
Delft Center for Systems and Control

Real-time receding horizon
trajectory generation for long
heavy vehicle combinations on
highways

N.J. van Duijkeren

M
as

te
ro

fS
cie

nc
e

Th
es

is





Real-time receding horizon
trajectory generation for long heavy
vehicle combinations on highways

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

N.J. van Duijkeren

August 24, 2014

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



The work in this thesis was supported by Volvo Group Trucks Technology. Their cooperation
is hereby gratefully acknowledged.

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.



Abstract

So-called long heavy vehicle combinations (LHVCs) are trucks up to 32 meters in length
and 80 tonnes heavy. They have the potential to reduce greenhouse gas emissions, traffic
congestions and transportation costs for road freight transport. LHVCs are widely used in
Canada and Australia today, and their abundance on European roads is expected to increase
in the near future. However, an undesired effect of the added towed units is the increase in
difficulty to maneuver such trucks on roads and in busy traffic. The increasing complexity for
truck drivers to handle trivial tasks, like changing lane, call for advanced assistance functions.
The development of advanced driver assistance systems or potentially autonomous functioning
trucks can improve traffic safety. This allows a further increase in use of long combination
trucks. One crucial component of such a driver assistance system is the ability to plan a safe
and smooth trajectory in real-time.

In this thesis, a nonlinear receding horizon trajectory generator is proposed for highway
driving of an A-double combination type of LHVC. An optimal control problem (OCP) is
formulated to define the open-loop constrained optimal trajectories. Optimality is defined as a
trade-off between three main components. Firstly, the jerk levels perceived by the driver is to
be minimized. Secondly, the lane center ought to be tracked and the velocity of the traffic flow
should be followed. And finally, depending on the detected scenario, distance is maintained
from a set of fellow road users. Hard constraints are imposed for the actuator limitations,
to prohibit the truck to leave the lane boundaries and to limit lateral acceleration levels.
Actuation signals are generated for the low-level steering control and a longitudinal velocity
tracker. The prediction of the vehicle states is performed using a nonlinear single-track model
of the A-double combination with the linear tire slip assumption.

The prediction horizon of the optimal trajectory is defined in the traveled distance along the
lane center. This allows a natural definition of the road curvature, progressing linear in the
prediction. A reformulation of the vehicle prediction model is executed for its incorporation
in the OCP. Surrounding vehicles are assumed to drive constant velocity, a spatial prediction
model is defined for the trajectories of other road users.

A direct multiple-shooting solution technique with a piecewise constant control parameteri-
zation is used to obtain a nonlinear program (NLP). Using the ACADO Toolkit, the so-called
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Real-Time Iteration (RTI) scheme is implemented exploiting a constrained Gauss-Newton
solution algorithm. Instead of solving the entire NLP each control interval, a sequential
quadratic programming (SQP) technique is synchronized with the sampling of the controller.
Each intermediate solution iterate of the SQP is used as a control reference to the vehicle.
The solution strategy is separated into two distinct phases, a preparation step and a feedback
step. Only the feedback step requires knowledge of the most recent state, a short duration of
this step assures minimal feedback delay.

The solution strategy to the NLP is implemented in efficient stand-alone C/C++ code, inter-
faced with Simulink and the motion simulator of the Swedish National Road and Transport
Research Institute (VTI) in Göteborg, Sweden. All routines are executed based on a clearly
defined set of measurements on the vehicle, the road and the surrounding traffic.

The overall control algorithm is tested in closed-loop simulations on two A-double combination
models. The vehicle prediction model (also employed in the NLP) and a high-fidelity vehicle
model, provided and validated by Volvo Group Truck Technologies. Results of simulations are
presented for lane changes, merging actions and evasive maneuvers on low-curvature highways.
The trajectory generator successfully controls both plant models for the intended scenarios.
Slight model-mismatch is observed between the prediction model and the high-fidelity plant,
which has a limited deteriorating effect on the control performance. Execution times of the
NLP solution strategy show that the trajectory generator implementation is real-time feasible.

In general we conclude that this work successfully demonstrates the applicability of the RTI-
algorithm to control the A-double combination for highway maneuvering.
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Chapter 1

Introduction

The so-called long heavy vehicle combinations (LHVCs) are a new generation of trucks that
are widely used in Canada and Australia today, and will be more abundant on the road also
in Europe in the near future [1, 2]. They have the potential to decrease road transport cost,
traffic congestions and generate lower emissions than current road freight transport. However,
an undesired effect of the added towed units is the increase in difficulty to maneuver these
trucks on roads and in busy traffic. The increasing complexity for truck drivers to handle
trivial tasks, like changing lane, call for advanced assistance functions. The development
of advanced driver assistance systems, or potentially autonomous functioning trucks, can
improve traffic safety, allowing a further increase in use of long combination trucks.

The main goal of this thesis work is to develop, implement and evaluate a real-time optimization-
based trajectory planning algorithm for the A-double combination type of LHVCs. In Fig-
ure 1-1, an illustration of such a truck is depicted. A-double combinations are trucks of 32[m]
in length and can have a total weight of 80[t]. The trajectories for the A-double combination
must generated such that the vehicles operates safely and maximizes for driver comfort. The
trajectory generator should be able to perform basic highway maneuvers on medium curva-
ture high friction roads. Among these basic maneuvers are, staying inside the lane, changing
lane, but also to perform emergency maneuvers.

tractor trailer 1 trailer 2dolly

Figure 1-1: LHVC in the A-double configuration (tractor - semi-trailer - dolly - semi-trailer).
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2 Introduction

1-1 Research goals and motivation

From a safety perspective, there are concerns regarding an increased abundance of LHVCs in
traffic. The longer vehicle combinations are more difficult to handle than conventional truck
combinations. Also, a relation is found between longer vehicles and an increased involvement
rate of these vehicles in highway lane change collisions[3]. The increased handling difficulty
can be attributed to several lateral vehicle characteristics. Among which most prominently
the phenomena of off-tracking and rearward amplification (RWA) [4]. Off-tracking is the
effect where the towing and the towed units do not necessarily travel the same paths. At
low speeds the rearmost unit tends to cut the corner, whereas at high speeds to rear units
swing out. Unsurprisingly, this can lead to dangerous scenarios for both the truck and the
surrounding traffic. Secondly, RWA is the effect where lateral accelerations amplify through
the towed units. Strong RWA increases the risk of hitting other objects, or (more severely)
that one of the units starts to roll over.

Previous work has shown promising results for path planning of long heavy vehicle combina-
tion (LHVC) using optimization-based receding horizon control [5]. Efficiently formulating
the trajectory generation problem as a nonlinear program (NLP) and using state-of-art solvers
can solve the trajectory generation problem in real-time. However, it also showed that a too
low complexity kinematic vehicle model can obstruct stabilizing performance when applied
to a high fidelity plant. Especially in high speed scenarios, the prediction of the kinematic
vehicle model insufficiently represented the dynamic behavior. External disturbances, such as
bad road conditions and measurement noise present in real-life, will not help. This motivated
to perform additional research to improving closed-loop performance of a receding horizon
controller for the trajectory generation problem.

Recently, great progress in receding horizon control has taken place in real-time applicability.
Especially, promising results in the application of the Real-Time Iteration (RTI) algorithm
[6] bring real-time optimization based trajectory generation a step closer to reality [7, 8].
This thesis work seeks a great part of the real-time performance in efficient mathematical
solution strategies and the advantages of code-generation techniques. This allows the use of
a non-linear dynamic prediction model of the LHVC, including a model for linear tire slip [9].

In this thesis work the applicability of the RTI-algorithm and code generation is researched
in application to trajectory generation for A-double combinations on highways. The code
generation functionality of the ACADO Toolkit [10] facilitates the streamlined implementation
of the solution scheme to the optimal control problem (OCP). The goal of the research is
to find whether real-time performance can be achieved and to assess closed-loop behavior
on the high-fidelity model of the A-double combination developed by Volvo Group Truck
Technologies (Volvo GTT). A suitable formulation for the OCP is designed to incorporate
collision avoidance. Perfect knowledge of the vehicle state, surrounding traffic and the road
geometry are assumed to be available and is used accordingly.

1-2 Thesis contributions

The application of model predictive control (MPC) control techniques in fast mechanical sys-
tems is, despite advances in computational abilities of computer systems, limited because of
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real-time performance issues. The work in this thesis applies an existing state-of-art optimiza-
tion algorithm to a complex system like the A-double combination, while assuring real-time
applicability of the overall control algorithm. A receding horizon trajectory generator with a
medium length prediction length (∼ 100[m]) is shown to be able to stabilize a high-fidelity
model of the A-double combination in typical maneuvers on low curvature highways.

Collision avoidance is incorporated in the OCP by formulating a predicted collision-free corri-
dor and by applying an incentive on distance keeping for surrounding vehicles in the optimal
trajectory.

A real-time implementation of the trajectory generator at the Swedish National Road and
Transport Research Institute (VTI) motion simulator enables near future research in driver
acceptance of this type of advanced drivers assistance systems. Input from professional drivers
can be used to place the results in perspective with the overall complexity of driving a truck. It
can be researched if this type of driver assistance systems meet the expectations and improves
handling for truck drivers of LHVCs.

This work presents a proof-of-concept for the application of the RTI to maneuver LHVCs on
medium curvature highways.

1-3 Structure of the thesis

In Chapter 2 modeling of the vehicle, road and surrounding traffic is introduced. The deriva-
tion of the nonlinear single track model of the A-double combination is summarized from
[9]. The spatial reformulation of the truck dynamics are described and one finds details on
approach for modeling surrounding traffic.

Chapter 3 focuses on the definition of an optimal trajectory, desired driving behavior and
considerations regarding constraints. Ultimately, the full-sized OCP used in this work is
described.

Chapter 4 describes the solution strategy to the OCP. This is of particular interest to reader
to understand the merits and drawbacks of the RTI algorithm and how they may affect the
results.

Chapter 5 presents a brief description on the implementation details of the controller. The
simulation environments are described and the main algorithmic components of the overall
control algorithm are introduced.

Chapter 6 presents the numerical results of the closed-loop performance of the trajectory
generator on both the single-track model as the high-fidelity plant of the LHVC. The main
functionalities of the truck, to be able to keep lane, change lane and to perform evasive
maneuvers are tested and discussed.

Finally, in Chapter 7 the conclusions and contributions of the thesis are summarized and
recommendations for future work are listed.
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Chapter 2

Modeling of the vehicle, the road and
surrounding traffic

Long heavy vehicle combinations are trucks that consist of a chain of trailers. Several variants
are actively in use today in multiple countries in Europe, among which in Sweden and the
Netherlands. Despite efforts on harmonization of regulations, each country has different size
and weight limitations [1]. Shorter combinations are in the range of 19[m] long, whereas
the longest double trailer trucks are up to 32[m] in length. This thesis work is focused on
the implementation of a trajectory generator for the A-double combination. This long heavy
vehicle combination (LHVC) is the longest for use in the near future, with a total length of
32[m] and with a maximum mass of 80[t]. It consists of four separate units, the tractor, a
semi-trailer, a converter dolly and a second semi-trailer. In Figure 2-1 one finds a picture of
such a vehicle in which the degrees of freedom in the chain are clearly visible. In this chapter,
the A-double combination is introduced in more detail.

Figure 2-1: The A-double combination is a truck that consists of four distinct units. The
tractor, a semi-trailer, the converter dolly and a second semi-trailer. The orientation of the
A-double combination in the picture clearly shows how the four units are interconnected.

In Section 2-1 general vehicle dynamics properties of the A-double combination are reviewed.
The purpose is to give the reader a broad idea on phenomena such as off-tracking and rearward
amplification (RWA).
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6 Modeling of the vehicle, the road and surrounding traffic

Secondly, the trajectory generator developed in this thesis work is a model-based control
technique. In Section 2-2, the model that is used in this control technique is introduced. This
model is derived in previous work at Volvo Group Truck Technologies (Volvo GTT) [9], for a
full detailed derivation one is referred to that technical report. In the section, the derivation
steps are briefly outlined and simplifying assumptions are summarized.

In Section 2-3, a set of kinematic relations in the vehicle are derived. Velocity vectors and
acceleration vectors in arbitrary points on the truck can be computed as a function of the ve-
hicle states. Simplifications are applied to decrease complexity of the expressions, maintaining
accuracy when applied to highway driving conditions.

Section 2-4 is focused on the modeling of the road. New states are introduced to the vehicle
model that define the position of the truck with respect to the road.

In Section 2-5 the vehicle dynamics of the single-track model are reformulated from dynamics
in time to dynamics to evolve with the traveled distance along the lane center. The need for
this reformulation is discussed in more detail in Chapter 3.

There are a few important remarks regarding the notation is this chapter:

• The body-fixed coordinate system is defined according to the ISO-8850 norm. A defi-
nition of the coordinates and states are introduced in this chapter.

• A state ∗ in the global earth-fixed reference frame is denoted as G∗.

• In this thesis work, five local reference frames are used. Consider an arbitrary state ∗,
it can be defined in the body-fixed reference frame in:

– The center of mass (COM) of the tractor, L
1∗.

– The center of the front axle of the tractor, L
1f∗.

– The center of the rear axle of the first semi-trailer, L
2∗.

– The center of the rear axle of the dolly, L
3∗.

– The center of the rear axle of the second semi-trailer, L
4∗.

• All time derivatives d∗/dt are performed in the reference frame in which a state is defined.
Note that this has important effects on the physical meaning of a time derivative in a
non-inertial reference frame, such as the body-fixed coordinate system in the truck.

2-1 General A-double combination vehicle dynamics characteristics

The A-double combination has specific characteristics in the dynamic behavior. These spe-
cific phenomena are introduced as performance characteristics in [4]. The report discusses
longitudinal and lateral performance characteristics. Let us first discuss the lateral charac-
teristics.

• Off-tracking: Off-tracking is the lateral offset between the paths of the center of the
front axle of the tractor and the other axles in the combination. There is a distinction
between high-speed off-tracking and low-speed off-tracking. In Figure 2-2 high-speed
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2-2 Nonlinear single track model of the A-double combination 7

off-tracking is illustrated, the swept path of the rear axle of second semi-trailer is wider
than the path of the tractor. At low speeds, typically below 40[km/h] inward off-tracking
occurs. In case of transient lateral motion, such as a lane change, transient off-tracking
takes place. Due to swing, the swept path of the second semi-trailer can be different
from the tractor its path.

• Rearward Amplification: RWA is the ratio between the maximum lateral acceler-
ation in the towed units and the lateral acceleration in the tractor during a specific
maneuver, such as a lane change. This ratio increases towards the rear of the truck. For
gentle maneuvering, this RWA is typically very low. However, previous work [1] reports
values up to 1.74 for RWA in the A-double combination can be expected.

Traveled path of tractor

Off-tracking
of second
semi-trailer

Figure 2-2: Illustration of high speed off-tracking for an A-double combination. The swept path
of the tractor in a curve is different from the swept path of the other units. Note that at low
speeds, inward off-tracking occurs.

The A-double combination usually has a powerful towing unit. Nevertheless, the longitudinal
acceleration of a fully loaded truck is very limited. On a flat road, the acceleration is not
higher than 0.25m/ss. This is especially relevant in case the truck drives up a hill. The
maximum velocity is then limited by the slope of hill that is climbed. In this work, only a
flat road is considered. Hence, this issue is not dealt with.

2-2 Nonlinear single track model of the A-double combination

The basis for the prediction model for the model-based control strategy is a single-track
vehicle model for the lateral dynamics of the A-double combination. In previous work at
Volvo Trucks, such a model has been derived and identified. In this thesis, for the sake of
completeness, the derivation of the gray-box model and the parametric identification steps
are briefly outlined. For a thorough documentation, one is referred to technical report in [9].
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8 Modeling of the vehicle, the road and surrounding traffic

Alternative dynamic vehicle models are for example two-track models [11] and black-box
models obtained using system identification techniques. A single-track model is expected to
provide a good trade-off in complexity and accuracy for highway driving. A gray-box model
is ideally suitable for different scenarios of e.g. the payload that is transported. A kinematic
model is considered unsuitable for the use-case of highway driving because of the significant
lateral tire slip and inertial effects that are neglected in the derivation of the kinematic vehicle
model.

In the field of vehicle dynamics, a single-track model (also known as a bicycle model) refers
to a special type of vehicle model. The basic properties of the single-track model are:

• The vehicle model is defined in a top-view 2D Euclidean space. 3D effects, such as
roll-over are not modeled.

• The wheels of the vehicle are assumed to be lumped into the center of each axle.

• Each unit of the vehicle is a rigid body mass.

• No suspension, chassis and cabin dynamics are modeled.

Figure 2-3 depicts an illustration of the single track model of the A-double combination and
the geometric properties.

Delft Center for Systems and Control

b4 a4

c3

a3b3

c2
b2

a2

a1
c1

b1

X

Y

O

Figure 2-3: Parameters of the A-double dynamic model.

Tire properties have great influence on the vehicle dynamics. In fact, by changing the tire
properties one can render a stable vehicle unstable. Modeling of tires is not a trivial task, lots
of research is spent on an accurate representation of physical tires [12]. Fortunately, when
tires are used conservatively (i.e. far within their performance bounds) their steady-state
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2-2 Nonlinear single track model of the A-double combination 9

lateral force behavior can be modeled as linear springs in the slip angle of the tire. Where
the slip angle is the difference between the orientation of the tire and its velocity vector, i.e.

slip angle = arctan
( lateral velocity of tire
longitudinal velocity of tire

)
(2-1)

In Figure 2-4 an illustration is given of the linear tire model approximation. Note that physical
tire behavior heavily depends on the normal force on the tire, the temperature of the tire,
the suspension geometry, the road conditions, etc. Because of the large influence of tires, this
affects the validity of the resulting vehicle dynamics model.

Delft Center for Systems and Control

slip angle (rad)

tir
e

fo
rc

e
(N

)

Nonlinear tire behavior
Linear tire approximation

Figure 2-4: Illustration of the physical tire behavior for the lateral force as a function of the slip
angle and a linear approximation of this curve.

The gray box model is derived using an Euler-Lagrange approach. The equations of motion are
derived using a description of the kinetic energy T , the potential energy V and the generalized
forces Q in a chosen set of generalized coordinates r.

d

dt

∂(T − V)
∂ṙi

− ∂(T − V)
∂ri

= Qi (2-2)

∀i, with ri the i’th element from the set of generalized coordinates:

r =
(
X Y θ0 θ1 θ2 θ3

)
(2-3)

An illustration of the generalized coordinates is depicted in Figure 2-5.

The generalized forces entail the effect of the tire forces. No friction and air drag is modeled,
neither is the effect of tilt or a slope in the road. Hence, no potential energy is present in the
system, i.e. V = 0. The Euler-Lagrange equations simplify to:

d

dt

∂T
∂ṙi
− ∂T
∂ri

= Qi (2-4)

The generalized coordinates are written in the global coordinates system (X,Y ). It is desired
to obtain a model description in the local body-fixed vehicle frame in the COM of the tractor,
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10 Modeling of the vehicle, the road and surrounding traffic

Delft Center for Systems and Control
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Figure 2-5: States of the A-double dynamic model.

independent from the yaw angle θ0 and the position (X,Y ). For the three generalized coor-
dinates

(
X Y θ0

)
, the following relation is used for the partial derivatives of the kinetic

energy:

∂T
∂ẊG

= ∂T
∂vx,1

cos(θ0)− ∂T
∂vy,1

sin(θ0) (2-5a)

∂T
∂ẎG

= ∂T
∂vx,1

sin(θ0) + ∂T
∂vy,1

cos(θ0) (2-5b)

∂T
∂X

= ∂T
∂G

= 0 (2-5c)
∂T
∂θ0

= ∂T
∂vx,1

vy,1 −
∂T
∂vy,1

vx,1 (2-5d)

Solving the system of equations in Eq. (2-4) and Eq. (2-5) leads to a highly non-linear model
in nine states and the six inputs for the net longitudinal force on each axle. To simplify the
obtained vehicle dynamics model from the Euler-Lagrange method, a set of assumptions is
introduced.

• Small angle assumptions, i.e. small steering angle, small tire-slip angles, small articula-
tion angles between subsequent units.

• The longitudinal acceleration is assumed to be zero.

• All longitudinal forces are zero. No aerodynamics are modeled, neither are brakes and
propulsion systems.
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2-2 Nonlinear single track model of the A-double combination 11

These assumptions simplify the model greatly. In fact, the lateral dynamics turn linear for
constant longitudinal velocity. And a parametric model for the lateral dynamics of the A-
double combination is obtained in the following state vector ξlat and control input vector ulat:

ξlat =
(
vy,1 θ̇0 θ1 θ̇1 θ2 θ̇2 θ3 θ̇3

)T
(2-6a)

ulat = δ (2-6b)

The equations of motion for the lateral dynamics, written using the conventional state-space
A, B matrices, are:

ξ̇lat = A(vx,1)ξlat +Bulat (2-7)

The free parameters that remain in the model are the geometric, inertial and tire properties
of the truck. The geometric and inertial properties are straightforward to obtain from the
truck configuration details. The configuration mainly depends on the payload of the truck
and the way it is distributed in the trailers.
The truck in this thesis work is considered to be fully loaded, casting up to a total mass
of 80[t]. All details of the vehicle configuration properties are listed in table Table 2-2. The
table of vehicle properties also lists values for the cornering stiffness of each axle in the vehicle
model. These values cannot be computed without very precise knowledge of the properties
of the tire. In the work of [9] the cornering stiffnesses are approximated using a system
identification experiment. The identification technique is briefly described.
The measurements are made in an experiment with the high-fidelity A-double combination
model described later in Section 2-7 of this chapter. The steering input in the experiment was
a white noise signal. And the truck drove with a constant longitudinal velocity of 70[km/h].
The identification objective was to minimize the least-squares error of the yaw rate gain of
each unit in the A-double combination on the interval of 0 − 2[Hz]. The yaw rate gain for
vehicle unit i is defined as the yaw rate of unit i divided by the front axle steering wheel
angle, i.e. ∑i

j=0 θ̇i/δ.

Table 2-1: Eigenvalues of the linearized single-track A-double combination model at different
longitudinal velocities. The table is sorted per column on the real part of the eigenvalues.

vx,1 = 8 [m/s] vx,1 = 12 [m/s] vx,1 = 16 [m/s] vx,1 = 20 [m/s]

−13.68± j2.50 −9.12± j4.11 −6.84± j4.54 −5.47± j4.71
−9.33 −4.39± j2.70 −3.2± j3.62 −2.57± j4.00

−6.86± j0.69 −2.87± j0.56 −2.13± j1.96 −1.70± j2.33
−1.46± j0.34 −1.78± j1.40 −1.44± j1.98 −1.15± j2.22
−1.15

System Eq. (2-7) its eigenvalues are outlined in Table 2-1 for different longitudinal velocities.
We can conclude that the linearized system is stable for the selected set of longitudinal veloc-
ities. Also, we observe that the eigenvalues change for velocities. Take for example the fastest
eigenvalue-pair from the columns of 8 [m/s] and 20 [m/s]. These are −13.68 ± j2.50 [rad/s] and
−5.47± j4.71 [rad/s] respectively. This indicates that the velocity is an important parameter
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12 Modeling of the vehicle, the road and surrounding traffic

in the model and motivates to keep the dynamics velocity dependent in the prediction model
of the model-based controller. The system is characterized to be non-stiff, the eigenvalues
are at most a factor 13 apart. No special regard to numeric stability for discrete integration
techniques is expected to be necessary.

