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Abstract

3D topological insulators are characterized by an insulating bulk and extended surface
states exhibiting a helical spin texture. In this work, we investigate the hyperfine inter-
action between the spin-charge coupled transport of electrons and the nuclear spins in
these surface states. Previous work has predicted that in the quantum spin Hall insulator
phase, work can be extracted from a bath of polarized nuclear spins as a resource [1]. We
employ nonequilibrium Green’s function analysis to show that a similar effect exists on
the surface of a 3D topological insulator, albeit rescaled by the ratio between electronic
mean free path and device length. The induced current due to thermal relaxation of po-
larized nuclear spins has an inductive nature. We emphasize the inductive response by
rewriting the current-voltage relation in harmonic response as a lumped element model
containing two parallel resistors and an inductor. In a low-frequency analysis, a univer-
sal inductance value emerges that is only dependent on the device’s aspect ratio. This
scaling offers a means of miniaturizing inductive circuit elements. An efficiency estimate
follows from comparing the spin-flip induced current to the Ohmic contribution. The in-
ductive effect is most prominent in topological insulators which have a large number of
spinful nuclei per coherent segment, of which the volume is given by the mean free path
length, Fermi wavelength and penetration depth of the surface state.
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1 Introduction

After the discovery of quantum spin Hall insulators, the existence of a three dimensional ver-
sion of the time-reversal invariant topological insulators was predicted [2, 3]. 3D topological
insulators (3DTIs) have a bulk band gap and host conducting states on their surfaces. These
topological surface states (TSS) have perfect spin-momentum locking, i.e. the momentum of
an electron is always perpendicular to its spin. An immediate consequence of perfect spin-
momentum locking is the absence of backscattering for the topological surface states: similar
to helical edge states of a quantum spin Hall insulator, topological surface states of 3DTIs do
not suffer from localization under any time-reversal invariant perturbation, provided that the
bulk band gap is not closed. Although backscattering is absent, the scattering probability in
other directions is finite. Therefore, transport on the surface of a disordered 3DTI can be dif-
fusive, whereas transport remains ballistic for the edge states of quantum spin Hall insulators
even in the presence of nonmagnetic disorder. The diffusive limit of the 3D topological insula-
tors and its transport properties have been studied in detail [4–6], and several materials have
been verified experimentally [7].

Another prominent feature of spin-momentum locking is the Edelstein effect [8], a phe-
nomenon previously observed in semiconductors featuring Rashba spin-orbit interactions [9–
12]. For the surface states of a 3DTI, this phenomenon leads to the generation and control
of spin accumulation along the surface of a 3DTI in an electric field [13–15]. This concept
has profound implications for the field of spintronics, where the manipulation of electron spin
for information storage and processing holds immense promise [16]. Notably, experimental
demonstrations of the Edelstein effect and the inverse Edelstein effect in 3DTI materials have
been reported [17,18], showcasing the feasibility of generating and detecting spin accumula-
tion by applying electric fields in 3DTIs.

The Edelstein effect also leads to dynamic nuclear spin polarization (DNSP) [19,20]. This
effect involves the transfer of nonequilibrium spin accumulation from charge carriers to nu-
clear spins. However, the reverse process is also possible: finite nuclear spin polarization can

2

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.023


SciPost Phys. Core 8, 023 (2025)

generate a nonequilibrium electron spin accumulation. This phenomenon, facilitated by spin-
momentum locking of the charge carriers in 3DTIs (see Fig. 1(a)), drives a charge current
through the inverse Edelstein effect. This interplay between nuclear and electron spins has
garnered attention for its potential to realize a Maxwell’s demon effect in quantum spin Hall
insulators [1] and quantum anomalous Hall insulators [21].

In this manuscript, we investigate the effect of nuclear spins on the topological surface
states of a 3DTI, within the framework of a transport setup shown in Fig. 1(b). Combined
with the hyperfine interaction between nuclear spins and electrons, we show that the Edelstein
effect in a topological surface state can lead to DNSP. In return, we find that finite nuclear
spin polarization effectively induces a charge current response within the system through the
mechanism of the inverse Edelstein effect. Unlike the helical edge states of 2D topological
insulators, topological surface states of a 3DTI can also scatter from nonmagnetic impurities
(see Figure 1(c-d)), leading to a diffusive transport regime. The presence of this additional
source of scattering enriches the complexity of the problem, making it more interesting to
investigate theoretically.

Furthermore, we find that the charge current induced by nuclear spin-flip interactions
is of inductive nature, akin to the predicted effect in quantum spin Hall edge states. The
efficiency of the inductive power generation is characterized by a quality factor, denoting the
ratio between reactance and resistance of the topological surface state. We show that this
quality factor is enhanced by maximizing the amount of nuclear spins in-between impurity
scattering events. At low frequencies, the inductive effect reduces to a universal inductance
value, which is scalable by altering the aspect ratio of the surface of a 3D topological insulator.
This enables miniaturization of inductive circuit elements. Finally, we estimate the induced
current in a few exemplary materials, providing a framework for experimental applications.

This manuscript is organized as follows: In Section 2, we employ nonequilibrium Green’s
function formalism to describe the electron dynamics at the surface of a 3DTI, taking into
account both interactions with nuclear spins and nonmagnetic impurities. This leads to a
current-voltage relation, where an Ohmic contribution is accompanied by an induced charge
current, set by the nuclear spin-flip rate. Section 3 builds upon this result, by finding an
equivalent electronic circuit configuration, consisting of two resistors and an inductor, that
describes the topological surface state including the spin-flip interaction with the nuclear spins.
In Section 4, we relate the power delivered to and generated by the topological surface state to
the entropy of the nuclear spin subsystem, and find that the inductive response has an entropic
nature. Finally, in Section 5, we provide an overview and conclusion.

2 Diffusion at the surface of a 3D topological insulator

2.1 The model

We start with a low-energy effective Hamiltonian that describes the topological surface states
of a 3DTI. Without loss of generality, we focus on the top surface of a 3DTI with a single Dirac
cone:

H0 = ħhvF (k ×σ) · ẑ , (1)

where vF is the Fermi velocity of the Dirac fermions, k =
�

kx , ky

�

is the momentum operator,σ
are the Pauli matrices that describe the spin degree of freedom of the charge carriers. As shown
in Fig. 1(a), the dispersion relation derived from Eq. (1) features perfect spin-momentum
locking.

3
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Figure 1: (a) Dispersion relation of a topological surface state, with spin being locked
perpendicular to the momentum direction. (b) Schematic description of the transport
setup involving the top surface of a 3DTI connected to metallic leads. In response to
a charge current flowing through each surface, the charge carriers for top and bot-
tom surfaces are spin-polarized in the opposite direction. Nuclear spins (black/grey
arrows) on the top/bottom surface are polarized through spin-flip interactions with
spin-polarized charge carriers. (c) Scattering processes at the top surface of a 3DTI.
The incoming electron is depicted as a blue arrow, the normal impurity is depicted
as a black dot and a magnetic impurity/nuclear spin is depicted as a black dot with
an arrow. The normal scattering process is depicted with a grey arc and nuclear spin
scattering is depicted with a purple arc. In each case, the arc thickness corresponds
to the angle-dependent scattering probability. Depending on whether a spin-flip in-
teraction takes place, forward or backward scattering is enhanced or suppressed.
(d) Scattering probability as function of the scattering angle, for processes including
(purple) or excluding a spin flip (grey). This scattering probability corresponds to
the arc thickness in (c).

In this context, we consider two sources of scattering for topological surface states: non-
magnetic impurities and nuclear spins. We consider a nonmagnetic impurity potential V (x ),
specified by a random Gaussian disorder profile 〈V (x)V (x′)〉 = n0U2δ(x− x′) and zero mean
value 〈V (x)〉 = 0. Here, U is the magnitude of the nonmagnetic impurity scattering strength
and n0 is the nonmagnetic impurity density. Finally, Hhf is the hyperfine interaction between
the electrons and the nuclear spins:

Hhf =
λ

2

∑

n

In ·σδ(r− rn) . (2)

Here, λ= A0v0/ξ is the effective hyperfine interaction strength between electrons and nuclear
spins, A0 is the hyperfine coupling, v0 = a3

0 is the unit cell volume, ξ is the surface state decay
length in z-direction. In represents the Pauli spin matrices for the nth nuclear spin residing on
the surface at position xn = (xn, yn).

