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Summary

This thesis investigates how buffering and strategic distribution of cold transfer baggage can reduce peak oc-
cupancy levels at transfer infeed points within the Baggage Handling System (BHS) at Amsterdam Airport
Schiphol (AAS). At hub airports like AAS, fluctuating inflows of transfer baggage create peaks and troughs in
system occupancy, leading to operational challenges, resource imbalances, and potential delays. The research
focuses on cold transfer baggage due to its longer layover times, which allows for controlled buffering and delayed
processing, offering an opportunity for peak shaving.

The study begins by analyzing the operational and logistical background of baggage handling, emphasizing
the need for an optimized BHS to handle the dynamic demands of a major transit hub. A literature review
examines existing optimization techniques in baggage handling, with a specific focus on dynamic routing, robust
scheduling, and queuing models. While previous studies have explored general peak shaving techniques, this
research addresses a notable gap in the literature by developing distribution strategies specifically tailored to
the buffering and reintroduction of cold transfer baggage.

To explore these strategies, a simulation model was developed to mimic the transfer baggage journey from
aircraft arrival to transfer infeed points, integrating a time series forecasting model to determine optimal rein-
troduction times. Six unique distribution strategies emerged from combining three buffering approaches—Fixed
Target, Polynomial Target Function, and a Combination approach—with two reintroduction timings, Early Re-
lease and Optimized Release. Each strategy was tested across scenarios that modeled different operational
conditions.

The research found that strategic buffering and reintroduction of cold transfer baggage could reduce peak oc-
cupancy by up to 26.8%. The Polynomial Target Function with Optimized Release achieved the highest level
of peak shaving but required a larger number of Automated Guided Vehicles (AGVs) to handle the transport of
the baggage, illustrating a trade-off between peak shaving effectiveness and resource demands. Conversely, the
Fixed Target approach, while slightly less effective in peak reduction (25.7%), offered a resource-efficient alterna-
tive by needing considerably less AGVs. The Early Release option, though yielding lower peak shaving results,
proved valuable in maintaining buffer capacity, making it advantageous when buffer capacity must be minimized.

Implementing these strategies presents operational considerations, particularly in terms of AGV availability and
buffer management. The findings underscore the importance of predictive modeling and flexible buffering to
dynamically manage occupancy levels, which can help AAS to stabilize BHS operations, optimize resource use,
and improve system resilience under varying demand conditions. This research contributes actionable insights
into how airports can utilize data-driven, adaptive strategies for peak shaving, helping improve operational
efficiency and passenger satisfaction in complex airport environments.



Nomenclature

Abbreviation Definition

AAS Amsterdam Airport Schiphol

AGV Autonomous Guided Vehicle

AIBT Actual In Block Time

BHS Baggage Handling System

BSM Baggage Source Message

CoV Coefficient of Variation

GRASP Greedy Randomized Adaptive Search Procedure
IATA International Air Transport Association
ICAO International Civil Aviation Organisation
KLM Koninklijke Luchtvaart Maatschappij
KPI Key Performance Indicator

MAC Mean Absolute Change

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error
NABO Narrow Body

RMSE Root Mean Squared Error

RO Robust Optimization

ShoCon Short Connection

SIBT Scheduled In Block Time

STD Standard Deviation

SVAP Stochastic Vector Assignment Problem
ULD Unit Loading Device

VOP Vliegtuig Opstel Plaats

WIBO Wide Body
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1 Introduction

In this chapter, the background information for this research is provided. Then, the problem statement is
explained. Next, the research objectives and research questions are examined. Finally, the approach of this
research is discussed.

1.1 Research Background

The Baggage Handling System (BHS) at airports is essential for efficiently managing the movement of passen-
gers’ baggage. It ensures a smooth transition of bags from check-in counters to aircraft for departing flights,
and from incoming flights to baggage claims or connecting flights. The BHS relies on a complex network of
automated sorting systems, conveyor belts, and advanced barcode scanners to ensure that baggage is sorted,
routed, and delivered quickly and correctly. Optimizing the BHS is crucial for several reasons. Firstly, it en-
hances operational efficiency, ensuring that baggage moves seamlessly through the system with minimal errors
and delays. This optimization can significantly reduce operational costs by minimizing the need for manual
interventions and reducing the risk of lost or mishandled bags. Secondly, an optimized BHS improves passenger
satisfaction by ensuring that their baggage arrives on time and in the correct location, thus enhancing the over-
all travel experience. Furthermore, efficient baggage handling can lead to faster turnaround times for aircraft,
enabling more flights to operate on schedule and increasing the airport’s capacity to handle more passengers.
Ultimately, the optimization of the BHS is vital for maintaining a competitive edge in the aviation industry,
where efficiency and customer satisfaction are paramount.

Each airport is divided into landside and airside. The landside includes areas before security, where passengers
check in. The airside is beyond the customs area and includes the planes, runways, taxiways, and gates.
Baggage handling at a hub airport involves several tasks and is divided into three stages (Barth et al., 2021).
The first stage is check-in baggage. Check-in baggage is fed into the BHS at the landside. The second stage
is transfer baggage, which involves moving bags from one flight to another for transit passengers. The third
stage is reclaim baggage. Reclaim baggage has arrived at the airport and is transported from the airside to the
landside, where arriving passengers can collect their baggage. Figure 1.1 shows a visualisation of the baggage
journey.

Security]
check

Cargo

Checki
eckin loading

Make up 4 &

—

I Baggage inflow
I  Baggage outflow

Departing plane

Transfer
baggage Tail-to-tail
screening

Reclaim Infeed

. Separation
area stations

— L

Arriving plane

Figure 1.1: Visualization of the baggage journey

When zooming in on the transfer baggage, four streams are distinguished. First is the transfer baggage that
needs to depart shortly after arrival and does not have time to be processed through the BHS, classified as
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tail-to-tail baggage. This baggage is transported directly to the apron of the outbound aircraft without going
through the BHS. The second stream is short connection baggage (ShoCon). This baggage has too short a
layover time to be buffered but enough time to be processed through the BHS. ShoCon baggage is brought to
one of the transfer infeed points upon the arrival of the airplane. Transfer infeed points are locations where
transfer baggage can be fed into the BHS. Besides transfer infeed points, there are also reclaim infeed points
for the reclaim baggage. The third transfer baggage stream is cold transfer baggage. Cold transfer baggage
has longer layover times than ShoCon and does not need to be processed immediately by the BHS. It is stored
in the storage area of the BHS. The fourth stream is the super cold transfer baggage category. Although it
functions similarly to cold transfer baggage, super cold transfer baggage is considered a separate category due
to its classification as a different type of "cold." Nonetheless, its operation is the same as cold transfer baggage:
it can be stored before it is handled.

Airports continuously seek improvements in their operational processes, including the BHS. At hub airports,
the concentration of many flights in the morning, which then depart throughout the day, offers numerous transit
opportunities for passengers. However, this leads to fluctuating volumes of transfer baggage, causing operational
challenges.

1.2 Problem Description

Airports are complex systems where the design of infrastructure and processes plays a critical role in determining
operational efficiency. However, once the design is in place, the primary challenge lies in operating the system
effectively under varying conditions. This is particularly true for the BHS at hub airports, where fluctuating
baggage flows result in significant operational challenges.

Over the years (excluding the COVID years), there has been an upward trend in the demand for travel and an
increase in flight movements (International Air Transport Association (IATA), 2024; International Civil Aviation
Organization (ICAO), 2022). Hubs are characterized by a high influx of aircraft at certain intervals a couple
of times during the day, followed by a more continuous flow of departing aircraft. This uneven distribution
leads to peaks and troughs in baggage volumes, significantly impacting the BHS and its subsystems (Hanwu
& Juan, 2009). While the infrastructure is designed to accommodate average demand levels, the variability
in baggage flow tests the system’s ability to operate efficiently within its design constraints. The fluctuations
result in peaks and troughs in the occupancy levels of subsystems of the BHS that can be seen in Figure 1.2
where the averaged occupancy levels of all transfer infeed points over 10 weeks are being shown over 24 hours
at Amsterdam Airport Schiphol (AAS).
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Figure 1.2: Averaged occupancy levels of transfer infeed points per 15 minutes over a dataset of 10 weeks at

AAS
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These fluctuations result in operational challenges. One of the problems is the staffing imbalance at the bag-
gage handling stations, where handlers are frequently understaffed during peak periods and overstaffed during
off-peak times. The need for additional personnel during these peak periods poses a logistical and financial
challenge, as the operational model of airports does not lend itself easily to the flexible scheduling of work hours
(Littler & Whitaker, 1997). Employing additional staff exclusively for peak times is impractical and financially
untenable.

Additionally, the variable flow of transfer baggage significantly disrupts other components of the BHS. For
instance, a surge in transfer baggage during peaks not only strains the sorting systems, which operate at fixed
capacities, but also burdens the internal buffers designated for temporarily storing early-checked baggage. These
fluctuations of transfer baggage manifest downstream in the system, leading to bottlenecks and inefficiencies
that can affect the entire operation, from sorting to final baggage claim areas, reflecting the interconnected
nature of airport operations. Some airports, besides these issues, also deal with limited expansion possibilities
due to a lack of space. At some airports there is little room to expand the current BHS, so smart innovations
must help in optimizing the BHS without taking up too much space.

1.2.1 Proposed Solutions

To mitigate the operational challenges caused by fluctuating baggage volumes, two potential solutions can be
explored:

e Check-in baggage earlier: One way to reduce the peak stress on the BHS is by processing check-in
baggage earlier than usual. This can be achieved by encouraging passengers to check in their bags earlier
in the day or even the day before their flight. By processing check-in baggage well before peak transfer
periods, the load on the BHS during these critical times can be reduced. Essentially, the peak created by
check-in baggage is "shifted forward," allowing more capacity to handle the surge in transfer baggage later
in the day. This strategy would rely on efficient scheduling and coordination, but it can greatly alleviate
the pressure on sorting systems during peak times.

e Buffering cold transfer baggage: The second approach focuses on cold transfer baggage—baggage
with longer layover times. This baggage can be buffered for an extended period, meaning it does not need
to enter the BHS immediately upon arrival. By strategically delaying its processing and feeding it into the
system during off-peak times, the load during peak periods is effectively reduced. However, it is crucial
that this baggage still meets its outbound flight schedule, so the delay in processing is carefully timed to
avoid any impact on departure times. This approach, known as peak shaving, allows for a more balanced
distribution of baggage handling workloads over time, thereby improving overall system efficiency.

In Figure 1.3, the impact of these two solutions is illustrated. The figure shows how advancing check-in baggage
processing shifts that workload earlier in the day, while buffering transfer baggage moves the processing load
later, smoothing the peak and reducing operational pressure during the critical hours.

% Transfer bags

Bags per hour

Time on a day

Figure 1.3: Peak shaving can be realized by processing CI baggage before peak hours and TRF baggage after
peak hours.
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1.2.2 Peak Shaving by Buffering Cold Transfer Baggage

Cold transfer baggage, which has longer layover times, offers an opportunity to reduce peak load on the BHS by
delaying its processing. By placing this baggage in external buffers and reintroducing it into the system during
off-peak hours, the workload on the BHS can be smoothed out throughout the day. AAS has already demon-
strated that basic buffering strategies can achieve peak shaving, but further refinement is needed to optimize
this approach.

Several aspects are critical when designing an effective cold buffering system:

e Number of Buffers: Research indicates that using multiple decentralized buffers is more efficient than
a single centralized one, reducing transportation times and streamlining re-entry into the BHS at AAS
(van der Grift, 2023).

e Buffer Organization: The layout of the buffer also plays a role in system efficiency. For example,
baggage can be organized by departure time or destination to ensure it is quickly retrieved when needed.
A well-structured buffer reduces handling times and minimizes disruptions when reintroducing baggage
into the system.

e Distribution Strategies: This research specifically focuses on how to distribute the buffered baggage
most effectively. The key challenge is determining the optimal timing and strategy for releasing baggage
from the buffer. By dynamically adjusting the reintroduction of baggage based on occupancy levels at the
infeed points, peak shaving can be maximized. This requires a sophisticated scheduling system that takes
into account the varying loads on the BHS throughout the day.

In summary, while some aspects of cold transfer baggage buffering, such as the number of buffers and their inter-
nal organization, have been explored, this research focuses on developing strategies for efficient distribution of
buffered baggage. By improving the timing and method of reintroducing cold baggage, airports can significantly
enhance the efficiency of the BHS, reduce bottlenecks, and improve overall operational performance.

1.3 Literature

BHS are critical to airport operations, ensuring the efficient transfer of baggage from check-in to the aircraft,
aircraft to aircraft, and from the aircraft to reclaim area. The increasing complexity of airport operations, rising
passenger volumes, and heightened security requirements necessitate continuous optimization of these systems
to enhance efficiency, reliability, and passenger satisfaction. Also, specific attention has been paid to studies
that are relevant to optimization in the BHS of airports. Various studies have proposed methods and models
to optimize BHS at airports. An overview of these studies is given in Table 1.1.

Author Title Year
Clausen, Kissinger Dynamic Routing of Short Transfer Baggage 2010
Barth et al. A Model for Transfer Baggage Handling at Airports 2013
Frey Models and Methods for Optimizing Baggage Handling at Airports 2014
Huang et al. Optimal Assignment of Airport Baggage Unloading Zones to Outgoing Flights 2016
Frey et al. Optimizing Inbound Baggage Handling at Airports 2017

Huang, Liu & Lin ~ Robust Model for the Assignment of Outgoing Flights on Airport Baggage 2018
Unloading Areas

Ekeocha & Ushe Application of Queuing Process in the Optimization of Baggage Handling Sys- 2018
tem of Murtala Muhammed International Airport

Barth et al. Optimization of Transfer Baggage Handling in a Major Transit Airport 2021

Table 1.1: Overview of Studies on Baggage Handling Systems Optimization

The research by Clausen and Pisinger (2010) on "Dynamic Routing of Short Transfer Baggage" addresses the
need for more efficient baggage handling processes at airports. The study highlights the challenges associated
with routing short transfer baggage, which requires timely and accurate delivery to ensure smooth operations
and passenger satisfaction. The authors propose a dynamic routing algorithm that adapts in real-time to the
varying conditions within the BHS. By leveraging real-time data, the proposed algorithm optimizes routing de-
cisions, thereby reducing delays and improving the reliability of baggage transfers. This research is particularly
relevant for large, busy airports where the volume of transfer baggage is high and the need for efficient routing
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solutions is critical.

Frey (2014)’s work presents significant advancements in the planning and scheduling of inbound baggage han-
dling systems. Recognizing the complexity and critical nature of inbound baggage handling, Frey (2014) proposes
a comprehensive optimization approach using hybrid heuristics. This hybrid heuristic combines a Greedy Ran-
domized Adaptive Search Procedure (GRASP) with a guided fast local search and path-relinking. Implemented
at Munich’s Franz Josef Strauss Airport, the proposed algorithm demonstrated impressive results, reducing
baggage peaks at carousels by 38% and passenger waiting times by 11%.

Building on this foundation, Frey et al. (2017) further elaborate on these methods by focusing on the planning
and scheduling of inbound baggage with the aim of optimizing the entire process through the use of extensive
simulations and real-world data. The research underscores the importance of combining heuristic techniques
with mathematical modeling to tackle complex optimization challenges in airports. This structured approach
ensures that the solutions are both theoretically sound and practically viable.

Barth and Larsen (2013) introduce a dynamic model using fuzzy logic to optimize transfer baggage handling
in their paper "A Model for Transfer Baggage Handling at Airports". This model simulates human decision-
making in baggage operations, enhancing adaptability to real-time changes. Validated with a case study at
a major international airport, the model shows significant improvements in resource allocation, reduction of
baggage mishandling, and overall system efficiency. By integrating various subsystems like passenger arrival,
check-in, and sorting, the model offers a comprehensive approach to identifying and resolving bottlenecks. The
use of fuzzy logic enables the model to handle uncertainties, such as flight delays and fluctuating passenger
volumes, making it robust and reliable.

A follow-up study "Optimization of Transfer Baggage Handling in a Major Transit Airport" by Barth et al.
(2021) present a model for scheduling and assigning outbound baggage handling facilities to flights. This study
focuses on improving the efficiency and robustness of baggage handling processes, particularly in major transit
hubs where high volumes of transfer baggage pose significant challenges. The authors propose a dynamic, near
real-time scheduling model that considers multiple criteria such as quality, efficiency, and robustness. By incor-
porating these factors into a multi-criteria objective function, the model optimizes the assignment of handling
facilities and determines the appropriate start times for baggage handling tasks. Using real-world data from
Frankfurt Airport, the study validates the model, demonstrating that the proposed heuristic and decomposition
methods significantly enhance the efficiency and reliability of baggage handling operations.

Huang et al. (2016) address the complexities of assigning unloading zones to outgoing flights in their paper
"Optimal Assignment of Airport Baggage Unloading Zones to Outgoing Flights". The study highlights the
inherent uncertainties in airport operations, such as flight delays and varying numbers of bags, which necessitate
robust optimization approaches. The authors model the chute assignment problem as a Stochastic Vector
Assignment Problem (SVAP), incorporating multiple extensions to address various design needs of airports.
This model allows for a more flexible and dynamic assignment process, adapting to real-time changes and
uncertainties. Results show that the proposed models significantly improve the efficiency and reliability of the
baggage handling system compared to traditional methods. The robust optimization model reduces the total
number of manually handled baggage by 58%, illustrating its effectiveness in managing the complexities and
uncertainties of real-world airport operations.

Huang et al. (2018) build upon their earlier research in "Robust Model for the Assignment of Outgoing Flights
on Airport Baggage Unloading Areas". This paper focuses on developing a robust optimization model to im-
prove the efficiency and reliability of BHS at airports, addressing the inherent uncertainties in airport operations
such as flight delays and fluctuating baggage volumes. The robust optimization (RO) model proposed by the
authors aims to maintain performance stability under various uncertainty conditions. This model creates a
robust assignment plan for outgoing flights to baggage unloading areas, ensuring consistent performance even
when unexpected disruptions occur. Constructing a simulation model of the BHS, the study compares the
performance of the robust optimization model against traditional assignment methods. Results demonstrate
that the robust model significantly outperforms conventional methods, reducing the total number of manually
handled baggage by 58%. This reduction not only improves efficiency but also enhances the reliability of the
baggage handling process, leading to fewer delays and increased passenger satisfaction.

The paper ’Application of Queuing Process in the Optimization of Baggage Handling System of Murtala
Muhammed International Airport’ by Ekeocha and Ushe (2018) reviews various BHS models and applies a
queuing process to optimize the system, especially in managing the flow and imbalances during peak hours
at Nigeria’s largest airport. The suggested algorithms aim to enhance efficiency and reduce waiting times for
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passengers.

The reviewed studies highlight several methodologies and models for optimizing BHS at airports, each build-
ing on previous research to address the challenges of modern airport operations. Clausen and Pisinger (2010)
focus on dynamic routing algorithms that adapt to real-time conditions, while Frey et al. (2017) introduces
hybrid heuristics for efficient inbound baggage handling and further elaborates on their implementation and
success in real-world scenarios. Barth et al. (2021) utilize fuzzy logic for adaptability in transfer baggage
handling and propose dynamic scheduling models for major transit airports. Huang et al. (2018) emphasize
robust optimization models to handle uncertainties in baggage unloading zones and outgoing flights assignments.

Recent advancements in the field, such as condition-based maintenance, comprehensive simulation models,
and sustainable optimization techniques, further contribute to the ongoing improvement of BHS. These varied
approaches underscore the importance of flexibility, adaptability, and robustness in optimizing baggage handling
systems. By integrating advanced algorithms, real-time data, and robust optimization techniques, these studies
enhance the efficiency, reliability, and performance of airport BHS, ultimately improving passenger satisfaction
and operational effectiveness.

1.3.1 Conclusion

In the literature, multiple studies can be found where peak shaving occurs in various sectors. This is a hot topic
because optimization leads to lower costs and more efficient systems. It is seen that optimization modeling is
commonly used for comparable problems. Optimization modeling is the process of finding the best solution
from a set of feasible solutions, typically by maximizing or minimizing an objective function subject to vari-
ous constraints. It involves mathematical techniques such as linear programming, integer programming, and
heuristic methods to solve complex decision-making problems efficiently.

1.4 Research Gap

While various studies address optimization in airport BHS, including improvements in routing, scheduling, and
resource allocation, there is a noticeable gap in the literature concerning the role of distribution strategies in
achieving peak shaving at transfer infeed points. Existing research predominantly focuses on static or heuristic
approaches to managing baggage flow, often without considering the dynamic and variable nature of transfer
baggage inflow, which is subject to fluctuating peaks and troughs throughout the day.

To date, limited attention has been given to the potential of buffering strategies that are specifically tailored
for cold transfer baggage—baggage with sufficient layover time that can be temporarily stored without jeop-
ardizing its outbound schedule. Although previous studies have explored general peak shaving techniques in
other systems, their application to the unique constraints of transfer baggage at transfer infeed points remains
underexplored. The impact of targeted buffering, combined with forecasting and dynamic reintroduction based
on real-time occupancy levels, is an area where few studies have provided empirical or simulation-based insights.

This thesis addresses this knowledge gap by developing a simulation model that mirrors the transfer baggage
journey and incorporates a predictive forecasting model to determine optimal moments for releasing buffered
baggage. By examining various distribution strategies in controlled scenarios, this research aims to understand
the conditions under which different strategies can most effectively mitigate peaks at transfer infeed points.
Additionally, it seeks to establish the viability and robustness of these strategies under varying operational
conditions, contributing a nuanced understanding of how buffering can be leveraged to enhance overall BHS
efficiency and reliability.

Ultimately, this study provides new insights into distribution strategies for buffered baggage, with the goal
of achieving peak shaving at the transfer infeed points. By addressing the current lack of research on these
strategies, this thesis advances the field of airport baggage handling and supports future research on adaptable,
data-driven optimization solutions within BHS operations.

1.5 Research Objectives

The primary objective of this research is to explore and evaluate distribution strategies for buffering cold transfer
baggage to achieve peak shaving at transfer infeed points within the BHS at AAS. Specifically, this research
aims to develop a simulation model that incorporates a predictive forecasting system to dynamically manage
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the timing of when to buffer and release baggage, helping to mitigate peak occupancy levels. The research
objectives are as follows:

e Objective 1: Develop a comprehensive simulation model of the transfer baggage journey, from arrival
to the transfer infeed point, capturing the dynamic nature of baggage flows and the impact of fluctuating
occupancy levels on the BHS.

e Objective 2: Design and implement a predictive forecasting model to determine optimal release times
for buffered baggage based on real-time occupancy data at transfer infeed points, supporting dynamic
peak shaving efforts.

e Objective 3: Develop and evaluate multiple distribution strategies for cold transfer baggage, with a
focus on optimizing timing and allocation methods to enhance peak shaving and balance baggage flows
at transfer infeed points. These strategies will be informed by an in-depth review of relevant literature,
analysis of the system’s operational environment, and insights gathered from interviews with experts at

AAS.

e Objective 4: Investigate and compare the designed distribution strategies, analyzing their effectiveness
in reducing peak occupancy and robustness under different operational scenarios.

e Objective 5: Provide actionable insights and recommendations on how airports can use distribution
strategies to enhance operational efficiency, manage peak periods, and optimize resource allocation.

These objectives aim to address the current gap in research on peak shaving through distribution strategies for
cold transfer baggage, contributing to a deeper understanding of how targeted buffering can improve airport
baggage handling efficiency.

1.6 Research Contribution

This thesis provides meaningful contributions to both academic research and the practical operations at AAS.
From a scientific perspective, it advances the understanding of dynamic buffering and distribution strategies
for cold transfer baggage, focusing on their role in achieving peak shaving at transfer infeed points. Unlike
prior studies that primarily rely on static or heuristic methods, this research integrates simulation modeling
with predictive time series forecasting to explore how baggage flows can be dynamically managed under fluc-
tuating conditions. By systematically comparing multiple distribution strategies and integrating simulation
with forecasting models, this research introduces a flexible framework for dynamic optimization. The approach
demonstrated in this thesis provides a foundation for future studies and highlights the potential of adaptive
methods in managing complex operational systems within logistics and existing aviation infrastructure.

From a practical standpoint, this research is directly relevant to AAS. The simulation model developed in this
thesis is tailored to the specific characteristics of the AAS baggage handling environment, enabling the airport
to evaluate and optimize distribution strategies for cold transfer baggage under realistic conditions. By uti-
lizing AAS’s operational environment as a basis for simulation, the findings provide actionable insights that
can be implemented directly to alleviate peak occupancy levels and improve system efficiency. Additionally,
the research includes calculations and evaluations of transport capacity, such as the coordination of Automated
Guided Vehicles (AGVs), ensuring that available resources are effectively allocated. These contributions align
closely with AAS’s strategic objectives of enhancing operational efficiency, improving passenger satisfaction,
and minimizing unnecessary expansions or costs.

By bridging the gap between theoretical research and practical application, this thesis demonstrates how dy-
namic buffering strategies, guided by a forecasting model, can optimize resource use and reduce operational
inefficiencies. Furthermore, it lays the groundwork for future studies by illustrating the potential of adaptive,
data-driven approaches in addressing variability in complex systems.

1.7 Research Scope

The scope of this research focuses on the development, testing, and evaluation of distribution strategies for
buffering super cold transfer baggage within the BHS at AAS. This study is confined to the following areas:
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e Simulation Model: The simulation model developed in this research is designed to capture the flow of
transfer baggage from arrival at AAS to the transfer infeed points, where baggage is fed to the BHS. The
model includes variations in baggage inflow and dynamically manages occupancy rates through strategic
buffering.

e Super Cold Transfer Baggage: This research focuses specifically on super cold transfer baggage, which
have layover times long enough to allow temporary storage. Other types of baggage, such as tail-to-tail
and ShoCon baggage, are excluded from the buffering strategies because their layover times are insufficient
for effective buffering. Although cold transfer baggage could also be buffered, this study limits its scope
to super cold transfer baggage. This decision was informed by discussions with various stakeholders, who
highlighted that buffering cold transfer baggage involves tighter safety margins. As a result, super cold
transfer baggage was chosen as the focus to ensure operational feasibility and reliability.

e Distribution Strategies: This research involves designing and evaluating distribution strategies for
releasing buffered baggage. The strategies will be based on timing and occupancy level predictions to
achieve peak shaving at the transfer infeed points. These strategies are intended to help balance the
workload across the BHS by redistributing baggage flows during high-demand periods.

e Operational Scenarios: To test the robustness of the distribution strategies, this study examines differ-
ent operational scenarios, including variations in baggage volumes, peak occupancy times, and potential
system disruptions. This allows for an assessment of each strategy’s effectiveness and adaptability under
varying conditions.

e Exclusions: This research does not extensively address the operational logistics of baggage transportation
outside of the BHS. A brief analysis is conducted on the movement of baggage on the airside, but no in-
depth research is performed. Furthermore, this study does not consider financial constraints or cost
analyses related to implementing the proposed strategies.

