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Summary

Carbon capture and storage is an essential technology to mitigate anthropogenic CO2 emissions
from carbon-intensive industries. To model CO2 injection, physics-based numerical methods are
computationally intensive due to the nonlinear nature of the governing equations. Therefore,
several data-driven deep learning methods have been developed to serve as proxies and replace
numerical simulations. These proxies have demonstrated significantly faster runtimes while
maintaining comparable accuracy to numerical simulations. This makes them suitable for high-
fidelity models and ensemble-based techniques that require a large number of forward runs. Our
method utilizes physics-informed neural networks (PINNS) to parameterize the solution space of
immiscible compositional problems. The PINN parameterizes the forward solution of the
compositional problem based on the composition of the upstream grid block at the updated time
step, the composition of the current grid block at the current time step and the total velocity at
their interface. The neural network is trained in the entire solution space and is used in a
sequential, cascading solver. In this approach, we obtain the pressure solution first before solving
for transport by treating the reservoir as a series of two-cell problems. The resulting transport
solver is applicable to all problems with different initial/injection conditions and different
heterogeneous reservoirs. We demonstrate our approach for binary and multicomponent

problems and furthermore use multilinear interpolation to compare and validate the solution
method.
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Introduction

Geological Carbon Storage (GCS) is a collection of technologies that capture CO, emissions from
carbon-intensive industries for long-term geological storage in the subsurface. To safely, and perma-
nently store CO;, a geological trap consisting of a reservoir and an overlying impermeable caprock is
required. Consequently, potential geologic storage sites for CO; include depleted oil and gas fields and
deep saline aquifers. These reservoirs have stored buoyant hydrocarbons over geological time and ad-
ditionally, existing data and infrastructure can be reused to manage project development’s technical and
financial risks.

Compositional models are used to capture the complex physical processes associated with CO, injection
into depleted reservoirs. Multiphase multi-component compositional modeling of CO; injection models
the transport of various components that are present in each phase. Solving this large, highly nonlinear
system of equations is computationally expensive for large reservoirs and ensemble-based techniques
e.g. uncertainty quantification, optimization problems, history matching (Miiller et al., 2016).

Proxy modeling of CO; injection attempts to capture the behavior of the full-physics, high-fidelity model
at a reduced cost. A wide range of proxy modeling methods exist. In particular, the most widely known
and understood are upscaling techniques. During upscaling, a coarse scale model is made to mimic the
behavior of the high-fidelity model. In the case of compositional models, single-phase flow, multiphase
effects, and compositional solubilities are usually upscaled one by one using upscaling procedures. Mul-
tiphase and composition functions (also known as pseudo-functions) are defined by observations in the
fine-scale model and subsequently transplanted in the coarse-scale model (Iranshahr et al., 2014). How-
ever, upscaling functions need to be defined at every coarse-scale interface and necessarily have to be
redefined when boundary conditions change. Additionally, coarse-scale models that employ upscaling
functions are susceptible to convergence issues. Barker and Thibeau (1997) give a review on the use of
pseudo-functions for multiphase models.

An alternative proxy modeling method is to use a machine learning-based proxy. These proxies can
replace the numerical simulation in part or entirely and have solution times that are orders of magnitude
faster. Generally, two approaches can be identified within machine learning-based proxy modeling. The
first predicts scalar values such as net present value and replaces the numerical simulator with the proxy
to evaluate the objective function. The second maps the distribution of state variables in space and time
with permeability and/or porosity maps as inputs. In the former, convolutional neural networks are the
most explored algorithm (Wang et al., 2021a; Zhu and Zabaras, 2018; Zhao et al., 2023). Recently,
Fourier Neural Operators (FNO) have also shown much promise in modeling CO; storage (Chu et al.,
2022; Yan et al., 2021). Typically, these methods are data-intensive, sensitive to boundary conditions,
and limited to two-dimensional models with reduced physics.

