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Abstract

Highly performing object detectors require large train-
ing datasets, which entail class and bounding box anno-
tations. To reduce the labelling effort of curating such
datasets, Weakly Supervised Object Detection is concerned
with training object detectors from only class labels. The
most performant weakly supervised detectors (MIL-based)
have high inference times, while faster methods (CAM-
based) have been primarily studied in the context of local-
izing just one object in an image. This research proposes an
extension to weakly supervised CAM-based detectors that
allows them to detect multiple objects in an image and ass-
eses their performance at localizing the full extent of objects
with bounding boxes, as well as their general location with
pin-points. VGGI16 and a novel FPN-based classifier are
experimented with as the backbone of the network, followed
by GradCAM++ which indicates through heatmaps the lo-
cations of the objects predicted by the classifiers. Addition-
ally, the proposed method is used to create pseudo-labels
on which any fully supervised detector could be trained on.
Results show that while the proposed method is not suitable
for detecting the full extent of objects, it can accurately pin-
point their general location in near real-time, thus showing
the Object is Roughly There (ORT).

1. Introduction

Object detection is concerned with classifying and localiz-
ing objects in an image. As with any deep learning model,
an object detector’s performance highly depends on the
quality of the annotations of the training dataset. However,
in the context of object detection, these annotations are es-
pecially costly, since they do not only involve a class label,
but also the position of the object as a bounding box. Manu-
ally annotating datasets is often the most expensive and time
consuming phase of a machine learning project [19]. More-
over, simply annotating a dataset is not enough, the labels
also need to be of high quality, as they determine the overall
performance of the model [23]. In the case where mistakes
are made, it can lead to label noise, which can affect the
performance of object detectors [1].

To reduce the labelling effort, the field of Weakly-
Supervised Object Detection (WSOD) [3, 28, 29] studies
how object detectors can be trained without localization su-
pervision. Unlike fully supervised object detection (FSOD)
[8, 21, 38], in WSOD no bounding boxes of the objects are
present in the training set, but only the classification labels.
An example is presented in Fig. 1, where the FSOD model
is trained with both class labels ’cat’ and ’dog’, as well as
the bounding boxes in the image, while the WSOD model
is trained only with the class labels. During inference, both
models should classify and localize all the objects.
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Figure 1. Difference between Fully Supervised Object Detection
(FSOD) and Weakly Supervised Object Detection (WSOD).

Weakly-Supervised Object Localization (WSOL) [31,
33, 36] is a subset task of WSOD that is only concerned
with detecting a single instance in an image (i.e. images
have a single object). Shao et al. [25] categorize WSOD
and WSOL methods into:

* Multiple Instance Learning (MIL)-based: These methods
make use of a proposal generator to extract regions of an
image that potentially contain an object. They treat each
of these regions independently and use a CNN backbone,
followed by a detection head that has a branch for classi-
fication and one for localization.

* Class Activation Mapping (CAM)-based: CAM [36] is
a method that can localize where in an image a CNN-
based classifier paid attention. This can be translated into
heatmaps that reveal the most discriminative parts of an
object, which can be transformed into bounding boxes.

Traditionally, object detection and localization entails
detecting the full extent of objects with a bounding box.
Pin-pointing [17] is a task that only involves detecting the
approximate locations of objects. While it might not be as
precise as bounding-box detection, good pin-pointing per-
formance is still useful in applications such as tumor detec-
tion, where just the general location of the tumor can assist
doctors in diagnosing patients or obstacle detection used in
robotics and autonomous driving. This research treats pin-
pointing as a subset of object detection.

In the context of WSOD, MIL-based methods have been
extensively researched, while CAM-based methods have
been primarily used for WSOL and only used for WSOD
when in combination with MIL-based methods. While
state-of-the-art (SOTA) MIL-based methods have gotten
closer to the performance of fully supervised object de-
tectors, they suffer from being too slow for real time ob-
ject detection, which renders them unfeasible for any real
world applications. Ideally, an object detector could be
trained quickly with minimal supervision and have real-
time inference. CAM-based methods offer the benefits of a
lightweight classifier during training and can quickly eval-
uate an image at test time.



This research proposes a simple method that leverages
CAM models for WSOD called Object Roughly There
(ORT), which could be used in real world applications. A
CNN-based classifier is used as a backbone of the proposed
network, where VGG16 [26], as well as a novel FPN-based
classifier are experimented with. A CAM-based technique
called GradCAM++ [5] is applied to localize the areas in the
image where the backbone classifier paid attention to. Both
bounding boxes and pin points are created from these areas
of interest and their precision is evaluated. Additionally,
a two stage method is proposed, where the weakly super-
vised detector is used to generate pseudo-labels for training
a fully supervised Faster-RCNN [22]. While the proposed
models have low performance at detecting the entirety of
objects via bounding boxes, their pin-pointing yields good
results in near real-time.

As such, this research proposes a method for training ob-
ject detectors in a weakly supervised manner, leveraging
CAM-based techniques. More precisely the contributions
of this research are as follows:

* A pipeline for performing CAM-based detection to eval-
uate the performance of CAM methods in WSOD, thus
analyzing their potential for real-time object detection.

¢ A new backbone architecture for CAM-based detection,
which makes use of fine and coarse-grained features.

* An evaluation of the pseudo-labeling performance of the
weakly supervised method i.e. if it can provide candidates
for a fully-supervised detector.