In summary, the scope of this research is narrowly focused on exploring and optimizing the buffering and
distribution of super cold transfer baggage to alleviate peak occupancy levels at transfer infeed points at AAS.
The study’s findings aim to provide insights into how strategic buffering can contribute to smoother BHS
operations and enhanced resource allocation at large hub airports.

1.8 Research Question

This research aims to explore how the distribution of buffered super cold transfer baggage can be optimized to
achieve peak shaving, thereby improving the overall efficiency of the BHS. To guide this study, the following
main research question is formulated:

How to support Amsterdam Airport Schiphol to identify the best distribution strategy for super
cold transfer baggage through a simulation model?

To address this overarching question, the following sub-questions will be explored:

1. What is the current state of baggage handling processes at the transfer infeed points at
AAS?

This question is essential to understand the baseline of current operations. By analyzing the existing
baggage handling processes, challenges, and bottlenecks, this research can identify the specific areas where
peak shaving through buffering could have the most impact. Understanding the current state also helps
clarify the potential benefits and limitations of introducing new distribution strategies.

2. How does peak shaving work in the context of an airport?

Peak shaving is a key strategy to manage high baggage volumes, particularly during peak times. This
question explores the theory behind peak shaving, how it applies specifically to airport baggage systems,
and why it is relevant to managing transfer baggage. Addressing this question provides a foundation for
understanding the value of buffering and its role in reducing congestion at the transfer infeed points.

3. What is needed to optimize the distribution of super cold transfer baggage?

This question looks at what is needed to successfully set up an effective distribution strategy. Specifically,
it focuses on how forecasting can help find the best timing for releasing buffered containers. By accurately
predicting changes in baggage volumes, the forecasting model can guide decisions on when to return
baggage from the buffer, helping to keep peak occupancy low without disrupting airport operations.
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4. Which distribution strategies are suitable for buffering super cold transfer baggage, and how
do these strategies impact peak shaving under different scenarios?

This question investigates the types of distribution strategies that can be applied to super cold transfer
baggage and their potential effects on peak shaving. By exploring different strategies and scenarios, such as
varying inflow rates or capacity limitations, this research can evaluate how each approach performs under
different operational conditions, providing insight into the robustness and adaptability of each strategy.

5. What operational considerations and resource implications arise from implementing the
simulated distribution strategies, and how feasible are they for reducing peak occupancy at
AAS transfer infeed points?

This question explores the practicality of implementing each distribution strategy, focusing on resource
requirements, operational adjustments, and overall feasibility. By assessing these factors, the research
aims to determine the viability of integrating these strategies into AAS’s baggage handling operations.

1.9 Approach

In this thesis, the research methodology is presented in greater detail in the subsequent chapter 2. It begins with
an overview of the baggage journey at AAS, provided in chapter 3. This offers a foundational understanding
of the system under study. Next, the concept of peak shaving and its significance for managing the BHS is
explained in chapter 4. The data used for the study is described in chapter 5, alongside any necessary data
transformations. Following this, the process of developing the simulation model is elaborated in chapter 6, where
the simulation logic is detailed and the validation process is explained. Chapter 7 introduces the time series
forecasting model, which is built upon the simulation output and validated using historical trends. In chapter 8,
the various distribution strategies for buffered super cold transfer baggage are designed and explained, followed
by the scenarios. The performance of these strategies under different operational scenarios is shown in chapter
9, and discussed in chapter 10, where results are analyzed, and the effectiveness of each strategy is assessed.
Then the conclusions of the research are presented in chapter 11. Finally, the recommendations are given in
chapter 12.
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2 Methodology

This chapter outlines the methods used to explore how the distribution of buffered super cold transfer baggage
can be optimized to achieve peak shaving at transfer infeed points. The research focuses on developing a
simulation model based on an analysis of the current state of the BHS at AAS and using 10 weeks of historical
baggage data. By designing and testing multiple distribution strategies and evaluating their effectiveness across
different scenarios, this research aims to identify the most efficient approach to managing baggage flows.

2.1 Current State Analysis

To establish a solid foundation for the simulation model, a detailed current state analysis of the BHS at AAS
was conducted. This analysis provided critical insights into the existing operations and challenges within the
system, offering a baseline for designing the simulation.

The current state analysis involved the following steps:

e Field Observations: Firsthand observations of the BHS systems were made by visiting the airside of
AAS. This enabled a close-up view of the baggage handling processes, including infeed, storage, sort-
ing, and make-up. Observing the handling of both bulk and containerized baggage helped capture the
complexities of the system.

e Stakeholder Discussions: Meetings were held with baggage handling experts at AAS and with the
KLM Ground Handlers, including those involved in airside operations and the design and management
of the BHS. These discussions provided valuable context, including operational constraints, the rationale
behind current processes, and the potential for optimization.

e Process Mapping: Using the information gathered, a detailed process map of the baggage journey
was created to identify key touchpoints and bottlenecks in the system. This map served as a visual
representation of how baggage moves through the system and the interactions between subsystems.

e Key Performance Indicator Review: Existing KPIs, such as system capacity, on-time delivery rate,
and buffer efficiency, were reviewed to understand current performance levels and areas requiring improve-
ment.

The current state analysis was instrumental in shaping the simulation model by providing a clear understanding
of the processes and constraints that needed to be incorporated. Additionally, insights gained from field visits
and discussions helped identify practical considerations for implementing distribution strategies.

2.2 Peak Shaving: Concept and Relevance

Peak shaving is a concept widely used across various sectors, including energy distribution and supply chain
management, to reduce peak demand and balance resource utilization. In this research, the principles of peak
shaving are adapted to the context of BHSs at airports, specifically targeting the occupancy levels at transfer
infeed points.

Chapter 4 provides a detailed exploration of the peak shaving concept, including its application in other in-
dustries and its adaptation to the unique challenges of baggage handling at a hub airport. By explaining the
underlying mechanisms and objectives, the chapter sets the foundation for understanding how peak shaving can
be achieved in this research.

This section serves as an essential link between the analysis of the current state and the subsequent development
of simulation models and distribution strategies. Incorporating peak shaving into the methodology ensures that
the research focuses on addressing one of the most critical challenges in transfer baggage handling: mitigating
peak demand at infeed points.

2.3 Data Collection

Following the current state analysis, historical baggage data from AAS was collected to form the basis of the
simulation. This dataset focused on the arrival times, quantities, and entry points of transfer baggage over a
10-week period, capturing realistic inflow patterns. Additionally, parameters and boundary conditions essential
for the simulation were gathered through interviews with key stakeholders, ensuring that the model reflected
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operational constraints and priorities.

The key elements of data collection included:

e Baggage Arrival Times: Arrival timestamps for transfer baggage were used to simulate the inflow to
the BHS accurately. This data provided a clear view of peak and off-peak periods throughout the day.

e Baggage Volumes: Quantities of baggage arriving at various times helped identify trends in inflow and
provided input for simulating realistic peaks and troughs in occupancy levels.

e Entry Points: Information on where baggage entered the system, such as specific transfer infeed points,
was used to map the distribution of baggage flows across the BHS.

In addition to historical data, essential parameters and constraints for the simulation were derived from inter-
views with:

¢ KLM Ground Handlers Management: Discussions with ground handlers offered practical insights
into the operational challenges and decision-making processes involved in managing baggage flows, par-
ticularly at critical transfer infeed points.

e Baggage Operations Experts at AAS: Stakeholders from the baggage handling team at AAS pro-
vided detailed information about the functionality of the BHS, including constraints on storage capacity,
transport systems, and timing requirements for handling cold and super cold transfer baggage.

The insights from these interviews were instrumental in defining the simulation’s boundary conditions, such as
the maximum allowable buffer size, constraints on processing times, and the availability of resources like AGVs.
The combination of real-world data and expert input ensured that the simulation model captured both the
complexity and the practical realities of baggage handling operations at AAS.

By integrating historical data with qualitative insights from stakeholders, this research established a robust
foundation for the simulation, enabling the testing of distribution strategies under realistic and operationally
relevant conditions.

2.4 Simulation Model

The simulation model focuses on the occupancy levels at the transfer infeed points and models how baggage
is handled from the moment it arrives at the airport, until it is fed into the BHS. Historical data is used to
accurately reflect baggage arrival times and volumes, but from this point onward, the routing of baggage to the
BHS is simulated. This includes:

e Baggage Assignment to Containers or Carts: Simulating how baggage is assigned to specific con-
tainers or carts for transport.

e Transportation and Routing: Simulating the movement of baggage from its arrival gate to a designated
transfer infeed point, accounting for potential delays or routing changes.

The simulation will form the basis for testing different distribution strategies and evaluating how effectively
they achieve peak shaving. More details on the simulation process will be provided in the simulation chapter
6.5.

The simulation incorporates the use of AGVs and buffer operations to evaluate the feasibility and resource
implications of the proposed distribution strategies. AGVs are modeled to handle two main tasks: transporting
containers to the buffer and delivering them to transfer infeed points. The buffer is simulated as a dynamic
system to assess occupancy levels over time, providing insights into capacity needs and the impact of different
strategies.

By including AGV requirements and buffer utilization in the simulation, this research ensures that operational

constraints and resource demands are realistically captured, supporting the evaluation of each strategy’s prac-
tical applicability and efficiency.
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2.4.1 Simulation Validation

To ensure that the simulation accurately reflects real-world conditions, a validation process will be carried out.
The simulation outputs will be compared to historical data, focusing on the accuracy of occupancy levels at
transfer infeed points. Other KPIs, such as baggage volumes, will also be considered

Additionally, a sensitivity analysis will be conducted to test how small variations in input parameters (e.g.,
changes in baggage arrival times or volumes) affect the results. This will help ensure the model’s robustness
under different conditions.

2.5 Time Series Forecasting Model

Once the simulation model is validated, its output over the 10-week period will be used to create a time se-
ries forecasting model. This model will analyze the simulated data to predict future occupancy levels at the
transfer infeed points, offering insights into when peaks and troughs are likely to occur. This is necessary to
support the distribution strategies in determining the optimal timing for feeding buffered baggage into the BHS.

The time series model will be based on patterns observed in the output of the simulation, enabling proactive
distribution strategies by informing the optimal timing for reintroducing buffered cold transfer baggage into the
system.

2.6 Distribution Strategy Design

The core of this research involves the design and testing of some distribution strategies for buffered cold transfer
baggage. These strategies will focus on determining the most effective timing and method for reintroducing
baggage into the BHS, aiming to reduce peaks in occupancy levels at infeed points.

Rule-based strategies and algorithms will be developed to govern how and when baggage is released from buffers.
Each strategy will be simulated to evaluate its effectiveness in achieving peak shaving while ensuring that all
baggage reaches its destination on time.

2.7 Scenario Testing

To evaluate the effectiveness and robustness of each distribution strategy, three operational scenarios have been
tested. These scenarios reflect realistic challenges that the BHS may encounter, allowing for a comprehensive
assessment of each strategy’s performance. The scenarios are as follows:

e Scenario 1: Normal Situation
This scenario represents typical operational conditions at AAS, where all transfer infeed points are func-
tioning normally, and baggage flows are at expected levels. This baseline scenario serves as a reference
point for comparing the performance of the distribution strategies under regular circumstances.

e Scenario 2: Reduced Capacity
In this scenario, one of the four transfer infeed points is out of service, creating a bottleneck in the
system. This condition tests the distribution strategies’ ability to manage baggage flow effectively under
constrained resources, emphasizing the importance of efficient buffering and distribution during peak
times.

e Scenario 3: Increased Inflow of Transfer Baggage
This scenario simulates a surge in transfer baggage inflow, exceeding normal operational levels. The goal
is to assess how well the distribution strategies cope with high demand and whether they can maintain
effective peak shaving despite the increased pressure on the BHS.

Each scenario aims to test the adaptability and efficiency of the distribution strategies, offering insights into
how they perform across a range of real-world operational conditions. This scenario testing approach provides a
nuanced understanding of each strategy’s resilience and potential weaknesses, guiding the selection of the most
effective peak shaving methods.
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2.8 Analysis

Following the scenario testing, a detailed analysis will be conducted to evaluate the performance of each distri-
bution strategy. The primary metrics for analysis include:

e Peak Occupancy Level Reduction: Assessing the extent to which each strategy successfully reduces
peak occupancy levels at the transfer infeed points.

e Robustness Across Scenarios: Analyzing the consistency of each strategy’s performance across differ-
ent scenarios with multiple KPIs to determine its robustness and adaptability.

e Feasibility and Practicality: Considering the feasibility of implementing each strategy in real airport
operations, including any logistical or resource limitations. By looking at the size of the buffer needed
and an insight in the number of tugs/Autonomous Guided Vehicles (AGV) needed for the operation.

The analysis will provide a comparative overview of the strategies, highlighting their strengths and potential
trade-offs. By examining the results of scenario testing and the forecasting data, this analysis aims to identify the
distribution strategy that offers the most significant improvement in peak shaving while maintaining operational
reliability. The findings will support recommendations for practical implementations at AAS and provide a
foundation for future research in airport BHS optimization.
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3 The Baggage Journey

This chapter will explain the baggage journey. Figure 3.1 provides a clear overview of the various steps a suitcase
can go through at a hub airport. These steps cover the entire process, from checking in baggage, processing it
within the BHS, and finally unloading or transferring it to the correct destination. Each step in this process
is essential for the efficient operation of an airport, especially at hub airports, where thousands of suitcases
are processed daily. A well-functioning BHS system allows the airport to handle baggage quickly and safely,
minimizing the processing time for passengers and their baggage. This chapter offers a detailed explanation of
the infeed, the operation of the BHS, and the outfeed of baggage. The combination of human staff, automated
systems, and technology makes it possible to run this complex process smoothly. This chapter gives answers to
subquestion 1: What is the current state of baggage handling processes at the transfer infeed points at AAS?
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Figure 3.1: Visualization of the baggage journey

3.1 Infeed of Baggage

The infeed of baggage, or the intake of baggage into the BHS, can occur in two ways: via landside and airside.
These two routes are essential for baggage processing, as they mark the beginning of the journey that baggage
takes through an airport. Landside refers to the baggage checked in by passengers at the counter or self-service
kiosks. Airside involves the baggage arriving on incoming flights, which is immediately handled for further
processing or transfer to other flights. Coordinating these two streams is crucial to avoid system bottlenecks
and ensure that baggage arrives at the correct destination on time. Since landside and airside have different
characteristics and challenges, each type of infeed requires a different approach and handling. For example,
baggage entered landside has a direct relationship with the passenger and their travel plan, while airside baggage
usually comes from transfer passengers and, therefore, needs stricter time handling.

3.1.1 Landside Infeed

Landside infeed refers to baggage checked in by passengers at airport check-in counters. This process begins
once the passenger offers their baggage at a check-in counter or self-service kiosk. The baggage is tagged with a
label that includes the final destination and flight information and then fed into the system. Once entered, the
baggage is processed and screened by the BHS. At many modern airports, this process is largely automated, with
baggage transported on conveyor belts and automatically scanned for content and destination. This automation
ensures that baggage is handled quickly and efficiently. Landside infeed is a crucial part of the baggage process,
as it ensures that baggage enters the system before the passenger proceeds to the gate. It is also important for
security, as every checked bag is thoroughly inspected before it is allowed on the plane.

3.1.2 Airside Infeed

Airside infeed refers to baggage arriving with incoming flights, either as transfer baggage or as baggage for its
final destination. This baggage can be transported in various ways, such as in containers (e.g., AKH or AKE
containers, see Figures 3.2c and 3.2b) or as bulk (loose suitcases, see Figure 3.2a). Once the plane has landed,
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the baggage is unloaded and sorted depending on its type: some bags remain at the airport for transfer to
other flights, while others go to the reclaim area for passengers arriving at their final destination. Transfer
baggage is further categorized. Transfer baggage with a short connection time is processed urgently to ensure
it is reloaded on time for the next flight. Transfer baggage with longer connection times is given lower priority.
This process requires close coordination between ground handling teams and the BHS, as timely transfer is
essential to prevent delays.

Additionally, the type of aircraft used to transport the baggage significantly impacts how the baggage is pro-
cessed. The larger Wide Body (WIBO) aircraft, typically used on long-haul flights, often use multiple AKE
containers (see Figure 3.2b) to transport baggage. In a WIBO aircraft, two AKE containers can be placed side
by side in the cargo hold, allowing for efficient storage and rapid processing of baggage. The large capacity of
these aircraft enables more baggage to be processed per flight, which is especially important for busy interna-
tional hubs. The use of containers in WIBO aircraft speeds up the loading and unloading process and protects
baggage from damage.

On the other hand, most Narrow Body (NABO) aircraft use bulk baggage (see Figure 3.2a), where suitcases are
placed loose in the cargo hold without containers. NABO aircraft are often used for short- and medium-haul
flights and have a smaller cargo hold compared to WIBOs. Using bulk baggage in NABOs means that the
suitcases must be loaded and unloaded individually, which can take more time and be more labor-intensive for
ground staff. However, some NABO aircraft use AKH containers (see Figure 3.2¢). These smaller containers fit
into the cargo hold of NABOs and offer similar protection and efficiency as AKE containers in WIBO aircraft
but on a smaller scale. This is particularly useful at airports with high baggage volumes, where speed and
efficiency are crucial for timely departures.

Therefore, airside infeed places high demands on sorting and storage processes, especially when baggage arrives
in bulk, meaning that suitcases must be processed individually. Moreover, baggage must be screened quickly and
directed to the appropriate infeed stations for further processing. A well-organized infeed process contributes
to the overall efficiency of baggage handling and minimizes the risk of delays for passengers and flights.

(a) Bulk baggage (“Bagagekarretje Met (b) AKE container (“Baggage Con- (¢) AKH container (“Baggage Con-
Koffers”, n.d.) tainer”, n.d.) tainer”, n.d.)

Figure 3.2: Different types of baggage transportation

3.2 Baggage Handling System

The BHS is a crucial infrastructure that enables the complete processing of baggage at an airport. The system
consists of multiple components working together to safely and efficiently transport baggage from one location to
another. Screening, storage, sorting, and make-up are some of the key elements within this system. Automated
conveyor belts, scanners, and sorting systems ensure that each suitcase is directed to the correct destination
without delays or errors. Each part of the BHS fulfills a specific role, from checking baggage for security risks
to temporarily storing suitcases waiting for their next flight. Thanks to technological advances, the BHS has
become increasingly sophisticated, leading to faster processing times and higher levels of safety and reliability.
This section explains how each component of the BHS works and contributes to overall baggage handling.
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3.2.1 Screening

Screening is one of the first steps in the BHS process and is critical for the safety of the airport and flights.
All baggage entering the BHS via landside or airside must be screened for prohibited or dangerous items. This
process usually involves advanced X-ray and scanning technologies that quickly and accurately analyze the
contents of the baggage. Suspicious baggage can be separated for further inspection or manually inspected by
security staff. Thanks to automation and technological developments, most baggage can be screened within
seconds without slowing down the system’s throughput. The screening process is an essential part of overall
airport security, ensuring that passengers can travel safely without the risk of dangerous materials on board.
Besides the security aspects, the speed of this process also plays a significant role in the efficiency of baggage
handling. A well-functioning screening system can minimize delays and reduce processing time.

3.2.2 Storage

Storage within the BHS is intended for baggage that cannot be processed immediately. This can occur for
various reasons, such as when there is a waiting period between the arrival and departure of the next flight
or when baggage is checked in earlier than needed. The storage facilities within the BHS are often automated
systems that can hold baggage temporarily without disrupting the flow of other suitcases. Airport baggage
storage can have a centralized or decentralized architecture. In a centralized architecture, there is one central
storage, whereas decentralized storage consists of several storage locations (Lin et al., 2015). The storage system
uses computer-controlled algorithms to ensure that the baggage is released for further processing at the right
time. This helps streamline handling, particularly for transfer baggage that has a longer waiting period. The
use of storage within the BHS helps manage peaks in baggage processing and optimize the occupancy of infeed
stations and other critical points. In cases where baggage needs to be stored for an extended period, monitoring
temperature and other environmental factors ensures the baggage remains in optimal condition.

Figure 3.3: Storage in baggage handling hall (Duell, n.d.)

3.2.3 Sorter System

The sorting system in the BHS is responsible for separating baggage and directing it to the correct destination
within the airport. This is based on information such as flight details, transfer plans, and final destination of
the baggage. Modern sorting systems use automated technologies such as barcode readers and RFID systems
to quickly and accurately identify each suitcase. The sorting system ensures that the baggage is directed
to the correct gate or transfer location, so it is ready for the next phase of the process. This can range from
transferring baggage to another flight to sending suitcases to the reclaim area for passengers who have completed
their journey. The speed and efficiency of the sorting system are crucial for the overall performance of the BHS,
especially at busy airports where thousands of suitcases need to be processed per hour. The sorting system
also uses redundancy and error handling to ensure that misrouted baggage can be corrected quickly without
disrupting the entire process.
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3.2.4 Make Up

The make-up phase in the BHS is the final step before the baggage is handed over to ground staff for loading
onto the plane. In this phase, the baggage is gathered and organized based on flight information and loading
priorities. The baggage is consolidated into containers or carts, which are then transported to the aircraft for
loading. This process is carefully planned to ensure that the baggage is loaded in a way that optimizes space
on the aircraft while also ensuring a quick and efficient unloading at the next destination. The make-up process
often requires close collaboration between the BHS and ground staff, as timing is critical to prevent delays.
It is also important that the baggage is loaded in the correct order, especially for transfer flights where some
baggage needs to be unloaded before others. Through advanced planning and coordination, the make-up phase
runs smoothly without disruptions.

To assist ground staff with lifting and packing baggage into carts or containers, various tools are used. Two
of these tools are the 'Baggage Manipulator’ (see Figure 3.4a) and the 'Baggage Loader’ (see Figure 3.4b).
The Baggage Manipulator helps staff move and position suitcases, reducing the need to lift heavy baggage and
making the process more efficient. This is especially helpful when filling containers, where precise placement is
needed to optimize space. The Baggage Loader ensures that suitcases are raised to an ergonomic height, so staff
do not have to constantly bend and lift, contributing to safer and faster baggage handling. The use of these
tools reduces the physical strain on staff and increases the efficiency of the baggage handling process, which is
essential in a busy airport environment.

(a) Baggage manipulator (b) Baggage loader

Figure 3.4: Tools to support the baggage handling process (“Baggage Make-up and Unloading Systems | Beumer
Group”, n.d.)

3.3 Outfeed of Baggage

The outfeed of baggage refers to the baggage leaving the airport’s baggage system: the flow of baggage either
to passengers in the reclaim area or to planes for departing flights. This process is just as important as the
infeed and the BHS, as errors or delays in this phase directly affect the passenger experience and flight efficiency.
Properly handling the outfeed ensures that passengers can quickly retrieve their baggage upon arrival and that
departing flights leave on time with the correct baggage on board. Like the infeed, the outfeed can occur
landside or airside, depending on the destination of the baggage.

3.3.1 Landside Outfeed

The landside outfeed refers to the process of delivering baggage to the reclaim area, where passengers can
retrieve their suitcases after arrival. Once the plane has landed, the baggage is unloaded and transported via
the BHS to the reclaim area. Here, the suitcases are placed on conveyor belts where passengers wait to collect
their baggage. The reclaim process is one of the final steps in the passenger journey and is, therefore, crucial for
the overall passenger experience. Quick and efficient handling in the reclaim area ensures satisfied passengers
and smooth airport operations. This system often uses sensors and automation to ensure that baggage arrives
in the correct order and without delays. The reclaim area is often equipped with multiple baggage belts to
handle peak times and large numbers of passengers efficiently. Coordination between the BHS and ground staff
ensures that the baggage is transferred to passengers quickly and without errors.

32



Figure 3.5: Lateral at reclaim area (Pickering, n.d.)

3.3.2 Airside Outfeed

The airside outfeed involves loading baggage onto planes for departing flights. After the make-up phase, in
which the baggage is sorted and prepared, it is transported to the plane and carefully loaded. This process
requires precise planning to ensure that the baggage is placed correctly, both to save space and to ensure that the
baggage can be unloaded in the right order upon arrival. Loading baggage is a time-critical operation, especially
at busy airports where multiple flights are being prepared simultaneously. Ground staff work closely with the
BHS to ensure that all baggage is on board in time and that no delays occur due to missing or incorrectly
labeled suitcases. An error-free airside outfeed contributes to the on-time departure of the flight and ensures
that passengers can trust their baggage will arrive at the correct destination.

3.4 Key Performance Indicators

Key Performance Indicators (KPIs) are widely used in airport BHS to measure and optimize performance.
These indicators provide valuable insights into system efficiency, reliability, and potential bottlenecks, enabling
operators to identify areas for improvement. Below are some common KPIs used to assess BHS operations:

e System capacity (bags/hour): This KPI measures the maximum number of bags the BHS can process
per hour. A higher capacity indicates that the system can handle large volumes of baggage efficiently,
which is critical for busy international airports.

e Mishandled baggage (total number of bags mishandled): This KPI tracks the number of bags
that are lost, delayed, or misrouted. A low mishandling rate is vital for maintaining passenger satisfaction
and minimizing operational disruptions.

e Infeed capacity: This KPI evaluates the maximum baggage intake rate at landside and airside entry
points, ensuring that the system can handle peak inflow periods without congestion.

e Buffer efficiency: This indicator measures how effectively the buffer is utilized, focusing on how well
baggage is stored and retrieved without causing delays or disruptions in the system.

e On-time delivery rate: This KPI reflects the percentage of baggage delivered on time to its destination,
whether to the reclaim area for passengers or to the aircraft for departing flights. A high on-time delivery
rate is crucial for both operational success and passenger satisfaction.

While these KPIs are commonly used to monitor and improve BHS performance, this research focuses on a
subset of KPIs that are directly relevant to the objectives of optimizing transfer infeed processes and evaluating
the impact of distribution strategies for buffered baggage. The KPIs selected for this study include:

e Peak occupancy at transfer infeed points: This KPI measures the maximum number of bags present
at transfer infeed points during peak periods. The primary goal of this research is to reduce these peaks
through effective buffering strategies, thereby minimizing operational stress on the system.

e Peak occupancy in the buffer: This KPI evaluates the maximum load on the buffer over time, ensuring
that buffering strategies do not create new bottlenecks while aiming to optimize system-wide efficiency.
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¢ Required number of AGVs: The number of AGVs needed is calculated based on the transport demand
created by buffering operations. This KPI provides insights into the logistical implications and feasibility
of each distribution strategy.

By integrating both commonly used KPIs and those tailored to the objectives of this research, the study provides
a comprehensive evaluation framework. The traditional KPIs ensure that the simulation adheres to established
performance standards for BHS, while the study-specific KPIs offer a focused analysis of buffering and transfer
infeed strategies.

