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Abstract

We extend the scope of our recently developed approach for unsupervised automated discovery of material laws (denoted as
UCLID) to the general case of a material belonging to an unknown class of constitutive behavior. To this end, we leverage the

heory of generalized standard materials, which encompasses a plethora of important constitutive classes including elasticity,
iscosity, plasticity and arbitrary combinations thereof. We show that, based only on full-field kinematic measurements and
et reaction forces, EUCLID is able to automatically discover the two scalar thermodynamic potentials, namely, the Helmholtz
ree energy and the dissipation potential, which completely define the behavior of generalized standard materials. The a priori
nforced constraint of convexity on these potentials guarantees by construction stability and thermodynamic consistency of
he discovered model; balance of linear momentum acts as a fundamental constraint to replace the availability of stress–
train labeled pairs; sparsity promoting regularization enables the automatic selection of a small subset from a possibly large
umber of candidate model features and thus leads to a parsimonious, i.e., simple and interpretable, model. Importantly, since
odel features go hand in hand with the correspondingly active internal variables, sparse regression automatically induces a

arsimonious selection of the few internal variables needed for an accurate but simple description of the material behavior.
fully automatic procedure leads to the selection of the hyperparameter controlling the weight of the sparsity promoting

egularization term, in order to strike a user-defined balance between model accuracy and simplicity. By testing the method on
ynthetic data including artificial noise, we demonstrate that EUCLID is able to automatically discover the true hidden material
odel from a large catalogue of constitutive classes, including elasticity, viscoelasticity, elastoplasticity, viscoplasticity, isotropic

nd kinematic hardening.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Unsupervised learning; Constitutive models; Generalized standard materials; Interpretable models; Sparse regression; Inverse problems

1. Introduction

The conventional strategy to mathematically describe the response of a given material in solid mechanics entails
he a priori choice of a material model depending on a finite number of tunable parameters, and the calibration of
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these parameters based on experimental observations. The calibrated material model, which describes the relation
between stresses and strains (and potentially other material state variables), can then be deployed in numerical
(e.g. finite element) simulations to predict the mechanical response of arbitrarily shaped components of the material
under external influences. The weakest aspect of this procedure lies in the a priori selection of a suitable model,
which is largely based on experience. An inappropriate initial choice inevitably leads to failure to identify a set of
material parameters which enable the model to accurately represent the experimental data; in such case the initial
choice has to be modified and the procedure repeated, possibly multiple times, resulting in a time-consuming and
error-prone iterative process.

Enabled by the tremendous amount of data made available by the recent advances in experimental mechanics,
ata-driven approaches, often based on machine learning tools, are increasingly being explored for applications in
olid mechanics, and especially in material modeling [1–5]. A popular strategy to mitigate the drawbacks of an
nappropriate a priori model selection is to choose a parametric material model ansatz that is as general as possible,
.e., with a large number of tunable parameters. Examples are splines [6], Gaussian processes [7], neural networks [8]
r neural ordinary differential equations [9]. Due to the large number of trainable parameters and functions that
escribe the material response, these types of model ansatz are more flexible than conventional models and the risk
f not being able to well interpret the observed data is reduced. Combinations of traditional and machine learning
omponents can further increase the performance of the resulting material models, as shown for example by [10–
3]. Recognizing that constitutive models should not violate any well-known physical requirements motivated the
ecent trend to supplement machine learning models with physics-based constraints. These are enforced either by
onstruction or in a weak sense by introducing additional regularization terms to the loss function that penalize the
iolation of physical laws. Examples of constraints include convexity or polyconvexity in hyperelasticity [9,14–18]
r the second law of thermodynamics for dissipative materials [13,19–22]. The mentioned works show that the
nforcement of physics constraints has the additional advantage of improving the extrapolation power of machine-
earning-based models. An alternative stream of research avoids the fitting of a parametric material model altogether
nd aims to solve boundary value problems in which the material model is replaced by experimental data, resulting
n so-called (material) model-free data-driven approaches [23,24]. Here the modeling components are limited to the

omentum balance equation and the assumed kinematics, and thus are reduced to a minimum. The same problem
an be formulated in an inverse setting to recover stress fields from kinematic measurements, see [25–27].

Most of the previously discussed methods have two weak points in common. Firstly, both the training procedure
or the machine learning models and the construction of a material database for the model-free methods require a
arge number of labeled stress–strain data pairs, which are not available from standard experiments and can only
e generated through computationally expensive multiscale simulations (assuming the lower-scale geometry and
aterial behavior are known). The second weakness is the black box nature of these methods, which makes it

mpossible to interpret their predictions with mathematical or physical domain knowledge.
Against the outlined background and inspired by research on discovery of ordinary or partial differential equations

ased on data in the physics community [28,29], we recently developed a new approach for automated discovery
f material models, which we denoted as EUCLID (Efficient Unsupervised Constitutive Law Identification and
iscovery). Originally developed for hyperelastic materials [30] (see also the independent related work by [31]) and

ubsequently extended to elastoplasticity [32] and viscoelasticity [33], EUCLID solves both of the aforementioned
ssues. In contrast to most machine-learning-based methods, EUCLID relies solely on data that can be realistically
cquired with common experimental techniques, namely, full-field displacement data obtained, e.g., by Digital Image
orrelation (DIC), and net reaction forces. In this sense, EUCLID is related to parameter calibration methods based
n full-field displacement measurements such as the Virtual Fields Method [34,35], see also [36–38] for an overview.
owever, instead of identifying the parameters of an a priori assumed material model, EUCLID automatically

elects the model that leads to the best interpretation of the data starting from a very large set of candidates. In
his way, EUCLID departs from the realm of material model calibration, i.e., the tuning of the parameters of a

given material model, to enter the realm of material model discovery, i.e., the selection of a material model coupled
with the simultaneous calibration of its parameters. By leveraging sparse regression [29,39,40], it is ensured that a
parsimonious and interpretable material model, i.e., one with a small number of terms and parameters, is discovered.
Later works on EUCLID include a study of the problem from a Bayesian perspective for quantifying the uncertainty

in the discovered models [41] and an unsupervised training framework for artificial neural networks [18]. For related
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works that aim to identify material parameters of an a priori known constitutive model or train uninterpretable black-
box machine learning models in an unsupervised fashion, the reader is referred to works by Man and Furukawa
[42], Huang et al. [43], Liu et al. [44], Amores et al. [45], Anton and Wessels [46].

Thus far, we developed EUCLID for a few different material classes, including hyperelasticity [30], elastoplastic-
ty [32] and viscoelasticity [33]. For each material class, we formulate a general parametric model library within the
lass, from which the model is automatically selected (and its unknown parameters simultaneously calibrated) based
n sparse regression. This strategy is appropriate if the material class is known a priori, which may be realistic in
any practical scenarios. On the other hand, in more complex situations it may well happen that the studied material

s completely or largely unknown, so that the constitutive material class it belongs to is open to question. Thus, the
bjective of this work is to extend the scope of EUCLID to the challenging task of automatically discovering the
aterial class along with the particular model within this class, as usual on the basis of full-field displacement and

et force data. To pursue this goal, we leverage the theoretical framework of generalized standard materials.
The theory of generalized standard materials (sometimes denoted as standard dissipative materials) provides

general material modeling framework rooted in the fundamental results by Onsager [47], Onsager [48] on the
hermodynamics of irreversible processes. Onsager departs from a classical description of the kinetics of irreversible
rocesses by a linear system of equations and proves the symmetry of its coefficient matrix, expressed by the
o-called Onsager’s reciprocal relations. This property in turn enables the definition of a quadratic dissipation
otential from which the linear kinetic evolution equations can be obtained, and the establishment of a variational
rinciple, recently also denoted as Onsager’s variational principle by the soft matter community [49]. Onsager’s
hermodynamic framework is extended to material modeling by Ziegler [50], Ziegler [51], Ziegler [52], Halphen and
guyen [53] (among many others), with Halphen and Nguyen [53] introducing the notion of generalized standard
aterials. Following these studies, it emerges that constitutive relations for many types of materials can be deduced

rom a single pair of scalar functions (thermodynamic potentials) fully characterizing the material behavior: the
ree energy and the dissipation potential. Unlike in the work by Onsager [47], Onsager [48], Ziegler [50], Halphen
nd Nguyen [53] consider thermodynamic potentials that are not necessarily quadratic, and hence may lead to non-
inear relations between thermodynamic forces and state variable rates, but convex, which is shown to guarantee the
ulfillment of thermodynamic consistency by construction. This generality enables the description of a large variety
f different material classes with possibly non-linear constitutive equations, including elasticity, plasticity, viscosity,
amage and more (see Steinmann and Runesson [54] for a recent catalogue in the one-dimensional case).

