<]
TUDelft

Delft University of Technology

HPAKE
Honey Password-authenticated Key Exchange for Fast and Safer Online Authentication

Li, Wenting; Wang, Ping; Liang, Kaitai

DOI
10.1109/TIFS.2022.3214729

Publication date
2023

Document Version
Final published version

Published in
IEEE Transactions on Information Forensics and Security

Citation (APA)

Li, W., Wang, P., & Liang, K. (2023). HPAKE: Honey Password-authenticated Key Exchange for Fast and
Safer Online Authentication. /[EEE Transactions on Information Forensics and Security, 18, 1596-1609.
https://doi.org/10.1109/TIFS.2022.3214729

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TIFS.2022.3214729
https://doi.org/10.1109/TIFS.2022.3214729

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

1596

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

HPAKE: Honey Password-Authenticated Key
Exchange for Fast and Safer Online Authentication

Wenting Li*, Ping Wang"™, Senior Member, IEEE, and Kaitai Liang”, Member, IEEE

Abstract— Password-only authentication is one of the most
popular secure mechanisms for real-world online applications.
But it easily suffers from a practical threat - password leakage,
incurred by external and internal attackers. The external attacker
may compromise the password file stored on the authentication
server, and the insider may deliberately steal the passwords
or inadvertently leak the passwords. So far, there are two
main techniques to address the leakage: Augmented password-
authentication key exchange (aPAKE) against insiders and hon-
eyword technique for external attackers. But none of them can
resist both attacks. To fill the gap, we propose the notion of honey
PAKE (HPAKE) that allows the authentication server to detect the
password leakage and achieve the security beyond the traditional
bound of aPAKE. Further, we build an HPAKE construction on
the top of the honeyword mechanism, honey encryption, and
OPAQUE which is a standardized aPAKE. We formally analyze
the security of our design, achieving the insider resistance and
the password breach detection. We implement our design and
deploy it in the real environment. The experimental results show
that our protocol only costs 71.27 ms for one complete run,
within 20.67 ms on computation and 50.6 ms on communication.
This means our design is secure and practical for real-world
applications.

Index Terms—Password, honeyword,
password-authenticated key exchange.

leakage detection,

I. INTRODUCTION

ASSWORD-ONLY authentication (PoA), which has great
advantages on usability and deployability, is one of
the most popular online authentication methods [1]. It has
been attracting attentions from academia, and recently many

Manuscript received 13 February 2022; revised 1 September 2022;
accepted 7 October 2022. Date of publication 18 October 2022; date of
current version 24 February 2023. This work was supported in part by the
National Key Research and Development Program of China under Grant
2020YFB1805400, in part by the National Natural Science Foundation of
China under Grant 62072010, in part by the China Post-Doctoral Science
Foundation under Grant 2021M700215, in part by the European Union’s
Horizon 2020 Research and Innovation Programme (ASSURED) under Grant
952697, in part by the Digital Technologies Acting as a Gatekeeper to
Information and Data Flows (IRIS) under Grant 101021727, in part by
the Artificial Intelligence Threat Reporting and Incident Response System
(TANGO) under Grant 101070052, and in part by the High-Performance
Computing Platform of Peking University. The associate editor coordinating
the review of this manuscript and approving it for publication was Prof.
Debdeep Mukhopadhyay. (Corresponding authors: Wenting Li; Ping Wang.)

Wenting Li is with the School of Computer Science, Peking University,
Beijing 100871, China (e-mail: wentingli@pku.edu.cn).

Ping Wang is with the National Engineering Research Center for Software
Engineering, Beijing 100871, China, and also with the Key Laboratory of High
Confidence Software Technologies, Ministry of Education, and the School
of Software & Microelectronics, Peking University, Beijing 100871, China
(e-mail: pwang@pku.edu.cn).

Kaitai Liang is with the Department of Intelligent Systems, Delft University
of Technology, 2628 Delft, The Netherlands (e-mail: kaitai.liang @tudelft.nl).

Digital Object Identifier 10.1109/TIFS.2022.3214729

research works have been proposed in this field [2], [3], [4].
But PoA does easily suffer from password leakage. Billions
of personal and business passwords have been compromised
by hackers [5] which yields a considerable amount of users’
privacy leakage and financial loss, for example, Yahoo made
3 billion accounts exposed [6] and it finally agreed to settle
for 117.5 million US dollars [7]. The password leakage,
in practice, may be caused by: 1) active external attacks (e.g.,
SQL injection), or 2) the internal design flaws and software
bugs (for instance, GitHub records passwords in plaintext [8]).
It is not trivial to handle these attacks in the context of PoA.

A. Existing Solutions

1) Against Insiders: In Figure la, Augmented password-
authentication key exchange (aPAKE) [9] is designed to allow
a client and a server to establish a session key based on
a password, where the client has the password plaintext
and the server only holds the verifier. This technique pre-
vents the server from knowing the password, and therefore
resists the insider attacks. Since Bellovin and Merrit [9] intro-
duced this notion, many researchers proposed various aPAKE
schemes [10], [11], [12], [13] in order to improve the security
and efficiency performance. Among them, OPAQUE [12] is
the most well-studied scheme with the strongest security and
thus, it recently is standardized by the Crypto Forum Research
Group of the Internet Engineering Task Force (IETF) [14].

2) Against Outsiders: Honeyword technique [15] (see
Figure 1b) is proposed to detect the password leakage for
the most common password-only authentication systems,
password-over-TLS. This approach associates t — 1 decoy
and plausible-looking passwords (i.e., honeywords) to each
account. The honeywords and the real password are col-
lectively called sweetwords. If an attacker steals the pass-
word file, she cannot tell the real one and probably (with
1 — 1/t probability) log in with a honeyword. Then, the
server can detect the password leakage from the “wrong”
login. The follow-up works focus on the honeyword generation
algorithms [16], [17] so as to produce more plausible-looking
decoys and the detection methods [18] to improve reliability.

3) Others: Passwordless authentication [19] or multi-factor
authentication systems [20], [21] make good use of other
factors, e.g., smartphone and fingerprint. They significantly
reduce the risk of password leakage. If an attacker steals the
password, she still needs additional factors to compromise
account. Besides, in some of these designs, authentication
server does not need to store the password-related data, so that

1556-6021 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2613-8257
https://orcid.org/0000-0002-8854-2079
https://orcid.org/0000-0003-0262-7678

LI et al.: HPAKE: HONEY PASSWORD-AUTHENTICATED KEY EXCHANGE FOR FAST AND SAFER ONLINE AUTHENTICATION

<

|
<SSablsh TLS-channel
_____________ send Ui
e

User

User remembering U, pw = sw;

remembering U, pw Authentication

Server

%1

Authentication
Serv

er

1597

1

Honeychecker

o

-

L
Authentication
Server

check Ui check Ui

—

« "
allow

allow
User

Honeychecker remembering U,pw = sw;

Uy | E(pwy)

E(swy)

E(sw)

dal = - E(swy) Ui | 2

check U,/

U;| 5 E(sw, Uz| 5

E(w,)

E(pws)

E(sw)

<
alarm U | 13 External Attacker U

13

Uz

E(swi)

9 -

x 5w,
o,

Insider Attacker Insider Attacker

unknwon plaintex pw

(a) aPAKE

Fig. 1.

even if the attacker compromises the storage file on server, she
cannot carry out offline password guessing as long as other
factors are secure. A typical design can be seen in [21], [22],
and [23] that a smart device (as an authentication factor) is
used to store the password-related data, making systems resist
offline guessing in the case of server compromise.

4) Shortcomings: The techniques above, unfortunately,
have the following shortcomings. The honeyword mechanism
requires the client to send the password plaintext to the
server (via a server-authenticated secure channel), otherwise
the server cannot tell if the login password is real. Thus an
insider can directly steal the plaintext of the login password
without any guessing attacks. In aPAKE, the server has to
store the verifiers in the password file for authentication. But
an external attacker may steal the file and carry out guess-
ing attacks [24] to recover the password. This vulnerability
is inherent in aPAKE. And neither of these methods can
provide a solution maintaining security against both insiders
and outsiders. As for other (passwordless or multi-factor)
approaches, they may provide stronger security relying on
extra factors, which may bring disadvantages to deployability
and usability. In this paper, we do not consider them and only
focus on password-only authentication. According to the above
discussion, we thus raise a question: “How could one design
a fast and secure password-only authentication scheme that
can resist both the insider and external attackers?”

B. A New Solution: Honey PAKE

To answer the question, we propose the notion of honey
PAKE (HPAKE) by combining the aPAKE and honeyword
techniques. This combination is shown in Figure 1c, in which
HPAKE sets up ¢ — 1 honeywords for each account and stores
their verifiers on the authentication server. From Table I,
we see that HPAKE inherits the advantages rather than
the shortcomings of the aPAKE and honeyword techniques.
Specifically:

1) For the external attacker: HPAKE provides the password
leakage as well as honeyword techniques. If the authen-
tication server is compromised, the attacker will get a
password list including ¢ sweetwords via offline guessing
attacks. The attacker cannot tell which one is real and
probably runs HPAKE with a honeyword to compromise
the account. This will produce a honey session key,
and the usage of the session key will be detected and
alarmed.

check sw; (or sw;)

(b) Honeyword mechanism

Insider Attacker unknown plaintext sw; (or sw;)

(c) HPAKE

Overview on aPAKE, honeyword mechanism, and HPAKE.