Physics-informed machine learning methods integrate data and physical models to manage the cost of
data acquisition, facilitate learning of underlying governing equations, and provide solutions to partial
differential equations (PDE). Physics-informed neural networks (PINNs) encode the residual form of
the PDE in the loss function as a regularization term, thereby forcing the neural network to satisfy the
PDE (Raissi et al., 2019). This enables training when data is sparse, uncertain, or high-dimensional
(Karniadakis et al., 2021; Chen et al., 2021). Raissi et al. (2019) employ PINNs to provide solutions
to Burgers’ equations and the Korteweg-de Vries equation. However, it is found that PINNs are unable
to resolve the defining feature of hyperbolic PDEs. Specifically, the location of the shocks in space
and time (Fuks and Tchelepi, 2020). These shocks are sharp discontinuities in the composition or sat-
uration profile of the solution. For hyperbolic PDEs, it was found that including diffusion and solving
the parabolic form of the Buckley-Leverett problem provides an accurate approximation of the solution.
Rodriguez-Torrado et al. (2022) design a more effective attention-based neural network to successfully
solve the Buckley-Leverett problem. PINNs are an active field of research and improvements in the per-
formance of PINNs focus on network architecture, sampling schemes, weighting schemes, and different
training strategies. In a comprehensive review, Wang et al. (2023a) examine the training of PINN.
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The solution of highly nonlinear PDEs required for modeling CGS applications. Operator Based Lin-
earization (OBL) is a simulation method that factorized governing conservation equation into operator
form (Voskov, 2017). The operators are parameterized with respect to the state variables (pressure, sat-
uration, etc.) of the model. Thereafter, an interpolator is used to evaluate operators and their partial
derivatives during simulation. This linearizes the conservation equations and furthermore enables ro-
bust, flexible computation of derivatives. OBL is used in the academic simulator, open Delft Advanced
Research Terra Simulator (Voskov et al., 2024). The OBL approach allows the simulation of various
energy transition applications (GCS, geothermal, etc.) within the same framework (Wang et al., 2021b;
Lyu et al., 2021; Wang et al., 2023b; Lyu and Voskov, 2023).

In this work, we parameterize the transport solution for immiscible compositional problems with obser-
vations from the solution of a nonlinear model. Olawoyin and Younis (2023) parameterize the single-cell
equation for two-phase advection-diffusion problems and apply their parameterization with a neural net-
work as a preconditioning strategy. Here we parameterize the solution space in control volume with
respect to its current state, the state of the upstream grid block at the updated time step, and the ve-
locity at their interface. Observations are used to train a deep neural network to predict the transport
solution for a multi-component compositional simulation. The discretized form of the residual equation
is included in the loss function and provides an additional training signal to both expedite training and
minimize the reliance on labeled data in higher dimensional parameter space. In addition, multilinear
interpolation is used as a benchmark and alternative to the neural network. The resulting parameteri-
zation is utilized to provide the transport solution within a sequential, cascading solver. The resulting
simulation framework is equally applicable to different reservoirs with different heterogeneities, and
spatial and temporal discretizations. Furthermore, once trained, the neural network does not need to be
retrained for different input parameters including distribution of permeability, porosity, and initial and
injection compositions.

In the next section, the elements of the proposed simulation framework are discussed. In the section after,
examples of binary and multi-component solutions are shown. We conclude the paper with discussion
on future development of the proposed technique.

Simulation framework

In this section, the simulation framework is described with details on parametrization, training, and
following cascading solver.

Compositional simulation

For simplicity, the capillarity, gravity and diffusion are neglected in the formulation of the conservation
equations. Then, the general mass conservation equation for component c is defined as follows:

0 N Np
E(qbec‘,p‘,s,)+v2xcjpjuj =0, c=1,..,N. (1)
J J

In the mass conservation equation, ¢ is time, ¢ porosity, x.; molar fraction of component c¢ in phase j, p;
phase density and s; the phase saturation. The Darcy velocity, u;, is calculated according to,

krj
u;=-K-2vp. (2)

Mj
In the Darcy equation K is absolute permeability, k,; relative permeability, t; phase viscosity and p

pressure.