We desire to obtain a model that includes a simple description for the longitudinal dynamics.
More precisely, we want to obtain a simple model for the closed-loop cruise controller dynamics
in the A-double combination. The longitudinal closed-loop dynamics are approximated with
a first order differential equation on the longitudinal acceleration of the truck,

d2vx,1
dt2

= ax,1,des − ax,1
τcc

(2-8)

The time constant τcc relates the longitudinal acceleration ax,1 of the truck with the desired
acceleration input ax,1,des. The extended state and control input vectors include the cruise
controller:

ξlhvc =
(
vy,1 θ̇0 θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 vx,1 ax,1

)T
(2-9a)

ulhvc =
(
δ ax,1,des

)T
(2-9b)

To conclude this section, the author of [9] gives a clear specification for the intended validity
region for the single-track model. The model is designed and identified for the velocity range
of 30− 80[km/h] and amplitudes below 1.5[m/s2] for the lateral acceleration. No weight shift is
modeled and effects of combined slip are neglected. A model discrepancy is expected in more
aggressive maneuvers than specified above.

2-3 Planar kinematic relations in the multi-body system

The dynamic model of the A-double combination that is introduced in Section 2-2 allows us
to predict the motion of the truck combination over time. The state-vector of the single-track
model, can be used to find a large variety of measures in the chain of vehicle units. By
deriving the kinematic relations in the truck, we can find e.g. the acceleration vector in any
point of the truck. Although the optimal control problem (OCP) is not introduced yet, it is
natural that, among others, the following measures valuable to know:

• The velocity vectors in the axles of the A-double combination.

• The acceleration vectors in the COM of the tractor and the axles of the A-double
combination.

In this section, the steps to obtain these measures are briefly outlined. Since the expressions
for the kinematic relations are very long, only position vectors are written down explicitly.
Let us start with the introduction of the notation that is used in the kinematics. The vectors
~r∗ ∈ R2 denote the position in the global inertial reference frame, ~r ′∗ ∈ R2 represent the
position vectors with respect to the COM of the tractor. Where ∗ ∈ {1, 1f, 2, 3, 4} represents
the so-called positions of interest. The points of interest are:
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Table 2-2: Vehicle parameters for the configuration of the A-double combination that is used for
the single-track model identification executed in [9], including the resulting cornering stiffnesses.

Parameter Symbol Value Unit

Mass, unit 1 m1 9841 [kg]
Mass, unit 2 m2 33601 [kg]
Mass, unit 3 m3 2700 [kg]
Mass, unit 4 m4 33801 [kg]
Yaw moment of inertia, unit 1 J1 20 · 103 [kgm2/rad]
Yaw moment of inertia, unit 2 J2 543 · 103 [kgm2/rad]
Yaw moment of inertia, unit 3 J3 2 · 103 [kgm2/rad]
Yaw moment of inertia, unit 4 J4 546 · 103 [kgm2/rad]
Distance from COM to front axle, unit 1 a1 1.45 [m]
Distance from front connection point to COM, unit 2 a2 4.43 [m]
Distance from front connection point to COM, unit 3 a3 4.55 [m]
Distance from front connection point to COM, unit 4 a4 4.65 [m]
Distance COM to rear axle, unit 1 b1 2.23 [m]
Distance COM to rear axle, unit 2 b2 3.27 [m]
Distance COM to rear axle, unit 3 b3 0.65 [m]
Distance COM to rear axle, unit 4 b4 3.05 [m]
Distance COM to rear connection point, unit 1 c1 1.95 [m]
Distance COM to rear connection point, unit 2 c2 5.97 [m]
Distance COM to rear connection point, unit 3 c3 0.00 [m]
Front axle cornering stiffness, unit 1 C1f 4.07 · 105 [N/rad]
Rear axle cornering stiffness, unit 1 C1r 2.07 · 106 [N/rad]
Rear axle cornering stiffness, unit 2 C2r 1.24 · 106 [N/rad]
Rear axle cornering stiffness, unit 3 C3r 1.17 · 106 [N/rad]
Rear axle cornering stiffness, unit 4 C4r 1.42 · 106 [N/rad]
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14 Modeling of the vehicle, the road and surrounding traffic

• The COM of the tractor, indicated with ∗ = 1

• The front axle of tractor, indicated with ∗ = 1f .

• The rear axle of the first semi-trailer, indicated with ∗ = 2.

• The rear axle of the dolly, indicated with ∗ = 3.

• The rear axle of the second semi-trailer, indicated with ∗ = 4.

See Figure 2-6 for an illustration of these points.

Note that these positions are chosen, such,that we have a representative measure for the
velocity and acceleration in all main units of the truck combination. In the remainder of the
thesis, the notation {1, 1f, 2, 3, 4} for the positions of interest is repeatedly used.

Delft Center for Systems and Control
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Figure 2-6: Kinematics for the A-double combination. The green arrows indicate the vectors
from the origin of the global coordinate system to the axles of the A-double combination. The
orange arrows represent the same coordinates relative to the COM of the tractor.

Since the yaw of the each unit with respect to the global reference frame is highly relevant
in the context of the kinematics, we define a short-hand notation of these states. To avoid
discrepancy in the notation of the yaw angle of the different units, the φ1 = θ0 is introduced
also.

φ1 = θ0

φ2 = θ0 + θ1

φ3 = θ0 + θ1 + θ2

φ4 = θ0 + θ1 + θ2 + θ3

(2-10)

Let us first start with the derivation of the exact kinematic relations for the points of interest.
The expressions are general and valid for any arbitrary orientation of the truck.
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2-3-1 Exact kinematics

The kinematic relations are derived using symbolic computation tool Mathematica. The
basis for the derivation of the velocity and acceleration vectors in certain points of the truck
are the position vectors. The vehicle dynamics are derived in the COM of the tractor, we
need to define the position vectors relative to that point. In Figure 2-6 the position vectors
are illustrated, mathematically we write:

G~r1f (t) = G~r1(t) + G~r ′1f (t) = G~r1(t) +R(φ1)

a1

0


G~r2(t) = G~r1(t) + G~r ′2(t) = G~r1(t)−R(φ1)

c1

0

−R(φ2)

a2 + b2

0


G~r3(t) = G~r1(t) + G~r ′3(t) = G~r1(t) +R(φ1)

c1

0

−R(φ2)

a2 + c2

0

+

−R(φ3)

a3 + b3

0


G~r4(t) = G~r1(t) + G~r ′4(t) = G~r1(t) +R(φ1)

c1

0

−R(φ2)

a2 + c2

0

+

−R(φ3)

a3 + c3

0

−R(φ4)

a4 + b4

0



(2-11)

where R(∗) denotes the rotation matrix in 2D Euclidean space:

R(∗) =

cos(∗) − sin(∗)
sin(∗) cos(∗)

 (2-12)

The velocity vectors in the same points can be obtained using the knowledge of the local
velocity vector in the COM of the tractor.

G~v1f (t) = R(φ1) L
1~v1(t) + d

dt
G~r ′1f (t)

G~v2(t) = R(φ1) L
1~v1(t) + d

dt
G~r ′2(t)

G~v3(t) = R(φ1) L
1~v1(t) + d

dt
G~r ′3(t)

G~v4(t) = R(φ1) L
1~v1(t) + d

dt
G~r ′4(t)

(2-13)

Where L
1 stands for the body-fixed reference frame in the center of mass of the tractor. And

by differentiating this expression to time we obtain expressions for the acceleration vectors in
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each unit in the global inertial reference frame.

G~a1f (t) = d

dt
G~v1f (t) = d

dt
[R(φ1)] L

1~v1(t) +R(φ1) d
dt

L
1~v1(t) + d2

dt2
G~r ′1f (t)

G~a2(t) = d

dt
G~v2(t) = d

dt
[R(φ1)] L

1~v1(t) +R(φ1) d
dt

L
1~v1(t) + d2

dt2
G~r ′2(t)

G~a3(t) = d

dt
G~v3(t) = d

dt
[R(φ1)] L

1~v1(t) +R(φ1) d
dt

L
1~v1(t) + d2

dt2
G~r ′3(t)

G~a4(t) = d

dt
G~v4(t) = d

dt
[R(φ1)] L

1~v1(t) +R(φ1) d
dt

L
1~v1(t) + d2

dt2
G~r ′4(t)

(2-14)

For the acceleration vectors in the local coordinate system of each unit, one needs to rotate
the vectors according to the yaw angle of the unit. For example, the relevant acceleration
vectors from Figure 2-6 are now written as:

~a1f (t) = L
1f~a1f (t) = R(φ1)−1 G~a1f (t) (2-15a)

~a2(t) = L
2~a2(t) = R(φ2)−1 G~a2(t) (2-15b)

~a3(t) = L
3~a3(t) = R(φ3)−1 G~a3(t) (2-15c)

~a4(t) = L
4~a4(t) = R(φ4)−1 G~a4(t) (2-15d)

Henceforth, when the text refers to the acceleration in a certain position of the truck, it
denotes the acceleration aligned with the relevant axle (including the Coriolis acceleration
terms).

2-3-2 Simplified kinematics

The kinematic relations derived in section Section 2-3-1 have a few drawbacks in case they are
unaltered. Firstly, the equations are unnecessarily precise for highway driving of the truck.
Secondly, the functions for the acceleration vectors require knowledge of the time derivative
of the lateral velocity in the COM of the tractor in the body-fixed reference frame.

Three assumptions are made to simplify the kinematic relations:

• The articulation angles and their mutual sums are small.

cos
(∑j

i θi
)

= 1, sin
(∑j

i θi
)

= ∑j
i=1 θi

∀i, j ∈ {1, 2, 3}, i ≤ j
(2-16)

• The mutual products of the following states are negligible:

θ1, θ2, θ3, θ̇0, θ̇1, θ̇2, θ̇3, θ̈0, θ̈1, θ̈2, θ̈3, L
1vy,1,

d
dt

L
1vy,1,

d
dt

L
1vx,1

(2-17)

• The states d/dt L
1vx,1, d/dt L

1vy,1, θ̈0, θ̈1, θ̈2, θ̈3 are defined by the single-track equations of
motion for the A-double combination.
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2-4 Modeling of the vehicle position with respect to the road geometry 17

2-4 Modeling of the vehicle position with respect to the road ge-
ometry

Consider that we define a road profile in the global inertial frame G by the function:X
Y

 = froad(s) (2-18)

where s denotes the arc length of froad from some arbitrary initial point s = 0. The position
of a certain point in the truck, projected on the road is defined by the coordinate s and
the perpendicular distance from this road geometry d. The position (s, d) is not necessarily
unique for all coordinates (X,Y ) and there may not exist an (s, d)-coordinate for all (X,Y ).
In any position s along the road geometry we can construct a Frenét frame [13], with the
normalized basis vectors ~̂T (s) and ~̂N(s).

~T (s) = ∂froad(s)
∂s

~̂T (s) = ~T (s)
‖~T (s)‖2

~N(s) = ∂2froad(s)
∂s2

~̂N(s) = ~N(s)
‖ ~N(s)‖2

(2-19)

The heading φR(s) of the road is defined as the angle between the global X axis and the
vector ~T (s), we obtain:

φR(s) = arccos

〈 ~̂T (s),

1
0

〉 (2-20)

And the road-curvature κR(s) is defined by:

κR(s) = ‖ ~N(s)‖2 (2-21)

In Figure 2-7 it is illustrated how two Frenét frames are constructed, one in the front axle
of the tractor and one in the rear axle of the second semi-trailer. We name the basis vectors
of the two Frenét frames ~̂T1f = ~̂T (s1f ), ~̂N1f = ~̂N(s1f ), ~̂T4 = ~̂T (s4), ~̂N4 = ~̂N(s4). Where
s1f denotes the position of the front axle of the tractor on the road geometry and s4 the
equivalent position of the rear axle of the second semi-trailer.X1f

Y1f

 = froad(s1f ) + ~̂N1fd1f ,

X4

Y4

 = froad(s4) + ~̂N4d4 (2-22)

Where d1f and d4 denote the orthogonal distance of the front axle of the tractor and the rear
axle of the second semi-trailer normal to the road geometry respectively.

The curvature and the heading at s1f and s4 are written in short as:

φR,1f = φR(s1f ), φR,4 = φR(s4)
κR,1f = κR(s1f ), κR,4 = κR(s4)

(2-23)
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Figure 2-7: A visualization of the Frenét frames constructed at the front axle of the tractor and
the rear axle of the second semi-trailer.

In order to model the position of the truck with respect to the road geometry. We construct
the differential equations for ṡ and ḋ in all points we desire to track.

ṡ1f =
L
1fvx,1f cos(φ1 − φR,1f )− L

1fvy,1f sin(φ1 − φR,1f )
1− d1fκR,1f

ḋ1f = L
1fvx,1f sin(φ1 − φR,1f ) + L

1fvy,1f cos(φ1 − φR,1f )

ṡ4 =
L
4vx,4 cos(φ1 − φR,4)− L

4vy,4 sin(φ1 − φR,4)
1− d4κR,4

ḋ4 = L
4vx,4 sin(φ4 − φR,4) + L

4vy,4 cos(φ4 − φR,4)

(2-24)

To model the road information, one integrates this set of first order differential equations.
The position of the other axles with respect to the road geometry can be obtained using the
same procedure. Naturally, to apply this method to the single-track model the knowledge of
L
1fv1f and L

4~v4 is required. Expressions of these states as a function of the single-track model
states have been described already. We append the newly obtained road position states to
the single-track A-double combination model.

ξlhvc,road =
(
vy,1 θ̇0 θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 vx,1 ax,1 s1f d1f s4 d4

)T
(2-25a)

ulhvc,road =
(
δ ax,1,des

)T
(2-25b)

2-5 Spatial reformulation of the vehicle dynamics along the road
geometry

In the eventual trajectory generator, a finite horizon OCP is solved in receding horizon fashion.
Each time step a predicted optimal trajectory is generated. To predict the position of the
truck its units with respect to the road in time, a parameterization of the road curvature
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2-5 Spatial reformulation of the vehicle dynamics along the road geometry 19

and heading are required. For example, an analytic expression of the function froad or a
polynomial approximation.

An alternative is to reformulate the vehicle dynamics from the original temporal domain
to a spatial domain[14]. More precisely, instead of using time as independent variable, one
can use the progress of the truck along the road geometry. The greatest advantage of this
technique is that the road information is then exactly available over the prediction horizon.
It would seem natural to express this spatial model in the position of the front axle of the
tractor s1f . As discussed earlier, this is a very well-defined point that is independent from the
truck configuration. But since the spatial reformulation is targeted to the OCP-formulation
introduced later in this work, the position of the COM of the tractor (s1) is preferred. The
velocity vector in that position is available without the need for any kinematics.

We write the temporal prediction model for the vehicle dynamics and the road position.

d

dt
ξpred = fpred(ξpred, upred) (2-26a)

ξpred =
(
vy,1 θ̇0 θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 vx,1 ax,1 d1 d4

)T
(2-26b)

upred =
(
δ ax,1,des

)T
(2-26c)

We rewrite the system dynamics in Eq. (2-26a) using the velocity of the COM along the road.

dξpred
ds1

= dξpred
dt

dt

ds1
(2-27)

We obtain,
dξpred
ds1

= fpred(ξpred, upred)
vx,1 cos(φ1 − φR,1)− vy,1 sin(φ1 − φR,1) (1− d1κR,1) (2-28)

Since s1 is the independent variable, this state is removed from the state vector. We assume
that for a low curvature road: (1−d1κR,1) = 1. Note that when the truck remains in its lane,
the term d1 is bounded by half the lane width. The term (1− d1fκR,1) can be removed from
the spatial formulation of the prediction model. We write,

dξpred
ds1

≈ fpred(ξpred, upred)
vx,1 cos(φ1 − φR,1)− vy,1 sin(φ1 − φR,1) (2-29)

The first order differential equation of the newly introduced state d4 requires the knowledge of
the velocity vector of the rear axle of the second semi-trailer. Using results from Section 2-3-1
and Section 2-3-2 we obtain a compact expression for d/dtd4 in the states of the single-track
A-double combination model.

d

dt
d4 = cos (φR4 − φ4)

(
− (a2 + a3 + c1 + c2 + c3 + a4 + b4) θ̇0

− (a2 + a3 + c2 + c3 + a4 + b4) θ̇1 − (a3 + c3 + a4 + b4) θ̇2 − θ1vx,1

− θ2(t)vx,1 − θ3(t)vx,1 + vy,1 − (a4 + b4)θ̇3
)
− vx,1 sin (φR,4 − φ4)

(2-30)
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20 Modeling of the vehicle, the road and surrounding traffic

2-6 Modeling of surrounding highway users

Modeling of the surrounding traffic is an entire field of study on its own. In the literature
survey for this thesis work [15] several types of models are introduced. Parametric models
for human car following behavior, lane change maneuvering and decision-making are all ad-
dressed. It is urged that in the remainder of this thesis none of these models are used. It is
assumed that for all relevant vehicles a complete acceleration-profile is available. Hence, no
vehicle interaction is modeled.

Each obstacle ∗ has three states:

• The position on the road geometry: so,∗(t).

• The velocity tangent to the road geometry: ṡo,∗.

• The lane in which the vehicle resides: lo,∗.

And because the vehicles do not change lane, this is entirely defined by a predetermined
acceleration profile tangent to the road geometry s̈o,∗(t) as a function of time. The differential
equations for the resulting point-mass model of the surrounding vehicle ∗ is:

d

dt

so,∗
ṡo,∗

 =

0 1
0 0

so,∗
ṡo,∗

+

0
1

 s̈o,∗ (2-31)

2-7 Description of the high-fidelity vehicle model

The trajectory generator that is developed in this thesis work is tested on a high fidelity model
of the A-double combination internally developed at Volvo GTT. The high fidelity model is
occasionally referred to as the VTM plant. Since it is part of a library of high-fidelity truck
models in the Volvo Truck Model. This state-of-art vehicle model is confidential, developed
and validated by Volvo GTT. Details of the abilities are highlighted.

The high-fidelity plant includes detailed sub-models of the vehicle chassis (including frame
compliance), cab suspension, steering system, power train, and brakes. The Magic tire formula
[12] with combined slip, dynamic relaxation, tire normal load dependency, rolling resistance
and suspension geometry is used as the tire model for all 22 wheels in the vehicle combination.
The trajectory generation controller interfaces in Matlab/Simulink to the high fidelity A-
double combination model with a lower-level controller that coordinates the propulsion and
steering systems. In all axles, and other subsystems, of A-double combination a virtual sensor
can be read that provides full information on accelerations, yaw rates, etc.

The configuration of the high-fidelity plant is identical to the parameters used in the single-
track model derived in Section 2-2.
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Chapter 3

Formulation of the trajectory
generation problem as an optimal

control problem

The general task of driving a vehicle on a highway and maneuver between other traffic comes
natural to humans. After a certain period of learning to drive, the trajectories they take
result from unconscious handling of the accelerator pedal, brake and steering wheel. Some
persons drive more aggressive, while others tend to be more gentle controlling the vehicle.
On the other hand, we all know that cornering at too high speed or steering too quickly may
result in an uncontrollable vehicle.

An A-double combination is not exactly like the usual passenger car. Other aspects need to
be taken into consideration that one would not need to do in a car. One significant aspect
is to prevent the truck to roll over due to excessive acceleration levels. Another aspects is
that the size and weight of the truck limits its agility. In this chapter, an attempt is made
to mathematically formulate comfortable driving behavior and to incorporate the limits on
agility and safety effectively.

The fellow road users are important ingredients to an optimal trajectory. The social task of
driving is hard to formulate mathematically and rule-based methods are usually applied [16] to
model it. Several aspects can nevertheless be captured in an optimal control problem (OCP).
Most notably keeping distance from the vehicle while following the lane, or adapting the
velocity to the vehicles in the adjacent lane in preparation to a lane change. In this chapter,
alternative methods are introduced and discussed to incorporate obstacles in the OCP.

One of the main goals of the trajectory generator is to ensure real-time (RT) performance. To
achieve this, an appropriate formulation of the OCP is important. The optimization should
ideally be solved in the lowest number of dimensions one can afford. As discussed later in
Chapter 4, the optimization strategy is already focused at achieving that. Nevertheless, we
try to keep the number of so-called decision variables as low as possible. Apart from the

Master of Science Thesis N.J. van Duijkeren



22 Formulation of the trajectory generation problem as an optimal control problem

discretization practicalities, the main influencing factor is the number of chosen control input
signals, slack variables for the optimization and the horizon of the OCP.

The real-time solution strategy that is introduced in Chapter 4 requires the OCP to be
formulated with a least-squares objective. Although one could argue that other norms in the
objective can be desired, the 2-norm formulation is a given.

Let us start with the discussion on what exactly safe and comfortable driving means.

3-1 Comfortable driving, safety considerations and actuator con-
straints

Desired driving behavior is a heuristic that we would like to achieve by minimizing a set
of measures. A great deal in generating smooth driving behavior is achieved by tuning the
controller. Crucial in finding a generally well-tuned controller is the choice of cost function
terms. This section is focused to relate relevant vehicle states for the perception of comfortable
driving, the safety considerations and the physical constraints. Exact measures and the
bounds used in the OCP are introduced later in this chapter.

Acceleration Acceleration is in particular related to the safety considerations. Especially
the effect of RWA, lateral acceleration levels in all units need to be limited for safe driving.
The payload of the truck causes a high center of mass (COM), which introduces a risk of
rollover. Rollover thresholds highly depend on the payload, they can be as low as 3.9m/s2.
The longitudinal acceleration of the truck is limited by the propulsion system and the tire
limits. A fully loaded A-double combination has longitudinal acceleration capabilities that
are in the order of 0.25[m/s2], whereas braking faster than 3[m/s2] can be considered as an
evasive maneuver.

Jerk Jerk is defined as the first time derivative of acceleration. Jerk is highly influential
on comfortable driving. Maneuvers exciting high jerk levels are perceived as unpleasant to
passengers of a vehicle. High jerk is in general caused by sudden braking and aggressive
steering motion. The truck driver is located in a cabin, suspended in the tractor about 1-2
meters above the front axle. In very smooth driving, jerk levels are typically far below 1[m/s3].

Steering The steering input is very directly perceived by the driver. Apart from the effect
of the steering angle and the steering angle rate on the vehicle dynamics, nervous behavior
of both measures are undesired. Additionally, the steering geometry limits the maximum
steering wheel angle and the actuator for the angle has limitations to the maximum rate it
can achieve. Steering compliance limits the angle to approximately 1[rad], in highway driving
these values are typically much lower.

