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Abstract

Equational reasoning based verification address some of the limitations of classical
testing. The Curry-Howard correspondence shows a direct link between type systems
and mathematical logic based proofs. Agda is a language with totality and dependent
types which makes use of the CH isomorphism to support equational reasoning in its
programs. ‘agda2hs’ attempts to bring this formal verification to the Haskell ecosystem,
by providing a translation between Haskell and Agda programs. This project will serve
to test the viability of this framework by re-writing the Haskell library ‘Data.Map’ in the
subset of Agda defined by agda2hs and verifying properties of various functions in the
library using Agda and dependent types.

1 Introduction
The importance of testing code is well known to all. Usually this is accomplished by iden-
tifying the different execution paths in your program and passing through each ensuring
it works as expected. However, such methods leave a lot of room for human error — the
programmer may not identify all execution paths correctly, the inputs used might not be
sufficient to see unexpected behaviour etc.

Equational reasoning addresses some of these concerns of classical testing[16]. Prop-
erties of the program can be written as statements of propositional and predicate logic,
and proofs of these properties can be derived through natural deduction and equational
reasoning. This allows one to verify the correctness of a program not by running it on a se-
lected sample of inputs, but by logically reasoning about theworkings of each function. The
Curry-Howard isomorphism [22] defines a direct link between such mathematical proofs
and the type systems used in programming languages. It shows a correspondence between
the formulas in logic systems and the elements of a type system, and also between the proof
systems used and respectivemodels of computation. This implies a programming language
might be able to support writing and checking such mathematical proofs, if it uses a model
of computation described in the isomorphism and its type-system supports all elements
described in the correspondence.
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Haskell[5] is a strongly-typed purely-functional programming language. In his book
”Programming in Haskell” Hutton [12] provides an example of using mathematical proofs
for formally verifying properties of Haskell functions. The main limitation in his approach
is that the given proofs are external verifications on paper, completely independent from
the program itself. Hence the proof could contain amistake or the definition of the function
might be changed without respective effects on the proof. Due to limitations in Haskell,
with regards to totality and termination checking, it is not possible to program thesemath-
ematical proofs in Haskell itself.

1.1 Exiting works and motivation
There are now frameworks which allow for such equational reasoning based proofs to be
coded in Haskell, alongside the functions and algorithms they verify. One example of such
a framework is LiquidHaskell[6], which uses ‘refinement types’ (see [20]) to enforce totality
in Haskell and provide support for equational proofs. Refinement types are used to apply
input contracts and correctness properties to function parameters eliminating the use of
error clauses. It also packs a stronger termination checker to warn about infinite loops in
functions.

Another approach is taken by the agda2hs project[2], which is to use ‘dependent types’.
It defines a common subset between Agda[1], a dependently-typed and total programming
language, andHaskell. This allows users towrite the programs in a subset of Agda, and then
use Agda’s support for equational proofs to verify properties about said program. As the
base program itself is limited to the common subset language, the framework then provides
a dictionary translation of the program into Haskell.

The reason for translating back to Haskell code is to gain access to the already existing
ecosystem that comeswith amature language likeHaskell. Developer familiarity and lots of
existing libraries, frameworks, and projects currently exist utilisingHaskell. While growing
in popularity, the Agda ecosystem is currently vastly smaller and mostly research based
with very few commercial/consumer applications.

Previous attempts have been made using a similar method of translating Haskell pro-
grams to a language that is more suited to be a proof assistant, for example the hs-to-coq
framework (see [18]), which translates a Haskell program to the Coq language[4]. A major
difference is that agda2hs works by writing the programs in Agda where the verification
can be performed alongside development of the program, similar to the Test Driven Devel-
opment process used in software engineering, and then provides a translation to Haskell
code. Whereas, hs-to-coq takes existing Haskell code and translates it to Coq, primarily a
proof-assistant, which has support for equational proofs. The similarity of the Agda syntax
to its Haskell counterpart might also make Agda a better/easier candidate for this use case.

1.2 Research question
This project will utilize the Haskell libraryData.Map[3] to analyse if the implementation of
this library falls within the common subset of Haskell and Agda as identified by agda2hs. If
not, is there an alternative implementation possible that does or else, what extensions to
agda2hs are needed to implement the full functionality of the library.

If successful, the project will further the analysis to identifying, formally stating, and
proving properties and in-variants guaranteed by the library. It will empirically observe the
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amount of time and effort required for implementation of proofs and how the verification
process affects the program implementation itself.

The findings from the project will be used to further the development of the agda2hs
framework by eliciting new requirements as well as identifying current limitations.

2 Preliminaries

2.1 Base library Data.Map
Data.Map is a Haskell library from the containers1 package which provides an efficient im-
plementation of the map data-structure for Haskell programmers. A Map in this library is
internally represented as a balanced binary search tree (BBST) :

data Map k a = Bin Nat k a (Map k a) (Map k a) | Tip

Where Tip is the constructor for a leaf node in the tree and doesn’t store any data. And
Bin is a constructor for an internal node of the tree, with the parameters in order being;

• value of type Nat which stores the size of the tree where current node is root,

• values of type ‘k’ and ‘a’ which represent key and value elements resp. stored in that
node, and finally

• the left and right sub-trees which again have type Map k a.

The library consists of around 170 functions which perform various operations such as
insertion, deletion, folds, list conversions, merges etc. on the Map datatype.