In the Results chapter (9), these KPIs are used to compare the performance of different distribution strategies,
highlighting trade-offs between reducing peak occupancy, optimizing buffer usage, and minimizing the logistical
demands on AGVs. This dual-layered approach ensures that the findings are both operationally relevant and
aligned with the overarching goals of the research.
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4 Peak Shaving

This chapter discusses the concept of peak shaving as it applies to BHSs at airports. We will explore how peak
shaving strategies can be implemented to balance the inflow of baggage and reduce congestion at critical points
in the system. The chapter outlines various approaches to mitigating high occupancy rates at the infeed points,
including strategies for managing check-in baggage and cold buffering of transfer baggage. This chapter gives
answers to subquestion 2: How does peak shaving work in the context of an airport?

4.1 Literature on Peak Shaving

Peak shaving is a phenomenon that applies to many sectors. For instance in the energy sector, it is a strategy
used to reduce the amount of energy consumed during periods of high demand. While commonly associated
with energy management, peak shaving also applies to managing occupancy levels in various systems, such
as buildings, transportation, and telecommunication networks. The goal is to optimize resource use, enhance
efficiency, and prevent overloads by spreading the demand more evenly over time.

In buildings, peak shaving on energy consumption can be achieved by distributing occupancy more evenly
throughout the day. Strategies include flexible working hours, remote work options, and scheduling software
to prevent overbooking. These methods can significantly reduce energy consumption and improve occupant
comfort and productivity. For example, research on energy storage systems in buildings demonstrates the effec-
tiveness of adaptive control algorithms in optimizing peak shaving and improving energy efficiency (Chua et al.,
2016).

In public transportation, peak shaving aims to alleviate congestion by encouraging off-peak travel through dy-
namic pricing and increased service frequency during peak times. These measures can reduce overcrowding and
improve overall system efficiency. A study on integrating liquid air energy storage with power plants for bidi-
rectional peak shaving highlights the importance of such strategies in enhancing grid performance and reducing
peak loads (Gao et al., 2021).

Peak shaving in telecommunication networks involves managing data traffic to prevent congestion. Techniques
such as traffic shaping, bandwidth throttling, and promoting off-peak usage help maintain service quality and
reduce latency during high-demand periods. Research indicates that these methods lead to more stable and
reliable network performance (Tziovani et al., 2021).

Peak shaving of occupancy levels is an effective approach to optimizing the use of resources and enhancing system
efficiency across various domains. By implementing strategies to spread demand more evenly, organizations can
prevent overloads, improve service quality, and reduce costs. Adopting peak shaving measures can lead to
significant benefits in building management, transportation systems, telecommunication networks, and other
systems.

4.2 Peak Shaving on Baggage Occupancy Levels at an Airport

In the previous chapter, we outlined the baggage journey and discussed some important KPIs, including the
infeed capacity of the BHS. A significant issue at many airports, particularly at hub airports like AAS, is that
the number of incoming and outgoing flights is not evenly distributed throughout the day. This results in
fluctuations in the inflow of transfer baggage, with peaks and troughs that put pressure on the efficiency of the
BHS. One of the strategies to mitigate these peaks is peak shaving.

4.2.1 Check-in Baggage and Peak Shaving

One way to achieve peak shaving is by processing check-in baggage earlier. By encouraging passengers to check
in their baggage earlier, for example, the evening before the flight or well before peak hours, the load on the
system during peak times can be reduced. The idea is that by shifting the load of check-in baggage forward,
more capacity is available for processing transfer baggage during the busy periods. This process is illustrated
in Figure 1.3 in Chapter 1.2, where the peak of check-in baggage is shifted to a quieter time of day, while the
peak of transfer baggage is moved to a later time.
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4.2.2 Cold Buffering of Transfer Baggage

As discussed earlier, transfer baggage can be classified into different temperature categories based on the layover
time, where "warm" baggage is prioritized for processing. "Cold" transfer baggage, with longer layover times,
can be temporarily stored (buffered) and reintroduced into the system later during quieter periods. This is an
effective way to reduce peaks in the occupancy levels of the infeed points, without delaying the baggage for its
departing flight.

Figure 4.1 shows how buffering cold transfer baggage adds an extra layer to the baggage journey. In this
visualization, cold baggage is kept separate from warm baggage and can be temporarily stored. After being
buffered, the now "warmed-up" baggage can be reintroduced into the BHS later, leading to a more even
distribution of the occupancy levels throughout the day.
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Figure 4.1: Visualization of the baggage journey with buffering.

4.2.3 Design Options for Cold Buffering

There are various options and strategies for how cold baggage can be buffered and then distributed. One of the
questions is how to determine whether baggage should be classified as warm or cold, as this affects the priority of
processing. There can also be differences in how carts or containers are packed, which impacts the distribution
of each piece of luggage. Additionally, there is the question of how the baggage should be transported on the
airside. There are increasing innovations that further optimize transport processes. Buffer configuration and
buffer placement are also aspects to consider.

Baggage Classification Baggage can be split into different categories. For example, there is transfer baggage
classified as tail-to-tail, where the baggage has a shorter layover time than the minimum processing time through
the BHS. This baggage needs to be taken directly to its next flight. Then there is ShoCon baggage, which has
enough time to go through the BHS but must be processed immediately. There is also reclaim baggage on
board, which does not transfer but is transported via the BHS to the reclaim areas on landside for passengers
to collect. Finally, there is cold transfer baggage. This baggage has a longer layover time and can be buffered
to alleviate the BHS from peaks. Table 4.1 provides a rough estimate of which layover times correspond to
each classification. The layover time is considered as the difference between the Actual In Block Time (AIBT),
the moment when the aircraft comes to a stop on the apron, and the Scheduled Off Block Time (SIBT), the
moment the departing aircraft begins to move.
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Baggage Temperature | Description

Tail-to-tail Connection time <45 minutes
ShoCon 45 <Connection time <90
Cold transfer 90 <Connection time

Table 4.1: Example of possible baggage classification

Container Packing The use of containers or carts offers variety in packing, where choices can be made
based on temperature or destination. One option could be to place baggage for the same baggage hall in the
same container, even if the departure times of the baggage slightly differ. This could make transportation more
efficient, as one container can be brought directly to the correct infeed location rather than making multiple
trips along the same route. Alternatively, containers can be packed based on baggage temperature. This will
be further discussed in Chapter 6.5.2.

Transport on Airside: Autonomous Guided Vehicles There are several ways to transport baggage on
the airside. Currently, the most common method is the tug, which is a vehicle driven by a driver that pulls
a train of carts carrying baggage. AAS, along with many other airports, aims to become more sustainable
and autonomous (Schiphol, 2024). An emerging innovation in airport logistics is the use of autonomous guided
vehicles (AGVs) for the transportation of baggage. The problem addressed by this research is the need to relieve
the BHS during peak times. Relieving the BHS is not necessary throughout the entire day, but can be only
during specific periods. As mentioned before, it is challenging to employ staff for short periods, and this is
where AGVs could play a significant role.

Figure 4.2: Aurrigo AV with baggage ULD (Aviation Week Network, 2024)

AGVs are self-driving vehicles that are designed to transport baggage directly from the baggage handling area
to the aircraft and vice versa. In Figure 4.2, a picture of Aurrigo’s AGV capable of transporting a ULD (AKE-
or AKH-container) is shown, also with the ability to tow carts that carry more ULDs. The implementation
of AGVs at airports could revolutionize the efficiency and reliability of baggage transfer. AGVs are equipped
with advanced navigation systems that allow them to maneuver safely and efficiently through the complex
environment of an airport. By automating the transport of ULDs, airports can optimize traffic on the airside.
AGVs could be used to facilitate the transport of ULDs to and from external buffers, partially resolving the
personnel issue caused by fluctuating transfer baggage flows. The potential use of AGVs represents an exciting
development in the ongoing effort to innovate and improve airport logistics.

Buffer Configuration A buffer can be configured in different ways, depending on the specific needs of the
airport and the nature of the baggage flows. A commonly used method is to configure the buffer based on flight
departure times, so that baggage that needs to depart first is placed at the front of the buffer. This minimizes
the time required to retrieve baggage from the buffer when it needs to be reintroduced into the BHS. Another
option is to sort baggage based on destination or gate, so that all baggage for the same destination is placed
in the same section of the buffer. This speeds up the transportation of baggage to the correct infeed stations.
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Although buffer configuration offers important advantages for efficiency, this study only looks at the timing of
baggage release from the buffer, without addressing the internal configuration of the buffer.

Buffer Placement Buffers can be placed in different locations at the airport, and the choice between a
centralized or decentralized system can have major implications for the efficiency of baggage processing. A cen-
tralized buffer is located in one place close to the BHS, offering advantages in terms of control and logistics, as all
baggage can be managed from a single location. However, the downside of a centralized buffer is that transport-
ing baggage to distant infeed stations can take longer, especially during peak hours when airside traffic increases.

A decentralized system, on the other hand, distributes buffers across different locations, usually closer to the
gates or specific infeed stations. This reduces transport time and spreads the load of traffic over a larger
area, which can reduce congestion. Previous research by van der Grift (2023) showed that having multiple
decentralized buffers is more advantageous for AAS, as this not only reduces transport time but also increases
operational flexibility. While buffer placement is an important consideration in optimizing baggage flows, it
falls outside the scope of the simulation carried out in this study.
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5 Data

This research uses approximately 10 weeks of baggage data from AAS, covering the period from April 15,
2024, to June 30, 2024. The dataset contains several key pieces of information on each baggage item’s journey
through the BHS, including timestamps, locations, and flight details. These data points come from Baggage
Source Messages (BSM), combined with scans made at different processing points at AAS.

The BSM is an electronic message that provides crucial information about a piece of baggage. It is widely used

in aviation to manage and track baggage flow. The BSM includes details such as flight numbers, departure
times, destinations, and other relevant information about the baggage.

5.1 Details of Dataset

Table 5.1 summarizes the most important columns included in the dataset, along with their descriptions.

Column name Description

DATETIME OF ENTRY Timestamp when the baggage entered the BHS

ENTRY AREA The area in the airport where the baggage entered the BHS

ENTRY FUNCTION The function of the baggage at the entry point (TransferIn or Check-In)
SIBT Scheduled In-Block Time, when the inbound flight was scheduled to park
AIBT Actual In-Block Time, when the inbound flight parked at the gate

IN FLIGHT DESIGNATOR The designator for the inbound flight associated with the baggage

IN RAMP The ramp location where the inbound flight was processed

IN AIRPORT The airport from which the inbound flight originated

IN AC IATA The TATA aircraft code for the inbound flight

DATETIME OF EXIT The timestamp indicating when the baggage exited the BHS system
EXIT NAME The name of the exit point for the baggage

EXIT AREA The area in the airport where the baggage exited the BHS

SOBT Scheduled Off-Block Time, when outbound flight is scheduled to leave the gate
AOBT Actual Off-Block Time, when the outbound flight actually left the gate
OUT FLIGHT DESIGNATOR | The designator for the outbound flight associated with the baggage

OUT RAMP The ramp location where the outbound flight was processed

OUT AIRPORT The airport to which the outbound flight is heading

OUT AC IATA The TATA aircraft code for the outbound flight

Table 5.1: Dataset columns

The initial dataset contained 4,778,334 rows, where each row stands for a single piece of baggage. However,
after applying several filtering and cleaning steps, the final dataset used for analysis was reduced to 2,094,561
rows. The next sections explain the various data-related manipulations.

5.2 Data cleaning and filtering

The dataset was cleaned in Python using multiple packages, including the Pandas library. Since large datasets
can sometimes have malformed rows, a custom handler was implemented to count and skip such rows without
crashing the loading process. Notably, there were no bad lines in this dataset.

To ensure the integrity of the data, the column names were stripped of unnecessary whitespace.

Several filtering steps were applied to clean the dataset:

e Rows with ENTRY_FUNCTION equal to TransferIn were retained. This is because this research focuses on
occupancy rates at transfer infeed points, and thus reclaim baggage is excluded from the analysis.

e Rows with missing values in crucial time fields (SIBT, AIBT, SOBT, and AOBT) were removed.

After applying these filters, the dataset was reduced to 2,094,561 rows, or bags.

Conversion of time columns
The columns related to scheduled and actual times, such as SIBT, AIBT, SOBT, and AOBT, were converted into a
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proper datetime format to ensure consistency during analysis.

Conversion of columns to appropriate datatypes

To ensure that the dataset is correctly structured for further analysis, specific columns were converted to their
appropriate types. Time-related columns were converted to datetime, and others, such as categorical columuns,
were cast to object types. This conversion was essential to facilitate filtering and group operations in subsequent
steps of the analysis.

Adding the 0DD_SIZED column

A new column, 0DD_SIZED, was added to label baggage as either "Odd sized" or "Normal". This was based on
specific keywords found in the EXIT_NAME column. Baggage that passed through certain specific sorter bands
was labeled as "Odd sized", while the rest were considered "Normal." Since odd-sized baggage represents a small
part of the total dataset (1.28%), it is excluded from the scope, partly due to its need for special transport.

Adding Bag Identifier
A unique identifier was added for each row, representing an individual baggage item. This identifier allows
tracking of each bag’s journey through the simulation, enabling detailed analysis at the baggage level.

Splitting datetime columns into date and time

For some parts of the analysis, it was necessary to separate the date and time components of datetime fields
such as DATETIME_OF_ENTRY and DATETIME_OF_EXIT. This was achieved by splitting these columns into two
separate fields: one for the date and another for the time. This facilitated easier time-based analysis in the
simulation phase.

Table 5.2 shows the number of rows, and thus bags, before and after cleaning the dataset.

Number of rows in dataset
Original dataset 4,778,334
Dataset after cleaning 2,094,561

Table 5.2: Dataset size before and after cleaning

The processed data forms the foundation for the simulation model described in the next chapter, enabling the
evaluation of different strategies for optimizing baggage handling operations at AAS.
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6 Simulation at Amsterdam Airport Schiphol

This chapter outlines the simulation framework developed to model baggage handling at AAS. The goal of
the simulation is to compare different distribution strategies for handling super cold transfer baggage, using
real-world data and logical assumptions regarding the operational steps involved. This section will provide an
overview of the simulation’s structure, including the journey of transfer baggage through the system, modifica-
tions to the dataset for modeling purposes, and the incorporation of key variables such as flight type, baggage
temperature, and ramp clusters.

6.1 Main Goal

The main objective of the simulation is to create a realistic representation of baggage flow at AAS, particularly
focusing on transfer baggage. The simulation models the distributing and buffering of transfer baggage, aiming
to identify strategies that optimize resource utilization, reduce peak loads, and minimize delays.

6.2 The Transfer Baggage Journey

The journey of a transfer bag begins as soon as the inbound flight arrives at the gate (AIBT). After the flight
parks, the baggage is unloaded and transported to its destination within the airport. The process is divided
into several time segments:

e T1: The time from the AIBT to when the first bag or container is unloaded from the aircraft.

e T2: The duration required to unload all bags or containers from the aircraft.

e T3: The transportation time from the aircraft’s parking position to the infeed point for ShoCon baggage.
e T4: If the baggage is cold, it may be temporarily buffered, with T4 representing the buffering time.

e T5: The time taken to place the baggage on the unloading quay upon arrival at the infeed point.

This process is visualized in Figure 6.1. The blue lines represent the cold process, where the baggage is stored
temporarily, before becoming hot (red). The red line represents the hot process, where baggage is moved directly
to the infeed point without buffering.
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AIBT First bag/cont. out Last bag/cont. out Cart arrives at buffer Cart arrives at infeed Infeed time
% J | 1 1 ts |
t1

t2 T 1
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Cart arrives at infeed Infeed time
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Figure 6.1: Transfer baggage journey from arrival to transfer infeed point (van der Grift, 2023)

6.3 Modifications to the Dataset

To create a realistic simulation, several modifications were applied to the cleaned dataset provided by AAS. These
adjustments were necessary to simplify the simulation and improve computational efficiency while maintaining
accuracy.

6.3.1 Flight Type

A new column for flight type (FLIGHT_TYPE) was added to the dataset to distinguish between Schengen and
non-Schengen flights. Schengen flights involve shorter security checks, while non-Schengen flights undergo more
stringent screening due to international regulations. The classification is based on the airports where the flights

41



arrive from or depart to.

Flights arriving from or departing to airports listed in the Schengen zone were categorized as Schengen flights,
while all other flights were categorized as non-Schengen. The dataset was modified accordingly using a Python
function that checks the inbound and outbound airports to determine the flight type.

6.3.2 Baggage Temperature

Each piece of baggage was assigned a temperature classification based on the connection time between the
AIBT of the inbound flight and the SOBT of the outbound flight. This connection time was used to calculate
whether a bag could be classified as Tail-to-Tail, ShoCon, Cold Transfer, or Super Cold Transfer. Tail-to-Tail
baggage, which does not pass through the BHS, was excluded from the simulation. Baggage temperatures were
calculated based on the logic shown in Table 6.1.

Baggage type Interval (minutes)

Schengen \ non-Schengen
Tail-to-Tail 30 < connection time < 50
ShoCon 30 < connection time < 80 50 < connection time < 90
Cold Transfer 80 < connection time < 180 | 90 < connection time < 180
Super Cold Transfer 180 < connection time

Table 6.1: Baggage temperature classification based on connection time (Bunnik, 2018)

For each cold and super cold transfer bag, a time is added: Latest Time Bag. This time represents the latest
moment a bag must arrive at one of the infeed points in order not to miss its outbound flight. According to
Bunnik (2018), the BHS requires at least 25 minutes to transport a bag from an infeed point to its flight. The
Latest Time Bag is calculated as: SOBT - 25 minutes.

6.3.3 Entry and Exit Area Cleaning

To standardize the dataset, adjustments were made to the ENTRY_AREA and EXIT_AREA columns. Specifically,
instances of 'D’ in the ENTRY_AREA were replaced with "T'SD’; and the reverse was done for the EXIT_AREA. This
was necessary to maintain consistency across the dataset. 'D’ and "TSD’ are at the same location, baggage hall
D, but one is for the entry and the other for the exit of baggage.

6.3.4 Baggage Type

The simulation required knowledge of the type of baggage being handled, based on the aircraft model for both
inbound and outbound flights. The baggage type was categorized as either AKE (38 bags), AKH (28 bags), or
bulk baggage, based on the aircraft model’s IATA code. Bulk baggage is unloaded from the aircraft onto a cart,
with each cart holding up to 30 bags. In the simulation, it is assumed that each cart can carry a maximum of
30 bulk bags.

Different aircraft can carry different types of baggage. For example, narrow-body aircraft like the A320 or 737
carry bulk baggage. Wide-body aircraft, including the 747 and 777 models, were classified as carrying AKE
containers. The A320 specifically was categorized as carrying AKH containers. The baggage types for inbound
and outbound flights were derived from the aircraft IATA codes and added to the dataset.

In the simulation, it is assumed that the capacities presented in Table 6.2 are used. Additionally, it is assumed
that each cart or container can be filled to its full capacity. However, in reality, this is not always the case due
to variations in the volume of each bag. For instance, a cart might be fully loaded with 25 bags on one occasion,
while on another, it could hold up to 35 bags, depending on the size and shape of the baggage.

Bulk (Cart) | AKE-Container | AKH-Container
Capacity | 30 38 28

Table 6.2: Baggage type capacities
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6.3.5 Ramp Clusters

When an aircraft arrives, it is assigned a ramp where passengers and baggage are unloaded. To reduce the
complexity of the simulation, ramp positions were clustered. Instead of simulating all 150 stands individually,
they were grouped into clusters. Each piece of baggage was assigned a ramp cluster based on the aircraft’s
parking position.

Figure 6.2 shows the layout of AAS, including both the piers and terminals, as well as the unloading quays and
infeed points used in the simulation.
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(a) Piers and terminals at AAS (b) Platform input points and unloading quays

Figure 6.2: Layout of Amsterdam Airport Schiphol

Table 6.3 outlines the clusters and their descriptions, providing a simplified representation of the airport’s layout
for the simulation.

Nr. | Name Description
1 A-pier + B-platform A00 to A9 and B51 to B91
2 B-pier B13 to B36
3 C-stem C04 to C09
4 C-head C10 to C18
) D-stem D02 to D08
6 D-fork south D10 to D31
7 D-fork north D41 to D99
8 E-stem E02 to EO7
9 E-head EO08 to E99
10 | F-pier FO1 to F99
11 | G-stem G02 to GO6
12 | G-head GO7 to G80, H1 to H7, and M1 to M7
13 | Unloading area South 4 unloading quays
14 | Unloading area D 5 unloading quays
15 | Unloading area E 2 unloading quays
16 | Unloading area West 1 unloading quay
17 | Unloading area Terminal 2 | 1 unloading quay

Table 6.3: Description of the platform input points shown in Figure 6.2b
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6.4 Infeed points and unloading quays

Figure 6.2 shows a schematic representation of AAS. The locations of the different piers and terminals are
shown, and the locations of the infeed points are indicated in green. The infeed points are actually located at
level -1, which is underground.

Each infeed point consists of one or more unloading quays. As mentioned earlier, baggage arrives at the infeed
points in bulk or in ULDs. These are then unpacked by ground handlers and placed individually on the un-
loading quay. From here, the automated BHS takes over the transportation of the baggage. Table 6.4 shows
the different capacities of the infeed points.

Each infeed point has its own processing capacity, as shown in Table 6.4. The capacity varies between different
infeed points, influencing how quickly they can process incoming baggage trains. For instance, some infeed
points, like Infeed Point D, can handle higher volumes of baggage, while others, such as Infeed Point West, have
a much lower capacity.

Nr. | Name Capacity (per hour)
1 Infeed point South 2000
2 Infeed point D 4500
3 Infeed point E 3600
4 Infeed point West 900
5 Infeed point Terminal 2 500

Table 6.4: Capacity of infeed points (Schiphol, 2023)

The infeed point at Terminal 2 is rarely used and is mainly reserved for special baggage that requires reprocessing
due to specific handling issues or irregularities.

6.5 Simulation

The simulation of baggage handling at AAS begins after applying the necessary modifications to the dataset,
as described earlier. The simulation itself was built using the SimPy library, which allows for the modeling of
complex processes with event-based simulations.

Through discussions with employees from both KLM and Schiphol, it became evident that the assignment of
transfer baggage to infeed points is currently managed by a KLM team. Interestingly, different members of
this team often follow varying practices based on their experience and intuition, resulting in an absence of clear
distribution rules. However, the aim for KLM in the coming years is to establish fixed rules for this process,
with a view toward automation on the airside. The simulation in this research adopts the rules that KLM and
the ground handlers are planning to implement, which will be explained later in this chapter.

The choice of distribution types for various processes in the simulation is based on empirical data collected
by AAS. According to Bunnik (2018), measurements taken during baggage handling operations at AAS were
used to establish realistic ranges for certain activities, such as unloading times and transit times. Uniform and
triangular distributions were chosen because they closely reflect the observed variability in these processes.

It is important to note that Tail-to-Tail baggage, which bypasses the BHS, is excluded from the simulation.

6.5.1 T1: Arrival of the Flight

When a flight arrives at its allocated stand (AIBT), the number of bags on board is extracted from the dataset.
The type of baggage—whether bulk or containerized—is also considered. Initially, the time between AIBT and
the unloading of the first bag or container was modeled as a uniform distribution between 120 and 180 seconds,
based on measurements taken at AAS (Bunnik, 2018).

However, after analyzing the output of the simulation, it became evident that the simulated baggage han-
dling times did not perfectly align with the actual data. To better synchronize the simulated peaks with the
actual observed peaks, the time range for T1 was adjusted to a uniform distribution between 1320 and 1380
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seconds. This will be further explained in 6.7.

The uniform distribution is used for processes like the time between flight arrival (AIBT) and the unloading
of the first bag (T1), as this process was found to have a consistent range of variability with no clear central
tendency. The uniform distribution assumes that any time within the specified range is equally likely, which is
appropriate for certain random operational delays that don’t have a bias toward any particular value.

6.5.2 T2: Unloading of Baggage

Once the first bag or container is unloaded, T2 begins, as shown in Figure 6.1. The time to unload each bag is
modeled using a uniform distribution between 6 and 7.5 seconds (Bunnik, 2018). For the process of unloading of
containers (T2), a triangular distribution was selected to model a more predictable pattern with a clear mode,
representing the most common value observed in the data. This distribution captures the fact that while most
unloading times fall around a certain value (e.g., 80 seconds), there are occasional variations within the lower
and upper limits (e.g., 60 and 100 seconds) (Bunnik, 2018). This distribution is ideal for modeling operations
where there is a most likely value but still some variation due to operational differences.

Carts and Container Loading During the unloading process of bulk baggage, bags are placed in carts.
Each cart can hold a maximum of 30 bags in this simulation. As mentioned earlier, AKE containers can hold up
to 38 bags, while AKH containers can hold 28 bags. At outstations, the baggage that is packed into containers,
is categorized by temperature (e.g., ShoCon, Cold Transfer), and these containers are loaded onto the aircraft in
a particular order to ensure efficient handling upon arrival at AAS. If a ShoCon container cannot be fully filled
with ShoCon baggage, Cold Transfer bags are "upgraded" to fill the remaining space. This same process applies
to Cold Transfer containers being filled with upgraded Super Cold Transfer bags, and also for bulk baggage in
carts.

The different baggage temperature categories are unloaded in a specific order: Tail-to-Tail baggage first, followed
by ShoCon transfer baggage, then reclaim baggage, followed by Cold Transfer baggage, and finally Super Cold
Transfer baggage. To simplify the simulation, odd-sized baggage, which requires special handling, is excluded
from the scope.

For each cart or container, the simulation keeps track of the specific bags loaded inside. Since the bags in a
single cart or container might be destined for different outbound flights, each cart or container is assigned an
"infeed preference." For ShoCon carts or containers, this preference is determined by the bag with the shortest
connection time. For Cold Transfer and Super Cold Transfer carts or containers, the most common infeed
preference within the cart or container is used (Table 6.5). After this step, each cart or container has a defined
infeed point preference.

Container infeed point preference
ShoCon Warmest bag in cart/container

Cold Transfer Most frequent bag in cart/container
Super Cold Transfer | Most frequent bag in cart/container

Table 6.5: Container infeed point preference

In addition to the infeed point preference, each cold and super cold cart or container is assigned a Latest Time
ULD. This time represents the latest moment a cart or container must arrive at one of the infeed points to ensure
that none of the bags miss their outbound flight. The Latest Time ULD is equal to the earliest Latest Time
Bag present in the carts or container. The carts or containers are grouped by temperature behind a tug to form
a train, with each train consisting of up to 6 trailers.

6.5.3 T3: Transportation Time to Infeed Points

Once the baggage has been unloaded from the aircraft and loaded onto the carts or containers, the next critical
step is transporting the ShoCon baggage directly to the BHS. T3 represents the time it takes for a tug (or
baggage train) to travel from the ramp cluster where the aircraft is parked to the designated transfer infeed
point. These travel times vary depending on the distance between the ramp cluster and the specific infeed point.
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Table 6.6 presents the travel times (in seconds) between different ramp clusters and infeed points. These times
were derived from measurements taken at AAS and reflect the average duration for a tug to travel between
these locations.