2) For the insider: HPAKE guarantees that the password
plaintext is never left from the client, achieving the
same security as aPAKE. The authentication is explicitly
done by the key exchange. And running with the real
password will yield a real session key, and only the
instruction encrypted by the real session key will be
allowed. Therefore, the server/insider cannot steal the
password plaintext.

1) Design Challenge: The idea of HPAKE is natural, but
how to design a concrete and secure HPAKE is full of chal-
lenges. The first one is that the ways of handling passwords
between honeyword mechanism and aPAKE are different. The
password plaintext has to be sent to server for verification
for the former, while the latter does not allow the password
to leave the client. One may come up with a trivial solution
here: running ¢+ aPAKE instances in parallel. Specifically, the
authentication server executes t aPAKE instances, and each of
them uses one sweetword; the client also run ¢ instances, but
all of them use its (real) password. For an aPAKE with explicit
authentication, only the instance where the client password is
equal to the server sweetword will yield a session key. But this
approache increases the computational and communication
cost by the number of sweetwords. Furthermore, it decreases
the resistance against online password guessing by a factor of
t: an attacker (without the password file) can run an HPAKE
instance to verify the correctness of ¢ password guesses (i.e.
running the ¢ aPAKE instances with the ¢ password guesses,
as the server, to interact with the client).

C. Our Contribution

1) A Novel Design for HPAKE: Right after defining the
notion of HPAKE, we propose a novel construction which
is based on OPAQUE [12] and honeyword mechanism, and
introduce honey encryption to replace the encryption scheme
used in OPAQUE. Specifically, on the client side, our HPAKE
keeps the same user interface as OPAQUE. Since OPAQUE
is standardized by IETF [14], our construction achieves the
advantages on deployability, which might be of independent
interest. On the server side: 1) at the registration phase, our
HPAKE generates honeywords, runs the same registration
process for them as the real password to generate the user’s
honey private/public keys, and stores the honey public keys
along with the real one on the server; 2) at the authentication,
the server runs the key-exchange process, calculates several
session keys with different user’s public keys, and checks if
the real session key or a honey one is used by the client to

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

1598

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

TABLE I
OUR HPAKE AND THE EXISTING TECHNIQUES

Technique Literature Design Advantage Disadvantage
aPAKE 91, [12] Cryptography protocols built on Prevent the server/insider from Suffer from offline password guessing
’ OPRF, DH key exchange, etc. knowing the password plaintext. if the password file is leaked.
Storing decoy passwords along with Detect the password leakage if Allow the server/insider to know the
1
Honeyword [15], [18], [17] the real password for each account. the password file is stolen. password plaintext.
Our HPAKE - Combining the above two techniques Both of the above two. None of the above two.

(see Section III).

! Honeyword mechanism is only designed for password-over-TLS.

detect the password leakage. The key of our design is to use
honey encryption [25] to generate the user’s honey private
keys by decrypting the ciphertext of the real user’s private
key for honeywords. Therefore, our HPAKE does not need
to run several OPAQUE instances, but just calculates several
session keys on the server side by sharing the same ciphertext
for the real password and honeywords.

2) Security Analysis: To formally analyze the security of
our design, we propose a game-based security model that
captures the security of both aPAKE and honeyword mecha-
nism. For the former, our model achieves the security against
the insider attacks, which are considered in the traditional
aPAKE security model, and against the online/offline password
guessing attacks. In the latter, we capture the ability of
detecting password leakage by defining the indistinguishability
between the real and honey session keys. We further formally
prove the security of our design under the specified model.
This means our design can provide stronger security than
both aPAKE and honeyword mechanism. Specifically, if the
authentication server is compromised, HPAKE can detect the
password leakage which is safer than OPAQUE; otherwise,
HPAKE is as safe as OPAQUE against password guessing
attacks and insider attacks which is safer than honeyword
mechanism for password-over-TLS.

3) Implementation and Efficiency Analysis: Compare with
OPAQUE, our design slightly increases the cost on computa-
tion and obtains the same communication complexity between
client and server. Client takes 3 exponentiations and 2 multi-
exponentiations, while server costs 3 exponentiations and ¢
multi-exponentiations, where ¢ is the number of sweetwords
for each account. We note that the multi-exponentiation is
linear with the number of honeyword. We further implement
and deploy the design in the real-world environment for
efficiency evaluation. The experimental results show that our
design only costs 3.48 ms and 17.19 ms on the client and
server sides (by setting ¢+ = 20), and 50.48 ms for the
communication between them. This means our HPAKE is fast
and efficient for real-world online authentication.

II. PRELIMINARY AND RELATED WORKS
A. Honeyword Mechanism

Honeyword technique [15] has been proposed to detect
password leakage for password-over-TLS. As shown in
Figure 1b, honeyword mechanism directly generates several
honeywords and stores them (in the form of hash value) on the

authentication server along with the real password. It stores the
index of the real password in the list on another server called
honeychecker. When one logs in with a username U and a
password pw (where pw is sent to the authentication server
via the TLS channel), then the authentication server checks if
pw is a sweetword:

1) If it is not, deny this login.

2) If it is the i-th sweetword, the authentication server

sends (U, i) to the honeychecker (via a secure channel).
Then the honeychecker checks if the index i is correct
for U:

a) If it is, allow this login.

b) Otherwise, raise an alarm of password leakage and
take actions according to the pre-defined security
policy.

This mechanism only does slight modification on the server
side for password-over-TLS, and therefore maintains its advan-
tages on deployability. Besides, since its interface is very
simple, the honeychecker can be easily enhanced to avoid
being compromised.

B. OPAQUE

OPAQUE is a strong aPAKE proposed in 2018 [12] and
is standardized by IETF [26] recently. Password-authenticated
key exchange (PAKE) [12], [27] allows two parties sharing
a low-entropy password to establish an authenticated session
key in the basic case where the two parties do not rely extra
mechanisms (e.g., PKI) except the communication with each
other. PAKE can prevent the eavesdropper from getting the
password even if she carries out offline password guessing
attacks. There are two types of PAKE: symmetric PAKE (also
known as balanced PAKE) [27] and asymmetric PAKE (also
called augmented PAKE) [9], [12]. The former considers the
symmetric case where both of the parties (two humans) hold
the plaintext of password, and the latter focuses on the asym-
metric (client-server) case where one party (the client) holds
the password plaintext, and the other one (the server) stores a
verifier of the password (e.g., the hash values of the password).
In the asymmetric setting, aPAKE prevents the server from
knowing the password plaintext and forces the attacker to carry
out offline password guessing if she wants to impersonate the
user from the compromised password file (the verifier of the
password stored on the server). OPAQUE, as a state-of-the-
art aPAKE, further provides stronger security, i.e., resisting
pre-computing attacks.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HPAKE: HONEY PASSWORD-AUTHENTICATED KEY EXCHANGE FOR FAST AND SAFER ONLINE AUTHENTICATION

In OPAQUIE, the client C (as the user U): 1) runs OPRF
(oblivious pseudorandom function) with the server S to convert
the low-entropy password pw to a high-entropy secret rw,
called random password, 2) uses rw to decrypt the ciphertext
c obtained from the server to yield the user’s private key
ky and the server’s public key Kg, and 3) finally runs AKE
(authenticated key exchange) for key exchange with ky and
K. In [12], the instantiated OPAQUE uses 2HashDH [28] and
HMQYV [29] as OPRF and AKE, respectively.

Note any PAKE protocols cannot prevent the attacker from
impersonating the server to carry out online password guessing
attacks, since the authentication only relies on the password.
But in practice, as the widely deployed and adopted PKI,
many applications use TLS with PKI to establish server-
authenticated session keys. This provides stronger authenti-
cation, for the server, than PAKE. Thus, PAKE is naturally
combined with PKI and TLS to achieve the strong authenti-
cation against server impersonation and the password security
mentioned above. For example, another standardized PAKE,
the Secure Remote Password protocol [30], can be used for
TLS Authentication, and this method is also standardized [31]
and widely implemented. OPAQUE [12] also provides the
flexibility in combination with TLS: 1) running 1-RTT TLS
to establish a server-authenticated session key (with S’s public
key distributed by PKI); 2) running OPAQUE to get ky; 3)
executing TLS client authentication with ky.

To achieve as strong security as possible in reality, we adopt
OPAQUE and combine it with PKI to construct our HPAKE.
We do not use the above TLS-OPAQUE combination method,
because the method adds two rounds of communication
(1-RTT TLS) as compared to the original OPAQUE. In con-
trast, we use the server’s public key (distributed by PKI) to
sign the server’s message (i.e., the message in the second
round) in OPAQUE. We do not increase the number of
communication rounds but achieve the same security as TLS-
OPAQUE, i.e., the strong authentication on the server and
the password security. Our method can be seen as running
OPAQUE via a server-authenticated channel which is estab-
lished by the server’s public key with the help of PKI. We note
that this observation can be easily understood by reader.