Due to the general description of the material behavior and the automatic fulfillment of physical laws, the
heory of generalized standard materials constitutes an attractive framework for developing data-driven and machine-
earning-based methods. It is hence surprising that thus far little effort has been made in this direction. One exception
s the work by Yu et al. [55], who use neural networks to parameterize the system matrices, the energy and the
xternal forces occurring in a generalized form of Onsager’s reciprocal relations for modeling of the non-linear
inetics of fluids. Another exception is the recent work by Huang et al. [21], who propose Variational Onsager
eural Networks to parameterize the free energy potential and the dissipation potential for thermodynamic processes

ncluding phase transformations and diffusion. The method is also applied to learn the constitutive relations of
solid material; however, the provided benchmark test is restricted to one-dimensional viscoelasticity, with one

calar internal variable and a quadratic dissipation potential. Thus, more complicated material behaviors with several
nternal variables and non-quadratic dissipation potentials (such as e.g. in plasticity) remain untackled. A further
tream of research [56–58] combines data-driven methods and machine learning with the GENERIC framework,
roposed by Grmela and Öttinger [59] and related to the theory of generalized standard materials [60,61]. Their

objective is to identify two thermodynamic potentials and additionally (unlike with the theory of generalized
standard materials) two system matrices that govern the evolution of the state variables. The training, however,
is supervised and applications to solid material modeling are thus far restricted to modeling simple material
responses, e.g., visco-hyper-elasticity [10], while once again more complex material behavior such as plasticity
remains untackled.

In the following, we provide an introduction to the theory of generalized standard materials and the resulting
constitutive equations (Section 2). Subsequently, we integrate this theory in the EUCLID framework (Section 3),
which we test on numerical benchmarks in Section 4. We finally draw conclusions in Section 5. A graphical

illustration of the method proposed in this contribution is given in Fig. 1.
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Fig. 1. Graphical illustration of EUCLID. From a mechanical test on a specimen with complex shape (a), the strain field over the specimen
surface is acquired using digital image correlation (DIC) (b), and the reaction force at the boundary is measured using a load cell. Introducing
a model library, the residuals of the weak form of linear momentum balance in the interior (c) and at the boundary (d) can be expressed as
functions of the material parameters θ . By minimizing the sum of squared residuals of the linear momentum balance along with a sparsity
promoting regularization term (e), the thermodynamic potentials (f) are discovered as parsimonious mathematical formulae.

2. Generalized standard materials

In this section, we concisely introduce the fundamental notions on generalized standard material models, their
properties, and the numerical solution of the related constitutive equations. Many more details on the models can be
retrieved e.g. in the early papers by Ziegler [50], Ziegler [51], Halphen and Nguyen [53] or in the recent presentation
by Steinmann and Runesson [54].

2.1. Thermodynamic potentials

We consider a material in three-dimensional space, undergoing infinitesimal strains under isothermal conditions
without phase transitions. The state of the material is assumed to be uniquely described by a set of n + 1 state
ariables {ε,α1, . . . ,αn}, where ε is the (observable) infinitesimal strain tensor and αi , i ∈ 1, . . . , n, are internal
i.e., non-observable) state variables, typically describing the current state in relation to irreversible phenomena
aking place in the material. Although αi may be tensors of any order, they will be denoted by boldface letters
n the subsequent derivations. For notational compactness we will also denote the set of internal state variables as
= {α1, . . . ,αn}.
By definition, generalized standard materials are materials for which the two following scalar functions, also

alled thermodynamic potentials, exist:

• The Helmholtz free energy density potential ψ (ε,α) (in the following also simply denoted as free energy
potential), that depends on the state variables and is assumed to be strictly convex, non-negative (ψ (ε,α) ≥ 0),
zero at the origin (ψ (0, 0) = 0) and smooth, i.e., continuously differentiable.

• The dissipation rate density potential π (ε̇, α̇) (or dissipation potential in short), that depends on the time
derivatives of the state variables (denoted by superposed dots), is convex, non-negative (π (ε̇, α̇) ≥ 0), zero
at the origin (π (0, 0) = 0) and continuous. It may be weakly convex, i.e., locally linear, and non-smooth,

i.e., not continuously differentiable.

4
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For generalized standard materials, the specific choice of the functional form of the two thermodynamic
otentials, along with the knowledge of the values of the contained parameters, completely characterizes the
aterial behavior. The properties of the free energy potential guarantee material stability and uniquely defined

artial derivatives. Those of the dissipation potential will be seen to guarantee by construction the fulfillment of
he second law of thermodynamics. Hence, a material model that fits within the framework of generalized standard

aterials is by construction stable and thermodynamically consistent.
Note that, in general, the thermodynamic potentials could also depend on spatial gradients of the state variables,

.g., ψ (ε,∇ε,α,∇α) (see [62,63]), or the dissipation potential could also depend on the state variables, i.e.,
(ε,α, ε̇, α̇) (see [64]). In this initial investigation, we will consider the “classical” dependencies and will not

e concerned with such cases. However, they would certainly be of interest for further generalization of the method
roposed in this paper, e.g., to softening material behavior.

.2. State laws, complementary laws and constitutive laws

Under the present assumptions, the so-called intrinsic dissipation (or mechanical dissipation) D reads

D = σ : ε̇ − ψ̇ ≥ 0, (1)

where σ is the Cauchy stress tensor and the inequality, also known as dissipation inequality, is to be seen as a
requirement posed to the material model in order to satisfy the second principle of continuum thermodynamics.
Using the chain rule, the time derivative of the free energy potential can be expressed as

ψ̇ =
∂ψ

∂ε
: ε̇ +

∂ψ

∂αi
: α̇i , (2)

here we have adopted the Einstein convention for summation over repeating indices. Let us now define the
eversible or energetic stress σ en and the energetic driving forces Aen

i as follows

σ en
=
∂ψ

∂ε
(ε,α) , Aen

i =
∂ψ

∂αi
(ε,α) . (3)

n simple terms, σ en represents the reversible part of the stress, while Aen
i is the energetic driving force associated

o the state variable αi . Eqs. (3) are known as state laws and define the thermodynamic forces which are available
t a given state. By substituting (2) and (3) in (1) we obtain

D = (σ − σ en) : ε̇ − Aen
i : α̇i = σ dis

: ε̇ + Adis
i : α̇i ≥ 0. (4)

here we have defined the irreversible or dissipative stress σ dis and the dissipative driving force Adis
i as follows

σ dis
= σ − σ en, Adis

i = −Aen
i . (5)

For the case of non-dissipative material behavior (D = 0), we obtain σ dis
= 0 and Adis

i = 0, implying that the
ntire constitutive behavior is described by the state laws. For the general case D ≥ 0, which is considered here,
he state laws are not sufficient and must be supplemented by the so-called complementary laws

σ dis
=
∂π

∂ ε̇
(ε̇, α̇) , Adis

i =
∂π

∂α̇i
(ε̇, α̇) , (6)

hich describe the relations between the advancement of irreversible phenomena and the corresponding thermody-
amic forces. In the case of a non-smooth dissipation potential, the partial derivatives above have to be substituted by
ubderivatives [65]. In the following, for notational simplicity we denote both partial derivatives and subderivatives
ith the same symbol. We further introduce the set of dissipative driving forces as Adis

= {Adis
1 , . . . ,Adis

n }.
ubstituting (6) into (4) yields

D =
∂π

∂ ε̇
: ε̇ +

∂π

∂α̇i
: α̇i . (7)

t is thus evident that, whatever the specific choice of π with the postulated properties, it is D ≥ 0, i.e., the
issipation inequality is satisfied by construction.

The combination of state laws and complementary laws is sufficient to completely describe the material behavior,
hich is governed by the constitutive laws

σ =
∂ψ

(ε,α)+
∂π

(ε̇, α̇) , 0 =
∂ψ

(ε,α)+
∂π

(ε̇, α̇) . (8)

∂ε ∂ ε̇ ∂αi ∂α̇i

5
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2.3. Dual dissipation potential and dual complementary laws

An equivalent alternative to the complementary laws is obtained by applying the Legendre–Fenchel transforma-
ion1 to the dissipation potential to obtain the dual dissipation potential

π∗
(
σ dis,Adis)

= max
ε̇,α̇

{
σ dis

: ε̇ + Adis
i : α̇i − π (ε̇, α̇)

}
, (9)

from which we obtain

ε̇ =
∂π∗

∂σ dis

(
σ dis,Adis) , α̇i =

∂π∗

∂Adis
i

(
σ dis,Adis) , (10)

nown as dual complementary laws. These laws describe the advancement of irreversible phenomena as a function
f the corresponding thermodynamic forces, i.e., they are basically evolution equations for the strain and for the
nternal variables, which is why they are often more useful than (6). Once again, should π∗ be non-smooth, the

partial derivatives have to be intended as sub-derivatives. Note that, due to a property of the Legendre–Fenchel
transform, convexity of π is equivalent to that of π∗.