For an incompressible, one-dimensional reservoir, the governing equations are simplified to,

0z oF, B
(bg—kut e c=1,...,N,. 3)
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The overall composition, z., is given by,
Np
Ze= Zxcjvj, “4)
J

and is calculated from the partitioning coefficients and phase fractions, v;. The fractional flow per
component, F, is calculated as,

NP
Fe=Y xfj, )
J
and is a function of the phase fractional flow f;,
52
fi= s ©)

sT+M(1—5;)%

where M is the mobility ratio pg/H,. The thermodynamic equilibrium relations between liquid and
vapor close the system and are expressed by,

fcl(paTaxl) = fcv(P:TaXv)a (7)

where f.; and f,, are the liquid and vapour fugacities. The phase fraction v ; and partitioning coefficients
xj are determined with the Rachford Rice equation and constant K-values. The Rachford Rice equations
reads as follows: N
S z(K.—1)
h(v)=0=) ——————. 8
() ;V,'(Kc—l)-i‘l ()

Single-cell parameterization

Observations from a two-cell model are used to parameterize the forward transport solution. The con-
servation equation for incompressible isothermal flow is discretized implicitly with backward Euler ap-
proximation in time and forward Euler approximation in space. For a model with two cells the residual
equation for a given component reads,

r=2" =B+ 0(F(5T)—F(t), 9)

where n+ 1 and n correspond to the next and current time step. The Newton-Rhapson method is applied
to solve the equations to a tight tolerance. Consequently the forward solution 2! is parameterized,

i

2 =N(6,7, ), (10)

1

with respect to the the state of the current grid block i at the current time step n, the state of the ad-
jacent/upstream grid block i — 1 at the updated time step n+ 1, and the total velocity at the grid block
interface included in the quantity 0, defined as:

_ M[dt
© gdx’

an

Training procedure

Data is generated from observations from the two-cell model and are used as supporting data for mul-
tilinear interpolation or as training data for a deep neural network. Neural networks are well suited to
higher dimensional regression problems and are therefore colloquially referred to as universal approxi-
mation functions for their theoretical ability to approximate any function. In this case, the dimensionality
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of the problem is equal to 2 x N, — 1, since the sum of compositions is equal to 1 and we include 6. The
input vector of the neural network is defined as,

x={0,z",z""] (12)

s BB 1 S

where i refers to the grid block, n the time step and z the vector of compositions. The neural network

predicts the vector of compositions at the updated time step if“ and is defined recursively by,

a,(x) ZG(W[X—i-b[), (13)

and,
2" = apfag-i(ap2((a1 (%)), (14)

where W/ is the weight matrix of the 1-th layer, b’ is the bias vector and o is the element wise activation
function. The resulting parametrization is equally applicable to different initial and injection conditions
since the forward solution is parameterized with respect to the entire parameter space. In addition since
0 is included the time step, grid resolution and permeability can be changed without having to retrain
the neural network.

Many successful applications of deep learning based proxies within reservoir simulation are data-driven.
These supervised algorithms typically require more data in order to increase or maintain accuracy for
higher-dimensional problems. However, methods developed for unsupervised learning, specifically ex-
plicit regularization techniques that penalize the loss function by including prior knowledge in the loss
function, have a proven ability to make an underdetermined problem determined. This is particularly
advantageous when the data is scarce or when there is uncertainty regarding the data points. In this case,
regularization can increase the capabilities of the neural network beyond what can be offered by just the
labelled data. For these reasons, we propose a physics-informed neural network where the right-hand
side of the loss function consists of two terms: a regression term and a residual term,

1Y R 1Y .
L= Nzyzg“ — 2R+ NZ’ZZH B+ 0F @) - FEZ™) (15)
J J

In the regressive term the mean squared error of the prediction denoted by ig“, and the label denoted by,
ZSH, is calculated. In the residual term, the discretized form of the residual is included. The calculation
of F(z) is carried out with OBL. Two types of data points are used that are either uniformly or randomly
sampled from the parameter space. The labels for the data points distributed uniformly are known from
observations of the two-cell model, as described in eq. (9). The random collocation points are labeled by
interpolating with the uniformly distributed points. This approach cheaply and effectively augments the
data set. The gradient of the loss function is computed by back-propagation and the adaptive moment

estimation (Adam) optimization algorithm is used with exponential decay.