2. Related Research

Fully Supervised Object Detection: Object Detection is a
task in Computer Vision that deals with detecting instances
of visual objects of various classes in images [38]. Deep
learned object detectors can be categorised into two-stage
and one-stage, the core difference being that one-stage de-
tectors can perform inference in one pass, thus being much
faster. Two stage detectors use a CNN-based model to per-
form feature extraction, followed by region proposal gener-
ation that identifies the parts of the image that might contain
an object. For each of these regions of interest, a classifi-
cation head and a localization head are used to predict the
class and location of objects. Faster-RCNN [22] is a SOTA
two-stage detector that builds upon its predecessors, RCNN
[9] and Fast-RCNN [8], being the first near real-time ob-
ject detector. This research uses Faster-RCNN for the pro-
posed two-stage method, due to its robust architecture that
produces high-quality proposals. Moreover it is used as a
performance upper boundary for comparison purposes.

To further improve on the lack of spatial resolution of
the feature maps obtained with the CNN-based backbones
of object detectors, Feature Pyramid Networks (FPN) [14]
were proposed. FPNs enhance the capability of CNNs by

creating a pyramid of feature maps at multiple levels, each
corresponding to different scales of objects. This research
uses the FPN to enhance the ability of the CAM-based mod-
els at detecting both fine and coarse-grained features.

MIL-based WSOD: A main challenge in WSOD is the
Multiple Instance problem, which involves detecting mul-
tiple objects of the same class in a single image. MIL-based
methods tackle this problem by treating an image like a bag
of region proposals. If the image is labeled as positive for a
certain class, at least one of the region proposals must con-
tain an object of that class; if not, none of them do. During
training the highest scoring proposals that came from a pos-
itive image are used as pseudo-positive examples to update
the classifier, while the proposals that came from negative
images are used as negative examples. The loss function
aims to increase the scores for the selected positive regions
and decrease the scores for the negative ones. WSDDN [3]
is a popular MIL detector, which leverages a CNN-based
network to perform feature extraction and a proposal gener-
ator [30, 37] to extract region proposals. Each region pro-
posal is processed independently with separate classifica-
tion and detection data streams. The classification stream
is responsible for computing the probability of each class
being in the region proposal and the detection stream pre-
dicts every proposal’s existing probability score for each
class. To further improve on the performance of WSDDN,
PCL [29] generates proposal clusters which aid the model
in detecting the full extent of objects, not only the most dis-
criminative parts. PCL is used in this research to provide a
comparison to the proposed CAM-based models, which are
designed to be much faster.

A popular technique to improve the performance of
MIL-based detectors is transforming WSOD to FSOD,
which involves using a weakly supervised detector to gen-
erate pseudo ground-truth bounding boxes on which a fully
supervised detector can be trained. Several strategies ex-
ist for mining the best proposals for the pseudo labels: se-
lecting the boxes with the highest score, selecting boxes
with the maximal relative improvement score between two
epochs [11], or merging together small boxes [34]. The
WSOD to FSOD technique is used in the proposed two
stage method, however, no pseudo-ground-truth mining is
needed as the proposed ORT generates few bounding boxes.

CAM-based WSOL: Class Activation Maps (CAM) [36]
is a method that can localize objects in an image, under the
observation made by Zhou et al. [35] that CNNs encode
the location of objects despite having no localization su-
pervision. This provides a base for all CAM-based WSOD
methods. First a CNN-based classifier is modified (VGGnet
[26], AlexNet [13] and GoogLeNet [27] have been experi-
mented with) by taking out the fully connected (FC) layers
and replacing them with a Global Average Pooling (GAP)
layer followed by a FC softmax layer. While these modi-



fications decrease the classification performance of the net-
works, they are necessary in order to compute the class ac-
tivation maps. To obtain the CAM for a class, each feature
map from the last convolutional layer is multiplied by its
weight and then summed together. A ReLU operation is
then applied to filter out negative activations. The class ac-
tivation maps are represented as heatmaps which highlight
the most discriminative parts of an image that the classifier
focused on. By thresholding the heatmap at a certain pro-
centage of its maximum, the image is segmented into the
part that contains the object, which determines the bound-
ing box. While this CAM method is very fast, it had two
main problems: the need to modify the structure of the net-
work, as well as the discriminative region problem, which
means that the detector primarily focuses on the most dis-
criminative regions of the objects.

Several methods that change the way class activation
maps are computed to improve on these problems have been
proposed. Selvaraju et al. propose GradCAM [24], which
uses different feature map weights to calculate the class ac-
tivation maps. While CAM directly uses the weights from
the fully connected layer, GradCAM uses the gradients of
the output class score with respect to the feature maps to
compute the importance weights. However, GradCAM has
problems with highlighting objects completely when multi-
ple instances of that object appear in the same image. Grad-
CAM-++ [5] was proposed in response to this problem, by
introducing gradient outputs that are weighted for pixels
in specific locations. GradCAM++ computes the weights
for each pixel using second-order derivatives, which helps
in assigning more precise importance to different regions
of the feature maps. This research uses GradCAM++ as a
means to compute the class activation maps, because of its
speed and increased capability at covering the full extent of
the object and at detecting multiple instances.

Wei et al. recognised one of the causes of the discrim-
inative region problem of CAM is that it only considers
the features from the last convolution, not takeing advan-
tage of the shallow features from the previous layer. They
proposed Shallow feature-aware Pseudo supervised Object
Localization (SPOL) [31], which aggregates the CAMs ob-
tained from shallow and deep layers to filter out background
noise and generate sharped object boundaries. LayerCam
[10] was also proposed as a method that can take into con-
sideration features from both shallow and deep layers, thus
gathering information ranging from coarse-grained local-
ization to fine-grained details. In this research, the architec-
ture of the classifier itself is used to aggregate the features
from shallow and deep layers, by leveraging FPNs [14].