.4. Strain-rate-independent dissipation potential

For solid materials, it is often assumed that the dissipation potential does not depend on the strain rate,
.e., π = π (α̇) (see, e.g., [67–69]). As a consequence, the Legendre–Fenchel transform reads

π∗
(
Adis)

= max
α̇

{
Adis

i : α̇i − π (α̇)
}
, (11)

which means that the dual dissipation is a function of the dissipative driving forces and the constitutive laws can
be simplified to

σ =
∂ψ

∂ε
(ε,α) , α̇i =

∂π∗

∂Adis
i

(
Adis)⏐⏐⏐⏐

Adis
i =−

∂ψ
∂αi

. (12)

In this work, we consider a dissipation potential which is independent of the strain rate. However, only minor
modifications would be needed to extend the framework developed in the following to the case of a strain-rate-
dependent dissipation potential. Note that the choice of a strain-rate-independent dissipation potential does not imply
a strain-rate-independent material model, as rate dependency is kept in the evolution of the internal variables. Further,
note that most of the classical material models used in continuum solid mechanics exhibit a strain-rate-independent
dissipation potential [54].

2.5. Numerical solution of the constitutive equations

Given an initial condition for the state variables, Eqs. (12) can be solved either in strain or in stress control for
the history of the state variables and of the dependent variables. Here, we will consider strain control, i.e., the strain
history is given and the objective is to compute the stress and the internal variables at each time. The conventional
strategy to solve such problems is to compute the partial derivatives (or subderivatives) of the thermodynamic
potentials analytically and to solve at each time the resulting equations, which are non-linear in general, using
e.g. the Newton–Raphson method. If the dissipation potential is non-smooth, algorithms like the return mapping in
elastoplasticity [70,71] are commonly applied.

Alternative strategies for solving equations like (12) employ automatic differentiation, see [69,72,73]. In this
way, derivatives do not need to be evaluated by hand and the process of implementing the constitutive equation
solver for new models is greatly simplified, which can be particularly beneficial during the development stage
of new material models. However, such automatic solution strategies also have drawbacks. For non-smooth
thermodynamic potentials, automatic differentiation cannot be applied, thus the potentials must be approximated
by a continuously differentiable regularization (examples are provided by Steinmann and Runesson [54]), whose

1 As the dissipation potential might not be strictly convex and smooth, the conventional Legendre transformation is not applicable,
see Touchette [66] for details.
6
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choice is user-dependent and does not follow rigorous rules. The regularization also introduces additional parameters
and non-linearity to the problem. Further, while conventional methods often take advantage of problem-specific
simplifications that increase the computational efficiency (see, e.g., the scalar internal variable substitution during
the viscoplastic corrector step in Appendix A), automatic methods are blind to such possibilities, thus they tend
to be computationally more expensive. For these reasons, in this work we rely on the conventional methods for
solving the constitutive equations and for computing the consistent tangent (see Appendix A and Appendix B for
details).

3. Automated discovery of generalized standard material models

In the following, we describe our novel approach to automatically discover generalized standard (hence, stable
nd thermodynamically consistent) material models based on full-field displacement and global force data. The
ackbone of the approach, which we denote as EUCLID in line with our previous work [18,30,32,41], can be
utlined as follows: we start from a very wide material model space, which we construct by exploiting the flexibility
nd a priori thermodynamic consistency of the generalized standard material model framework; we constrain this
odel space by enforcing the satisfaction of momentum balance (in weak sense) on the source data; we exploit

parse regression to ensure parsimonity of the discovered model. Through these three key ingredients, we end up
imultaneously performing model selection and identification of the unknown material parameters. Unlike in our
revious papers, our model selection here is not restricted to taking place within a predefined category of material
ehavior (such as elasticity or plasticity), but the category itself is one of the outcomes of the approach.

.1. Material model library

We start by constructing a parametric library of three-dimensional and isotropic generalized standard material
odels, out of which the EUCLID algorithm will later select a model that best fits the data while at the same

ime being mathematically concise. In particular, we choose a combination of generalized Maxwell viscoelastic
odels and viscoplastic models including isotropic and kinematic hardening mechanisms, see Fig. 2 for a rheological

llustration. Thus, the model library includes a large portion of the models included in the catalogue by [54].2 For
imilar viscoelastic–viscoplastic modeling approaches, the reader is referred to Giunta and Angela Pisano [74],

iled et al. [75], Miled [76], Sun and Zhu [77].
For manipulating second order tensors in the following, we introduce the trace operator tr(□) = □i i , the

olumetric operator vol (□) =
1
3 tr (□)I and the deviatoric operator dev (□) = □ − vol (□).

.1.1. Thermodynamic potentials
The adopted model library for the free energy potential ψ reads

ψ (ε,α) =
1
2

(
2G dev(ε − α I ) : dev(ε − α I ) + K tr2(ε − α I )

)
+

1
2

H isoα2
I I +

1
2

H kinα I I I : α I I I

+
1
2

nMW∑
j=1

(
2G j dev(ε − α j − α I ) : dev(ε − α j − α I ) + K j tr2(ε − α j − α I )

)
,

(13)

here α = {α1, . . . ,αnMW ,α I , αI I ,α I I I } are the nMW + 3 internal variables. Here, nMW denotes the number of
iscoelastic Maxwell elements considered in the model library; α1, . . . ,αnMW have the meaning of viscous strains
n the Maxwell elements; α I is the plastic strain tensor; α I I and α I I I are the two hardening variables corresponding
o isotropic and kinematic hardening; G and K are the long-term shear and bulk moduli; G i and Ki are the shear
nd bulk moduli of the i th viscoelastic Maxwell element; and H iso and H kin are material parameters related to
sotropic and kinematic hardening. At this point, the following considerations are in order:

• The actual number of internal variables needed for the accurate description of the material behavior is not
known a priori. Our proposed strategy here consists in introducing in the library a number of such variables
deemed to be larger than the actual number of internal variables needed to describe the material state. As will
become evident later, unnecessary internal variables will become automatically inactive through the sparsity
regularization.

2 In the catalogue by [54], the models are presented in one-dimensional form.
7
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Fig. 2. Rheological representation of the material model library. For the interpretation of the isotropic hardening element see [78].

• Compared to our previous investigations focusing on a single material class, here we are limiting ourselves
to a reduced library per class. E.g., unlike in Flaschel et al. [30], we are only considering linear elasticity
within the kinematically linear framework, and in contrast to Flaschel et al. [32], we fix the shape of the
initial yield surface and introduce a less versatile hardening description. The reason is that here the focus lies
on the ability of EUCLID to discriminate among different material classes, rather than on its versatility within
a given material class (which was extensively proved in our previous papers). Obviously, further extensions
are possible and may well be addressed in future developments.

The model library for the dual dissipation potential π∗ reads

π∗
(
Adis)

= π∗

VE

(
Adis

1 , . . . ,Adis
nMW

)
+ π∗

VP

(
Adis

I ,Adis
I I ,Adis

I I I

)
, (14)

with a viscoelastic contribution

π∗

VE

(
Adis

1 , . . . ,Adis
nMW

)
=

1
2

nMW∑
j=1

(
1

2G j g j
dev(Adis

j ) : dev(Adis
j ) +

1
9K j k j

tr2(Adis
j )
)
, (15)

nd a viscoplastic contribution

π∗

VP

(
Adis

I ,Adis
I I ,Adis

I I I

)
=

⎧⎨⎩0 if
√

3
2

dev
(
Adis

I + Adis
I I I

) ≤ σy − Adis
I I

1
2

1
ηp

(√
3
2

dev
(
Adis

I + Adis
I I I

)− σy + Adis
I I

)2
otherwise,

(16)

here Adis
= {Adis

1 , . . . ,Adis
nMW

,Adis
I ,Adis

I I ,A
dis
I I I } are the dissipative driving forces associated to the internal

ariables with the same subscripts, gi and ki are the shear and bulk relaxation times of the i th viscoelastic Maxwell

lement, σ0 is the yield stress, and ηp is the viscosity associated to the viscoplastic behavior.

8
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3.1.2. Constitutive equations
The constitutive equations for the chosen model library are obtained by substituting the thermodynamic potentials

f Section 3.1.1 in (12). The stress is derived as

σ =
∂ψ

∂ε
= 2G dev(ε − α I ) + K tr(ε − α I )I

+

nMW∑
j=1

(
2G j dev(ε − α j − α I ) + K j tr(ε − α j − α I )I

)
.

