upipe 0.4 W-m2. K!
Kpipe 0.02 -

dpipe 70 - 107 mm

dsto 2000 mm

Lyipe 300 - 600 m

Lo 8 m

o Domand //‘\\ 1100
—— Cost \

160

Demand [MW
o
Electricity cost [EUR/MWHh]|

R S by
8 10 12 14 16 18 20 22 24
Time [h]

0357+ v
0 2 4 6

Fig. 8. Total demand profile and electricity price profile for 24 h. Electricity
prices are from March 14, 2024, in The Netherlands.

TABLE III
FRACTION OF TOTAL DEMAND

Ci/p2 C2 C3 C4 Cs
0.08 034 011 0.08 0.38

the time interval [kt — 7;, kT;]. After completion, the current
state x(k) = x"F(kt,) is fed into the MPC controller, see Fig. 7
for a diagram of this feedback loop.

B. Parameters and Data

In Table II, we list the physical parameters used in our
simulations. System dimensions such as pipe diameters and
lengths are the same as in [18]. We obtain the heat transmission
coefficient Upipe from [4, p. 77], and the friction coefficient
Kpipe from [4, p. 444].

The demand profile employed here is an approximation of
the one used in [18]. The electricity prices are acquired from
Ember [43], where hourly electricity spot prices are provided
for The Netherlands. We use price data from March 14, 2024,
to determine the relative price term in (49), i.e., R, Fig. 8
illustrates the demand and electricity prices for 24 h, where
only the net demand of consumers is shown. The demand of
each individual consumer is computed as a fraction of the
total demand as shown in Table III, assuming the same load
distribution as in [18].
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N =16

Cost |[EUR|
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SP-MPC SPS-MPC ~ MP-MPC

Control strategies

MPS-MPC

Fig. 9. Results of simulation 1. All results are based on 24 h of simulation.
Results from left to right are for: RBC, SP-MPC, single-producer MPC with
storage (SPS-MPC), multiproducer MPC (MP-MPC), and multiproducer MPC
with storage (MPS-MPC). The average runtime for each iteration of the MPC
algorithms was under 10 s.

C. Economic Performance and Comparisons

We conduct a comparative analysis of our proposed method
against several established control strategies, including RBC
and MPC for single-producer DHNs without storage capa-
bilities. The existing RBC strategy is referred to as RBC,
while the single-producer MPC strategy is denoted by SP-
MPC. Our proposed methods are referred to as follows: the
single-producer model with storage is denoted by SPS-MPC,
the multiproducer model without storage is referred to as MP-
MPC, and the multiproducer model with storage is indicated
as MPS-MPC.

To quantify the economic value of the proposed methods,
we analyze the financial implications for network operators
under representative operating conditions. Here, prosumer
C1/P2 generates a heat surplus of 100 kW during the interval
12:00-17:00, resulting in negative net demand. To maintain a
similar total demand for comparative analysis, we introduce a
compensatory 80 kW load increase at consumer C4.

1) Cost Comparison: In our numerical experiments, we
set the control interval to At = 15 min. The cost function
Jn is formulated to prioritize economic performance, with
the relative price term RY" weighted substantially higher
than other objective function terms, excluding slack variable
penalties. A general overview of the economic performance
results is presented in Fig. 9.

2) Quantifying the Effect of Slack Variables: To assess
the true performance of the proposed methods, we quantify
the extent to which the constraints have been violated as a
consequence of the effects of the slack variables.

In our analysis, we observe distinct patterns in constraint
violations. The pumping capacity bottlenecks manifest primar-
ily as demand violations (DVs), where the network cannot
deliver sufficient flow rates to meet consumer requirements.
Conversely, temperature violations, defined as failures to
maintain minimum required supply temperatures at consumer
substations occur predominantly in scenarios where pump-
ing capacity is sufficient to meet demand. While theoretical
coupling between these constraint violations is possible, our
simulations suggest they tend to be mutually exclusive, with
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Fig. 10. Relationship between operational costs and constraint violations under different pump configurations measured over a 4-day period. (a) Daily operating
costs versus temperature violations for a DHN with sufficient pumping capacity. (b) Daily operating costs versus DVs for a DHN operating with pumping

capacity constraints.

temperature violations emerging only when demand is fully
satisfied and DVs occurring only under pumping capacity
constraints.