Distance offset from lane center The distance from the lane center may be the most
important factor in the optimization. Staying near the center of the lane is a great part of
the maneuvering capability of the controller. A lane change is defined as a gradual change of
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3-2 Definition of an optimal trajectory 23

lane-center, which shifts to the adjacent lane of preference. At the same time, the distance
from the lane center, has a great influence on the safe operation of the closed-loop system.
Consider the highway driving scenario of the long heavy vehicle combination (LHVC), keeping
all units within the lane in which the truck currently resides is important. If this condition
is not met, the truck may collide with vehicles in other lanes or wheels may abandon the
road. The width of the truck is approximately 2.5[m], whereas the width of a highway lane
typically lies between 2.7− 3.7[m].

Longitudinal distance from surrounding traffic The overall problem of collision avoidance
with surrounding traffic is to avoid both lateral and longitudinal collisions. However, the
structure of highway driving allows us to decompose this overall problem to staying within
the lane and not having any longitudinal collisions. Safe driving of the truck in relation
to obstacle avoidance is mainly directed to keeping an appropriate distance with preceding
vehicles. In case of lane changing, this problem is extended to also consider the vehicles in
the adjacent lane. The significance of each surrounding object in relation to the trajectory
generation problem changes when a lane change is considered or not. For obvious reasons,
distance keeping from other vehicles also has an effect on driver comfort.

With these main measures and limitations in mind, we can formulate a definition for an
optimal trajectory. As mentioned before, tuning the controller to mimic the driving behavior
is an important step. Let us attempt to formulate the optimal trajectory, in absence of
surrounding traffic.

3-2 Definition of an optimal trajectory

Before we write the final OCP, we first describe an optimal trajectory mathematically with-
out simplifications. It is assumed that on any time instant of the prediction we have perfect
knowledge on the vehicle state. Naturally, in practice this requires a vehicle prediction model
as introduced in Chapter 2. In this section, the elements of the optimal trajectory are dis-
cussed and simplifications are proposed. So that we can, later, arrive at the OCP that will
have the desired objective formulation and the minimum set of constraints that are required.

First, consider the optimal trajectory. Let us disregard the effect of the surrounding traffic and
focus on the problem of maneuvering the truck without obstacles. The inclusion of obstacles
is introduced and discussed in a later part of the thesis. We say in words:

The optimal trajectory for the A-double combination in highway maneuvering is defined by the
trajectory that minimizes the finite spatial horizon integral of the weighted two-norm of the
lateral and longitudinal jerk, the distance offset of the tractor from the lane-center, the offset
from the velocity reference profile. While at the same time, the lateral acceleration in all units
stay in safe bounds, all units stay within the lane boundaries and the actuator constraints are
complied with.
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We can translate the objective for the optimal trajectory into a mathematical problem.

min
sf∫

s=0

(
Kjx,1j

2
x,1 +Kjy,1j

2
y,1 +Kd1(d1 − d1,ref)2 +Kvx,1(vx,1 − vx,1,ref )2

)
dσ

s.t. ay ≤ ay,i(s) ≤ ay ∀i ∈ {1f, 2, 3, 4}
d ≤ di(s) ≤ d ∀i ∈ {1f, 2, 3, 4}

ax,1,des ≤ ax,1,des(s) ≤ ax,1,des
vx,1 ≤ vx,1(s) ≤ vx,1
δ ≤ δ(s) ≤ δ

dδ/dt ≤ dδ/dt(s) ≤ dδ/dt

(3-1)

Tthe weighting factors K∗ scale the penalty on the separate contributing terms in the cost
function. Notice that all cross terms (e.g. jx,1jy,1) have been disregarded. Cross-terms
can be selectively used to fine-tune the controller, simultaneously it increases the difficulty
tuning the controller. In order to have all elements in the cost-function to intuitively relate
to physical phenomena, the cross-terms are removed. No end-state cost term is present in
the formulation either. In case of the trajectory generation, there is no obvious motivation
to penalize the end state any different from the intermediate states. We have not necessarily
completed a maneuver by the end of prediction. End-state cost terms are often used in model
predictive control (MPC) applications to ensure closed-loop stability [17]. Since the A-double
combination is stable in normal operation this is not a motivation to include an end-state
cost term.

Notice that integral in the cost function is not defined over time. Instead, the integration
takes place over the distance traveled by the COM of the tractor along the road geometry,
between [0, sf ]. In this formulation there is no need to parameterize the heading of the road,
required to model the position of the truck with respect to the lane center. The road profile
in the COM is defined naturally over the prediction [0, sf ]. This trick does however require
the vehicle dynamics to evolve over the traveled distance along the road too. This requires
a so-called spatial reformulation, which has already been introduced in Section 2-5. It has a
few notable effects to be discussed:

• The time-horizon of the prediction is dependent on the velocity of the truck. At high
speeds, the prediction in time is much shorter compared to a scenario where the truck
drives slow. It takes a longer time, to travel the distance sf when driving slow. Con-
sidering the highway driving scenario, the velocity of the truck may vary between 8[m/s]
and 23[m/s]. For a prediction horizon of 100[m] this results in horizon of about 4.3[s] to
12.5[s] respectively. Of course, it would be possible to shorten the prediction horizon
for lower velocities. This switching logic is not implemented in this thesis work.

• To make a small leap forward in the thesis work. A discrete integration method in the
solution technique will have a spatial step size. Thus, it depends on the velocity of the
truck what the temporal step size will be. A wide accepted velocity range introduces
difficulty optimizing the sampling rate.
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• Whereas a spatial formulation facilitates an straightforward parameterization of the
road. It naturally has the opposite effect on explicit time-varying entities. An example
of such entity, is the trajectory prediction of surrounding traffic. Interestingly, as we
can read in [8] a spatial formulation can have advantages in case of static obstacles.

The cost function of the optimal trajectory is kept simple and concise. We desire to minimize
jerk, track the lane center and velocity reference. A set of constraints are introduced to assure
safe driving and to impose actuator constraints. Let us move forward and discuss possible
simplification steps.

3-2-1 Approximation of the lateral jerk

The lateral jerk observed by the COM of the tractor is analytically defined by:

L
1jy,1 = 2θ̇0

d

dt
L
1vx,1 + θ̈0

L
1vx,1 − θ̇2

0
L
1vy,1 + d2

dt2
L
1vy,1 (3-2)

One problem arises in this description of the lateral jerk. It requires the knowledge of d2

dt2
L
1vy,1,

which is not directly available. In order to minimize for the jerk in the optimal trajectory,
it is not necessary to have the most accurate measure for the jerk itself. Additionally, the
trajectory generator is designed for highway maneuvering. Because the longitudinal velocity
is generally high, we can safely assume that the greatest contributing term to the lateral jerk
is θ̈0 L

1vx,1. The approximation for the lateral jerk that is proposed neglects d2

dt2
L
1vy,1. Like in

the expressions for auxiliary acceleration vectors, θ̈0 is not a state which directly measured,
we do however have an expression for this measure available as a function of our state vector
in the single-track vehicle model.

3-2-2 Lateral acceleration bounds

The lateral acceleration of all units ought to stay in bounds at each point of the truck.
However, the lateral acceleration highly depends on where it is measured. It must be assured
that the lateral acceleration in the COM of each unit stays in bounds. The COM is highly
dependent on the payload and thus not practical location to measure the acceleration. It is
possible to formulate unsafe lateral acceleration levels at the wheels. Admittedly, conservative
bounds are then required.

In practice, the A-double combination has active safety systems that mitigate the rollover
possibility. By various techniques, such as applying brakes on selective axles, it is attempted to
make the truck slide in prevention of rolling over. Any automatic trajectory generator should
avoid to plan a path near such regions. This is achieved in the optimal trajectory formulation
by introducing hard constraint on the lateral acceleration. Considering that active rollover
mitigation systems kick in at about 0.4G, the bounds are suggested conservatively in the
region of 2.5− 3[m/s2].

The effect of rearward amplification (RWA) motivates prioritizing the limit on the lateral
acceleration in the rearmost unit, since it is likely that the maximum accelerations will occur
there. However, the chained configuration of the truck also imposes a delay on the motion.
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Figure 3-1: Illustration of the lateral distance bounds for the axles, corrected for the width of
the truck. The center line of the road is equal to zero lateral distance offset.

The prediction horizon should be long enough to account for the delay in the acceleration
level at the rear of the truck. This motivates priority to bound on the lateral acceleration on
the first unit too. It is proposed to only check the lateral acceleration bounds on the tractor
and in the rearmost unit.

3-2-3 Lateral distance off-set bounds

The lateral distance of each unit is defined as the perpendicular distance of the axles from the
center of the lane. In Figure 3-1 we see the geometric meaning of this measure on a curved
road. The lateral distance of the truck is measured in the center of the axle. The bounds d
and d are determined from the width of the lane, corrected by the width of the truck itself.

Evidently, all wheels of the A-double combination need to stay within the lane boundaries to
avoid dangerous scenarios. Hence, in general it is appropriate, like formulated in Eq. (3-1),
to apply constraints on all axles. However, the scenario for which the controller is developed
allows to reduce the number of constraints. If we find ourself in the situation that the rear axle
of the second semi-trailer and the front axle of the tractor are both inside the lane boundaries,
it is very probable that the other axles are as well. Circumstances in which this may not bee
the case are, when the road curvature is very high, the truck is in some unnatural orientation
to driving conditions or the road width is highly variable. A design choice is made to only
consider the lateral distance off-set in the COM of the tractor d1 and in the rear axle of the
second semi-trailer d4. The assumption is implicitly made that when the trajectories of both
these axles are within the road boundaries, the complete truck stays in the lane.

3-2-4 Longitudinal velocity bounds

In the most naive sense, the velocity bounds vx,1 and vx,1 would reflect the actuator con-
straints and the legal speed limitations. Setting the lower velocity bound to a small value
does not come without implications though. As discussed in the beginning of the section,
a low velocity causes a long temporal prediction horizon and a large (temporal equivalent)
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integration step.

Meanwhile, the intended validity of the vehicle prediction model is between 8−23[m/s]. Based
solely on this given, the velocity bounds are suggested to span the entire vehicle model validity
region.

3-2-5 Steering actuation bounds

The steering actuation bounds apply to the road wheel angle δ and the road wheel angular
rate dδ/dt. Notice that the constraints thus apply to the angle of the wheels with the chassis.
The steering wheel angle in the cabin of the tractor is connected via a gearing. The maximum
road wheel angle is limited by steering geometry, which is designed to cope with all scenarios
including parking maneuvers. There is no use to allow the truck to make the maximum
steering angles imposed by the steering compliance. In high speed scenarios the maximum
steering angles would cause rollover, or understeer in case of a low friction road surface. The
road wheel angle is limited to 0.1[rad]. The angular rate of the steering wheel angle, that is
limited by the steering wheel actuator is limited to 0.05[rad/s].

3-3 Alternative obstacle avoidance formulations

The optimal trajectory that is formulated up to this point, does not incorporate surrounding
traffic. Hence, in the scenario that the truck is ought to keep lane, it is possible that we
have a frontal collision with our preceding fellow road user. In case a lane change scenario
is considered, vehicles in the adjacent lane are not considered, and a lateral collision may
occur. The goal of this section is to formulate a parameterization of a predicted collision-free
corridor and introducing a distance-keeping incentive.

The lateral collision avoidance problem is tackled by a decision algorithm that tells in ad-
vance whether a lane change is possible or not. Based on this decision, lateral position bounds
on the truck are relaxed accordingly to allow the truck to occupy two lanes. This decision
algorithm is based on the availability of the desired lane over the prediction horizon. The lon-
gitudinal collision avoidance problem is less discrete in nature and is prone to more discussion.

First a naming convention for the obstacles is introduced. This naming convention is used in
the remainder of the thesis.

3-3-1 Naming convention of the obstacles

The highway gives space to many road users, only few of them are relevant to our collision
avoidance problem. We define the surrounding road user that are of interest to the trajectory
generation problem to satisfy very specific criteria and name them accordingly.

• The first road user in the same lane of the truck or the departure lane of a lane change
that drives behind the front axle of the tractor is called obstacle 1.
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• The first road user in the same lane of the truck or the departure lane of a lane change
that drives ahead of the front axle of the tractor is called obstacle 2.

• The first road user in the goal lane of the lane change that drives behind the front axle
of the tractor is called obstacle 3.

• The first road user in the goal lane of the lane change that drives ahead of the front
axle of the tractor is called obstacle 4.

Notice that in case no lane change is desired or that a lane change is not possible, the last
two criteria are not relevant.

Although obstacle 1 is named, it is argued only 2, 3 and 4 influence the optimal trajectory.
We may expect that obstacle 1 adapts is speed to the A-double combination at all time. The
same does not hold for obstacle 3 in case the lane change is in progress.

The optimal trajectory is defined at each time-step in a receding horizon fashion. In order to
predict an optimal trajectory for the A-double combination, we require a prediction model
for the surrounding traffic. The next subsection will first introduce the modeling technique.

3-3-2 Prediction model for the distance to surrounding traffic

The trajectories of the surrounding traffic depend on the character of the drivers, their current
state of mind and their intentions. Predicting their behavior is everything but a trivial task.
In fact, the optimal trajectory for the A-double combination itself influences the behavior
of other vehicles. This thesis does not give an answer how to predict behavior of traffic
participants. However, the thesis does provide a possible interface for an externally predicted
trajectory profile in the spatial problem formulation for an optimal trajectory.

Based on the distance with the surrounding traffic that is measured and the predicted velocity
profile along the road geometry we have the following differential equations to describe the
distance ∆so,i with obstacle i.

d∆so,i
ds1

=

 1− dso,i
dt

dt
ds1
, if obstacle i is trailing

dso,i
dt

dt
ds1
− 1, if obstacle i is leading

(3-3)

Notice that dso,i
dt (t) is included as a time varying path. This time-varying path needs to be

parameterized in a suitable way. We can do this by defining, e.g., a polynomial fit of the
predicted trajectory. Each time step when the OCP is solved, coefficients of the polynomial
can provided. Where the time parameter in this basis function is obtained by integration:

t(s1) =
∫ s1

0

dt

dσ
dσ =

∫ s1

0

1
vx,1 cos(φ1 − φR,1)− vy,1 sin(φ1 − φR,1)dσ (3-4)

We obtain a possible expression for the velocity of the obstacle at s1

dso,i
dt

(s1) =
nα∑
k=0

αkt(s1)k (3-5)
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where nα is the number of coefficients in the polynomial.
During this thesis work no external prediction engine for the motion of surrounding traffic was
developed. As described in Section 2-6 from the previous chapter, the obstacles are modeled
to move according to a acceleration profile provided in advance of the simulation. Thus,
perfect knowledge of the motion of the surrounding traffic in time is available. It is possible
to include this knowledge in the control algorithm.
Choice of priorities in the thesis work have led to the implementation of only the trivial
polynomial, where nα = 0 and where α0 is simply assumed to be the measured velocity of
the obstacle.

3-3-3 Collision avoidance keeping lane

The simplest case of obstacle avoidance is when the truck combination is keeping lane. As
discussed before, the trailing vehicle is not considered in the OCP, neither are vehicles in
the adjacent lanes because no lane change is in progress. The collision avoidance is reduced
complying with the constraint to stay in the lane and to stay behind the leading vehicle,
obstacle 2. In Figure 3-2 we can see an illustration of this scenario.

1 2

∆so,2

3 4

Figure 3-2: Indication of the prohibited regions (indicated in red) in a lane keeping scenario or
when no lane change is possible. A hyperplane, at distance ∆so,2 moves with the obstacle 2 over
the prediction horizon. Note that the left road boundary constraint is not visualized.

Distance keeping with a preceding vehicle is achieved based on the temporal gap with the
leading car. The temporal gap is defined as,

∆τo,i = ∆so,2
ṡ1

(3-6)

Where ṡ1 is the velocity of the COM along the lane center, that we approximate for simplicity
with vx,1. The distance keeping incentive in the cost function of the OCP should incorporate
some logic. Whenever the leading vehicle is far from the temporal gap we desire, it should not
contribute to the cost function. This can be achieved using slack variables, as implemented
in [18]. Alternatively, since the OCP allows for non-linear cost terms, a sigmoid function can
be used to approximate the switching behavior. The latter technique is used in this thesis
work. In Section 3-4 one finds the exact expressions for these sigmoid functions.

3-3-4 Collision avoidance in a lane change

Avoiding collisions with other vehicles becomes more challenging when a lane change is made.
In this thesis work, different formulations for the so-called predicted collision-free corridor
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have been considered. Two of them are introduced and described in detail in this thesis. It
must be noted, that in the results shown in this work, only one parameterization is evaluated.
Another parameterization was, at the time of writing, a work in progress.

Rectangular predicted collision-free corridor

The first proposed parameterization of the predicted collision-free corridor is rectangular. Like
illustrated in Figure 3-3, we can introduce prohibited half-spaces for each relevant obstacle.
Hence, perpendicular to the road geometry, hyperplanes are constructed at obstacles 2, 3, and
4. The distance with each obstacle is bounded to avoid collision. An incentive is introduced
in the cost function to divert the optimal trajectory from the obstacles.

1 2

43

∆so,2

∆so,3 ∆so,4

Figure 3-3: In the rectangular formulation of the predicted collision-free corridor the feasible
area is bounded by obstacle 2, 3 and 4, which each introduce a prohibited half space. The lateral
distance constraint is temporarily relaxed to allow the truck to reside in two lanes.

The main motivation for the rectangular predicted collision-free corridor is its simplicity. And
frankly, it works quite well as long as vehicles in the adjacent lane drive at a similar speed as
the truck. Or when the traffic in the adjacent lane drives slower than the truck. The problem
arises when the vehicles in the adjacent lane drive faster. The asymmetry in the possibility
to slow down, but not to be able to speed up lies in the choice for the obstacles of interest.
Consider the following situation, illustrated in Figure 3-3. The truck drives in the left lane
and we desire to change lane to the right. In the right lane, the vehicles drive faster. We see
that, as long as a lane change is in progress we cannot plan a trajectory that passes obstacle
2. The inability to pass obstacle 2 is not necessarily a problem itself. However, unless we
model that obstacle 3 decelerates. A lane change might be infeasible, because the space in
the predicted collision free corridor contracts. It is squashed between obstacles 2 and 3.
Two potential solutions to this problem in order to be able to use this formulation are: One,
to model deceleration of obstacle 3. Or secondly, not allowing a lane change to be initiated if
obstacle 3 is in the near vicinity. Both heavily rely on heuristics, which is not appreciated.
Another solution is to choose a different predicted collision free corridor, let us introduce such
an alternative.

Sigmoidal predicted collision-free corridor

An alternative parameterization of the predicted collision-free corridor is illustrated in Fig-
ure 3-4. In this case, only two separating hyperplanes are being considered. In contrast the
rectangular version, that required three.
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1 2

3 4

∆so,2

∆so,3 ∆so,4

Figure 3-4: Half-spaces shaped by sigmoid support functions.

Like with the distance keeping incentive, logic can be incorporated by using sigmoid functions.
Simply put, we shape the predicted collision-free corridor along the lateral position on the
lanes.

The distance keeping incentive is very similar to before. However, we only have two cost
terms. One for the distance with obstacle 3 and one for the hyperplane ahead that is a
function of the position of obstacles 2 and 4.

Although implementation of this method is a limited effort. It would require a numerical
analysis on how the solution algorithm, described in the next chapter, behaves with this
formulation. The applicability of the rectangular predicted collision-free corridor under con-
servative decision making has motivated its preference in presence of other tasks that had
priority.

In the next section, the complete OCP is introduced. This includes the implementation of
the rectangular predicted collision free corridor for obstacle avoidance.

3-4 Formulation of the resulting optimal control problem

All prerequisites for the trajectory generation problem are introduced, we can converge to the
OCP formulation. The OCP is based on the optimal trajectory formulation from Section 3-
2, rewritten to an initial value problem. The initial state of the state vector ξocp is known
and the single-track prediction model is incorporated to evaluate the state vector over the
prediction horizon. In this section, details of the OCP are described. This involves explicit
expressions for all elements of the OCP, including the vehicle model.
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min
sf∫

s1=0

(
Kjx,1j

2
x,1 +Kjy,1(2θ̇0

d

dt
vx,1 + θ̈0vx,1 − θ̇2

0vy,1)2 +Kd1(d1 − d1,ref(σ))2+

+Kvx,1(vx,1 − vx,1,ref (σ))2 +Kδ̇

dδ

dt

2
+K∆so,2 (fdk(∆so,2, vx,1))2

+K∆so,3 (fdk(∆so,3, vx,1))2 +K∆so,4 (fdk(∆so,4, vx,1))2
)
dσ

s.t. dξocp/ds1 = g(ξocp, u, s1)
ξocp(0) = ξ0

ay,1 ≤ ay,1(s1) ≤ ay,1
ay,4 ≤ ay,4(s1) ≤ ay,4
d ≤ d1(s1) ≤ d
d ≤ d4(s1) ≤ d

j
x,1,des ≤ jx,1,des(s1) ≤ jx,1,des
ax,1,des ≤ ax,1,des(s1) ≤ ax,1,des

vx,1 ≤ vx,1(s1) ≤ vx,1
δ ≤ δ(s1) ≤ δ

dδ/dt ≤ dδ/dt(s1) ≤ dδ/dt

∆s0,2 ≤ ∆s0,2

∆s0,3 ≤ ∆s0,3

∆s0,4 ≤ ∆s0,4

(3-7)

The state vector of the prediction model ξocp and the control input u are defined by:

ξocp =

(
vy,1 θ0 θ̇0 θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 vx,1

ax,1 ax,1,des d1 d4 δ ∆so,2 ∆so,3 ∆so,4
)T (3-8a)

u =
(
δ̇ jx,1,des

)T
(3-8b)

3-4-1 Prediction horizon

The prediction horizon determines how far we look into the future to determine the control
action. A longer horizon enables the ability to start adopting for future events early. Whereas
it introduces a higher computational load of the overall optimization algorithm.
The prediction horizon of the receding horizon OCP is set to 100[m]. This value is chosen as
a trade-off to achieve real-time performance, while maximizing the horizon length. Two main
motivations advocate for a long horizon:

• The motion in the rear trailer is delayed significantly with respect to the control input.
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• The optimal trajectory must account for corners far ahead, to be able to find a com-
fortable deceleration profile (if necessary).

The delay of the motion in the second semi-trailer is in the order of the length of the truck.
In order to plan the trajectory of this unit, the horizon should be a multiple of the truck its
length. A typical smooth lane change at 20m/s is about 170 − 200[m] long. The prediction
horizon needs to cover a significant part of the lane change in order to effectively plan it.

3-4-2 Cost function

The longitudinal jerk jx,1,des is chosen as a decision variable directly. The control input is
integrated explicitly in the prediction model to obtain a desired acceleration. Longitudinal
jerk minimization is incorporated as such, rather than using a finite differences approach to
approximate the jerk in the cost function. Using the same argumentation, the steering angle
rate is chosen as decision variable.

The lateral jerk is approximated using the expression from Section 3-2-1. To recapitulate, it
is not the goal to approximate the jerk as accurate as possible. The main goal is to capture
the trend of the jerk well.