(17)

Differentiation of the dual dissipation potential with respect to the viscoelastic driving forces leads to the
iscoelastic evolution laws

α̇ j =
∂π∗

∂Adis
j

=
1

2G j g j
dev(Adis

j ) +
1

9K j k j
tr(Adis

j )I. (18)

These laws need to be evaluated at

Adis
j = −

∂ψ

∂α j
= 2G j dev(ε − α j − α I ) + K j tr(ε − α j − α I )I, (19)

which leads to

α̇ j =
1
g j

dev(ε − α j − α I ) +
1

3k j
tr(ε − α j − α I )I. (20)

Differentiation of the dual dissipation potential with respect to the viscoplastic driving forces leads to the
iscoplastic evolution laws

α̇ I = α̇ I I I =
∂π∗

∂Adis
I

=

⎧⎪⎨⎪⎩
0 if f ≤ 0

1
ηp

f
√

3
2

dev
(
Adis

I +Adis
I I I

)
dev

(
Adis

I +Adis
I I I

) otherwise,

α̇I I =
∂π∗

∂Adis
I I

=

{
0 if f ≤ 0
1
ηp

f otherwise,

(21)

where we defined

f =

√
3
2

dev
(
Adis

I + Adis
I I I

)− σy + Adis
I I . (22)

e notice that α̇ I = α̇ I I I . These evolution laws need to be evaluated at Adis
I = −

∂ψ

∂α I
= σ , Adis

I I = −
∂ψ

∂αI I
=

H isoαI I and Adis
I I I = −

∂ψ

∂α I I I
= −H kinα I I I , leading to

α̇ I = α̇ I I I =

⎧⎨⎩0 if f ≤ 0

1
ηp

f
√

3
2

dev
(
σ−Hkinα I I I

)
∥dev(σ−Hkinα I I I )∥

otherwise,

α̇I I =

{
0 if f ≤ 0
1
ηp

f otherwise,

(23)

ith

f =

√
3
2

dev
(
σ − H kinα I I I

)− σy − H isoαI I . (24)

For solving the incremental constitutive equations at a material point, we choose an implicit Euler discretization
in time. Given the state variables at the previous time step, the strain at the current time step and the time step size,
a viscoelastic predictor/viscoplastic corrector algorithm (see Appendix A) is applied to compute the stress and the
internal variables at the current time step. The consistent tangent modulus is given in Appendix B.
9
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3.1.3. Material parameters
All tunable material parameters in the material model library are collected in the material parameter vector

θ =

[
G, K ,G1, . . . ,GnMW ,

1
g1
, . . . ,

1
gnMW

, K1, . . . , KnMW ,
1
k1
, . . . ,

1
knMW

,
1
σ0
, ηp, H iso, H kin

]T

. (25)

o ensure the convexity of the thermodynamic potentials, all parameters in θ are assumed to be non-negative.
lternatively, one could consider enforcing convexity as a weak constraint, i.e., by penalizing non-convexity in

he cost function. However, this would not guarantee convexity by construction and would lead to decreased
omputational efficiency as the search space for the material parameters would be larger.

Note that some parameters appear in the material parameter vector through their reciprocals. This facilitates the
implification of the model in special cases for which these parameters tend to infinity (see also Section 3.4). For
xample, if the yield stress tends to infinity, the model can be considered as purely viscoelastic, and if a relaxation
ime tends to infinity, the viscous effect of the corresponding Maxwell element can be ignored. In practice, it
s more convenient to work with vanishing quantities than with diverging ones. For the numerical treatment, the
arameters in reciprocal form are assumed to be strictly positive. Further, ηp is assumed strictly positive such that
he algorithm for solving the constitutive equations described in Appendix A is applicable. The response of the
lgorithm in Appendix A converges to the rate-independent plastic material response for ηp → 0.

.2. Available data

By conducting a mechanical test on a specimen made of the material under consideration, two-dimensional full-
eld displacements and global reaction force data can be acquired to serve as input for EUCLID. The point-wise
isplacement data are given in the form {ua,t

: a = 1, . . . , nn; t = 1, . . . , nt }, where nn is the number of points
n space and nt is the number of time steps at which displacements are known. The available data are unlabeled,
.e., there exist no data labels (such as for example stresses) that are directly linked to the local displacement

easurements ua,t , calling for an unsupervised discovery process to be described in Section 3.3. Instead of data
abels, global reaction force measurements are available, which are not directly linked to the local displacements.
he reaction force data are given in the form {R̂β,t : β = 1, . . . , nβ; t = 1, . . . , nt }, where nβ is the number of
easured reaction force components.
To interpolate the given displacement data, we create a finite element mesh with shape functions {N a(X) : a =

, . . . , nn}, such that each node of the mesh corresponds to one of the points where the displacement is known.
he displacement field at each time is then given as

ut (X) =

nn∑
a=1

N a(X)ua,t , ∀ t = 1, . . . , nt , (26)

hich is differentiated in space to obtain the infinitesimal strain field at each time step

εt (X) = ∇
symut (X) =

nn∑
a=1

1
2

[
ua,t

⊗ ∇N a(X) + ∇N a(X) ⊗ ua,t] , ∀ t = 1, . . . , nt . (27)

.3. Cost function based on the weak linear momentum balance

Given full-field kinematic data and net reaction forces, EUCLID employs the balance of linear momentum as a
hysical constraint to determine the optimal values of the unknown parameters in the model library. In our previous
nvestigations, we observed this constraint to be effective in contrasting the strong ill-posedness induced by the
ack of labeled stress–strain data pairs. In the following, we introduce a cost function based on the sum of squared
nbalanced forces, thus establishing the weak linear momentum balance in the interior and at the boundary of the
est specimen (see [30,32] for more information). Later, this cost function will be minimized along with a sparsity
romoting penalty term to select a parsimonious model while determining its unknown parameters.

The weak formulation of the linear momentum balance under the assumption of vanishing inertia and body forces
t a generic time step t reads∫

σ t (∆t, εt ,αt−1, θ ) : ∇v dA −

∫
t̂t

· v dS = 0, ∀ admissible v, ∀ t = 1, . . . , nt , (28)

Ω ∂Ω

10
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where Ω and ∂Ω denote the specimen domain and boundary, respectively, and t̂ is the surface traction on ∂Ω . The
stress at the considered time step σ t depends on the time step size ∆t , the current strain εt , the internal variables
t the previous time step αt−1 and the material parameters θ through the stress update algorithm (see Appendix A).
he weak form must be satisfied for any admissible (i.e., sufficiently smooth) test functions v; we discretize them
ith the same shape functions adopted for the displacement data interpolation

v(X) =

nn∑
a=1

N a(X) va, (29)

nd we assume them to be constant in time. This leads to the discretized weak linear momentum balance

nn∑
a=1

va
·

⎡⎢⎢⎢⎣
∫
Ω

σ t (∆t, εt ,αt−1, θ )∇N a(X) dA  
Fa,t (θ )

−

∫
∂Ω

t̂t N a(X) dS

⎤⎥⎥⎥⎦ = 0, ∀ admissible v, ∀ t = 1, . . . , nt ,

(30)

here Fa,t denotes the internal force at node a of the finite element mesh for time step t . Since the internal forces
epend on the stress at the current time step, which in turn depends on the internal variables at the previous time
tep, they can only be computed (for a given set of material parameters θ ) by iterating through all load steps and
olving the constitutive equations at each step. To this end, the internal variables at the initial time step are assumed
o be zero.