We further slightly modify some details of the instantiated
OPAQUE to fit our HPAKE construction without compro-
mising the security of OPAQUE. The modified version of
OPAQUE (m-OPAQUE) is described in Figure 2. The differ-
ences between the original and ours are listed as follows:

1) In the original version, c is the ciphertext of ky, Kg
encrypted by an authenticated encryption scheme; while
in our modification, ¢ is the ciphertext of ky (without
K) encrypted by a honey encryption scheme (without
the property of authentication), and K is sent to U as
the plaintext along with c.

2) The original (PKI-free) version uses an unauthenticated
channel between U and S (in the TLS-OPAQUE ver-
sion [12], U and S first run TLS with PKI to establish a
server-authenticated secure channel, then run OPAQUE,
and finally perform TLS client authentication); but in
our modification, U and S run OPAQUE via a server-
authenticated channel established with the help of PKI.

1599

Parameter

o Security parameter .

o 2HashDH:

1) my is a primer number, GG; is a mq-order cyclic
group, and ¢; is a generator of G;. The length of
my is a polynomial function of «.

2) Hy,H{ are two hash functions with ranges
{0,1}" and Gy, respectively. The PRF Fy(x) is
Hy(z, H{(2)*%). l; is a polynomial function of k.

« HMQV:

1) mg is a primer number, G5 is a mqy-order cyclic
group, g is a generator of G. The length of mq
is a polynomial function of .

2) Hs, H)} are two hash functions with ranges Z,,
and {0,1}%2. I, is the length of the session key,
which is a polynomial function of k.

o A honey encryption scheme (Enc, Dec).

Initialization

o C picks s < Z,,, as the secret key of S in 2HashDH¢,
and computes rw <« H;(pw, H](pw)®); computes
ky <8 Zmpm,, Ky <+ g’; Y to generate the private/
public keys (ky,Ky) for U in HMQV; computes
¢ + Enc,, (ky) to yield the ciphertext ¢ of ky using
the key rw; sends (U, s, Ky, c) to S.

e Getting (U, s, Ky,c) from C, S computes kg <5
Ly, Ks gés to generate the private/public keys
(ks, Kg) for S in HMQV; stores (U, Ky, s, ¢).

Authentication

o C picks r < Z,,, and computes o <— H{(pw)"; picks
& <$ L, and computes X < ¢3; sends (U, X, a) to
S.

e Getting (U, X,«) from C, S picks y < Z,,, and
computes Y < g3, 3 + a*; sends (Y, 8, ¢, Ks) to C;
computes SK <+ Hg((XK[I]%(X’KS))y+H;(Y,Ku)ks)
and outputs it.

e Getting (Y,5,c,Kg) from S, C' computes rw <
H (pw, 61{7'), kuy <+ Decpy(c); computes SK <
HQ((Yng(Y’KU))x+H§(X’KS)kU) and outputs it.

“Note s can be generated by .S, but this will increase the rounds of the
communication between C' and S to generate rw.

Fig. 2. A m-OPAQUE.

We here demonstrate that the modification does not com-
promise the security.

1) About Kg:

a) Confidentiality: In our version, Kg is sent on an
authenticated channel, so it can be obtained by the
adversary; in the original version, only its cipher-
text is sent on the public channel. But this does
not compromise the security, as Kg doesn’t need
to be kept secret. The goal of OPAQUE encrypting
K is to authenticate Kg (with an authenticated
encryption), rather than making it secret. Kg is
used as S’s public key in AKE, which usually is a
public value. Sending Ks on the public channel

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

1600
C
pw s
rw o Ks n
ky < Decy(c), Kg ks, Ky

I

SK

AKE

SK

Fig. 3. Schematic diagram of our modified OPAQUE.

does not compromise the security of AKE and
OPAQUE as well.

b) Authentication: In the original version, Kg is
authenticated by the password; in our version,
K is authenticated by the server-authenticated
channel. Thus our version can provide a stronger
authentication for K.

2) About ky:

a) Confidentiality: In the original version, ky is
encrypted by an authenticated encryption scheme;
but we assume that ky is encrypted by a honey
encryption scheme. The modification still keeps the
confidentiality of ki, because the honey encryption
can guarantee the property of confidentiality.

b) Authentication: Same as Kg, in the original ver-
sion, ky is authenticated by the password; while
we allow ky to be authenticated by the server-
authenticated channel. Our version thus can pro-
vide a stronger authentication for k.

By guaranteeing the confidentiality and authentication of ky
as well as the authentication of Kg, our modification keeps the
security of AKE and further OPAQUE. The formal proof of
our m-OPAQUE can be obtained from the proof of the original
OPAQUE with corresponding slight modifications. Since the
original proof is complex, we do not provide a detailed proof
here, but refer the interested reader to [12].

C. Honey Encryption

Honey encryption [25], [32] is a novel encryption method,
which can yield decoy messages for incorrect keys as shown in
Figure 4b. It introduces a probabilistic encoder to encode the
message M to a (fixed-length) uniform bit string S and then
encrypts S by a carefully-chosen traditional encryption scheme
(see Figure 5). The encoder is designed according to the
message distribution M, which can be uniform or nonuniform
(e.g., for the password vaults [33]). The encoder should guar-
antee that decoding a random bit string will yield a message
sampled from M. Formally, for an arbitrary adversary (maybe
with unlimited computing resources) A, (Mg, Sp) and (M1, S1)
are indistinguishable (we denote (Mg, So) ~ (M1, S1)), where
So <3 {0, 1 Gee., randomly selecting a /-bit string), My <«
Decode(Sop), My <, M (i.e., sampling a message from M

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Attack
_—

i
Computational difficulty Unlimited Computational Power

(a) Traditional encryption (b) Honey encryption

Fig. 4. The difference between traditional encryption and honey encryption.

M K

Y

S
Encoder [~ ,'4 Encrypter [~ C
S’ T

M’ K’

Fig. 5. Construction of honey encryption.

according to the message distribution p), S; < Encode(M),
and [is the length of the bit strings. More specifically,

| Pr[A(Mo, So) = 1: Sy < {0, 1}}, My < Decode(Sy)]
—Pr[A(M,, S1) = 1: My < M, S; < Encode(M))]|

is negligible. Please note that the traditional encryption scheme
used in honey encryption should yield a random bit string for
each incorrect keys. Therefore, for each incorrect key K’, the
honey encryption scheme will produce a [-bit string S’ and
further a plausible-looking message M’ on M.

In the design of HPAKE, we use honey encryption to
encrypt the user’s private key ky7, which is a uniformly random
number on Z,,,. Designing an encoder for ky is simple.
To encode ky, we directly select an integer number from
[round(ky 2! /m»), round((ky + 1)2!/m2)) (S [0,2Y) as S,
where round is the rounding function; to decode S, we find
the corresponding interval and obtain k. With the encoder,
for each incorrect key rw, the honey encryption scheme can
produce a plausible-looking private key on Z,,.

D. Becerra Et Al’s honeyPAKE

Becerra et al. [34] made an effort to combine PAKE and
honeyword techniques to achieve the benefits of both. They
called the new protocol model, honeyPAKE. But the model
does not capture the security of honeyPAKE in a formal way
and it fails to capture the security in multiple sessions, as it
only considers the security in a (single) session. Further, as the
(main) protocol design is based on a traditional symmetric
PAKE - PPK [10], it cannot prevent the insider attacks and pre-
computing attacks. More importantly, the design requires the
user to remember an additional password (two in all), which
doubles the user’s memory burden and fails to achieve the
expected security because of the user’s password reuse habits.

In contrast, we use a game-based model to capture the
HPAKE security. The model has been widely adopted in the
cryptography and security community to provide sound secu-
rity analysis approach for protocols. Our model captures the

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HPAKE: HONEY PASSWORD-AUTHENTICATED KEY EXCHANGE FOR FAST AND SAFER ONLINE AUTHENTICATION

security of HPAKE in multiple sessions, as the classic BR93
model for AKE [35] and BPR2000 model for PAKE [36] do.
As for the design, we construct the protocol based on a state-
of-the-art aPAKE - OPAQUE. Our design is compatible to the
same user interface as traditional password-only authentication
(also as PAKE and honeyword), and does not require the
secondary password.

III. OUR DESIGN

On the top of OPAQUE, honeyword mechanism and honey
encryption, we propose an HPAKE construction. The basic
idea of our design is to generate honeywords (via a hon-
eyword generation algorithm) and further generate the user
U’s “honey” private/public keys (via honey encryption). If the
client C runs HPAKE with a honeyword, it will get a honey
private key and further a honey session key. If the usage of
a honey session key occurs, the honeyword mechanism will
raise an alarm of password leakage.

A. Registration and Authentication Phases

We give a detailed and formal description of our design
in Figure 7. Meanwhile, for ease of understanding, we show
the schematic diagram of the design in Figure 6 and briefly
describe the process as follows:

1) Registration (via a secure channel):

a) C runs HPAKE (registration phase) as the same as
our modified OPAQUE.

b) S runs HPAKE (registration phase) as the same as
our modified OPAQUE and gets the ciphertext c,
OPREF secret s, S’s private key ks, U’s (real) public
key Ky. Then, S generates ¢t — 1 honeywords, runs
OPREF to transform honeywords to honey random
passwords, uses the honey random passwords to
decrypt c to get U’s honey private key, calculates
U’s honey public key, randomly shuffle U’s real
and honey public keys, stores the public key list
with U, s, ¢, ks and sends the index/position i of
the real public key (with U) to HC.