Temperature requirements, typically mandated by regulatory
frameworks, remain critical operational constraints that DHN
operators must prioritize. For a simulation of 7, time steps,
we quantify these average temperature violations (ATVs) in
degrees Celsius as follows:

ATV = tf|WC| Z Z max (

On the other hand, network operators must ensure sufficient
heat delivery to meet consumer demand requirements. We
quantify DV over #; steps as follows:

lf Z]EWC d; (k) dl;ue(k)
tf Z]EW{; d (k)

where the true heat exchange is defined as follows:
(k) = q;(k) (Tj-1(k) = T; (k) ,

In Fig. 10, we compare these violation metrics against the
operational costs obtained in each method.

Discussion: Several key observations emerge from Figs. 9
and 10. First, there is a noticeable improvement trend in cost
reduction, with each feature added to the algorithm providing
incremental benefits. The MPS-MPC algorithm with N = 32
achieves the highest performance, demonstrating an 9% cost
reduction compared with the rule-based controller.

Our analysis of constraint violations reveals that the MPC-
based approaches actively optimize network operations based
on predicted demand and price signals, resulting in dynamic
temperature management rather than simple static setpoint
tracking. This continuous optimization allows the controller
to systematically reduce average network temperatures when
beneficial while maintaining required service levels, a capa-
bility that rule-based controllers inherently lack. This dynamic
temperature management is key to achieve both cost reductions
and improved constraint satisfaction compared to rule-based
approaches.

-T. (k). (5%

sup min

DV = 100% x
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Fig. 11. Upper plot compares the power injection relative to demand
extraction for both SP-MPC and SPS-MPC methods, with the normalized
heat generation cost shown in green for reference. The lower plot illustrates
the storage buffer’s charging and discharging modes in SPS-MPC, maintaining
zero net mass flow throughout the simulation period.

In addition, when analyzing DVs under pumping capac-
ity constraints, the data suggest that prosumer-based control
strategies, particularly MP-MPC and MPS-MPC, can better
manage network limitations. The ability to actively coordinate
multiple producers and redistribute flow patterns allows these
approaches to excel at balancing competing objectives, demon-
strating superior performance in maintaining service quality
while optimizing operational costs.

D. Added Value of Storage

The aim of this section is to demonstrate the benefits of
storage in the DHN. As can be seen from Fig. 9, the integration
of storage yields significant economic benefits. In the top part
of Fig. 11, the production schedules of the SP-MPC and SPS-
MPC are plotted against each other. Second, the lower portion
of the figure illustrates the corresponding storage charging and
discharging periods. It is worth noting that, in this case, we
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Fig. 12. Consumer inlet temperatures and mass flows for an SP-MPC case.

have additionally implemented a constraint that ensures that
the total charging volume approximately matches the total
discharging volume over the course of the day. Further specific
details regarding this constraint are provided in the subsequent
discussion.

Discussion: The results demonstrate that the controller
effectively utilizes storage capacity to enable operational flex-
ibility, as illustrated in Fig. 11. The comparison between
SPS-MPC and SP-MPC reveals that the former shifts producer
load by charging storage during early hours and discharging
after approximately 7.5 h, thereby reducing producer load and
achieving cost savings during high-price periods.

Several limitations should also be acknowledged. While
the storage term in the cost function, introduced in
Section V-B, aims to maintain adequate hot water levels in
the top storage layer, its effectiveness is highly dependent on
layer volumes and objective weight selection. Small weights
lead to continuous discharge, while only substantially large
weights induce charging behavior. Hence, in this study, we
have opted to manually constrain the charging rates to ensure
the total charging volume is equal to the discharging volume
and emulate a more equal scenario.

E. Added Value of Multiple Producers

In addition to distributing heat production, which allows
facilities like waste incineration plants or data centers to con-
tribute to DHNs, multiple producers can reduce the pressure
load on the central plant by dividing supply streams. Since
pressure drop increases significantly with flow velocity, each
pipeline has a limited flow capacity. Distributing heat supply
flows among different producers enables higher mass flows
at consumer stations, providing better operational margins.
For this example, the setup has been modified in three ways.
First, prosumer C1/P2 now acts as a full producer, consistently
generating 100 kW of heat for the DHN, similar to a waste
incineration plant or data center. Second, the available pump-
ing power on each edge has been scaled down to emphasize
hydraulic constraints. Third, temperature bounds are tightened
to 70 < T < 90 for all system states, with any values outside
this range indicating the optimization could not find a feasible
solution within these bounds.