2.2 Curry-Howard based Verification
Users of this library will undeniably want the operations conducted in the library to be
error-free. Oneway to ensure that the library code functions as expected is classical testing,
where a function is executed with a variety of inputs and the test suite checks for expected
outcomes. This approach however is heavily reliant on the generation of an input space
that covers all possible execution paths of the function, this step in itself is vulnerable to
errors and mistakes on the part of the programmer. Incorrect expectations on the outcome
of test cases is another possible error that might creep into the test suite.

Equational reasoning based verification of properties is a possible alternative to clas-
sical testing which doesn’t suffer from the concern of generating a comprehensive input
space. As defined by the Curry-Howard isomorphism, there is a correspondence between
such mathematical proofs and type systems. This correspondence is summarised in tables
2 and 1. Due to Agda’s totality and its support for dependent types[15], it is possible to
write properties of the program, defined as statements of propositional or predicate logic,
as functions of a respective type. These properties can then be proved by defining a func-
tion of that respective type[17].

1containers - Data.Map : https://hackage.haskell.org/package/containers
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Logic side Programming side

hypothesis free variables
implication elimination application
implication introduction abstraction

Table 1: Correspondence between natural deduction proof systems and lambda calculus based pro-
gramming systems.[23]

Propositional logic Type system

proposition P type
proof of proposition p : P program of type

implication P→ Q function type
truth ⊤ unit type
falsity ⊥ bottom/empty type

universal quantification (x : A) -> P x dependent function type
existential quantification Σ A (λ x -> P x) dependent pair type

Table 2: Correspondence between logic formulae and elements of type systems.[9]

Consider an example of a simple program based on lists. Given a list of integers defined
as :

data List : Set where
[] : List {- empty list -}
_::_ : Int -> List -> List {- prepend to list -}

Properties of the program which can be considered statements of equational reasoning
and predicate logic, should be expressed equivalently as the type signature of a function.
Given a concatenation function ‘++’, associativity is a property that might be expected of
the function. Expressed in predicate logic —

∀ xs ys zs (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)

and expressed as a type signature —

_++_ : (p : List) -> (q : List ) -> List
[] ++ xs = xs
(y :: ys) ++ xs = y :: (ys ++ xs)

property : (xs ys zs : List) -> (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)

Proof of a property is then equivalent to the definition of a function with that type
signature. So for our implementation of concatenation we can prove this property as such
—

property [] ys zs =
begin
([] ++ ys) ++ zs

≡⟨⟩ {- by definition of the ++ function -}
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(ys) ++ zs
≡⟨⟩ {- by definition of the ++ function -}
[] ++ (ys ++ zs)

■

property (x :: xs) ys zs =
begin
((x :: xs) ++ ys) ++ zs

≡⟨⟩ {- by definition of the ++ function -}
(x :: (xs ++ ys)) ++ zs

≡⟨⟩ {- by definition of the ++ function -}
x :: ((xs ++ ys) ++ zs)

≡⟨ cong (\ ts -> x :: ts ) (property xs ys zs) ⟩
{- by inductively applying the same property -}
x :: (xs ++ (ys ++ zs))

≡⟨⟩ {- by definition of the ++ function -}
(x :: xs) ++ (ys ++ zs)

■

2.3 Identity type and Equational Reasoning
The equational proof demonstrated above uses constructs in Agda such as≡,≡⟨⟩, cong etc.
A brief introduction to these elements is provided below.

The identity type x ≡ y represents equality between two propositions x and y. It is de-
fined as an indexed datatype with a single constructor and is bound to the built-in Equality
of Agda.

data _≡_ {A : Set} : (x y : A) → Set where
refl : (x : A) → x ≡ x

{-# BUILTIN EQUALITY _≡_ #-}

We can match on a proof of type x ≡ y by either instantiating the variables such that
Agda can unify x and y and match on refl or x and y become obviously different and the
equality cannot be instantiated leading to an absurd pattern.

Using this identity type for equality of propositions, properties such as symmetry, tran-
sitivity and congruence can also be proved.

sym : {A : Set} {x y : A} → x ≡ y → y ≡ x
sym refl = refl

trans : {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans refl refl = refl

cong : {A B : Set} {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y
cong f refl = refl

The transitivity function is then re-written in the form of direct implication and induc-
tion operators which were used in our example equational proof.

begin_ : {A : Set} → {x y : A} → x ≡ y → x ≡ y
begin p = p

_end : {A : Set} → (x : A) → x ≡ x
x end = refl
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_≡⟨_>_ : {A : Set} → (x : A) → {y z : A} → x ≡ y → y ≡ z → x ≡ z
x ≡⟨ p ⟩ q = trans p q

_≡⟨⟩_ : {A : Set} → (x : A) → {y : A} → x ≡ y → x ≡ y
x ≡⟨⟩ q = x ≡⟨ refl ⟩ q

See [21] for a more detailed explanation of the constructs used for equational reasoning
in Agda and how to use them.

Advantages of programming these equational proofs alongside the implementation of
the program are — firstly the proof is type-checked by Agda to be correct[17] and secondly
these proofs will be checked each time the library is compiled ensuring that any updates to
the function require upkeep of the proofs as well.

The ‘agda2hs’ framework attempts to make such verification techniques available to
Haskell programmers. It does so by defining a subset of the Agda language, which ideally
would contain the entire coreHaskell language. This enables any programcurrentlywritten
in Haskell to have an equivalent definition in Agda. With the support of the complete Agda
type-system including dependent types, properties of the program can then be formally
verified through equational proofs. agda2hs then preforms a dictionary translation of the
program to Haskell code, which is possible as the program itself is limited to the subset
language and any instance of the verification process is erased during translation.