Other CAM-based methods optimize the post process-
ing of the class activation maps. Rethinking CAM [2] in-
troduces Percentile as a Standard for Thresholding (PaS),
which thresholds the heatmap using a procentage of a pro-

centaile of the CAM, instead of the maximum value. Kim et
al. propose Inferior Value Removal (IVR) [12] as a normal-
ization method for the CAM heatmaps, which builds upon
PaS. IVR adjusts activation map values to maintain consis-
tent importance of regions, despite variations in the origi-
nal map’s maximum and minimum values. The proposed
method also uses IVR to normalize the images, as it is a
cost-free optimization.

Weakly Supervised Pin Pointing: Pin pointing means in-
dicating where the object might be with a point instead of a
bounding box. It was introduced by Oquab et al. [17] when
they proposed a WSOD method similar in concept to MIL-
based methods. However, because their detector was not
trained to detect the full extent of objects, they quantified
the detection performance using pin-pointing. This is eval-
uated the same way as bounding boxes, with the exception
that a point is considered to be correct if it lies within the
ground truth bounding box. Note that in their method, they
did not detect multiple instances of the same object in an
image. This research also evaluates pin-pointing capabili-
ties for the proposed CAM-based models.

3. Method
3.1. One-stage Detection

The general inference pipeline of the proposed model ORT
can be observed in Fig. 2. Suppose we have dataset Z
of N training images in C classes. The set is given as
T = {T,yY,...,(IN,yN)} where I ¢ RH*Wx3 jg
an image with height H, width W and 3 RGB channels and
y* = [y1,...,yc] € {0,1}¢ is a vector of labels indicat-
ing the presence or absence of each class in image I¥. First
a classifier is used to infer the class labels y*¥ present in
an image IX. Then, GradCAM++ [5] is used to detect the
location of objects of each predicted class where the class
probability is over a threshold ¢. This threshold is used to
only detect the location of the objects that are most proba-
ble to be in the image. The obtained heatmap is segmented
to retrieve the parts of the image that were most significant
during classification. From these areas of interest, bounding
boxes are constructed.

Classifier Architecture: A classifier with a CNN back-
bone, followed by a Global Average Pooling (GAP) layer
and a classification head is trained to detect what object
classes yX are present in an image IX. As a baseline, an
unmodified VGG16 [26] is used, as previously done in
[5, 10, 24]. Inspired by the architecture of Faster-RCNN
[22] this research also proposes a classifier that is able to
aggregate the features from both shallow and deep layers,
by using an FPN [14] with a ResNet-50 backbone.

To compute the aggregated feature maps, the FPN makes
use of two pathways: bottom-up and top-down, as can be
seen in Fig. 3. The bottom-up pathway is a standard forward
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Figure 2. Proposed one-stage detection pipeline: A classifier made up of a CNN backbone, followed by a Global Average Pooling (GAP)
layer and a classification head with multiple Fully Connected (FC) layers is used to extract feature maps from an image. GradCAM++
backpropagates the predicted class scores to the final convolutional layer for each class to obtain the Class Activation Maps (CAMs)

represented as heatmaps. The heatmaps are segmented and contour detection is used to extract the locations of the objects.

pass through the ResNet-50 backbone, which is composed
of 5 convolutional modules, each containing many convo-
lutional layers. Let the output of each of these modules be
denoted as C'1,C2,C3,C4,C5. As we go up in the bottom-
up pathway, the spatial resolution decreases, while the se-
mantic value increases. The top-down pathway starts by
upsampling the most semantically rich, but spatially coarser
feature map C'5. As we go down, lateral connections from
corresponding bottom-up feature maps are added to these
upsampled maps. Specifically, C'5 is upsampled and com-
bined with C'4 to form P4. This combined map is then up-
sampled and added to C'3 to form P3, and P2 is formed by
combining the upsampled P3 with C2. Note that the top-
down pathway stops at P2, as C1 is too large and would
slow the process down too much. Each of the combined
feature maps P2, P3, P4, P5 captures both high-resolution
spatial information and strong semantic content.

To create the classifier, one of the feature maps resulted
from the FPN is followed by a convolution, which becomes
the target layer for GradCAM++. A GAP layer and the clas-
sification head of VGG16 are added to the network, as pre-
sented in Fig. 3. Each of the feature maps P2, P3, P4, P5
are used as part of different backbones of ORT.

Multi-label multi-class loss: When dealing with object lo-
calization tasks i.e. one image contains only one object,
Cross-Entropy Loss is most commonly used. However, for
the object detection task where multiple objects of differ-
ent classes can be present in the same image, the loss also
needs to be multi-label on top of being multi-class. This
means that the classes in an image are not mutually exclu-
sive. To account for this, the proposed model uses a Binary
Cross-Entropy (BCE) Loss, which is a measure of the dif-
ference between the true labels and the predicted labels for
each class in each image. It is computed as the as the sum
of C' binary logistic regression loss functions, where a class
probability is obtained by applying the sigmoid function to
the logits predicted by the classifier. For one training sam-
ple I* this is more formally defined as:
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Figure 3. Proposed architecture for FPN Classifier: The ResNet50
backbone serves as a bottom-up pathway encoding the image into
feature maps across five modules. The top down pathway upsam-
ples the resulted low resolution feature maps and aggregates them
with the corresponding bottom - up pathway maps via lateral con-
nections. One of the resulting feature maps containing spatial and
semantic information is passed through a 1 x 1 convolution, fol-
lowed by a 7 x 7 GAP layer and 3 FC layers used for classification.
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where z¥ is the predicted logit for class ¢ in image I* and
o (x¥) is the sigmoid function applied to the logit z*.

Obtaining Class Activation Maps: To compute the class
activation maps, GradCAM++ [5] uses the predicted class
score x*, before it is passed through the sigmoid function.
It then backpropagates this score to the last convolutional
layer of the classifier, which is called the target layer. The
calculations are based on the assumption that the predicted
class score, denoted as z° in the following equations, can be
written as a linear combination of its global average pooled
last convolutional layer feature maps A :

i —wa ZZAfzJ )

=1 j=1



where A (1, j) is the activation of the f-th node in the target
layer at the spatial location (%, j).