4

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.023


SciPost Phys. Core 8, 023 (2025)

2.2 Nonequilibrium Green’s function of the topological surface states

To describe the dynamics of the electrons interacting with both nuclear spins and nonmagnetic
impurities, we employ the nonequilibrium Green’s function formalism [22]. The structure of
the perturbation expansion for the nonequilibrium Green’s function is similar to the equilib-
rium theory, with the only difference being the introduction of a contour. The diagrammatic
formulation of the Keldysh technique is almost identical to the equilibrium diagrammatic for-
mulation, except for the fact that the propagators and vertices contain contour indices [22].

In derivation for the transport equation for the electrons, the central quantity of interest is
the electronic Keldysh Green’s function:

G(1, 1′) =

�

GR(1, 1′) GK(1, 1′)
0 GA(1,1′)

�

, (3)

where we use the abbreviation 1 ≡ (x1, t1). We note that the matrix elements of the Green’s
function G are also matrices in spin space for the specific problem we consider. The diagonal
elements of G, namely GR and GA, are the retarded and advanced Green’s functions known
from the equilibrium theory:

GR(1,1′)σ,σ′ = −iθ (t1 − t1′)〈{ψσ(1),ψ
†
σ′
(1′)}〉 , (4)

GA(1,1′)σ,σ′ = +iθ (t1′ − t1)〈{ψσ(1),ψ
†
σ′
(1′)}〉 , (5)

where ψσ is the field operator for the electrons with spin σ and θ is the Heaviside func-
tion. Retarded and advanced Green’s functions provide information about the available states,
whereas the off-diagonal element of G, GK , is the Keldysh Green’s function which determines
the occupation of the aforementioned states, which is defined as:

GK(1,1′)σ,σ′ = −i〈[ψσ(1),ψ
†
σ′
(1′)]〉 . (6)

We seek to introduce the effect of the nonmagnetic impurity scattering and nuclear spin scat-
tering via a perturbation expansion for the Green’s function given in Eq. (3). In nonequilibrium
theory, left and right Dyson equations describe the perturbation expansion which utilizes the
concept of self energy. The self energy in Keldysh formulation has the same triangular matrix
structure as the Green’s function given in Eq. (3):

Σ(1, 1′) =

�

ΣR(1,1′) ΣK(1,1′)
0 ΣA(1,1′)

�

, (7)

where the ΣR(A) is the retarded (advanced) self energy, whereas ΣK is the Keldysh self energy.
Each of these self energy components are also matrices in spin space.

Next, we shall calculate the self energy for each scattering mechanism (nonmagnetic im-
purity scattering and nuclear spin scattering) and construct the equation of motion by using
the left-right subtracted Dyson equation within the gradient approximation:

∂t G +
vF

2

�

(ẑ ×σ) ·∇, G
	

+
i
ħh
�

H0, G
�

= −
i
ħh
�

Σ, G
�

, (8)

where H0 is the 3DTI Hamiltonian given in Eq. (1).1 The effects of both nonmagnetic impurity
and nuclear spin scattering are manifested via the electron self energy, which we decompose
as Σ= Σ0 +Σm.

1Here, we ignore the average Overhauser field generated by finite polarization of the nuclear spins, resulting
in the precession of the electron spins.
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To derive the transport equation from Eq. (8), we employ the quasiclassical approximation,
which relies on the assumption that all the energy scales of the problem is small compared to
the Fermi energy EF . The quasiclassical Green’s function is defined as:

g(R, t, k̂,ε) =
i
π

∫

dξG(R, t, k,ε) , (9)

where ξ= ħhvF k− EF .
Within the quasiclassical approximation, we obtain the unperturbed retarded and ad-

vanced Green’s functions for the topological surface states described by Hamiltonian H0 given
in Eq. (1):

gR/A =
i
π

∫

dξ
�

ε−ħhvF (k ×σ) · ẑ + EF ± i0+
�−1

≈ ±
1
2

�

1+
�

k̂× ẑ
�

·σ
�

, (10)

where we regularize the divergent terms in the integral given above by assuming that the Fermi
energy scale is the largest energy scale in the problem, i.e. |ε| ≪ ħhvF kF .

2.3 Quantum kinetic equation for the topological surface states

In principle, the equation of motion for the G given in Eq. (8) contains the full information
about the system. To obtain a kinetic equation we consider the Keldysh component of the
equation of motion given in Eq. (8):

∂t gK +
vF

2

�

(ẑ ×σ) ·∇, gK
	

+ ivF kF

��

k̂× ẑ
�

·σ, gK
�

= −
i
ħh
{ΣR, gK}+

i
ħh
ΣK +

i
2ħh
{(k̂× ẑ) ·σ,ΣK} ,

(11)
where we used Eq. (10) and the relation ΣR = −ΣA.

The quantum kinetic equation given in Eq.(11) is generic for the surface states of 3D topo-
logical insulators without hexagonal warping. The right-hand side of Eq. (11) describe scat-
tering between topological surface states, which consists of two primary contributions: non-
magnetic impurity scattering and nuclear spin scattering. To obtain the collision integrals and
the transport equation for the topological surface states, we first focus on the nonmagnetic
impurities and calculate their self energy. Later, we shall include the effect of the nuclear spins
and derive the transport equations for the overall system.

2.3.1 Nonmagnetic impurity scattering

In Fig. 2(a), we show the self energy diagram for the nonmagnetic impurity scattering. We
evaluate the self-energy Σ0 for Gaussian correlated nonmagnetic impurities with zero mean
value:

Σ0 (R, t,ε) = n0U2

∫

d2k
(2π)2

G (R, t, k,ε) , (12)

where we use the Wigner representation with the center of mass time and position
t ≡ (t1 + t2)/2 and R ≡ (x1 + x2)/2, respectively. In addition, we take the Fourier trans-
form with respect to the relevant coordinates η = t1 − t2 and r ≡ x1 − x2 and represent the
Green’s function in energy(ε)-momentum(k) domain. Using Eq. (9), we have:

Σ0 = −
i
τ0
〈g〉 , (13)

6
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a) b)

Figure 2: a) The self energy for the nonmagnetic impurity scattering. The dashed line
indicates the averaging over the positions of the impurities. b) The self energy for
the nuclear spin scattering, where the wiggly line is the nuclear spin correlators. The
solid circles in b) represent the nuclear spin scattering vertex, whereas the crosses in
a) represent the nonmagnetic impurity scattering vertex. In both a) and b), the solid
line represents the electronic Keldysh space Green’s function.

where 〈g〉 ≡
∫

dk̂′/(2π) g denotes the angular average over the Fermi surface.
Here, τ0 = (πν(EF )n0U2)−1 is the nonmagnetic impurity scattering timescale with
ν(EF ) = EF/(2πħh2v2

F ) being the density of states at the Fermi energy. The elastic mean
free path associated with the nonmagnetic impurity scattering is ℓel = vFτ0. Using the
retarded/advanced quasiclassical Green’s function given in Eq. (10), we obtain the re-
tarded/advanced self energy:

Σ
R/A
0 = ∓

i
2τ0

. (14)

On the other hand, the Keldysh component of the self energy matrix enters the kinetic equation
as ΣK

0 = −i〈gK〉/τ0.

2.3.2 Nuclear spin scattering

Next, we focus on the electron self energy arising from the interaction with the nuclear spins.
While nuclear spins lack energetic dynamics similar to nonmagnetic impurities, they feature
spin dynamics that significantly influence the behavior of electrons. To investigate this further,
we consider two-point correlators for the nuclear spins:

iDαβ(1,2) =
¬

Tc

�

In1
α (t1)I

n2
β
(t2)
�¶

, (15)

where α,β = {x , y, z} and Tc denotes the contour ordering [22]. We map the contour ordered
nuclear spin correlators onto the Keldysh space and find each element of the nuclear spin
correlators as:2

iDR
αβ(1, 2) = θ (t1 − t2)2iδn1,n2

εαβγm
n1
γ , (16)

iDA
αβ(1,2) = −θ (t2 − t1)2iδn1,n2

εαβγm
n1
γ , (17)

iDK
αβ(1,2) = 2δn1,n2

�

δαβ −mn1
α mn2

β

�

, (18)

where we define mn
α ≡ 〈I

n
α〉 and denote the position of the ith nuclear spin as ni .