Notice, that one of the new terms in the cost function is Kδ̇
dδ
dt

2. This term is introduced to
avoid cheap control and is necessary for a well-posed problem definition.

Other new terms in the cost function are the incentive to keep distance with surrounding
obstacles ∗ ∈ {2, 3, 4}. The function fdk is defined as follows:

fdk(∆so,∗, vx,1) = τo,∗ − ∆so,∗/vx,1

τo,∗

1
1 + e−co,∗(τo,∗−∆so,∗/vx,1) (3-9)

with the tuning parameters τo,∗ and co,∗. Tuning parameter τo,∗ denotes the time gap at
which the sigmoid function switches. And co,∗ can be considered as a scaling for the steepness
of the sigmoid function.

3-4-3 Inequality constraints

Most of the inequality constraints are box constraints on the predicted states and input.
Except for the lateral acceleration constraints. The following two expressions approximate
the lateral acceleration in the COM of the tractor and in the rear axle of the second semi-
trailer respectively. The kinematic relations have been derived in Section 2-3.

ay,1 = θ̇0vx,1 + dvy,1
dt

(3-10a)

ay,4 = − (a2 + a3 + c1 + c2 + c3 + a4 + b4) θ̈0 − (a2 + a3 + c2 + c3 + a4 + b4) θ̈1

− (a3 + c3 + a4 + b4) θ̈2 + θ̇0vx,1 + dvy,1
dt − (a4 + b4)θ̈3

(3-10b)

where dvy,1/dt is available from the vehicle prediction model as a function of the vehicle states.
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3-4-4 Prediction model equality constraints

The OCP uses a non-parametric version of the vehicle model, using the vehicle configuration
from Table 2-2. The temporal dynamics of the vehicle prediction model are given in Eq. (3-
11). This spatial representation is obtained by dividing each first order derivative by ds1/dt =
vx,1 cos(φ1 − φR,1)− vy,1 sin(φ1 − φR,1).

dvy,1
dt

= 45.9558 δ + 1.9775 θ1 + 0.8494 θ2 − 0.0022 θ3 + 21.9217 θ̇1
vx,1

+ 4.4014 θ̇2
vx,1

+

− 0.0170 θ̇3
vx,1
− 70.6191vy,1

vx,1
− θ̇0

v2
x,1 − 9.7314

vx,1

dθ̇0
dt

= 25.0956 δ − 1.8974 θ1 − 0.8150 θ2 + 0.0021 θ3 − 21.0338 θ̇1
vx,1
− 4.2231 θ̇2

vx,1
+

+ 0.0164 θ̇3
vx,1

+ 27.5489vy,1
vx,1
− 174.2882 θ̇0

vx,1

dθ̇1
dt

= 2.4818 θ2 − 3.9082 θ1 − 25.4638 δ − 0.0065 θ3 − 10.5324 θ̇1
vx,1

+ 12.8600 θ̇2
vx,1

+

− 0.0498 θ̇3
vx,1
− 36.4048vy,1

vx,1
+ 165.4516 θ̇0

vx,1

dθ̇2
dt

= 0.5539 δ + 2.2622 θ1 − 22.9024 θ2 − 0.9311 θ3 − 170.0741 θ̇1
vx,1
− 125.6565 θ̇2

vx,1
+

− 7.1692 θ̇3
vx,1

+ 19.7904vy,1
vx,1
− 216.8786 θ̇0

vx,1

dθ̇3
dt

= 5.0960 θ1 − 0.1851 δ + 22.7324 θ2 − 7.0991 θ3 + 168.7766 θ̇1
vx,1

+ 68.1597 θ̇2
vx,1

+

− 54.6629 θ̇3
vx,1
− 12.4638vy,1

vx,1
+ 195.8250 θ̇0

vx,1
dd1
dt

= vx,1 sin(φ1 − φR,1) + vy,1 cos(φ1 − φR,1)
dd4
dt

= cos (φR4 − φ4)
(
− (a2 + a3 + c1 + c2 + c3 + a4 + b4) θ̇0+

− (a2 + a3 + c2 + c3 + a4 + b4) θ̇1 − (a3 + c3 + a4 + b4) θ̇2 − θ1vx,1+

− θ2(t)vx,1 − θ3(t)vx,1 + vy,1 − (a4 + b4)θ̇3
)
− vx,1 sin (φR,4 − φ4)

dθ0
dt

= θ̇0,
dθ1
dt

= θ̇1,
dθ2
dt

= θ̇2,
dθ3
dt

= θ̇3,

dδ

dt
= δ̇,

dvx,1
dt

= ax,1,
dax,1
dt

= ax,1,des − ax,1
τcc

,
dax,1,des
dt

= jx,1,des,

∆so,2
dt

= vo,2 −
ds1
dt
,

∆so,3
dt

= −vo,3 + ds1
dt
,

∆so,4
dt

= vo,4 −
ds1
dt

(3-11)
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3-5 Summary

In this chapter, the trajectory generation problem to drive a LHVC on a highway is formulated
as an OCP. Lateral and longitudinal jerk are minimized to obtain smooth driving behavior,
while tracking error on the speed and the lateral position of the truck are minimized to
maneuver the vehicle.

Two different formulations for collision avoidance are introduced. Despite its more limited
capability to capture highway scenarios compared to the so-called sigmoidal predicted col-
lision free corridor, the so-called rectangular predicted collision-free corridor is chosen for
its simplicity. Future research can be directed to evaluate alternatively shaped predicted
collision-free corridors.

A full explicit formulation of the OCP is given. All requirements are gathered from the
previous chapter and the preceding sections. Based on this formulation we can continue to
introduce the solution strategy for this OCP, which is described in detail in the next chapter.
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Chapter 4

Direct multiple-shooting solution
strategy of the optimal control

problem

In the previous chapters we have converged to an infinite dimensional optimal control problem
(OCP). We have argued how the solution of the optimization problem describes open-loop
optimal trajectories for the A-double combination. At the same time, in Section 3-4 we see
that the OCP is formulated as an optimization that involves both a non-linear cost function
and non-linear constraints. Different strategies are readily available to solve such problems,
among which we have most prominently the so-called direct and indirect methods. In the
application of indirect methods, necessary conditions for solution optimality are derived. One
tries to solve for these necessary conditions in order to arrive at a optimal solution. Direct
methods have a slightly different approach, the solution of the OCP is searched by directly
minimizing the cost function numerically. Plenty of literature can be found on the topic
of direct and indirect methods for trajectory optimization, see for example [19]. Indirect
methods are famous for their ability to find very accurate solutions for the optimal trajectory
compared to direct methods. But two main drawbacks of indirect methods lead to the general
preference for direct methods for solving OCPs in most engineering applications.

• The region of convergence near the optimal solution of an OCP is generally very small.
The initial guess of the optimal path needs to be close to real optimum for stable results.

• The necessary conditions for an optimal trajectory require knowledge on active and inac-
tive inequality constraints in advance. Any switching of inactive and active constraints
need to be parameterized up front as well.

In this work, a direct method is used to solve the OCP. More precisely a direct multiple
shooting approach is used. A main step in the direct solution methods is to discretize the
state and control trajectories, in order to be able to solve a nonlinear program (NLP). The
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solution of the NLP is hopefully close to optimal trajectory of the OCP. Two alternatives to
direct multiple shooting techniques are, direct collocation methods and direct single shooting
techniques. Direct collocation methods parameterize the state and control trajectory using
basis functions, such as polynomials. Or as previously applied to trajectory generation for
the A-double combination, using B-splines [5]. Direct single shooting methods discretize the
control signal over the prediction interval, the state integration is solved as a initial value
problem over the entire prediction.
In the direct multiple shooting technique we discretize both the state trajectory and the
control input over the receding prediction horizon. The system is separately integrated in
each interval between the discretization nodes, based on an initial guess of the initial state
at each interval. By introducing continuity constraints, a state prediction is obtained for
the OCP. Multiple-shooting algorithms tend to perform better compared to single shooting
techniques in numerical stability.
In this chapter the overall solution strategy to the OCP is described and discussed. The
algorithm is an implementation of the Real-Time Iteration (RTI) scheme. The algorithm
involves details with drastic consequences on both real-time performance and optimality of
the intermediate solutions of the OCP at each control step. A trade-off is made between the
optimality of the generated trajectories and the solution time. This chapter can be viewed as a
review chapter on the RTI scheme, while it is applied specifically to our trajectory generation
problem. In order to fully understand the results from this thesis work, one should know the
general outline of the RTI. For the interested reader, more detailed work is available on this
algorithm in e.g. [6, 20].
For the sake of clarity, contributions in this chapter to the RTI algorithm are explicitly listed.
People that are familiar to the RTI algorithm can skip the other sections.

• Section 4-2 treats the discretization of the road geometry and the reference profile.

• In Section 4-4-3 one finds a discussion on the solution quality assessment.

• Finally it is advised to read the summary to find a brief discussion on the consequences
of solution strategy on the implementation.

4-1 Introduction to the Real-Time Iteration scheme

About a decade ago, a solution strategy for OCPs was introduced that proposed to exploit the
repetitive nature of receding horizon control[21, 6, 20]. It differs from previous methods in the
way that it is not attempting to find the solution of the full nonlinear problem at each time
step. This idea stands at the basis of a solution technique that is computationally very efficient
and allows for real-time implementation of nonlinear model predictive control (MPC). Simply
put, the RTI-algorithm is a sequential quadratic programming (SQP) technique implemented
in a very specific manner.
SQP [22] is a popular technique to solve nonlinear programs. In SQP the NLP is quadratically
approximated in the most recent solution iterate, the step towards a new solution iterate is
obtained by solving this intermediate quadratic program (QP). By repeating these steps,
one may converge to a solution of the original NLP. In the RTI scheme it is proposed to
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synchronize the SQP iterations with the timing scheme of the controller. Hence, in contrast
to conventional nonlinear program (NLP) solution schemes, the RTI scheme only performs
one QP iteration per sampling instance. The next sampling instance, a new problem is
solved initialized by shifted results from the previous iteration and with the newly acquired
knowledge about the system from measurements.
The RTI scheme is divided in two phases, a computationally costly preparation phase, that is
independent of the most recent state measurement. And a feedback phase that resembles the
steps that need to be taken between the observation of the state measurement and providing
the feedback to the controlled plant. In Figure 4-1 the timing scheme of the RTI algorithm
is illustrated.

preparation phase
feedback phase

tk−1 tk tk+1 tk+2

ξk−1

uk−1

ξk

uk

ξk+1

uk+1

Figure 4-1: The RTI is designed to provide feedback from the OCP as soon as possible after a
measurement is taken from the dynamic system.

At time step tk a measurement is taken, the feedback phase is executed and control uk is
applied immediately thereafter. The preparation phase is entered to prepare a new QP for
the next state measurement. Not only do we have an optimization-based control scheme
in which we can reach high sampling rates. The need for handling computational delay is
avoided by a clever arrangements of the steps of a SQP.
Let us walk through the main steps of the RTI algorithm in the next sections. First the
problem needs to be discretized so that we obtain a NLP to solve using the RTI-scheme.

4-2 Problem discretization and Nonlinear Program formulation

A direct solution strategy to an OCP requires a discretized problem. In this section, the
discretization steps are described and the parametric NLP is explicitly given.
Consider the general formulation of an optimal control problem, written in the same shape
as our OCP in Section 3-4:

min
ξ,u

∫ sf

0
‖f(ξ(σ), u(σ))− r(σ)‖2W dσ

s.t. dξ
ds = g(ξ, u, p)

ξ(0) = ξ0

h(s) ≤ h(ξ, u, s) ≤ h(s)
u(s) ≤ u(s) ≤ u(s)

∀s ∈ [0, sf ]

(4-1)

Here, ξ ∈ Rn, u ∈ Rm and p ∈ Rl are the state vector, the control vector and the parameter
vector respectively. h ≤ h are the lower bounds and upper bounds on the set of non-linear
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constraints. u ≤ u are upper and lower bounds on the control input, hence box constraints
on the controls. ξ0 is the initial condition for the state vector in the prediction of the OCP.
RNf 3 f(ξ(σ), u(σ)) − r(σ) is the vector valued objective which we want to minimize in a
least-squares sense.

The problem Eq. (4-1) can be discretized over an equidistant spatial grid of N + 1 points for
the horizon [0, sf ] with step size ∆s.

0 = s0 ≤ s1 ≤ . . . ≤ sN = sf (4-2)

Where s ∈ RN+1 denotes the traveled distance of the tractor its center of mass (COM) along
the road geometry. The state-vector is discretized so that we obtain a prediction at each node
w ∈ RnN :

w = (w1, . . . , wN ) = (ξ(s1), . . . , ξ(sN )) (4-3)

And q ∈ Rn is the state at the start of the prediction, in the first node.

q = w0 = ξ(s0) (4-4)

The control input is parameterized as a piecewise constant function, constant in each interval
[si, si+1) ∀i ∈ {0, . . . , N − 1}. The control input parameterization z ∈ RmN is defined as.

z = (z0, . . . , zN−1) (4-5)

The solution to the differential equation is approximated on each shooting node using the
operator Ξ.

ξ(si+1) = Ξ(wi, zi, pi) (4-6)

Where wi = ξ(si). Naturally, the operator Ξ can be any explicit update rule of a numer-
ical integration algorithm. The system in our trajectory generator is discretized using a
forward-Euler approach. In a forward-Euler integration algorithm, the integration operator
Ξ(wi, zi, pi) is defined as:

ξ(si+1) = wi + ∆s g(wi, zi, pi) (4-7)

where g(wi, zi, p) defines the continuous-time spatial derivative of the prediction model and
pi is the parameter vector provided with the differential equation, defined for shooting node
i. In the trajectory generation problem described in this thesis, the parameter vector p
consists of information about the heading of the road and the parameterization of the pre-
dicted collision-free corridor. Other update rules, such as higher order implicit or explicit
Runge-Kutta integration algorithms can be considered. To minimize computation time, the
computationally light forward-Euler integration algorithm is used.

In this discretized problem, the cost-function is approximated by:

∫ sf

0
‖f(ξ(σ), u(σ))− r(σ)‖2W dσ ≈

N−1∑
i=0
‖F (wi, zi)‖2W (4-8)

The residual of the system dynamics equality constraints in the shooting nodes {1, . . . , N}
are defined by the following equation.

G(wi+1, wi, zi) = wi+1 − Ξ(wi, zi) (4-9)
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The non-linear inequality constraints and the box constraints on the control input evaluated
at each shooting node are:

hi ≤ H(wi, zi) ≤ hi
ui ≤ zi ≤ ui

∀i ∈ {0, . . . , N − 1} (4-10)

The result is a nonlinear program that approximates the optimal control problem outlined in
Eq. (4-1).

min
w,q,z

N−1∑
i=0
‖F (wi, zi)‖2W

s.t. 0 = G(wi+1, wi, zi)
q = ξ(0)
hi ≤ H(wi, zi) ≤ hi
ui ≤ zi ≤ ui

∀i ∈ {0, . . . , N − 1}

(4-11)

Let us rewrite the NLP so that we obtain a general least-squares formulation, an important
detail in the RTI-algorithm. We lose the sum in the cost function and obtain one expression
for the inequality constraints in all shooting nodes.

min
w,q,z
‖F (w, q, z)‖2W

s.t. 0 = G(w, q, z)
q = ξ(0)
h ≤ H(w, q, z) ≤ h
u ≤ z ≤ u

(4-12)

Where the symbols denoted in bold font, F ,G,H,W are defined as the following augmented
vectors and matrices:

F (w, q, z) =


F (q, z0)
F (w1, z1)

...
F (wN−1, zN−1)

 ∈ RNfN G(w, q, z) =


G(w1, q, z0)
G(w2, w1, z1)

...
G(wN , wN−1, zN−1)

 ∈ RnN

H(w, q, z) =


H(q, z0)
H(w1, z1)

...
H(wN−1, zN−1)

 ∈ RNcN W =


W

W
. . .

W

 ∈ RNfN×NfN
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An important ingredient to the discretization is the discretization step size ∆s. It is however
not relevant to the remainder of this chapter, describing the general solution algorithm. In
Section 5-3, the discretization step size is selected and motivated. Let us start to discuss the
solution algorithm to this NLP, for which we start with the so-called preparation step.

4-3 Preparation step in the Real-Time Iteration scheme

The goal of the preparation step is to prepare the quadratic program in the feedback step
as much as possible, without the knowledge of the most-recent state measurement. In this
section, all steps in this preparation step are briefly outlined.
In line of the sequential quadratic programming (SQP) methodology, the NLP is locally
approximated in latest solution iterate (wk−1, qk−1, zk−1) by a quadratic function. Consider
the NLP in Eq. (4-12), it can be locally approximated by the QP:

min
∆w,∆q,∆z

1
2
(
∆wT ∆qT ∆zT

)
∇2
wwL ∇2

qwL ∇2
zwL

∇2
wqL ∇2

qqL ∇2
zq

∇2
wzL ∇2

qwL ∇2
zzL


︸ ︷︷ ︸

B


∆w
∆q
∆z

+

+
(
∇TwL ∇Tq L ∇Tz L

)
︸ ︷︷ ︸

J


∆w
∆q
∆z


s.t. H(∆w,∆q,∆z) ≤ 0
G(∆w,∆q,∆z) = 0

(4-13)

Here, H is the vector of inequality constraints and G the vector of expressions for the equality
constraints, L = L(w, q, z) is the Lagrangian function of the optimization problem:

L(w, q, z) =
N−1∑
i=0
‖F (wi, zi)‖2W︸ ︷︷ ︸

L

+µTG + νTH (4-14)

With µ and ν the vectors of Lagrange multipliers. The biggest concern in sequential quadratic
programming is to efficiently obtain (an approximation of) B. The solution of this QP is used
to move towards a local optimum of the NLP provided that the algorithm converges.
In this section, the method to find the approximate quadratic program is outlined. The merits
and shortcomings of the algorithm are discussed.

4-3-1 Definition of the road geometry

In preparation of the SQP-step, an updated road definition is provided to initialize the system
dynamics equations in G(w, q, z) = 0. The required parameters to define the road geometry
are φR,1(s) and φR,4(s). Since, the prediction horizon of the optimal control problem is defined

N.J. van Duijkeren Master of Science Thesis



4-3 Preparation step in the Real-Time Iteration scheme 43
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Figure 4-2: An illustration of the scenario when a the distance between the Frenét frames for
the front axle of the tractor and the rear axle of the second semi-trailer are not a truck length
apart.

over the traveled distance of the tractor along the road geometry, providing the road geometry
for the tractor is straightforward. At each shooting node of the nonlinear program, the road
geometry is known up front. Hence, we obtain a set of road headings relative to the heading
at the start of the prediction.

(φR,1,0, φR,1,1, . . . , φR,1,N ) = (0, φR,1(s1)− φR,1(s0), . . . , φR,1(sN )− φR,1(s0)) (4-15)

The road heading at the rear axle of the second semitrailer is less straightforward to define.
In fact, we need to provide the expression for the curvature profile and integrate that for
the position of the last axle to accurately obtain the heading. This is necessary because we
do not know the position of the last-axle at each step in the prediction. However, one can
question how much the distance along the road between the front axle of the tractor and the
rear-axle of the second semitrailer varies. Especially, considering the low-curvature conditions
for which the trajectory generator is designed.

The heading for the rear axle of the second semi-trailer is provided as a known quantity at
each shooting node. This avoids the need for online prediction of the rear axle it position
and to parameterize the road heading using e.g. a polynomial. To illustrate how this can be
an inappropriate assumption, consider the situation in Figure 4-2. The distance between the
front axle of the tractor and the rear axle of the second semi-trailer are not a truck length
apart in this case.

4-3-2 Shift previous SQP solution

The latest SQP solution contains an open-loop optimal prediction of a great part of the new
horizon for the next control interval. In fact, only the last shooting node is not known yet. To
initialize the new QP-step, the solution of the previous iterate is shifted to match the shooting
nodes of the new discrete horizon. The state prediction at the last shooting node is obtained
by integration, assuming that the control action is constant at the end of the horizon.
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44 Direct multiple-shooting solution strategy of the optimal control problem

4-3-3 Constrained Gauss-Newton algorithm

Let us now discuss the method to locally approximate the NLP to obtain a QP. Since
the objective is a nonlinear least-squares problem, a Gauss-Newton algorithm can be used.
Consider the Lagrange-term L of least-squares form,

L(w, q, z) = ‖F (w, q, z)‖2W (4-16)

in that case the Hessian can be approximated cheaply. In line with the Gauss-Newton al-
gorithm, consider that we can drop all terms in the exact Hessian that contain the residual
F (w, q, z). The Hessian B in Eq. (4-13) can approximated by:

B ≈


∇wF

∇qF
∇zF

W
(
∇TwF ∇Tq F ∇Tz F

)
(4-17)

The greatest advantage of this approach is that a simple evaluation of the matrix-valued
functions ∇wF ,∇qF ,∇zF and a matrix multiplication give us an updated Hessian. However,
for the Hessian approximation in the Gauss-Newton algorithm to be effective one or both of
the following conditions must hold:

• The objective function of the NLP behaves linear near the optimal solution (w∗, q∗, z∗),
i.e.
∇2F (w∗, q∗, z∗) ≈ 0.

• The residual of the objective function of the NLP is small near the optimum solution
(w∗, q∗, z∗), i.e. F (w∗, q∗, z∗) ≈ 0.

The computation of the Jacobian J of the objective function in the quadratic program (Eq. (4-
13)) is approximated by:

J ≈
(
∇TwL ∇Tq L ∇Tz L

)
(4-18)

We can now write the complete description of each intermediate QP problem of the con-
strained Gauss-Newton algorithm.

min
∆w,∆q,∆z

∥∥∥F + (∇TwF )∆w + (∇Tq F )∆q + (∇Tz F )∆z
∥∥∥2

W

s.t. 0 = G + (∇TwG)∆w + (∇Tq G)∆q + (∇Tz G)∆z
ξ(0) = q + ∆q
h ≤ H + (∇TwH)∆w + (∇Tq H)∆q + (∇Tz H)∆z ≤ h
u ≤ z + ∆z ≤ u

(4-19)

The objective function for the least-squares minimization problem F (w, q, z) and the con-
straint functions G(w, q, z) and H(w, q, z) are linearized at the latest solution iterate (wk, qk, zk)
in order to obtain a quadratic program to find the new solution wk+1 = wk + ∆w, qk+1 =
qk + ∆q and zk+1 = zk + ∆z. The expressions for the linearized matrices are off-line analyti-
cally derived. In the iteration scheme, the linearization step merely consists of the evaluation
of the vector functions F , G and H and the matrices ∇∗F ,∇∗G,∇∗H in the latest solution,
with ∗ ∈ {w, q, z}.
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4-3-4 Problem condensing

The full-size QP can be simplified greatly by decreasing the number of decision variables.
Let us describe so-called condensing steps that can be executed in the preparation steps, thus
without the knowledge of the most recent vehicle state. Using linearized continuity conditions
of the states in the shooting nodes, the state variables can be eliminated from objective
function and the inequality constraints. The gradient, Hessian and linearized constraints are
projected onto the space of remaining decision variables (control input of the system and the
initial condition).