As such, each spatial location (7, j) in the class specific
heatmap L€ is calculated as a weighted sum of all feature
maps A (i, 7) in the target layer:

Lrag-camy (i, J) = Z wAy (i, j), 3)
I

where w$ is the weight coefficient that represents the im-
portance of the f-th feature map Ay for class c. This is
defined as:

H

w
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wf = 3> ajlij) - ReLU («w@g) @
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where o, (4, j) is a scaling factor that adjusts the importance
of each activation based on higher-order derivatives of the
class score x. with respect to the activations A (%, 7).

Inferring Object Location: The first step in transforming
the heatmaps obtained with GradCAM++ [5] is normaliza-
tion. For this, IVR [12] normalization is used, which divides
all values in the class specific heatmap L¢ by the maximum
value, after a percentile value from its minimum value is
subtracted. This can be expressed as follows:

o L€ —Pet, (L)
~ max(Le — Pet,,(Le))’

S

where p represents the procentile up to which values are
excluded from the original heatmap L°.

To segment the most significant regions in the normal-
ized heatmap, a binary threshold is applied. This thresh-
old ensures that only areas exceeding a percentage 7 of the
maximum value in the normalized heatmap are retained.

Contour detection is applied on the segmented heatmap
and bounding boxes are placed around the identified con-
tours. To avoid very small boxes being generated as a re-
sult of noise, the contours that cover under 1% of the whole
image area are excluded. To ensure tight bounding boxes
around the objects, if the contours obtained are bigger than
80% of the image area, the image is recursively segmented
with an increased 7 for a maximum of 5 iterations.

When creating pin-points, the most natural approach
would be placing the point at the maximum value of the
heatmap. However, doing so would eliminate any chance
of detecting multiple instances of the same class. Instead,
a high segmentation threshold 7’ is used, such that only the
most significant pixels in the image remain. These represent
the most discriminative areas detected in the image. Con-
tour detection is then applied, and the pin points are placed
at the highest value within the contour.

Confidence Score: Fully supervised object detectors have
a confidence score corresponding to each prediction. This is

calculated per bounding box as the class probability. How-
ever, since ORT doesn’t make class predictions on regions
of interest, the class probability in the whole image is used
instead. This means that within an image, each detected
object of the same class will have the same score.

3.2. Two-stage Detection

Following the WSOD to FSOD framework a two stage
model is proposed for CAM-based methods, which can be
seen in Fig. 4. First, pseudo-labels for detection are gen-
erated for the train set using the same method as the one
stage detection. Having these pseudo-labels, any object de-
tector can be used in the second stage. In this research the
performance of FasterRCNN [22] is analyzed.
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Figure 4. Proposed two stage detection pipeline: The one stage
weakly supervised object detector is used to generate pseudo
bounding boxes for the training set. A fully supervised Faster-
RCNN is then trained and used to make predictions.

4. Experiments
4.1. Experimental setup

Dataset: All experiments for the proposed method are done
on PASCAL VOC 2007 [6], which is a large scale dataset
for objects. It contains 5011 trainval images and 4092 test
images with 20 classes. For an in depth investigation of the
strengths and weaknesses of the proposed models, evalua-
tion is also conducted on certain splits of the dataset. More
precisely, one split for localization (1905 samples) is cre-
ated from the images that only contain one object, which
is further broken down into small (507 samples) and large
(1398 samples) objects. Objects with a ground-truth bound-
ing box area under 20% of the whole image area are con-
sidered small, while the rest are considered large. A split is
created for multiple instance (936 samples) images, which
contain multiple objects of the same class. The remaining
images make up the multi-class (2111 samples) data split
i.e. images with multiple objects of multiple classes.

Metrics: To measure the classification performance, Multi-
label Average Precision is used. For the localization with
bounding boxes, that standard object detection Mean Av-
erage Precision (mAP) is computed. When computing the
average precision, a predicted bounding box is considered
correct if it has Intersection over Union (IoU) of more than
50% with ground-truth box (mAP@50). When measuring
the pin-pointing performance, mAP is modified such that a
point is considered correct if it is inside the ground truth



bounding box. Correct Localization (CorLoc) is used to
evaluate the localization accuracy of the weakly supervised
detectors on the trainval dataset. It computes the precision
of the predicted bounding boxes, where a detection is con-
sidered correct if it has IoU of more than 50% with the
ground truth bounding box corresponding to the same class.

Training procedure: Because VOC 2007 is a relatively
small dataset, the VGG16 and the ResNet50 backbone of
the FPN classifier are pretrained on the ImageNet dataset.
Faster-RCNN is also pretrained on the COCO MS dataset,
in order to facilitate a fair comparison. The VGG16 and
FPN classifier are then fine-tuned on the VOC 2007 dataset.
SGD with momentum of 0.9 and weight decay of 0.0005
is used as an optimizer. The network is trained with a
batch of 16 samples over 20 training epochs with a learn-
ing rate starting from 10~*. The learning rate decreases by
90% when the validation loss stops improving. The Faster-
RCNN is trained in the same fashion, but with a learning
rate starting from 0.005. Trivial Augment Wide [15] data
augmentation technique was used to increase the models’
generalizability and ability to learn more robust features.

Inference hyperparameters: GradCAM++ is used only
for the classes with a probability over the threshold ¢ = 0.5.
Similarly, the Faster RCNN predictions considered have
a confidence score > 0.5. When normalizing the CAM
heatmap, the IVR procentile is set at p = 0.3. When
segmenting the heatmap to obtain bounding boxes and pin
points, the thresholds 7 = 0.2 and 7" = 0.5 are used.