Given the nuclear spin correlators, we then calculate the self energy for electrons due to
their interaction with the nuclear spins. We show the diagrammatic representation of the
self energy due to nuclear spin scattering in Fig. 2(b). We consider two-point correlators for
the nuclear spins only and obtain the components of the self energy matrix Σm within the

2See Appendix B for a detailed derivation of nuclear spin correlators and nuclear spin self energy.
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quasiclassical approximation as:

ΣR/A
m (R, k, t1, t2) =

λ2

8
πν(EF )

∫

dk̂′

2π

�

σi gK(R, k ′, t1, t2)σ j DR/A
i j (R, k − k ′, t1, t2)

+σi gR/A(R, k ′, t1, t2)σ j DK
i j(R, k − k ′, t1, t2)

�

,

ΣK
m(R, k, t1, t2) =

λ2

8
πν(EF )

∫

dk̂′

2π

�

σi gK(R, k ′, t1, t2)σ j DK
i j(R, k − k ′, t1, t2)

+σi

�

gR − gA
�

(R, k ′, t1, t2)σ j

�

DR
i j − DA

i j

�

(R, k − k ′, t1, t2)
�

,

where we use a mixed representation involving R and momentum k, as well as the temporal
coordinates t1 and t2. Inserting the nuclear spin correlators given in Eq. (16), we obtain

ΣR/A
m =

ħh
τs f

�

σi 〈gK〉σ j

�

±θ (±(t1 − t2))εi jkmk

�

+σi 〈gR/A〉σ j

�

−iδi j

�

�

,

ΣK
m =
ħh
τs f

�

σi 〈gK〉σ j

�

−iδi j

�

+σi

�

〈gR〉 − 〈gA〉
�

σ j

�

εi jkmk

�

�

,

where τ−1
s f ≡

λ2

4ħh nmπν(εF ) is the timescale associated with the mean nuclear spin polarization
dynamics, with nm being the nuclear spin density. Here, we use a coarse grained description
of the local mean nuclear spin polarization, namely mn → m(R). Next, we parameterize the
quasiclassical Green’s function as gK = g0σ0 + g ·σ and obtain:

ΣR/A
m = ∓

iħh
τs f

�

3
2
σ0 + 〈g 〉 ·mσ0 − 〈g0〉m ·σ

�

,

ΣK
m = −

iħh
τs f

�

3〈g0〉σ0 − 〈g 〉 ·σ − 2m ·σ
�

, (19)

where we use 〈gR/A〉 = ±1/2 and assume that the nuclear spin correlators are independent
of momentum and energy. For brevity we drop the arguments of the self energy components,
namely the position R, time T and energy ε.3

Having obtained the nonmagnetic impurity-averaged self energy given in Eq. (13) and the
self energy due to nuclear spin scattering given in Eq. (19), we can now express the explicit
form of the right hand side of Eq. (11). By separating the contributions from nonmagnetic
impurity scattering and nuclear spin scattering, each of these contributions can be written as:

I0[g] =−
1
τ0

�

g − 〈g〉 −
1
2
{(k̂× ẑ) ·σ, 〈g〉}

�

, (20)

and

Im[g] = −
3
τs f

�

g − 〈g0〉σ0 +
2
3
〈g 〉 ·mg −

2
3
〈g0〉m ·σg0 −

2
3
〈g0〉m · gσ0 +

1
3
〈g 〉 ·σ

+
2
3

m ·σ − 〈g0〉
�

k̂× ẑ
�

·σ +
1
3

�

k̂× ẑ
�

· 〈g 〉σ0 +
2
3

m ·
�

k̂× ẑ
�

σ0

�

. (21)

We proceed by inserting Eq. (20) and Eq. (21) into Eq. (11). This way, we obtain the
quantum kinetic equation, which we use to derive the transport equations for the surface
states in the next subsection.

3ΣR/A contain terms that arise from the Fourier transformation with respect to the relative time coordinate
η= t1− t2, which describe the nuclear spin mediated electron-electron interaction. However, as their contribution
is not significant compared to the electron dynamics, we ignore these terms.
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2.4 Transport equations for the topological surface states

Upon obtaining the quantum kinetic equation, we perform a moment expansion to derive the
transport equations for the topological surface states. The moment expansion allows us to
obtain a hierarchy of equations, which we truncate at a certain order to extract the desired
transport equations. We start by taking the trace of Eq. (11) and obtain:

∂t g0 + vF k̂ ·∇g0 = −
1
τ0

�

g0 − 〈g0〉+
�

k̂× 〈g 〉
�

z

�

−
3
τs f

�

g0 − 〈g0〉 −
1
3

�

k̂× 〈g 〉
�

z +
2
3

m ·
�

g0〈g 〉 − 〈g0〉g + (k̂× ẑ)
�

�

. (22)

As EF is the largest energy scale in the problem, the dominant contribution of the nonequilib-
rium state g is diagonal in the eigenstates of H0 [5]. In first order, we find the following spin
dependent contributions to the Green’s function

gx = k̂y g0 ,

g y = −k̂x g0 .
(23)

Assuming nonmagnetic impurity scattering to be the dominant source of scattering and ne-
glecting the nuclear spin contribution initially, we use Eq. (23) to obtain the subdominant
term gz as:

gz ≈
1

2vF kF

�

k̂x

τ0
〈k̂y g0〉 −

k̂y

τ0
〈k̂x g0〉+ vF k̂y∇x g0 − vF k̂x∇y g0

�

, (24)

where we see that the term gz is only nonzero for the first order in (kFℓel)−1. Notably, we
consider a scenario where spin transport is not diffusive. Therefore, we neglect the first or-
der corrections to Eq. (23). Subsequently, we insert this set of equations back into Eq. (22),
yielding

∂t g0 + vF∇ · k̂g0 = −
1
τ0

�

g0 − 〈g0〉 − k̂ · 〈k̂′g0〉
�

−
3
τs f

�

g0 − 〈g0〉+
1
3

k̂ · 〈k̂′g0〉+
2
3

m ·
�

g0〈g0(k̂
′ × ẑ)〉 − 〈g0〉g0(k̂× ẑ) + (k̂× ẑ)

�

�

. (25)

This equation is the quantum kinetic equation for the charge sector of the topological surface
states, interacting with both nonmagnetic impurities and nuclear spins. Upon performing
an angular average over the quantum kinetic equation for the charge sector we obtain the
continuity equation:

∂t n+ 2vF (∇× s) · ẑ = 0 . (26)

Correspondingly, we obtain the equation for the energy-resolved spin density using the quan-
tum kinetic equations for the spin sector (see Appendix A for the details of the calculation):

∂tsx +
vF

4
∇y n+

sx

2τ0
= Γx ,

∂tsy −
vF

4
∇x n+

sy

2τ0
= Γy .

(27)

We observe that Eq. (26) and Eq. (27) form a set of spin-charge coupled transport equations. In
the above equations, we use the generalized density matrix F(ε,R) = n(ε,R)/2σ0+ s(ε,R)·σ,
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associated with the angular average of the quasiclassical Keldysh Green’s function. Here, we
define Γi as the nuclear spin contribution to the transport equations:

Γx = −
1
τs f

h

sx −mx

�n
2

�

1−
n
2

�

+ s2
x

�i

, (28)

Γy = −
1
τs f

h

sy −my

�n
2

�

1−
n
2

�

+ s2
y

�i

, (29)

where we redefine the timescale 4τs f ≡ τs f . We note that in the absence of nuclear spin
scattering, the terms Γi vanish.4

We examine transport dominated by nonmagnetic impurity scattering, specifically when
τ0≪ τs f . Under this condition, transport becomes diffusive, and we solve the corresponding
equations in the quasi-stationary state (ωτ ≪ 1). At the lowest order, the energy-resolved
spin density becomes

sx(y) = ∓
vFτ0

2
∇y(x)n+ 2τ0Γx(y) . (30)

We insert Eq. (30) into the continuity equation given in Eq. (26) and obtain an energy-resolved
diffusion equation:

∂t n−D∇2n+ 4ℓel (∇× Γ ) · ẑ = 0 , (31)

where we define D = v2
Fτ0 as the diffusion constant [5]. We identify the energy resolved

particle current density as j(ε,R) = −D∇n + 4ℓel(Γ × ẑ). Complementary to the electron
dynamics, we next obtain the nuclear spin dynamics in the next subsection. By examining the
nuclear spin dynamics and identifying the term Γ , we gain insights into the interplay between
electron and nuclear spin interactions.