Ramp Cluster Terminal 2 | D | West | South | E
A-pier + B-platform 451 441 549 271 461
B-pier 336 325 | 433 155 345
C-stem 241 198 | 338 136 250
C-head 273 189 | 370 168 282
D-stem 190 93 287 182 200
D-fork south 257 76 354 248 266
D-fork north 262 84 360 254 213
E-stem 124 202 221 207 88
E-head 229 248 | 326 312 19
F-pier 177 299 191 301 227
G-stem 199 322 136 324 250
G-head 273 395 210 397 324

Table 6.6: Travel times between ramp clusters and infeed points in seconds (Bunnik, 2018)

This table serves as a reference for determining the transportation times for ShoCon baggage trains, ensuring
that the simulation accounts for the varying distances between different parts of the airport. The travel time
plays a critical role in the overall timing and efficiency of the baggage handling process. In the base simulation
scenario, no baggage is buffered. All baggage types, once the baggage is ready for departure, are immediately
transported to their infeed point of preference.

6.5.4 T4: Buffering Time

As previously mentioned, no buffering occurs in the base scenarios, but it is introduced in alternative distribution
strategies. This research considers only Super Cold Transfer baggage as eligible for buffering; ShoCon and Cold
Transfer baggage are not to be buffered. T3 applies to ShoCon and Cold Transfer baggage, while Super Cold
Transfer baggage is directed to a buffer after T2 and later transported to an infeed point. T4 is defined as
the time interval between T2 and arrival at the infeed point (T5). The specific locations and capacities of
these buffers are outside the scope of this research, and it is assumed that the buffer has unlimited capacity
for containers. Additionally, it is assumed that baggage is buffered by container, with containers remaining
intact without unpacking or re-sorting within the buffer—each container is returned in the same configuration
as it entered. Further research could explore the detailed workings of the buffer. For the different distribution
strategies discussed later, T4 will be specified for each container or cart.

6.5.5 T5: Arrival at Infeed Point

T5 begins the moment a baggage train arrives at an infeed point. For ShoCon and Cold Transfer baggage, this
occurs directly after transportation from the ramp cluster. For Super Cold Transfer baggage, T5 begins once
the baggage has been released from the buffer and transported to the infeed point. The timing of T5 is critical,
as it determines when the bags can be unloaded onto the infeed quays and processed by the BHS.

In cases where too much baggage is brought to an infeed point, and the processing capacity is exceeded, the
most recently arrived baggage is placed in a waiting queue. This introduces a delay in processing, as the system
prioritizes the baggage that arrived earlier. If the total baggage volume exceeds the infeed point’s capacity, the
excess baggage must wait until space becomes available. This delay can have downstream effects, especially for
bags with tight connections or those nearing their Latest Time window for outbound flights.

In essence, T5 represents the final phase of this simulation of the baggage journey through the infeed system.
Ensuring that this step is managed efficiently is crucial for avoiding delays that can cascade through the
system, potentially affecting multiple flights. The capacity at each infeed point, combined with effective baggage
distribution, determines how smoothly this phase operates.
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6.6 Buffer and Autonomous Guided Vehicles

In this simulation, the buffer is conceptualized as a black box with theoretically unlimited storage capacity
for baggage containers. Although no strict limits are imposed on buffer space, the simulation tracks buffer
occupancy over time. This provides insights into peak demands on the buffer and informs a realistic estimate
of required capacity to ensure smooth handling of container flows.

To facilitate the buffer process, AGVs are deployed to perform two primary tasks: transporting containers from
the apron to the buffer and moving containers from the buffer to the appropriate transfer infeed points. The
simulation dynamically calculates the required number of AGVs based on the demand for these tasks, with
specific operational rules designed to optimize vehicle use and minimize total AGV requirements.

As said, each AGV performs one of two actions:
e Action 1: Picking up containers from the apron and delivering them to the buffer
e Action 2: Retrieving containers from the buffer and transporting them to designated transfer infeed points

Some containers bypass the buffer and are instead transported directly to the infeed point. For these containers,
the total travel time is always less than 20 minutes; however, the exact timing of arrival at the infeed point
depends on each container’s designated infeed time. To ensure that the container reaches the infeed point
precisely when needed, the AGV pauses strategically along its route, thereby synchronizing its arrival with the
required infeed schedule. This "buffered by transport" approach reduces physical buffer occupancy and allows
the AGYV itself to function as a mobile buffer for containers with tight schedules. Once these containers are
delivered, the AGV enters a cooldown period before it can be reassigned.
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Figure 6.3: AGV Travel Times

The simulation incorporates specific handling and travel times essential for accurately modeling AGV opera-
tions. For travel times, transporting containers from the apron to the buffer (Action 1) requires 3 minutes,
while moving containers from the buffer to the transfer infeed point (Action 2) takes 6 minutes (Dijkhuizen,
2024). Each container requires 2 minutes to connect or disconnect from the AGV during loading and unloading
(Dijkhuizen, 2024). An AGV can form a "train" with up to 6 containers, so fully loading or unloading an AGV
at capacity takes 12 minutes. When transporting containers from the buffer to an infeed point, the AGV must
carry containers bound for the same destination to ensure operational efficiency.

After completing an action, each AGV undergoes a 6-minute cooldown period. This cooldown accounts not
only for realignment and preparation time but also for the journey back to the start location of its next task,
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whether at the apron or buffer. By incorporating this cooldown, the simulation ensures that AGVs are strate-
gically positioned and ready for new assignments, minimizing downtime and optimizing the workflow.

To further minimize the total number of AGVs required, the simulation prioritizes reusing available vehicles.
Before allocating a new AGV, the simulation checks if any existing AGVs are available at the required time.
Only when no AGVs are free is a new vehicle assigned. This approach optimizes vehicle availability and ensures
that AGV demand is met with the fewest vehicles possible. The simulation dynamically tracks each AGV’s
availability based on its assigned tasks and cooldown periods, allowing each AGV to re-enter the pool of avail-
able vehicles once its cooldown is complete. This system provides a realistic view of AGV requirements and
utilization over time, adapting efficiently to fluctuations in container demand and ensuring a responsive and
resource-efficient operation.

The simulation generates a comprehensive log of AGV activities, detailing each trip performed. Each entry
in the log records the AGV ID, type of action (to buffer or to infeed point), pickup and drop-off locations,
start and end times, number of containers transported, and container identifiers. This log could serve as the
foundation for a future scheduling system to manage AGVs, although further optimization would be needed to
achieve this.

Analyzing the simulation output allows for precise determination of the daily AGV requirements based on peak
demand, as well as insights into AGV utilization rates and average trip times. By assessing buffer occupancy
and vehicle usage, the simulation supports strategic planning for AGV fleet sizing, scheduling, and capacity
allocation, ensuring an efficient response to varying operational demands.

6.7 Simulation Verification and Validation

For the simulation verification and validation, the output is presented in 15-minute intervals, providing a detailed
look at the occupancy rate across all infeed points. Each piece of baggage is assigned to a specific 15-minute
window, allowing for the aggregation of baggage volumes into these time slots. This approach enables the
monitoring of the occupancy rate at each infeed point, helping identify periods of peak activity and potential
bottlenecks in the system.

The graphs in Figures 6.4 and 6.5 display the comparison between simulated and actual occupancy data for
the average daily values, as well as a specific day (June 30, 2024). The 15-minute interval data is crucial for
assessing the overall performance of the baggage system in handling uneven baggage flows and identifying areas
for improvement in distribution strategies.
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Figure 6.4: Simulated and Actual Average Baggage Occupancy per 15-Minute Interval

In Figure 6.4, the average simulated occupancy values for each 15-minute window are shown alongside the actual
historical average occupancy rates for the same period. The simulated values closely match the actual values,
though some deviations are observed during peak times. These deviations can be attributed to small differences
in processing assumptions or variability in the real-world data that was not fully captured in the simulation
model. Despite this, the simulation successfully replicates the general trends and patterns of baggage flow,

confirming its validity for testing alternative distribution strategies.
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Figure 6.5: Simulated and Actual Baggage Occupancy on 30-06-2024

Figure 6.5 shows the detailed simulation output for a single day: June 30, 2024. This specific day was chosen for
analysis due to its heavy baggage volume and operational challenges, and because it is the last day of the dataset.
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The graph provides a comparison between the actual and simulated baggage occupancy rates throughout the
day.

6.8 Verification

To ensure the accuracy of the simulation model, a series of verification checks were conducted. These checks
involved modifying key input parameters and observing whether the resulting changes in the simulation matched
the expected outcomes. The purpose of these tests was to verify that the model behaves logically when faced
with extreme or altered conditions.

Table 6.7 outlines the three primary verification tests that were performed. Each test involved changing a
specific input, such as the time to unload baggage or the travel times for baggage trains. The expected effect
was that increasing these times would delay the infeed times of baggage, causing the simulated occupancy graph
to shift to the right, representing delayed baggage processing.

In all three tests, the expected effects were observed. For example, multiplying the unloading times by a factor
of 100 resulted in a significant delay in baggage processing, as seen by the shift in the graph’s peak times to
later intervals. Similarly, increasing the travel times and the time required to unload the first bag also led
to delayed infeed times, with the simulation output graph showing the anticipated shift to the right. These
successful outcomes indicate that the model is functioning as intended under different conditions.

Changed input | Change | Expected effect Effect Check
Time to unload x100 Delayed infeed times | The simulated graph shifts to the right v
Unloading times x100 Delayed infeed times | The simulated graph shifts to the right v
Traveltimes x100 Delayed infeed times | The simulated graph shifts to the right v

Table 6.7: Verification checks

The results from these verification checks confirm that the simulation accurately responds to changes in input
parameters in a predictable manner. The fact that the simulated infeed times consistently shifted to the
right when processing times were increased demonstrates that the model’s logic is sound and robust. With
these successful verifications, confidence in the model’s reliability is strengthened, and it is prepared for more
complex scenario testing.

6.9 Validation

Validation is an essential step to ensure that the simulation model accurately represents real-world processes. For
this validation, both visual and statistical comparisons between the simulated and actual baggage occupancy
levels at the transfer infeed points were conducted. The visual validation is presented through line plots
comparing the simulated and actual data, while statistical validation uses key error metrics, such as Root Mean
Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). These
metrics provide an objective measure of the model’s accuracy.

6.9.1 Visual Validation

The visual validation was performed using line plots that compare the simulated and actual baggage occupancy
levels. Two scenarios were examined:

e The averaged daily baggage flow across the entire dataset.

e A specific day, 30-06-2024.

Figures 6.4 and 6.5 (found in section 6.7) depict the original simulation results compared to actual occupancy
data. Figure 6.4 shows the comparison of the average daily baggage occupancy over all days in the dataset,
while Figure 6.5 displays the results for a specific day, 30-06-2024.

In both cases, the original simulation exhibited a consistent time misalignment, with peaks in the simulated
baggage occupancy occurring earlier than the actual observed peaks. After discussions with several simulation
experts at AAS, it became clear that such discrepancies are not unusual; similar inexplicable delays have been
observed in previously developed simulations.
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6.9.2 Statistical Validation

In addition to visual comparisons, statistical metrics were calculated to quantify the difference between the
simulated and actual data. These metrics include:

e RMSE: Measures the average magnitude of the error between the simulated and actual values.
e MAPE: Indicates the percentage error between simulated and actual values.
e MAE: Reflects the average absolute difference between simulated and actual values.

Several configurations with varying delays were tested, ranging from 100 seconds to 1700 seconds, and the
results are presented in Table 6.8.

RMSE MAPE [%] | MAE
Original simulation 10,682.28 | 174.44 6079.62
Simulation with 100 seconds delay 10,132.37 | 170.89 5739.54
Simulation with 300 seconds delay 9,228.26 166.88 5059.01
Simulation with 500 seconds delay 8041.19 161.51 4391.00
Simulation with 700 seconds delay 7185.85 163.17 3,892.74
Simulation with 900 seconds delay 6,416.73 163.60 3,551.44
Simulation with 1100 seconds delay | 5,658.91 163.24 3132.06
Simulation with 1300 seconds delay | 5,123.59 166.33 3,094.15
Simulation with 1500 seconds delay | 4,803.56 171.64 3,184.74
Simulation with 1700 seconds delay | 5,094.81 176.85 3,445.02
Simulation with 2000 seconds delay | 5,543.99 184.14 3,883.41

Table 6.8: Statistical validation for different delays

The introduction of delays significantly impacted the model’s accuracy. Based on the RMSE, MAE, and MAPE,
the following insights were drawn:

e The 1500 seconds delay resulted in the lowest RMSE (4,803.56) and a relatively low MAE (3,184.74),
making it the best configuration based on overall error reduction.

e Although the 900 seconds delay showed improved accuracy compared to the original simulation, the 1500
seconds delay consistently provided better results across multiple metrics.

6.9.3 Conclusion of Validation

Both the visual and statistical validation results confirm that the simulation model provides a reasonable
representation of the actual baggage handling processes at AAS, particularly after introducing a delay. The
1500 seconds delay offers the best overall performance based on RMSE and MAE, making it the most accurate
choice for future simulations. This adjustment allows for a more accurate reflection of the operational dynamics
observed during the busiest times at the airport. While this modification may not be directly explained by
empirical data, it serves to ensure that the simulation outcomes more closely mirror real-world baggage flow
patterns, enhancing the overall validity of the model. For further testing and scenario analysis, the 1500 seconds
delay will be applied due to its optimal balance across error metrics.
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7 Time Series Forecasting

This chapter provides answers to subquestion 3: What is needed to optimize the distribution of cold transfer
baggage? A prediction model is essential to identify more favorable times to introduce baggage to the BHS,
helping to manage occupancy levels efficiently and avoid unnecessary peaks. By forecasting occupancy, we can
strategically time the release of buffered baggage to moments when the system load is lower, optimizing the
flow through the BHS.

To gain a better understanding of the occupancy levels of the baggage system over time, two Time Series
Forecasting models were developed. These models are based on 10 weeks of historical baggage data and aim to
predict occupancy levels, which can then inform distribution strategies to effectively manage peak loads in the
BHS.

7.1 Literature on Time Series Forecasting Models

There are multiple models that can be applied for Time Series Forecasting. SARIMA (Seasonal Autoregres-
sive Integrated Moving Average) is well-regarded for its ability to capture regular seasonal patterns effectively.
One study ranks SARIMA as the top choice for short-term seasonal forecasting, emphasizing its simplicity and
accuracy in handling datasets with a consistent seasonal structure, such as daily fluctuations in the baggage
system (Naim et al., 2020). The model excels in breaking down the time series into distinct components: au-
toregressive, differencing, and moving average. This decomposition makes SARIMA particularly suitable for
applications where one dominant seasonal period is present, such as the daily cycle in the baggage data (Shchel-
kalin, 2014). Given these characteristics, SARIMA was selected as it is well-suited for time series data with a
single, consistent seasonal pattern. Its simplicity and effectiveness in capturing regular seasonal trends make it
an appropriate choice for modeling daily variations in baggage flows at the airport.

On the other hand, TBATS (Trigonometric, Box-Cox transformation, ARMA errors, Trend and Seasonal com-
ponents) provides greater flexibility, especially when dealing with multiple overlapping seasonal patterns, such
as daily and weekly cycles. A comparative study of SARIMA and TBATS revealed that TBATS excels in han-
dling complex seasonalities, outperforming SARIMA in scenarios where multi-seasonal phenomena occur, such
as ATM withdrawal forecasting and tracking disease incidence patterns (Gurgul et al., 2023; Yu et al., 2021).
This flexibility makes TBATS the ideal model for systems where weekly patterns interact with daily cycles, as
observed in the baggage data. TBATS was therefore looked at for its ability to model multiple seasonalities,
including both daily and weekly patterns. This makes it particularly well-suited for forecasting in environments
where system occupancy fluctuates across different time scales, as in airport baggage handling systems, where
the interaction between weekly peaks and daily fluctuations is critical to ensuring efficient operations.

The goal of this chapter is to evaluate both methods and determine which model provides the most accurate
and reliable predictions for occupancy levels at the infeed points. By comparing the performance of SARIMA
and TBATS, the aim is to identify the best approach to support future distribution strategies in the BHS.

7.2 Time Series Forecasting with SARIMA

SARIMA is a statistical model used for time series forecasting, especially when the data exhibits seasonal pat-
terns. SARIMA extends the ARIMA model by adding a seasonal component, making it suitable for datasets
with strong seasonal cycles. In this research, SARIMA was initially chosen because the baggage data exhibits
a clear daily pattern, with repeated peaks every 24 hours (96 quarters).

The components of a SARIMA model are:

e AR (Autoregressive) component: This models the relationship between a current observation and a
number of lagged observations (previous time steps). A higher AR value allows the model to incorporate
a larger history of past values to predict the next one.

e I (Integrated) component: This removes the trend from the time series by applying one or more
differencing steps. The differencing step helps make the data stationary, which is essential for accurate
forecasting.

e MA (Moving Average) component: This models the relationship between a current observation and
a number of lagged error terms. This allows the model to correct for past forecasting errors.
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e Seasonal components (SAR, SI, SMA): These extend the AR, I, and MA components to capture
seasonal patterns over time, where SAR is the Seasonal Autoregressive term, SI is the Seasonal Differencing
term, and SMA is the Seasonal Moving Average term.

e s (Seasonal Period): This refers to the number of time steps in one seasonal cycle. For this data, s =
96, as the data is collected in 15-minute intervals and there are 96 quarters in a 24-hour period.

The SARIMA model is particularly useful for this research because the baggage data exhibits a strong daily
pattern. However, one limitation of SARIMA is that it can only capture one seasonal period at a time, in this
case, the daily pattern (96 quarters in a day).

7.2.1 Model Construction and Parameter Selection for SARIMA

The construction of the SARIMA model began with preparing and analyzing the dataset, followed by split-
ting the data into training and test sets. A grid search was used to determine the optimal parameters for the
SARIMA model.

The SARIMA model with the best parameters yielded the following:
e p (Autoregressive term): 1
e d (Differencing term): 1

e q (Moving Average term): 1

P (Seasonal Autoregressive term): 1
e D (Seasonal Differencing term): 1
¢ Q (Seasonal Moving Average term): 1
e s (Seasonal Period): 96 (quarters in a day)
These parameters were chosen based on the RMSE on the training data. The SARIMA model yielded an RMSE
of 144.37, which suggests that the model effectively captured the daily patterns in the baggage data.
7.2.2 Validation of SARIMA
Before diving into the results, it’s important to understand the metrics used for validation:

e RMSE: This metric measures the average magnitude of the error between predicted and actual values. It
is particularly sensitive to large errors because it squares the differences before averaging them. A lower
RMSE indicates a better fit to the actual data.

¢ SMAPE (Symmetric Mean Absolute Percentage Error): This is a variation of the MAPE, which
measures the percentage difference between the forecasted and actual values. SMAPE is symmetric and
more robust to zero or near-zero values, making it suitable when small or zero values are present in the
dataset, which is the case.

e MAE: MAE represents the average absolute difference between the predicted and actual values. Unlike
RMSE, it does not square the errors, making it less sensitive to large outliers.

The SARIMA model was validated using the forecasted occupancy levels for 30-06-2024, compared with the
actual test data (15-04-2024 to 29-06-2024). The metrics in table 7.1 were used to assess model accuracy.

RMSE | SMAPE [%] | MAE
SARIMA | 144.37 75.39 102.63

Table 7.1: Validation Metrics SARIMA

These metrics indicate that SARIMA performs reasonably well for forecasting baggage occupancy levels, but its
limitation lies in its inability to capture weekly patterns. Figure 7.1 shows the comparison between the training
data, test data, and SARIMA predictions for 30-06-2024.
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Figure 7.1: Train, Test, and Predictions using SARIMA Model for 30-06-2024

7.3 Time Series Forecasting with TBATS

TBATS is a more flexible time series forecasting model that can handle complex seasonal patterns, including
both daily and weekly cycles. Unlike SARIMA, TBATS can model multiple seasonal periods, making it partic-
ularly useful for datasets like the baggage data, where occupancy levels fluctuate on both daily and weekly bases.

The components of TBATS include:

e Trigonometric terms: These capture complex seasonal patterns, such as weekly and daily cycles.

e Box-Cox transformation: This stabilizes variance in the data.

e ARMA errors: Autoregressive Moving Average terms model residual correlations.

e Trend component: This captures any long-term trends in the data.

e Seasonal components: TBATS can model multiple seasonalities, such as both daily and weekly patterns.
TBATS was chosen for its ability to model both daily (96 quarters) and weekly (672 quarters) patterns in the
baggage data.

7.3.1 Model Construction and Parameter Selection for TBATS

The TBATS model was trained on the same training dataset as SARIMA and used the following seasonal
periods:

e Daily seasonality: 96 quarters (24 hours)
e Weekly seasonality: 672 quarters (7 days)

The model automatically selects the best parameters, including the Box-Cox transformation and ARMA errors.
The RMSE for TBATS was calculated as 151.02, which is slightly higher than SARIMA, but TBATS captured
both daily and weekly seasonal patterns.

7.3.2 Validation of TBATS

Before diving into the results, the same metrics as used for SARIMA validation will be employed:

¢ RMSE (Root Mean Squared Error): This measures the average error magnitude, with an emphasis
on large errors.

e SMAPE (Symmetric Mean Absolute Percentage Error): SMAPE is robust to zero values and
calculates the percentage difference between forecasted and actual values.
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e MAE (Mean Absolute Error): MAE measures the average absolute error, giving a direct interpretation
of how much the predictions differ from actual values on average.

TBATS was validated using forecasted occupancy levels for 30-06-2024. The following metrics were used to
assess the model’s accuracy:
The metrics in table 7.1 were used to assess model accuracy.

RMSE | SMAPE [%] | MAE
TBATS | 151.02 78.73 115.71

Table 7.2: Validation Metrics TBATS

TBATS produced slightly higher errors compared to SARIMA, but its ability to model weekly seasonality gives
it an advantage. Figure 7.2 shows the comparison between the training data, actual test data, and TBATS
predictions for 30-06-2024.
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Figure 7.2: Train, Test, and Predictions using TBATS Model for 30-06-2024

7.4 Conclusion and Model Comparison

Both SARIMA and TBATS provide valuable insights into the seasonal patterns present in the baggage oc-
cupancy data. SARIMA performs well for daily forecasting, with an RMSE of 144.37 and MAE of 102.63.
However, it is limited by its inability to capture weekly patterns.

TBATS is slightly less accurate in terms of RMSE (151.02) and MAE (115.71), but its ability to model both daily
and weekly cycles makes it more suitable for long-term forecasts. Additionally, TBATS has greater potential
for more accurate predictions with a larger dataset. Given the importance of capturing weekly patterns in
baggage handling processes, TBATS will be used for further analysis and for developing distribution strategies
to manage peak loads in the BHS.
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8 Distribution Strategies and Scenario’s

In this chapter, we explore different strategies for the buffering of super cold transfer baggage at AAS. The goal
is to minimize peak occupancy at the infeed points of the BHS, ensuring smoother operations and reducing
workload imbalances. This chapter sets up the answers to subquestion 4: Which distribution strategies are
suitable for buffering cold transfer baggage, and how do these strategies impact peak shaving under different
scenarios?

Two primary tasks are addressed: determining when to buffer baggage and deciding when it is appropriate to
reintroduce it into the system. Both steps—buffering and reintroduction—are essential for effectively managing
peak loads and ensuring the BHS operates efficiently.

8.1 Strategic Timing for Baggage Buffering

A crucial part of distribution management is deciding when to buffer super cold baggage. Er wordt in dit
onderzoek alleen gekeken naar de mogelijk First, the literature is reviewed. Thene, three strategy options for
this part of the distribution are chosen.

8.1.1 Literature on the Timing for Buffering

The use of a fixed occupancy target as a buffering strategy is a simple yet robust approach. This strategy
is often effective in environments with predictable peak loads and can be implemented without the need for
complex forecasting. Literature shows that this method is suitable for systems with limited variability, as it
helps prevent system overloads. In logistical environments, such as baggage handling systems, the simplicity
of fixed occupancy thresholds makes management more straightforward and execution more reliable (Darwazeh
et al., 2022). The robustness of this method lies in the consistency of the rules, leading to a more efficient
process without requiring intensive computational models.

However, studies indicate that fixed targets are less effective in dynamic environments with high fluctuations,
such as airport systems. Setting a static threshold may result in suboptimal performance during unpredictable
peak moments, leading to system overloads or unnecessary buffering (Van Kampen et al., 2010).

Dynamic models, such as those based on polynomial functions, offer the flexibility to better adapt to vary-
ing system demands. In the literature, such methods are praised for their ability to account for fluctuations
in demand, especially in systems with varying seasonality, such as the aviation sector. The use of advanced
forecasting techniques aids in refining processes like peak load management and buffering (Syntetos et al., 2009).

In time series forecasting, finding the right balance between model complexity and overfitting is essential.
Literature suggests that higher-order polynomials, such as degree 9, provide flexibility without overfitting to
noise in the data, leading to more stable forecasts that are effective in managing peak loads (Fildes et al., 2006).

8.1.2 Option 1: Fixed Target

As discussed in earlier chapters, uneven inflow of transfer baggage can create pressure on other parts of the BHS
and lead to imbalanced workloads for the ground staff. Ideally, the occupancy levels at the infeed points would
be stable throughout the day. By setting a fixed target occupancy, we can buffer super cold baggage whenever
the occupancy exceeds this threshold.

For instance, a target value of 600 bags per 15-minute interval can be used as the threshold for buffering (Figure

8.1). When the occupancy level surpasses this value, baggage is temporarily held back. This approach is
straightforward and easy to implement, offering a clear rule for when to buffer baggage.
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While this method offers simplicity, it does not account for the natural variability in baggage flows throughout
the day. Peaks in baggage arrival, driven by the flight schedule, make it difficult to maintain a constant
occupancy target. This can result in unnecessary buffering during high-demand periods, where some variability
is expected.

8.1.3 Option 2: Polynomial Function

A more adaptive method is to use a polynomial function derived from time series forecasting to determine
when to buffer baggage. This approach acknowledges that occupancy levels will naturally fluctuate throughout
the day based on flight schedules. Instead of setting a rigid target, a smoothed curve—based on a polynomial
function—can act as a dynamic occupancy target, allowing for more realistic and flexible buffering.