4.2. Classification Results

As the performance of the proposed weakly supervised
method highly depends on the performance of the classi-
fier used, the Multilabel Average Precision of the different
classifiers is evaluated first. From the results presented in
Tab. 1, it can be observed that the different classifiers have
similar performance (between 83.5% and 86.9%), with the
FPN using the P4 feature map having the best overall score.

Full Localization Multi Multi

Method
dataset both Instance Class

small large

VGG16 835 712  86.6 850 81.6 78.3

FPNP5 855 775 89.1 877 83.7 81.6
FPNP4  86.9 763  90.2 88.1 84.2 83.5
FPNP3  86.0 77.8 899 882 82.7 81.9
FPNP2  86.3 76.9 89.7 88.1 83.3 82.6

Table 1. Classification Multilabel Average Precision on VOC 2007
of the VGG16 and the FPN based classifier when using the 4 dif-
ferent feature maps. The classifiers used in the proposed models
manage to effectively identify the objects present in an image, with
FPN P4 having the best performance.

4.3. Detection Results

The proposed weakly supervised detection models are eval-
uated with the standard mAP @50 metric on the VOC 2007
dataset. Table 2 shows the bounding box detection per-
formance of the proposed models with the one-stage and
two-stage methods compared to the fully supervised Faster-
RCNN and a SOTA weakly supervised MIL model PCL
[29], while Tab. 3 shows the detection performance of the
prroposed models on the trainval set. The proposed models
underperform compared to Faster-RCNN and PCL. How-
ever, the FPN-based models perform significantly better
overall than ORT-VGG16, by up to 6.4% overall, show-
ing that a ResNet50 backbone is more suitable at extracting
features for this task, with the exception of small localiza-
tion objects. When considering the 4 different feature maps
from the FPN, it seems the model doesn’t benefit from in-
corporating features from deeper layers. Note that the seg-
mentation threshold used at inference time was the same
across all models and a more suitable threshold should be
used for each separate FPN feature map in order to yield
better results when incorporating the deeper layers. When
comparing the one stage and two stage results, it can be seen
that the two stage method brings a significant performance
increase, between 8.4% and 15.1% across the whole test set.

Full Localization Multi Multi

Method
dataset both Instance Class

small large

ORT-VGG16 6.0 272 109 122 42 5.5
+Faster-RCNN ~ 21.1 494 285 326 15.3 21.4

ORT-FPN P5 12.4 215 398 33.0 6.2 11.4
+Faster-RCNN  20.8 232 549 431 12.0 19.7

ORT-FPN P4 10.4 142 33.6 250 4.9 10.3
+Faster-RCNN 222 273 532 434 14.5 20.1

ORT-FPN P3 6.7 212 176 158 3.7 6.9
+Faster-RCNN  20.5 38.1 382 365 143 20.3

ORT-FPNP2 92 192 253 207 60 8.6
+FasterrRCNN 220 337 494 438 148 203
PCL* 488 - - - - -

Faster-RCNN 74.2 874 825 85.1 67.4 71.0

Table 2. Object Detection results with mAP@50 on VOC 2007.
From top to bottom: the proposed weakly supervised models using
the VGG16 classifier and the FPN classifier with different feature
maps, where "+’ indicates the two stage method. At the bottom,
the SOTA weakly supervised MIL method PCL, where * indicates
the result is taken from the original paper and the fully supervised
Faster-RCNN. Weakly supervised models are outperformed by the
fully supervised detector, struggling most with multi instance and
multi class images. The two stage method boosts the performance
of the one stage models.

Analyzing the qualitative results presented in Fig. 5,
we can see that the VGG16 model focuses more on the
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Figure 5. Comparison between the detection and pin pointing performance between the different backbone classifiers used for ORT on a
a) large localization image, b) multi instance image, c) small localization image and d) multi class image of the VOC 2007 test set. Each
column contains the original image with the ground truth bounding boxes in green, the predicted bounding boxes in red, the predicted pin
points in blue and the heatmap generated with GradCAM++. Note that the heatmaps for multi class images are shown by overlaying the
heatmaps from the different classes for visualization purposes. The FPN-based models manage to detect more of the objects, compared to
the VGG16 that mainly looks at the most discriminative parts. The deeper feature maps in the FPN detect more fine-grained features and

have a less uniform aspect.

Full Localization Multi Multi

Method
dataset both Instance  Class

small large

ORT-VGG16  17.8 344 11.8 15.1 18.0 18.8

ORT-FPNP5 264 224 356 312 20.0 24.3
ORT-FPN P4  23.6 23.1 32,6 285 17.7 21.7
ORT-FPN P3 18.9 264 184 1838 19.3 18.6
ORT-FPN P2 20.8 240 240 224 16.7 20.3

Table 3. CorLoc results on the VOC 2007 trainval set of the pro-
posed one stage method with the VGG16 and the FPN based clas-
sifier when using the 4 different feature maps. The proposed mod-
els struggle at detecting the full extent of objects. The FPN back-
bone performs overall better than the VGG16 one.

most discriminative parts of the objects. This allows for
tighter bounding boxes around smaller objects, which ex-
plains why it performs better at small localization. How-
ever, this decreases the performance at large localization,
where the model needs to be able to see the full extent of the
object. When looking at multi class detection, all the mod-
els seem to incorporate features from other classes when
looking at the target class. Note that this is due to the used
BCE loss, which doesn’t explicitly encourage the model to
separate the classes from one another. While considering
the multi instance images, the models struggle with sepa-

rating the individual objects, especially when they are close
together. Looking at the heatmaps obtained from the 4 dif-
ferent FPN feature maps, they become more fine-grained
and less uniform as deeper layers get incorporated. While
heatmaps obtained with P2 tend to be very noisy, with P3
the shape of the objects seems to be defined best.