We denote the set of all nodal degrees of freedom in the finite element mesh as D = {(a, i) : a = 1, . . . , nn; i =

, 2}. We further partition this set into two subsets: Dfree, containing the free degrees of freedom, i.e., those that do
ot correspond to any of the constrained boundaries, and Ddisp, containing the displacement-constrained degrees of
reedom, such that Dfree

∪ Ddisp
= D and Dfree

∩ Ddisp
= ∅. Further, we denote the subset of Ddisp corresponding

o the reaction force R̂β,t as Ddisp,β .
At the free degrees of freedom, the traction force t̂ vanishes and we obtain from (30)

Fa,t
i (θ ) = 0, ∀ (a, i) ∈ Dfree, ∀ t = 1, . . . , nt , (31)

hereas at the displacement-constrained boundaries the sum of the nodal internal forces must equal the global
xternal reaction force∑

(a,i)∈Ddisp,β

Fa,t
i (θ ) =

∑
(a,i)∈Ddisp,β

∫
∂Ω

t̂ t
i N a(X) dS = R̂β,t , ∀ β = 1, . . . , nβ, ∀ t = 1, . . . , nt . (32)

lobal measures of the violation of linear momentum balance in the interior and at the boundary can thus be
btained by the following sums of squared residuals

C free(θ ) =

nt∑
t=1

∑
(a,i)∈Dfree

⏐⏐Fa,t
i (θ )

⏐⏐2 , (33)

nd

Cdisp(θ ) =

nt∑
t=1

nβ∑
β=1

⏐⏐⏐⏐⏐⏐R̂β,t −

∑
(a,i)∈Ddisp,β

Fa,t
i (θ )

⏐⏐⏐⏐⏐⏐
2

, (34)

hich are finally combined in the cost function

C(θ ) = C free(θ ) + λr Cdisp(θ ). (35)

ere λr is a weighting parameter that scales the interior and boundary contributions to the cost function. As there
re less reaction force measurements (see (32)) than free degrees of freedom (see (31)), the weighting parameter
hould be chosen sufficiently larger than one (λr ≫ 1). Following previous works [30,32], we choose λr = 100
nd keep it constant throughout this work. Based on our experience, the choice of λr is not crucial for the success
f the method. Finally, note that in the quantification of the cost we are summing upon all time steps.
11
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3.4. Sparsity promoting regularization

Material models with a large number of material parameters are known to be less interpretable and poor at
xtrapolation to unseen strains [79]. For this reason, our objective with EUCLID is to obtain a parsimonious model,
.e., a model with as few features as needed to accurately interpret the available data. Minimizing the cost function
n (35) leads in general to a dense parameter vector θ , i.e., a vector with many non-zero entries. This, in turn,

implies that the resulting material model contains nearly all terms of the thermodynamic potentials contained in
the initially chosen library (see Section 3.1). Thus, nearly all internal variables are active and the calibrated model
is as complex as the entire model space adopted at the outset, which goes against the objective of discovering an
interpretable model containing only a few terms. In order to obtain a sparse parameter vector with many zero entries
and hence simple expressions for the thermodynamic potentials, we apply sparse regression, i.e., we minimize (35)
supplemented with a sparsity promoting regularization term

θopt
= arg min

θ≥θmin

(
C(θ ) + λp∥θ∥

p
p

)
, where ∥θ∥p =

(∑
i≥3

|θi |
p

)1/p

. (36)

he sparsity promoting regularization term was originally proposed by Frank and Friedman [39], Tibshirani [40]
nd later applied to problems in dynamics by Brunton et al. [29] and to problems in continuum mechanics by
laschel et al. [30], Flaschel et al. [32]. This term takes high values for dense solution vectors and small values for
parse solution vectors, whereby the weighting parameter λp influences its impact on the minimization problem. We

will show later how the value of λp can be automatically selected to achieve a user-defined compromise between
model accuracy and sparsity (see Section 3.5). The parameter p influences the curvature of the regularization term.
For p → 0, this term converges to the L0-(pseudo)-norm of θ , which counts the number of non-zero entries
in the vector. However, this choice turns the optimization problem into a combinatorial subset selection problem
which becomes computationally intractable for a large number of features. Denoting as n f the number of material
features, the model library gives rise to 2n f possible combinations of active and inactive features, i.e., 2n f material
models, and a brute force method that tests every possible material model would be highly inefficient. For this
reason, L0 regularization is often relaxed to the convex L1 regularization (p = 1), also known as LASSO (least
absolute shrinkage and selection operator) [40]. As the L0 regularization, the LASSO promotes sparse solution
vectors with many zero entries, while shrinking the remaining non-zero parameters. Within [0, 1], a smaller value
of p reduces the shrinkage of the non-zero parameters at the cost of computational complexity, as the degree of
non-convexity in the penalty term increases with decreasing p. In this work, we thus choose p = 1 to limit the
computational complexity, and keep it constant throughout the numerical examples. Based on our experience, the
choice of 0 < p ≤ 1 is not crucial for the success of the method [30,32].

As different material parameters have different units, the summation in the regularization term is unphysical
and only fulfills a numerical purpose. While a non-dimensionalization strategy would be recommendable (and is
planned for future studies), here we adopt the simplified approach to compute the regularization term based on the
numerical values of the parameters for fixed units (chosen as s for time, mm for length and kN for force) and treat
the result as dimensionless, such that the unit of the weighting factor λp is assumed to be kN2. With this specific
choice of units, the numerical values for the material parameters studied in this work appear within a reasonable
range of orders of magnitude, such that no scaling issues were observed during numerical testing. Note that we
exclude θ1 and θ2 from the sparsity promoting regularization as we assume that the elasticity constants G, K are
always non-zero for a solid material. The parameter constraints θ > θmin in (36) enforce that all parameters are
larger than zero, and all parameters that appear in the minimization problem with their reciprocals (i.e., 1/gi , 1/ki ,
1/σ0), as well as ηp, are larger than a lower bound, here chosen as θ lb

= 10−6 (see also Section 3.1.3).

3.5. Optimization strategy and hyperparameter selection

In the following, we describe the strategies adopted for the solution of the optimization problem in (36) and for
the selection of the hyperparameter λp (for a summary of all other (hyper-)parameters see Appendix C). For the
optimization, we rely on the trust region reflective Newton algorithm implemented in the Matlab ® built-in function

lsqnonlin, which has proven to be a suitable choice in terms of convergence and efficiency in previous work [32].

12
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C

To obtain an initial estimate of the solution, the problem is first solved without regularization, i.e., λp = 0, and
for a reduced set of parameters, i.e., the linear elastic constants G and K , while constraining the other parameters to
be equal to the corresponding values in θmin. This preconditioning step is computationally efficient due to the small
number of trainable parameters, and at the same time it provides a good estimate about the order of magnitude of
the elastic parameters. Subsequently, the optimization problem is solved (still with λp = 0) for the entire set of
unknown parameters. In general, the function to be minimized in (36) is non-convex and the minimization problem
admits multiple local minima. In order to increase the chance of finding (or approaching as closely as possible) the
global optimum, we run the optimization in parallel for multiple randomly generated initial guesses (ng = 24 in
this work) and, from all generated solutions, we select the one corresponding to the lowest cost value. This solution
serves as initial guess for the regularized optimization problem.

The value of the hyperparameter λp is of paramount importance for the achievement of a good compromise
between accuracy and sparsity of the discovered material model. As follows, we propose an automated algorithm
for its selection. We solve (36) for multiple different values of λp which are successively increased by a factor of
two, starting from an initial small value. In this work, we adopt λp ∈ {10−4

· 2 j kN2
: j = 0, . . . , 23}. For every

value of λp, (36) delivers a solution for the material parameters and an associated value of the cost function, which
we store in the set

S = {(θopt
j ,C j ) : j = 1, . . . , nλ}, (37)

with nλ = 24 as the number of considered λp values. Fig. 3 shows an exemplary plot of the cost function and
regularization term values for the different choices of λp, which follows a consistently encountered trend. As λp

increases, the cost function value increases and the regularization term value decreases, implying that the discovered
model becomes decreasingly accurate and increasingly simple. It is thus evident that this plot carries the information
needed to strike a balance between the conflicting objectives of accuracy and parsimony. Importantly, the initial range
of λp values is characterized by a low rate of variation of both cost and regularization term, so that at least visually
it is not difficult to identify a threshold value of λp beyond which the cost start increasing (and the regularization
term decreasing) at a much faster rate. Rather than defining a threshold on λp, we prefer to define one on the cost,

th, with the objective to limit the tolerated error on the fitting accuracy of the discovered models. In this work,
we choose C th to be slightly larger than the smallest cost Cmin in the solution set S but not smaller than 10−5 kN2,
i.e., C th

= max{10−5 kN2, 1.1 Cmin
}. Once this threshold is chosen, all solutions with C j ≥ C th are considered

irrelevant. The remaining relevant solutions are

S th
= {(θopt

j ,C j ) ∈ S : C j < C th
}, (38)

from which we select the sparsest solution, i.e., the solution in Sth with the smallest value of ∥θ
opt
j ∥

p
p. In all cases,

this automated selection algorithm leads to a solution with both low cost and low regularization term (see Fig. 3),
thus striking a user-defined compromise between model accuracy and sparsity .

