Graduation Presentation for MSc Geomatics

6 November 2015

Combining a Physics-based Model and Spatial Interpolation of Scarce Bed Topography Data in Meandering Alluvial Rivers

**Dimitrios-Ioannis Zervakis** 



#### Introduction



#### **Motivation**



### **Problem Statement**

Limited data, so called "scarce" data

- Partial solutions:
  - 1. Interpolation X
  - 2. Models  $\mathbf{X}$
  - 3. Manual Labour X

Combination?



#### **Research Questions**

#### How can a spatial interpolation method be coupled with river morphology physics in order to approximate better\* the river bed topography when input data are scarce\*\*?

\*: numerical or qualitative form of assessing

\*\*: "trackline" data or cross-sectional data.

•What is an objective function to measure 'goodness-of-fit' of the method?

- •What coordinate system allows for better predictions on riverbed topography?
- How much of the full data can be thinned out and still have a successful outcome?





- Proposed by *Deltares* independent institute for applied research.
- The research is related to the *Rapid Assessment Tool for Inland Navigation* (RAT-IN, under development).
- A fast accurate representation of riverbed topography is useful in various applications.



RAT-IN: "To rapidly assess a river's suitability for inland navigation based on state-ofthe-art scientific knowledge and freely available data sources"



#### Data



## **Study Cases**

- IJssel (Netherlands):
  - Good multibeam (1x1 m)



- Kootenai (Idaho, US):
  - Very dense multibeam (random samples, unstructured)



- Danube (Romania):
  - Relatively dense singlebeam, with scarce areas



## Methodology



## Methodology



## **Proposed Method**



## **Pre-processing**





#### Data on the Grid

Ground-Truth



### **Spatial Interpolation**



## **Spatial Interpolation in Rivers**

- Interpolation Methods many, existing and tested.
- In relevance to rivers, feedback is given by Merwade (2006, 2008 & 2009).
- Use a flow-oriented coordinate system and account for the anisotropy in river bed morphology.



## **Spatial Interpolation Methods**

- <u>Excluded</u>: Kriging, Thin Plate Splines, Natural Neighbour
- Included:
- 1. Linear Barycentric Interpolation
- 2. Nearest Neighbour "Interpolation"
- 3. Inverse Distance Weighting (IDW)
- 4. Elliptical IDW (EIDW)





## Interpolation – Cartesian System (x,y)



 Interpolation fails because river morphological features are directional (along water flow) and not global.

### Interpolation – Flow-Oriented System (s,n)



• The data is transformed to the flow-oriented coordinate system (s,n) prior to any spatial interpolation.

## Anisotropy



#### **Physics-based Model**



## **River Physics Framework I**



Approximations are needed!

- Sediment balance
- Shallow-water approximations
- Depth-averaging
- Flow-coordinate system (*s*,*n*,*z*)

## **River Physics Framework II**



Cross-sections show a "snapshot" of a channel at a particular span

## **River Physics Framework III**

- Water Steady Flow:
  - Zero-order approximation to momentum & continuity equations (Crosato 2008)

$$h_c = \left(\frac{Q}{B \ C \ \sqrt{i}}\right)^{\frac{2}{3}}$$
 ,where:

- $h_c$  water depth at the centerline [m]
- Q the river discharge  $[m^3/s]$
- B the width [m]
- C the Chézy roughness [m<sup>1/2</sup>/s]
- i the slope [-]

- Bed Level in River Bends:
  - Axi-symmetric solution (Crosato 2008)

$$h_{(n)} = h_c e^{A f(\theta) n / R_c}$$
 ,where:

- h water depth along n [m]
- $h_c$  water depth at the centerline [m]
- A coefficient weighing the influence of the helical flow
- $f(\theta)$  weighing function
- n coordinate orthogonal to the streamline [m]
- $R_c$  Radius of curvature [m]

#### **Physics-based Model**



#### **Model Dataset**



#### **Fusion Method**



#### **Fusion Method**



 $F_{(s, n)}$ : fusion result at (s, n)  $B_{(s,n)}$ : model result at (s,n)  $I_{(s,n)}$ : interpolation result at (s,n)  $W_{(s,n)}$ : model weight at (s,n)

 <u>Basic assumption</u>: The closest an unsampled point lies to a sampled point, the more the interpolation's result needs to be taken into consideration. The further away it is, the more the physics-based model's result is significant.