4.4. Pin Pointing Results

While the proposed models have low performance at detect-
ing the full extent of objects, when tasked with just provid-
ing their general location in the form of pin points they show
promising results. To create pin points from the predictions
of the Faster-RCNN, the center of each of the predicted
bounding boxes is considered. As can be seen in Tab. 4
the performance gap between fully supervised and weakly
supervised models significantly decreases. As opposed to
bounding box detection which is highly dependent on the
segmentation threshold, pin pointing benefits from incorpo-
rating features from deeper layers. The P4 feature map of
the FPN has the best overall performance at 85.6% on the
whole test set, followed closely by P2. The VGG16 still
yields top performance at localizing small objects, while
the first 3 FPN feature maps perform the best at localizing
large objects with up to 99.3% mAP, which is marginally
better than the Faster RCNN. Looking at the qualitative re-
sults in Fig. 5, pin pointing benefits from detecting the most



discriminative parts of objects. When it comes to multi in-
stance images, the more aggressive threshold manages to
better separate the instances. Further detection experiments
performed on images resized to 224x224, as well as a more
in-depth qualitative analysis are present in the Supplement.

Full Localization Multi Multi

Method dataset both Instance Class

small large

ORT-VGG16 80.0 75.6  98.8 96.5 56.1 71.3
+Faster-RCNN ~ 92.5 83.6 994 98.6 79.4 87.0

ORT-FPN P5 79.7 73.8 993 96.9 53.7 72.1
+Faster-RCNN  88.2 88.1 99.0 983 71.2 81.9

ORT-FPN P4 85.6 753 99.0 96.6 61.0 78.1
+Faster-RCNN  89.7 89.5 99.1 98.1 73.8 84.3

ORT-FPN P3 83.8 727 993  96.9 59.7 75.3
+Faster-RCNN  92.6 85.1 99.0 979 71.8 87.2

ORT-FPN P2 85.0 715  98.6 96.5 61.4 71.0
+Faster-RCNN  91.2 875 99.1 976 75.8 85.8

Faster-RCNN 95.7 90.0 990 993 85.1 922

Table 4. Pin Pointing results with mAP on VOC 2007, where a
point is considered correct if it falls in the ground-truth bounding
box. From top to bottom: the proposed weakly supervised models
using the VGGI16 classifier and the FPN classifier with different
feature maps, where *+’ indicates the two stage method. At the
bottom, the fully supervised Faster-RCNN. The proposed models
can successfully pin point the general location of objects, without
knowing the objects’ locations during training, their performance
being close to the fully supervised detector.

4.5. Real-time Inference Analysis

The inference speed of ORT is evaluated to analyze its po-
tential for real time detection. In Tab. 5 the results are com-
pared to SOTA MIL-based weakly supervised detector PCL
[29], as well as to fully supervised object detectors Faster-
RCNN [22] and YOLOv3 [20]. Note that YOLOvV3 can per-
form real time object detection. The inference time in sec-
onds is averaged across 100 random images from the VOC
2007 test set, on a Intel(R) Core(TM) i7-10750H CPU.

ORT- ORT- Faster-
Method — (ofl o DUD. PCL YOLOVS et
Inference time —, ¢ 131 3635  0.59 1.81

(seconds)

Table 5. Comparison between the inference time (in seconds) of
the proposed weakly supervised models, SOTA weakly supervised
MIL - based model (PCL) and two stage (Faster RCNN) and one
stage (YOLOV3) fully supervised detectors.

While the library code for Faster-RCNN and YOLOv3
is highly optimized, the ORT is not and thus its inference
time has potential to be even faster. Note that the speed of

the proposed models is highly dependent on the accuracy of
the backbone as GradCAM++ and the bounding box gener-
ation are used for as many classes as predicted, which ex-
plains why the FPN-based model is faster than the VGG16
one. The results in Tab. 5 show that the proposed models
can be considered near real-time, being by far faster than
MIL-based methods. Additionally, the FPN-based models
achieve lower inference time than Faster-RCNN.

5. Discussion

This paper introduced a pipeline that extends CAM-based
methods to perform weakly supervised object detection.
The method provides flexibility in both the choice of back-
bone classifier, as well as the choice of method to compute
class activation maps. Experiments were performed with
the VGG16 classifier, as well as a novel FPN-based classi-
fier that incorporates both fine-grained and coarse-grained
features of an image. Results showed that the ORT has re-
duced capabilities at detecting the full extent of objects with
bounding boxes, but it can achieve good pin-pointing per-
formance: 85.6% and 92.6% mAP@50 on the VOC 2007
dataset with the one- and two-stage method respectively.
Moreover, its near real-time inference speed shows poten-
tial for real world applications in fields such as robotics and
autonomous driving.

The inference hyperparameters, such as the segmenta-
tion thresholds, highly affect the performance of ORT and
would benefit from being tuned to the different classifier
backbones, especially across the FPN feature maps. While
the two stage method does increase the performance of the
detectors, the influence of the data used to pretrain the fully
supervised detector should be analyzed. The choice of al-
gorithm used to create the CAMs, aside from GradCAM++,
should also be experimented with. Better training strategies
for weakly supervised CAM-based detectors, such as Easy-
to-hard, as used by Zhang et al. [32], could improve the per-
formance by gradually increasing the difficulty of the sam-
ples during training. Moreover, a loss function that better
separates the classes could be used, such that the classifier
can learn to better focus on individual classes and not take
into consideration features from others.