2.5 Nuclear spin polarization dynamics

We now focus on the dynamics of the nuclear spin polarization under the influence of nonequi-
librium electron spin polarization and establish its connection to the source term Γ in Eq. (31).
In order to describe the dynamics of the nuclear spin polarization, we first write down the ki-
netic equation of nuclear spins. To simplify our analysis, we find it more convenient to work
with the lesser/greater Green’s function rather than the Keldysh formalism. In the Wigner
representation, the kinetic equation for the lesser component of the nuclear spin correlators
takes the following form:

Ḋ−+αβ (q ,Ω) = −
i
ħh

�

Π−+αδ (q ,Ω)D+−δβ (q ,Ω)− D−+αδ (q ,Ω)Π+−δβ (q ,Ω)
�

, (32)

where D is the nuclear spin correlators, Π is the nuclear spin self energy due to interactions
with topological surface states, q is the momentum and Ω is the frequency. Here, we omitted
the position and time variables for clarity.

The above equation of motion for nuclear spin polarization provides insights into the in-
teraction between nuclear spins and nonequilibrium electron spin polarization. We begin our
analysis by considering the nuclear spin self energy Π:

Π−+αβ (1, 2) = −i
λ2

4
Tr
�

σαG−+(1,2)σβG+−(2, 1)
�

, (33)

4In this case, the only scattering is due to nonmagnetic impurities, and we recover the results obtained by
Ref. [5].
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Figure 3: The diagrammatic representation for the lesser component of the nuclear
spin self energy Π−+

αβ
.

where the trace is over the spin degree of freedom. Here, we use the lesser (greater) compo-
nent of the electronic Green’s function, namely G−+(G+−), for convenience.5

In Fig. 3, we present the diagrammatic representation of the lesser component of the nu-
clear spin self energy. To calculate the nuclear spin self-energy Π−+, we follow a similar ap-
proach as with the electron self-energy. Using the Wigner representation for Π−+ and then
taking the Fourier transform with respect to the relative coordinates, we obtain:

Π−+αβ (q ,Ω) = −i
λ2

4

∫

d2k
(2π)2

∫

dω
2π

Tr
�

σαG−+(k,ω)σβG+−(k − q ,ω−Ω)
�

. (34)

We proceed by parametrizing the electronic Green’s function, namely G ≡ Gµσµ with
µ= {0, x , y, z} and calculate the lesser and greater components of the nuclear spin self energy
(see Appendix C).

Using the nuclear spin self energy and nuclear spin correlators, we formulate the quantum
kinetic equation for the lesser components of the momentum integrated nuclear spin correlator,
d−+
αβ

(see Appendix C):

ḋ−+αβ (r , t) = −
i
ħh

�

π−+αδ d+−δβ (r , t)−π+−αδ d−+δβ (r , t)
�

, (35)

where the term on the right hand side describes the spin-flip interaction taking place between
nuclear spins and electron spins. Here, π∓± describes the nuclear spin self energy components,
integrated over the momentum q . Inserting the nuclear spin self energy into Eq. (35), we
obtain the equation for the nuclear spin polarization dynamics:

ṁγ(r , t) = −
λ2ε2

F

4π(ħhvF )4

∫

dε
ħh

mγ(r )
�

n(ε, r )
2

�

1−
n(ε, r )

2

�

+ s2
γ(ε, r )
�

− sγ(ε, r ) , (36)

where we use the relation d−+
αβ
= εαβγmγ(r ) (see Appendix B) for the case α ̸= β with

γ ∈ {x , y}. Here, we consider a coarse grained description and define the average nuclear
spin polarization m(r ). The equations describing the dynamics of nuclear spin polarization in
Eq. (36) are general for the Fermi contact interaction. However, the density of states and the
electron spin density depend on the electronic part of the Hamiltonian, which is influenced by
the topological surface states of the 3DTI. Incorporating the effect of the surface states via the
electron density matrix, we establish a direct connection between the nuclear spin dynamics

5We note that the Keldysh representation of the electronic Green’s function is related to the representation used
here via a linear transformation [22].
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and the source term Γ in the diffusion equation presented in Eq.(31). We identify the inte-
grand in the right-hand side of Eq.(36) as the source terms Γγ in Eq. (28). We then express
the nuclear spin dynamics in a more concise form as:

dm
d t
= −ν
∫

dε Γ , (37)

where ν is the density of states of the electron subspace. Here, we define m(r )≡ nmm(r )/2 as
the nuclear spin polarization density. We note that the energy integral of the source term Γ is
related to the time rate of change of mean nuclear spin polarization density m. We emphasize
that Eq. (37) offers a generic description of nuclear spin dynamics interacting with electron
spins through the Fermi contact interaction, while the specific form of the term Γ is determined
by the characteristics of the system under consideration. In the following subsection, we apply
the generalized nuclear spin dynamics from Eq. (37) to the topological surface states of a 3DTI.
By doing so, we obtain a formula for the nuclear spin polarization and its connection to the
induced charge current.

2.6 Entropy-induced charge current

Integrating Eq.(31) over energy and utilizing Eq.(37), we derive the diffusion equation for the
charge density:

∂tρ − D∇2ρ + 4eℓel∇ ·
�

dm
d t
× ẑ
�

= 0 . (38)

Here, ρ represents the charge density, defined as ρ ≡ −eν/2
∫

dεn+νe2φ, where φ denotes
the scalar electrostatic field and e is the elementary charge. The charge current density arising
from the diffusion equation in Eq. (38) is given by:

J(r , t) = −D∇ρ + 4eℓel

�

dm
d t
× ẑ
�

. (39)

In this expression, we observe that the time rate of change of the nuclear spin polarization
density m acts as a charge current source. This is a result of the spin-momentum locking
feature of the surface states: as nuclear spin polarization is transferred to electron spins, the
perfect spin-momentum locking induces a charge current.

We now investigate the effect of the nuclear spin polarization dynamics in a setup depicted
in Fig. 1. The setup consists of a 3D topological insulator with two reservoirs connected to its
top surface. We focus only on the top surface and assume negligible hybridization between
the top and bottom surface states. Moreover, for the sake of demonstration, we consider
the nuclear spin polarization density m to have a weak position dependence, allowing us to
consider its position-independent contribution for simplicity.

We start by considering a setup where a voltage bias is applied between the reservoirs,
leading to a charge current flowing along the x-direction. In this case, the transport is de-
scribed by a one-dimensional diffusion equation. Solving this equation allows us to determine
the charge current, which is given by:

I = GV − 4eN
ℓel

L

dmy

d t
, (40)

where V is the applied voltage bias. Here, we use the relation I = JW with W being the width
of the surface along y−direction. The first term on the right-hand side corresponds to the
familiar Ohm’s law with the conductance given by G = σW/L, where σ = e2νD represents
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the conductivity obtained from Einstein’s relation (not to be confused with Pauli matrices in
spin space). This bare conductance G solely depends on the nonmagnetic impurity scattering.
The second term is the nuclear spin dynamics induced charge current with N being the total
number of nuclear spins at the top surface of a 3DTI and my being the average nuclear spin
polarization in the y−direction.

To investigate the relationship between the time rate of change of nuclear spin polarization
and the applied voltage, we solve the nuclear spin dynamics governed by Eq. (37) under an
applied voltage bias:

dmy

d t
=
γ3D

0

ħh

§

ℓel

L
eV
2
−my

�

ℓel

L
eV coth
�

ℓel

L
eV

2kB T

��ª

, (41)

where T is the temperature of the reservoirs and γ3D
0 is the effective interaction strength be-

tween nuclear spins and topological surface states:

γ3D
0 ≡

λ2ν2

4
=

1
8π

v2
0

ξ2

�

EF

ħhvF

�2� A0

ħhvF

�2

. (42)

By inserting Eq. (41) into Eq. (40), we determine the current-voltage characteristics of a
3DTI in the presence of a nuclear spin bath:

I = GV − 4eN
ℓel

L

γ3D
0

ħh

§

ℓel

L
eV
2
−my

�

ℓel

L
eV coth
�

ℓel

L
eV

2kB T

��ª

. (43)

This equation is one of the central results of this work. Notably, the first term in the
parenthesis on the right hand side of Eq. (43) is a dissipative term due to nuclear spin scattering
and simply renormalizes the bare conductance G. This dissipative term vanishes in the absence
of an applied voltage bias. On the other hand, the second term in the parenthesis is non-
vanishing even in the absence of an applied voltage bias, as long as there exists a finite nuclear
spin polarization my . Remarkably, finite nuclear spin polarization my induces a charge current,
converting the thermal energy in the environment into electrical energy. This induced current
reads

Iind = 4eN
ℓel

L

my

τm
, (44)

where we define the characteristic time scale τm = ħh/(2kB Tγ3D
0 ).