In this strategy, a polynomial function of degree 9 is applied to the predicted occupancy levels generated by
the TBATS model (Figure 8.2). A polynomial function of degree 9 is chosen because it provides a balance
between flexibility and overfitting when modeling the overall trend in baggage occupancy. With a lower degree,
the function may be too rigid to capture the nuances in the fluctuating baggage flow, missing important peaks
and troughs. However, a degree higher than 9 could lead to overfitting, where the polynomial starts modeling
random noise in the data rather than the underlying trend. Degree 9 offers enough complexity to smooth
out short-term fluctuations while maintaining a realistic long-term pattern that can guide buffering decisions
effectively. To prevent the polynomial from dropping too low during times of low predicted occupancy, a lower
boundary of 150 is introduced: if the polynomial value falls below 150, it is capped at this minimum level. This
constraint helps maintain a baseline occupancy target, ensuring that buffering decisions remain consistent even
in low-demand periods. This polynomial curve represents an optimal level of occupancy, smoothing out peaks
and filling in troughs. When the actual occupancy exceeds this smoothed target, super cold baggage is buffered.
This approach allows for more sophisticated peak shaving and helps avoid unnecessary buffering during natural
peaks in baggage arrival.
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Figure 8.2: Polynomial Function on Time Series Forecasting TBATS for 30-06-2024

The polynomial-based approach is more flexible and realistic compared to the fixed target strategy. It adapts
to the natural ebbs and flows in baggage arrival, ensuring that buffering occurs when the system is genuinely
under pressure, rather than whenever it crosses an arbitrary threshold. This method is expected to support
peak shaving more realistically, smoothing out operational pressures on the BHS.

8.1.4 Option 3: Combination Fixed and Polynomial Function

To further enhance the buffering strategy, a combination of the fixed target and the polynomial function ap-
proach is proposed. This hybrid method leverages the simplicity of the fixed target strategy while incorporating
the flexibility of the polynomial function to account for natural fluctuations. The fixed target serves as a base-
line occupancy level, while the polynomial function dynamically adjusts this target based on forecasted baggage
arrival patterns.

In this combined strategy, the same polynomial function of degree 9 is used to provide a smoothed curve, which
is then adjusted with a fixed baseline occupancy target (Figure 8.3). This combination allows for an adaptive
threshold that remains stable during low-variability periods but flexibly increases when higher baggage flows
are expected. This approach optimizes the balance between stability and adaptability, reducing the chances of
system overload while minimizing unnecessary buffering.
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Figure 8.3: Target Value on Time Series Forecasting TBATS for 30-06-2024 with Fixed and Polynomial Function

8.2 Strategic Release of Buffered Baggage

The timing of reintroducing buffered baggage plays a crucial role in determining the effectiveness of peak
shaving. First, relevant literature on this topic is reviewed, followed by the design of two distinct alternatives
for releasing buffered baggage.

8.2.1 Literature on the Timing of Returning from a Buffer

Forecasting based on future occupancy levels offers a methodology for proactively managing infeed points, pre-
venting peaks. This approach is widely used in inventory management and logistics systems, where precise
timing is crucial to avoid system overloads (Disney et al., 2004). The literature also emphasizes the importance
of real-time monitoring of buffered items. In dynamic environments, such as baggage handling systems, con-
tinuous control over the scheduling and status of reintroductions is essential to prevent new peaks from arising
due to poorly timed re-feeding into the system (Monczka et al., 2002).

Strategic use of system slack by reintroducing baggage when occupancy is at its lowest maximizes system
capacity. In logistics literature, this optimized reintroduction process is often cited as a method for further min-
imizing peak loads by making optimal use of available buffers within the system (Silver et al., 2016). Capacity
optimization strategies that focus on reintroducing buffered items during periods of low system occupancy sig-
nificantly enhance the efficiency of logistical processes. These methods help avoid peak loads and reduce critical
bottlenecks, such as infeed points in baggage handling systems. Research demonstrates that dynamic capacity
optimization improves system performance in variable environments, especially where demand is unpredictable
(Wang et al., 2020).

After super cold baggage has been buffered, it must eventually be reintroduced into the system to ensure
it reaches its connecting flight on time. Each baggage container has a specific Latest Time Train, which
represents the latest possible time the baggage can be fed back into the BHS to meet the flight’s schedule.
The decision of when to reintroduce buffered baggage must strike a balance between avoiding overloading the
infeed points and ensuring that no baggage misses its connection. If the infeed points are busy and a buffered
container needs to be reintroduced to prevent missed connections, this baggage must be given priority at the
infeed point. Two strategies for reintroducing buffered baggage are explored in this section.

8.2.2 Alternative 1: Early Release

The first strategy uses the TBATS Time Series Forecasting model to determine when buffered baggage should
be reintroduced. In the simulation (or later in real-time), when it is decided that the baggage is to be buffered,
the forecasting model is run to identify the next available time when predicted occupancy drops below the target
value—either the fixed threshold or the polynomial curve. The baggage is then scheduled for reintroduction at
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the first time this happens.

For example, if at 09:00 (green line) it is decided that a suitcase should be buffered, the Time Series Forecasting
model will be consulted to find the first time in the available interval (between green and blue line) when
occupancy drops below the target, say at 10:15 (purple dot). The suitcase will be scheduled for reintroduction
at this time. If there is no moment within the interval between the green and blue lines when the forecast
is lower than the target value, the container is assigned to the minute with the lowest prediction within the
interval. In the following interval (e.g., 09:15), when another container is buffered, the forecasting model will
be run again, with the 09:00 baggage already accounted for in the new forecast. It is crucial to continuously
monitor which buffered baggage is scheduled for reintroduction at specific times, ensuring this is updated every
minute. This ensures that reintroducing multiple pieces of baggage doesn’t create a new peak in occupancy.
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Figure 8.4: Early Reintroduction Strategy

The theory is that this proactive method allows for the smooth reintroduction of baggage, balancing the system
load and ensuring that all baggage meets its flight deadlines without overwhelming the system.

8.2.3 Alternative 2: Optimized Release

In this strategy, rather than reintroducing the baggage as soon as the occupancy level falls below the target
value, the baggage is held and only reintroduced at the point where the predicted occupancy has the maximum
gap below the target value. This approach takes a broader view of the available reintroduction windows. The
buffered baggage is only reintroduced when the occupancy levels are at their lowest, within the allowable time-
frame based on the Latest Time Train.

For instance, when the forecasting model is run at 09:00 for a buffered container, it will look for the time where
the gap between the predicted occupancy and the target value is the largest. If this maximum gap occurs at
10:45, the baggage is scheduled for reintroduction at that time, even if the occupancy drops below the target at
an earlier moment like 10:15. This maximizes the opportunity to reintroduce baggage without creating a new
peak in occupancy.

61



—— Bags in last 15 min
-== Target function

1000

@
=]
=]

Number of bags

@
[=]
=]

400 -

200

2 ] ] & ] o ] O a] 6) £ 65 £ =l £ =l £ £ &2 S ] & ]
F P PP PP PP PP PP PP P PSP P PSP PP
F & F ¢ F F F & F @ P PP PP E Y D@
Time

Figure 8.5: Optimized Reintroduction Strategy

This method aims to better optimize the system’s capacity by selecting the most opportune times to reintroduce
baggage, providing more flexibility and reducing the likelihood of overloading the system at infeed points.

8.3 Scenarios

In this section, we will explore various scenarios that combine the three Strategic Timing Options for Baggage
Buffering and the two Strategic Releasing Alternatives for Baggage Buffering. These strategies will be tested
across different operational conditions to assess their performance under varying degrees of system stress and
external constraints. The goal is to evaluate how robust these strategies are in maintaining optimal occupancy
levels and avoiding system overloads in the BHS.

8.4 Scenario 1: Normal Situation

In this scenario, the BHS operates under standard conditions with all infeed points and halls fully functional.
This represents the baseline operational environment where the inflow of baggage follows the expected patterns
based on historical data. The buffering and reintroduction strategies will be tested in this controlled setting
to establish a benchmark for their performance under optimal conditions. The objective is to maintain a
balanced and steady occupancy level at the infeed points throughout the day, ensuring efficient operation
without exceeding capacity limits.

8.4.1 Scenario 2: Reduced Capacity due to Hall Unavailability

As previously discussed, this study considers four transfer infeed points used at AAS. The distribution of
containers across these four transfer infeed points is shown in Table 8.1. In this scenario, baggage hall Z is
rendered unavailable for use due to operational constraints such as maintenance work or unforeseen breakdowns.
This situation simulates a real-world event where the BHS’s capacity is significantly reduced, placing extra
pressure on the remaining halls. All baggage that would normally be routed to infeed point Z (8.8%) will now
be redirected to one of the other infeed points. This redistribution increases the load on the remaining infeed
points, requiring the system to manage its resources efficiently to avoid bottlenecks. Buffering and reintroduction
strategies will be critical in this scenario to ensure that the loss of one hall does not result in excessive peaks in
occupancy at the remaining infeed points.
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Full dataset 30-06-2024
Infeed point | # of bags | Percentage [%] Infeed point | # of bags | Percentage [%]
D 589,339 28.5 D 9,341 28.9
E 1,253,354 60.6 E 19,522 60.4
\%% 24,058 1.2 W 618 1.9
Z 201,021 9.7 Z 2,833 8.8
Total 2,067,772 100 Total 32,314 100

Table 8.1: Distribution of the number of bags across the infeed points

8.4.2 Scenario 3: Increased Baggage Inflow (4+20%)

In this third scenario, the inflow of baggage into the system is increased by 20% (Table 8.2). This simulates a
situation where flight schedules are unusually dense, or where unforeseen events, such as flight delays or seasonal
surges, lead to a higher-than-expected volume of baggage arriving at the airport. This scenario tests the system’s
resilience in managing increased pressure on the infeed points and BHS as a whole. The performance of different
buffering and reintroduction strategies will be examined to determine whether they can still maintain balanced
occupancy levels under heightened demand.

30-06-2024
Infeed point | # of bags | # of bags + 20%
D 9.341 11,209
E 19.522 23,426
w 618 742
Z 2833 3,400
Total 32.314 38,777

Table 8.2: Distribution of the number of bags across the infeed points + 20 percent

8.5 Conclusion

By combining the three Strategic Timing Options for Baggage Buffering with the two Strategic Releasing Al-
ternatives, we create 6 unique strategy combinations. These strategies are tested across the three scenarios,
resulting in 18 distinct configurations. Additionally, baseline scenarios without buffering are included for com-
parison to assess the effectiveness of the buffering strategies.
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Configuration | Option Alternative Scenario
Base 1 No buffer No buffer 1: Normal
Base 2 No buffer No buffer 2: Reduced capacity
Base 3 No buffer No buffer 3: Increased inflow
1 1: Fixed target 1: Early release 1: Normal
2 1: Fixed target 1: Early release 2: Reduced capacity
3 1: Fixed target 1: Early release 3: Increased inflow
4 1: Fixed target 2: Optimized release | 1: Normal
) 1: Fixed target 2: Optimized release | 2: Reduced capacity
6 1: Fixed target 2: Optimized release | 3: Increased inflow
7 2: Polynomial target | 1: Early release 1: Normal
8 2: Polynomial target | 1: Early release 2: Reduced capacity
9 2: Polynomial target | 1: Early release 3: Increased inflow
10 2: Polynomial target | 2: Optimized release | 1: Normal
11 2: Polynomial target | 2: Optimized release | 2: Reduced capacity
12 2: Polynomial target | 2: Optimized release | 3: Increased inflow
13 3: Combined target 1: Early release 1: Normal
14 3: Combined target 1: Early release 2: Reduced capacity
15 3: Combined target 1: Early release 3: Increased inflow
16 3: Combined target 2: Optimized release | 1: Normal
17 3: Combined target | 2: Optimized release | 2: Reduced capacity
18 3: Combined target | 2: Optimized release | 3: Increased inflow

Table 8.3: Configuration Options and Scenarios

The scenarios simulate the impact of varying external conditions on the strategies, providing insights into their
effectiveness and robustness. The results will be analyzed and compared in the next chapter to evaluate their
relative strengths, weaknesses, and overall performance under different conditions.
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9 Results

This section presents the outcomes of the simulated strategies for buffering super cold transfer baggage on a
single day (30-06-2024), with the objective of achieving peak shaving at the transfer infeed points. Table 9.1
summarizes the results across different configurations, enabling comparison of the strategic options and their
performance across various scenarios. First, the KPIs used to assess these results will be discussed. Secondly,
the configurations will be analyzed by comparing the three different options within each scenario. Thirdly, the
configurations will be examined to evaluate the performance of the two alternatives relative to each other. At
last, a comparison of the results of all configurations is given.

Configuration | Peak | STD | MAC | CoV | Peak in buffer | Buffered containers | # of AGVs
Base 1 1958 | 404.83 | 28.82 | 1.20 0 0 0
Base 2 1958 | 404.15 29.4 1.0 0 0 0
Base 3 2283 | 485.38 | 33.88 | 1.20 0 0 0

1 1462 | 349.90 26.25 1.04 113 199 27
2 1454 | 348.81 | 26.99 | 1.04 114 205 26
3 1734 | 411.03 29.64 1.02 138 288 34
4 1454 | 34795 | 26.94 | 1.03 116 199 28
5 1464 | 350.19 | 27.23 | 1.04 117 205 28
6 1736 | 414.84 | 30.49 | 1.03 142 288 35
7 1492 | 346.89 | 25.82 | 1.03 104 257 33
8 1484 | 345.25 | 26.57 | 1.03 105 259 32
9 1819 | 413.07 | 30.15 | 1.02 127 311 40
10 1433 | 350.48 | 26.55 | 1.04 118 251 31
11 1459 | 349.25 | 26.77 | 1.04 115 251 31
12 1663 | 417.77 | 30.98 | 1.03 139 300 39
13 1492 | 346.89 | 25.82 | 1.03 104 257 33
14 1484 | 345.25 26.57 1.03 105 259 32
15 1819 | 413.07 | 30.15 | 1.02 127 311 40
16 1433 | 350.48 | 26.55 | 1.04 118 251 31
17 1459 | 349.25 | 26.77 | 1.04 115 251 31
18 1663 | 417.77 | 30.98 | 1.03 139 300 39

Table 9.1: Full results of all configurations

9.1 Key Performance Indicators

To evaluate the effectiveness of the different strategies, several KPIs were used. The primary focus is on the
performance of the strategies in directly influencing the occupancy levels at the transfer infeed points.

e Peak: The maximum observed occupancy at the infeed points during the simulated day. Lower peak
values indicate better peak shaving performance.

e STD (Standard Deviation): The standard deviation of occupancy levels over the day, which reflects
the variability in the occupancy. A lower standard deviation suggests a more consistent flow of baggage.

e MAC (Mean Absolute Change): The average absolute change in occupancy levels between consecutive
minutes, indicating the stability of the occupancy. Smaller values suggest smoother transitions.

e CoV (Coeflicient of Variation): The coefficient of variation (standard deviation divided by mean) of
occupancy, providing a normalized measure of variability relative to the mean occupancy.

Additionally, other operational aspects relevant to airside logistics were considered. These include the peak
number of containers held in the buffer at any given time and an estimate of the number of AGVs required to
support the buffering process.

e Peak in Buffer: The maximum number of containers held in the buffer at any given moment. This
metric shows the extent of buffering required to achieve the desired occupancy levels.

e Buffered Containers: The total number of containers buffered throughout the day. Higher values reflect
greater reliance on the buffer to reduce peaks at the infeed points.
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e # of AGVs: The number of automated vehicles needed to transport containers between the apron, buffer,
and infeed points. This reflects the logistical demand of each configuration.

9.2 Analysis of Configurations

The results illustrate the impact of various buffering strategies and scenarios on both occupancy levels and
resource requirements. Strategic Options and Alternatives are compared within each scenario. All results can
be found in Appendix 13. One remark before diving deeper into the results, Option Polynomial and Option
Combination show the same values.

9.2.1 Strategic Options

In this section, configurations are analyzed with a focus on the ’Option’ variable as the only differing factor. By
examining each of the ’Options’ under both ’Alternatives’ and across all 'Scenarios’, we can assess the specific
impact of each 'Option’ strategy.

Early Release Alternative

Firstly, we fix the Early Release alternative. By comparing configurations 1, 7, 13 and 2, 8, 14, and 3, 9, 15,
we can observe the effects. Table B.2 presents the results here, but in Appendix 13, Tables B.2, B.3, and B.4
are displayed together to give a clear overview of these configuration ordered on "Peak in buffer’ from small to
large.

We observe that the Fixed option, with the Fixed Early Release alternative, yields the most significant peak
shaving, achieving a 25.3% reduction in peak occupancy. The Polynomial and the Combination achieve a
reduction of around 23.8%. The Polynomial and Combination options exhibit slightly more favorable values
for standard deviation, MAC, and CoV, indicating a smoother and more stable occupancy profile, even though
the difference is not significant. The tables clearly display these effects, with all tables sorted by 'Peak of bags’
from smallest to largest.

Conf. Option Alternative Scenario | Peak | STD | MAC | CoV | Peak buff | Buff. containers | AGVs
1 1: Fixed 1: Early release | 1: Normal | 1462 | 349.90 | 26.25 1.04 113 199 27
7 2: Polynomial 1: Early release | 1: Normal | 1492 | 346.89 | 25.82 1.03 104 257 33
13 3: Combination | 1: Early release | 1: Normal | 1492 | 346.89 | 25.82 1.03 104 257 33
Base 1 | 0. No buffer 0. No buffer 1: Normal | 1958 | 404.83 | 28.82 1.2 0 0 0

Table 9.2: Results on Strategic Options with Alternative 1 and Scenario 1

The Fixed option results in a slightly higher peak in the buffer (113 vs. 104) compared to the other options.
While the total number of buffered containers during the day is lower for the Fixed option, it requires fewer
AGVs (27 vs. 33). This trade-off between peak shaving effectiveness and operational demands highlights the
importance of choosing an option aligned with logistical capabilities.

From Table B.2, we see that Configuration 1 achieves the lowest peak, with 1462 bags in the last quarter-hour.

Figure B.1 shows the occupancy levels at the transfer infeed points for Configuration 1 and Base 1. Each minute,
the total number of bags arriving in the last 15 minutes at the transfer infeed points is aggregated and plotted.
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Figure 9.1: Transfer infeed point occupancy levels for Configuration 1 and Base 1

Figure B.2 shows the occupancy levels in the buffer. The y-axis represents the number of containers, and the
x-axis shows the time.
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Figure 9.2: Buffer occupancy levels for Configuration 1

Optimized Release Alternative

Then, we fix the Optimized Release alternative. By comparing Configurations 4, 10, 16 and 5, 11, 17, and 6,
12, 18, we can observe the effects. Table 9.3 presents the results here, but in Appendix 13, Tables 9.3, B.6, and
B.7 are displayed together.

We observe that the Polynomial and Combination options yield the most significant peak shaving in all scenarios,
achieving a 26.8% reduction in peak occupancy. The Fixed option achieves a reduction of around 25.7%, so
the difference is 1.1%. The Polynomial and Combination options also exhibit slightly more favorable values for
standard deviation and MAC, but not for CoV, indicating a somewhat smoother and more stable occupancy
profile, even though the difference is not significant. The tables clearly display these effects, with all tables
sorted by 'Peak of bags’ from smallest to largest.
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Conf. Option Alternative Scenario | Peak | STD | MAC | CoV | Peak buff | Buff. containers | AGVs
10 2: Polynomial 2: Optimized release | 1: Normal | 1433 | 350.48 | 26.55 1.04 118 251 31
16 3: Combination | 2: Optimized release | 1: Normal | 1433 | 350.48 | 26.55 1.04 118 251 31
4 1: Fixed 2: Optimized release | 1: Normal | 1454 | 347.95 | 26.94 1.03 116 199 28
Base 1 | 0. No buffer 0. No buffer 1: Normal | 1958 | 404.83 | 28.82 1.2 0 0 0

Table 9.3: Results on Strategic Options with Alternative 2 and Scenario 1

The Polynomial and Combination options yield the same results, achieving more peak shaving than the Fixed
option. The KPIs for standard deviation, MAC, CoV, and peak values in the buffer are comparable to each
other. However, it is observed that the Fixed option requires a lower number of AGVs to handle container
transport. With the Optimized Release alternative fixed, configurations 10 and 16 appear to be the best-
performing configurations.
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Figure 9.3: Transfer infeed point occupancy levels for Configuration 10 and Base 1

Figure B.19 shows the occupancy levels for Configuration 10 and Base 1, followed by Figure B.20, which shows
the buffer occupancy levels in Configuration 10.
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Figure 9.4: Buffer occupancy levels for Configuration 10
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9.2.2 Strategic Alternatives

In this section, configurations are analyzed with a focus on the ’Alternative’ variable as the only differing factor.
By examining each of the ’Alternatives’ under all three ’Options’ and across all ’Scenarios’, we can assess the
specific impact of each ’Alternative’ strategy on the performance metrics.

Fixed Target Option

When only looking at the Fixed option, comparisons can be made between the Early Release and Optimized
Release alternatives across the scenarios. Here, configurations 1 and 4, 2 and 5, and 3 and 6 were analyzed.
The corresponding tables B.8, B.9, and B.10 can be found in Appendix 13.

In scenario 1, the Optimized Release alternative achieves better peak shaving than Early Release, with 1454
bags versus 1462. However, in scenario 2 (1464 versus 1454) and scenario 3 (1736 versus 1734), Early Release
performs better. The differences, however, are very small. The other KPIs are also very similar, with no signif-
icant differences observed.

Polynomial and Combination Target Option
Then, looking at the Polynomial and Combination options together—since they have the same results for these
configurations—a comparison can be made between the Early Release and Optimized Release alternatives across
the scenarios. Configurations 7 and 10, 8 and 11, and 9 and 12 were analyzed here. The corresponding tables
B.11, B.12, and B.13 can be found in Appendix 13.

In all scenarios, the Optimized Release achieves better peak shaving than Early Release. In scenario 1, the
peak is 1433 bags for Optimized Release versus 1492 for Early Release. Scenario 2 shows a difference between
1459 and 1484, while in scenario 3 the largest difference is observed, with a peak of 1663 bags for Optimized
Release versus a peak of 1819 for Early Release. The differences in peaks are larger with the Polynomial and
Combination options than with the Fixed Option. Although Optimized Release performs less well on STD,
MAC, CoV, Peak of the buffer, and the number of buffered containers, it does perform slightly better in terms
of the number of AGVs required.

9.3 Overview of Results

Same values from Table 9.1 are displayed below in Table 9.4, now sorted by 'Peak’ in ascending order. As previ-
ously noted, the values for each configuration with a "Polynomial target’ or 'Combination Fixed and Polynomial
target’ are the same.

It is evident that Configurations 10 and 16 achieve the most peak shaving, at 26.8%. In these configurations, the
Polynomial Option is combined with the Optimized Release Alternative. However, the other configurations are
not far behind. Configuration 4, which uses the Optimized Release Option with the Early Release alternative,
achieves a peak shaving of 25.7% and also has lower values in Standard Deviation, MAC, CoV, and AGVs,
although it has a higher peak in buffer occupancy. Configuration 1 also has lower AGV requirements and has
a peak shaving of 25.3%.

Looking at Scenarios 1 and 2, the STDs are all between 345.25 and 350.48. This close range suggests a high
consistency in fluctuations across configurations within these scenarios, indicating that the volatility in occu-
pancy rates is fairly uniform regardless of the configuration used.

Similarly, the MAC values are close to each other, all between 25.82 and 27.23. This narrow range suggests that
the MAC remains stable across the different configurations, ensuring that peak demand is effectively managed
without significant variability.

The differences in CoV are also minimal: a variation of only 0.01, which indicates that the relative variability
in occupancy is nearly the same across configurations.

The peak in buffer shows slightly more variation. However, for the top 8 configurations, the peaks are quite close
to each other, all between 113 and 118 containers. This similarity in buffer peaks across these configurations
suggests a balanced capacity in buffering, avoiding excessive spikes and maintaining efficient flow through the
BHS.
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There are notable differences in the number of AGVs required. The Fixed Option requires significantly fewer
AGVs (between 26 and 28) to operate compared to the Polynomial Option (between 31 and 33). This reduction
in AGV requirements highlights the efficiency of the Fixed Target Option in maintaining performance with
limited resources.

Conf. Option Alternative Scenario Peak | STD MAC | CoV | Peak buff | Buff. cons | AGVs
10 2: Polynomial 2: Optimized release | 1: Normal 1433 | 350.48 | 26.55 1.04 118 251 31
16 3: Combination | 2: Optimized release | 1: Normal 1433 | 350.48 | 26.55 1.04 118 251 31
2 1: Fixed target | 1: Early release 2: Reduced cap. | 1454 | 348.81 | 26.99 1.04 114 205 26
4 1: Fixed target | 2: Optimized release | 1: Normal 1454 | 347.95 | 26.94 1.03 116 199 28
11 2: Polynomial 2: Optimized release | 2: Reduced cap. | 1459 | 349.25 | 26.77 1.04 115 251 31
17 3: Combination | 2: Optimized release | 2: Reduced cap. | 1459 | 349.25 | 26.77 1.04 115 251 31
1 1: Fixed target | 1: Early release 1: Normal 1462 | 349.90 | 26.25 1.04 113 199 27
5 1: Fixed target | 2: Optimized release | 2: Reduced cap. | 1464 | 350.19 | 27.23 1.04 117 205 28
8 2: Polynomial 1: Early release 2: Reduced cap. | 1484 | 345.25 | 26.57 1.03 105 259 32
14 3: Combination | 1: Early release 2: Reduced cap. | 1484 | 345.25 | 26.57 1.03 105 259 32
7 2: Polynomial 1: Early release 1: Normal 1492 | 346.89 | 25.82 1.03 104 257 33
13 3: Combination | 1: Early release 1: Normal 1492 | 346.89 | 25.82 1.03 104 257 33
12 2: Polynomial 2: Optimized release | 3: Incr. inflow 1663 | 417.77 | 30.98 1.03 139 300 39
18 3: Combination | 2: Optimized release | 3: Incr. inflow 1663 | 417.77 | 30.98 1.03 139 300 39
3 1: Fixed target | 1: Early release 3: Incr. inflow 1734 | 411.03 | 29.64 1.02 138 288 34
6 1: Fixed target | 2: Optimized release | 3: Incr. inflow 1736 | 414.84 | 30.49 1.03 142 288 35
9 2: Polynomial 1: Early release 3: Incr. inflow 1819 | 413.07 | 30.15 1.02 127 311 40
15 3: Combination | 1: Early release 3: Incr. inflow 1819 | 413.07 | 30.15 1.02 127 311 40

Base 1 | 0. No buffer 0. No buffer 1: Normal 1958 | 404.83 | 28.82 1.20 0 0 0

Base 2 | 0. No buffer 0. No buffer 2: Reduced cap. | 1958 | 404.15 | 29.4 1.20 0 0 0

Base 3 | 0. No buffer 0. No buffer 3: Incr. inflow 2283 | 485.38 | 33.88 1.20 0 0 0

Table 9.4: Full results of all configurations in peak shaving order

The comparative analysis across options and alternatives reveals variations in peak occupancy, buffer utilization,
and logistical demands. While each configuration demonstrates different degrees of peak shaving and buffer
efficiency, the specific metrics observed highlight the unique impact of each option and alternative combination.
The results offer insight into the operational characteristics of each strategy, paving the way for an in-depth
discussion in the following chapter.
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10 Discussion

This chapter provides a comprehensive analysis of the findings from the experiments conducted in this study.
Each subsection delves into a critical component of the research, examining the simulation setup, the forecasting
model, the effectiveness of various distribution strategies, and the observed results. Assumptions and simplifica-
tions used in the simulation are discussed, as well as the limitations of the forecasting model and its implications
on peak shaving. The discussion also explores the strengths and weaknesses of the chosen distribution strategies
in managing peak baggage loads and how they perform under different scenarios. Finally, the chapter concludes
by discussing the contribution of the research and reflecting on the results in light of these factors and identifying
areas for future research that could further optimize peak shaving at transfer infeed points.