#### Fusion – Cross-sections

$$F_{(s,n)} = w_{(s,n)} B_{(s,n)} + (1 - w_{(s,n)}) I_{(s,n)}$$



#### Fusion – Tracklines

$$F_{(s,n)} = w_{(s,n)} B_{(s,n)} + (1 - w_{(s,n)}) I_{(s,n)}$$



### **Fusion Concept**



### Analysis of Results



#### **Experiments Datasets**



**ŤU**Delft





**TU**Delft

35

#### **Extreme Cases**



36

#### **Error Maps and NHWS**



#### **Success and Failure**



**ŤU**Delft

#### "Soft" failures



### **Danube and Lag Effects**



**TU**Delft

### Conclusions



### **Conclusive Remarks**

- Interpolation with scarce data in rivers is problematic.
- A physics-based model alone does not secure a result.
- Flow-oriented interpolation is a necessity in rivers.
- Anisotropy should be considered during interpolation.
- Space lag effects cannot be predicted by a simplified physics-based model.



### **Research Question Answers**

#### How can a spatial interpolation method be coupled with river morphology physics in order to approximate better the river bed topography when input data are scarce?

- Fusion Method: Combination of a simplified physics-based model and spatial interpolation that accounts for anisotropy. Spatial considerations based on distances/patterns of sampled data.
- •What is an objective function to measure 'goodness-of-fit' of the method?
  - RMSE (numerical), Error Maps (qualitative), NHWS (targeted). => RMSE (stricter)
- •What coordinate system allows for better predictions on riverbed topography?
  - > Flow-Oriented Coordinate System (s,n,z). Special significance with scarcer data.

 How much of the full data can be thinned out and still have a successful outcome?

> Varies. But interesting observations made as to where the collection should be denser/thinner.

### Recommendations

> Fusion method:

- Choice of Interpolation: EIDW vs Linear.
- Sample data types: Regular cross-sections vs Tracklines / irregular data.
- Can be used on larger channel stretches.



#### **Future Work**

- Further validation through more test cases.
- Implement space lag and other natural effects.
- Fusion Method on classified river segments:
  - Piecewise implementation
  - Vary Interpolations
  - Minimize cross-sectional data collection.
    - Use different physics-based model.
    - Implement interpolation within the physics-based model.
    - Application: compute/predict navigational routes for ships.

### Thank you for your attention

#### **Referenced Pictures**

 p.1, 45: "donnosch", Mosel River Curve, <u>https://interfacelift.com/wallpaper/details/3527/mosel\_river\_curve.html</u>

 p.3: "svetik", Tuscany Italy, <u>http://mediatravel.xyz/cat2/chto-posmotret-v-toskane-italiya.html</u> PLPT (Pyramid Lake Paiute Tribe), <u>http://plpt-waterquality.net/about.html</u> MERI (Meadowlands Environmental Research Institute), <u>http://meri.njmeadowlands.gov/projects/continuous-water-monitoring-stations/</u> NOAA, Coast Survey (multibeam), <u>https://noaacoastsurvey.wordpress.com/about/</u>

- p.6: Simonas Vaikasas, barge in Danube river, at evening sky, <a href="http://www.shutterstock.com/pic.mhtml?id=64675078">http://www.shutterstock.com/pic.mhtml?id=64675078</a> DEME, CFE, <a href="http://en.cfe.be/p%C3%B4les/dredging/deme.aspx">http://www.shutterstock.com/pic.mhtml?id=64675078</a> DEME, CFE, <a href="http://en.cfe.be/p%C3%B4les/dredging/deme.aspx">http://en.cfe.be/p%C3%B4les/dredging/deme.aspx</a> Reuters, Missouri, <a href="http://www.ibtimes.com/missouri-river-flooding-threatened-americas-nuclear-plant-photos-707275">http://www.ibtimes.com/missouri-river-flooding-threatened-americas-nuclear-plant-photos-707275</a>
- p.17: EIDW scheme, Merwade V., Maidment D.R., & Goff J.A. (2006). Anisotropic considerations while interpolating river channel bathymetry. Journal of Hydrology, 331(3–4), 731–741.
- p.22: 3D schematized bend flow, Ottevanger W., (2013). Modelling and parameterizing the hydroand morphodynamics of curved open channels. PhD Thesis, TU Delft.
- p.23: Typical river cross-sections, Crosato, A., (2008). Analysis and modeling of river meandering, PhD Thesis, TUDelft.