Examining this from an entropy point of view provides valuable insight: Finite nuclear
spin polarization has a lower entropy, driving nuclear spins towards a state of higher entropy.
This transition can only be achieved by transferring their spin angular momentum to electron
spins via hyperfine interaction. Consequently, entropy is transferred from the reservoirs to the
nuclear spins, resulting in an entropy-induced charge current.

Furthermore, the magnitude of the induced current presented in Eq.(44) incorporates a
scaling factor ℓel/L, indicating that the presence of nonmagnetic impurity scattering counter-
acts the induced charge current. We emphasize that this is a feature of the topological surface
states of a 3DTI. The randomization of the spin of charge carriers due to nonmagnetic impu-
rity scattering leads to a reduction in the magnitude of the induced charge current. This is
in contrast with the helical edge states of a quantum spin Hall insulator, where nonmagnetic
impurity scattering solely leads to forward scattering without altering the spin of the charge
carriers. Consequently, the scaling factor observed in Eq. (44) is not present in quantum spin
Hall insulators [1].
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3 Nuclear spin-driven inductance of topological insulators

The current-voltage characteristic for the topological surface states (TSS) of a 3DTI given
in Eq. (43) includes an additional contribution to the current, set by the nuclear spin
(de)polarization rate. In this section, we define an electronic circuit element with an equiva-
lent response, showing that this additional contribution has an inductive nature.

For simplicity, we again assume that nuclear spins are polarized in y-direction only,
my = m. Moreover, we consider the limit eVℓel/L ≪ 2kB T , which applies when the voltage
drop over a mean free path length is small compared to the thermal energy. The subsequent
analysis considers probing the circuit using a sinusoidal signal at frequency ω = ω0. Albeit
not the most general case, this limit still provides an intuitive picture of the current-voltage
characteristics.

3.1 Equivalent circuit configuration

In the limit eVℓel/L≪ 2kB T , Eq. (41) reduces to

dm
dt
=
γ3D

0

ħh

�

ℓel

L
eV
2
− 2mkB T
�

. (45)

We investigate the impedance of the topological surface states at frequency ω0 using a time-
dependent applied voltage bias V (ω0, t) = V0eiω0 t and assuming m(ω0, t) = |m|eiω0 t+φ . In
this case, Eq. (43) reduces to

I(ω0) =

�

G − 4πe2N
γ3D

0

h

�

ℓel

L

�2 iω0τm

iω0τm + 1

�

V0 , (46)

where τm =
ħh

2kB Tγ3D
0

is the characteristic nuclear polarization timescale. Eq. (46) consists of

two terms: an Ohmic contribution, and a non-Ohmic (nuclear-polarization induced) contribu-
tion to the current-voltage characteristics. Next, we investigate how the Ohmic contribution
and nuclear polarization-induced contribution scale relative to each other.

We consider a device with a surface of width W and length L. The (bare) Ohmic contribu-
tion is given by the Drude conductivity as

IOhmic = GV = G0
kF lel

π

W
L

V . (47)

The nuclear spin polarization-induced current depends on the device geometry through the
ratio ℓel/L and through N = [N]W Lξ/v0 with [N] being the number of nuclear spins per unit
cell. Taking both contributions into account, we define the impedance response of a topological
surface state as:

I(ω0) = G
�

1− ζ3D iω0τm

iω0τm + 1

�

|V | ≡ Z−1
TSS(ω0)V0 , (48)

where

ζ3D = 4π2[N]γ3D
0
ξℓel

kF v0
, (49)

is a dimensionless parameter that captures the relative magnitude of the induced current with
respect to the Ohmic contribution. We show the frequency dependence of ZTSS in Fig. 4(b).
Note that as ω0 → 0, the induced current vanishes, i.e. Iind → 0. On the other hand, as
ω0 →∞, we have Iind real and maximum. Furthermore, we point out that the out-of-phase
component of Iind is maximum for ω0 = τ−1

m .
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We find an impedance exhibiting a frequency response analogous to Eq. (48) by using a
combination of an inductor and resistor parallel to a second resistor. We illustrate this circuit
configuration in Fig. 4(a), with its corresponding current response given as:

ILRR(ω0) =
�

1
iω0L + Rseries

+
1

Rshunt

�

V0

≡ IL + Ishunt . (50)

This is equivalent to the TSS under the conditions

(Rseries)
−1 = Gζ3D ,

(Rshunt)
−1 = G
�

1− ζ3D
�

,

L =
τm

Gζ3D
.

(51)

The equivalent circuit model forms the key result of this section: the presence of nuclear
spins interacting with the topological surface states through hyperfine interaction leads to an
inductive response in the current-voltage relation.

Fig. 4(c) shows the resistance values in the equivalent circuit model as a function of the
hyperfine coupling strength ζ3D. For vanishing hyperfine coupling strength (ζ3D = 0), the
charge current through the inductive branch of the circuit element (IL ) vanishes, reducing
Eq. (48) to Ohm’s law describing diffusive transport. Note that IL is different from Iind defined
previously. Iind is the total contribution of hyperfine coupling to the current, which subtracts
from the ω0 ≪ τ−1

m value (given by IOhmic). On the other hand, in the equivalent circuit the
current in both branches is influenced by hyperfine coupling (51), and IL adds to theω0≫ τ−1

m
value (given by R−1

shuntV = IOhmic − Gζ3DV ).
We characterize the efficiency of the inductive effect by evaluating the quality factor at the

operating frequency ω0 = τ−1
m in Fig. 4(b), as

Q ≡
�

�

�

�

Im(ZTSS)
Re(ZTSS)

�

�

�

�

=
Rshunt

2Rseries + Rshunt
=

ζ3D

2− ζ3D
. (52)

We note that while the quality factor is enhanced as ζ increases, the model described in this
section breaks down for ζ > 1. Considering Eq. (42) and Eq. (49), this implies that a large kF
is favorable for observing an induced current due to finite nuclear spin polarization. However,
the maximally attainable kF is limited by the bulk band gap, as bulk carriers would introduce
additional Ohmic shunt channels, thereby reducing Q.

Apart from analyzing the efficiency at the operating frequencyω= τ−1
m , we can investigate

the inductive effect by considering the low-frequency (quasi-DC) limit of equation 48. For
ωτm ≪ 1, this reduces to a relation equivalent to a series combination of one resistor and
inductor:

V (ω0)≈ I(ω0)
�

G−1 + iω0Lωτm≪1

�

, (53)

where we define

Lωτm≪1 = G−1ζ3Dτm = 4π3 N
n2

modes

1
G0

ħh
2kB T

, (54)

where nmodes = kF W is the number of modes contributing to conduction along the width
of the device. This low-frequency inductance value is universal for different materials, as it
is independent of hyperfine coupling energy (although it depends on the number of nuclear
spins, and will reduce to zero when the material has zero nuclear spin). The other parameters
can be tuned by varying the Fermi energy, geometry and temperature. Filling in the parameters
at T = 100 K gives Lωτm≪1 = (N/n2

modes) · 122 nH. The remarkable feature of the universal
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TSS inductance is that it depends on the aspect ratio (N ∼ LW , nmodes ∼W ), and not on the
absolute area of the device as in conventional (magnetic) inductors. Therefore, topological
surface states offer a means of miniaturization of inductive circuit elements. However, for
application purposes, the relative magnitude of the inductive effect with respect to the Ohmic
shunt current is the relevant quantity which will be further touched upon in section 3.2.

To conclude this section, we need to address two points. Firstly, we emphasize that when
we analyze the device in the low bias limit for the complete frequency range, we can describe
the topological surface states interacting with nuclear spins as a circuit element with an in-
ductive component. However, taking this limit inherently limits the quality factor. The mean
nuclear spin polarization achieved during each polarization cycle is exceedingly small, result-
ing in a suppression of the induced current Iind proportional to the rate of change of nuclear
spin polarization dm/d t. To resolve this, we can enhance Iind by polarizing (charging) the
nuclear spins coupled to the TSS in the limit eV ≫ 2kB T L/ℓel, and depolarizing (discharging)
when eV ≪ 2kB T L/ℓel. This way, we ensure a higher initial polarization during the discharg-
ing phase, while limiting the Ohmic contribution to the current. The inductive nature of the
response is maintained, as the finite nuclear polarization obtained during charging conserves
the current direction, but the response is no longer limited to a single harmonic. Neverthe-
less, the lumped element analysis we discussed earlier provides an intuitive perspective on
the current-voltage relationship when considering dynamic nuclear polarization coupled to a
topological surface state.