∆w = −(∇TwG)†G− (∇TwG)†(∇Tq G)∆q − (∇TwG)†(∇Tz G)∆z (4-20)

The number of decision variables for ∆w in the quadratic program can be eliminated. We
obtain the partially condensed QP outlined in Eq. (4-21).

min
∆q,∆z

∥∥∥ (F − (∇TwF )(∇TwG)†G
)

+
(
(∇Tq F )− (∇TwF )(∇TwG)†(∇Tq G)

)
∆q

+
(
(∇Tz F )− (∇TwF )(∇TwG)†(∇Tz G)

)
∆z
∥∥∥2

W

s.t. ξ(0) = q + ∆q

h ≤

(
H − (∇TwH)(∇TwG)†G

)
+
(
(∇Tq H)− (∇TwH)(∇TwG)†(∇Tq G)

)
∆q

+
(
(∇Tz H)− (∇TwH)(∇TwG)†(∇Tz G)

)
∆z

≤ h

u ≤ z + ∆z ≤ u

(4-21)

This condensing step is computationally quite intensive, but the step significantly reduces the
required steps in the so-called feedback step introduced in the subsequent chapter.

4-4 Feedback step in the Real-Time Iteration scheme

The condensed QP Eq. (4-21) is prepared and the most recent state measurement is taken.
The remaining tasks to obtain a new solution iterate is to embed the initial condition and to
solve the resulting fully condensed QP.

4-4-1 Initial value embedding of state measurements

Consider the quadratic program from Eq. (4-21), in similar fashion to the elimination of the
decision variables ∆w we can eliminate ∆q using the most recent state measurement.

∆q = ξ(0)− q (4-22)

We finally obtain a fully condensed QP where the sole decision variables are the free variables
∆z in the piece-wise constant control input parameterization.
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min
∆z

∥∥∥F +∇Tz F∆z
∥∥∥2

W

s.t. h ≤ H+∇TzH∆z ≤ h
u ≤ z + ∆z ≤ u

(4-23)

with,

F =
(
F − (∇TwF )(∇TwG)†G

)
+
(
(∇Tq F )− (∇TwF )(∇TwG)†(∇Tq G)

)
(ξ(0)− q) (4-24)

∇Tz F =
(
(∇Tz F )− (∇TwF )(∇TwG)†(∇Tz G)

)
(4-25)

H =
(
H − (∇TwH)(∇TwG)†G

)
+
(
(∇Tq H)− (∇TwH)(∇TwG)†(∇Tq G)

)
(ξ(0)− q) (4-26)

∇TzH =
(
(∇Tz H)− (∇TwH)(∇TwG)†(∇Tz G)

)
(4-27)

4-4-2 Quadratic programming and problem expansion

The resulting QP in Eq. (4-23) can be solved using an arbitrary quadratic programming
solver. The solver that is used in this thesis work is qpOASES, it uses an active set strategy
to solve the QP [23]. An active set strategy in quadratic programming exploits the fact that,
assuming a set of active inequality constraints, the Karush-Kuhn-Tucker (KKT) conditions
define a linear program (LP). By iterating the active set of inequality constraints, an optimal
solution can be found. It is out of scope of this thesis to discuss the details of the QP solution
strategy. However it is noted that the QP solver uses warm starting. Because of the repetitive
nature of the RTI scheme, the next iteration will likely involve a similar problem for the QP
solver. The primal and dual solution and the active set of constraints from the previous QP
step can be used to initialize the new iteration. In general this leads to faster solution times
of the feedback step of the RTI algorithm.

We have obtained the solution to the quadratic subproblem. The solution is expanded using
Eq. (4-20) to retrieve ∆wk and ∆qk. Using the relations wk+1 = wk + ∆wk and zk+1 =
zk + ∆zk we obtain predictions of the optimal trajectory and control input.

4-4-3 Assessment of solution quality

A general technique used to assess the solution quality of the latest SQP iterate is the so-
called KKT-tolerance or commonly referred to as the KKT-value. It is a positive quantity
that can be computed to find whether the KKT-conditions are satisfied. In the PhD-thesis
we find the definition [24]:

KKT-value =
∣∣∣(∇Tz F)∆z

∣∣∣+ l∑
i=1
|H∆ν| (4-28)

Where ∆z is the primal solution of the QP and ∆ν the vector of Lagrange multipliers from
the dual solution. The smaller this measure is, the better the solution of the NLP. A zero-
value for the KKT tolerance means we have likely converged to a KKT-point of the original
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NLP. As mentioned in [24], this value is sometimes used to terminate an sequential quadratic
programming algorithm (as soon as it is smaller than a certain absolute tolerance). In the
case of the Real-Time Iteration algorithm, this is not an option. Only one QP solution is
computed per sampling interval. The value is only tracked to assess the solution quality of
this Real-Time Iteration-scheme.

A second assessment method for the solution quality is the objective value itself. Of course
an optimum is not necessarily zero in the objective value, but the Gauss-Newton algorithm is
affected by the objective value in the optimum. If it is non-zero, the Hessian approximation
is biased. This naturally affects the convergence properties of the overall RTI-algorithm.

4-5 Summary

In this chapter the solution algorithm to the OCP is introduced. A direct multiple shooting
optimization technique is employed and used in the RTI-algorithm. Instead of solving an NLP
each time step, SQP steps are solved synchronous with the sampling intervals of the controlled
process. The controller uses a piecewise constant control parameterization for the discretiza-
tion. A Gauss-Newton algorithm is used to locally approximate the NLP each control interval,
to obtain a QP for the latest iterate of the SQP-algorithm. The constrained Gauss-Newton
algorithm assures a computationally light Hessian approximation. But its downside is that
the Hessian approximation is only effective if the optimum has a zero objective. Problem
condensing is applied to reduce the search-space of each intermediate QP, to be solved by an
active set QP solver.

In the next chapter, the implementation of the control algorithms is described.
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Chapter 5

Real-time implementation of the
trajectory generator

This chapter discusses the real-time implementation of the trajectory generator. An optimal
control problem (OCP) is formulated and a solution technique for this OCP is introduced in
the previous chapters. The goal of this chapter is to give the reader insight in the implemen-
tation details and understand how challenges in this area are tackled.

First, in Section 5-1 the two simulation environments in which the trajectory generator is
implemented are described. The controller is implemented in both Simulink environment
and a motion simulation environment at the Swedish National Road and Transport Research
Institute (VTI).

In Section 5-2 the general control architecture is described. The trajectory generator is placed
in the overall truck control architecture. The separate subtasks of the trajectory generator
are described to present the reader a clear view of the implemented routines related to the
real-time implementation of the optimization-based trajectory generator.

Section 5-3 addresses two scheduling related issues in the real-time implementation of the
trajectory generator. It describes how and when the control algorithms are triggered to
compute a new optimal trajectory. The solutions schedule, that follows the philosophy of the
Real-Time Iteration (RTI) algorithm, is briefly outlined and motivated.

In Section 5-4 reference calculation is discussed. The OCP is designed to be able to cope
with the complete trajectory generation problem. However, there is no reason to be naive in
providing the reference trajectories for the longitudinal velocity and the lateral position with
respect to the lane center. For example, if the curvature of the road is such that the lateral
acceleration at the desired speed are exceeding the constraints, we can ease the problem for
the optimizer by lowering the velocity request.

Section 5-5 discusses the implementation of the solution strategy to the OCP, described in
Chapter 4, using the code generation functionality of the ACADO Toolkit. Advantages of
generating tailored code for solving an nonlinear program (NLP) contribute significantly to
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50 Real-time implementation of the trajectory generator

the feasibility of implementation the trajectory generator with real-time performance. Using
the modeling interface of the ACADO Toolkit, the control engineer is saved from a great deal
of the programming work involved with the implementation. The OCP can be defined in a
natural mathematical syntax and the solution strategy described in Chapter 4 is automatically
translated to tailored C-code.

Finally, in Section 5-6 several details to the implementation of the controller are described
for the interested reader. Details related to the implementation, that do not have direct
contribution to the results, are discussed.

5-1 Simulation environments

The trajectory generator is implemented in two simulation environments. The so-called desk-
top simulation environment and the VTI motion simulator environment.

Figure 5-1: Graphical overview of Simulink implementation of the trajectory generator. The
NMPC, written in C/C++, is interfaced with the Simulink models of the A-double combination
using am S-function wrapper.

The main control routines are written in C/C++, completely independent from external
libraries. Nevertheless, external libraries are used for the simulation environment specific
interaction with the vehicle model.

In Figure 5-1 the desktop simulation structure is schematically depicted. Both the controller
and the vehicle model run on the same machine. The interface between Simulink model of
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Figure 5-2: Graphical overview of the implementation at the VTI motion simulator. The NMPC
is interfaced with the motion support and A-double combination simulation platform via a UDP
connection. The controller implementation runs as a stand-alone application on a dedicated PC.

the A-double combination and the controller is arranged using an S-function 1. Timing of
the control is dealt with by Simulink and no delay is involved (if not modeled explicitly).
The road position and the surrounding traffic are also modeled in Simulink. The Simulink
interface allows us to test the controller on both the single-track model introduced in Section 2-
2 and the high-fidelity plant of the A-double combination.

Figure 5-2 illustrates the implementation of the trajectory generator with the VTI motion
simulator. The vehicle model of the A-double combination is identical to the high-fidelity
model that is used in the desktop simulations. The vehicle model runs on an xPC target2

to achieve real-time execution. The controller runs as a stand-alone process on a dedicated
computer3. A third computer runs a supervisory process that manages the motion control,
vehicle model simulation and communicates with the control algorithm over a UDP connection
in an internal network. All information that is required by the control routines is sent at a
rate of 200[Hz].

The main difference between the Simulink implementation and the VTI implementation is
undoubtedly the hard requirement for real-time performance of the control algorithm. If
in the Simulink implementation the control algorithm does not terminate in due time, the
simulation is simply delayed. In fact, all routines are assumed to be finished within the
sampling time of 0.001[s] of the VTM plant. Hence, no source of delay is present in the
simulation. One needs to explicitly model the delay if desired. The VTI implementation
is arranged differently, the vehicle model does progress during the execution time of the
controller. Hence, there is a delay that one cannot directly influence and if the controller

1An S-function is a Simulink block written in C/C++. The C/C++ S-functions are compiled as MEX
files and executed by Simulink during the simulation.

2An xPC target is a computer running a Simulink model in a real-time operating system.
3Arch Linux, Intel Xeon X5660 processor, 6GB DDR3-1333MHz memory
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terminates too late, it directly means that the vehicle model has missed a control signal. If
the controller is persistently too late, or if delay is not dealt with appropriately, artifacts
in the closed-loop behavior of the plant model is to be expected. This handling of delay is
subject to discussion in Section 5-3.

5-2 Control hierarchy

In Figure 5-3 a schematic representation of the overall control hierarchy is depicted. The
trajectory generator is externally provided with information about the road {κR} and lR.
Where {κR} which represent the curvature of the road geometry, for both the tractor and the
rear axle over the prediction horizon. And lR is a collection of information about the drivable
lanes, this includes the lane width, the number of lanes, etcetera. Also, for a set of obstacles
the instantaneous distance ∆so,∗ from the front axle of the tractor, lane lo,∗, velocity vo,∗ and
acceleration ao,∗ along the road geometry is provided. The state vector of the truck ξlhvc is
available.

ξlhvc =
(
vy,1 θ0 θ̇0 θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 vx,1 ax,1 d1 d4 δ

)T
(5-1)

The intermediate desired acceleration for the cruise-control velocity set-point is provided as
an initial condition for the prediction model in the OCP.

A-doublePerception

Cruise
control

∫∫
dtdt

∫
dt

Trajectory
generator

jx,des

δ̇

vx,des

δ

ξlhvc

user request

desired lane

{∆so,∗}, {vo,∗}, {ao,∗}
{lR}, {κR}

ax,des
{lo,∗}

Figure 5-3: Control hierarchy of the trajectory generator in closed-loop with the A-double com-
bination.

The trajectory generator generates a desired longitudinal jerk jx,des for the cruise controller
and a desired steering angle rate δ̇. To interface the trajectory generator with the cruise
controller, the desired longitudinal jerk is integrated twice over time. The steering angle rate
is integrated over time once, to provide a reference for the steering actuator.

The driver can request the trajectory generator externally to change lane. The trajectory
generator is provided with this request to make the necessary preparations and predict a
suitable trajectory.
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5-3 Control scheduling and handling of delay

The OCP for the trajectory generation controller solves a discrete problem each control inter-
val. The discretization of the OCP is achieved by selecting points of the trajectory prediction
on an equidistant grid over the spatial prediction horizon. As introduced in Chapter 4, the
solution strategy to the NLP relies on a timing scheme that is synchronized with the prob-
lem discretization. Let us motivate how the discretization step size ∆s is selected and how
computational delay is handled.

5-3-1 Selection of sampling rate

Digital control research teaches us how to select a suitable sampling rate. In essence, one must
choose a sampling rate that is low enough to avoid finite precision problems in computers. On
the other hand, it must sufficiently high to avoid aliasing. A general rule-of-thumb suggests to
pick a sampling rate that is at least ten times faster than the fastest dynamics in the system.

The fastest eigenvalue of lateral dynamics of the A-double combination prediction model is
dependent on the velocity of the truck. Based on the minimum velocity constraint of 8[m/s]
we see in Table 2-1 that the fastest eigenvalues are the pair located at −13.68± j2.50[rad/s].
Hence, the fastest lateral dynamics of the A-double combination are in the range of 2[Hz].
We notice though, that the cruise control velocity tracker is modeled as a first-order system
with a time constant of τcc = 0.25[s] agreeing to 4[Hz] dynamics. Hence, we conclude that
cruise-controller is the limiting factor. According to the rule of thumb, a sampling rate higher
than 40[Hz] is desired.

On the other side of the trade-off is the computational performance of the control algorithm.
The time that is required by the optimization algorithm to prepare the control input for the
new interval. Two important considerations are made:

• The solution time of the trajectory generator must be lower than the sampling time.

• The solution time of the feedback step of the RTI-scheme must be an order of magnitude
faster than the sampling time.

From the general results in Chapter 6 we see that this computation time is in the range of
0.02− 0.03[s]. The average time consumed by the feedback-step is in the range of 3− 5[ms].
Based on this observation, a temporal sampling in the range of 50[ms] is appropriate.

Recall that the discretization took place in a spatial domain, the temporal sampling must be
converted. The spatial sampling rate can be approximated by ∆s = ds/dt∆t. The A-double
combination is allowed to drive between 8−23[m/s], which leads us to a sampling distance in
the range of 0.4− 1.2[m]. A step size of 1[m] is used in the remainder of the work. It would
be appropriate to switch control algorithms for different velocity levels, since the choice of
1[m] results in a temporal sampling of 8[Hz] at 8[m/s]. This is on the edge of the Nyquist
frequency for the cruise control dynamics.
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5-3-2 Scheduling

The implementation for the triggering of the controller is based on the measurement from
the simulation environment. The traveled distance along the road geometry is checked con-
tinuously. A new control step is triggered when the discrete step size ∆s has passed. It
depends on the implementation of the controller how often the triggering process can check
the conditions. In the desktop simulations in Simulink, the controller is called at a rate of
1000[Hz]. At the VTI facilities, a UDP connection sends data at rate of 200[Hz].
If the distance ∆s is traveled since the last iteration, the feedback step of the RTI-scheme is
started. In an ideal scenario, the feedback step would terminate immediately. We would be
able to apply the control input at the same time a measurement is taken. This is not the case
however, time has passed and the initial condition for which the open-loop optimal trajectory
is computed is not entirely valid anymore.

ξocp

s

sk−1 sk sk+1 sk+2 sk+3 sk+4

predicted
real state

∆s

optimal
trajectory

uk−1 uk

∆sfb � ∆s

Figure 5-4: The control step is applied asynchronously from the measurement steps. For mea-
surement step sk, an optimal trajectory is computed. ∆sfb later, the time/space consumed by
the feedback step of the solution algorithm, the control action is applied.

This problem of delay is commonly solved by making the delay deterministic and to account
for this delay by design. The RTI-algorithm has a different philosophy regarding this matter.
As extensively described in Section 4-1, the algorithm intends to minimize the number of
numerical operations required after a measurement is obtained. By ensuring the time taken by
this so-called feedback step is short, in fact an order of magnitude shorter than the sampling,
the mismatch in initial condition is hopefully negligible. See Figure 5-4 for an illustration.
The control algorithm in this thesis follows this philosophy of the RTI-scheme. As we will
see in Chapter 6, the feedback step indeed is an order of magnitude lower than the sampling
rate. It can be concluded that no explicit technique for delay handling is in place, we rely on
a short feedback step time.
Finally, the description of the general scheduling algorithm in the trajectory generator:

1. From time-step k − 1 we have an iterate of the optimal trajectory.
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2. Shift the previous solution to the new receded horizon and obtain the unknown data
point by integration.

3. Prepare the reference trajectories and the road parameterization for the upcoming pre-
diction horizon [sk, sk + sf ]. Where sf is the spatial prediction horizon.

4. Do all possible preparations (preparation step of RTI-scheme) independent from the
knowledge on the most recent vehicle state at sampling instance sk.

5. Wait for sampling instance sk and take a measurement

6. Solve quadratic program (QP) (feedback step of RTI-scheme) and apply feedback uk
immediately.

7. Repeat.

5-4 Reference calculation

The OCP is designed to tackle the complete trajectory generation problem. However, with
logic we are able to assist the optimization very easily. Consider the OCP as described
in Section 3-4. The formulation bounds the lateral acceleration in the tractor and in the
second semi-trailer. In the cost function however, there is no incentive to minimize the
lateral acceleration whatsoever. This is perfectly in line with the desired driving behavior.
But consider now that a tight corner appears in the prediction, cornering imposes a steady-
state lateral acceleration. It cannot be our goal to find a trajectory that exactly satisfies
the lateral acceleration bounds. The OCP reflects otherwise. However, since velocity is the
main contributing factor to the lateral acceleration, we can simply adjust our desired velocity
according to the curvature. In this section, a set of heuristics are described and motivated
that lead to the reference calculation. The reference calculation is a pre-processing step to
the optimization.
It is not uncommon in the field of model predictive control (MPC) to adjust the reference
profile to the dynamic optimization problem. Target calculation [25] can be applied to find
a reference that is strictly feasible for the system to achieve in steady-state. Situations can
be found, where systems with more outputs that the number of inputs cannot converge to
all reference points. Although the name reference calculation is derived from target calcula-
tion, the philosophies of the techniques do not entirely match. The reference calculation is
not aimed to guarantee feasibility of the trajectory, but rather a method to involve human
knowledge into the solution strategy.
Reference tracking is imposed on two states. The longitudinal velocity and the lateral position
of the tractor in the center of mass (COM). Both reference calculation problems are considered
independent from one another. Let us first introduce the velocity reference calculation and
thereafter discuss the lateral reference calculation technique.

5-4-1 Reference calculation for the longitudinal velocity

Generating a velocity reference profile for the optimal control problem is considered as a
trade-off between the following three matters.
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1. We desire a velocity that agrees with the speed limit of the lane, to minimize travel
time.

2. Find a velocity profile that has comfortable lateral acceleration properties caused by
the lane curvature.

3. Generate a velocity profile that achieves intuitive and comfortable car following behav-
ior.

The reference calculation is implemented by the heuristic to maximize the velocity reference
on each shooting node. Considering each element in the trade-off poses a maximal velocity,
one simply takes the minimum of the results.

Desired longitudinal velocity from truck driver or legal speed limit

The first requirement for the legal speed limit is the simplest of the list. We consider that
the speed limit is constant over the prediction horizon and we obtain a velocity reference as
follows:

vx,1,ref = vx,1,legal (5-2)

Comfortable lateral acceleration due to lane curvature

The steady-state lateral acceleration due to the curvature of the lane solely depends on the
velocity of the truck tangent to the road (ds1dt ) and on the road curvature (κR). Consider we
want to bound this steady-state lateral acceleration:

− ay,comf ≤ κR(s1)
(
ds1
dt

)2
≤ ay,comf (5-3)

We can rewrite this inequality to the following expression, that provides a bound on the
velocity tangent to the road:

ds1
dt
≤
√∣∣∣∣ay,comf

κR(s1)

∣∣∣∣ (5-4)

Because the controller is meant for high-way scenarios, we have: ds1/dt ≈ vx,1. Hence the
requirement is now compatible with the reference velocity.

vx,1,ref ≤
√∣∣∣∣ay,comf

κR(s1)

∣∣∣∣ (5-5)

The road geometry properties are conveniently defined at each shooting node in the spatial
prediction horizon. Hence, the velocity reference can be computed beforehand the optimiza-
tion step.
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Car following

The reference calculation will attempt to mimic human behavior in speed adaptation to
preceding vehicles as much as possible. However, to avoid the use of many tuning variables
it is also desired to have a conceptually simple approach to decide on the reference velocity.

In Figure 5-5 one finds an illustration of a tentative decision structure to the car following
problem. Based on the intermediate velocity reference and the distance with the leading
vehicle, we potentially decrease the velocity reference. The tuning variables are two parame-
ters resembling time gaps. One time gap concerns the deceleration behavior when a leading
vehicle is approached (τlo) and one time gap defines the desired acceleration behavior in case
the distance with the preceding vehicle grows larger (τhi).

Using distinct time gaps, the sensitivity of the ego acceleration behavior to the trajectory of
the preceding vehicle hysteresis. If the truck decelerates for a vehicle, it will not immediately
accelerate when this same vehicle momentarily speeds up or varies its speed continuously.

vx,1,ref

∆so,∗

1
τhi

1
τlo

vx,1,ref,uncorrected

invariant region

Figure 5-5: Illustration of the sensitivity areas to actions of the car that is being followed. At
each time instant, the depicted figure represents a decision diagram. The velocity reference is
defined by the projection parallel to velocity reference axis of the coordinate of by the current
velocity and distance with the leading vehicle onto the graph. In the invariant region, the velocity
reference is kept the same as the current velocity.

Naturally, this reference calculation technique requires integration and a temporal prediction
of the surrounding vehicles. A velocity reference for each shooting node is obtained by integra-
tion of the velocity difference with the preceding vehicle, assuming that the velocity reference
is perfectly tracked. In case of a lane change, the so-called preceding vehicle is actually a
set of two. The minimum distance to the vehicle in the departure lane and the goal lane is
decisive.

5-4-2 Reference calculation for the Lateral position

The lateral position reference calculation refers to the reference for state d1, the lateral position
of the COM of the tractor with respect to the lane center. There is one main trade-off in the
OCP for optimal trajectory of the the lateral dynamics. It is the trade-off between the lateral
reference tracking performance and the lateral jerk.