3 Implementation
The agda2hs framework covers a large enough part of the Haskell language that the core
functionality of the library could be ported into the Agda subset without anymajor changes
to the structure of the code. This section will describe the process of how the ‘Data.Map’
library was implemented in Agda and agda2hs.

The code for this implementation is available at https://github.com/dxts/agda2hs-map
and the code for the agda2hs framework used can be found at https://github.com/agda/
agda2hs.

3.1 Total functions
The implementation process is straightforward for total functions, i.e. functions that do
not error or infinitely loop. For example the following Haskell function would undergo
minimal changes to be written in Agda —

{- haskell -}
singleton :: k -> a -> Map k a
singleton k x = Bin 1 k x Tip Tip

{- agda -}
singleton : {k a : Set} → k → a → Map k a
singleton k x = Bin 1 k x Tip Tip

3.2 Case matching
Another commonly usedHaskell construct is the `case_of_'pattern-matching clause. This
is supported in agda2hs using a function of the form `case_of_ : a → (a → b) → b',
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which takes as parameters a single value and a pattern matching lambda. Agda2hs handles
conversion of this idiom to native `case_of_' clause in Haskell.

{- haskell -}
findWithDefault :: Ord k => a -> k -> Map k a -> a
findWithDefault def !_ Tip = def
findWithDefault def k (Bin _ kx x l r) = case compare k kx of

LT → findWithDefault def k l
GT → findWithDefault def k r
EQ → x

{- agda2hs -}
findWithDefault : {k a : Set} {{_ : Ord k}} → a → k → Map k a → a
findWithDefault def _ Tip = def
findWithDefault def k (Bin _ kx x l r) = case (compare k kx) of

λ {
LT → findWithDefault def k l

; GT → findWithDefault def k r
; EQ → x
}

3.3 Adding totality to a function
Haskell doesn’t enforce totality on functions, this means that functions are allowed to
throw program-crashing errors and/or be non-terminating. Agda however doesn’t allow
such behaviour of functions, and enforces strict totality.

Firstly, implementation of error-throwing functions in Agda can be achieved by adding
pre-conditions to the type signature of the function. These pre-conditions can be used
to limit the parameters to a subset of the elements of their respective type. These pre-
conditions can also serve to verify that the function throws an error only in the cases in-
tended.

{- haskell -}
find :: Ord k => k -> Map k a -> a
find _ Tip = error "Given key is not an element in the map"
find k (Bin _ kx x l r) = case compare k kx of

LT → go k l
GT → go k r
EQ → x

{- agda2hs -}
error : {@(tactic absurd) i : ⊥} → String → a
error {i = ()} err

_�_ : (key : k) → Map k a → Set
_ � Tip = ⊥
k � (Bin _ kx _ l r) with (compare k kx)
... | LT = k � l
... | GT = k � r
... | EQ = ⊤

find : (key : k) (map : Map k a) → {prf : key � map} → a
find key Tip = error "Given key is not an element in the map"
find key (Bin sz kx x l r) {prf} = match (compare key kx) {refl}

where
match : (o : Ordering) → {eq : compare key kx ≡ o} → a
match LT {eq} = find key l {�L sz key kx x l r eq prf}
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match GT {eq} = find key r {�R sz key kx x l r eq prf}
match EQ {_} = x

The error function in Agda is only a placeholder for translation back to Haskell. The
function requires an implicit argument of the bottom type, ‘⊥’, which does not have a con-
structor. Since this function can only be invoked from an absurd pattern clause, the func-
tion is unreachable during runtime.

Here `key ∈ map' is a type that can only be instantiated when the ∈ function doesn’t
return the ⊥ type. A key can never be present in the leaf nodes (Tip) hence key ∈ tip will
always return the type ⊥, an element of this type cannot be instantiated by Agda making
the case unreachable. This allows us to add the placeholder error statement.

3.4 Non-termination warnings
Secondly, since we cannot solve the Halting problem to ensure termination of functions,
the Agda type-checker is sound but not complete, i.e. it might flag valid programs as non-
terminating. This can usually be fixed by re-writing the function such that it is clear to
Agda that at least one parameter in the recursive call is smaller than the original input to
the function. For example :

{- Termination checking fails for this impl. -}
insertMax : {k a : Set} → k → a → Map k a → Map k a
insertMax kx x t = case t of

λ {
Tip → singleton kx x

; (Bin _ ky y l r) → balanceR ky y l (insertMax kx x r)
}

{- pattern matching directly convinces Agda
that the recursive call uses a reduced input -}

insertMax : k → a → Map k a → Map k a
insertMax kx x Tip = singleton kx x
insertMax kx x (Bin _ ky y l r) = balanceR ky y l (insertMax kx x r)

3.5 Type-class instances
Type-classes in Haskell serve a similar purpose as ‘interfaces’ in OOP languages. They
define a list of function signatures, which must be defined for an instance of the type-class
[11]. Agda2hs supports Haskell type-classes through record types in Agda. TheMap library
defines instances of type-classes such Eq, Functor, Monoid, Foldable etc. and these were
successfully implemented in agda2hs.

instance
iSemigroupMap : {k a : Set} → {{ _ : Ord k }} {{ _ : Eq a }}
{{ _ : Eq (Map k a) }} → Semigroup (Map k a)

iSemigroupMap ._<>_ = union

iMonoidMap : {k a : Set} → {{ _ : Ord k }} {{ _ : Eq a }}
{{ _ : Eq (Map k a) }} → Monoid (Map k a)

iMonoidMap .mempty = empty

iFoldableMap : {k : Set} {{ _ : Ord k }} → Foldable (Map k)
iFoldableMap .foldMap f Tip = mempty
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iFoldableMap .foldMap f (Bin _ _ v l r) =
mappend (foldMap f l) (mappend (f v) (foldMap f r))

...