¢) HC stores U, i;.

2) Authentication (via a S-authenticated secure chan-
nel. Note the channel is established by 1-RTT TLS
protocol.):

a) C runs HPAKE (authentication phase) as the
same as our modified OPAQUE to get the ses-
sion key SK. Then, C uses SK for further data
transmission.

b) S runs HPAKE (authentication phase) as the same
as our modified OPAQUE for each U’s private key
to get ¢ session keys {SKi}f:y If C uses SK, S
checks if SK € {SK;}/_;:

i) If it is the i-th one, send (U, i) to HC.
ii) Otherwise, deny this access.
¢) HC checks if i = i;:
i) If it is, allow this access.
i1) Otherwise, raise an alarm.

1601
C S HC
pw = sw;, [hw = sw;j S‘ iy
[]
> ke
i OPRF l
rw;, [TW; L
¢, Ks
klﬂi, /k'U,j &~ Dec'r‘u,',, Jrw; (C)7 Ks ks, {KU,i}'tL‘:l
—
| |
e
SK,;I/SK“ {SKZ}le
Use SK,‘,! /SK7J LI/LJ
—————————————— - — Allow/Alarm

Fig. 6. Schematic diagram of our HPAKE. Here, x/y represents x or y, not
the ratio. Besides, the processes including OPRF, AKE, and the sending of
¢, Kg are running parallel, not sequentially.

B. Security Analysis

Here, we briefly discuss the security of our HPAKE, and in
Section IV, we will give a formal analysis.

1) Resisting Online Password Guessing: In our HPAKE,
the adversary can impersonate the client to carry out online
password guessing, which is the same as in aPAKE. In this
case (where the adversary does not compromise the authenti-
cation server’s storage file), the interface of our HPAKE is the
same as that of OPAQUE for the adversary. Therefore, our
design achieves the same level of security as OPAQUE and
password-over-TLS against online password guessing.

2) Resisting Offline Password Guessing and Detecting Pass-
word Leakage: We allow the authentication server to store a
user U’s secret key s for OPREF, the ciphertext ¢ of U’s private
key and the sweet public keys {KU,i};:l- If the adversary
compromises the authentication server, she can carry out
offline password guessing to recover the password. To this end,
she needs to 1) run OPRF to get the corresponding random
password rw’ for each password guess pw’ (in the dictionary),
2) decrypt the ciphertext ¢ with rw’ to get the corresponding
private/key k;,, Ky, and 3) check if K7, is in the sweet public
keys {Ky,i}i_,. If it is, then the guess is a sweetword. Accord-
ingly, the adversary gets ¢ sweetwords by offline password
guessing. If the honeyword generation algorithm is ideal, then
the adversary cannot tell which sweetword is the real one.
To compromise U’s account, she probably runs HPAKE with
a honeyword. In this case, the session key established by the
adversary is not a real one, and the honeychecker will identify
it and raise an alarm. From the above descriptions, we can
see that the HPAKE can resist offline password guessing and
detect the password leakage even if the authentication server
is compromised, which is as secure as the password-over-TLS
with honeyword mechanism, but more secure than aPAKE.

3) Resisting Insider Attacks and Malicious Server: The
password used by the client will not be directly sent to the
authentication server, so that the insider or malicious server
cannot steal the password plaintext. But the online password
guessing against aPAKE can be still carried out. In this case,

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

1602

our HPAKE achieves the same level of security as aPAKE, but
is more secure than those schemes safeguarded by password-
over-TLS.

C. Discussions

1) The Need of a Server-Authenticated Channel: The
server-authenticated channel is of extreme necessity for
HPAKE. Otherwise, HPAKE cannot reliably detect the pass-
word leakage. We demonstrate this point with the following
attack. Targeting an HPAKE without the server-authenticated
channel, the adversary can 1) compromise the authentication
server, 2) get the storage file, 3) impersonate the authentication
server with the file to run HPAKE with the real user. She
can obtain the index i, and further get the real password by
carrying out offline password guessing. To resist the attack,
we should require a server-authenticated channel.

2) Usage of Honey Encryption: With honey encryption,
we do not need to run several aPAKE instances, but only one.
The client can run the instance with a honeyword, so that the
honey encryption will yield a U’s honey private key k;,. Using
the private key, the client will obtain a honey session key SK'.
Further, one uses this session key that will lead to an alarm
of password leakage.

We do not use honey encryption to encrypt S’s public
key Kgs, in order to avoid a situation that we cannot get
the corresponding S’s private key ks to run AKE. More
specifically, in the initialization phase, if Kg is encrypted by
honey encryption, then decrypting the ciphertext (with a honey
random password rw’) will yield a honey public key K. But
the decryption does not produce the corresponding private key
k', which is needed for the server to run AKE (i.e., calculating
the session key).

3) Number of Honeywords: Intuitively, if we increase the
number of honeywords in the system, the attacker may have
less probability to identify the real password. But a large
number of honeywords may increase the storage and compu-
tation cost significantly. One may balance the tradeoff among
usability, practicability and security. Juels and Rivest [15] thus
recommended to practically set the number to 20, for general
purpose. It could be the case that different users, based on
privilege or weight, may be assigned with various values,
e.g., 200 for VIP, and 2 for basic subscribers. But on average
setting 20 sweetwords (on average) per account is sufficient
for a system (which may include thousands or even millions
accounts). We note that if the attacker tries to log in some
accounts with honeywords, the honeyword mechanism will
raise alarms for the whole password file (targeting to all the
accounts, instead of those under attacks). In this way, all the
users can be notified about the threat.

Suppose there exists a website that includes 10,000
accounts. In traditional password-over-TLS (without any hon-
eyword mechanisms), the attacker can compromise almost all
accounts (if there is no other security protection), considering
the effectiveness of current password guessing algorithms [3].
Applying a honeyword mechanism, one may set 20 as the
number of sweetwords and 1,000 as the threshold of honey-
word logins (i.e., if the number of honeyword logins exceeds

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

1,000, the system will take correspond actions, e.g., shutting
down the system). Based on these numbers, the attacker can
only compromise 50 (1000/20) accounts, on average, which is
a very small fraction (0.5%) of the 10,000 accounts.

IV. SECURITY ANALYSIS FOR OUR DESIGN

To formally analyze the security of HPAKE, we propose a
game-based security model and perform the security analysis
of our design in the model.

A. Security Model

Our security model is a game-based one inspired by
BPR2000 model for PAKE [36] and the CK-adversary model
for AKE [37]. Game-based security models get some criticism
(e.g., suffering with overlooking corner cases [38] and at times
failing to get secure composition [39]), and many automatic
analysis methods/tools (e.g., Smartverif [40], CryptHOL [38])
are proposed to give comprehensive analysis and avoid human
errors in proofs. But so far, the automatic methods cannot
provide a cryptography sound security analysis, game-based
models are still the mainstream security analysis method,
especially for AKE [35] and its variants (e.g., PAKE [36],
multi-factor AKE [20]). Hence, we choose this type of security
model for our HPAKE.

1) Protocol Participants and Communication Model: In
PAKE, there are two parties: a client C and a (authentication)
server S. And C is held by a user U. For authentication, U
needs to enter the username U and the password pw on C.
Like PAKE, HPAKE shares the same parties but an extra one
is required: an enhanced server - honeychecker HC.

The communication between S and HC is on a secure
channel, which may be on the external network with a pre-
established session key or on the internal network. In the
registration phase, the communication between C and S is on
a secure channel. In practice, this registration usually is done
via a secure TLS channel or even a face-to-face approach.
In the authentication, the communication between C and S is
via a server-authenticated channel as discussed before.

2) Protocol Execution: In the registration phase of an
HPAKE I1, the user U registers its username (U) with a pass-
word pw on the client C and meanwhile, the authentication
server S generates honeywords and stores the password file
(which includes the real password pw and ¢t — 1 honeywords),
and the honeychecker HC stores the index/position i, of the
real password pw in the password list. Note there is no need to
register the client C held by the user. Any user can leverage
any client for the registration or authentication. A user can
even leverage different clients for HPAKE instances. And a
client can be used by various users in different time slots.
This brings the same level of usability as the password-based
authentication.