If a lane change is initiated, the lateral reference transitions to desired lane center. The goal
of the lateral reference calculation is to derive a pre-optimized reference trajectory. In this
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section, the result of a simplified optimization problem is presented that defines the optimal
reference trajectory for the lateral position d1. In Section A-1 one finds the full details of the
derivation of the solution to the simplified optimization problem.
Consider the cost function for the lateral motion of a point mass system.

min
u

∫ ∆slc

0
u(σ)dσ (5-6)

with ∆slc the spatial length of the lane change maneuver along the road geometry. Where
u(s) is the lateral jerk, also the input to the point-mass model. Using an indirect solution
strategy we find an analytical solution to the two-point boundary value problem. The optimal
trajectory for the point mass system is defined by the following quintic polynomial.

d1,ref(s) = −6 (d1,0 − d1,1) (s1 − slc) 5

∆t5lcv5
x,base

+ 5 (d1,0 − d1,1) (s1 − slc) 3

∆t3lcv3
x,base

− 15 (d1,0 − d1,1) (s1 − slc)
8∆tlcvx,base

+ 1
2 (d1,0 + d1,1)

(5-7)

In Table 5-1, the explanation of the parameters in the quintic polynomial is given.

Table 5-1: Free parameters in the reference calculation expression for the lane change maneuver.

Parameter Tuning/Fixed Explanation

s1 Fixed Distance for lateral reference coordinate.
d1,0 Fixed The initial lateral distance of the reference profile.
d1,1 Fixed The final lateral distance of the reference profile.
slc Tuning The position half way the lane change maneuver.

∆tlc Tuning The time it takes to complete the lane change maneuver.
vx,base Fixed the base velocity of the lane change maneuver.

5-5 Code generation using the ACADO Toolkit

In Chapter 4, the solution strategy for the OCP is introduced. The implementation of this
solution strategy is achieved using the automatic C-code generation functionality of the ACADO
Toolkit [26]. The ACADO Toolkit implements a modeling environment in which the trajec-
tory generation problem can be defined in a syntax close to the mathematics. A wealth of
options can be defined to configure the resulting solution strategy in great detail. A brief
description of the code generation steps are:

• First we formulate the OCP by defining the cost function, the inequality constraints
and the prediction model.

• Externally defined parameters (for road parameterization and collision avoidance) can
be defined on each shooting node, which are interfaced with the solution algorithm.
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• The fixed discretization step size is chosen and we choose the length of the horizon.

• We do configurations regarding hard-coding the cost function, bounds for the constraints
and the integration technique.

• Tailored C-code is generated for the problem formulation.

The ACADO Toolkit symbolically differentiates the expressions for the relevant Jacobian ma-
trices. Online differentiation and inversion is achieved by evaluating analytic expressions that
are derived offline.

Automatic source code generation for optimization solution algorithms experiences a recent
increase in popularity [27]. The main advantage of automatic code generation is that only the
essential algorithmic components are generated. The size of the problem is known in advance,
thus fixed dimensions and sparsity patterns can be exploited during the code generation.
Redundant computations are avoided as much as possible during run-time of the controller.
Because the complete problem is known, static memory allocation in the generated code is
possible. This avoids yet another source of overhead, increasing the likelihood of securing
real-time performance.

The automatically generated C-code is interfaced with the open-source active set QP solver
qpOASES [23], used in the feedback step of the RTI-scheme. At the time of writing, auto-
generated C-code from ACADO Toolkit is interfaced with an embedded version of qpOASES
(based on version 1.3). The OCP in this thesis work can lead to a positive semi-definite (PSD)
Hessian for intermediate QP-steps because of the sigmoid functions for the distance keeping.
The embedded version of qpOASES only works with positive definite (PD) Hessian matrices
and is therefore not compatible with our distance keeping formulation in the OCP. A custom
interface is implemented to the newest version of qpOASES (version 3.0beta), which employs
regularization steps for PSD quadratic programs. It is not obvious whether the use of the
newer version is beneficial to the computation time or not. The new version incorporate
algorithmic improvements, but does not employ static memory allocation like the embedded
version does.

5-6 Implementation details

5-6-1 Decision making

Decision making is a vital component in the trajectory generator. Changing lane, initiating
an abort maneuver are inherently discrete decisions. In this thesis work, no attempt is
made to introduce an intelligent algorithms regarding this matter. Since it is crucial that
the trajectory generator is able to make decisions, a simple state-machine is implemented.
External signals can influence the state of the controller, such as a request for a lane change
or to initiate an evasive maneuver. This ensures insightful behavior, but is obviously not
suitable for production implementation.

Consider that we have three vertices in our automaton, each vertex agrees to one of the
following conditions:
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• The truck is keeping lane.

• The truck is changing lane.

• The truck is executing an abort maneuver.

The rule to change from the lane keeping state, to the lane changing state is defined as:

A lane change is desired and the distance with both the trailing and leading vehicle in the
desired adjacent lane are greater than a predefined value.

The condition to change from the lane changing state to the lane keeping state is defined as:

The complete truck is within the lane boundaries of the desired lane.

The abort maneuver is triggered by an external signal. An input to the controller propagates
to the decision maker and causes the state to transition to the abort maneuver state. In the
current implementation, the state cannot leave this vertex unless the controller is restarted.

5-6-2 Handling infeasibility

It can occur that the NLP and/or the QP are infeasible. Infeasibility can occur because of
several reasons.

• Because the initial state of the vehicle violates constraints in the OCP.

• Because a corner is in the prediction horizon that is too tight and the velocity cannot
be accounted for within the deceleration bounds.

• Because of convergence issues in the solution strategy of the NLP.

Irrespective of the cause for the infeasibility, it is not desired to use the solution from the
optimization. An alternative plan is applied.

The solution algorithm generates a trajectory of length sf . Hence, the last feasible solution
to the NLP has a predicted the optimal control input for several control intervals in the
future. The controller stores a set of the predicted future controls in case the optimization
was successful. Based on the exit-flag of the QP solver, we either take the most recent solution
or reuse the previous optimal trajectory. Note that no guarantee exists that the system will
recover from the infeasibility using this strategy. It is merely a heuristic that is considered to
be the better alternative compared to choosing to use the latest infeasible solution.

5-6-3 UDP communication

The communication at the VTI motion simulator happens via the User Datagram Protocol
(UDP). Packets of data are sent over the local network that connect the different machines,
among which the computer running the trajectory generator implementation.

The use of UDP is motivated by the relatively low overhead involved in the communication.
The implementation uses the Boost C++ libraries. Normally, the UDP standard states that
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the first message that is received has highest priority. In case the receive buffer is full, any
new messages are disregarded. In case of our trajectory generator, the newest messages are
most important. In fact, older ones lose all their significance as soon as a new one arrives.
An algorithm was written to assure that the controller always works with the most recent
information available. Separate threads asynchronously update local buffers for the vehicle
state, road information and measurements of the surrounding traffic.

5-6-4 Considerations for embedded hardware application

All state variables in the control algorithm are of floating point type with double precision.
Embedded application would likely require single precision floating point numbers. A sin-
gle type definition change is necessary to change operation to single-precision floating point
numbers.

The solution algorithm is relatively heavy and the embedded hardware will require similar
performance to high-end consumer PCs. Results show that the trajectory generator algorithm
consumes about 6MB of memory (double-precision setting), which is a lot for most embed-
ded hardware. It would be challenging to find affordable hardware for the implementation
in production vehicles. One would quickly end up with the requirement for Digital Signal
Processor-like embedded hardware.

All trajectory generator routines are independent from external libraries. This would signif-
icantly decrease the effort required to port the code for embedded purposes. The version
of qpOASES used in this thesis work (3.0beta) does not employ static memory allocation.
Not all embedded operating systems have an efficient implementation for dynamic memory
allocation.

5-7 Summary

In this chapter the main details of the real-time implementation of the trajectory generator
are described. All control algorithms are written in C/C++ and implemented in two simu-
lation environments. The controller is implemented on a Simulink model for the A-double
combination and is interfaced using an S-function. The second implementation is at the mo-
tion simulator of the Swedish National Road and Transport Research Institute (VTI), where
it is interfaced using UDP-communication.

Reference calculation techniques are used for both the longitudinal velocity and the lateral
position-offset reference profiles. The longitudinal velocity reference accounts for curvature
of the road and for car following behavior. The lateral position reference calculation assures
a pre-optimized lane transition.

The solution algorithm from Chapter 4 is automatically generated using the automatic C-code
generation functionality of the ACADO Toolkit.

In the next chapter the trajectory generator is tested in closed-loop simulations in Simulink.
We will verify the performance of the controller applied to both the vehicle prediction model
and a high-fidelity vehicle plant model.
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Chapter 6

Simulation results and discussion

The previous chapters have described all ingredients to the solution algorithm to the general
trajectory generation problem and its implementation. This chapter presents the results from
closed-loop experiments of the controller applied to both the single-track model and the high-
fidelity VTM plant for the A-double combination. In all experiments the solution time of the
control algorithms is tracked in order to assess the real-time performance. The main goal of
this chapter is to show the results for common highway maneuvers in insightful conditions and
to compare the closed-loop performance for both plant models. We try to find the limitations
for the use of the trajectory generator and how it can be improved in the future.

The tuning of the optimal control problem (OCP) is kept constant for the majority of the
results presented in this chapter. In Table 6-1 the normalized weighting terms are depicted.
For the evasive maneuver the tuning is slightly modified, the changes are introduced in the
respective section.

In Section 6-1, a lane change is considered without the presence of surrounding traffic. Lane
changes are executed on a straight road and on a road of constant curvature. Closed-loop
simulations with both the single-track prediction model and the high-fidelity model show the
general performance of the control algorithm to vehicle models of different complexity.

The second scenario presents the merging capabilities of the trajectory generator. The truck
merges in a lane for which it needs to slow down. In Section 6-2 simulation results with the
high-fidelity plant model are discussed.

The third scenario is focused to discuss the functionality of the controller to execute an evasive
maneuver. In Section 6-3 results are presented for simulations of a return to lane maneuver of
the single-track model on a curved road and an equivalent abort maneuver of the high-fidelity
vehicle model on a straight road.

Finally, Section 6-4 is focused to show the lane center tracking performance of the trajectory
generator in a road of constant increasing curvature.

To fully understand the figures from simulation results, one must be familiar with the naming
convention. We will find abbreviations such as STM, VMM, etc. These abbreviations are to
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Table 6-1: Standard tuning configuration of controller for the majority of the simulation results.

Parameter Symbol Value

Prediction horizon sf 100[m]
Discrete step size ∆s 1[m]
Cost weight: d1 Kd1/nd1 800/2
Cost weight: jy,1 Kjy,1/njy,1 100/3
Cost weight: vx,1 Kvx,1/nvx,1 50/17
Cost weight: ax,1,des Kax,1,des/nax,1,des 20/1.75
Cost weight: δ̇ Kδ̇/nδ̇ 5/0.05
Cost weight: jx,1,des Kjx,1,des/njx,1,des 5/0.05
Cost weight: ∆so,2 K∆so,2/n∆so,2 4200/1
Cost weight: ∆so,3 K∆so,3/n∆so,3 4200/1
Cost weight: ∆so,4 K∆so,4/n∆so,4 4200/1

clarify where signals have been probed in the model. Especially the high-fidelity Volvo Truck
Model (VTM) plant consists of multiple modeling layers for the actuators and the vehicle
body dynamics. For example, the steering angle that is requested by the trajectory generator
will first be fed to an actuator allocation algorithm that evaluates the request. The allocation
step decides how the user demand can be best achieved considering the different actuators,
such as the steering, power train and brakes. These signals are then fed to models for the
propulsion, brakes and steering actuation. Finally, the steering angle is applied to the wheels
and its effect propagates through the multi-body dynamic system. Hence, the steering angle is
rather an ambiguous term, it can either be the request to the control allocation algorithm, the
reference to the steering actuator and the actual road wheel angles of the wheels themselves.

In Figure 6-1 a schematic representation is given of the signal propagation in the high-fidelity
plant and single-track A-double combination model.

• Traffic Situation Management (TSM): in this work, the full functionality of this layer is
attributed to the trajectory generator. Hence, the signals that are accompanied with the
abbreviation TSM are from the control algorithms discussed in this thesis. It provides
a motion request to the VMM layer.

• Vehicle Motion Management (VMM): this is the control allocation algorithm that takes
input from the TSM and converts the request to low-level control actuator signals. A
convex constrained optimization is the basis for this algorithm. In [28] one finds more
details on this algorithm.

• Volvo Truck Model (VTM): a library of truck models. In case of this thesis work, this is
the high-fidelity plant for the multi-body system that models the A-double combination.
One can consider the measures from the VTM plant are closest to what one would
measure in real-life experiments.
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Vehicle Motion Management

Traffic Situation Management

Motion Support

Volvo Truck Model

Motion
capabilities

Motion
request

Actuator
requests

Actuator
capabilities

Actuator output

(a) Architecture for high-fidelity plant model.

Traffic Situation Management

Single track model

Motion request

(b) Architecture for the single track model.

Figure 6-1: Architectural diagrams of signals for the two vehicle models in Simulink.

• Single Track Model STM: the nonlinear single-track model of the A-double combination
that is introduced in Section 2-2. In case the single-track model is used, no actuator
models for steering, propulsion and brakes are modeled. This perfectly reflects the
prediction model in the temporal domain.

• Motion Support: the models for the propulsion, transmission, brakes and the steering
actuation. No abbreviation is assigned because no states are tracked in this subsystem.

• Cruise controller (CC): the cruise controller is technically part of the TSM. It consists
of a PID controller that is designed to track a velocity reference. It interfaces with the
VMM by contributing to the computation for the requested longitudinal acceleration
reference.

Many figures show a set of predictions for the trajectory of the state. These predictions are
indicated with dashed cyan lines. Not every prediction is plotted, the prediction signals are
decimated (to approximately one every two seconds) to keep plots tidy. Recall that predictions
from the nonlinear program (NLP) are made along the road geometry. The time equivalent
prediction is obtained by relating each sample to a point in time:

t0 + t(s1) = t0 +
∫ s1

0

dt

ds1
ds1 (6-1)

where t0 is the time at the start of the prediction step.

The so-called desktop simulations are run on a notebook pc1, results are obtained in closed
simulations in Simulink and Matlab 2014a. The controller is compiled to a mex-file using
GCC-4.7 with the most drastic optimization option (-O3 ). Code generated by the ACADO
Toolkit supports parallel execution of the model integration. This can significantly reduce
the time consumed by the so-called preparation phase. In Simulink this option is not enabled

1Desktop simulations: Arch Linux, Intel i7-2630QM processor, 12GB DDR3-1333MHz memory
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because it caused unexpected behavior, that was most likely due to the combination of the
compiler and the Matlab-libraries. It must be considered at all times that the simulations
on the desktop computer are accompanied by lots of tasks on the operating system. This
implies that any spike or other strange behavior in the solution time of the control algorithm
can be caused by unrelated background processes. In an embedded implementation.

6-1 Lane change maneuver

The lane change maneuver is executed by providing the controller with an external lane-
change request. Since no other vehicles are in the proximity of the truck, the decision maker
immediately approves to initiate the maneuver. Approximately 5 seconds after the lane change
request, the lateral distance reference moves from the initial lane to the target lane. The lateral
distance off-set reference is pre-optimized for jerk using the lateral reference calculation step.
During the lane change itself, the lateral distance constraints are temporarily relaxed to allow
for a lane change to take place without violating lateral position constraints. In this section
we will evaluate results from such lane change on both a straight road and on a curved road.
The value for the so-called lane change duration ∆tlc is identified from test scenarios with
human drivers in the Swedish National Road and Transport Research Institute (VTI) motion
simulator with the A-double combination. It is identified that a lane change consumes 9.7[s].
This tuning parameter is of relevance in the reference calculation for the lateral position.

6-1-1 Simulations with single-track model

Lane change on straight road

We start with the lane change maneuver on a straight road with simulations on the single-
track model. In Figure 6-2 and Figure 6-3 eight sets of signals are plotted against time.

Table 6-2: Details for the lane change scenario on a straight road for the controller in closed-loop
with the prediction model.

Parameter Symbol Value

Velocity vx,1 20[m/s]
Curvature κR 0[rad/m]
Lane width 3.7[m]
Lane change request time 25[s]

The lane change is requested at 25[s], not much later the vehicle actually moves to the adjacent
lane. We see that the trajectory generator plans the trajectory ahead of time almost perfectly.
The dashed lines, that represent the prediction, overlap the actual trajectory. This is also
reflected by the KKT-value, it is nearly zero at all time. Which means that we are close to
an optimum of the original NLP and all constraints are satisfied. One spike is visible in the
KKT-value when the truck crosses the lane boundary. The reference frame for the lateral
position in the solution algorithm is shifted to the new lane, causes a small disturbance.
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The jerk approximation in the OCP seems to accurately represent the finite differences ap-
proximation for the time derivative of the lateral acceleration. From the results we see that
the lateral jerk perceived at the front axle of the tractor is very low. At the same time, the
lateral reference trajectory is tracked well. We cannot underestimate the contributions of
a well-initialized reference for a lane change maneuver. If a step change was employed on
the reference, it would be much harder to make a trade-off between tracking the lane center
and obtaining an acceptable lane change trajectory. The model predictive control (MPC)-
algorithm perfectly complements the preparation step by planning the complete trajectory
for all states and input to track this jerk-optimal lateral distance profile.

The lateral acceleration in each unit stays very low, far from the imposed limit of 2.5[m/s2].
One can observe a slight effect of the rearward amplification (RWA), the lateral accelerations
increase a little towards the rear unit and delayed time.

The solution time of the complete algorithm is far within the maximum solution time of
50[m/s], the time required to travel 1[m] with a speed of 20[m/s]. The solution-time of the
feedback-step is an order of magnitude shorter than the sampling time. This is what we
expect from the Real-Time Iteration (RTI)-algorithm. The good performance is no surprise,
the trajectory is far within the feasible solution space spanned by the constraints. The
intermediate quadratic program (QP) requires very little, to no iterations to converge since
active set changes are of little concern. For the lane change maneuver, without modeling-
mismatch and an optimum away from the constraints, we conclude that the controller is
applicable in real-time.

Let us now continue to a slightly more challenging scenario with the single-track vehicle
model, a lane change on a curved road.
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(a) Lateral position of the front axle of the tractor
with respect to the road geometry.
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(b) Lateral position of the rear axle of the second
semi-trailer with respect to the road geometry.
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(c) Steering angle rate.
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Figure 6-2: Results from a lane change on a straight road, the trajectory generator is in closed-
loop with the single-track model. Bounds on signals are indicated with red lines, if appropriate in
the situation.
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(b) Lateral acceleration in all units.
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Figure 6-3: Results from a lane change on a straight road, the trajectory generator is in closed-
loop with the single-track model. Bounds on signals are indicated with red lines, if appropriate in
the situation.
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Lane change on road of constant curvature

In the second scenario, the single-track model changes lanes on a curved highway. The
curvature is set to 0.003[rad/m], which is equivalent to driving a circle with a radius of 333[m].
A steady-state lateral acceleration of 1.2[m/s2] is to be expected due to the road curvature
alone. This can be considered as a high acceleration for the driver comfort. A natural action
is to slow down if curves become much tighter. In Table 6-3 the details of the scenario are
summarized.

Table 6-3: Details for the lane change scenario on a curved road for the controller in closed-
loop with the prediction model. Cost weights for the distance keeping are not listed because of
irrelevance in the scenario.

Parameter Symbol Value

Velocity vx,1 20[m/s]
Curvature κR 1/333[rad/m]
Lane width 3.7[m]
Lane change request time 25[s]

Figure 6-4 and Figure 6-5 depict a selection of signals during the lane change maneuver. We
observe that the performance is again very acceptable. Between 10[s] − 15[s] the truck is
entering the curve, any dynamics in that range of time are thus irrelevant to the lane change.

The system does not converge perfectly to the lane center. The few centimeter tracking
error can be perfectly explained by the assumptions that are introduced in the spatial model
formulation. Most notably, these are the assumption that κR,1d1 = 0 and that the distance
s1 − s4 = constant. We recognize in the evolution of the KKT-value over time that the
solution converges close to an optimum for the NLP. Like in the lane change case on a
straight road, a small glitch in the solution algorithm occurs when the truck enters the new
lane. This happens at approximately 35 seconds and seems to affect the control action for
the steering angle rate. In the measurement of the jerk a similar peak is observed, the jump
may be noticeable by the truck driver. The author expects that properly manipulating the
intermediate solution will avoid these jumps.

The lateral acceleration transient is close to identical in the case of the lane change on a
straight road, shifted with the steady-state lateral acceleration of ∼ 1.2[m/s2] due to the road
curvature. Jerk is hardly influenced by driving a curved road, rather than a straight road.
The optimal trajectory for a lane change thus neither.

Computational performance of the solution algorithm is very similar to the straight lane
change simulations. Real-time applicability is no concern. We observe little spikes in the
preparation-step of the algorithm. It is very likely these are not related to the algorithm
execution time and can be attributed to the other processes on the PC.

We see that the control algorithm perfectly controls the prediction model. Next the perfor-
mance for the same two maneuvers are evaluated on the high-fidelity vehicle model of the
A-double combination.
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Figure 6-4: Results from a lane change on a curved road (to the left), the trajectory generator
is in closed-loop with the single-track model. Bounds on signals are indicated with red lines, if
appropriate in the situation.
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Figure 6-5: Results from a lane change on a curved road (to the left), the trajectory generator
is in closed-loop with the single-track model. Bounds on signals are indicated with red lines, if
appropriate in the situation.
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6-1-2 Simulations with high-fidelity plant

Lane change on straight road

We now evaluate the performance of the trajectory generator executing a lane change maneu-
ver on the high-fidelity plant. We start with the straight road, the same velocity of 20[m/s] is
considered. In Figure 6-6 and Figure 6-7 we observe that the prediction is very close to the
actual trajectory for all signals. The overall performance of the lane change with the VTM
plant is highly acceptable. The KKT-value evolution has the same trend but seems magnified
with approximately a factor five compared to results with the single-track model. Neverthe-
less, it converges nicely an order of magnitude blow unity. The solution time of the algorithm
is about the same in the simulations with the single-track model, real-time performance is
absolutely no issue.

The measured lateral jerk jy,1,meas is in the same range as the results with the single-track
model. However, the approximation of the jerk is much higher. It is because of the lateral
distance reference calculation step that the overall behavior is very similar. If a step change
in the reference would have been applied, we could have expected different results. More
surprisingly is that the lateral jerk approximation does not converge back to zero after the
lane change is completed. This is because the jerk approximation relies on the single-track
vehicle model to define the quantity θ̈0. Apparently the current measured state of the A-
double combination would cause a rotational acceleration in the tractor. This is not observed
in the high-fidelity plant model.

The prediction of the steering angle rate is of slight less quality compared to results from
the simulations with the single-track model. Two possible reasons are: model inaccuracies in
the prediction model and secondly, because an optimum is not perfectly achieved as visible
in the KKT-value. This can indicate that suboptimal trajectory is planned by the solution
algorithm for the NLP. On the other hand, the prediction of the steering wheel angle is close
to perfect.