4 Limitations and Upgrades
This section will discuss limitations faced while programming using the current Agda sub-
set defined by agda2hs. It will also talk about Haskell constructs and extensions which are
currently not supported by agda2hs. Added support for these can make implementations
in agda2hs closer to how the functions should be implemented in native Haskell.

Functions using the Boolean-guard construct of Haskell need to be re-written using
if_then_else_ functions. AsAgda currently does not have a construct equivalent toBoolean-
guards, the subset language cannot be extended to support this feature.

{- original haskell program -}
link :: k -> a -> Map k a -> Map k a -> Map k a
link kx x Tip r = insertMin kx x r
link kx x l Tip = insertMax kx x l
link kx x l@(Bin sizeL ky y ly ry) r@(Bin sizeR kz z lz rz)

| delta*sizeL < sizeR = balanceL kz z (link kx x l lz) rz
| delta*sizeR < sizeL = balanceR ky y ly (link kx x ry r)
| otherwise = bin kx x l r

{- agda2hs equivalent -}
link : {k a : Set} → k → a → Map k a → Map k a → Map k a
link kx x Tip r = insertMin kx x r
link kx x l Tip = insertMax kx x l
link kx x l@(Bin sizeL ky y ly ry) r@(Bin sizeR kz z lz rz) =

if (delta * sizeL < sizeR)
then (balanceL kz z (link kx x l lz) rz)
else (if (delta * sizeR < sizeL)

then (balanceR ky y ly (link kx x ry r))
else (bin kx x l r))

With regards to the case_of_ clause, a useful addition to the language would be support
for translating case_of_ clauses with the inspect idiom, which can be helpful in intrinsic
verification techniques, to native Haskell case matching . Similar functionality should also
be added to the if_then_else_ clause.

{- case_of_ with inspect -}
case'_of_ : {A B : Set} → (a : A) → ((a' : A) → {eq : a ≡ a'} → B) → B
case' x of f = f x {refl}

{- if_then_else with inspect -}
if'_then_else_ : {A : Set} → (flg : Bool) → ({flg ≡ true} → A) → ({flg ≡ false} → A) → A
if' false then t else f = t {refl}
if' true then t else f = t {refl}

{- use case -}
find : {k a : Set} {{_ : Ord k}} → (key : k) (map : Map k a) → {key � map} → a
find key Tip = error "Map.!: given key is not an element in the map"
find key t@(Bin sz kx x l r) {prf} = case' compare key kx of

λ {
LT {eq} → find key l {�L sz key kx x l r eq prf}
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; GT {eq} → find key r {�R sz key kx x l r eq prf}
; EQ {eq} → x
}

Another improvement in this same construct would be to allow `where' blocks to appear
in the same clause as a `case_of_' function.

{- with current agda2hs support -}
lookupLE : {k a : Set} {{_ : Ord k}} → k → Map k a → Maybe (k × a)
lookupLE {k} {a} = goNothing

where
goJust : k → k → a → Map k a → Maybe (k × a)
goJust _ kx' x' Tip = Just (kx' , x')
goJust key kx' x' (Bin _ kx x l r) = match (compare key kx)

where {- match function should be a case_of_ statement -}
match : Ordering → Maybe (k × a)
match LT = goJust key kx' x' l
match GT = Just (kx , x)
match EQ = goJust key kx x r

goNothing : k → Map k a → Maybe (k × a)
goNothing _ Tip = Nothing
goNothing key (Bin _ kx x l r) = match (compare key kx)

where {- match function should be a case_of_ statement -}
match : Ordering → Maybe (k × a)
match LT = lookupLE key l
match GT = Just (kx , x)
match EQ = goJust key kx x r

4.1 Type-class methods
Due to the current implementation of type-classes and support for minimal complete def-
initions, it is not possible to override the default implementations of other methods in the
type-class. Such as the foldl and foldr methods in the iFoldableMap instance cannot be
overridden to the efficient implementations provided in the library, and must rely on the
default definition derived from the foldMap function.

4.2 BangPatterns
The Data.Map library employs considerable use of the Haskell ‘BangPatterns‘ extension to
control strictness of evaluation in the program. BangPatterns can be used to force strict
evaluation of parameters during pattern matching. Since Agda currently does not provide
support for this extension, it is also not supported in agda2hs.

4.3 Module exports
The considerable size of the Data.Map library, 200 functions, can cause the Agda type-
checker to take around a minute when type-checking the complete implementation. It
makes sense then to split the library into separate modules limiting the scope of the type-
checker during interactive Agda development. This is an essential feature for development
of large libraries, and Haskell and Agda both provide support for re-exporting functions
defined in separate modules from a single combining module. Currently agda2hs does not
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support translating between these two representations. This functionality is however al-
ready on the pending features list of the agda2hs framework, and should be implemented
before its first official release.

5 Verification
Once the library has been implemented in the subset of Agda, it is possible to verify vari-
ous properties and to assert invariants about the data-structure used. For verification the
complete functionality of Agda can be used, and one is not limited to the common subset
with Haskell, since the proofs are utilised only during type checking the library and are
erased/ignored during translation of the program to Haskell.