Secondly, there is another equivalent circuit configuration with a frequency response iden-
tical to ZTSS. This arises from the fact that each three-element circuit has two non-trivial
combinations [23]. The second equivalent circuit consists of a parallel resistor/inductor com-
bination in series with a second resistor. Consequently, the presence of an inductive component
is independent of the chosen equivalent configuration. Similar to the equivalent circuit dis-
cussed above, the resistance and inductance values in the second equivalent circuit cannot be
independently adjusted by tuning material parameters. In other words, probing L without
accounting for Rseries,shunt is not possible. To summarize, the key takeaway is that a circuit
equivalent to the TSS always includes an inductive element.

3.2 Efficiency estimate in candidate materials

Analyzing Eq. (48) and Eq. (49), we observe that the magnitude of the induced current with
respect to the Ohmic current depends on a dimensionless constant

[N]
ξℓel

kF v0
≡ Ncoh , (55)

at constant γ0 and T . Here, we define Ncoh as the amount of nuclei per ‘coherent segment’,
or the nuclei that can be polarized coherently within the surface state penetration depth,
Fermi wavelength and electronic mean free path. Using this definition and our circuit ele-
ment analysis, we can generalize the TSS inductive effect to different spin-momentum locked
systems. For example, if we consider a quantum spin Hall insulator with helical edge states,
the depth and width of a coherent segment correspond to the cross section of this edge state
(S), and the length equals the device length (L). In this limiting case, the inductive effect
scales with ζQSH ∼ γQSH

0 [N]SL/v0, which corresponds to predictions for quantum spin Hall
edge states [1].

Furthermore, describing the inductive response of topological surface states via Ncoh and
γ0 enables us to estimate material suitability for applications. In Fig. 5, we compare the ratio
of induced current to Ohmic current for a selection of materials with topological surface states
of 3DTIs or helical edge states of quantum spin Hall insulators. Varying kF by applying a
top or bottom gate potential, we change Ncoh for topological surface states. Increasing kF
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Figure 4: Equivalent circuit model of the topological surface states, represented by
two resistors and an inductor in parallel. (a) The electronic circuit configuration,
(b) the frequency response of the real and imaginary part of ZTSS, (c) Rseries (solid),
Rshunt (dashed) relative to ROhmic ≡ G−1 and (d) the quality factor as a function of
ζ3D.

reduces Ncoh by decreasing the Fermi wavelength while enhancing γ3D
0 . For helical edge states

of quantum spin Hall insulators, the density of states does not depend on the Fermi wavevector
kF . Thus, we vary Ncoh through the device length L, not influencing γQSH

0 [1].
In Fig. 5, we show our estimations for device lengths ranging from 10 nm to 10 µm,

but the exactly attainable value may vary in an experiment. Our first example is the alloy
(Bi1−xSbx)2Te3 (BST), an experimentally available 3DTI. The position of the Dirac point and
Fermi level can be tailored by adjusting the stoichiometry [7]. Furthermore, by reducing the
film thickness of BST, the surface states hybridize, opening a gap at the Dirac point. With
the appropriate choice of film thickness, this gap becomes nontrivial [24], transitioning the
material into the quantum spin Hall state. Bismuth has 9/2 nuclear spin at 100% abundance,
whereas antimony has 7/2 nuclear spin at 57% abundance and 5/2 at 43% abundance [25]. To
estimate the hyperfine coupling strength, we take the value for bismuth at 50 µeV, although
this will be reduced due to the p-like nature of the surface states [26], similar to hyperfine
coupling strength for HgTe-based topological insulators [27]. Therefore, we estimate the total
hyperfine coupling strength of BST to be within 5−50 µeV, consistent with the values reported
in the literature [28,29]. Typical values are ℓel ∼ 10 nm, vF ∼ 3−5 ·105 m/s, a bulk band gap
of typically 300 µeV (as an upper limit to gate-tunability of the Fermi level) [7, 30, 31], and
we estimate the penetration depth ξ ∼ 1nm. For the corresponding quantum spin Hall state,
we assume a film thickness of 3 nm, with a decay length of ∼ 10 nm [30].

17

https://scipost.org
https://scipost.org/SciPostPhysCore.8.1.023


SciPost Phys. Core 8, 023 (2025)

Figure 5: Relative induced current (γ0Ncoh), estimated for different materials hosting
spin-momentum locked states. Background colors correspond to varying γ0 values.
Solid outlines denote the surface states of 3DTIs, where Ncoh is varied through kF .
Dashed outlines denote quantum spin Hall insulators, where Ncoh is varied through
channel length.

Our second example is the topological insulator SnTe. In this material only the Te atoms
have a nonzero nuclear spin. Therefore, we only need to consider the Fermi contact interaction
of Te, which is equal to A0 = 8.3 µeV [32]. Moreover, we use typical values of ℓel ∼ 200 nm
[33], ξ ∼ 2 nm [34], vF ∼ 6 · 105 m/s [35], and limit EF to the band gap of 180meV [36].
Although Ncoh is similar between BST and SnTe, the weaker hyperfine interaction diminishes
the efficiency of the induced current in the latter.

The last example considered in our estimate is monolayer WTe2, a quantum spin Hall
insulator. On average, the hyperfine coupling constant falls within the range of 0.6 - 6 µeV,
depending on whether the interaction primarily arises from tungsten atoms or is averaged
between tungsten and tellurium [32]. The lattice constants are a = 6.33 , b = 3.47 , c = 14.07
[37], and vF ∼ 105 m/s [38]. These parameters result in a strong hyperfine coupling compared
to the quantum spin Hall states in BST. However, WTe2 has the drawback of a low density of
nuclear spins, with an average of 10% being spinful. Additionally, the helical edge states in
WTe2 decay over a length of approximately 1.8nm [38]. Low nuclear spin density and reduced
cross section in WTe2 diminishes Ncoh and consequently Iind/IOhmic, counteracting the benefits
of increased coupling strength.

Finally, to potentially increase the induced current, we can explore Fermi arc surface states
[39]. These states also feature spin-momentum locking and do not suffer from backscattering.
Moreover, they extend across the entire surface by forming a coherent quantum state, thus,
all nuclear spins coupled to these states contribute to the induced current, without reducing
the efficiency due to impurity scattering in topological surface states. By adjusting the width
of the device, we can control the number of nuclei per coherent segment, effectively running
multiple quantum spin Hall edge states in parallel. If the hyperfine interaction strength is
similar to the quantum spin Hall insulator case, Iind/IOhmic can increase by multiple orders of
magnitude with respect to the quantum spin Hall state. Therefore, a promising avenue for
future research lies in investigating surface states and Fermi arcs of Weyl semi-metals [40,41].
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4 Entropic nature of inductive response

As demonstrated in the previous section, the dynamic nuclear spin polarization in a spin-
momentum locked system gives rise to an inductive response. Unlike a conventional inductor,
where energy is stored in a magnetic field generated by current flow, the energy storage mech-
anism in a 3DTI is distinct. This leads to the question: how is the inductive energy in a 3D
topological insulator stored and harnessed? In this section, we reveal that the inductive re-
sponse is linked to the information entropy contained within the nuclear spin subsystem. Thus,
we characterize the topological surface states of a 3DTI as an “entropic inductor”.

To establish the link between the inductance of the topological surface states and the en-
tropy of the nuclear spins, we define the information entropy of the nuclear spin subsystem.
Assuming a uniform current in the x-direction, we account for two spin orientations per nu-
clear spin: ‘up’ and ‘down’, aligned (or anti-aligned) with the average spin polarization of
the charging current. This definition is akin to the mean polarization of the nuclear spins,
m =

N↑−N↓
2N , given in Ref. [1]. Consequently, the rate of change of entropy of the nuclear spin

subsystem is given as

dSnuc

dt
=

d
dt

ln
N !

N↑!N↓!
≈ −N

dm
dt

ln
�

1+ 2m
1− 2m

�

. (56)

Following Eq. (56), we establish that the induced current and entropy of the nuclear spin
subsystem is related: a change in the entropy of the nuclear spin subsystem induces a charge
current until equilibrium for the latter (m= 0) is reached.