Like with the single-track model, the difficulty of the maneuver will now be increased. The
high-fidelity model is controlled on a constant curvature road. We will see that controller
performance is prone to more discussion in this scenario.
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Figure 6-6: Results from a lane change on a straight road, the trajectory generator is in closed-
loop with the high-fidelity model. Bounds on signals are indicated with red lines, if appropriate
in the situation.
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Figure 6-7: Results from a lane change on a straight road, the trajectory generator is in closed-
loop with the high-fidelity model. Bounds on signals are indicated with red lines, if appropriate
in the situation.
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Lane change on road of constant curvature

The second lane change scenario for the high-fidelity plant is on a road of constant curvature
of 1/333[rad/m]. In Figure 6-8 and Figure 6-9 we see the tracking performance of the trajectory
generator has decreased. The off-set in the lateral position tracking becomes notable. Also,
the predictions are now seriously deviating from the measured trajectories. Whereas the KKT-
value of the optimization result previously was in the order of unity, it has now increased an
order of magnitude. The KKT-value fails to converge to zero, which indicates that optimality
for the predicted trajectory is not achieved. Let us try to understand this by discussing the
measured signals.

The lateral jerk profile in Figure 6-9a measures similar magnitudes as in the straight road lane
change. The behavior in the range of 10 − 15[s] can be ignored, it reflects the jerk behavior
when the curve is entered. The approximation of the jerk is now much worse. As proposed in
the straight lane case for the lane change, the approximation for the rotational acceleration of
the tractor as a function of the vehicle model states can explain this. The truck its state, the
articulation angles, their time derivatives and the side slip would cause a change of yaw rate
in the single-track model. Whereas the yaw acceleration of the high-fidelity plant is nearly
zero. The jerk approximation clearly shows its limitations here.

The VMM-layer sets a reference to the low level steering control. The road wheel angle is
not one-to-one to the actual measurement. It must be noted though, that a single steering
angle signal is rather ambiguous in case of the high fidelity model. In reality, two separate
wheels are actuated. The steering compliance and suspension dynamics make the effective
road wheel angle change. We also see that the prediction of the control does not agree
with the actual state evolution, see for example the steering signals and the lateral distance
trajectories gathered in Figure 6-8. We have seen that the KKT-value did not converge to
zero either. This in fact means that the overall sequential quadratic programming (SQP)
of the RTI-scheme does not converge to the optimal solution. The suspicion rises that the
Hessian approximation in the preparation step is inaccurate. Recall from the discussion on
the constrained Gauss-Newton algorithm in Section 4-3-3 that we have recognized potential
occasions that the Hessian approximation is wrong. When the objective value of the NLP is
non-zero, the Gauss-Newton algorithm is not entirely appropriate to use. From this, we can
conclude that the prediction inaccuracy is likely due to the failure to track the lane center
and the faulty lateral jerk approximation. Both induce a rise in the objective value of the
NLP.

Overall we can say that the controller does achieve acceptable behavior. A low-jerk transition
is made to a new lane and lane-keeping is achieved reasonably well. The tracking error is
very limited and no constraints are violated. We have only considered the lane change at a
velocity of 20[m/s], in Section 6-4 results of a lane keeping scenario is considered on a road of
constant increasing curvature. This allows us to informally evaluate the effect of the model
mismatch on lane center tracking. But first, the effect of tuning the cost function is discussed
with simulations on the single-track model.
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Figure 6-8: Results from a lane change on a curved road (to the left), the trajectory generator
is in closed-loop with the high-fidelity model. Bounds on signals are indicated with red lines, if
appropriate in the situation.

Master of Science Thesis N.J. van Duijkeren



78 Simulation results and discussion

Delft Center for Systems and Control

10 20 30 40 50

0

1

2

Time [s]

[m
/
s3 ]

jy,1f,meas (VTM)
jy,approx (TSM)

(a) Lateral jerk in front axle of tractor

Delft Center for Systems and Control

10 20 30 40 50

0

0.5

1

1.5

Time [s]

[m
/
s2 ]

ay,1f,meas (VTM)
ay,2,meas (VTM)
ay,3,meas (VTM)
ay,4,meas (VTM)

(b) Lateral acceleration in all units.

Delft Center for Systems and Control

10 20 30 40 50
10−1

100

101

Time [s]

[k
kt

]

ACADO KKT value (TSM)

(c) Evolution of the KKT value.

Delft Center for Systems and Control

10 20 30 40 500

10

20

30

40

50

Time [s]

[m
s]

Preparation step (TSM)
Feedback step (TSM)
Complete step (TSM)

(d) Solution time for the different steps in the solu-
tion strategy.

Figure 6-9: Results from a lane change on a curved road (to the left), the trajectory generator
is in closed-loop with the high-fidelity model. Bounds on signals are indicated with red lines, if
appropriate in the situation.
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6-1-3 Effect of cost function tuning on lane change maneuver

One of the main appealing advantages of optimization-based control is the intuitive tuning
phase. The state amplitudes that one would like to reduce or increase are directly available
in the cost function of the optimization. In this section, simulations are executed on the
single-track model for the A-double combination. Four sets of tuning parameters, weighting
terms for the least-squares cost function, are considered and applied in the NLP formulation.
Only the terms that affect the lateral dynamics directly are varied.

Note that the setup for the controller that is used in other parts of this thesis are not solely
tuned on a lane change maneuver. A trade-off is made between good tracking performance
of the center line in curved roads and the lane change trajectory. A very mild control setting
may result in a very smooth lane change, but at the same time result in fishtailing on curved
roads because of poor lane keeping. That said, in Table 6-4 the different cost settings are
listed.

Table 6-4: Cost settings for different lane change simulations.

# Kd1/nd1 Kjy,1/njy,1 Kδ̇/nδ̇

1 100/2 100/3 5/0.05
2 1000/2 100/3 5/0.05
3 100/2 1000/3 5/0.05
4 10/2 1000/3 5/0.05

Simulations for the different cost settings in Table 6-4 are executed. The remainder of the
weights in the cost function are identical to the other simulations in this chapter. Also, lateral
reference calculation is in place to pre-optimize the lateral trajectory for minimum jerk.

See the results of the four cost settings in Figure 6-10. They show a trend of decreasing jerk
when the trade-off shifts from a preference to decrease tracking error, to penalizing jerk. The
lateral distance trajectories show increasing oscillatory behavior. Hence, the cost function
tuning seems to have the desired effect.

The next topic of discussion is merging. In that scenario the optimization by the trajectory
generator for longitudinal dynamics is visible. The effect of surrounding traffic is shown in
closed-loop simulations with the high-fidelity vehicle model.
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Figure 6-10: A comparison of a lane change maneuver with four different cost function settings.
The results are from closed-loop simulations with the single-track model.
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6-2 Merging maneuver

The merging maneuver is a problem of increased complexity compared to the regular lane
change. To focus on the longitudinal trajectory planning capabilities of the planner, only
straight road conditions are executed. Only simulations with the high-fidelity plant model
are discussed, simulation results with the single-track model are almost identical. The outline
of the scenario is as follows:

The A-double combination drives on the left lane of a 70[km/h] highway. The truck initially
drives 20[m/s] and approaches a vehicle in the same lane driving 19[m/s]. Meanwhile, in the
adjacent lane to the right, two vehicles drive in front of each other. One is 40[m] ahead and
one is 150[m], following the exact same velocity profile of the truck in the first 17[s]. After
these 17[s], both vehicles in the adjacent lane slow down to 15[m/s]. A lane change is requested
to merge between the two vehicles.

In this maneuver, multiple steps in the control algorithm actively contribute to the results.
Firstly, the reference calculation for the longitudinal velocity. Secondly, the tuning of the
NLP to keep distance from the three vehicles of interest. For a recapitulation of the so-called
vehicles of interest, the reader is referred to Section 3-3. The tuning of the OCP is identical
to the lane change simulations. In Table 6-5 one finds the selection of tuning parameters
relevant to the merging maneuver.

Table 6-5: Details relevant for the merging maneuver of the A-double combination modeled
using the VTM-plant.

Parameter Symbol Value

Reference calculation deceleration gap τlo 3.0[s]
Reference calculation acceleration gap τhi 5.0[s]
Sigmoid activation distance: ∆so,2 τo,2 2.0[s]
Sigmoid activation distance: ∆so,3 τo,3 2.5[s]
Sigmoid activation distance: ∆so,4 τo,4 2.0[s]

6-2-1 Simulation with high-fidelity plant

A simulation is executed for the merging maneuver with the high-fidelity plant. Let us first
focus on the results in Figure 6-11, it visualizes the distances of the surrounding vehicles
measured from the front axle of the tractor. Also, we see a plot of the longitudinal velocity
of the A-double combination, and the velocity reference profile for the first shooting node of
the NLP. The scenario is relatively complex, let us go through the results in chronological
order:

1. The truck drives on the left lane of the highway with 20[m/s].

2. Two vehicles in the adjacent lane to the right, obstacles 3 and 4, drive with the same
velocity as the truck. At 17[s], their speed rapidly adapts to 15[m/s].
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3. At 25[s] a signal is sent to the controller that a lane change is desired. The decision
making algorithm starts considering this option.

4. At approximately 26s the vehicle in front of the A-double combination, obstacle 2,
is closing in and the reference calculation step advises the truck to slow down to the
velocity of the leading vehicle, 19[m/s].

5. It is not before 40[s] that a lane change option is detected. The reference calculation
adapts the desired velocity to the leading vehicle in the adjacent lane, since this vehicle
drives slower.

6. At the same time, the OCP-terms for distance-keeping become active. The truck finds
a position between the two vehicles, suitable for a lane change.

7. As soon as the lane change is fully completed, at about 60[s], the trailing vehicle is
disregarded from the OCP and it is optimal to obey the velocity from the reference
calculation.

8. The gap between the A-double combination and obstacle 4 is adapted to a more com-
fortable distance. In Table 6-5 one can see this preferred distance is specified to 3[s].

Note that the trailing vehicle is expected to slow down for the A-double combination as soon
as the lane change is completed. This does not occur, because no human driver model is
present in the simulation. The trailing vehicle and the truck will almost collide at the end of
the simulation. In real-life this very unlikely to happen, the distance profile of vehicle ∆so,3
can be ignored after 60[s].
In Figure 6-12 we observe that the lane change maneuver itself is executed at approximately
45[s], five seconds after the vehicles in the adjacent lane are considered in the problem. The
lateral trajectory is smooth and follows the results from the lane change maneuver without
surrounding obstacles on a straight road discussed earlier. Additionally, in Figure 6-13 some
general diagnostics of the optimization are shown. The solution time is still within safe bounds
from the maximum solution time.
The KKT-value does not converge to zero during the merging maneuver itself. This can be
explained by the inaccurate Hessian approximation of the Gauss-Newton algorithm in case the
objective of the NLP does not converge to zero. This is especially visible between 40−60[s] in
the simulation, the optimum of the NLP is in a non-zero objective value. There is an optimal
position between the three vehicles under consideration. The Hessian approximation for the
QP is in this case biased, the effect is visible in the prediction of the longitudinal dynamics.
The prediction of the longitudinal velocity and the longitudinal acceleration, is mildly put,
not nearly matching the actual behavior. As soon as the lane change is completed the ob-
jective function decreases significantly, this can be observed in Figure 6-13. Immediately, the
prediction of the longitudinal trajectory increases in accuracy.
Another side-effect of the RTI scheme is visible in the results, at around 60[s] the problem
for the OCP suddenly changes. The trailing obstacle is suddenly removed from the cost
formulation. This causes the previous solution to be highly non-optimal in the next iteration.
Although the optimization recovers very quickly, the solution time is temporarily longer. If
many unexpected phenomena occur, this may cause potential problems for the applicability
of the RTI scheme.
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We conclude that the formulation of the predicted collision free corridor achieves our inten-
tions. Be aware that the scenario is tailored to be compatible with the rectangular collision
free corridor described in Section 3-3-4. The vehicles in the goal lane of the lane change drive
slower than the traffic in the departure lane. In case this would not be true, the controller
could fail. Additionally, the obstacles drive with a constant velocity throughout the merging
maneuver. This is exactly as modeled in the OCP, but it does not necessarily reflect realistic
behavior.

The results of the merging maneuver are at best a proof of concept. Future research is
necessary for alternative formulations, such as the sigmoid shaped predicted collision free
corridor (Section 3-3-4). Alternative formulations for the corridor and more accurate models
for the surrounding traffic can enable less conservative decision making.

We have discussed the standard functionalities of the trajectory generator. Let us now shift
our focus to challenge the algorithm. First, a so-called abort maneuver is simulated.
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Figure 6-11: Results from a merging scenario to the right, the trajectory generator is in closed-
loop with the high-fidelity model.
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(a) Lateral position of the front axle of the tractor with respect
to the road geometry.
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(b) Lateral position of the rear axle of the second semi-trailer
with respect to the road geometry.

Figure 6-12: Results from a merging scenario to the right, the trajectory generator is in closed-
loop with the high-fidelity model. Bounds on signals are indicated with red lines, if appropriate
in the situation.
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Figure 6-13: Results from a merging scenario to the right, the trajectory generator is in closed-
loop with the high-fidelity model. Bounds on signals are indicated with red lines, if appropriate
in the situation.
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6-3 Evasive return to lane maneuver

The abort maneuver, also referred to as the evasive return to lane maneuver, is the emergency
capability of the trajectory generator. Assume we are in the almost the same scenario as the
merging procedure that is described in the previous section. The difference is, that the
vehicles in the adjacent lane now drive 18[m/s]. Half-way the lane change, the leading vehicle
in the departure lane suddenly slows down to 14[m/s]. The vehicles in the adjacent lane
do not slow down. Our distance with obstacle 2, ∆so,2, decreases quickly. If we do not
respond to this changed scenario promptly, the truck will have a problem. The union of the
half-spaces {s1 |∆so,2 ≤ ∆so,2} and {s1 |∆so,3 ≤ ∆so,3} shrinks when obstacle 3 starts to
overtake obstacle 2.

As a response to this changed conditions, the controller executes a so-called abort maneuver.
The vehicle tries to return to the departure lane as quickly as possible. No lateral position
reference calculation is performed and the jerk in the cabin is expected to be quite severe.
The lateral accelerations observed in the axles of the different units are also expected to be
much higher.

The cost function is re-tuned in order to avoid too aggressive maneuvers. As soon as evasive
maneuver is initiated, the weighting on the lateral distance d1 and the lateral jerk jy,1 is
adjusted. The controller cannot rely on the reference calculation path to generate a smooth
reference trajectory. The weighting of the lateral position off-set and the lateral jerk are
changed, see Table 6-6.

Table 6-6: The changed cost function weights for the abort maneuver.

Parameter Symbol Value

Cost weight d1 Kd1/nd1 100/2
cost weight jy,1 Kjy,1/njy,1 50/3

In a production implementation, one could change the cost function online. In the presented
results, the cost function of OCP is hard-coded for increased computational efficiency. Hence,
in the trajectory generator implementation of this thesis, the cost function weights are static.

Simulations are executed on both the single-track model and the high-fidelity plant. The
scenarios are not identical. The simulation with the single-track model is executed on a
curved road. Whereas the high-fidelity plant performs the abort maneuver on a straight
road.

6-3-1 Simulation with the single-track model on a curved road

Results of the simulation for the evasive maneuver with the single-track model are depicted
in Figure 6-14, Figure 6-15 and Figure 6-16. The results are from a situation driving a curved
road of 0.003[rad/m], which is identical to the curvature in the lane change discussed previously.

The scenario starts with a merging maneuver. At 25[s] the lane change is requested, it is
approved immediately since the gaps with obstacles 3 and 4 in the adjacent lane are sufficient.
At 30[s] the lateral reference shifts from the departure lane to the goal lane to the right. The
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velocity is decreased to match the speed of the vehicles in the adjacent lane. At 36[s] obstacle
2 starts to rapidly slow down to 14[m/s], for an unknown reason. It is considered that an
abort maneuver is appropriate, at 38[s] the maneuver is actually triggered. Immediately the
lateral distance reference returns to the departure lane. Obstacles 3 and 4 are removed from
the NLP formulation, only the leading vehicle in the departure lane (obstacle 2) is left under
consideration.

The A-double combination returns to the departure lane perfectly, almost no overshoot is
observed. The tracking error with the lane center is negligible after the abort maneuver is
finished. The curved road causes a steady-state lateral acceleration of approximately 1 −
1.3[m/s2] for the velocity range of the scenario. This off-set in the lateral acceleration causes
the activation of the lateral acceleration constraints for the first unit and the rear axle of the
second semi-trailer. In Figure 6-14b we observe that the generated trajectory seemingly obeys
the constraints in the optimization algorithm. In fact, the constraints are slightly violated. As
visible in Figure 6-16c, the QP solver returns an exit flag that the optimization is infeasible for
a considerable amount of time. However, the trajectory generator remains working properly
and the abort maneuver is successfully completed.

The lateral jerk is depicted in Figure 6-14a. At the time the abort maneuver is initiated a
sharp peak is visible. This peak can be explained by two causes. First, the rapid change in the
reference actually requires an aggressive steering maneuver to return to the lane. Secondly,
the optimum to the optimization suddenly shifts a lot. The RTI needs to re-converge to an
optimal trajectory. The steering may be highly non-optimal to the NLP.

At the time the abort maneuver is request, the solution time spikes and violates the 50[ms]
limit. The QP seems to be the main cause for the increased computation time. The increased
solution time is explained by the sudden change of the overall NLP problem. It would be
possible to avoid this, two instances of the trajectory generator can run side-by-side. One
for the abort maneuver and one for normal operation. We could continuously optimize for
a return-to-lane trajectory, even if it is not requested. The SQP for this separate problem
would already have a close to optimal trajectory available.

We can conclude that the trajectory generator can successfully execute an evasive maneuver
on a curved road in closed-loop with the single track model. Next, results for the high-fidelity
plant in an abort maneuver on a straight road are discussed.
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(a) Lateral jerk in front axle of tractor
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(b) Lateral acceleration in all units.

Figure 6-14: Results from an abort maneuver on a straight road, the trajectory generator is
in closed-loop with the single-track model. Bounds on signals are indicated with red lines, if
appropriate in the situation.
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(a) Lateral position of the front axle of the tractor
with respect to the road geometry.
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(b) Lateral position of the rear axle of the second
semi-trailer with respect to the road geometry.
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(c) Longitudinal velocity of the tractor in the front
axle.
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Figure 6-15: Results from an abort maneuver on a straight road, the trajectory generator is
in closed-loop with the single-track model. Bounds on signals are indicated with red lines, if
appropriate in the situation.
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(c) Exit flag of qpOASES step. Near 40[s] the QP is
infeasible.
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(d) Solution time for the different steps in the solu-
tion strategy.

Figure 6-16: Results from an abort maneuver on a straight road, the trajectory generator is
in closed-loop with the single-track model. Bounds on signals are indicated with red lines, if
appropriate in the situation.
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6-3-2 Simulation with the high-fidelity plant on a straight road

The second simulation for the abort maneuver is with the high-fidelity vehicle model of
the A-double combination. It drives a straight road, the scenario is otherwise identical to
the single-track model simulation for the abort maneuver. Curved road simulations have
been executed, but the trajectory generator fails to complete the maneuver without violating
constraints and needs more work.

Like in the scenario with the single-track model, at 25[s] a merging maneuver is requested.
Since obstacles 3 and 4 are both sufficiently far away, the request is immediately approved.
The lateral distance reference starts to move to the right lane at 30[s]. The A-double combi-
nation decelerates to 18[m/s] in order to adapt for the velocity of the vehicles in the adjacent
lane. At 36[s] obstacle 2 starts to decelerate to 14[m/s]. At 38[s] the evasive maneuver is
initiated. The lateral distance reference immediately shifts to the departure lane, without
performing reference calculation.

In Figure 6-17a and Figure 6-17b we observe that the A-double combination is successfully
brought back to the departure lane. The vehicle respects the lane boundaries and oscillations
disappear over a time span of approximately 15− 20[s]. Notice that the oscillations are fare
more abundant than with the single-track model. It is expected that acceleration transients
with an amplitude of 2[m/s2] cause dynamics that are not modeled in the prediction model to
influence the behavior of the truck.

The approximation of the jerk seems to successfully capture the trend of the measured lat-
eral jerk in the high-fidelity model. As observed in previous simulations, the jerk is over-
approximated. The high jerk levels in the range of 2−3[m/s3] is likely perceived as unpleasant
by the truck driver.

In general the abort maneuver seems to be executed successfully. The computation time
stays within bounds and constraints are complied with. However, not all intermediate QP
steps have been feasible. In fact, in Figure 6-19c it is depicted that the exit flag indicates
infeasibility in many occasions between 40− 46[s]. Even though the actual path stays within
bounds, the QP fails to find a feasible trajectory prediction.

The abort maneuver functionality clearly needs extra work. However, the trajectory generator
is shown to be able to execute a return to lane maneuver.

In the next section, the last simulation results are discussed. The trajectory generator is
applied to the high-fidelity plant to a road of constantly increasing curvature.
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(a) Lateral position of the front axle of the tractor with respect
to the road geometry.
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(b) Lateral position of the rear axle of the second semi-trailer
with respect to the road geometry.

Figure 6-17: Results from an abort maneuver on a straight road, the trajectory generator is
in closed-loop with the high-fidelity model. Bounds on signals are indicated with red lines, if
appropriate in the situation.
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(c) Longitudinal velocity of the tractor in the front
axle.
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Figure 6-18: Results from an abort maneuver on a straight road, the trajectory generator is
in closed-loop with the high-fidelity model. Bounds on signals are indicated with red lines, if
appropriate in the situation.
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(a) Lateral jerk in front axle of tractor
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Figure 6-19: Results from an abort maneuver on a straight road, the trajectory generator is
in closed-loop with the high-fidelity model. Bounds on signals are indicated with red lines, if
appropriate in the situation.
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6-4 Lane keeping on increasing curvature road

The high-fidelity plant model mismatch has shown to have an effect on the lane center tracking
performance. In an attempt to test this tracking performance we have the high-fidelity vehicle
model to drive on a road of constantly increasing curvature. The A-double combination starts
on a straight road with a velocity of 20[m/s]. The maximum curvature reached is approximately
1/64[rad/m]. See Figure 6-20 for an illustration of the road profile.
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Figure 6-20: Illustration of the road profile for the simulation with the high-fidelity model on an
increasing curvature road. The arrow indicates the driving direction.

Until 25[s] the velocity of the truck is kept at 20[m/s]. Due to the increasing curvature, the
lateral acceleration increases to 1.5[m/s2]. The lateral distance offset of the tractor increases
as the curvature grows. To maintain the steady-state lateral acceleration of 1.5[m/s2], the
velocity is decreased by the trajectory generator. In Figure 6-21a we see clearly how the
lateral position behaves and how the longitudinal velocity is decreased while the curvature
grows. The profile gives an interesting insight to the tracking error. Maintaining a constant
lateral acceleration, the off-set gradually becomes smaller. For low velocities, the controller is
better able to keep center lane. But inward off-tracking becomes significant at low velocities
as well. One may consider to penalize the distance off-set of the rear axle of the second
semi-trailer from the lane center.