In the authentication phase of II, the user U inputs the
username U and the password pw on the client C, in which
the client may be different from the one used in the registration
phase. After the interactions between C and S via the server-
authenticated channel, C yields a session key SK and S
outputs several session keys {SK;}!_, including a real and

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HPAKE: HONEY PASSWORD-AUTHENTICATED KEY EXCHANGE FOR FAST AND SAFER ONLINE AUTHENTICATION

Parameter

o Security parameter k.
e 2HashDH:
1) mq is a primer number, G is a mq-order cyclic group, and g; is a generator of GG;. The length of m, is a
polynomial function of k.
2) Hy, H} are two hash functions with ranges {0, 1}* and G, respectively. The PRF Fy(z) is Hy(x, H](z)*). 1
is a polynomial function of k.
« HMQV:
1) mg is a primer number, G5 is a mgy-order cyclic group, go is a generator of G'2. The length of my is a polynomial
function of k.
2) Hoy, H) are two hash functions with ranges Z,,, and {0, 1}!2. I, is the length of the session key, which is a
polynomial function of x.
A honey encryption scheme (Enc, Dec) for the message space Zi,,.
e A honeyword generation algorithm Gen.
Initialization (via a secure channel)

o The client C picks s < Z,,, as the secret key of S in 2HashDH, and computes rw « H; (pw, Hj (pw)*®); computes
ky <$ Zo,, Ky g§” to generate the private/public keys (ky, Kyy) for U in HMQV; computes ¢ < Enc,., (k)
to yield the ciphertext ¢ of ky using the key rw; sends (U, s, Ky, ¢) to S.

e Getting (U, s, Ky, c) from the client C, the authentication server S computes kg < Z,,, Kg glgs to generate
its private/public keys (ks, Kg) in HMQV; S generates ¢ — 1 honeywords hw; < Gen for i from 1 to ¢ — 1, the
corresponding random honeyword rw; < Hi(pw, H{ (hw;)®), and the honey private/public keys ky,; < Decy.y, (¢),
Ky + gg Y. randomly shuffles Ky (1 <1 <t—1) with Ky, and sends the index 4, of the real one (with the ID
U) to the honeychecker HC} stores s, c with the shuffled Kyy; (1 <7 <#t).

o Getting (U, i,) from the authentication server S, the honeychecker HC stores it.

Authentication (via a server-authenticated channel)

o C picks 1 <$ Z,,, and computes « <— H{(pw)"; picks & < Z,,, and computes X < ¢%; sends (U, X, a) to S.

e Getting (U, X, «) from C, S picks y <5 Z,,, and computes Y < g, 8 < a*; sends (Y, 8, ¢, Kg) to C; computes
SK; « Hg((XKg%(X’KS))y‘*Hé(Y’KUﬂ)kS) for i from 1 to t.

« Getting (57, B,c,Kg) from S, C computes rw < Hi(pw,BY"), ky <+ Decpy(c); computes SK <«

1603

1) If it is not, deny this session.

U (i.e., equal to 2;):
a) If it is, allow this session.

Hg((YK§2(Y7KU))I+H§(X7KS)’“U) and further uses SK for data transmission (or other purposes).
o S checks if the session key SK used by C' is one of {SK;}_;:

2) If it is the i-th one, S sends (U, i) to HC (via a secure channel). Then HC' checks if the index i is correct for

b) Otherwise, raise an alarm of password leakage and take actions according to the pre-defined security policy.

Fig. 7.

several honey keys. Then, C uses its session key SK for further
data transmission, And S can tell if SK is in {SK,-}le. If not,
then S denies the session. If it is the i-th one, S sends i to the
honeychecker HC. Further if i = iy, HC allows the session
and otherwise, raises an alarm of password leakage.

To capture the security of IT in the context of parallel
running, our model allows the parties to parallel run more
than one instance of IT. In order to distinguish, we denote the
i-th instance of a party P as P'.

3) Partnering Instances: To capture the partnering of the
parties’ instances, our model uses session id (SID). We require
C and S to establish a SID before running HPAKE, and
the communication between § and HC inherits the SID.
In practice, C and S can send two random number n1, ny to
each other, separately, and uses C||S||n1||ny as SID. If the
party instances C' and S/ use the same SID, we say C' and
S/ are partners.

Our HPAKE Construction.

4) Attacker Ability: The attacker can eavesdrop the mes-
sages between S and C, delay and replay the messages from
S to C, but can intercept, tamper and forgery the messages
from C to M. Note the communication between S and C is
on a S-authenticated channel.

Our model allows the attacker to corrupt C, i.e., getting
all internal states of C and further fully controlling C. This
models the case where the attacker fully controls C via virus
or Trojan Horse. Our model also allows the attacker to steal
the user’s password pw without corrupting C, capturing the
case that the attacker may obtain pw, e.g., via over-shoulder
attacks [41].

For the authentication server S and the honeychecker HC,
our model only allows the attacker to steal the password file
on S, but does not allow she to corrupt S or HC, or steal the
storage file on HC. The former case where the attacker steals
the password file on S is the main threat and the motivation for

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

1604

HPAKE. The latter cases where S or HC is corrupted, or the
storage file on HC is stolen is not considered, because the
security in these cases is trivial and considering them will lead
to the unexpected and unnecessary complexity of the security
model. Here, we briefly discuss the unconsidered cases:

1) If S is corrupted, the attacker can tell the real password
(see the discussion on the server-authenticated channel
in Section III-C.1) and compromise the account.

2) If the storage of HC is compromised or HC is cor-
rupted, the attacker cannot get any information about
the password except she steals the password file.

3) In other combined cases (e.g., both S and HC is
corrupted), the attacker can do what she can in each
single case.

Our model allows the attacker to reveal a (used) session key
(note that for S, this is the real session key rather than a honey
one). In practice, the session key may not be safely and fully
destroyed after its usage, and may be obtained by the attacker.
A secure HPAKE should guarantee the security of the rest of
the session keys even if some of them are revealed.

5) Security Game: Same as BPR2000 model for
PAKE [36], our model is game-based. Usually in a
game-based security model, there is a challenger and an
attacker. The challenger simulates the running of the protocol
and the attacker takes the actions by sending queries to
the challenger. The queries formally capture the attacker’s
ability. The attacker wins the game, if she breaks the
protocol. The security of the protocol is defined by the
advantage (probability) of the attacker wining the game.
More specifically, the protocol is defined to be secure, if no
attacker can win the game with an advantage more than a
given bound. The given bound is defined by the advantage of
the trivial/unavoidable attacker.

For an HPAKE II, compromising the session keys is the
attacker’s goal. To test if the attacker knows the session key
or the partial information about the session key, we require the
attacker to distinguish the session key from a random number
(with the same length). If she can tell, then she wins the game,
i.e., breaking TII.

According to the attacker’s ability as discussed before, our
model allows the attacker to make the following queries and
lets the challenger respond as follows.

1) Send(S,i, C, M): Execute Il as the instance S' of S

getting the message M from C, and respond the response
message of S’ to the attacker.
Note if M is not a message responded by the challenger
as the last message from St to C, we say that this
Send query is rogue. In other words, a Send query is
rogue, meaning the message is tampered or forged by
the attacker.

2) Send(C, i, S, M): If M is responded as a message from
S before, execute IT as the instance C' of C getting the
message M from S, and respond the response message
of C! to the attacker.

3) Send(C,i, S, 1): If C! does not exist, initialize the
instance C' of C, run IT as C!, and respond the initial
message from C' to S.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

In the real world, the attacker usually cannot make the
client initiate a session. But in the game, this query
allows the attacker to initiate sessions as much as she
wants. This setting is used to simulate the parallel
running of IT.

4) Use(C,1i, S, SK): If SK is not one of the sweet session
keys for the session between C' and S, respond Deny;
else if SK is the real session key, respond Allow;
otherwise, stop the game, meanwhile the attacker fails
the game.

Note if SK is not obtained by the Reveal(C,i) or
Reveal(S, j) query (S/ is the partner of C'), we say
this Use(C, i, S, SK) query is rogue.

5) Reveal(P,i): Respond the session key of P! if it has.
Note if P = S, the session key is real.

6) Corrupt(C): Respond the internal states and the pass-
words of all instances of C (so that the attacker can
impersonate C).

7) StealPW(U): Respond the password pw of U.

8) StealPWFile(S, U): Respond the U’s password file on
S.

9) Test(P,i): If no Test(-,-) was made before, P' has
established a session key and the key is fresh, then flip
a coin b.

a) If b =1, respond the (real) session key of P!;
b) If b =0:

i) If P = S, StealPWFile(S, U) was made, and
at least one rouge Send(S, i, C,-) query was
made, then randomly select one from the honey
session keys of S’ and respond it.

ii) Otherwise, randomly select a key in the session
key space (note the space usually is {0, 1}/
where [/ is the length of the session key) and
respond the key.

6) Advantage: The Test query is used to capture the
attacker’s advantage (rather than ability). Given the real ses-
sion key or the random key (or a honey session key), the
attacker needs to make a guess b’ on b. If b’ = b, the attacker
wins the game. Traditionally, we define the advantage of A as

AdVIPEC(A) = | Pr{b’ = 1]b = 0] — Pr[b’ = 1]b = 1]].

This definition captures the advantage of A getting the partial
information of the real session key SK. If an attacker has
an advantage of 1, then she knows the full information of
SK (and can use it for further impersonation), since she can
always tell SK from a random or honey session key. If an
attacker has a negligible advantage to distinguish SK from a
random session key, then she knows nothing about SK and has
a negligible probability of impersonation or eavesdropping in
the session with SK. If an attacker has a negligible advantage
to distinguish SK from a honey session key (when P =
S, StealPWFile(S, U) was made, and at least one rouge
Send(S, i, C,-) query was made), then she knows nothing
about the index i, of the real password (or session key), but
she may have % probability of impersonation or eavesdropping
in the session since she can retrieve ¢ sweetwords from the
password file.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HPAKE: HONEY PASSWORD-AUTHENTICATED KEY EXCHANGE FOR FAST AND SAFER ONLINE AUTHENTICATION

7) Freshness of the Session Keys: The attacker knows the
session key via trivial methods, e.g., Reveal or Corrupt
queries. These session keys cannot be guaranteed secure by
any HPAKE. Excluding these (unfresh) session keys, our
model only allows fresh session keys to be made in Test
queries. Formally, we have the following definition.