10.1 Simulation

The simulation developed for this study is based on a number of assumptions and simplifications necessary to
focus on the core objective of this research: evaluating distribution strategies for buffering super cold transfer
baggage at AAS. Fach assumption has implications for the outcomes of the simulation and, consequently, for
the insights derived.

Firstly, odd-sized baggage was excluded from the dataset, as it requires specialized handling outside of the typical
baggage flow and often involves additional processes not directly related to peak occupancy at the infeed points.
While this exclusion simplifies the model, it may lead to a slight underestimation of the overall baggage load
during peak times. Nonetheless, this decision aligns with the practical focus of this study, as odd-sized baggage
comprises a small proportion of total baggage and is typically processed separately from regular transfer baggage.

A notable assumption in this simulation is the inclusion of a 1500-second delay, which was introduced to im-
prove the alignment of simulated baggage flows with observed real-world data. This adjustment mirrors delays
seen in similar simulations at AAS and accounts for unmodeled complexities in real-world operations, such as
handling delays or irregularities in the transportation process. However, the delay remains an approximation
without a specific operational explanation, highlighting an area for further study to understand the sources of
these recurring delays more precisely.

Only super cold transfer baggage was considered eligible for buffering in this research, with cold transfer bag-
gage excluded despite its potential for additional peak shaving benefits. Although the inclusion of cold transfer
baggage in buffering could lead to even greater reductions in peak occupancy, conversations with AAS and
KLM suggested a cautious approach to minimize risks to operational timelines, particularly for shorter transfer
windows. This preference reflects a conservative industry stance, where operational reliability is prioritized over
potential gains in peak shaving. Future studies could explore the controlled inclusion of cold transfer baggage,
especially if additional safety buffers in transport times are established.

In the clustering of ramp positions, individual ramp stands were grouped into clusters to streamline the sim-
ulation and enhance computational efficiency. This approach effectively reduces the complexity of the airport
layout, making it more feasible to model overall transfer flows without detailing each stand individually. How-
ever, this simplification may slightly overlook variations in ramp-to-infeed travel times, as some individual
ramp positions could be closer to or further from infeed points than others in the same cluster. The clustering
approach, while simplifying the model, is expected to reasonably reflect the overall dynamics of baggage distri-
bution.

The buffering system is treated as a black box, meaning that the internal processes within the buffer (e.g.,
sorting, holding capacity) are not explicitly modeled. This assumption aligns with the focus of this study on
timing and strategy for buffering rather than on the specific mechanics of the buffering process itself. While
this simplifies the model and enables clearer focus on peak shaving strategies, it also limits the insights into the
buffer’s operational constraints and its potential as an active management tool.

The calculation of the number of AGVs required for each configuration provides a realistic and accurate esti-
mate. This calculation offers a basis for assessing AGV requirements across the different distribution strategies.
However, it is worth noting that AGVs in this calculation do not follow optimized routes. They do not trans-
port multiple containers with varying infeed destinations in a single trip, which could potentially save time by
stopping at multiple infeed points in one route. Incorporating route optimization in further calculations could
refine the estimate, but the current calculation already delivers a robust and realistic overview of AGV needs
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for each strategy.

Another assumption relates to the simplification of baggage handling processes by not explicitly modeling cer-
tain operational variables, such as shifts and breaks for operators and the availability of equipment like trains
and tugs. In this simulation, the BHS is modeled as a seemingly continuous process, under the assumption that
staff and equipment are sufficiently flexible to support uninterrupted operations. While in reality, staff work in
shifts throughout the day, the assumption here is that these shifts overlap seamlessly, ensuring that the baggage
handling process remains unaffected. This aligns with the operational goal of airports and airlines to maintain
continuity in baggage flows.

A similar assumption is made for the availability of tugs. It is assumed that there are enough tugs available to
support all operations without delay. In practice, however, the transport of buffered baggage would ideally be
handled by AGVs to reduce reliance on manual tug drivers, particularly during peak hours when higher volumes
of buffered baggage would require transport. Automating this process would alleviate the staffing challenges
that arise during peak times. One of the outputs of this research is the estimation of the number of bags that
will require buffering under various strategies and scenarios, which could inform further studies on the exact
number of tugs or AGVs needed for implementation.

While the model does not include all potential operational disruptions—such as unexpected equipment down-
time or temporary shortages of personnel—Scenario 2 in this study does simulate a Reduced Capacity condition.
In this scenario, one of the four baggage halls is taken out of operation, with all baggage originally assigned to
this hall rerouted to the remaining halls. This adjustment allows for preliminary insights into how the buffering
strategies manage an increased load under constrained conditions. Including additional operational variables,
such as personnel fluctuations or equipment breakdowns, in future simulations could further enhance the model’s
realism and test the robustness of these strategies under a wider range of day-to-day challenges.

A key potential of the simulation model lies in its ability to evolve into a real-time decision support system for
transfer baggage handling. By integrating updated predictions from a continuously trained forecasting model,
the simulation could dynamically adjust to changing conditions and make near-real-time decisions. For instance,
periodic re-runs of the forecasting model with the latest baggage flow data would allow for accurate, context-
sensitive predictions of occupancy levels at transfer infeed points. This enhanced accuracy could enable the
proactive adjustment of buffering strategies to respond to fluctuating demands, ensuring peak shaving objectives
are consistently met under varying operational conditions.

Moreover, aligning the simulation outputs with the operational deployment of AGVs at AAS could provide a
practical framework for automating baggage transport. The distribution strategies developed in this research
offer a foundation for implementing decision rules in AGV fleet management, optimizing their allocation in
real time based on forecasted infeed occupancy. This integration could transform the simulation model from
a theoretical tool into a scalable operational system, reducing bottlenecks, enhancing buffer utilization, and
ensuring timely baggage delivery. Such an approach would not only improve system performance but also align
with AAS’s strategic objectives of leveraging automation to manage growing passenger and baggage volumes
efficiently.

In summary, this simulation provides valuable insights into the effectiveness of distribution strategies for buffer-
ing super cold transfer baggage at AAS, while balancing necessary simplifications with operational relevance.
Key assumptions—such as excluding odd-sized baggage, clustering ramp positions, and treating the buffer as
a black box—streamlined the model to focus on peak shaving objectives. While idealized assumptions about
continuous operations and AGV availability align with industry goals, they represent a simplified version of
real-world conditions. Nonetheless, the simulation demonstrates the potential of leveraging predictive modeling
and strategic buffering to mitigate peak occupancies effectively.

Future studies could enhance realism by incorporating factors such as operational disruptions, equipment con-
straints, and personnel shifts to further test the robustness of buffering strategies across a broader range of
scenarios. Additionally, evolving the simulation into a real-time decision support system could enable dynamic
adjustments based on updated predictions, offering a scalable and practical solution for peak shaving and
resource optimization in airport BHSs.
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10.2 Forecasting Model

The time series forecasting model in this study was developed to predict occupancy levels at the transfer infeed
points, enabling proactive management of peak loads. For this purpose, a dataset covering 10 weeks of histor-
ical baggage data was used. This dataset, although representative of typical baggage flow patterns, presents
limitations in terms of the breadth and variety of scenarios it can account for. A more extensive dataset, span-
ning several months or even years, would likely capture a broader range of operational conditions and seasonal
fluctuations, contributing to a more robust and accurate forecasting model.

The selection of the SARIMA and TBATS models was based on their strengths in handling seasonal patterns,
with SARIMA offering simplicity and effectiveness for daily cycles and TBATS providing flexibility for com-
plex seasonal patterns, including weekly variations. However, other advanced forecasting techniques, such as
machine learning-based methods (e.g., LSTM, Prophet), could potentially enhance accuracy by capturing non-
linear patterns and adjusting dynamically to sudden changes in baggage flows. These models, particularly when
paired with a larger dataset, could offer higher precision in predicting peak occupancy rates, which may result
in even more optimized buffering decisions.

Another factor to consider is the model’s dependency on the regularity and quality of historical data. Any
gaps or inconsistencies in the data—due to operational disruptions, data logging issues, or changes in baggage
handling procedures—could introduce bias in the predictions. A larger dataset might help smooth out these
anomalies, but it also underscores the importance of rigorous data cleaning and validation processes for fore-
casting models in dynamic environments like airport baggage handling.

In summary, while the forecasting model developed in this study provided a useful basis for decision-making
in peak shaving, its accuracy and reliability could be further improved with a larger, more diverse dataset and
the exploration of alternative modeling approaches. Future research might focus on leveraging additional data
sources or advanced methods to enhance the predictive power of the model and support even more effective
distribution strategies.

10.3 Distribution Strategies

The distribution strategies in this study were developed to mitigate peak occupancy at the transfer infeed
points through the buffering of super cold transfer baggage. One of the core strategies employed was the use of
a Fixed Target Option of 600 bags per 15-minute interval. This threshold, though justified based on observed
baggage flows and infeed capacities, was not mathematically optimized. A more rigorous investigation into the
ideal Fixed Target value could provide a more accurate threshold, potentially enhancing the efficacy of peak
shaving and impacting the overall conclusions of this study. Such research could explore various operational
scenarios and sensitivities around different threshold levels to define an optimal fixed target that minimizes
system congestion while accommodating the natural fluctuations in baggage inflow.

In addition to the fixed target strategy, a polynomial function with degree 9 was used as a dynamic target
to account for daily variations in baggage inflow. This polynomial degree was selected after testing various
polynomial functions, balancing flexibility with the risk of overfitting. While the degree 9 polynomial function
provided a reasonable approximation of daily patterns, it is not necessarily the most optimal form. Future
research could focus on refining the polynomial function, possibly through advanced curve-fitting techniques or
machine learning models, to derive a target function that more precisely aligns with real-world inflow patterns.
An improved target function could offer even more targeted peak shaving, allowing the buffer to dynamically
adjust to high-occupancy periods without sacrificing processing efficiency during low-demand times.

Overall, while both the Fixed and Polynomial option strategies contributed to reducing peak occupancy, the
methods used to set these targets could be further refined. A more detailed exploration of the target values
and function forms would enhance our understanding of their impact on the transfer infeed system, potentially
leading to a more adaptive and efficient distribution strategy. This would support not only improved peak
shaving but also a better alignment with the operational capacities of the BHS at AAS.

10.4 Discussing Results

The results of this study provide a comprehensive view of how different configurations impact peak occupancy
at the transfer infeed points. The configurations were ranked based on their ability to reduce peak loads,
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with key metrics such as STD, MAC, CoV, the peak in the buffer, and the number of AGVs required for each
configuration. These results offer insights into the performance and trade-offs associated with each distribution
strategy.

10.4.1 Top Strategies

The configurations utilizing the Polynomial and Combination target functions with the Optimized Release
strategy in a normal scenario (e.g., Configurations 10 and 16) achieved the highest peak shaving, reducing
peak occupancy to 1433 bags per quarter hour, or 26.7%. This outcome suggests that combining a Polynomial
target with an Optimized Release mechanism is highly effective under typical conditions. However, this ap-
proach also requires a significant number of AGVs, which could impact operational costs and resource allocation.

Among the strategy options, the Polynomial and Combination approaches consistently achieve the most effec-
tive peak shaving across scenarios. The Fixed Target strategy, while resulting in slightly less peak shaving,
demonstrates a clear advantage in requiring fewer AGVs, making it a more resource-efficient option in scenarios
with limited AGV availability. For example, Configuration 3 utilizes a Fixed Target with Optimized Release,
maintain a peak shaving of 25.7% while keeping AGV demands lower.

In terms of strategic release alternatives, the Optimized Release strategy outperforms Early Release in achieving
peak shaving across almost all target options. This makes Optimized Release a preferable choice for config-
urations focused on minimizing peak occupancy. The trade-off between AGV requirements and peak shaving
efficiency thus becomes central in selecting an approach, depending on an airport’s operational resources and
specific peak shaving goals.

10.4.2 Robustness of Different Strategies

The consistency of performance on STD, MAC, and CoV demonstrates the robustness of the different strategy
combinations across the three scenarios. Although there are slight differences in these KPIs between strategies,
the values for STD, MAC, and CoV remain remarkably close across the top-performing strategy combinations.
This narrow range of KPI values suggests that each of these strategies performs with a comparable degree of
reliability and stability, maintaining robust results despite the variability in conditions. The minimal variation
across these metrics indicates that, while some strategies may have slight advantages in specific scenarios,
the differences are not substantial, underscoring the overall resilience of these approaches in managing peak
occupancy.

10.4.3 Peak in Buffer

The results indicate that the buffer peak varies across configurations but remains close within the top-performing
strategies. For the best 3 configurations, buffer peaks range between 116 and 118 containers, showing a narrow
spread and implying efficient buffering across these strategies. This narrow range suggests that these different
strategies manage buffer capacity effectively without excessive peaks, maintaining a steady flow through the
BHS.

Notably, the strategy alternative Early Release consistently shows the lowest buffer peaks across all scenarios,
though it does not achieve the highest peak shaving overall. This suggests a clear relationship between buffer
peak levels and the release strategy chosen: Early Release effectively reduces buffer occupancy but at the cost of
slightly lower peak shaving performance. This trade-off highlights that while Early Release can be beneficial for
minimizing buffer space requirements, it may be less optimal for airports prioritizing maximum peak shaving.

The limited space on airside at airports like AAS makes buffer peak management a critical factor, as overly
high buffer occupancy could lead to space constraints and operational bottlenecks. High buffer peaks not only
require additional physical space but also influence the need for more AGVs to transport containers in and
out of the buffer. In airports with restricted buffer areas, like AAS, the ability to keep buffer peaks within a
narrow range is advantageous, as it minimizes the spatial footprint of the buffer while still achieving efficient
peak shaving.

This consideration highlights why buffer peak is an important KPI that could weigh more heavily in decision-
making, depending on the specific airport’s layout and space constraints. At airports with tighter spatial
limitations, selecting a strategy with lower or more consistent buffer peaks may be prioritized over other factors
to avoid unnecessary congestion and ensure smooth baggage flow. Thus, while multiple strategies may perform
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similarly in peak shaving, the specific buffer demands of each strategy should be carefully evaluated according
to the airport’s physical capacity and operational constraints.

10.4.4 AGYV Requirements

AGV requirements differ notably among configurations. The Fixed Target Option strategy requires significantly
fewer AGVs than the Polynomial and Combination Options, which makes it advantageous in scenarios where
resources are constrained. The Polynomial and Combination targets, while more effective in peak shaving, de-
mand higher AGV allocations due to the dynamic nature of their buffering strategies. This insight underscores
the need to balance peak shaving effectiveness with resource availability when selecting a distribution strategy.

The demand for AGVs is a particularly important consideration in the airside environment, where space and
operational flow are already highly constrained. With multiple vehicles and equipment moving simultaneously,
adding more AGVs to handle baggage buffering could increase congestion and operational complexity, poten-
tially impacting safety and efficiency. Given these airside constraints, airports must carefully assess whether
the additional peak shaving benefits offered by Polynomial and Combination strategies justify the higher AGV
requirements, or if a less intensive Fixed Target approach might be more practical.

Ultimately, while Polynomial and Combination strategies provide stronger peak shaving results, their higher
AGYV demands could limit their feasibility in busy airport environments where AGV traffic must be minimized to
maintain smooth operations. This reinforces the need for airports to consider both the peak shaving effectiveness
and AGV resource impact of each strategy in the context of their specific operational capacity and airside
conditions.

10.5 Cost Considerations

Although this research focuses on the operational impact of peak shaving and the evaluation of distribution
strategies, it is important to reflect on the potential cost implications. One of the key motivations for peak
shaving is to achieve a more evenly distributed inflow of baggage, not only at the transfer infeed points but
also across other subsystems of the BHS. By reducing peaks, personnel costs can be minimized, as less or no
additional staff would be required to handle baggage during peak hours. This has implications beyond the
transfer infeed points, as uneven baggage inflows also create peaks in other BHS subsystems, such as screening,
sorting, and make-up. A smoother flow reduces the need for additional resources, resulting in cost savings across
the baggage handling process.

Furthermore, the choice of distribution strategy has significant cost implications. Strategies that rely on larger
buffer capacities inherently require more investment in infrastructure. At AAS, for instance, a larger buffer
would need to be constructed, potentially involving high capital costs. On the other hand, strategies that
necessitate increased use of AGVs to manage baggage transport come with operational costs, including the
purchase, maintenance, and management of additional AGVs. These costs must be carefully weighed against
the operational benefits of the respective strategy.

While this study does not quantify these costs, the findings provide valuable input for future cost-benefit anal-
yses. Such analyses could explore the trade-offs between infrastructure investments, resource allocation, and
operational efficiency to determine the most economically viable approach for implementing peak shaving and
distribution strategies at AAS.
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11 Conclusion

In this chapter, the key findings of this research are summarized by addressing each sub-research question,
followed by a final answer to the main research question. The conclusion highlights the current state of baggage
handling at AAS, the role of peak shaving in managing transfer infeed points, requirements for optimizing cold
transfer baggage distribution, and the effectiveness of the tested distribution strategies. This chapter concludes
with insights into the implications of these findings for operational practices.

Sub-question 1: What is the current state of baggage handling processes at the transfer infeed
points at AAS?

The current state of baggage handling at AAS reflects a complex but highly structured process, designed to
manage a variety of baggage types with different requirements. However, analysis reveals that transfer infeed
points experience significant fluctuations in occupancy levels throughout the day. These fluctuations are pri-
marily due to peaks in the arrival of transfer baggage, which are influenced by the hub function of AAS and
the timing of connecting flights. These peaks can create bottlenecks at the transfer infeed points, leading to
potential delays and operational challenges. While the BHS has been optimized to a certain extent together
with the limited space for expansion of the BHS, it faces strain during high-occupancy periods, demonstrating
the need for further measures, such as the buffering process of cold transfer baggage to influence the unequal
inflow of baggage on the BHS.

Sub-question 2: How does peak shaving work in the context of an airport?

Peak shaving in the context of an airport involves strategies to smoothen the fluctuating occupancy rates at var-
ious points within the BHS, such as the transfer infeed points. This approach aims to prevent the system from
being overwhelmed during peak times by redistributing the workload more evenly over time. For peak shaving
at the transfer infeed points at AAS, the focus is specifically on cold transfer baggage, which has longer layover
times, allowing it to be buffered temporarily. By reintroducing this baggage during periods of lower demand,
peak shaving helps maintain a balanced flow at the system and through the system, reduces bottlenecks, and
enhances operational efficiency. This research has shown that peak shaving can lead to a more stable workload
distribution, allowing resources to be allocated more effectively across different periods.

Sub-question 3: What is needed to optimize the distribution of cold transfer baggage?
Optimizing the distribution of cold transfer baggage requires a combination of accurate forecasting, flexible
buffering capacity, and a strategic approach to decide when to buffer baggage, and when to reintroduce baggage
into the BHS. Firstly, a time series forecasting model is essential for predicting future occupancy levels at trans-
fer infeed points, allowing for proactive adjustments to buffering and release times. Secondly, a well-organized
buffer system with sufficient capacity is necessary to accommodate fluctuations in baggage volumes. Finally,
rule-based strategies for reintroducing baggage based on occupancy data are crucial to ensure that buffered
baggage is released during off-peak times. Together, these elements help create a more responsive system that
adjusts dynamically to occupancy demands, maximizing the efliciency of peak shaving.

Sub-question 4: Which distribution strategies are suitable for buffering cold transfer baggage,
and how do these strategies impact peak shaving under different scenarios?

This research identified three main approaches to determine when baggage should be buffered:
e Fixed Target: Baggage is buffered when occupancy levels exceed a fixed threshold.

e Polynomial Target Function: Baggage is buffered based on a polynomial function that dynamically
adjusts the target occupancy level, allowing for more flexible peak shaving during high inflow periods.

e Combination: Baggage is buffered if occupancy is exceeding a combined function of a Fixed Target and
the Polynomial Function.

Additionally, two alternatives were tested to determine the optimal timing for reintroducing buffered baggage
at the infeed points:

e Early Release: Buffered baggage is released earlier, aiming to keep buffer levels manageable and minimize
congestion in buffer areas, though with potentially less peak shaving impact.

e Optimized Release: Buffered baggage is reintroduced to the BHS by filling the deepest troughs in the
forecasted occupancy, maximizing peak shaving by strategically spreading out the inflow.
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Combining these three buffering approaches with the two reintroduction alternatives results in six unique dis-
tribution strategies. These strategies were tested across three scenarios, each representing different operational
conditions, to evaluate their effectiveness in reducing peak occupancy.

The combined strategies achieved peak shaving reductions ranging from 23.8% to 26.8% on a standard day.
The strategy with the highest peak shaving efficiency involved a polynomial target function to determine when
baggage should be buffered, along with an optimized release alternative that reintroduces baggage by filling the
deepest troughs in the occupancy forecast. This combination achieved a peak shaving of 26.8%. However, this
strategy required a relatively high number of AGVs to handle the transport, indicating a trade-off between peak
shaving effectiveness and resource demand.

Strategies employing the Fixed Target option, while slightly less effective in peak reduction (achieving 25.7%),
required fewer AGVs for transportation. In comparison to the highest peak shaving strategy, the Fixed Target
option could reduce AGV requirements by up to 9.7% (28 AGVs compared to 31), making it a more resource-
efficient choice on an averaged day.

While still achieving a peak shaving of 25.3%, the Early Release alternative consistently maintained the lowest
peak occupancy levels within the buffer, reducing buffer peaks by as much as 11.9%. By releasing baggage
from the buffer earlier, this strategy helps to prevent congestion within the buffer area, making it particularly
advantageous in scenarios where maintaining buffer capacity is critical. This approach minimizes the risk of
overcrowding in the buffer during peak inflow periods, thereby enhancing operational flexibility and reducing the
chance of delays that might occur when buffer capacity is stretched to its limit. The Early Release alternative
could be beneficial in operational situations where limited buffer space is available, or where there is a need
for a high turnover rate in the buffer area to accommodate continuously incoming baggage. By focusing on a
proactive release of buffered baggage, this strategy allows for a smoother flow back into the system, which could
help airports better handle unexpected spikes in baggage volume or manage space constraints more effectively.
Overall, this alternative presents a valuable trade-off by prioritizing buffer management over maximum peak
shaving at the infeed points, offering operational benefits under specific conditions.

These findings illustrate how each distribution strategy impacts not only the occupancy levels at the transfer
infeed points but also other operational aspects such as AGV requirements and buffer usage. Each strategy
presents unique trade-offs, allowing AAS to select an approach that best aligns with its operational priorities
and constraints.

Sub-question 5: What operational considerations and resource implications arise from implement-
ing the simulated distribution strategies, and how feasible are they for reducing peak occupancy
at AAS transfer infeed points?

Implementing the distribution strategies for buffering cold transfer baggage involves several operational consid-
erations and resource implications, impacting the feasibility of each strategy in practice.

Firstly, a primary operational consideration is the availability and management of AGVs. Strategies that max-
imize peak shaving, particularly those using the Polynomial Target Function and Optimized Release, demand
a higher number of AGVs due to the need for frequent and well-timed transport operations. While this ap-
proach achieves the highest peak shaving (up to 26.8%), it also increases AGV requirements. This raises a key
resource implication: the cost and logistical challenge of deploying additional AGVs, which may not be feasible
during all operational periods or under budget constraints. Moreover, increasing the number of AGVs leads to
more traffic on the airside, which is not ideal for safe and efficient ground operations. Airports with limited
AGYV availability might therefore favor Fixed Target strategies, which achieve satisfactory peak shaving (around
25.7%) with fewer transport resources and reduced impact on airside traffic.

Secondly, managing buffer capacity is crucial to prevent congestion within the buffer areas, especially during
high inflow periods. The Early Release alternative demonstrated a lower peak in buffer occupancy. This strategy
is particularly advantageous when buffer space is limited, as it proactively releases baggage to maintain man-
ageable buffer levels. However, the trade-off is slightly reduced peak shaving at the infeed points, highlighting
a need to balance buffer capacity management with peak shaving objectives.

In conclusion, the effectiveness of each strategy in reducing peak occupancy must be weighed against resource
and operational constraints. Airports like AAS must consider the AGV requirements and buffer space limita-
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tions when selecting the most suitable approach. Thus, while the strategies demonstrate promising potential
for peak shaving, practical implementation will require balancing these factors to optimize both resource usage
and operational efficiency at transfer infeed points.

Main research question: How to support Amsterdam Airport Schiphol to identify the best dis-
tribution strategy for super cold transfer baggage through a simulation model?

The simulation model developed in this research, combined with a predictive forecasting model, has provided
AAS with valuable insights into the impact of various distribution strategies for buffering super cold transfer
baggage. By dynamically testing and analyzing these strategies under different operational scenarios, the re-
search has demonstrated how each approach can address specific objectives.

The results highlight that the choice of a distribution strategy depends on the operational priorities of AAS.
For instance, strategies focusing on peak shaving at transfer infeed points, such as those using a polynomial
target function and optimized release timing, are most effective in reducing peak occupancy. However, these
strategies require more AGV resources, which may limit their feasibility during resource-constrained periods.
Conversely, strategies employing fixed targets strike a balance between achieving substantial peak shaving and
minimizing AGV demand, offering a more resource-efficient alternative.

Additionally, strategies like the Early Release alternative prioritize maintaining low buffer occupancy levels,
which is particularly beneficial when buffer space is limited or a high turnover rate is required. This approach
helps ensure smooth buffer operations, reducing the risk of congestion while still achieving reasonable levels of
peak shaving at the infeed points.

In conclusion, the simulation model has enabled AAS to assess the trade-offs between different objectives, such
as reducing peak occupancy, optimizing AGV usage, and managing buffer space. This research provides a
data-driven framework to support AAS in selecting the most suitable distribution strategy based on its specific
operational goals and constraints, enhancing both the efficiency and resilience of its BHS.
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12 Recommendations

Further research could explore optimizing the criteria for which baggage should be buffered. This study ex-
clusively focused on buffering super cold transfer baggage, defined as baggage with a layover time of more
than three hours. However, investigating the potential of buffering cold transfer baggage with layover times
of around two hours could yield new insights into peak shaving effectiveness. By examining how these shorter
layover bags contribute to occupancy peaks, researchers could evaluate whether including them in buffering
strategies would result in additional reductions in peak occupancy at transfer infeed points. Understanding the
impact of different layover times on peak shaving could provide a more nuanced approach to buffering decisions,
maximizing efficiency while ensuring baggage still meets its outbound flight schedules.