Having found a direct relation between induced current and entropy of the nuclear spin
subsystem, we now investigate the relation between the power delivered to the inductor in
the equivalent circuit configuration and the entropy of the nuclear spin subsystem. To that
end, we calculate the instantaneous power generated by the equivalent circuit configuration
of the topological surface states given in Section 3. We note that we consider only the current
flowing through the arm containing the inductorL (and Rseries). The current flowing through
the other arm, including Rshunt, merely results in dissipative Joule heating. The instantaneous
power delivered to the inductor is

PL (t) =L IL
dIL
dt

. (57)

We now assume that the applied voltage bias contains a single harmonic, V (t) = V0eiω0t. In
this case, we find the complex power delivered to the inductive branch as

PL (ω0) =
iω0L

(iω0L + Rseries)2
V 2

0 . (58)

Next, we relate the power on the inductive branch to the entropy of the nuclear spin subsystem.
In the low-bias frequency regime (eV ≪ 2kB T L/ℓel, as discussed in section 3), the Fourier
transformation of Eq. (56) results in

iω0Snuc(ω0)≈ −4N

�

γ3D
0 l

ħhL

�2 iω0τ
2
m

(iω0τm + 1)2
(eV0)

2

= −
1

kB T
iω0L

(iω0L + Rseries)2
V 2

0 . (59)

Using Eq. (58) and Eq. (59) and Fourier transforming back to the time domain, we observe
that the power delivered by the inductive branch is given by the rate of change of entropy of
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the nuclear spin subsystem:

PL (t) = −kB T
dSnuc

d t
. (60)

As a change in entropy is linked to heat flowing in/out of the system, this answers the ques-
tion of where the inductive energy is stored: when polarizing the nuclear spin subsystem, its
entropy Snuc is lowered, and heat is dissipated to the environment. The subsequently induced
current upon thermal relaxation is powered by absorbing heat from the environment, until
Snuc reaches its maximum at equilibrium. These considerations underline that the TSS func-
tions as an ‘entropic inductor’, utilizing the environment to store inductive energy in the form
of heat, in contrast to classic inductors utilizing magnetic fields for the same purpose.

Naturally, the induced current must comply with the second law of thermodynamics:

P + kB T
dSnuc

dt
≥ 0 , (61)

where P is the total power, which includes both inductive power PL and the power dissipated
PRseries,shunt

. These dissipative terms (PR = I2R > 0) always result in a positive contribution to
the total power of the TSS, ensuring the second law is satisfied.

5 Conclusion

In conclusion, we have investigated the topological surface states of a 3D topological insulator
interacting with nuclear spins present at the surface through hyperfine interaction. Specifically,
we have demonstrated that this interaction leads to dynamical nuclear spin polarization, driven
by the Edelstein effect. Furthermore, we have revealed that the reverse process is also possible:
a finite nuclear spin polarization induces a charge current response in the system. By using
the nonequilibrium Green’s function formalism, we have derived the transport equations for
the topological surface states of a 3D topological insulator in the presence of nuclear spins and
nonmagnetic impurities. Furthermore, we have also obtained the nuclear spin dynamics in the
presence of topological surface states and shown that the current-voltage relation of the system
is proportional to the rate of change of nuclear spin polarization. This current-voltage relation
exhibits an inductive nature in addition to the usual Ohmic response. By modelling this relation
as a lumped element model with two parallel resistors and an inductor, we have quantified the
quality factor associated with the inductive response of a 3D topological insulator. We have
found that the quality factor is enhanced by increasing the coupling parameter ζ3D, possibly
reaching unity if ζ3D is of order one. However, this approximation breaks down for ζ3D > 1.

We have shown that the efficiency of the inductive effect is mainly determined by two
factors: the number of nuclear spins within a coherent segment and the strength of the hyper-
fine interaction between nuclear spins and electrons. These factors remain unaffected by the
specific geometry of the device on the surface states of 3D topological insulators. However,
we can adjust the efficiency to a certain extent by modifying the Fermi wave number, which
can be accomplished by applying a gate voltage. Conversely, for quantum spin Hall insulators,
a similar inductive effect is observed but the efficiency does not depend on the Fermi wave
number. Instead, efficiency can be adjusted by altering the device’s length, as all nuclear spins
along an edge fall into a single coherent segment.

In estimating the induced current in various material systems, we focused on the ratio
Iind/IOhmic under harmonic excitation. We can apply a similar analysis and find values for
the lumped elements constituting the equivalent circuit in Figure 4(a). At low operating fre-
quencies, the analysis results in a universal inductance value of 122 nH, scaled by N/n2

modes.
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However, the equivalent inductive circuit element would always be accompanied by Rseries and
Rshunt, and cannot be probed separately. Therefore, a more suitable value to consider for appli-
cation purposes is the ratio between induced and Ohmic currents. Our analysis shows that this
total induced current can be of significant value for the correct choice of material parameters.

Spin accumulation with nuclear spins features inductive properties that could be utilized
for technological purposes. This inductive response is a property of spin-momentum locked
systems interacting with nuclear spins. We believe that these systems would be promising for
microelectronic semiconductor applications that require integrated inductors.
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A Charge-spin coupled dynamics of the 3D topological insulator
surface states

In this appendix, we show the spin sector of the quantum kinetic equation for the surface states
of a 3D topological insulator. We start by performing the spin traces σ of Eq. (11) and obtain:

∂t gx + vF∇y g0 + 2vF kF k̂x gz= −
1
τ0

�

gx − 〈gx〉 − k̂y〈g0〉
�

−
3
τs f

�

gx +
1
3
〈gx〉+

2
3
〈g 〉 ·mgx −

2
3
〈g0〉g0mx +

2
3

mx − k̂y〈g0〉
�

,

(A.1)

for the x− component, whereas the σy trace yields:

∂t g y − vF∇x g0 + 2vF kF k̂y gz= −
1
τ0

�

g y − 〈g y〉+ k̂x〈g0〉
�

−
3
τs f

�

g y +
1
3
〈g y〉+

2
3
〈g 〉 ·mg y −

2
3
〈g0〉g0my +

2
3

my + k̂x〈g0〉
�

,

(A.2)

and finally σz trace:

∂t gz + 2vF kF

�

k̂x gx + k̂y g y

�

= −
1
τ0

�

gz − 〈gz〉
�

−
3
τs f

�

gz +
1
3
〈gz〉+

2
3
〈g 〉 ·mgz −

2
3
〈g0〉g0mz +

2
3

mz

�

. (A.3)
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Next, we assume that the quasiclassical Green’s function is diagonal in the eigenstates of
the 3D topological insulator Hamiltonian. We then insert the ansatz given in Eq. (23) and
Eq. (24) and obtain the spin sector for the quantum kinetic equation:

∂t〈k̂y g0〉+
vF

2
∇y〈g0〉+

〈k̂y g0〉
2τ0

= −
3
τs f

�

4
3
〈k̂y g0〉+

2
3

�

〈k̂y g0〉m · 〈(k̂× ẑ)g0〉
�

〉 −
2
3
〈g0〉2mx +

2
3

mx

�

,

(A.4)

and

∂t〈k̂x g0〉+
vF

2
∇x〈g0〉+

〈k̂x g0〉
2τ0

= −
3
τs f

�

4
3
〈k̂x g0〉 −

2
3

�

〈k̂x g0〉m · 〈(k̂× ẑ)g0〉
�

〉+
2
3
〈g0〉2my −

2
3

my

�

.

(A.5)

Here, we keep the discussion to the kinetic equation for the in-plane electron spin polar-
ization only. By using the generalized density matrix F(ε,R) = n(ε,R)/2σ0 + s(ε,R) ·σ, we
arrive at the quantum kinetic equations for the spin sector given in Eq. (27) in the main text.