In Fig. 12, the consumer temperatures and mass flows
for the single-producer case are shown. On the other hand,
Fig. 13 shows the temperatures and mass flows at consumers
when C1/P2 contributes 100 kW constantly and P1 is freely
controllable, corresponding to the multiproducer case.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 33, NO. 5, SEPTEMBER 2025

Mass flow

0 2 4 6 8 10 12 0 2 4 6 8 10 12

Time [h| Time [h|

Fig. 13. Consumer inlet temperatures and mass flows for an MP-MPC case.
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Fig. 14. Median solver times for the MPS-MPC algorithm using a prediction
horizon N = 12 and N = 20 for different numbers of state variables (left). For
two models, one with 64 states and one with 102 states, the median solver
time based on the chosen prediction horizon (right).

Discussion: The results show that in the multiproducer
scenario, the network is able to deliver more heat to large
consumers C2 and C5. In particular, the peak flow rate of
C2 in Fig. 13 lies about 40% higher than in Fig. 12. The
increase can be attributed to the fact that C2 receives heat from
both P1 and C1/P2 sources. Consequently, P1’s contribution
to C2 is reduced, enabling it to allocate a greater share of
its flow to C5, the largest consumer. Overall, the aggregate
energy requirement in the multi-producer scenario, comprising
the combined outputs of P1 and C1/P2, is roughly equivalent
to the total production of P1 in the single-producer scenario.
Therefore, the MP-MPC shows improved performance com-
pared to the SP-MPC in staying within operational limits and
fairly distributing heat.

F. Computational Study

Finally, we examine the computational performance and
scalability of our algorithms for various model resolutions
and prediction horizons. In Fig. 14, the median computational
times of the solver iterations for different model resolutions
(left) and prediction horizons (right) are presented.

Discussion: In general, the computational cost associated
with increasing model complexity remains manageable from
an operational perspective, with even the most complex mod-
els requiring, on average, less than a minute per iteration.
However, our observations indicate that the consistency of
the solver in finding solutions within acceptable times dimin-
ishes under certain conditions, particularly for more complex
models. These include models with over 200 states or with a
prediction horizon greater than or equal to 40, where solution
times can vary significantly.
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Assuming the existence of a feasible solution, a pragmatic
approach to deal with varying solver times involves constrain-
ing the number of solver iterations or the solver time to ensure
that controls are computed within the required timeframe,
even if this may result in a decrease in solution quality.
Nonetheless, increasing model complexity does not necessarily
enhance performance. In certain scenarios, reducing the model
resolution can actually decrease model mismatch. This is
due to the fact that truncation error is influenced by the
CFL condition, and this error is minimized when the CFL
value is close to 1 [36]. Consequently, the determination of
model resolution is not straightforward and should be carefully
considered on a case-by-case basis.

G. Limitations and Future Work

While our results demonstrate the effectiveness of MPC
approaches for DHNS, several limitations should be acknowl-
edged. The performance of the proposed methods relies on
accurate demand predictions, with prediction errors affecting
controller performance. Our implementation assumes that both
perfect knowledge of system parameters and access to full-
state measurements throughout the network. In practice, these
assumptions may not hold, as many temperature and flow
measurements might be unavailable or inaccurate. From a
computational perspective, solution times increase with model
complexity and prediction horizon length, which may impact
scalability for larger networks. In addition, the nonconvex
nature of the optimization problem, particularly from bidi-
rectional flow constraints, can cause the solver to struggle in
finding optimal trajectories. This sometimes requires warm-
starting strategies to guide the optimization toward desired
flow configurations, an approach that introduces additional
implementation complexity. Future work could address these
aspects through robust MPC formulations to handle demand
uncertainty, state estimation techniques for networks with lim-
ited measurements, and the development of computationally
efficient optimization strategies.

VII. CONCLUSION

We developed an economic MPC algorithm designed for
the operational management of DHNs incorporating essential
elements of 4th-generation DHNs such as multiple distributed
heat sources, prosumers, and storage. A key aspect of our
algorithm is its innovative treatment of hydraulic constraints
through a convexification approach. We have conducted com-
prehensive numerical experiments to evaluate the proposed
features, demonstrating that MPC approaches significantly
outperformed conventional rule-based controllers, yielding
up to 9% cost reduction alongside reduced constraint vio-
lations, with computation times remaining within practical
limits. Furthermore, the integration of storage capabilities and
multiple-producer configurations enhanced these performance
metrics.
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