5.1 Preconditions
As stated in section 3.3, a precondition should a proposition which is false under the cases
where an error is thrown. This will lead Agda to an absurd pattern in that particular case
of the inputs, and a placeholder error statement can be written. Therefore pre-conditions
are also a form of verification. The pre-condition should sufficiently limit the input space
of the function, leaving out all the possible inputs which would have originally lead to the
error statement. Often the pre-condition needs to be transformed to fit recursive calls to
the same function or calls to other functions.

find : {k a : Set} {{_ : Ord k}} → (key : k) → (map : Map k a)
→ {prf : key � map} → a

find key Tip = error "Given key is not an element in the map"
find key (Bin sz kx x l r) {prf} = match (compare key kx) {refl}

where
match : (o : Ordering) → {eq : compare key kx ≡ o} → a
match LT {eq} = find key l {�L sz key kx x l r eq prf}
match GT {eq} = find key r {�R sz key kx x l r eq prf}
match EQ {_} = x

�L : {k a : Set} {{_ : Ord k}} →
→ (sz : Nat) (key kx : k) (x : a) (l r : Map k a)
→ (eq : compare key kx ≡ LT)
→ (prf : key � (Bin sz kx x l r))
→ (key � l)

�L sz key kx x l r eq prf with (compare key kx)
... | LT = prf

Considering the same example as section 3.3, the pre-condition key in map is sufficient
to eliminate the input Tip as being a valid element of type Map k a to this function as it
always leads to a false proposition. And in the case of Bin Agda provides a proof of this
proposition by instantiating a value of the type key in map. For the recursive calls find key
l and find key r, the programmer now needs to provide a proof of the propositions key in
l and key in r. This can be accomplished through the functions ∈L and ∈R respectively. In
inL functionmakes use of thewith-abstraction clause of Agda. The value eq limits the cases
of compare key kx to just LT and the with-abstraction adds this additional information to
Agda’s unification process transforming the proof of key in map to key ∈ l.

Pre-conditionswere also used for the functions ‘elemAt’, ‘updateAt’ and ‘deleteAt’. Here
the pre-condition limits the index parameter to the valid range of indices that is from 0 to
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the size of the Map. Similar functions were used to then transform the proof of this pre-
condition to the proof needed for the recursive calls in the function.

elemAt : ... (n : Nat) → (map : Map k a) → {(n < size map) ≡ true} → k × a
updateAt : ... (k → a → Maybe a) → (n : Nat) → (map : Map k a)

→ {(n < size map) ≡ true} → Map k a
deleteAt : ... (n : Nat) → (map : Map k a) → {(n < size map) ≡ true} → Map k a

5.2 Type-class laws
As seen in section 3.5, the Data.Map library defines instances of a few type-classes. In
Haskell, type-classes usually include a list of properties that the function definitions must
satisfy, for example an instance of the Eq type-class must have the definition of the ‘_==_’
function satisfying the properties of reflexivity, transitivity and symmetry.

For theData.Map library, properties of the Functor,Monoid, Foldable, Traversable classes
etc. were verified. Some properties such as the identity and composition properties of
Functor were fairly easy to verify.

functorIdentityMap : {k a : Set} {{_ : Ord k}} → (m : Map k a) → fmap id m ≡ id m
functorIdentityMap Tip = refl
functorIdentityMap (Bin sz kx x l r) =

begin
fmap id (Bin sz kx x l r)

≡⟨ cong (λ t → Bin sz kx x t (map id r)) (functorIdentityMap l) ⟩
Bin sz kx x l (map id r)

≡⟨ cong (λ t → Bin sz kx x l t) (functorIdentityMap r) ⟩
Bin sz kx x l r

■

functorCompositionMap : {k a : Set} {{_ : Ord k}} → (f : b → c) (g : a → b) (m : Map k a)
→ fmap (f ◦ g) m ≡ (fmap f ◦ fmap g) m

functorCompositionMap f g Tip = refl
functorCompositionMap f g m@(Bin sz kx x l r) = begin

fmap (f ◦ g) (Bin sz kx x l r)
≡⟨⟩ { application of fmap }
Bin sz kx ((f ◦ g) x) (map (f ◦ g) l) (map (f ◦ g) r)

≡⟨ cong (λ t → Bin sz kx ((f ◦ g) x) t (map (f ◦ g) r))
(functorCompositionMap f g l) ⟩

Bin sz kx ((f ◦ g) x) (map f (map g l)) (map (f ◦ g) r)
≡⟨ cong (λ t → Bin sz kx ((f ◦ g) x) (map f (map g l)) t)

(functorCompositionMap f g r) ⟩
Bin sz kx (f (g x)) (map f (map g l)) (map f (map g r))

≡⟨⟩ { un-application of fmap }
fmap f (fmap g m)

■

The process usually follows a similar pattern. The input parameters are case-split into
their different constructors and the base case (smallest case) can usually be instantiated
through refl—Agda can automatically infer the equality by unifying the constraints using
the definitions of the functions involved. The recursive case can be re-written through a
few applications of the functions involved. Once a recursive call to the same function has
been reached, an inductive hypothesis about the property in question can be applied on
this function with the reduced inputs.