Cascading solver

The parameterized solution space is used to solve for transport in a sequential cascading solver. In
this method pressure and transport are decoupled and pressure is solved first. Thereafter, based on
the obtained pressure and corresponding total velocity field, the gridcells are reordered according to
their potential from high to low. This defines the order of the cascade sweep. In the cascade sweep
compositions are calculated one cell at a time starting with the cell with the highest potential. This is
valid assuming that cells with higher potential are treated first and that there is no counter current flow
(Appleyard and Cheshire, 1982). With the algorithm below, we solve a one-dimensional incompressible
system with injection boundary condition on the left and pressure boundary condition on the right.

There are three things of note to consider with the proposed approach. Firstly, the solution time is pro-
portional to the reservoir size as is the case with established numerical methods as well. Secondly, error
accumulates with every time step. Thirdly, a sequential solution method introduces so-called splitting
errors. Kwok and Tchelepi (2007) use a potential based ordering scheme for two- and three-phase black
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Algorithm 1: Cascade method

Pressure step: compute pressure update
Calculate 0 at the grid block interfaces
Potential-orderding: reorder cells such that p; | > p;
Transport step: solve sequence of single-cell problems for transport update
fori=1,...,n;, do
|G =N )

oil models in a reduced-order Newton method. It is applicable to multidimensional models containing
countercurrent flow and capillarity and effectively speeds up solution time by allowing greater time-
steps. Their approach is further extended by Hamon and Tchelepi (2016) and applied to immiscible
compositional problems.

Numerical results

The transport solution of a binary and four component compositional system is parameterized and de-
ployed within a cascading solver. In our examples, the pressure solution is obtained from DARTS before
solving for transport. For comparison, the transport solution is obtained either by interpolation or with
the PINN. The obtained solution, Z, is compared to the reference solution, z. The error maps shown
compute the error as the absolute error,

E=|z-12| (16)

We present compositional models with different injection/initial conditions and furthermore apply our
simulation framework to heterogeneous 2D and 3D models.

An illustrative example for a binary system

It is found that the effectiveness of the solution strategy depends largely on the resolution of the sup-
porting points (e.g. training data) used and the degree of non-linearity contained within the problem.
Fig. 1, illustrates the solution space of a binary system with small and large 6 values. For larger time
steps and finer space discretization the 6 values are larger and the non-linearity of the solution space
increases. In a sparse data regime, the accuracy of the solution obtained with interpolation deteriorates.
Fig. 2 estimates the residual for a random set of collocation points from low- and high-resolution data
and further illustrates the dependency on the underlying data. Correspondingly, in the example shown
in Fig. 3 the number of points is limited to 25 for the entire solution space. At this resolution of training
data it is evident that interpolating is inadequate as the location of the leading shock is underestimated.
Conversely, the physics-informed neural network is able to resolve the location of the shocks.

©=0.0010 ©=0.5000
1.0 1.0
1.0 10
08 4 0.8 08 0.8
0.6 - 0.6 0.6 - 0.6
- I - ¥
W & w7 &
0.4 1 0.4 0.4 1 0.4
0.2 1 0.2 0.2 1 0.2
0.0 1 0.0 4
0.0 T T T T T T 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
27 7

Figure 1: Solution space of a binary problem for different 6. K-values of each component are equal to
2.0and 0.1.
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Figure 2: Right hand side of the provided solution for a set of random points with low and high resolution
supporting data.
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Figure 3: Compositional profile the PINN versus interpolation and reference solution. When operating
in a sparse data regime the PINN is able to outperform the interpolation.