Future research should improve bounding box genera-
tion by using strategies from fully supervised object de-
tection, such as Non-Maximum Suppression (NMS) [16],
which merges predicted bounding boxes based on confi-
dence scores. The confidence scores of ORT would have
to also account for the location of the objects, such that de-
tections of the same class within the same image get dif-
ferent confidence. Finally, the proposed method should be
analyzed when using a transformer architecture instead of
the simple classifier. In object detection, transformer based
models such as DETR [4] and DINOv2 [18] have reached
state-of-the-art, even in self-supervised settings.



6. Responsible Research

Reproducibility: To ensure reproducibility when it comes
to the data used, PASCAL VOC 2007 [6] adheres to the
principles of FAIR. It is findable through its dedicated web-
page' and accessible as it is available for download with-
out any restrictive bariers, both from the website as well as
through its PyTorch library’.Moreover, the dataset is inter-
operable because it is formatted in a standard, widely-used
format (XML for annotations and JPEG for images), which
allows for seamless integration with various machine learn-
ing frameworks and tools. Lastly, it is reusable due to its
comprehensive documentation®.

The codebase used for this research is publicly available

on GitHub*, along with the experiments’ logs. To ensure re-
producibility, the code is commented and comes with com-
prehensive instructions in the README. Random data shuf-
fling and sampling was controlled with the use of a fixed
generator seed of 42, meaning that all data splits used can
be easily reproduced.
Integrity: This research adheres to the 5 research integrity
principles outlined in the Netherlands Code of Conduct °:
honesty, scrupulousness, transparency, independence and
responsibility. All aspects of this work were presented
in a truthful manner, acknowledging the limitations of the
method. The research was thoroughly conducted, assur-
ing transparency in the methodology. Furthermore, there
were no external influences, as well as no ethical concerns
associated with this research. The pre-existing code that
was used is all publicly available, either through the Py-
Torch library (VGG16, FPN, Faster-RCNN) or within pub-
lic GitHub repositories (GradCAM-++ [7], PCL ®) which are
licensed under MIT.
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7. Results on 224x224 images

While object detectors benefit from full image sizes, smaller
images offer much faster training and testing times, with
the disadvantage of losing more fine-grained features. From
the experiments in Sec. 4 it can be seen that when creating
bounding boxes for large objects, ORT suffers from identi-
fying only the most discriminative features of objects. Un-
der the intuition that smaller image sizes that have less fine-
grained features would aid the proposed model in looking
at the full extent of larger objects, experiments were per-
formed on the VOC 2007 dataset with all training and test-
ing images resized to 224x224.

Classification: The classification results in Tab. 6 com-
pared to Tab. 1 show that the classification performance
of the FPN classifier slightly increases (by approximately
0.4% to 1.2%) when using smaller image sizes, while
VGG16 performs sightly worse (by 3.5%). Overall the clas-
sifiers still manage to detect the objects in an image, with
their Multilabel Average Precision ranging between 80.3%
and 87.5%.

Full Localization Multi Multi

Method
dataset both Instance Class

small large

VGG16  80.3 65.8 847 820 75.9 74.2

FPNP5 869 753 9277 899 85.9 81.0
FPNP4  87.8 774 921 89.8 87.3 822
FPNP3 864 719 93.1 893 88.3 80.3
FPNP2 875 753  93.0 904 87.0 82.1

Table 6. Classification Multilabel Average Precision on VOC 2007
with images resized to 224x224 of the VGG16 and the FPN based
classifier when using the 4 different feature maps. The classifiers
used in the proposed models manage to effectively identify the
objects present in an image.

Bounding Box detection: When comparing the bounding
box detection capabilities of ORT, Tab. 7 and Tab. 2 show
that resizing images gives overall better results. Upon fur-
ther inspection, this is due to the performance increase (by
approximately 13.1% to 39.2%) on the large localization
data split that the 224x224 images bring. However, there is

a significant performance decrease (by approximately 8.8%
to 20.7%) in the localization of small objects compared to
using full image sizes. It is worth noting that these differ-
ences are larger for the FPN-based models than for ORT-
VGG16. Additionally, the two stage method has an overall
better performance when using the full image size, despite
the one stage method having better overall performance
when using the resized images.

Full Localization Multi Multi

Method dataset Instance  Class

small large both

ORT-VGG16 11.7 158  32.0 267 6.2 10.9
+Faster-RCNN ~ 22.3 303 517 440 13.6 20.7

ORT-FPN P5 11.8 0.8 529 369 5.8 10.2
+Faster-RCNN 17.0 24 591 416 8.5 14.4

ORT-FPN P4 13.6 54 543 388 4.8 11.9
+Faster-RCNN 19.9 119 632 457 11.4 17.6

ORT-FPN P3 14.1 3.1 56.8  39.0 5.1 12.9
+Faster-RCNN 19.2 5.4 654 46.2 9.3 16.5

ORT-FPN P2 12.1 47 471 339 39 10.5
+Faster-RCNN 19.4 56 625 449 9.3 16.6

Faster-RCNN 70.2 82.8 802 827 62.4 66.2

Table 7. Object Detection results with mAP@50 on VOC 2007
with images resized to 224x224. From top to bottom: the pro-
posed weakly supervised models using the VGG16 classifier and
the FPN classifier with different feature maps, where ’+’ indicates
the two stage method. At the bottom, the SOTA weakly supervised
MIL method PCL, where * indicates the result is taken from the
original paper and the fully supervised Faster-RCNN. Weakly su-
pervised models are outperformed by the fully supervised detector,
struggling most with small objects, multi instance and multi class
images. The two stage method boosts the performance of the one
stage models.