A similar process was used for the following properties —
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monoidRightIdentityMap : ... → (m : Map k a) → m <> mempty ≡ m
monoidLeftIdentityMap : ... → (m : Map k a) → mempty <> m ≡ m
monoidConcatenationMap : ... → (ms : List (Map k a)) → mconcat ms ≡ foldr (_<>_) mempty ms

foldableFunctorMap : ... {{_ : Monoid b}} → (f : a → b) → (m : Map k a)
→ foldMap f m ≡ (fold ◦ fmap f) m

traverseNaturalityMap : {k a b : Set} {{_ : Ord k}}
→ {p q : Set → Set} {{ap : Applicative p}} {{aq : Applicative q}}
→ (t : {x : Set} → p x → q x) (preservePure : {A : Set} → (a : A) → t (pure a) ≡ pure a)
→ (preserveApp : {A B : Set} → (g : p (A → B)) (a : p A) → t (g <*> a) ≡ (t g <*> t a))
→ (f : a → p b) → (m : Map k a)
→ (t ◦ traverse f) m ≡ traverse (t ◦ f) m

traversePurityMap : {k a : Set} {{_ : Ord k}}
→ {p : Set → Set} {{ap : Applicative p}}
→ (m : Map k a) → traverse (pure {p}) m ≡ pure m

traverseIdentityMap : {k a : Set} {{_ : Ord k}}
→ (m : Map k a) → traverse IdentityCon m ≡ IdentityCon m

traverseCompositionMap : {k a b c : Set} {{_ : Ord k}}
→ {p q : Set → Set} {{ap : Applicative p}} {{aq : Applicative q}}
→ (g : b → q c) (f : a → p b) (m : Map k a)
→ traverse (ComposeCon ◦ fmap g ◦ f) m ≡ (ComposeCon ◦ fmap (traverse g) ◦ traverse f) m

5.2.1 Functions with many case-splits

A major hurdle faced during this verification process was the incompatibility of the effi-
ciency focused function definitions with the verification process. The union function, used
in the definition of the Semigroup class, uses 5 separate ’overlapping’ cases for pattern
matching the inputs. Re-writing the pattern matching to obtain mutually exclusive pat-
terns leads to 15 cases.

union : {{ Eq a }} → {{ Eq (Map k a) }} → Map k a → Map k a → Map k a
union Tip t2 = t2
union t1 Tip = t1
union t1 (Bin _ k x Tip Tip) = insertR k x t1
union (Bin _ k x Tip Tip) t2 = insert k x t2
union t1@(Bin _ k1 x1 l1 r1) t2 = case (split k1 t2) of

λ {
(l2 , r2) → let l1l2 = union l1 l2

r1r2 = union r1 r2
in link k1 x1 l1l2 r1r2

}

semigroupAssociativityMap : {k a : Set} {{_ : Ord k}} {{_ : Eq a}}
→ (m1 m2 m3 : Map k a) → (m1 <> m2) <> m3 ≡ m1 <> (m2 <> m3)

Therefore to prove the associativity property of the Semigroup class wewould need at least,
15 × 15 as the associativity property involves two applications of the union function, 225
pattern-matched cases in the definition of semigroupAssociativityMap. Consequently this
property could not be verified given the time and resource bounds of this project.
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5.2.2 Equality of Maps

map1 = Bin 2 "b" "val" (singleton "a" "val") (Tip)
map2 = Bin 2 "a" "val" (Tip) (singleton "b" "val")

iEqMap : {k a : Set} {{ _ : Ord k }} {{ _ : Eq a }} → Eq (Map k a)
iEqMap ._==_ t1 t2 = (size t1 == size t2) && (toAscList t1 == toAscList t2)

{- Substitutivity
if x == y = True, then f x == f y = True -}

f : {k a : Set} → Map k a → Nat
f Tip = 0
f (Bin _ _ _ l r) = 1 + (f l)

The Map datatype uses a weak form of equality which only depends on the data stored in
the Map. map1 and map2 defined above are different structurally but, as per the definition
of the _==_ function, they are equivalent — map1 == map2 = True. Functions dependent on
the structure of the Map, such as function ‘f’ above violate the law of substitutivity. Hence
the Eq instance for Map does not satisfy one of the required properties.

5.3 Intrinsic verification of ordering
The style of proofs discussed in the previous subsection is called external verification, as the
proofs are external to the programwhose properties they work on. This style of verification
is useful for proving algebraic properties such as associativity of an operator or composition
of a function. When functions take in proofs of pre-conditions or they are defined with an
invariant the internal verification style is more fitting.[19]

A binary search tree has an invariant data-ordering property on it’s nodes— the left sub-
tree must contain smaller elements while the right sub-tree contains larger. This property
must not be violated in any reasonable use of the data-structure. It makes sense to then
enforce this property internally through a more semantically expressive constructor for
Map.

data [_]∞ (A : Set) : Set where
-∞ : [ A ]∞
[_] : A → [ A ]∞
+∞ : [ A ]∞

_≤_ : A → A → Set
x ≤ y = (x <= y) ≡ true

data Map (k : Set) (a : Set) {{ kOrd : Ord k }} {lower upper : [ k ]∞} : Set where
Bin : (sz : Nat) → (kx : k) → (x : a)

→ (l : Map k a {lower} {[ kx ]}) → (r : Map k a {[ kx ]} {upper})
→ {{_ : sz ≡ (size l) + (size r) + 1}}
→ Map k a {lower} {upper}

Tip : {{ l≤u : lower ≤ upper }} → Map k a

dict : Map Int String -∞ +∞
dict = Bin 2 9 "nine" (singleton 6 "six") (Tip)

dict2 : Map Int String -∞ +∞
dict2 = Bin 2 9 "nine" (singleton 11 "eleven") (Tip)

14



Figure 1: Valid and in-valid BSTs.