A recommendation for future research is to develop a more advanced forecasting model for occupancy rates
at infeed points. In this study, a time series forecasting model was used, trained on a dataset of ten weeks.
However, other methods, such as machine learning models or deep learning algorithms, could potentially provide
more accurate predictions than traditional time series models. By using a larger dataset and applying these
more advanced methods, the accuracy of the predictions could be further improved. This could not only con-
tribute to more precise peak shaving at infeed points but also enhance the effectiveness of buffering strategies.
Moreover, a more detailed model would allow for better forecasting of occupancy rates, supporting more efficient
management of peak loads within the BHS system.

Another recommendation is to add greater flexibility to the infeed point assignment process by assigning con-
tainers a secondary or even tertiary infeed point preference. In the current setup, each container is assigned to
a single infeed point based on the type of baggage it carries. However, by introducing additional preferences,
containers could be redirected to alternative infeed points if the primary point is experiencing high congestion.
This added flexibility would enable peak shaving to be achieved not only at the system-wide level but also at
individual infeed points, allowing for more precise management of occupancy peaks. This additional layer of
assignment could help to more effectively distribute baggage across multiple infeed points, balancing occupancy
more dynamically and potentially enhancing the overall impact of peak shaving efforts. This more granular
approach could allow for targeted adjustments to occupancy levels at specific infeed points, addressing localized
bottlenecks more efficiently.

Another recommendation is to investigate the downstream impact of transfer baggage inflow at infeed points
on other subsystems within the BHS. By examining the correlation between occupancy rates across different
BHS subsystems, further research could provide valuable insights into how the buffering process impacts other
parts of the BHS. This could lead to the development of new distribution strategies for cold transfer baggage,
designed not only to alleviate congestion at transfer infeed points but also to relieve pressure on other BHS
subsystems. For instance, security screening is a critical checkpoint, as each transfer bag must be screened
before departure on its outbound flight. If occupancy levels at security screening fluctuate significantly, these
variations could be factored into distribution strategies, potentially enabling peak shaving efforts at security.
Such an approach would allow for more comprehensive management of occupancy peaks throughout the BHS,
maximizing system-wide efficiency.

While this research focuses on the operational impact of peak shaving, the cost implications of implementing
distribution strategies asks for further investigation. Peak shaving could reduce the need for additional personnel
during peak periods, as a smoother baggage inflow across the transfer infeed points and other BHS subsystems
may eliminate the need for temporary staff or overtime. These operational savings could offset some of the costs
associated with implementing peak shaving strategies.

Additionally, the strategies explored in this research entail varying financial implications. For instance, strategies
requiring larger buffer capacities may involve significant capital investments at AAS, including infrastructure
design, construction, and integration. Alternatively, strategies relying on increased AGV deployment would
require both upfront procurement and ongoing costs for maintenance and energy. Future research should
conduct a comprehensive cost-benefit analysis to evaluate the financial feasibility of different strategies, weighing
potential staffing and operational savings against infrastructure and resource investments. Innovative approaches
could also be explored to reduce upfront costs while achieving long-term operational benefits.
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13 Reflection

During the execution of this research, I gained valuable insights into methodology, practical challenges, and
the impact of decisions on outcomes. In this chapter, I reflect on these aspects and share the lessons learned
throughout the process.

Methodological Reflection

In the initial months of my research, I was heavily focused on optimization modeling. This approach eventually
proved to be too complex for the desired output. After discussions with assistant professors at TU Delft, I real-
ized that a different approach would be more effective. If I had recognized this earlier, it might have saved time
and brought the research to its conclusion more quickly. The key lesson I take from this is to avoid becoming
too attached to a predefined plan and to remain open to adjustments when needed. Ultimately, developing a
simulation model—though time-consuming and challenging—proved to be the right choice. It provided valuable
insights into the defined knowledge gap of my research.

Practical Challenges

The most difficult part of the research was the beginning. Limited knowledge of the subject and uncertainty
about the direction made the starting phase challenging. As mentioned earlier, it is sometimes better to let
go of preconceived plans. Another challenge was programming. Despite these difficulties, this phase led to
significant personal growth. My Python skills, for instance, improved greatly. While I initially only had basic
knowledge of Python, I now feel confident in my ability to handle complex tasks. This progress was achieved
by continuously refining my code and solving challenges in the simulation process.

Impact of Choices

The decisions I made during the research had a clear and significant impact on the results. This included
assumptions and definitions in the simulation, the selection of forecasting models, and the chosen distribution
strategies. These decisions shaped the study and determined its outcomes. For example, I chose to exclude
strategies and models that were unrealistic or performed poorly, which allowed me to focus on the most promis-
ing options. This careful selection helped to create results that were more relevant and practical.

Lessons Learned

Throughout the research, I often set ambitious timelines for myself. However, I underestimated the amount
of work required, making some of these deadlines difficult to meet. This experience taught me the importance
of realistic planning, especially in complex studies. Additionally, I learned to let go of my original ideas, such
as my focus on optimization modeling. Being flexible and allowing the research to evolve naturally ultimately
improved the quality of the results.

Overall, I look back on a process that was both challenging and educational. The insights I gained in method-
ology, programming, and project management have provided a strong foundation for my future development.
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Appendix A: Code

This appendix contains the full code used for simulating baggage handling and forecasting baggage occupancy
rates for AAS. The code is organized into multiple section’s, each corresponding to different aspects of the
simulation process. It includes data loading, baggage processing, simulation of unloading, container assignment,
and time series forecasting. Various models such as SARIMA and TBATS are used to predict baggage flow.
Accuracy is evaluated by comparing simulated data against actual data using metrics like RMSE, MAPE, and
MAE. The code also incorporates data visualization and polynomial fitting to further analyze the forecasting
results. Each code section is provided with explanations and outputs, contributing to a comprehensive simulation
of baggage operations.

Appendix Al: Data Loading and Initial Processing

This code section loads and processes baggage data for the simulation. It begins by reading a large CSV
file in chunks to manage memory, counting any malformed rows. Key filtering steps include selecting only
transfer-related records, converting time columns to datetime format, and filtering for specific airport exit
areas. Schengen status, baggage type, and body type classifications are added based on airport codes and
aircraft types. The data is then filtered for 2024 and exported to a new CSV, ready for further analysis in the
simulation.

import pandas as pd
import os
import time

start_time = time.time()

file_path = ’C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\datal.csv’
bad_line_count = 0 # Initialize a counter for bad lines

# Define a custom handler to count bad lines
def bad_line_handler(bad_line):

global bad_line_count

bad_line_count += 1

try:
# Specify the delimiter and handle quoting issues
df = pd.read_csv(file_path, delimiter=’;’, on_bad_lines=bad_line_handler, engine=’python’,
— quotechar=’""’)
print(£f"Total number of rows in original data file: {df.shape[0]}")
except MemoryError:
print("Het bestand is te groot om in het geheugen te laden met pandas.")
chunks = pd.read_csv(file_path, delimiter=’;’, chunksize=1000000, on_bad_lines=bad_line_handler,
— engine=’python’, quotechar=’"’)
df = pd.concat(chunks)
print (f"Total number of rows in original data file (chunked): {df.shape[0]}")

print (£"Number of bad lines skipped: {bad_line_count}")

# Check the column names
df.columns = df.columns.str.strip()
print(df.columns) # Debugging: Check if ’ENTRY_FUNCTION’ is present

# Stap 1.1: Filteren op ENTRY_FUNCTION = TransferIn, niet-lege tijdvelden
df = df[df [’ENTRY_FUNCTION’] == ’TransferIn’]
df = df.dropna(subset=[’SIBT’, ’AIBT’, ’SOBT’, ’AOBT’])

# Converteer de tijdkolommen naar datetime-formaat
tijdkolommen = [’SIBT’, ’AIBT’, ’SOBT’, ’AOBT’]
for kolom in tijdkolommen:

df [kolom] = pd.to_datetime(df [kolom], errors=’coerce’)

# Filter alleen de EXIT_AREAs [’D’, °E’, °W’, °Z°]
df = df [df [’EXIT_AREA’].isin([’D’, °E’, °W’, °Z’]1)]
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— ’BLL’, ’BLQ’, ’BOD’,

’BRE’, ’BRI’, ’BRS’, ’BRU’,

— ’DBV’, ’DRS’, ’DUS’,

’EFL’, ’EMA’, ’EXT’, ’FAQ0’,

— ’GVA’, °HAJ’, ’HAM’,

’HEL’, °HER’, ’IBZ’, ’INN’,

< JLBA’, ’LCY’, ’LED’,

’LIN’, °LIS’, °LJU’, °LPA’,

<~ ’MRS’, ’MUC’, ’MXP’,

’NAP’, ’NCE’, ’NCL’, ’NTE’,

— ’PMO’, °’P0Z’, ’PRG’,

’PSA’, °PUY’, °PVK’, ’REU’,

— ’STN’, ’STR’, ’SVG’,

’svQ’, ’SXB’, ’SXF’, ’SZG’,

<~ VRN’, ’VX0’, ’WAW’,
’WRO’, ’ZAG’, ’ZRH’, ’ZTH’

non_schengen_airports = [
’ABZ’, ’ACC’>, ’ADB’, ’AGA’,

<~ ’BEG’, ’BEY’, ’BFS’,

’BHD’, ’BHX’, ’BIO’, ’BJV’,

~ ’CMN’, °CPT’, ’CTG’,

’CTy’, °CUN’, °CUR’, ’CWL’,

<s ’DUB’, ’DXB’, ’EBB’,

’EBL’, ’EDI’, ’ESB’, ’EWR’,

< HKG’, ’HRG’, ’HUY’,

»IAD?, *IAH’, ’ICN’, ’IST?,

— ’LAX’, °LCA’, °LGW’,

’LHR’, °LIM’, °L0OS’, ’MAN’,

<s °NBE’, ’NBO’,

’NDR’, °NRT’, °0HD’, °ORD’,

— °PUJ’, ’PVG’, ’RAK’,

’RMF’, °RMO’, ’RUH’, ’SAW’,

— ’TBS’, ’TLV’, ’TNG’,

’TPA’, °TPE’, °TRD’, ’TRF’,

— ’YYZ’, ’ZNZ’

# Bereken de FLIGHT_TYPE kolom
def determine_flight_type (row):

’AHO”,

’BSL’,

’FCO’,

JINV?,

’LPI’,

'NUE’,

’RHO”,

’TFS?,

’AHU’,

'BKK?,

’DAR’,

’FEZ’,

» JED? ,

’MBJ’,

’0RK”,

’SCL,

’TTU?,

’ALC?,

’BUD’,

’FLR’,

’JMK”,

’LPL’,

'NWI?,

’RIX?,

’TIA?,

’ALA,

'BLR’,

’DEL’,

’FOR’,

) JFK? ,

’MCO”’,

’QUD? ,

"SEA?,

’TUN”,

# Indelen Schengen en Non-Schengen airport codes
schengen_airports = [
’AAL’, ’ACE’, ’AES’, ’AGP’,

?AOK?,

’BZG’,

’FNC?,

*JIR?,

’LTN?,

’OLB’,

’RNS”’,

’TLL?,

AMM?,

’BOG?,

’DFW’,

’GIG?,

» INB?,

’MCT?,

’PBM’,

’SFO’,

’UI0’,

’ARN”,

’CAG?,

’FRA’,

’KEF’,

JLUX?,

’0PO°,

’SCQ?,

’TLS?,

7ASR’,

’B0OJ?,

’DIA’,

’GLA’,

>JRO’,

’MEX’,

’PDX’,

’SID?,

’VAR’,

’ATH,

’CDG”,

’FUE’,

’KGS?,

’LYS?,

’0RY?’,

’SEN”’,

TRN?,

JATL?,

'BOM? ,

’DLM”,

’GRU”’,

'KBP?,

"MIA’,

’PEK’,

PSIN?,

’WDH” ,

’BCN”,

’CFE’,

’GDN”,

’KLX?,

’MAD’,

’0SL?,

’SKG?,

’TXL?,

’AUA”,

’BON” ,

’DMM” ,

YGUW?,

'KGL” ,

’MME’,

’PFO’,

’SLC?,

’XMN”,

’BER’,

’CFU’,

’GOA”,

’KRK’,

MAH’,

)0TP?,

’SOF?,

’VCE’,

’AUH’,

’BOS”?,

’DOH”’,

’GYE’,

'KIX?,

MNL”’,

’PHL’,

YSMI?,

’YEG?,

’BES’,

7CHQ7 .

’GOT?,

KRS,

MJT?,

’0vD’,

’sou’,

'VIE?,

7AUS?,

YCAI?,

’DPS’,

’GZP’,

PKWI?,

’MRU’ ,

’PKX?,

’svo’,

’YUL?,

if (pd.isna(row[’IN_AIRPORT’]) and row[’OUT_AIRPORT’] in schengen_airports) or \
(row[’IN_AIRPORT’] in schengen_airports and row[’OUT_AIRPORT’] in schengen_airports):

return ’Schengen’

’BGO”’,

’CPH’,

>GRO,

’KTW?,

’MLA”,

’PDL’,

’SPC?,

’VLC?,

TAYT?,

YCAN?,

’DSA’,

’HAV”,

'KYA?,

’MSP?,

’POS”,

YSXM?,

’YVR?,

elif (pd.isna(row[’IN_AIRPORT’]) and row[’0OUT_AIRPORT’] in non_schengen_airports) or \
(row[’IN_AIRPORT’] in non_schengen_airports or row[’0OUT_AIRPORT’] in non_schengen_airports):

return ’Non Schengen’
else:
return ’Non Schengen’

# Voeg de BAGGAGE_TEMPERATURE kolom toe
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df [’FLIGHT_TYPE’] = df.apply(determine_flight_type, axis=1)

# Correct FLIGHT_TYPE for consistency within the same flight
df [’FLIGHT_TYPE_CORRECTED’] = df.groupby(’IN_FLIGHT_DESIGNATOR’) [’FLIGHT_TYPE’].transform(lambda x: x.
— mode () [0] if not x.mode().empty else ’Non Schengen’)
df [’FLIGHT_TYPE’] = df [’FLIGHT_TYPE_CORRECTED’]
df = df.drop(columns=[’FLIGHT_TYPE_CORRECTED’])

’BGY’,

’CTA’,

’GRZ’,

’KVA?,

’MPL’,

'PMI’,

’SPU?,

’VNO’,

’BAH’,

’CGK?,

’DTW?,

’HGH”,

'LAS?,

)MSQ’ ,

’PTY?,

’SYD?,

’YYC?,
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def add_baggage_temperature(df):
def determine_baggage_temperature (row):
if pd.isnull(row[’SIBT’]) or pd.isnull(row[’SOBT’]):
return ’Cold Transfer’
connection_time = (row[’SOBT’] - row[’SIBT’]).total_seconds() / 60.0
if connection_time < 30:
return ’Cold Transfer’
elif 30 <= connection_time < 50:
return ’Tail-to-Tail’

elif row[’FLIGHT_TYPE’] == ’Non Schengen’ and connection_time < 90:
return ’ShoCon’

elif row[’FLIGHT_TYPE’] == ’>Schengen’ and connection_time < 80:
return ’ShoCon’

elif row[’FLIGHT_TYPE’] == ’Non Schengen’ and connection_time >= 180:
return ’Super Cold Transfer’

elif row[’FLIGHT_TYPE’] == ’Non Schengen’ and connection_time >= 90:
return ’Cold Transfer’

elif row[’FLIGHT_TYPE’] == ’Schengen’ and connection_time >= 80:
return ’Cold Transfer’

else:

return ’Cold Transfer’

df [’BAGGAGE_TEMPERATURE’] = df.apply(determine_baggage_temperature, axis=1)
return df

df = add_baggage_temperature(df)

# Filter de rijen waar BAGGAGE_TEMPERATURE niet gelijk is aan ’Tail-to-Tail’
df = df [df [’BAGGAGE_TEMPERATURE’] != ’Tail-to-Tail’]

# Check row count after filtering
print (£"Number of rows after filtering: {df.shape[0]}")

# Pas ENTRY_AREA en EXIT_AREA aan

def adjust_entry_exit_areas(df):
df [’ENTRY_AREA’] = df [’ENTRY_AREA’] .replace(’D’, ’TSD’)
df [’EXIT_AREA’] = df [’EXIT_AREA’].replace(’TSD’, ’D’)
return df

df = adjust_entry_exit_areas(df)

# Kolom conversie naar de juiste formaten
kolommen_naar_datetime = [
’DATETIME_QOF_ENTRY’, °DATETIME_OF_EXIT’, ’SIBT’, ’AIBT’, ’SOBT’, ’AOBT’,
’DATETIME_STORE_ENTRY’, ’DATETIME_IN_STORE’, ’DATETIME_STORE_EXIT’
]
kolommen_naar_object = [
’ENTRY_LOCATION’, ’ENTRY_NAME’, ’ENTRY_AREA’, ’ENTRY_FUNCTION’, ’EXIT_LOCATION’,
’EXIT_NAME’, ’EXIT_AREA’, ’EXIT_FUNCTION’, ’EXIT_STATION_ID’, °FINAL_STATION_ID’,
’STORE_LOC?, ’IN_FLIGHT_DESIGNATOR’>, °IN_AIRLINE’, ’IN_HANDLER’,
IN_RAMP’, ’IN_AIRPORT’, ’IN_AC_IATA’, ’OUT_FLIGHT_DESIGNATOR’,
’OUT_AIRLINE’, ’OUT_HANDLER’, ’0UT_RAMP’, ’0OUT_AIRPORT’, ’0QUT_AC_IATA’

def convert_columns(df):
for kolom in kolommen_naar_datetime:
df [kolom] = pd.to_datetime(df [kolom], errors=’coerce’)
for kolom in kolommen_naar_object:
df [kolom] = df[kolom].astype(’object’)
return df

df = convert_columns(df)
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# Add body type, baggage type, and flight type columns

def add_body_baggage_flight_type_columns (df):
nabo_values = [’E75°, ’73W’, ’73H’, °73J’, ’E95’, ’319’, °320°, ’321’, ’221’, ’223°, ’290’, ’295’,
— °318°, °32N°, ’32Q’, ’75T’, °7M8’, °CR9’, ’E70’, ’E7W’, ’E90’, ’ER4’, °734°, ’32A°, ’7M9’]
widebody_values = [’74E’, °744°, °T74H’, °763°, ’764°, °772’, °’7T7W’, ’77L’, °788’, ’789’, 781,
— 3327, ’333’, ’359’, ’351’, ’388’, ’339’, ’76W’]
ake_containerized_values = widebody_values + [’321°] # A321 toegevoegd aan containerized_values
akh_containerized_values = [’320°] # AKH container only for A320

df [’IN_BODY_TYPE’] = df [’IN_AC_TIATA’].apply(lambda x: ’NABO’ if pd.notnull(x) and x in nabo_values
— else (°WIBO’ if pd.notnull(x) and x in widebody_values else ’’))

df [’OUT_BODY_TYPE’] = df [’OUT_AC_IATA’].apply(lambda x: ’NABO’ if pd.notnull(x) and x in

— nabo_values else (’WIBO’ if pd.notnull(x) and x in widebody_values else ’’))

df [’ IN_BAGGAGE_TYPE’] = df [’IN_AC_IATA’].apply(lambda x: ’AKE Container’ if pd.notnull(x) and x in
— ake_containerized_values else (’AKH Container’ if pd.notnull(x) and x in

— akh_containerized_values else (’Bulk’ if pd.notnull(x) else ’’)))

df [’OUT_BAGGAGE_TYPE’] = df [’OUT_AC_IATA’].apply(lambda x: ’AKE Container’ if pd.notnull(x) and x
< in ake_containerized_values else (’AKH Container’ if pd.notnull(x) and x in

— akh_containerized_values else (’Bulk’ if pd.notnull(x) else ’’)))

return df
df = add_body_baggage_flight_type_columns (df)

# Nieuwe kolom ODD_SIZED toevoegen
odd_sized_keywords = [
’BB Sorteerband 16°’, ’BB Sorteerband 17’, ’D Bagtrax Rood Sorteerband 90°,
’D Bagtrax Blauw Sorteerband 90’, ’T2 MSW exit naar Sorteerband 707,
’T2 MSO exit naar Sorteerband 70’, ’T3 Sorteerband 25 entry van SWH’,
’T3 Sorteerband 25 entry van SWL’, ’T1 Sorter hoog Sorteerband 507,
’T1 Sorter laag Sorteerband 50’

def determine_odd_sized(exit_name):
if pd.notnull(exit_name) and any(keyword in exit_name for keyword in odd_sized_keywords):
return ’0dd sized’
else:
return ’Normal’

df [’ODD_SIZED’] = df [’EXIT_NAME’].apply(determine_odd_sized)

# Add ramp clusters
def add_ramp_clusters(df):
ramp_clusters = {
’B_platform’: [’A’ + str(i).zfill(2) for i in range(91)] + [’B’ + str(i).zfill(2) for i in
— range(51, 99)],
’B_pier’: [’B’
’C_stem’: [’C’

str(i).z£fil1(2) for
str(i).z£fill1(2) for
’C_head’: [’C’ str(i).zfil1(2) for in range(10, 19)],
’D_stem’: [’D’ str(i) .z£fi11(2) for in range(2, 9)]1,
’D_fork_south’: [’D’ + str(i).zfill(2) for i in range(10, 32)],
’D_fork_north’: [’D’ + str(i).zfill(2) for i in range(41, 100)],
’E_stem’: [’E’ + str(i).z£fill(2) for i in range(2, 8)],
’E_head’: [’E’ + str(i).zfill(2) for i in range(8, 100)],
’F_pier’: [’F’ + str(i).zfill(2) for i in range(1, 100)],
’G_stem’: [’G’ + str(i).z£fill(2) for i in range(2, 7)],
’G_head’: [’G’ + str(i).zfill(2) for i in range(7, 81)]

+ [’H’ + str(i).zfill(2) for i in range(1, 10)]

+ [’H> + str(i) for i in range(10, 99)]

+ [°M? + str(i).zfill(2) for i in range(l, 8)]

+ [7J° + str(i).zfill(2) for i in range(l, 99)1,

in range(13, 37)1,
in range(4, 10)],

+ + + +
e e
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def determine_ramp_cluster(ramp, ramp_clusters):
for cluster, ramps in ramp_clusters.items():
if ramp in ramps:
return cluster
return ’’ # Maak de cel leeg als er geen match is

df [’IN_RAMP_CLUSTER’] = df [’IN_RAMP’].apply(lambda x: determine_ramp_cluster(x, ramp_clusters))
df [’OUT_RAMP_CLUSTER’] = df [’OUT_RAMP’].apply(lambda x: determine_ramp_cluster(x, ramp_clusters))

return df
df = add_ramp_clusters(df)

# Verdeel de data in een set van 2024
df_2024 = df.loc[pd.to_datetime(df [’DATETIME_OF_ENTRY’], errors=’coerce’).dt.year == 2024]

# Controleer rijen per jaar
print (£"Number of rows in 2024 data: {df_2024.shape[0]}")

# Split datetime columns into date and time
def split_datetime_columns(df):
for col in [’DATETIME_OF_ENTRY’, °’DATETIME_OF_EXIT’, ’SIBT’, ’AIBT’, ’SOBT’, ’AOBT’, °
< DATETIME_STORE_ENTRY’, °’DATETIME_IN_STORE’, ’DATETIME_STORE_EXIT’]:
if col in df.columns:
df [£’DATE_{col}’] df [col] .dt.date
df [f’TIME_{col}’] = df[col].dt.time
return df

df_2024 = split_datetime_columns(df_2024)

# Exporteer de gesplitste data naar CSV-bestanden

documents_path = >C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\’
df_2024_path = os.path.join(documents_path, ’Baggage_data_2024.csv’)
df_2024.to_csv(df_2024_path, index=False)

print(f"Data uit 2024 is gexporteerd naar {df_2024_path}")

# Controleer rijen in gexporteerde bestanden
exported_2024 = pd.read_csv(df_2024_path)

print ()
print (£"Number of rows in exported data file for 2024: {exported_2024.shape[0]}")

end_time = time.time()
elapsed_time = end_time - start_time
print(£"Cel runtime: {elapsed_time:.2f} seconden")

Listing 1: Cell 1: Data Loading and Initial Processing
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Appendix A2: Data Duplication for Testing

This section duplicates every 5th row in the dataset to create an expanded version, useful for testing scenarios
with increased data volume. The code reads the original file, loops through each row to add it to a list, and
duplicates every 5th row. The result is saved as a new CSV file with the expanded dataset, and the code
calculates the percentage increase in the row count to verify the duplication process.

import pandas as pd

# Laad het originele bestand ’Baggage_data_2024.csv’ in
df __exported = pd.read_csv(’C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
— Baggage_data_2024.csv’)

# Totaal aantal rijen in het originele bestand
aantal_rijen_origineel = len(df_exported)

# Lijst om de uitgebreide dataset op te slaan
rows = []

# Loop door elke rij en dupliceer elke 5e rij
for i, row in df_exported.iterrows():
rows.append(row) # Voeg de originele rij toe
if (i +1) % 5 == 0:
rows.append(row) # Dupliceer de rij elke 5 rijen

# Maak een nieuw DataFrame met de uitgebreide dataset
expanded_df = pd.DataFrame(rows)

# Totaal aantal rijen in het uitgebreide bestand
aantal_rijen_uitgebreid = len(expanded_df)

# Bereken het percentage toename
percentage_toename = (aantal_rijen_uitgebreid / aantal_rijen_origineel) * 100

# Sla de uitgebreide dataset op in een nieuw CSV-bestand
expanded_df .to_csv(’C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< Baggage_data_2024_extended.csv’, index=False)

# Print de resultaten

print(f"Origineel aantal rijen: {aantal_rijen_origineell}")

print(£"Uitgebreid aantal rijen: {aantal_rijen_uitgebreid}")

print (f"Het uitgebreide bestand bevat {percentage_toename:.2f}), van het oorspronkelijke aantal rijen."
=)

Listing 2: Cell 2: Data Duplication for Testing
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Appendix A3: ID Assignment and Filtering Odd-Sized Baggage

This code section loads the expanded dataset, removes rows labeled as "Odd sized" baggage, and ensures each
baggage item has a unique identifier. If the Koffer_ID column does not already exist, it assigns a unique ID
based on the row index. The updated dataset is saved, and the total number of baggage items remaining is
printed for verification.

import pandas as pd
import time

# Start timer
start_time = time.time()

# Laad de originele datasets

baggage_data_2024_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
— Baggage_data_2024_extended.csv"

df_2024 = pd.read_csv(baggage_data_2024_path)

# Verwijder rijen met 0Odd Sized baggage
df_2024 = df_2024[df_2024[’0DD_SIZED’] !'= ’0dd sized’]

# Controleer of ’Koffer_ID’ al is toegevoegd; zo niet, voeg ze toe
if ’Koffer_ID’ not in df_2024.columns:
df _2024[’Koffer_ID’] = df_2024.index