3.6. Material classification

In a final postprocessing step, after having selected a suitable value for λp, we set all components of θ that lie
below a threshold θ th (chosen as θ th

= 10−4 in this work) to their minimal value, i.e., to the corresponding value in
θmin. Further, if the product of the modulus and the reciprocal of a relaxation time of a Maxwell element lies below
the threshold, both the modulus and the reciprocal of the relaxation time are set to their minimal values. In this
way, unnecessary terms in the thermodynamic potentials are removed and the discovered material can be classified
into different material classes. If G or K are larger than the threshold, the material is classified as elastic. If one of
the reciprocal relaxation times 1/gi or 1/ki is larger than the threshold, the material is classified as viscoelastic. If,
instead, any of the reciprocal relaxation times 1/gi or 1/ki is below the threshold, we assume gi → ∞ or ki → ∞,
respectively. If the reciprocal of the yield stress is below the threshold, neither plasticity nor viscoplasticity is active,
and we assume σ0 → ∞. If, however, the reciprocal of the yield stress is larger than the threshold, the material is
classified as plastic and the value of ηp decides whether the material is further classified as viscoplastic. Finally,
isotropic or kinematic hardening are active if respectively H iso or H kin are larger than the threshold.

After material classification, the discovered material model can be employed in forward finite element simulations

by utilizing the algorithm described in Appendix A. However, as some of the components in θ may have been set

13
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l

Fig. 3. Pareto analysis for the automated selection of the hyperparameter λp . The left figure shows the cost function values (in kN2) and
the regularization term values as functions of the different choices of λp (in kN2). A magnification in the region around the automatically
selected hyperparameter is shown in the right figure. The threshold for the cost function value and the solution obtained from the automated
selection algorithm are highlighted with blue and black dashed lines, respectively. The solutions were obtained from the data corresponding
to model LEVP with noise level σ = 0.5 µm (see Section 4). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 4. Displacement-controlled loading conditions of a square domain with two elliptic holes. The dimensions of the specimen and the
oading parameter δ are in mm and the loading rate δ̇ is in mm/s. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

to their minimum values, it may be beneficial to modify the algorithm in Appendix A by completely removing
these vanishing material features, to arrive at a simplified material response that is less computationally demanding
during the forward simulations.

4. Numerical benchmarks

To assess the performance of the developed method, we test it on synthetic data generated by finite element

simulations. While testing on real experimental data will be an important future objective, the deployment of
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Table 1
True and discovered material types for different noise levels σ (in mm).
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E Truth on off 0 0 off off off off
σ = 0 on off 0 0 off off off off
σ = 10−4 on off 0 0 off off off off
σ = 3 · 10−4 on off 0 0 off off off off
σ = 5 · 10−4 on off 0 0 off off off off

VE Truth on on 1 1 off off off off
σ = 0 on on 1 1 off off off off
σ = 10−4 on on 1 1 off off off off
σ = 3 · 10−4 on on 1 1 off off off off
σ = 5 · 10−4 on on 1 1 off off off off

VEEP Truth on on 1 0 on off on off
σ = 0 on on 1 0 on off on off
σ = 10−4 on on 1 0 on off on off
σ = 3 · 10−4 on on 1 1 on off on off
σ = 5 · 10−4 on on 1 0 on off on off

EVP Truth on off 0 0 on on off on
σ = 0 on off 0 0 on on off on
σ = 10−4 on off 0 0 on on off on
σ = 3 · 10−4 on off 0 0 on on off on
σ = 5 · 10−4 on off 0 0 on on off on

VEVP Truth on on 1 1 on on on on
σ = 0 on on 1 1 on on on on
σ = 10−4 on on 1 1 on on on on
σ = 3 · 10−4 on on 1 1 on on on on
σ = 5 · 10−4 on on 1 1 on on on on

computational data has the obvious advantage that the ground truth, i.e., the true material model underlying the
data, is exactly known. We select five different benchmark material models:

• E: Elastic
• VE: Viscoelastic
• VEEP: Viscoelastic (only shear) & elastoplastic with isotropic hardening
• EVP: Elastic & viscoplastic with kinematic hardening
• VEVP: Viscoelastic & viscoplastic with mixed hardening

Table 1 illustrates more in detail the features active within each benchmark material model, while the
orresponding material parameters are given in Table 2.

.1. Data generation

For each benchmark material model, a two-dimensional finite element simulation under plane-strain conditions
s conducted. To obtain a heterogeneous strain field and hence a rich data set during the experiment, complex
eometries are preferred over simple geometries. We therefore adopt a square specimen with two elliptic holes as
epicted in Fig. 4 (left), which has been already shown to produce a diverse strain field upon deformation (see [32]),
nd we load it under displacement-controlled tension and compression. The loading parameter δ determines the

displacement at the upper boundary of the specimen. As the model library considered in this work includes a few
˙
rate-dependent models, different rates of the loading parameter δ are included during data generation as shown in
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Table 2
True and discovered material parameters for different noise levels σ (in mm).

Benchmarks G
[

kN
mm2

]
K
[

kN
mm2

]
G1

[
kN

mm2

]
g1 [s] K1

[
kN

mm2

]
k1 [s] σ0

[
kN

mm2

]
ηp

[
kN s
mm2

]
Hiso

[
kN

mm2

]
Hkin

[
kN

mm2

]
E Truth 0.6000 1.3000 0 → ∞ 0 → ∞ → ∞ 0 0 0

σ = 0 0.6000 1.3000 0 → ∞ 0 → ∞ → ∞ 0 0 0
σ = 10−4 0.6000 1.3000 0 → ∞ 0 → ∞ → ∞ 0 0 0
σ = 3 · 10−4 0.5998 1.3004 0 → ∞ 0 → ∞ → ∞ 0 0 0
σ = 5 · 10−4 0.5998 1.3002 0 → ∞ 0 → ∞ → ∞ 0 0 0

VE Truth 0.6000 1.3000 0.3500 110.0000 0.4000 15.0000 → ∞ 0 0 0
σ = 0 0.6000 1.2999 0.3500 109.9953 0.3999 15.0047 → ∞ 0 0 0
σ = 10−4 0.6017 1.2930 0.3517 109.6126 0.3929 15.5063 → ∞ 0 0 0
σ = 3 · 10−4 0.6042 1.2674 0.3544 109.7273 0.3671 16.5166 → ∞ 0 0 0
σ = 5 · 10−4 0.6094 1.2702 0.3597 108.2126 0.3693 15.1302 → ∞ 0 0 0

VEEP Truth 0.6000 1.3000 0.3500 110.0000 0 → ∞ 0.0300 0 0.0300 0
σ = 0 0.6000 1.3000 0.3500 110.0008 0 → ∞ 0.0300 0 0.0300 0
σ = 10−4 0.6008 1.2997 0.3506 109.5033 0 → ∞ 0.0303 0 0.0276 0
σ = 3 · 10−4 0.5935 1.3055 0.3435 114.3310 0.0090 31.5015 0.0314 0 0.0213 0
σ = 5 · 10−4 0.5908 1.2963 0.3409 116.6722 0 → ∞ 0.0329 0 0.0123 0

EVP Truth 0.6000 1.3000 0 → ∞ 0 → ∞ 0.0300 0.0400 0 0.0100
σ = 0 0.6000 1.3000 0 → ∞ 0 → ∞ 0.0300 0.0399 0 0.0100
σ = 10−4 0.6013 1.2997 0 → ∞ 0 → ∞ 0.0303 0.0360 0 0.0099
σ = 3 · 10−4 0.6015 1.2991 0 → ∞ 0 → ∞ 0.0307 0.0288 0 0.0099
σ = 5 · 10−4 0.6020 1.2965 0 → ∞ 0 → ∞ 0.0313 0.0229 0 0.0096

VEVP Truth 0.6000 1.3000 0.3500 110.0000 0.4000 15.0000 0.0300 0.0400 0.0300 0.0100
σ = 0 0.6000 1.3000 0.3500 110.0096 0.4000 15.0007 0.0300 0.0399 0.0300 0.0100
σ = 10−4 0.5996 1.3011 0.3494 110.5654 0.4020 15.1755 0.0304 0.0321 0.0276 0.0098
σ = 3 · 10−4 0.5970 1.2930 0.3466 113.9556 0.3965 14.6939 0.0316 0.0158 0.0201 0.0095
σ = 5 · 10−4 0.5967 1.3001 0.3468 114.2066 0.4026 14.7275 0.0320 0.0160 0.0181 0.0094

Fig. 4 (right). In particular, we consider a number of nk = 20 loading phases, indexed by k = 1, . . . , nk , out of which
nk/2 under tension and nk/2 under compression. Each loading phase consists of a loading period, during which
δ̇ is constant, and a subsequent relaxation period, during which no further deformation is applied at the boundary
(δ̇ = 0). During each loading period, the same absolute value of deformation |δ| = 0.5 mm is applied over different
loading time intervals t load

k , which are chosen evenly spaced on a logarithmic scale between t load
1 = 10−2 s and

t load
20 = 102 s, i.e., t load

k ∈ {10(−2+
4

nk−1 i) s : i = 0, . . . , (nk − 1)}. The time intervals of the relaxation periods are
assumed all equal to t relax

k = 102 s. The entire problem is discretized in time with a total number of nt = 800 time
steps, choosing the same number of time steps for each loading and relaxation period.