A standard fully connected neural network is trained for a binary system. The K-values of each com-
ponent are 2.0 and 0.1. The network architecture has a depth of 3 hidden layers and 125 neurons per
layer. An equal number of training data and collocation points are used. The training data set contains
1000000 data points and is sampled uniformly from the parameter space with a minimum value for 0
of 0.001 and maximum of 0.5. Fig. 4 plots the solution in space and time of the PINN versus that of
the numerical simulation. Theta in this example is equal to 0.5. The PINN accurately approximates the
exact numerical solution. Late in the simulation there is a small misfit of the trailing shock.

Two-dimensional example for binary system

We apply our simulation framework with interpolator to two different layers representing the near shore
environment of SPE10 problem (Christie and Blunt, 2001a), (case 1, Fig. 5a) and fluvial environment
(case 2, Fig. 5b). In these examples, the total velocity and thus 8 is calculated per interface and provided
as an input to compute the transport solution. The model is discretized by 100 x 20 x 1 cells with
dx = 10m, dy = 5Sm and dz = 1m. The porosity is assumed to be constant and equal to 0.3. The initial
composition of the reservoir is equal to 0.01 CO; and 0.99 CO;, is injected. In case 1, CO; is injected in
the middle of the model at a constant rate. Producers are located in each corner of the model operating
at fixed bottom hole pressure. In case 2, pressure drives the flow from the left edge to the right edge. The
left edge of the model has a constant injection boundary and the right edge a constant pressure boundary.
The provided solution, Z, is shown in Figs. 5¢ and 5d is very close to the reference solution, z, in both
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(a) PINN solution. (b) Exact solution.
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0.2

0.0 0.0

0

(c) Error, [PINN-Exactl

0.0 0.2 0.4 0.6 0.8 1.0
Xd

Figure 4: Solution in space and time for a one-dimensional simulation with 6 constant and equal to 0.5.

cases.

Three-dimensional example for binary system

CO; is injected in the top 20 layers of the SPE10 model. The SPE 10 model is cropped and discretized
by 100 x 20 x 20 cells. The grid cell dimensions are 5m x 5Sm x 1m. An injection well injects in the
middle of the reservoir and perforates the entire interval. Production wells are located in the corners
of the reservoir and operator with fixed bottom hole pressure. The initial composition is 0.01CO;, and
injection composition 0.99C0O,. The simulation is run for 10000days for a total of 0.1PV injected.
Figure 6 shows the obtained composition and the corresponding error.

Simulations for four component systems

Here, we illustrate how interpolation can be adapted for modeling of multicomponent systems. The
adaptive multilinear interpolator of DARTS is applied to various four component problems. The adaptive
interpolator computes two-cell solutions as necessary which act as supporting points for interpolation. In
the following examples, the minimum and maximum per axis is tailored to the problem and a resolution
of 30 points per dimension, excluding 0, is used. Note that fixing 0 is equivalent to fixing the injection
rate of the model. In Fig. 7 CO; is injected in a depleted reservoir. In Fig. 8 and 9 additional challenging
test cases from Orr (2007) are simulated. In all of the shown cases it is found that the interpolator is able
to resolve all of the features of the compositional profile.
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(a) Case 1, permeability distribution of layer 1 of the (b) Case 2, permeability distribution of layer 71 of the
SPE10 model. SPE10 model.
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X X

(c) Case 1, overall compostion of CO,. Comparison of  (d) Case 2, overall composition of CO,. Comparison
the fine-scale reference solution, z, and proxy solution of the fine-scale reference solution, z, and proxy solu-

A

Z. tion Z.

Figure 5: Two-dimensional test cases.

PINN for four component system

Parameterizing and interpolation in the entire solution space for higher dimensional problems is difficult
as the amount of data points increases exponentially. In the case of four components and a uniform
sampling of 30 points per dimension parameterizing the entire solution space amounts to a data set
containing billions of data samples. For this reason a PINN is trained globally for a 4-component system
containing four components: CH4, CO,, C4 and C10 and a constant 8 equal to 0.2. The training data
set consists of 944784 data points sampled uniformly in the entire parameter space. Additionally, the
residual is calculated for an equal number of random collocation points. The neural network has a depth
of 8 layers and width of 80 neurons per layer.