Definition 1 (Freshness): The session key of an instance P’
is fresh, if Reveal(P,i) and Reveal(Q, j) were not made,
where Q7 is the partner instance of P’ (if it exists), and one
of the following conditions holds:

1) None of the Corrupt(C) or StealPW(U) queries was
made.

2) The internal states of P’ and Q/ are not sent to the
attacker, and no rogue Send(S,i, C,) queries were
made.

Note that if the Corrupt(C) or StealPW(U) queries were
issued, the attacker knows the password, so that she can
impersonate U to establish the session keys with S. In this
case, the keys in these sessions are unsafe and the internal
states of the sessions are known to the attacker. But the keys
in the following sessions are still safe:

1) The sessions established before the Corrupt(C) or
StealPW(U) queries were made.

2) The sessions established by the real user and not tam-
pered by the attacker.

The former corresponds to the forward security, while the
latter is for the key-compromise impersonation (KCI) security/
resistance.

8) Security Definition: With the above modelling, we can
finally give the formal definition of the security of HPAKE.

Definition 2 (HPAKE): An HPAKE II is secure, if for a
uniform password distribution on a dictionary of size n,
an arbitrary probabilistic polynomial time (PPT) attacker A,
and the security parameter «, the advantage of A is bounded
as follows:

1) If StealPWFile(S, U) was made,
AdVIP*(4) < negl(x),

where ¢ is the number of the sweetwords for an account,
and negl(x) denotes a negligible amount in «.
2) Otherwise,

aKe 1
AdvIP*e(4) < —as + negl(x).

where ¢y is the number of rogue Send queries made by

A.
9) Explanation on the Bounds:

1) For the first case where the attacker steals the password
file (via the StealPWFile(S, U) query), she can retrieve
the plaintext of the r sweetwords via offline guessing.
But for a secure HPAKE, she should not tell the real
password from the ¢ sweetwords.

a) If the attacker uses one sweetword to carry
out online guessing (via rouge Send(S,i, C,-)
queries), she cannot tell the real session key. So for
the Test(S, i) query responding a real session key

1605

or a honey one, she has negligible advantage to
distinguish the key.

b) If the attacker does not carry out active attacks (i.e.,
not making rouge Send(S,i, C,-) queries), she
knows nothing about the real session key and the
honey ones. So for the Test(S, i) query responding
a real session key or a random one, she cannot tell
which one is real.

2) For the second case where StealPWFile(S, U) was not
made, HPAKE has the same security as PAKE. The
trivial attacker can carry out online guessing to establish
a session key with S. For a uniform password distribu-
tion with the space of size n, each guess only has the
probability of 1/n to succeed. This defines the bound for
this case. Although the assumption of password uniform
distributions is widely used in password cryptography,
some statistic studies on passwords [3], [24], [42] show
that the password distribution is far from the uniform
distribution. Fortunately, for a non-uniform password
distribution with the cumulative distribution function f,
we can simply modify the bounds to suit the password
distribution, via replacing ﬁqc in the bound of the
second case with % f(qc).

B. Security Proof

It is easy to prove the security of our HPAKE in the
second case (where StealPWFile(S, U) was not made), since
it inherits the security of OPAQUE. As for the security analysis
in the first case, it may be challenging. For this case, we first
give a lemma to simply the proof.

Lemma 1: If an HPAKE 11 is secure for t = 2, then Tl
is secure for arbitrary t > 2, where t is the number of the
sweetwords for an account.

Proof: For convenience, we denote I1' as IT with the
sweetword number ¢, G’ as the game with I1’ and A’ as the
attacker for IT’.

In the second case (where A did not
StealPWFile(S, U)), G? is the same as G' (¢
Thus

make
e 7).

1
AdvIEEE(A) = AdvITEC(A) < ~qs + negl(x).

In the first case, if A do not make rouge Send(S, i, C, -)
queries, A cannot know any partial information of the real
session key, i.e.,

AV (A) = AdVIEC(A) < negl (k).

Besides, if A makes Test(U, i) queries, she only has a negli-
gible advantage, since she cannot make rouge Send(C, i, S, -)
queries. So we only need to consider the Test(S, i) query.

In the following, we consider the case where A steals
password file and makes at least one rouge Send(S, i, C, -)
query. In this case, the only difference between G2 and G’
(teZ)is:

1) In G2, A? needs to tell a real session from a decoy one.

2) In G?, A" needs to tell a real session from ¢t — 1 decoy

ones. More specifically, the real session key has %

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

1606

probability to be responded by Test(S, i) and each honey
one has ﬁ probability.
Intuitively, if a real session key is indistinguishable from
a decoy one, then it is indistinguishable from # — 1 decoys.
Formally, we do the following reduction. From the attacker
A’ and the game G2, we construct the following game G'*
and the attacker A%

1) For G? with two sweetwords swi, Swy, we run the
initialization of HPAKE to generate other honeywords
sw3, Swy, ...,sw; and randomly shuffle {sw;}!_,.
Denote the subscripts of the original two sweetwords
in the new list as i1, ip, respectively.

2) When A" makes the Test(S,i) query, randomly select
one from {SK; , SK;,} and respond it. (Note in G’, the
honey session key is randomly selected from all honey
session key.)

3) Run A’ to output the guess b’ for b, then A outputs b’
as her guess.

Then A% wins in G2 if and only if A" wins in G'*. Besides,
{sw;}!_, are randomly shuffled in G™*, which is equivalent to

that a honey session key is randomly selected from ¢ — 1 ones
in G'. Thus,

Pr(A? wins in G?) =Pr(A’ wins in G*) =Pr(A’ wins in G').
Then
AdVIEEE(A') = AdviRC(A2).

If Advlllf),ake (A") is non-negligible in «, then Advtllfza ke (A?)
is non-negligible in «. This means if T1’ is not secure, then
12 is insecure. Therefore, if T12 is secure, then I’ is also
secure. (]

Then we give the security proof for our HPAKE.

Theorem 1: Our HPAKE in Figure 7 is secure, if OPAQUE
is secure and the honeyword generation algorithm is secure
(i.e., the honeyword is indistinguishable from the real pass-
word).

Proof: In the second case (where A did not make
StealPWFile(S, U)), if A breaks our HPAKE, then she breaks
OPAQUE. Thus, according to the security of OPAQUE,

aKe 1
AdvIP*e(4) < —as + negl(x).

For the first case, by Lemma 1, we only need to prove
the security for + = 2. In this case, if no Reveal queries
are made, then A% knows nothing to tell the real session key
(or password) from the honey one; but if a Reveal query is
made, A2 may leverage this used real session key to tell the
target password or session key. In the following, we will show
that A still cannot tell the real session except she solves the
computational Diffie-Hellman problem.

The only way for A” to tell the real session key is to
tell the real password and run HPAKE with it. Otherwise,
A? cannot get any information about the target real session
key (treating Hj as a random oracle). The only information
about the real password that 4% can get is the used real
session key(s). A real session key is calculated with U’s real
private/public key (denoted as ky ., Ky), and meanwhile

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

the honey one is calculated with the honey real private/
public key (denoted as kyn, Kyn). More, specifically,

. . H}(X,K /]
the real session key is Hg((XKUZF(S))y+H2(Y»KU,r)k3)
. Hy(Y.Ky.s (XK .
in § or H((YKg 21 Kv,))X+H2(X’K5)kva) in U, and

. H)(X.K /
the honey ome s Ha(XKp2 o)y +HYKuwks)

HL(Y,K, / .
or H) (YK 2 U’h))X+H2(X'KS)kU-h). Given a
revealed real session Kkey, A% needs to calculate
(Xngi(X,Ks))y+H2’(Y,KU,i)ks — (YK;IZ(Y’KU’i))x—"_HZ/(X’KS)kUJ.
N

(i =0, 1) to verify which ki ; (sw;) is real. This is equivalent
to calculating X¥ = Y* from X and Y, ie., solving the
computational Diffie-Hellman (CDH) problem. Therefore,
in this case,

AVIRE(A2) < Adveh,

where Adve®" is the max advantage for CDH problem. Under
the CDH assumption (which is also needed for the security of
OPAQUE and HMQV), Adv®®" < negl(x), and further

AV (A2) < negl(x).

To summarize, the advantage of attackers is bounded as in
Definition 2. This concludes our HPAKE is secure.]

V. EFFICIENCY EVALUATION

To evaluate the efficiency of our HPAKE, we implement
a prototype for our HPAKE and deploy it in the real-
world environment. Since OPAQUE is recommended by the
Crypto Forum Research Group (CFRG) of IETF, there appear
many open-source implementations of OPAQUE and two of
them [43], [44] are selected to be shown on the page of
CFRG [26]. Since the implementation in Rust [44] is built
with the help of Hugo Krawczyk (one of the authors of
the OPAQUE paper [12]), we leverage it to implement our
HPAKE.