Figure 6 shows the qualitative detection results on the
same images as in Fig. 5, this time resized to 224X224. It
can be observed that the resized images aid the models in
looking at the full extent of objects when they are large,
but it also makes them look at the areas surrounding small
objects. Not being able to see fine-grained features, also
causes ORT to not be able to separate multiple instances as
good as it did in full sized images.
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Figure 6. Comparison between the detection and pin pointing performance between the different backbone classifiers used for ORT on a a)
large localization image, b) multi instance image, c) small localization image and d) multi class image of the VOC 2007 test set with images
resized to 224x224. Each column contains the original image with the ground truth bounding boxes in green, the predicted bounding boxes
in red, the predicted pin points in blue and the heatmap generated with GradCAM++. Note that the heatmaps for multi class images are
shown by overlaying the heatmaps from the different classes for visualization purposes. The FPN-based models manage to detect more of
the objects, compared to the VGG16 that mainly looks at the most discriminative parts. The deeper feature maps in the FPN detect more
fine-grained features and have a less uniform aspect. Note that for small objects, the proposed models also detect the surrounding area.

Correct Localization: The CorLoc performance with the Method Full Localization Multi  Multi
resized images can be observed in Tab. 8. Compared to dataset " ool large both Instance  Class
that of the full sized images in Tab. 3, the same trends as
with the bounding box detection performance apply, with

the exception that the differences are smaller.

ORT-VGG16  26.0 276 334 303 17.5 253

ORT-FPN P5  28.0 24 592 429 19.0 22.5
ORT-FPN P4 283 120 51.8 394 19.3 23.1

Pin Pointing: Looking at the pin pointing performance of ORT-FPNP3 273 6.7 530 385 18.2 21.6
ORT with the resized images in Tab. 9 compared to that with ORT-FPNP2  23.0 43 429 320 165 18.4
the full sized images in Tab. 4, we can see that it performs

better when the images are not resized. While its localiza- Table 8. CorLoc results on the VOC 2007 trainval set with im-
tion capabilities remain approximately the same, when hav- ages resized to 224x224 of the proposed one stage method with

ing the full image it performs significantly better (by 6.9% the VGG16 and the FPN based classifier when using the 4 differ-

to 15% ) on images with multiple instances and multiple ent feature maps. The proposed models struggle at detecting the
classes full extent of objects. The FPN backbone performs overall better

than the VGG16 one.



Full Localization Multi Multi
dataset both Instance Class

Method
small large

ORT-VGG16 68.8 73.0 987 959 44.5 60.1
+Faster-RCNN ~ 73.2 809 918 913 57.5 67.4

ORT-FPN P5 64.4 653 97.8 938 44.2 57.1
+Faster-RCNN ~ 68.2 68.0 97.7 949 51.2 60.9

ORT-FPN P4 72.9 700 994 963 49.9 66.2
+Faster-RCNN ~ 74.8 783 979 95.6 56.2 68.8

ORT-FPN P3 72.9 664 993 964 49.3 64.5
+Faster-RCNN  64.5 724 949 925 44.1 58.4

ORT-FPN P2 79.2 727 994 973 55.5 70.1
+Faster-RCNN  68.3 709 93.6 90.9 49.3 62.8

Faster-RCNN 95.2 88.7 984 984 82.9 90.9

Table 9. Pin Pointing results with mAP on VOC 2007 with images
resized to 224x224, where a point is considered correct if it falls
in the ground-truth bounding box. From top to bottom: the pro-
posed weakly supervised models using the VGG16 classifier and
the FPN classifier with different feature maps, where ’+’ indicates
the two stage method. At the bottom, the fully supervised Faster-
RCNN. The proposed models can successfully pin point the gen-
eral location of objects, their performance being close to the fully
supervised detector.

8. Qualitative Results

Figure 7, 8, 9 and 10 provide further qualitative compar-
isons of the different backbone classifier of ORT applied to
the VOC 2007 test set. Results show that ORT makes con-
textual mistakes, meaning that for a predicted class it can
detect not only the ground-truth but also surrounding ob-
jects that belong to the same context. Furthermore, it has
problems with detecting partially occluded objects, as well
as objects of the same class that are close together. Over-
all, FPN backbones show improved granularity in detecting
fine features. However, they require specific segmentation
threshold tuning to bring out their full potential.
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Figure 7. Qualitative results on a localization image of the VOC 2007 test set, with the different backbone classifier architectures. Overall,
the ORT makes contextual mistakes, meaning that aside from the object of interest (tv monitor) it detects other objects around that belong
to the same context (keyboard, PC).



. Segmentation threshold for Segmentation threshold for . .
Bounding Boxes GradCAM++ & & . . Pin Points
= bounding boxes pin points

ORT-
VGGle6

ORT-
FPN P5

Figure 8. Qualitative results on a multiple instance image of the VOC 2007 test set, with the different backbone classifier architectures.
Note that the boat that ORT never detects is partially occluded by another boat. The FPN P3 feature map best localizes the objects, however
the thresholds applied would need to be tuned specifically for this layer to leverage its full performance. The other backbone classifier
architectures focus less on fine-grained features, leading them to merge together the boats that are near each other.
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Figure 9. Qualitative results on a multi class multi instance image of the VOC 2007 test set, with the different backbone classifier archi-

tectures. While the VGG16 and FPN P5 manage to only detect the people in the image, the subsequent FPN feature maps see more fine
grained features, which allows them to detect the sofa. However, the sofa is not detected in the parts where it’s occluded by the humans.
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Figure 10. Qualitative results on a multi class image of the VOC 2007 test set, with the different backbone classifier architectures. While
the VGG16 only detects the dog and the tv monitor, the FPN classifier also sees the sofa. Note that while the sofa is not marked as ground-
truth, this can be a considered a contextual mistake. The deeper FPN feature maps detect the person inside the tv monitor, but don’t see the
tv monitor surrounding it.
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