From the finite element simulations, the nodal displacements and net reaction force at the upper specimen
boundary are extracted. To mimic real experiments, we add to the data artificial Gaussian noise as follows

ua,t
i = ufem,a,t

i + unoise,a,t
i , unoise,a,t

i ∼ N (0, σ ) ∀ a ∈ {1, . . . , nn}, i ∈ {1, 2}, t ∈ {1, . . . , nt }, (39)

here ufem,a,t
i is the i th displacement component of node a at the t th time step obtained from the finite element

imulations, and unoise,a,t
i denotes the added noise, sampled from a Gaussian distribution with zero mean and standard

eviation σ . Considering modern DIC setups, a reasonable upper limit for the noise is σ = 0.1 µm [80,81]. For
ur benchmarks, we test different noise levels σ ∈ {0 µm, 0.1 µm, 0.3 µm, 0.5 µm}. After applying artificial noise
o the data, temporal Savitzky–Golay denoising [82] with quadratic polynomial order and a moving-window length
f 10 time steps is applied to each loading period and relaxation period.

.2. Discovered material models

EUCLID is applied to the full-field displacement and reaction force data obtained from the five different
enchmark models with different noise levels to discover the hidden material behavior. Table 1 illustrates the
iscovered material classes in comparison to the true ones, revealing that EUCLID is indeed able to automatically
iscriminate among different classes of material behavior. In other words, purely based on displacement and force
ata on one single test, EUCLID is able to discern whether the hidden material behavior is elastic, viscoelastic,
lastic or viscoplastic, and whether isotropic or kinematic hardening takes place. Note that the automatic selection

f the few terms in the thermodynamic potentials needed to describe the material behavior implies the automatic
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l

Fig. 5. Finite element analysis results for the true and discovered VEEP material model, where the latter is obtained assuming a noise
evel of σ = 5 · 10−4. The deformation of the specimen after time step 400 is illustrated using a magnification factor of five (top left

and bottom left), where the color map depicts the norm of the displacement vector. For the true and discovered model, the norm of the
nodal displacement vector ua after time step 400 (top right) and the vertical reaction force component for all time steps (bottom right)
are compared. Displacements are in mm and forces in kN. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

selection of the correspondingly active internal variables. Only for one benchmark, namely, the VEEP model with
noise level σ = 0.3 µm, EUCLID fails to predict the true material class as it discovers a Maxwell element for
the bulk material response, which is not contained in the true material model. The discovered material model is
nevertheless parsimonious, as the effects of rate-dependent plasticity and kinematic hardening are correctly excluded
from the material response.

Besides and simultaneously to identifying the material class, EUCLID computes the unknown material param-
eters. Table 2 reports the comparison between the true and the calibrated material parameters for the different
benchmarks, revealing a very good agreement. As expected, the discrepancy between true and discovered parameters
increases for increasing noise level. To further assess the accuracy of the discovered models, in Fig. 5 we compare
the results of finite element analyses carried out with the true VEEP material model and with the corresponding
discovered material model for the highest noise case. The true and discovered models yield very close predictions
of the displacements and of the reaction forces.

Finally, in order to test if the discovered material models describe a similar material response as the true ones
under unseen loading histories (and especially for the cases with noise, featuring some discrepancy between true
and discovered material parameters), we compute the stress response of the material along two different arbitrarily

chosen deformation paths, see Fig. 6. We select these strain paths as uniaxial tension (UT) and simple shear (SS),

17
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Fig. 6. True and discovered material responses under uniaxial tension (UT) and simple shear (SS) for different noise levels σ (in mm). The
stress components σ11 and σ12 are in kN

mm2 . (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

given by

εUT
=

⎡⎣ϵ 0 0
0 0 0
0 0 0

⎤⎦ , εSS
=

⎡⎣0 ϵ 0
ϵ 0 0
0 0 0

⎤⎦ , (40)

where ϵ is a scalar deformation parameter that is let to increase to a value of 0.1 during ten loading phases and
to subsequently decrease to zero during additional ten loading phases. The loading and relaxation periods of each
18
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loading phase, as well as the loading and relaxation times, are chosen in the same way as described for the loading
parameter δ in Section 4.1. Fig. 6 demonstrates the good agreement between true and discovered material responses,

ith discrepancies that, as expected, increase for increasing noise level.

. Conclusions

We extended the scope of our recently developed EUCLID approach for unsupervised automated discovery of
aterial laws to the highly general case of a material belonging to an unknown class of constitutive behavior. To this

nd, we leveraged the theory of generalized standard materials, which encompasses a large number of important
onstitutive classes including elasticity, viscosity, plasticity and arbitrary combinations thereof. We showed that,
ased solely on full-field displacements and net reaction forces, EUCLID is able to automatically discover the two
calar thermodynamic potentials, namely, the Helmholtz free energy and the dissipation potential, which completely
efine the behavior of generalized standard materials. Stability and thermodynamic consistency of the discovered
odel are guaranteed by construction by the a priori requirement of convexity for the two potentials; balance of

inear momentum (enforced locally in the interior and globally at each constrained side of the domain) acts as a
undamental constraint to counteract the ill-posedness of the inverse problem due to the unavailability of stress–strain
abeled pairs; sparsity promoting regularization leads to the automatic selection of a small subset from a possibly
arge number of candidate model features in the initially chosen large model library and thus leads to a parsimonious,
.e., simple and interpretable, model. Importantly, since model features go hand in hand with the corresponding
nternal variables, sparse regression automatically induces a parsimonious selection of the few internal variables
eeded for an accurate but simple description of the material behavior. We propose a fully automatic procedure for
he selection of the hyperparameter controlling the weight of the sparsity promoting regularization term, in order
o strike a user-defined balance between model accuracy and simplicity.

The present study paves the way for a number of interesting extensions. A possible important direction would
e a further generalization of the model library for the thermodynamic potentials to include additional phenomena
uch as anisotropy, heterogeneity, softening (which would require the consideration of gradient terms), coupled
hermo- or electromechanical effects, to name but a few. The framework of generalized standard materials would
e conducive to automating the augmentation of the model library, e.g., by considering a self-adaptive library
hat automatically adds more features to the two thermodynamic potentials as long as the fitting accuracy is not
dequate. Another important aim of future research would be the enhancement of the computational efficiency, as
olving the constitutive equations becomes more demanding for an increasing number of unknown parameters in the
nverse problem. To ease the implementation of the constitutive equation solver for a wide library of thermodynamic
otentials, relying on automatic differentiation would be beneficial; however, as discussed in this paper, automatic
ifferentiation requires a regularization of the potentials and currently implies a decrease in the overall computational
fficiency, which could be addressed in the future. Last but not least, testing of EUCLID on experimental data would
e an important future goal.
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Appendix A. Solving the constitutive equations

We solve the constitutive equations (see Section 3.1.2) in strain control. Given the state variables and dependent
ariables at the previous time step (t −1) and the strain εt at the current time step t , the objective is to compute first
he internal variables αt using Eqs. (20), (23) and then the stress σ t using Eq. (17). To this end, Eqs. (20), (23), (17)
re discretized in time using an implicit Euler scheme, i.e., □̇t

=
1
∆t

(
□t

− □t−1
)
, where ∆□ = □t

−□t−1 is used
o denote differences of variables between the previous and current time step. The discretized equations are then
olved with a viscoelastic predictor/viscoplastic corrector algorithm (see [70,71] for similar algorithms).

.1. Viscoelastic predictor step

For the viscoelastic predictor step (also known as trial step), we assume a purely viscoelastic behavior,
.e., f t,trial

≤ 0. Under this assumption, the viscoplastic internal variables in Eqs. (23) do not evolve, e.g., α
t,trial
I =

t−1
I . The viscoelastic internal variables are updated using the time-discretized Eq. (20)

1
∆t

(
α

t,trial
j − αt−1

j

)
=

1
g j

dev (εt
− α

t,trial
j − αt−1

I ) +
1
k j

vol (εt
− α

t,trial
j − αt−1

I ). (A.1)

Splitting this equation into its deviatoric and volumetric contributions, we obtain explicit expressions for the update
of the viscoelastic internal variables

dev α
t,trial
j =

1(
1 +

∆t
g j

) (dev αt−1
j +

∆t
g j

dev
(
εt

− αt−1
I

))
,

vol αt,trial
j =

1(
1 +

∆t
k j

) (vol αt−1
j +

∆t
k j

vol
(
εt

− αt−1
I

))
.