The trained neural network is applied to various challenging gas injection problems. Fig. 10 shows the
results for the vaporizing and condensing gas drive treated previously with the interpolator in Fig. 9 and
8. The PINN accurately approximates the solution for each of these cases with an accurate estimation of
the shocks as well as a good approximation of the composition in the two-phase zone located between.
The neural network is trained in the entire solution space and is therefore equally applicable to various
problems with different initial and injection composition conditions. CO is injected into a reservoir with
various initial compositions listed in table 1. The solutions are shown in Fig. 11. The neural network
does not perform equally well for each case. In particular, in some of the cases, the composition in the
unswept part of the reservoir deviates from the initial composition.
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(a) solution

(b) error

Figure 6: CO; concentration after 10000 days. The initial composition is 0.01 CO; and injection com-
position 0.99 CO;.

Table 1: Initial compositions

CH4 CO, C4 C10
0.01 0.01 039 0.59
0.10 0.18 0.37 0.35
0.10 0.00 0.20 0.70
0.30 0.00 0.16 0.54

oaQwp»
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Figure 7: Injection of pure CO, in a depleted reservoir containing 0.1192 CH4, 0.3798 C4, and 0.5010
C10. K-values are constant and equal to Kco, = 1.5, Kcua = 2.5, Kca = 0.5 and K¢19 = 0.05.
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Vaporizing gas drive
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Figure 10: PINN solution (dashed line) versus reference solution for condensing and vaporizing gas
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Conclusion and discussion

The solution space for multicomponent, immiscible compositional problems is parameterized and in-
tegrated into a sequential, cascading solver. The transport solution at the updated time step is pro-
vided by physics-informed neural networks or multilinear interpolation. This solution is derived from
the current composition, the composition of the upstream grid block at the updated time step, and the
total velocity at the grid block interface. Interpolation serves as a baseline estimate of performance.
Multilinear interpolation is capable of reconstructing the reference solution when provided with high-
resolution interpolation tables. Nevertheless, in high-dimensional, multicomponent solution spaces, a
physics-informed solution strategy is proposed as a practical alternative. The physics-informed neural
network is trained with data points sampled uniformly and randomly from the entire parameter space.
This approach ensures that the neural network does not require retraining for different initial/injection
compositions. The neural network-provided transport solution is capable of accurately capturing the
shocks and connecting waves of the compositional profile of the reference solution. Furthermore, the
proposed simulation framework is capable of treating reservoirs with different spatial and temporal dis-
cretizations and heterogeneities. This is accomplished by incorporating the coefficient 0 into the param-
eterization of the solution space. Theta is defined as the ratio of (#;Ar)/(¢Ax) and is analogous to the
Courant—Friedrichs—Lewy (CFL) number.

Discussion

The proposed simulation framework presents a step towards utilizing PINNs for multidimensional het-
erogeneous reservoirs. However, identically to standard numerical methods, the simulation proceeds
iteratively and requires a mesh. This is in stark contrast with the PINNs by Raissi et al. (2019), which
provide the solution for all points in space and time simultaneously. One of the stated advantages of
PINNS is that it offers a meshless approach to reservoir simulation. However, analytical representation
of heterogeneous reservoirs is challenging.

With regards to solution time and accuracy. It is found that the solution time is proportional to the size of
the reservoir and the depth of the neural network. However, the simulation framework does not employ
a Newton-Raphson solver and carries the implicit solution into an explicit implementation of simulation.
At this time, an apt and extensive comparison of solution times is pending. In the proposed simulation
framework errors from the current time step are carried into the updated time step. Therefore, it is
conceivable that a transfer training approach could be employed, whereby the model is initially trained
globally and subsequently fine-tuned with data for a specific case.

At present, our model neglects gravity and capillarity in order to reduce complexity and focus on the
transport solution. The influence of gravity is of great importance for the modelling of CO; injection. In
future research these phenomena will be considered as well.
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