A. Implementation for Our HPAKE

Compared with HMQYV, our HPAKE extra requires the
server-authenticated channel, the generation of honeywords
and honey session keys, the honeychecker, and the secure
channel between the authentication server and honeychecker.
For the server-authenticated channel, we use the Elliptic
Curve Digital Signature Algorithm (ECDSA) as the signature
scheme. For the generation of honeywords, we simply use the
sampling-from-a-probability-model method [16]. Note that,
our HPAKE does not allow the server to get the password
plaintext, so that the real-password-based generation methods,
e.g., chaffing-by-tail-tweaking, do not apply. For the genera-
tion of honey session keys, we only need to run OPAQUE
with the honeywords. For the honeychecker, we use another
server. For the secure channel between the authentication
server and honeychecker, we pre-set a symmetric key for
the authentication server and honeychecker to encrypt their
communication.

B. Environment of the Deployment

To evaluate the efficiency of our HPAKE, we deploy it in
the real-world environment as follows.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HPAKE: HONEY PASSWORD-AUTHENTICATED KEY EXCHANGE FOR FAST AND SAFER ONLINE AUTHENTICATION 1607
30 30
77777 Client ~==== Client ~==== Client ~===~ Client

25 Server 25 Server 2 Server 25 Server

2 o} == Honeychecker o}~~~ Honeyehecker o} =" Honeychecker

€ g € g

o 15 o 15 o 15 o 15

E E E E

TS "0 S0 "0
° ndwlohind b bl nlibatos hotmi i o ° [ETPTTIAL W B! ST AEIERTE ORI S (TR TPT Y PR ° [P L P Sl ° bbbl Lol bt othed e
% 200 400 600 800 1000 0 200 400 600 800 1000 % 200 400 600 800 1000 0 200 400 600 800 1000

Experiment number

(a) OPAQUE [12]

Experiment number

(b) Honeyword [15]

Experiment number

(c) Becerra et al.’s [34]

Experiment number

(d) Our HPAKE

Fig. 8. Computational cost comparison.
400 400
77777 Client-Server ===== Client-Server ===== Client-Server
200 200 Server-Honeychecker | 200 Server-Honeychecker
; ; ; T ; | |
o 200 > o 200f, i ! ' o 200 !
£ | £ s h I R T R ST 1
o bl _MLLLUJ i“bla i A
0 0 200 400 600 800 1000 0 200 400 600 800 1000 0 0 200 400 600 800 1000 0 200 400 600 800 1000
Experiment number Experiment number Experiment number Experiment number
(a) OPAQUE [12] (b) Honeyword [15] (c) Becerra et al.’s [34] (d) Our HPAKE
Fig. 9. Communication cost comparison.
TABLE II
PERFORMANCE SUMMARY
Protocol Computation cost Storage cost Communication cost
Client Server Honeychecker Client Server Honeychecker Client-Server Server-Honeychecker
3exp+ 1 mexp 2exp+ 1 mexp - . . 2 rounds -
OPAQUE [12] 272 ms 207 ms] 0 bit 704 bit - 4701 ms)
2 exp + 1 mexp 3 exp 0 exp . . . 5 rounds 2 rounds
Honeyword [1] 2.07 ms 2.00 ms 0.00ms 0Dt S184bit 96t 12588 ms 0.12 ms
, 2 exp 1 +texp 0 exp . . . 3 rounds 2 rounds
Becerra et al.’s [34] 1.37 ms 14.34 ms 0.00 ms 0 bit 5376 bit 96 bit 76.31 ms 0.12 ms
3 exp + 2 mexp 3 exp + t mexp 0 exp . . . 2 rounds 2 rounds
Our HPAKE 3.48 ms 17.19 ms 000 ms 0Pt 5368 bit 96 bit 50.48 ms 0.12 ms

! exp: number of exponentiation; mexp: number of multi-exponentiation.

2 ¢ is the sweetword number for each account. For the real running, we set ¢ = 20 as recommended as in [15].

3 The client stores nothing, but the user needs to memorize the password.

4 For a fair comparison, we only count the cost of cryptography suites in honeyword mechanism (TLS).

1) The authentication server S is deployed in a Docker
container running on a remote server in Alibaba Cloud.
The Docker container is assigned with 2 CPUs (Intel
Core i5-7300HQ CPU @ 2.50Hz 2.50Hz) and 2.0GB
memory. In the container, Ubuntu 18.04 with MySQL
7.4.8 is deployed. To allow any client C from Internet
to access S, we set this container to allow any connection
from the Internet.

The honeychecker HC is deployed in another Docker
container on the same server in Alibaba Cloud. This
container is assigned with 1 CPU (Intel Core 15-7300HQ
CPU @ 2.50Hz 2.50Hz) and 1.0GB memory. To avoid
the same vulnerability affecting the authentication server
and honeychecker, we leverage another operating system
- CentOS 8.0 - for the honeychecker. Since HC only
allows the connection from S, this container is set to
only allow the connection from local host.

The client C is deployed in a laptop computer
equipped with an Intel Core i5-7300HQ CPU,
16.0GB memory.

2)

3)

4) The communication between S and HC is via a local
channel. Its round-trip delay time is only 0.123 ms and
it has 0.0 packet loss.

The communication between S and C is over Internet.
The round-trip delay time of this channel is around
48.693 ms, and it has 0.5% packet loss. The instability
of the channel leads to the bulges in Figure 9.

5)

C. Performance

Here, we only consider the time cost of the exponen-
tiation and multi-exponentiation operations, since the time
cost of other operations (e.g., honey encryption and hash)
is much smaller. Please note that with Shamir’s trick, one
multi-exponentiation only needs % more time cost than one
exponentiation. In the statistic on real times, we set 20 as the
sweetword number ¢, since the value is recommended in [15]
and large enough for normal accounts (see the discussion in
Section III-C.3).

1) Computational Cost: Compared with OPAQUE, our
HPAKE only does one more multi-exponentiation on the client

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

1608

(for verifying the signature), f — 1 more multi-exponentiations
on the authentication server (for calculating the #—1 honey ses-
sion keys). Note the ¢ session keys can be parallel calculated.
Further, considering the computing power of the authentication
server, this cost is acceptable for the authentication server.
As shown in Figure 8 and Table II, when ¢ = 20, our HPAKE
only costs 3.48 ms on the client, 17.19 ms on the server, and
0.00 ms on the honeychecker.

2) Communication Cost: Compared with OPAQUE, our
HPAKE only increases two rounds of communication between
the server and honeychecker. Since the round-trip delay time
(0.12 ms) on the server-honeychecker channel is very small
(the server and the honeychecker is deployed on the same
server but different Docker container), this increased time
is negligible. Compared with honeyword mechanism (for
password-over-TLS), our HPAKE decreases the communi-
cation rounds between the server and client from 5 to 2.
Since the round-trip delay time on the client-server com-
munication is much higher than other parts (including the
cost on computation and on the server-honeychecker com-
munication), our HPAKE achieves a great improvement on
efficiency than honeyword mechanism. As shown in Figure 9
and Table II, our HPAKE only costs 50.48 ms on the client-
server communication and 0.12 ms on the server-honeychecker
communication.

3) The Sweetword Number’s Influence on Performance: As
discussed in Section III-C.3, different accounts may be set with
different ¢ according to their importance. For HPAKE, more
honeywords, more cost. Fortunately, we keep the marginal
cost of adding a honeyword on a small number: 0 for the
communication cost; only one multi-exponentiation (about
0.74 ms) on the server’s computation cost and one public
key (256 bits) on the server’s storage cost. If we magnify the
sweetword number by a factor of 10 (i.e., setting t = 200),
we still have an acceptable cost: 150.39 ms and 51,648 bits
(6.3 MB) on the server side (the other costs do not change).

4) Summary: Our protocol only costs 71.27 ms for one
complete run (¢ = 20), within 20.67 ms on computation and
50.6 ms on communication. This means our design is secure
and practical for real-world applications.

VI. CONCLUSION

We propose the notion of HPAKE, which is the first of its
type, achieving the advantages of the honeyword and aPAKE
techniques, i.e., detecting the password leakage caused by
external attackers and preventing the insider from getting the
password plaintext. Using OPAQUE, honeyword mechanism,
and honey encryption, we build a concrete HPAKE construc-
tion. To analyze the security of our design, we propose a
game-based security model and formally prove the security
of our design in this model. We implement and deploy the
proposed scheme in the real-world environment. The experi-
mental results show that our design is efficient for the real-
world applications.

REFERENCES

[1] J. Bonneau, C. Herley, P. C. V. Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Proc. IEEE Symp. Secur. Privacy, May 2012,
pp. 553-567.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

[2] N. Huaman, S. Amft, M. Oltrogge, Y. Acar, and S. Fahl, “They would do
better if they worked together: The case of interaction problems between
password managers and websites,” in Proc. IEEE Symp. Secur. Privacy
(SP), May 2021, pp. 1367-1381.

[3] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, and M. Conti,
“Improving password guessing via representation learning,” in Proc.
IEEE Symp. Secur. Privacy (SP), May 2021, pp. 265-282.

[4] W. Li and J. Zeng, “Leet usage and its effect on password security,”
IEEE Trans. Inf. Forensics Security, vol. 16, pp. 2130-2143, 2021.