Firstly, since a BST need not have bounds on the data-structure as a whole, we define
a new datatype [_]∞. As can be seen from its definition above, this datatype extends any
existing type with the +∞ and -∞ elements. An Eq and Ord instance for this new type is
also defined. Secondly, for convenience, we define the function ‘_≤_’ which allows the re-
write of the proposition ‘x <= y ≡ true’ as ‘ x ≤ y’. Inspiration for these data-types was
taken from [8] and [14].

The constructor for the BST representing a Map is now re-defined as above. A Map in-
stance, dict, previously of type ‘Map Int String’ now becomes ‘Map Int String -∞ +∞’
— where (lower = -∞) and (upper = +∞) represent the bounds on the BST. This doesn’t
enforce any additional constraint on the elements that can be contained in dict, which is
desired, but the type of the left sub-tree of dict is now ‘Map Int String -∞ [9]’ and that
of the right sub-tree is ‘Map Int String [9] +∞’. This splitting of bounds continues down
till the leaf nodes, Tip, where a proof of the proposition ‘lower ≤ upper’ is finally required
ensuring the validity of the bounds.

For example, consider dict2which violates the ordering imposed on the sub-trees of the
Map. The left sub-tree of dict2 should only accept values in the range of -∞ to [9]. Adding
the integer 11 to this sub-tree leads to the constraint 11 ≤ 9 on one of the leaf nodes, as
can be seen in figure 1. This proposition can never be proved causing the invalidation of
dict2.

5.3.1 Redefinition of insert

Now that the constructor has been defined to include the ordering properties, proofs of
these constraints will need to be provided in functions that operate on aMap. For example,
inserting an element into the BST is now more involved, as the function needs to do some
work to ensure that the ordering properties are always satisfied.

The insert function takes as input a new key ‘ky’ and an existing map of type ‘Map k a
lower upper’. If the value of ky does not fall within the existing bounds then the bounds of
the new Map will need to change. Hence the return type of the insert function will be ‘Map
k a min lower [ky] max upper [ky]’.

compareLT-≤ : {A : Set} {{_ : Ord A}} → (x y : A) → compare x y ≡ LT → x ≤ y
compareGT-≤ : {A : Set} {{_ : Ord A}} → (x y : A) → compare x y ≡ GT → y ≤ x
compareEQ-≡ : {A : Set} {{_ : Ord A}} → (x y : A) → compare x y ≡ EQ → x ≡ y

min-≤1 : ... → (x y : A) → (min x y) ≤ x
min-≤2 : ... → (x y : A) → (min x y) ≤ y
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max-≤1 : ... → (x y : A) → x ≤ (max x y)
max-≤2 : ... → (x y : A) → y ≤ (max x y)

≤-min : ... → (x y : A) → x ≤ y → (min x y) ≡ x
≤-max : ... → (x y : A) → y ≤ x → (max x y) ≡ x

We define helper methods which prove a few properties about the _≤_ operator that will
come in handy during the definition of insert.

insert : {k a : Set} {{_ : Ord k}} {{_ : Eq a}}
→ {lower upper : [ k ]∞}
→ (ky : k) → (y : a) → (m : Map k a {lower} {upper})
→ Map k a {min lower [ ky ]} {max upper [ ky ]}

insert {lower = lower} {upper = upper} ky y Tip =
singleton ky y {{min-≤2 lower [ ky ]}} {{max-≤2 upper [ ky ]}}

insert {k} {a} {lower} {upper} ky y (Bin sz kx x l r) = match (compare ky kx) {refl}
where
match : (o : Ordering) → {eq : compare ky kx ≡ o}

→ Map k a {min lower [ ky ]} {max upper [ ky ]}
match LT {eq} = helper

{≤-max [ kx ] [ ky ] ([]-≤-I {{x≤y = compareLT-≤ ky kx eq}})}
{≤-max upper [ ky ] (≤-trans {[ k ]∞} {z = upper}

([]-≤-I {{x≤y = compareLT-≤ ky kx eq}}) _)}
where

l' = insert ky y l
helper : {max [ kx ] [ ky ] ≡ [ kx ]} → {max upper [ ky ] ≡ upper}

→ Map k a {min lower [ ky ]} {max upper [ ky ]}
helper {prf1} {prf2} = balance {l1 = min lower [ ky ]} {u1 = [ kx ]}

{l2 = [ kx ]} {u2 = upper}
kx x {{≤-refl {x = [ kx ]}}} {{≤-refl {x = [ kx ]}}} l' r

match GT {eq} = helper
{≤-min lower [ ky ] (≤-trans {[ k ]∞} {x = lower} _

([]-≤-I {{x≤y = compareGT-≤ ky kx eq }}))}
{≤-min [ kx ] [ ky ] ([]-≤-I {{x≤y = compareGT-≤ ky kx eq }})}

where
r' = insert ky y r
helper : {min lower [ ky ] ≡ lower} → {min [ kx ] [ ky ] ≡ [ kx ]}

→ Map k a {min lower [ ky ]} {max upper [ ky ]}
helper {prf1} {prf2} = balance {l1 = lower} {u1 = [ kx ]}

{l2 = [ kx ]} {u2 = max upper [ ky ]}
kx x {{≤-refl {x = [ kx ]}}} {{≤-refl {x = [ kx ]}}} l r'

match EQ {eq} = helper {compareEQ-≡ ky kx eq}
where

helper : { ky ≡ kx } → Map k a {min lower [ ky ]} {max upper [ ky ]}
helper {prf} = Bin sz ky y l r

The first case of insertion into an empty Map is fairly simple where a singleton BST is
constructed. The above mentioned properties are used to prove to Agda that the new ele-
ment ‘ky’ satisfies the bounds (min lower [ky]) ≤ [ky] and [ky] ≤ (max upper [ky]).