B Nuclear spin correlators

Our starting point is the two-point correlators for the nuclear spins, given in Eq. (15). We
map the contour ordered nuclear spin correlations on the Keldysh space and get individual
elements of the nuclear spin correlators:

D−−αβ (1, 2) = −i
¬

T
�

In1
α (t1)I

n2
β
(t2)
�¶

, (B.1)

D−+αβ (1, 2) = −i〈In2
β
(t2)I

n1
α (t1)〉 , (B.2)

D+−αβ (1,2) = −i〈In1
α (t1)I

n2
β
(t2)〉 , (B.3)

D++αβ (1,2) = −i
¬

T̃
�

In1
α (t1)I

n2
β
(t2)
�¶

, (B.4)

where T (T̃ ) denotes the time ordering (anti-ordering) operator and we denote the po-
sition of the ith nuclear spin as ni . Here, D∓(±) are the lesser (greater) Green’s func-
tion. Then, we calculate the expectation value of the nuclear spin operators, i.e.
〈Ini
α I

n j

β
〉 = δn1,n2

�

δαβ + iεαβγ〈I
n1
γ 〉 − 〈I

n1
α 〉〈I

n1
β
〉
�

. Taking the time ordering and anti-ordering
into account, we have:

iD±∓αβ (1,2) = δn1,n2

�

δαβ ± iεαβγm
n1
γ −mn1

α mn2
β

�

, (B.5)

iD∓∓αβ (1, 2) = δn1,n2

�

δαβ ± sgn(t1 − t2)iεαβγm
n1
γ −mn1

α mn2
β

�

, (B.6)

where we define mn
α ≡ 〈I

n
α〉. In the rest of the calculations, we consider only on-site correlations

and assume low nuclear spin density. Performing a rotation in the Keldysh space as described
in Ref. [22], we can then arrive at the retarded, advanced and Keldysh Green’s function for
the nuclear spins, as given in Eq. (15) in the main text.

Next, we calculate the self energy for electrons due to their interaction with the nuclear
spins. We show the diagrammatic representation of the self energy due to nuclear spin scat-
tering in Fig. 2(b). We consider two-point correlators for the nuclear spins only and obtain the
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components of the self energy matrix Σm as:

Σ−−m (R, k, t1, t2) = +i
λ2

4

∫

d2k′

(2π)2
σαG−−(R, k ′, t1, t2)σβ D−−αβ (R, k − k ′, t1, t2) ,

Σ++m (R, k, t1, t2) = +i
λ2

4

∫

d2k′

(2π)2
σαG++(R, k ′, t1, t2)σβ D++αβ (R, k − k ′, t1, t2) ,

Σ−+m (R, k, t1, t2) = −i
λ2

4

∫

d2k′

(2π)2
σαG−+(R, k ′, t1, t2)σβ D+−αβ (R, k − k ′, t1, t2) ,

Σ+−m (R, k, t1, t2) = −i
λ2

4

∫

d2k′

(2π)2
σαG+−(R, k ′, t1, t2)σβ D−+αβ (R, k − k ′, t1, t2) . (B.7)

We emphasize that the elements of the self energy matrix given in Eq. (B.7) is written in a
different basis than the one we use in description of the electronic Green’s function. To that
end, we use the retarded, advanced and Keldysh representation of the self energy given in
Eq. (B.7) in the main text.

C Nuclear spin polarization dynamics

In this appendix, we obtain the nuclear spin dynamics using the nonequilibrium Green’s func-
tion method. We first obtain the self energy for the nuclear spin correlators as follows:

Π−+αβ (q ,Ω) = −i
λ2

4

∫

d2k
(2π)2

∫

dω
2π

Tr
�

σαG−+(k,ω)σβG+−(k − q ,ω−Ω)
�

. (C.1)

We then parameterize the electronic Green’s function, namely G ≡ Gµσµ with
µ= {0, x , y, z} and obtain:

Π−+αβ = −i
λ2

4
Tr
�

σασγσβσµ
�

∫

d2k
(2π)2

∫

dω
2π

G−+µ G+−γ ,

= −i
λ2

2

∫

d2k
(2π)2

∫

dω
2π

�

δαβG−+0 G+−0 + iεαβµ
�

G−+µ G+−0 − G−+0 G+−µ
�

+ G−+β G+−α −δαβG−+γ G+−γ + G−+α G+−β

�

, (C.2)

where we discard the momentum-energy variables (q ,Ω) for clarity. Similarly, the greater
component of the self energy is found to be:

Π+−αβ = −i
λ2

4
Tr
�

σασγσβσµ
�

∫

d2k
(2π)2

∫

dω
2π

G+−µ G−+γ ,

= −i
λ2

2

∫

d2k
(2π)2

∫

dω
2π

�

δαβG+−0 G−+0 + iεαβµ
�

G+−µ G−+0 − G+−0 G−+µ
�

+ G+−β G−+α −δαβG+−γ G−+γ + G+−α G−+β

�

. (C.3)

We evaluate the nuclear spin self energy by associating the lesser and greater Green’s func-
tions in the nuclear spin self energy with the distribution functions of the electrons. Similar to
the electron spin dynamics, we make use of the generalized distribution matrix F = n

2σ0+s ·σ.
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As an example, we focus on the first term in the integrand of Eq. (C.2), where we have:
∫

d2k
(2π)2

∫

dω
2π

n(k)(1− n(k − q))δ(ω−ħhvF k+µ)δ(ω−Ω−ħhvF |k − q |+ EF )

=

∫

d2k
(2π)2

n(k)(1− n(k − q))δ(ħhvF k−Ω−ħhvF |k − q |) , (C.4)

where the δ function ensures the energy conservation due to scattering. We note that we
obtain the other terms in the integrand of Eq. (C.2) in a similar fashion.

After obtaining the nuclear spin self energy, we now focus on the nuclear spin dynamics.
In order to describe the dynamics of the nuclear spins, we first write down the kinetic equation
for the lesser component of the nuclear spin correlators in the Wigner representation:

Ḋ−+αβ (q ,Ω) = −
i
ħh

�

Π−+αδ (q ,Ω)D+−δβ (q ,Ω)− D−+αδ (q ,Ω)Π+−δβ (q ,Ω)
�

, (C.5)

where we omit the position and time variables for clarity.
As Eq. (C.5) is given in the Wigner representation, we need to integrate it over momentum

q and energy Ω in order to obtain the dynamics of the nuclear spins. We achieve this by con-
sidering the equal time density matrix, which corresponds to integrating the overall quantum
kinetic equation for the nuclear spins over Ω. This allows us to set Ω= 0 for Eq. (C.5). In that
case, we have:
∫

d2q
(2π)2

Ḋ−+αβ (q , 0) = −
i
ħh

∫

d2q
(2π)2

�

Π−+αδ (q , 0)D+−δβ (q , 0)− D−+αδ (q , 0)Π+−δβ (q , 0)
�

. (C.6)

We then assume that there exists only on-site correlations between the nuclear spin.
Therefore, we ignore the momentum dependence of the nuclear spin correlators. We define

d−+
αβ
≡
∫ d2q
(2π)2 D−+

αβ
(q , 0) and approximate the right hand side of Eq. (C.6) as:
∫

d2q
(2π)2

�

Π−+αδ (q)D
+−
δβ (q)− D−+αδ (q)Π

+−
δβ (q)
�

≈
�

π−+αδ d+−δβ − d−+αδ π
+−
δβ

�

, (C.7)

where we define
∫ d2q

2(π)2 Π
−+
αδ
(q , 0)≡ π−+

αδ
. In this case, we obtain:

ḋ−+αβ (r , t) = −
i
ħh

�

π−+αδ d+−δβ (r , t)− d−+αδ (r , t)π+−δβ
�

, (C.8)

as also given in Eq. (35). We note the self energy obeys the following relation, π−+
αβ
= π+−

βα
.

This proves that the kinetic equation (Eq. (35)) for all the diagonal components of the nuclear
spins correlators is trivial, ḋαα = 0, as expected.

Owing to the assumption we use, we only need to integrate the nuclear spin self energy
over the momentum. We again exemplify this for the first term in the self energy and integrate
Eq. (C.4) over momentum q and we have:

=

∫

dk
2π

2k2

∫ 2π

0

dθk

2π

∫ π/2+θk

−π/2+θk

dθq

2π
cos
�

θk − θq

�

n(k,θk)(1− n(k,θk − θq))

=

∫

dk
2π

2k2

∫ 2π

0

dθk

2π
n(k,θk)
�

1
π
−
∫ π/2+θk

−π/2+θk

dθq

2π
cos
�

θk − θq

�

n(k,θk − θq))
�

≈
2
π

∫

dk
2π

k2

∫ 2π

0

dθk

2π
n(k,θk) (1− 〈n(k)〉)

≈
2
π

∫

dk
2π

k2〈n(k)〉 (1− 〈n(k)〉) , (C.9)
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where 〈n(k)〉 denotes the angular average of the occupation factor, q = |q | and k = |k|.
We note that we use the condition q = 2k cos

�

θk − θq

�

due to the energy conservation. The
remaining terms in the nuclear spin self energy can be evaluated similarly.
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