[5] Have I Been PWNED. Accessed: Aug. 15, 2021. [Online]. Available:
https://haveibeenpwned.com

[6] Yahoo! Data Breaches. Accessed: Aug. 15, 2021. [Online]. Available:
https://en.wikipedia.org/wiki/Yahoo!_data_breaches

[7] Yahoo Tries to Settle 3-Billion-Account Data Breach With $118
Million Payout. Accessed: Aug. 15, 2021. [Online]. Available: https:/
arstechnica.com/tech-policy/2019/04/yahoo-tries-to-settle-3-billion-
account-data-breach-with-118-million-payout/

[8]1 Z. Whittaker. (2018). Github Says Bug Exposed Some Plaintext Pass-
words. [Online]. Available: https://www.zdnet.com/article/github-says-
bug-exposed-account-passwords/

[9] S. M. Bellovin and M. Merritt, “Augmented encrypted key exchange: A
password-based protocol secure against dictionary attacks and password
file compromise,” in Proc. ACM CCS, 1993, pp. 244-250.

[10] V. Boyko, P. MacKenzie, and S. Patel, “Provably secure password-
authenticated key exchange using Diffie-Hellman,” in Proc. EURO-
CRYPT. Cham, Switzerland: Springer, 2000, pp. 156-171.

[11] C. Gentry, P. MacKenzie, and Z. Ramzan, “A method for making
password-based key exchange resilient to server compromise,” in Proc.
CRYPTO Cham, Switzerland: Springer, 2006, pp. 142-159.

[12] S. Jarecki, H. Krawczyk, and J. Xu, “OPAQUE: An asymmetric PAKE
protocol secure against pre-computation attacks,” in Proc. EUROCRYPT.
Cham, Switzerland: Springer, 2018, pp. 456-486.

[13] M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and J. Xu,
“Universally composable relaxed password authenticated key exchange,”
in Proc. CRYPTO. Cham, Switzerland: Springer, 2020, pp. 278-307.

[14] S. Smyshlyaev, N. Sullivan, and A. Melnikov. (2020). [CFRG] Results
of the PAKE Selection Process. [Online]. Available: https://mailarchive.
ietf.org/arch/msg/cfrg/LKbwodpa5yXo6VuNDU66vt_Aca8/

[15] A. Juels and R. L. Rivest, “Honeywords: Making password-cracking
detectable,” in Proc. ACM CCS, 2013, pp. 145-160.

[16] D. Wang, H. Cheng, P. Wang, J. Yan, and X. Huang, “A security
analysis of honeywords,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2018, pp. 1-18.

[17] Akshima, D. Chang, A. Goel, S. Mishra, and S. K. Sanadhya, “Genera-
tion of secure and reliable honeywords, preventing false detection,” [EEE
Trans. Depend. Secure Comput., vol. 16, no. 5, pp. 757-769, Sep. 2019.

[18] K. C. Wang and M. K. Reiter, “Using amnesia to detect credential
database breaches,” in Proc. USENIX Secur., 2021, pp. 839-855.

[19] Passwordless Authentication | Duo Security. Accessed: Aug. 15, 2021.
[Online]. Available: https://duo.com/solutions/passwordless

[20] W. Li, H. Cheng, P. Wang, and K. Liang, ‘“Practical threshold multi-
factor authentication,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 3573-3588, 2021.

[21] J. Zhang, H. Zhong, J. Cui, Y. Xu, and L. Liu, “SMAKA: Secure
many-to-many authentication and key agreement scheme for vehicular
networks,” IEEE Trans. Inf. Forensics Security, vol. 16, pp. 1810-1824,
2021.

[22] J. Srinivas, A. K. Das, M. Wazid, and N. Kumar, “Anonymous
lightweight chaotic map-based authenticated key agreement protocol for
industrial Internet of Things,” IEEE Trans. Depend. Secure Comput.,
vol. 17, no. 6, pp. 1133-1146, Nov. 2020.

[23] J. Srinivas, A. K. Das, N. Kumar, and J. J. P. C. Rodrigues, “Cloud
centric authentication for wearable healthcare monitoring system,” IEEE
Trans. Depend. Secure Comput., vol. 17, no. 5, pp. 942-956, Sep. 2020.

[24] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password
models,” in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 538-552.

[25] A. Juels and T. Ristenpart, “Honey encryption: Security beyond the
brute-force bound,” in Proc. EUROCRYPT Cham, Switzerland: Springer,
2014, pp. 293-310.

[26] Github CFRG/Draft-IRTF-CFRG-Opaque/the
Pake Protocol. Accessed: Aug. 15, 2021I.
https://github.com/cfrg/draft-irtf-cfrg-opaque

[27] S. M. Bellovin and M. Merritt, “Encrypted key exchange: Password-
based protocols secure against dictionary attacks,” in Proc. IEEE Com-
put. Soc. Symp. Res. Secur. Privacy, 1992, pp. 72-84.

Opaque Asymmetric
[Online]. Available:

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

LI et al.: HPAKE: HONEY PASSWORD-AUTHENTICATED KEY EXCHANGE FOR FAST AND SAFER ONLINE AUTHENTICATION

(28]

[29]
(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “Highly-efficient
and composable password-protected secret sharing (or: How to protect
your bitcoin wallet online),” in Proc. IEEE Eur. Symp. Secur. Privacy
(EuroS&P), Mar. 2016, pp. 276-291.

H. Krawczyk, “HMQV: A high-performance secure Diffie—Hellman
protocol,” in Proc. CRYPTO, 2005, pp. 546-566.

T. Wu, “The secure remote password protocol,” in Proc. NDSS, vol. 98,
1998, pp. 97-111.

D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin, Using the
Secure Remote Password (SRP) Protocol for TLS Authentication,
document RFC5054, 2007.

H. Cheng, Z. Zheng, W. Li, P. Wang, and C.-H. Chu, “Probability model
transforming encoders against encoding attacks,” in Proc. USENIX
Secur., 2019, pp. 1573-1590.

H. Cheng, W. Li, P. Wang, C.-H. Chu, and K. Liang, “Incrementally
updateable honey password vaults,” in Proc. USENIX Secur., 2021,
pp. 857-874.

J. Becerra, P. B. Rgnne, P. Y. Ryan, and P. Sala, “Honeypakes,” in
Proc. Cambridge Int. Workshop Secur. Protocols. Cham, Switzerland:
Springer, 2018, pp. 63-77.

M. Bellare and P. Rogaway, “Entity authentication and key distribution,”
in Proc. CRYPTO. Cham, Switzerland: Springer, 1993, pp. 232-249.
M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key
exchange secure against dictionary attacks,” in Proc. EUROCRYPT.
Cham, Switzerland: Springer, 2000, pp. 139-155.

R. Canetti and H. Krawczyk, “Universally composable notions of
key exchange and secure channels,” in Proc. EUROCRYPT, 2002,
pp- 337-351.

D. A. Basin, A. Lochbihler, and S. R. Sefidgar, “CryptHOL: Game-based
proofs in higher-order logic,” J. Cryptol., vol. 33, no. 2, pp. 494-566,
Apr. 2020.

R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proc. 42nd IEEE Symp. Found. Comput.
Sci., Oct. 2001, pp. 136-145.

Y. Xiong, C. Su, W. Huang, F. Miao, W. Wang, and H. Ouyang,
“SmartVerif: Push the limit of automation capability of verifying secu-
rity protocols by dynamic strategies,” in Proc. USENIX Secur., 2020,
pp. 253-270.

D. Shukla and V. V. Phoha, “Stealing passwords by observing hands
movement,” [IEEE Trans. Inf. Forensics Security, vol. 14, no. 12,
pp. 3086-3101, Dec. 2019.

M. Weir, S. Aggarwal, B. D. Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in Proc. 30th IEEE
Symp. Secur. Privacy, May 2009, pp. 391-405.

Github Bytemare/Opaque/Go Implementation of the Opaque Asym-
metric Password-Authenticated Key Exchange Protocol. Accessed:
Aug. 15, 2021. [Online]. Available: https://github.com/bytemare/opaque/
Github Novifinancial/Opaque-Ke/ an Implementation of the Opaque
Password-Authenticated Key Exchange Protocol. [Online]. Available:
https://github.com/novifinancial/opaque-ke

1609

Wenting Li received the Ph.D. degree from the
School of Software and Microelectronics, Peking
University, Beijing, China, in 2021. She is currently
a Lecturer with Peking University. She has authored
over ten articles in journals or proceedings, such
as IEEE TRANSACTIONS ON INDUSTRIAL INFOR-
MATICS and USENIX Security. Her research inter-
ests include authentication protocol and password
security.

Ping Wang (Senior Member, IEEE) received the
Ph.D. degree in computer science from the Univer-
sity of Massachusetts, USA, in 1996. He is currently
a Professor with the National Engineering Research
Center for Software Engineering and the School of
Software and Microelectronics, Peking University,
China, where he is also the Director of the Intelligent
Computing and Sensing Laboratory (iCSL). He has
authored over 100 articles in journals or proceedings,
such as ACM CCS, USENIX Security, NDSS, IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING, and IEEE ICWS. His research interests include information
security and distributed computing.

Kaitai Liang (Member, IEEE) received the Ph.D.
degree in computer science (applied cryptogra-
phy direction) from the City University of Hong
Kong. He is currently an Assistant Professor with
the Department of Intelligent Systems, Delft Uni-
versity of Technology, The Netherlands. His cur-
rent research interests include applied cryptography,
data security, user privacy, cybersecurity, blockchain
security, and privacy-enhancing technology.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 13,2023 at 09:54:16 UTC from IEEE Xplore. Restrictions apply.