(A.2)

Knowing all internal variables at the current time step t , the trial stress σ t,trial is computed using Eq. (17). After
ome algebra, we arrive at the explicit expressions

dev σ t,trial
= 2Ḡ dev

(
εt

− αt−1
I

)
−

nMW∑
j=1

2
G j

1 +
∆t
g j

dev αt−1
j ,

vol σ t,trial
= 3K̄ vol

(
εt

− αt−1
I

)
−

nMW∑
j=1

3
K j

1 +
∆t
k j

vol αt−1
j ,

(A.3)

where we defined

Ḡ = G +

nMW∑
j=1

G j

(
1 −

∆t
g j

1 +
∆t
g j

)
,

K̄ = K +

nMW∑
j=1

K j

(
1 −

∆t
k j

1 +
∆t
k j

)
,

(A.4)

We can determine whether the viscoelastic predictor is admissible by computing f t,trial dependent on σ t,trial. If
f t,trial > 0, the viscoelastic predictor is not admissible and the viscoplastic corrector step needs to be applied.

A.2. Viscoplastic corrector step

The computation of the viscoplastic internal variables in the viscoplastic corrector step can be greatly simplified
by taking advantage of some characteristics of the problem. To this end, we define a scalar internal variable
γ =

√
3
2αI I . After discretization in time and noting that f t,trial > 0, the evolution laws in (23) can then be written

as

∆α I = ∆α I I I = ∆γ
dev

(
σ t

− H kinαt
I I I

) (
t kin t

) , ∆αI I =

√
2
∆γ. (A.5)
dev σ − H α I I I 3
20



M. Flaschel, S. Kumar and L. De Lorenzis Computer Methods in Applied Mechanics and Engineering 405 (2023) 115867
It will be shown that the internal variable update ∆γ can be computed explicitly dependent on the variables at the
previous time step, and afterwards, the update of the other viscoplastic internal variables (i.e., ∆α I = ∆α I I I and
∆αI I ) can be computed dependent on ∆γ . The explicit expression for ∆γ and the relation between ∆γ and the other
internal variable updates are derived in the following. The availability of these relations leads to a computationally
efficient implementation of the viscoplastic corrector step.

With reference to (A.3), the deviatoric and volumetric parts of the stress at the current time step are

dev σ t
= 2Ḡ dev

(
εt

−

(
α

t,trial
I + ∆α I

))
−

nMW∑
j=1

2
G j

1 +
∆t
g j

dev αt−1
j ,

vol σ t
= 3K̄ vol

(
εt

−

(
α

t,trial
I + ∆α I

))
−

nMW∑
j=1

3
K j

1 +
∆t
k j

vol αt−1
j ,

(A.6)

where we made use of αt
I = α

t,trial
I + ∆α I . Once again referring to (A.3), we write (A.6) as

dev σ t
= dev σ t,trial

− 2Ḡ dev∆α I ,

vol σ t
= vol σ t,trial

− 3K̄ vol∆α I ,
(A.7)

Knowing that the volumetric part of ∆α I vanishes (see (A.5)), we observe that vol σ t
= vol σ t,trial. Therefore, we

can focus on the stress deviator in the following. Subtracting the term dev
(
H kinαt

I I I

)
from both sides of the first

equation in (A.7) and using ∆α I = ∆α I I I gives

dev
(
σ t

− H kinαt
I I I

)
= dev

(
σ t,trial

− H kinα
t,trial
I I I

)
− (2Ḡ + H kin) dev∆α I . (A.8)

After inserting the time-discretized evolution law for ∆α I (see (A.5)), we obtain

dev
(
σ t

− H kinαt
I I I

)
= dev

(
σ t,trial

− H kinα
t,trial
I I I

)
− (2Ḡ + H kin)∆γ

dev
(
σ t

− H kinαt
I I I

)dev
(
σ t − H kinαt

I I I

) , (A.9)

which can be rearranged to yield(
1 +

(2Ḡ + H kin)∆γdev
(
σ t − H kinαt

I I I

)
)

dev
(
σ t

− H kinαt
I I I

)
= dev

(
σ t,trial

− H kinα
t,trial
I I I

)
. (A.10)

This implies that the tensors dev
(
σ t

− H kinαt
I I I

)
and dev

(
σ t,trial

− H kinα
t,trial
I I I

)
only differ by a scalar factor and

hence are collinear, i.e.

dev
(
σ t

− H kinαt
I I I

)dev
(
σ t − H kinαt

I I I

) =

dev
(
σ t,trial

− H kinα
t,trial
I I I

)
dev

(
σ t,trial − H kinα

t,trial
I I I

) . (A.11)

The importance of this result is best understood when revisiting (A.5). With this new result, the update of the
internal variables ∆α I and ∆α I I I can be written as a function of ∆γ and of known variables from the previous
time step. Hence, it only remains to compute ∆γ , as derived in the following.

Inserting (A.11) in (A.9), we obtain

dev
(
σ t

− H kinαt
I I I

)
=

⎛⎝1 −
(2Ḡ + H kin)∆γdev
(
σ t,trial − H kinα

t,trial
I I I

)
⎞⎠ dev

(
σ t,trial

− H kinα
t,trial
I I I

)
. (A.12)

Using this result, we can write

∆γ =

√
3
2
∆t
ηp

f t ,

=

√
3
2
∆t
η

(√
3
2

dev
(
σ t

− H kinαt
I I I

)− σy − H isoα
t,trial
I I − H iso

√
2
3
∆γ

)
,

p
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Table C.3
(Hyper-)parameters for the finite element simulations and EUCLID.

Parameter Notation Value Unit

Number of nodes in mesh nn 2,179 –
Number of measured reaction force components nβ 2 –
Number of time steps nt 800 –
Number of loading phases nk 20 –
Applied loading per period δ ±0.5 mm

Time per loading period t load
k {10

(−2+
4

nk −1 i)
: i = 0, . . . , (nk − 1)} s

Time per relaxation period t relax
k 102 s

Displacement noise standard deviation σ
{
0, 10−4, 3 · 10−4, 5 · 10−4} mm

Moving-window length for denoising – 10 –
Coefficient for reaction force balance λr 100 –
Number of random initial guesses ng 24 –
Exponent for L p regularization p 1 –
Number of choices of λp nλ 24 –
Coefficient for L p regularization λp {10−4

· 2i
: i = 0, . . . , 23} kN2

Lower bound for θ θmin
i {0, θ lb

} various
Lower bound for θ (reciprocals) θ lb 10−6 various
Threshold for C C th max{10−5, 1.1 Cmin

} kN2

Threshold for θ θ th 10−4 various

=

√
3
2
∆t
ηp

(√
3
2

dev
(
σ t,trial

− H kinα
t,trial
I I I

)−

√
3
2

(2Ḡ + H kin)∆γ − σy − H isoα
t,trial
I I − H iso

√
2
3
∆γ

)
,

=

√
3
2
∆t
ηp

(
f t,trial

−

√
3
2

(2Ḡ + H kin)∆γ − H iso

√
2
3
∆γ

)
, (A.13)

which is solved for ∆γ to obtain

∆γ =
f t,trial√

2
3

( ηp
∆t + H iso

)
+

√
3
2 (2Ḡ + H kin)

. (A.14)

After computing ∆γ , the other internal variables (see (A.5) and (A.11)) and the stress (see (A.6)) can be computed.

Appendix B. Consistent tangent

Implementing the material model library in forward finite element simulations requires the computation of the
consistent tangent

Ct
=
∂σ t

∂εt
. (B.1)

We consider two different cases. If the viscoelastic predictor in Appendix A.1 is admissible, it is

Ct
= Ct,trial

=
∂σ t,trial

∂εt
= 2ḠIdev

+ 3K̄ Ivol, (B.2)

where we have defined the fourth order tensors Idev and Ivol such that Idev□ = dev (□) and Ivol□ = vol (□).
therwise, we obtain

Ct
=

⎛⎝1 −
2Ḡ∆γdev

(
σ t,trial − H kinα

t,trial
I I I

)
⎞⎠ 2ḠIdev

+ 3K̄ Ivol

−

2Ḡ∆γ
(
σy + H isoα

t,trial
I I

)
f t,trial

dev
(
σ t,trial − H kinα

t,trial
I I I

)3 C
t,trial

:

(
dev

(
σ t,trial

− H kinα
t,trial
I I I

)
⊗ dev

(
σ t,trial

− H kinα
t,trial
I I I

))
.

(B.3)
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Note that the consistent tangent is required for the solution of the forward finite element problem but not for the
inverse problem, i.e., not for EUCLID.

Appendix C. Numerical settings

Table C.3 provides a list of parameters and hyperparameters used during the data generation via finite element
imulations and during the inverse discovery process via EUCLID.
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