The lateral jerk and its approximation are presented in Figure 6-22d, we observe that the
lateral jerk measurement is close to zero at all times. The approximation however becomes
increasingly inaccurate for higher road curvature. The state approximation θ̈0 seems to get
worse for increasing curvature, it is unlikely due to the decreasing velocity. The KKT-value
of the NLP solution increases, which indicates that the quality of the solution decreases. This
can be explained by the increase of lateral jerk in the approximation and the convergence
issues of the Gauss-Newton algorithm with non-zero objective values.

Finally, the distance s1f − s4 is shown in Figure 6-22b. The distance between the front axle
of the tractor and the rear axle of the second semi-trailer in a straight orientation is 27.35[m].
Recall the assumption in the OCP-implementation that the distance s1f − s4 is constant. We
observe that the variation in this scenario is very small. For long horizons, such a small error
can lead to significant drift in the lateral distance trajectory. But for a short horizon this is
not an issue, the assumption is considered valid.
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(a) Lateral position of front axle of tractor and rear axle of second semi-
trailer.
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Figure 6-21: Results from lane keeping on a constantly increasing road curvature. Trajectory
generator is in closed-loop with high-fidelity plant model.
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(d) Lateral jerk in front axle of tractor.

Figure 6-22: Results from lane keeping on a constantly increasing road curvature. Trajectory
generator is in closed-loop with high-fidelity plant model.
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6-5 Summary

A considerable number of simulations are discussed in this chapter. It is attempted to identify
the strengths and weaknesses of the RTI-algorithm applied to the A-double combination in
the most common highway maneuvers. From the results we mainly learned the following:

• The RTI scheme can control the single-track model barely losing optimality of the NLP
over time.

• Despite a slight model-mismatch, a high-fidelity plant model of the A-double combina-
tion is successfully controlled in closed-loop with the trajectory generator. The trajec-
tories were directly applied to the low-level steering control and the velocity tracker.

• Real-time performance for the receding horizon optimization-based trajectory generator
is achieved. Solution times are in the range of 28− 25[ms] for the complete step and a
feedback delay of approximately 3[ms] is maintained.

• The cost function of the OCP successfully minimizes lateral jerk and achieves reference
tracking of lateral distance and speed. The jerk approximation is inaccurate on highly
curved roads when applied to the high-fidelity plant.

• With the predicted collision free corridor formulation, a (sub)optimal trajectory is ob-
tained in a merging maneuver to lane of lower velocity. Future research in a nonlinear
formulation of the predicted collision free corridor may enable compatibility of the OCP
with merging maneuvers to lane with a positive velocity difference.

The trajectory generator can handle the main foreseeable scenarios: lane keeping, lane chang-
ing and merging on highways of arbitrary curvature. The abort maneuver was identified as
the most challenging action. Nonlinear constraints on the lateral acceleration are satisfied
in closed-loop simulations with the single-track model on a curved road. Lane boundary
constraints are obeyed in closed-loop simulations with the high-fidelity plant in an abort
maneuver on a straight road.

In the next and final chapter, the main conclusions from this thesis work are formulated, the
contributions are summarized and opportunities for future work are outlined.

Master of Science Thesis N.J. van Duijkeren



100 Simulation results and discussion

N.J. van Duijkeren Master of Science Thesis



Chapter 7

Conclusions and recommendations for
future work

This thesis presents the real-time implementation of a computationally efficient receding hori-
zon scheme for trajectory generation of an A-double combination truck. The Real-Time
Iteration (RTI) solution scheme [6] is applied to an optimal control problem (OCP) defin-
ing open-loop optimal highway driving. Simulations with a high-fidelity vehicle model show
acceptable results in terms of dynamic response of the vehicle and computational time. Real-
time performance is not a tale for the future.

The main contributions of this thesis are:

• The formulation of an OCP for highway driving of an A-double combination, with a
spatial prediction horizon defined along the road geometry.

• The formulation in an OCP for collision avoidance and distance-keeping from other
traffic in highway lane keeping and merging.

• Real-time implementation of the optimization-based trajectory generator applied a long
heavy vehicle combination (LHVC) using the RTI-algorithm.

Additionally, the implementation of the presented algorithms in stand-alone executable C/C++
code at the VTI motion simulator will allow for future research in driver acceptance of the
active safety functionalities in long heavy vehicle combinations (LHVCs).

7-1 Summary of the conclusions

The main conclusions that are made in this thesis work, with regard to the real-time imple-
mentation of an optimization-based trajectory generator for LHVCs on highways, are:
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1. Using the RTI-scheme [6], trajectory generation with an eighteenth-order non-linear
prediction model can be implemented for highway maneuvers maintaining real-time
performance. Average solution times of 20[ms] and a feedback delay of 3[ms] for a
spatial OCP with a prediction horizon of 100[m] and a discrete step size of 1[m] is
achieved.

2. The optimization objective, to minimize jerk, track a lane reference and velocity, can
be effectively formulated in an OCP in the model states of a single-track vehicle model
of a LHVC. The approximation of the lateral jerk in the states of a single-track vehicle
model is shown to be effective in low curvature conditions, but is highly inaccurate for
high-curvature conditions combined with the high-fidelity vehicle plant.

3. The optimization-based trajectory generator can successfully execute common highway
maneuvers, among which, lane changing and merging. The abort maneuver functionality
can safely plan and execute an evasive trajectory for the A-double combination, which
satisfies the constraints imposed in the OCP.

4. Closed-loop simulation results of the trajectory generator with a high-fidelity vehicle
model showed that a nonlinear single-track prediction model of the A-double combina-
tion is suitable for optimal control highway driving. Model-mismatch of the single-track
model with the high-fidelity plant has limited .

5. Collision avoidance can be effectively and efficiently incorporated to the OCP using
sigmoid functions for the logic nature for the distance-keeping incentive.

7-2 Recommendations for future work

1. Alternative Hessian approximation algorithms The Hessian approximation al-
gorithm in the solution strategy of the RTI-algorithm makes drastic assumptions on the
least-squares objective function of the OCP near the optimum. The assumption that
the objective value of the function, of which a least-squares minimum is attempted to
be found, is either close to zero or linear near the optimum has a notable effect on the
result of the optimization. Although known globalization techniques, would not trivially
fit the RTI-scheme, it would be interesting to see what progress can be made in this
area.

2. Single-track model mismatch A nonlinear single-track model of an LHVC simpli-
fies the truck dynamics to occur as if the truck has zero width and as if tires behave
linear. This introduces a discrepancy with the real behavior, especially when weight
shift and high slip occurs. Future work can be done to finding methods dealing with
this imposed model-mismatch in high curvature scenarios.

3. Modeling of longitudinal dynamics In this work the longitudinal dynamics were
modeled as a first-order differential equation in the acceleration. It is assumed that the
cruise control always behaves as such. This is achieved by using a relatively slow cruise
control. To be less conservative, a longitudinal dynamics model can be incorporated in
the OCP. This would involve modeling aerodynamics, approximating the propulsion
system, brakes and road inclination.
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4. Non-convex predicted collision-free corridors Effectively incorporating the sur-
rounding traffic in the OCP involves finding a parameterization that fits most common
scenarios. In this thesis work, only one type of parameterization is implemented that
assumes a collision-free corridor that is convex at each prediction step. This type of
allowed space does not support overtaking another vehicle in the planned optimal tra-
jectory. An alternative formulation that is non-convex, yet compatible with a nonlinear
program (NLP) is proposed in this thesis, but not implemented. Future work can be
directed to find and analyze improved collision avoidance formulations.

5. Vehicle model in 3D Euclidean space In real-life traffic situations, road banking
and road inclination [4] may affect performance of the closed-loop system. Unmodeled
phenomena in the planar model are e.g. off-tracking due to a laterally inclined road and
the effects of driving a hill. Road banking imposes off-tracking for which an appropriate
response would be to drive off-center. Instability can occur in case the LHVC drives
down hill, because the multiple towed units may act as inverted pendulums and only
limited natural yaw damping is present.

6. Observations of vehicle state, road and surrounding traffic This thesis work
assumed perfect knowledge on the vehicle state, road properties and the behavior of
surrounding traffic. It was assumed that the road curvature was available over a horizon
of 50[m] behind the truck to 150[m] ahead. Affordable sensors and other sources of
information, such as map data, should be in place to provide the trajectory generator
with the data it needs. Work needs to be done on analysis in the sensitivity to inaccurate
data and noisy measurements. Sensing of the motion of surrounding traffic of all vehicles
in the near proximity is required.

7. External disturbances Perfect prediction would not only require a high-quality ve-
hicle model, but also an accurate world model for the road and weather. The effect
of road friction and other influence on the vehicle dynamics and e.g. the influence
cross-wind need to be dealt with explicitly.

8. Modeling fellow road users It was assumed that the road users surrounding the
truck drove a fully predefined path. In the field of microscopic traffic modeling, models
for human driving are researched. It is interesting to see in what degree intelligent
human driver models can be incorporated in the trajectory generator. A first step
would be to validate the control algorithms on roads occupied by human driver models.

9. Differential flatness and collocation methods Previous work in real-time path
planning for LHVC used differential flatness of a kinematic model of an LHVC to obtain
a computationally efficient formulation of an NLP. It is known that a dynamic single-
track model of a car is also differentially flat [29]. The property of differential flatness
has already shown to be a great advantage for efficient trajectory planning. Research
can be spent to find a differentially flat formulation of a dynamic LHVC model.

10. Driver acceptance Finally, it must be emphasized that a lot of work has to be done in
the driver acceptance of active safety systems in which the proposed trajectory generator
has great influence. It would be interesting to compare the trajectories of professional
truck drivers with the closed-loop behavior of the optimization-based control algorithm.
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Research in human machine interaction can help to study the effect of a discrepancy
the short-term driver intentions and the control behavior.
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Appendix A

Mathematical derivations

A-1 Lateral reference calculation

In lateral reference calculation we solve a simplified optimization problem for the lateral path
of the truck. We want to find a balance between a high penalty on desired lateral position
with respect to the lane center and smooth lane transition behavior. One method to achieve
this, would be to change the cost function of the optimization in different scenarios. However,
it is much more elegant to provide a pre-optimized reference to tell the optimization problem
to change lane. In this section it is explained how we can find a pre-optimized path for a
lane-change maneuver.

Approach to lateral reference trajectory generation

The basis of the reference calculation approach is Pontryagin’s maximum principle [30]. Pon-
tryagin’s maximum principle is an example of an indirect method to optimal control. In
contrast to direct methods, indirect methods tend to solve for the optimality conditions of an
optimal control problem instead of trying to minimize the cost functional directly.

Consider we have a dynamical system with the state vector ζ(t) ∈ Rn and control input vector
u(t) ∈ Rm:

dζ

dt
= f(ζ(t), u(t)) (A-1)

We want to control this system over time interval t ∈ [0, T ] using an admissible control signal
u(t) ∈ U .

We define a cost functional J (ζ(t), u(t)) : Rn×Rm → R that describes an optimality measure
for the trajectory:

J (ζ(t), u(t)) =
∫ t1

t0
L(ζ(t), u(t))dt (A-2)
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With the Lagrangian L to define the cost of the trajectory. The system dynamics constraints
Eq. (A-1) are adjoined to the Lagrangian Eq. (A-2) using the vector of Lagrange multipliers
λ(t) ∈ Rn to construct the Hamiltonian H(ζ(t), u(t), λ(t)) : Rn × Rn × Rm:

H(ζ(t), u(t), λ(t)) = L(ζ(t), u(t)) + λT f(ζ(t), u(t)) (A-3)

Subsequently we turn this optimal control problem into a two-point boundary value problem
by introducing start- and end-state constraints:

ζ(t0) = ζ0 and ζ(t1) = ζ1 (A-4)

Minimization of the Hamiltonian

According to Pontryagin’s maximum principle, minimizing the optimal control problem is
equivalent to minimizing the Hamiltonian. Consider the optimal control input u∗(t), a nec-
essary condition is:

H(ζ(t), u∗(t), λ(t)) ≤ H(ζ(t), u∗(t), λ(t)) (A-5)

over time interval t ∈ [t0, t1].

For a quadratic cost function combined with a linear dynamic system, this u∗(t) can be found
using the first order optimality condition:

∂H
∂u

= 0 (A-6)

As we will see later, this first-order optimality condition will be a sufficient condition for
optimality in the case that is considered here.

The adjoint equations

The constraints of the minimization problem are represented by the adjoint equations and
the adjoint variables λ(t). The adjoint equations state that:

dλ(t)
dt

= −∂H
∂ζ

(A-7)

The reference calculation problem

As introduced, we would like to find a suboptimal lateral position trajectory that will serve
as a reference to the model predictive control algorithm. Let us construct the ingredients for
the optimal control problem:

• The lateral spatial system dynamics;

• The cost functional over the spatial horizon;

• The boundary conditions.
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Lateral system dynamics

The system dynamics parameterized in the spatial coordinate system defined along the road
geometry.

dζ(s)
ds

=Aζ(s) +Bu(s)
ds/dt(s)

with A =


0 1 0
0 0 1
0 0 0

 and B =


0
0
1


(A-8)

with the state-vector and control input:

ζ(s) =
[
d1(s) ḋ1(s) d̈1(s)

]T
, u(s) =

...
d1(s) (A-9)

We can simplify this problem by keeping ds
dt (s) constant using the measured longitudinal

velocity of the truck during the initialization of the lane change. Hence, we replace ds
dt (s) →

vx,base which will be referred to as the base velocity of the lane change maneuver. We can
write the system equations as follows:

dζ1
ds

= ζ2
vx(s0)

dζ2
ds

= ζ3
vx,base

dζ3
ds

= u

vx,base

(A-10)

Cost function for the optimality measure

The goal of the reference calculation algorithm is the same as the model predictive control
algorithm: minimize lateral jerk. Hence we define the cost function as:

J (ζ(t), u(t)) =
∫ s0+∆slc

s=s0

1
2u(σ)2dσ (A-11)

for the minimization problem:
min
u(s)
J (ζ(t), u(t)) (A-12)

We can interpret this cost functional as minimizing the energy in the jerk over the horizon
s ∈ [s0, s0 + ∆slc].

Boundary conditions of the minimization problem

As boundary conditions for the minimization problem, we choose to constraint the states in
both s0 and s0 + ∆slc. Consider that the initial and end states are equal to:

ζ1(s0) = d1,0 ζ1(s0 + ∆slc) = d1,1

ζ2(s0) = 0 ζ2(s1) = 0
ζ3(s0) = 0 ζ3(s1) = 0

(A-13)

Master of Science Thesis N.J. van Duijkeren



108 Mathematical derivations

As one can see, we desire that the reference profile moves from y0 to y1 where lateral velocity
and acceleration are zero outside the transition interval s ∈ (s0, s0 + ∆slc).

Solution to the reference calculation problem

Now we have all the ingredients, we can actually solve the problem. First we construct the
Hamiltonian:

H(ζ(s), u(s), λ(s)) = 1
2u(s)2 + λ1(s) ζ2(s)

vx,base
+ λ2(s) ζ3(s)

vx,base
+ λ3(s) u(s)

vx,base
(A-14)

In order to find the optimal u∗(s) that minimizes the Hamiltonian we use the first order
optimality condition:

∂H
∂u

= 0

u∗(s) = − λ3(s)
vx,base

(A-15)

Secondly we use the adjoint equations to find the trajectories for the Lagrange multipliers:

−∂H
∂ζ1

= dλ1
ds

: dλ1
ds

= 0

−∂H
∂ζ2

= dλ2
ds

: dλ2
ds

= −λ1

−∂H
∂ζ3

= dλ3
ds

: dλ3
ds

= −λ2

(A-16)

The trajectories for the Lagrange multipliers can now be found easily by integrating over s,
let us start with λ1:

λ1(s) = C1

λ2(s) = −C1s+ C2

λ3(s) = 1
2C1s

2 − C2s+ C3

(A-17)

We can connect these trajectories using the first order optimality. We obtain the following
expression for the control input and at the same time the lateral jerk profile:

u∗(s) =
−1

2C1s2 + C2s− C3
vx,base

(A-18)

With the point-mass system model we obtain the solution to the first order differential equa-
tions by simply integrating over s.

ζ3(s) = 1
v2
x,base

(
−1

6C1s
3 + 1

2C2s
2 − C3s+ C4

)
ζ2(s) = 1

v3
x,base

(
− 1

24C1s
4 + 1

6C2s
3 − 1

2C3s
2 + C4s+ C5

)
ζ1(s) = 1

v4
x,base

(
− 1

120C1s
5 + 1

24C2s
4 − 1

6C3s
3 + 1

2C4s
2 + C5s+ C6

) (A-19)
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We have obtained the quintic polynomial that describes a jerk-optimal lateral reference profile
for the lane change maneuver. All that is left is to find the coefficients Ci, ∀i ∈ {1, . . . , 6}
using the boundary conditions we defined earlier. Additionally, the term ∆slc is replaced by
∆tlcvx,base to express the lane change duration in time rather than distance.

C1 = 720 (d1,0 − d1,1)
∆t5lcvx,base

C2 = 720 (d1,0 − d1,1) slc
∆t5lcvx,base

C3 = −
30 (d1,0 − d1,1)

(
∆t2lcv2

x,base − 12s2
lc

)
∆t5lcvx,base

C4 = −
30 (d1,0 − d1,1)

(
∆t2lcslcv

2
x,base − 4s3

lc

)
∆t5lcvx,base

C5 = −
15 (d1,0 − d1,1)

(
∆t2lcv2

x,base − 4s2
lc

)
2

8∆t5lcvx,base

C6 =6 (d1,0 − d1,1) s5
lc

∆t5lcvx,base
+ 5 (d1,1 − d1,0) s3

lcvx,base
∆t3lc

+
15 (d1,0 − d1,1) slcv

3
x,base

8∆tlc
+ 1

2 (d1,0 + d1,1) v4
x,base

(A-20)

Results

We now have a quintic polynomial that describes a jerk optimal reference trajectory:

d1,ref(s) = −6 (d1,0 − d1,1) (s− slc) 5

∆t5lcv5
x,base

+ 5 (d1,0 − d1,1) (s− slc) 3

∆t3lcv3
x,base

− 15 (d1,0 − d1,1) (s− slc)
8∆tlcvx,base

+ 1
2 (d1,0 + d1,1)

(A-21)

Explanations of the parameters can be found in Table A-1.

Table A-1: Free parameters in the reference calculation expression for the lane change maneuver.

Parameter Tuning/Fixed Explanation

s Fixed Distance for lateral reference.
d1,0 Fixed The initial lateral distance of the reference profile.
d1,1 Fixed The final lateral distance of the reference profile.
slc Tuning The position half way the lane change maneuver.

∆tlc Tuning The time it takes to complete the lane change maneuver.
vx,base Fixed the base velocity of the lane change maneuver.

This relatively simple expression is of tremendous help for the trajectory generation controller.
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Implementation

The reference calculation algorithm will recompute the reference trajectory every time step.
This is due to the fact that the parameters change throughout the maneuver. The main
reason is that the coordinate frame of the truck changes during a lane change. This is caused
by a change in the lane in which the truck is residing. The controller deals with this changing
reference frame by abstracting the lanes as objects independent from the coordinate frame.
This means that especially the values d1,0 and d1,1 need to be recomputed each time step.

• The values for d1,0 and d1,1 change each time the coordinate frame of the truck changes.

• The values for slc and ∆tlc are fixed for the controller and will not change after tuning.

• The value for vx,base is chosen once per lane change maneuver. In general, the longitu-
dinal velocity of the truck at time of a lane change initiation is used.
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List of Acronyms

Volvo GTT Volvo Group Truck Technologies

VTI Swedish National Road and Transport Research Institute

VTM Volvo Truck Model

UDP User Datagram Protocol

STM single track model

RWA rearward amplification

RTI Real-Time Iteration

MPC model predictive control

NMPC nonlinear model predictive control

RT real-time

OCP optimal control problem

NLP nonlinear program

LP linear program

PSD positive semi-definite

PD positive definite

QP quadratic program

SQP sequential quadratic programming

COM center of mass

KKT Karush-Kuhn-Tucker
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116 Glossary

LHVC long heavy vehicle combination

LHVCs long heavy vehicle combinations

TSM Traffic Situation Management

VMM Vehicle Motion Management

CC cruise controller

List of Symbols

δ Road wheel angle of front axle of tractor.
H The Hamiltonian of a system.
L The Lagrangian of a system.
θ0 Yaw angle of tractor (unit 1) with some global reference frame. Equal to φ1.
θ1 Articulation angle between the tractor and the first semi-trailer.
θ2 Articulation angle between the first semi-trailer and the converter dolly.
θ3 Articulation angle between the converter dolly and the second semi-trailer.
φ1 Yaw angle of tractor (unit 1) with some global reference frame. Equal to θ0.
φ2 Yaw angle of first semi-trailer (unit 2) with some global reference frame.
φ3 Yaw angle of dolly (unit 3) with some global reference frame.
φ4 Yaw angle of second semi-trailer (unit 4) with some global reference frame.
φR,∗ Road heading in perpendicular projection of point ∗ on the truck.
ξlat State vector for the A-double combination for the lateral dynamics.
ξlhvc State vector for the A-double combination for the lateral and point mass longi-

tudinal dynamics.
ξocp State vector of the prediction model in the OCP.
vx,∗ Longitudinal velocity of the truck in position ∗.
vy,∗ Lateral velocity of the truck in position ∗.

∆s Spatial discretization step size of OCP and prediction model.
∆so,∗ Distance from obstacle ∗ measured from front axle. In optimal control problem

(OCP) the state is measured from the rear or front end of the truck.
∗̂ Normalized vector of ∗.
∗ Lower bound on state ∗.
∗ Upper bound on state ∗.
d∗ Perpendicular distance of position ∗ in truck with road geometry.
f∗ Generic notation for functions, identified by ∗.
g Set of first order differential equations for spatial OCP prediction model.
K∗ Weight of state or expression ∗ in least squares cost function of the OCP.
l Number of external parameters in OCP formulation.
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m Number of control input in the OCP prediction model.
N Number of shooting nodes in the OCP discretization.
n Number of states in the OCP prediction model.
n∗ Normalization term for weight on ∗ in cost function.
Nc Number of inequality constraints in the OCP formulation.
Nf Number of least-squares objective terms in the OCP formulation.
s∗ Coordinate of orthogonal projection of position ∗ in truck on road geometry.
sf Length of the spatial prediction horizon in OCP.
u Control input vector.
G∗ The state(-vector) ∗ with respect to a global Euclidean coordinate frame.
L
1f∗ The state(-vector) ∗ as observed in the local body-fixed coordinate frame in the

front axle of the tractor.
L
1∗ The state(-vector) ∗ as observed in the local body-fixed coordinate frame in the

center of mass of the tractor.
L
2∗ The state(-vector) ∗ as observed in the local body-fixed coordinate frame in the

rear axle of the first semi-trailer.
L
3∗ The state(-vector) ∗ as observed in the local body-fixed coordinate frame in the

rear axle of the dolly.
L
4∗ The state(-vector) ∗ as observed in the local body-fixed coordinate frame in the

rear axle of the second semi-trailer.
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