The second case of insertion into an existing BST is a bit more involved. The new key
‘ky’ is compared to the existing key in the current node leading to one of three cases -
insertion continues in the left sub-tree, the right sub-tree, or the insertion is done at the
current node.

If the new key is smaller than the existing key, a recursive call to insert is created with
the left sub-tree as the input. The return value of this call, l', is aMap of type ‘Map k a min

16



lower [ky] max [kx] [ky]’. The new left sub-tree, l', is passed onto the function balance
along with the existing right sub-tree and current node values.

balance : ∀ {l1 u1 l2 u2 : [ k ]∞} → (kx : k) → a
→ {{u1≤k : u1 ≤ [ kx ]}} {{k≤l2 : [ kx ] ≤ l2}}
→ Map k a {l1} {u1} → Map k a {l2} {u2}
→ Map k a {l1} {u2}

The function balance takes as input a de-structured BST, i.e. values for the root node and
two BSTs where one contains values smaller than the other, and performs rotations to re-
balance the tree.

Once again, the above mentioned properties about _≤_ have to be utilised to convince
Agda that — given ‘compare ky kx ≡ LT’ the propositions ‘max [ kx ] [ ky ] ≡ [ kx ]’
and ‘max upper [ ky ] ≡ upper’ hold. Since the with-abstraction construct of Agda can-
not be used in parts of the program that will be translated to Haskell, the existence of these
properties can be indicated to the Agda type-checker through the use of locally defined
functions with implicit parameters.

Intrinsic verification requires considerable use of implicit and instance parameters in
data constructors and functions, as these arguments are wiped during translation of the
program. During the course of the project this support was added to agda2hs[7]. Although
from the above example we can see intrinsic verification can still take a lot of additional
effort.

Providing a basic set of proofs about properties involving functions and data-types
from the Haskell prelude can aid in the verification process. Improved ‘automatic theorem
provers’ for Agda [13][10] can also help developers by automatically filling in the simple
but tedious parts in the interactive verification process.

6 Responsible Research
The project mostly deals with the workings and usage of the ‘agda2hs’ framework. The re-
search performed is mostly empirical observations about the functionality and limitations
of the aforementioned framework. The main ethical concern of in the project is of repro-
ducibility of the code and implementations off which the observations are made. All the
code utilised in the implementation and verification of the library is made available to the
public, free to use, modify and build upon. The Agda language and ‘agda2hs’ framework are
also available as an open source projects for users interested in the workings of dependent
types and the Agda type-checker. No other concerns with the workings of the project has
been identified concerning the ethics of the process.

7 Conclusions and Future Work
TheCurry-Howard isomorphismexplains the correspondence betweenmathematical proofs
and type systems. agda2hs is a framework that attempts to bring the strength of Agda as a
proof-assistant to the vast ecosystem of Haskell programs. It designates a subset of Agda
that can be dictionary translated to Haskell. This allows any Haskell program to be written
equivalently in Agda, and then be verified.
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The aim of the project was to empirically test the viability of the agda2hs framework in
bringing proof based verification to the Haskell ecosystem. To this end an existing Haskell
library, Data.Map, was chosen as a representation of Haskell programs that might benefit
from use of this framework. By re-writing this library in agda2hs, it was shown that the
common-subset is complete enough to accommodate most Haskell programs. Properties
of functions contained in this library were also verified confirming the feasibility of this
approach.

During the course of the project, various features were also recommended as additions
to the framework to increase its functionality and improve its use for verification. Bugs
in the current implementation of the framework were also identified during this process.
Some of the issue identified were limited support for case matching clauses, inability to
override default implementations of type-classmethods, no support formodule export lists
etc.

The outcome of this project is also a verified version of the Data.Map library available
to users of Agda and agda2hs. No bugs were found in the library itself as it’s already thor-
oughly tested. However, future projects that seek to verify further properties of the library
and/or programs that build upon this library can now utilise these proofs in their own for-
mal verifications.

Considerations for future work on verification of Haskell programs and the agda2hs
framework were also noted, namely :

• Classical testing methods are not as affected by the implementation details of a pro-
gram, as they mostly rely on the intended effects of a function, which are measured
using a test suite of various inputs and their respective outputs. However, verification
based testing is intrinsically linked to the exact implementation of a function. Veri-
fying properties of functions which have been heavily optimised to reduce duplicate
evaluation can be a challenge. These implementations forgo the simplest possible
implementation for a particular program and instead adopt one that tries to manu-
ally overcome the inherent inefficiency of Haskell, consequently adding additional
steps to the verification process as well.

• The agda2hs framework can currently produce equivalent Haskell code from the pro-
grams written in its subset of Agda. Therefore there might also be demand for a sup-
plemental framework which is able to translate existing Haskell code to its equiva-
lent Agda form. This step was performed manually in the course of this project, but
future attempts to verify other existing Haskell programs could benefit from automa-
tion of this step. This functionality is present in the similar framework ‘hs-to-coq’,
whereby it can translate existing Haskell programs to the proof-assistant language
Coq. Though this framework does not support translating the program from a subset
of Coq to Haskell.
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