# Exporteer de datasets opnieuw met de nieuwe ID-kolom (indien nodig)
df_2024.to_csv(baggage_data_2024_path, index=False)

# Tel het aantal koffers in de dataset na bewerking

total_bags_2024 = len(df_2024)

print (f"Controle voltooid: Unieke ID’s zijn toegevoegd aan elke koffer in de datasets.")
print(£"Totaal aantal koffers in 2024 dataset (na verwijderen van 0dd Sized bags): {total_bags_2024}")

# End timer

end_time = time.time()

elapsed_time = end_time - start_time

print (£"Cel runtime: {elapsed_time:.2f} seconden")

Listing 3: Cell 3: ID Assignment and Filtering Odd-Sized Baggage
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Appendix A4: Simulation of Baggage Unloading and Container Assignment

This code simulates the unloading of baggage items and their assignment to containers using the SimPy library
for discrete event simulation. The code loads a dataset, processes each baggage item’s entry and scheduled
times, and calculates connection times. Based on each baggage type, items are grouped into containers (or
karren), prioritizing those with lower temperatures when filling capacity. A unique ID is generated for each
container, and attributes such as container type, temperature category, and unloading times are recorded. The
results, including baggage-to-container relations and container details, are saved as separate CSV files.

import pandas as pd

import simpy

import numpy as np

import random

from datetime import timedelta
import time

# Start timer
start_time = time.time()

# Random seed for reproducibility
random.seed (42)

# Laad de dataset

file_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
> Baggage_data_2024_extended.csv"

df = pd.read_csv(file_path)

# Converteer de tijden naar datetime

df [’DATETIME_OF_ENTRY’] = pd.to_datetime (df [’DATETIME_OF_ENTRY’])

df [’AIBT’] = pd.to_datetime(df [’DATE_AIBT’] + ’> > + df [’TIME_AIBT’])
df [’SOBT’] = pd.to_datetime(df [’DATE_SOBT’] + *> ° + df [’TIME_SOBT’])
df [’SIBT’] = pd.to_datetime(df [’DATE_SIBT’] + ’> > + df[’TIME_SIBT’])

# Bereken de connectietijd in minuten
df [’connectietijd’] = (df[’SOBT’] - df[’SIBT’]).dt.total_seconds() / 60.0

# Voeg ’Latest_time_bag’ toe (SOBT min 25 minuten)
df [’Latest_time_bag’] = df [’SOBT’] - pd.Timedelta(minutes=25)

# Initialiseer de lijsten voor de resultaten
koffer_to_container = []
containers = []

# SimPy omgeving en bagageband resource
env = simpy.Environment ()

# Initialiseer een globale container teller om unieke ID’s te maken
container_counter = 0

# Functie om koffers uit te laden en te verwerken
def unload_baggage(env, flight_data, baggage_type, items_per_container, in_ramp_cluster, flight_code,
— aibt):
global container_counter # Gebruik een globale teller voor unieke container-ID’s
# Resource voor bagageband met beperkte capaciteit (bijv. 1 band tegelijk actief)
bagageband = simpy.Resource(env, capacity=1)

with bagageband.request() as request:
yield request

# Wachttijd voor het begin van uitladen

delay = random.uniform(1620, 1680)

unload_start_time = aibt + timedelta(seconds=delay)

yield env.timeout(delay) # Simuleer tijd totdat het uitladen begint
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# Karren vormen per bagagetemperatuur
karren = {’ShoCon’: [], ’Cold Transfer’: [], ’Super Cold Transfer’: []}
for temperatuur, temp_data in flight_data.groupby(’BAGGAGE_TEMPERATURE’) :
for _, bagage in temp_data.iterrows():
# Simuleer de tijd die het kost om elke koffer uit te laden
if baggage_type == ’Bulk’:
unload_time_variability = random.uniform(6, 7.5) # Tijd voor Bulk bagage
else:
unload_time_variability = random.triangular(GO, 100, 80) # Tijd voor containers
yield env.timeout(unload_time_variability) # Tijd voor het uitladen van een enkele
koffer
karren[temperatuur] .append(bagage)

# Vul de karren/containers met koffers en vul de resterende ruimte aan met lagere temperatuur
koffers
for temp, bags in karren.items():
while bags:

kar = bags[:items_per_container] # Vul een container

bags = bags[items_per_container:] # Verwijder de koffers die zijn toegewezen aan de
container

center_of _gravity = min(kar, key=lambda x: x[’connectietijd’]) [’EXIT_AREA’] if temp ==
’ShoCon’ else pd.Series([b[’EXIT_AREA’] for b in kar]).mode() [0]

# Gebruik een unieke container-ID door de teller te gebruiken

container_id = f"{flight_code}_{aibt.strftime (’%Y%m/d/H/AM%S )} _{temp}_{
container_counter}"

container_counter += 1 # Verhoog de teller na elke container creatie

# Controleer of de kar/container vol zit, zo niet, vul deze aan met Cold Transfer of
Super Cold Transfer
if len(kar) < items_per_container and temp == ’ShoCon’:
remaining_capacity = items_per_container - len(kar)
cold_transfer_bags = karren[’Cold Transfer’][:remaining_capacity]
kar.extend(cold_transfer_bags)
karren[’Cold Transfer’] = karren[’Cold Transfer’] [remaining_capacity:] # Update
de Cold Transfer lijst

if len(kar) < items_per_container and temp == ’Cold Transfer’:
remaining_capacity = items_per_container - len(kar)
super_cold_transfer_bags = karren[’Super Cold Transfer’][:remaining_capacity]
kar.extend (super_cold_transfer_bags)
karren[’Super Cold Transfer’] = karren[’Super Cold Transfer’] [remaining_capacity:]

# Update de Super Cold Transfer lijst
# Tijdsopbouw voor het einde van het uitladen
if baggage_type == ’Bulk’:
# Voor Bulk bagage (30 koffers per kar)
unload_end_time = unload_start_time + timedelta(seconds=30 * random.uniform(6,
7.5))
else:
# Voor containers
unload_end_time = unload_start_time + timedelta(seconds=random.triangular(60, 100,
80))

# Voeg koffer-naar-container relaties toe
for koffer in kar:
koffer_to_container.append ({
’Koffer_ID’: koffer[’Koffer_ID’],
’Container_Zwaartepunt’: center_of_gravity,
’ContainerID’: container_id,
’Latest_time_bag’: koffer[’Latest_time_bag’]
1))
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# Voeg containers toe met de nieuwe kolommen ’tijd_eind_container’ en ’baggage_type’
containers.append ({
’tijd’: unload_start_time.strftime(’}Y-%m-%d %H:%M:%S’),
’dag’: unload_start_time.strftime(’%d-%m-%Y’),
’vluchtcode’: flight_code,
’aantal_koffers’: len(kar),
’IN_RAMP_CLUSTER’: in_ramp_cluster,
’KAR_TEMPERATURE’: temp,
’center_of_gravity’: center_of_gravity,
’ContainerID’: container_id,
’Latest_time_container’: min([b[’Latest_time_bag’] for b in kar]),
’tijd_eind_container’: unload_end_time.strftime(’)Y-%m-%d %H:%M:%S’), # Voeg
<> tijd_eind_container toe
’baggage_type’: baggage_type # Voeg baggage_ type toe
b

# Simulatieproces voor meerdere dagen en vluchten

start_date = "2024-04-13"

end_date = "2024-06-30"

capacity_per_baggage_type = {’Bulk’: 30, ’AKE Container’: 38, ’AKH Container’: 28}

for single_date in pd.date_range(start=start_date, end=end_date):
specific_date = single_date.strftime("}Y-%m-%d")
df _day = df [df [’DATE_DATETIME_OF_ENTRY’] == specific_date]

if df_day.empty:
print(£"Geen data voor {specific_date}, overslaan...")
continue

for (flight_code, aibt), flight_data in df_day.groupby([’IN_FLIGHT_DESIGNATOR’, ’AIBT’]):
baggage_type = flight_datal[’IN_BAGGAGE_TYPE’].iloc[0].strip()
items_per_container = capacity_per_baggage_type.get (baggage_type, 30)
in_ramp_cluster = flight_datal[’IN_RAMP_CLUSTER’].iloc[0]

# Start SimPy proces voor elke vlucht
env.process(unload_baggage(env, flight_data, baggage_type, items_per_container,
— in_ramp_cluster, flight_code, aibt))

# SimPy run
env.run()

# Exporteer koffer-to-container data met ’Latest_time_bag’

koffer_container_output_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
— koffer_to_container_output.csv"

koffer_container_df = pd.DataFrame(koffer_to_container)

koffer_container_df.to_csv(koffer_container_output_path, index=False)

# Exporteer container data met ’tijd_eind_container’ en ’baggage_type’

containers_output_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< containers_output.csv"

containers_df = pd.DataFrame(containers)

# Voeg de Koffer_ID kolom toe aan de containers_df door te groeperen op ContainerID

koffer_groepering = koffer_container_df.groupby(’ContainerID’) [’Koffer_ID’].apply(lambda x: ’,’.join(x
— .astype(str))) .reset_index()

containers_df = containers_df .merge(koffer_groepering, on=’ContainerID’, how=’left’)

containers_df.to_csv(containers_output_path, index=False)
# End timer
end_time = time.time()

elapsed_time = end_time - start_time
print(£"Cel runtime: {elapsed_time:.2f} seconden")
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Listing 4: Cell 4: Simulation of Baggage Unloading and Container Assignment
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Appendix A5: Calculation of Arrival Times and Capacity-Based Baggage Process-
ing

This code calculates the arrival times of containers at airport infeed points based on predefined travel times
between ramps and infeed areas. After calculating the arrival times, the code checks the capacity limits of
each infeed point per quarter hour. Baggage items are processed according to their temperature categories,
prioritizing ShoCon items first, followed by Cold Transfer and Super Cold Transfer, to avoid exceeding infeed
capacity. Remaining baggage beyond the capacity limit is held in a queue for the next processing interval. The
results, including processed arrival times and baggage quantities per infeed area, are saved in a CSV file.

import pandas as pd

import numpy as np

from datetime import timedelta
import time

# Start timer using time.time() to ensure correct time tracking
start_time = time.time()

# Laad de containers_output dataset

containers_output_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< containers_output.csv"

containers_df = pd.read_csv(containers_output_path)

# Reistijden tussen IN_RAMP_CLUSTER en Infeed Areas (in seconden)

travel_times = {
(’B_platform’, °C’): 451, (’B_platform’, ’D’): 441, (’B_platform’, ’W’): 549, (’B_platform’, ’Z’):
— 271, (°B_platform’, ’E’): 461,
(’B_pier’, ’C’): 336, (’B_pier’, ’D’): 325, (’B_pier’, ’W?): 433, (’B_pier’, ’Z’): 155, (’B_pier’,
— E’): 345,
(’C_stem’, ’C?): 241, (°C_stem’, ’D’): 198, (’°C_stem’, ’W’): 338, (’C_stem’, ’Z’): 136, (°C_stem’,
— JE’): 250,
(°C_head’, ’C?): 273, (°C_head’, °D’): 189, (’°C_head’, ’W’): 370, (’°C_head’, ’Z’): 168, (°C_head’,
«— JE’): 282,
(’D_stem’, °C?): 190, (’°D_stem’, ’D’): 93, (’D_stem’, ’W’): 287, (°D_stem’, ’Z’): 182, (’D_stem’,
— ’E’): 200,
(’D_fork_south’, ’C?): 257, (’D_fork_south’, ’D’): 76, (’D_fork_south’, ’W’): 354, (’D_fork_south’
<~ , ’Z7): 248, (°D_fork_south’, ’E’): 266,
(’D_fork_north’, °C’): 262, (°D_fork_north’, ’D?): 84, (°D_fork_north’, ’W’): 360, (’D_fork_north’
<« , ’Z?): 254, (°D_fork_north’, ’E’): 213,
(’E_stem’, °C?): 124, (’E_stem’, ’D’): 202, (’E_stem’, ’W’): 221, (’E_stem’, ’Z’): 207, (’E_stem’,
— ’E’): 88,
(’E_head’, °C?): 229, (’E_head’, ’D’): 248, (’E_head’, ’W’): 326, (’E_head’, ’Z’): 312, (’E_head’,
— JE’): 19,
(’F_pier’, °C’): 177, (°F_pier’, °D’): 299, (’F_pier’, ’W’): 191, (’F_pier’, ’Z’): 301, (’F_pier’,
— JE’): 227,
(’G_stem’, °C?): 199, (’°G_stem’, ’D’): 322, (°G_stem’, ’W’): 136, (°G_stem’, ’Z’): 324, (’G_stem’,
< E’): 250,
(’G_head’, °C?): 273, (’G_head’, ’D’): 395, (°G_head’, ’W?): 210, (°G_head’, ’Z’): 397, (’G_head’,
<~ JE’): 324

}

# Capaciteit per infeed area per kwartier (aangenomen 1 uur = 4 kwartieren)
capacities_per_hour = {’D’: 4500, ’W’: 900, ’Z’: 2000, ’E’: 3600}
capacities_per_quarter = {key: val / 4 for key, val in capacities_per_hour.items()}
total_capacity_per_hour = 11000

total_capacity_per_quarter = 2750

# Functie om koffers te verwerken en te zorgen dat ze niet boven de capaciteit gaan

def process_baggage_with_capacity_limit(arrival_df, capacity_per_quarter):
result = []
waiting_bags = {’ShoCon’: [], ’Cold Tramsfer’: [], ’Super Cold Transfer’: []} # Wachtrijen voor
— koffers per type

# Groepeer de data per kwartier
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for time, group in arrival_df.groupby(’aankomst_tijd’):
total_processed = 0 # Houd bij hoeveel koffers al verwerkt zijn

# Prioriteit: eerst ShoCon, dan Cold Transfer, dan Super Cold Transfer
for temp_type in [’ShoCon’, ’Cold Transfer’, ’Super Cold Transfer’]:
temp_bags = group[group[’KAR_TEMPERATURE’] == temp_type] [’aantal_koffers’].sum() + sum(
— waiting_bags[temp_typel)
if total_processed + temp_bags <= capacity_per_quarter:
# Alle koffers kunnen verwerkt worden
result.append((time, temp_bags, temp_type))
total_processed += temp_bags
waiting_bags[temp_type]l = [1 # Leeg de wachtrij voor deze temperatuur
else:
# Verwerk koffers binnen de capaciteit en zet de rest in de wacht
if total_processed < capacity_per_quarter:
processed_bags = capacity_per_quarter - total_processed
remaining_bags = temp_bags - processed_bags
result.append((time, processed_bags, temp_type))
waiting_bags[temp_type] = [remaining_bags]
total_processed = capacity_per_quarter
else:
# Geen capaciteit meer over, zet alle koffers in de wacht
waiting_bags [temp_type] . append (temp_bags)

return result

# Bereken aankomsttijden bij infeed points
arrival_times = []

for _, row in containers_df.iterrows():
vertrekpunt = row[’IN_RAMP_CLUSTER’]
bestemming = row[’center_of_gravity’]
if (vertrekpunt, bestemming) in travel_times:
travel_time = travel_times[(vertrekpunt, bestemming)]
start_time_trein = pd.to_datetime(row[’tijd_eind_container’])
arrival_time = start_time_trein + timedelta(seconds=travel_time)
# Voeg de ontbrekende kolommen toe
arrival_times.append((arrival_time, row[’aantal_koffers’], row[’KAR_TEMPERATURE’], bestemming)
=)

# Creer een DataFrame voor de aankomsttijden

arrival_df = pd.DataFrame(arrival_times, columns=[’aankomst_tijd’, aantal_koffers’, ’KAR_TEMPERATURE’
— , ’bestemming’])

arrival_df [’aankomst_tijd’] = arrival_df[’aankomst_tijd’].dt.ceil(’15min’)

# Verwerk koffers met capaciteitslimieten
results = []

for infeed_point in capacities_per_quarter.keys():
filtered_df = arrival_df [arrival_df[’bestemming’] == infeed_point]
capacity_per_quarter = capacities_per_quarter[infeed_point]
processed_bags = process_baggage_with_capacity_limit(filtered_df, capacity_per_quarter)
# Zorg ervoor dat je alle benodigde kolommen meeneemt in de resultaten
results.extend([(infeed_point, time, bags, temp, time.date())
for time, bags, temp in processed_bags])

# Maak een DataFrame van de verwerkte data, exclusief de ongewenste kolommen
processed_df = pd.DataFrame(results, columns=[’infeed_point’, ’aankomst_tijd’, ’aantal_koffers’, ’
— KAR_TEMPERATURE’, ’dag’])

# Sla de resultaten op in een CSV-bestand

processed_df .to_csv("C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< aankomsttijd_containers.csv", index=False)
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# End timer using time.time()
end_time = time.time()

# Calculate the elapsed time in seconds
elapsed_time = end_time - start_time

print(f"Cel runtime: {elapsed_time:.2f} seconden")

Listing 5: Cell 5: Calculation of Arrival Times and Capacity-Based Baggage Processing
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Appendix A6: Processing and Grouping Known Arrivals

This code processes known baggage arrival data by filtering and grouping entries by area and exact entry
time. After loading the dataset, irrelevant rows are removed, and specific values in the ENTRY_AREA column are
standardized. A combined datetime column is created, and the data is grouped by ENTRY_AREA and entry time
to count baggage arrivals per time interval. The final grouped data, containing counts of baggage items per
entry area and timestamp, is exported to a CSV file.

import pandas as pd
import os

# Laad de dataset Baggage_data_2024

baggage_data_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\Baggage_data_2024
— .csv"

df = pd.read_csv(baggage_data_path)

# Filter alleen de relevante kolommen
df _known = df [[’ENTRY_AREA’, °DATE_DATETIME_OF_ENTRY’, ’TIME_DATETIME_OF_ENTRY’]].copy()

# Verwijder rijen waar ENTRY_AREA ’C’ is
df _known = df_known[df_known[’ENTRY_AREA’] !'= °C’]

# Vervang UQE door E en TSD door D in ENTRY_AREA
df _known[’ENTRY_AREA’] = df _known[’ENTRY_AREA’] .replace({’UQE’: ’E’, ’TSD’: ’D’})

# Converteer DATE_DATETIME_OF_ENTRY en TIME_DATETIME_OF_ENTRY naar datetime

df _known [’DATE_DATETIME_OF_ENTRY’] = pd.to_datetime(df_known[’DATE_DATETIME_OF_ENTRY’], errors=’coerce
— )

df _known [’TIME_DATETIME_OF_ENTRY’] = pd.to_datetime(df_known[’TIME_DATETIME_OF_ENTRY’], errors=’coerce
- 7)

# Maak een nieuwe kolom voor de volledige datetime
df _known [’DATETIME_OF_ENTRY’] = df_known[’DATE_DATETIME_OF_ENTRY’] + pd.to_timedelta(df_known[’
— TIME_DATETIME_OF_ENTRY’].dt.strftime (*%H:%M:%S’))

# Groepeer per ENTRY_AREA en exacte tijd
df _grouped = df_known.groupby([’ENTRY_AREA’, ’DATETIME_OF_ENTRY’]).size().reset_index(name=’
<3 aantal_koffers?’)

# Exporteer het bekende aankomstenbestand naar CSV

known_arrivals_output_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< Known_arrivals_measured.csv"

df _grouped.to_csv(known_arrivals_output_path, index=False)

print (£"Het bestand ’Known_arrivals_measured.csv’ is succesvol gexporteerd naar {
— known_arrivals_output_pathl}.")

Listing 6: Cell 6: Processing and Grouping Known Arrivals
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Appendix A7: Visualization of Simulated vs. Actual Baggage Occupancy

This code visualizes the comparison between simulated and actual baggage occupancy per 15-minute interval. It
first calculates the average baggage count for each interval across multiple days for both datasets. Two plots are
generated to compare simulated and actual occupancy: a side-by-side bar plot and a line plot, both displaying
the average number of bags over all days. These visualizations highlight any differences in occupancy trends,
providing insights into the simulation’s accuracy against real data.

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

# Load the processed data for simulated arrivals

processed_df = pd.read_csv("C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< aankomsttijd_containers.csv")

processed_df [’aankomst_tijd’] = pd.to_datetime(processed_df [’aankomst_tijd’])

# Groepeer per dag en per 15-minuten interval voor gesimuleerde data

processed_df [’time_only’] = processed_df [’aankomst_tijd’].dt.ceil(’15T’).dt.time

processed_df [’date’] = processed_df[’aankomst_tijd’].dt.date

daily_occupancy_simulated = processed_df.groupby([’date’, ’time_only’]) [’aantal_koffers’].sum().
— reset_index()

# Bereken het gemiddelde per 15 minuten interval over alle dagen

average_occupancy_simulated = daily_occupancy_simulated.groupby(’time_only’) [’aantal_koffers’].mean().
< reset_index()

average_occupancy_simulated[’time_only’] = pd.to_datetime(average_occupancy_simulated[’time_only’].
— astype(str))

# Load the known arrivals data (actual data)

df _known = pd.read_csv("C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
<3 Known_arrivals_measured.csv")

df _known [’DATETIME_OF_ENTRY’] = pd.to_datetime(df_known[’DATETIME_OF_ENTRY’])

# Groepeer per dag en per 15-minuten interval voor actuele data

df _known[’time_only’] = df_known[’DATETIME_OF_ENTRY’].dt.ceil(’15T’).dt.time

df _known[’date’] = df_known[’DATETIME_OF_ENTRY’].dt.date

daily_occupancy_actual = df_known.groupby([’date’, ’time_only’]) [’aantal_koffers’].sum().reset_index()

# Bereken het gemiddelde per 15 minuten interval over alle dagen

average_occupancy_actual = daily_occupancy_actual.groupby(’time_only’) [’aantal_koffers’].mean().
— reset_index()

average_occupancy_actual[’time_only’] = pd.to_datetime(average_occupancy_actual[’time_only’].astype(
— str))

# Merge both datasets on ’time_only’ for comparison
merged_data = pd.merge(average_occupancy_simulated, average_occupancy_actual, on=’time_only’, suffixes
<« =(’_simulated’, ’_actual’))

# Create side-by-side bar plots for the average over all days

plt.figure(figsize=(12, 6))

plt.bar(merged_datal[’time_only’] - pd.Timedelta(minutes=3.75), merged_datal[’aantal_koffers_simulated’
< ], width=0.004, label=’Simulated’, color=’green’)

plt.bar(merged_data[’time_only’] + pd.Timedelta(minutes=3.75), merged_data[’aantal_koffers_actual’],
< width=0.004, label=’Actual’, color=’blue’)

plt.gca() .xaxis.set_major_formatter (mdates.DateFormatter (’/H:%M’))

plt.gca() .xaxis.set_major_locator(mdates.HourLocator(interval=1))

plt.xlabel(’Time of Day’)

plt.ylabel(’Number of Bags’)

plt.title(f’Comparison of Simulated and Actual Average Baggage Occupancy per 15-Minute Interval’)
plt.xticks(rotation=45)

plt.grid(axis=’y’, linestyle=’--’)

plt.legend()
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plt.

show ()

# Create line plot for the average over all days

plt.
plt.

plt.

plt.
plt.
plt.
plt.
plt.

plt

plt.

plt.

figure(figsize=(12, 6))

plot(merged_data[’time_only’], merged_data[’aantal_koffers_simulated’], label=’Simulated’, marker=
< ’0’, color=’green’)

plot (merged_data[’time_only’], merged_datal[’aantal_koffers_actual’], label=’Actual’, marker=’o’,
< color=’blue’)

gca() .xaxis.set_major_formatter (mdates.DateFormatter (*/H:%M*))
gca() .xaxis.set_major_locator(mdates.HourLocator(interval=1))
xlabel(’Time of Day’)

ylabel (’Number of Bags’)

xticks(rotation=45)
.grid(axis=’y’, linestyle=’--’)
legend ()

show()

Listing 7: Cell 7: Visualization of Simulated vs. Actual Baggage Occupancy
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Appendix A8: Daily Comparison of Simulated vs. Actual Baggage Occupancy for
a Specific Date

This code compares simulated and actual baggage occupancy on a specific date, chosen as June 30, 2024. After
loading and filtering both datasets for the selected date, baggage counts are grouped into 15-minute intervals.
Two visualizations are generated: a side-by-side bar plot and a line plot, displaying the occupancy trends for
the chosen date. These plots allow for a direct comparison of simulation accuracy for a single day, showing
potential discrepancies between simulated and actual baggage flow patterns.

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

# Kies de specifieke datum
chosen_date = ’2024-06-30’

# Load the processed data for simulated arrivals

processed_df = pd.read_csv("C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< aankomsttijd_containers.csv")

processed_df [’aankomst_tijd’] = pd.to_datetime(processed_df[’aankomst_tijd’])

# Filter op de gekozen datum
processed_df = processed_df [processed_df[’aankomst_tijd’].dt.date == pd.to_datetime(chosen_date).date
— 01

# Groepeer per 15-minuten interval voor gesimuleerde data

processed_df [’time_only’] = processed_df [’aankomst_tijd’].dt.ceil(’15T’).dt.time

average_occupancy_simulated = processed_df.groupby(’time_only’) [’aantal_koffers’].sum() .reset_index()

average_occupancy_simulated[’time_only’] = pd.to_datetime(average_occupancy_simulated[’time_only’].
< astype(str))

# Load the known arrivals data (actual data)

df _known = pd.read_csv("C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< Known_arrivals_measured.csv")

df _known [’DATETIME_OF_ENTRY’] = pd.to_datetime(df_known[’DATETIME_OF_ENTRY’])

# Filter op de gekozen datum
df _known = df_known[df_known[’DATETIME_OF_ENTRY’].dt.date == pd.to_datetime(chosen_date).date()]

# Groepeer per 15-minuten interval voor actuele data

df _known[’time_only’] = df_known[’DATETIME_OF_ENTRY’].dt.ceil(’15T’).dt.time

average_occupancy_actual = df_known.groupby(’time_only’) [’aantal_koffers’].sum().reset_index()

average_occupancy_actual[’time_only’] = pd.to_datetime(average_occupancy_actual[’time_only’].astype(
— str))

# Merge both datasets on ’time_only’ for comparison
merged_data = pd.merge(average_occupancy_simulated, average_occupancy_actual, on=’time_only’, suffixes
«— =(’_simulated’, ’_actual’))

# Create side-by-side bar plots for the chosen date

plt.figure(figsize=(12, 6))

plt.bar(merged_data[’time_only’] - pd.Timedelta(minutes=3.75), merged_data[’aantal_koffers_simulated’
< 1, width=0.004, label=’Simulated’, color=’green’)

plt.bar(merged_datal[’time_only’] + pd.Timedelta(minutes=3.75), merged_datal[’aantal_koffers_actual’],
< width=0.004, label=’Actual’, color=’blue’)

plt.gca() .xaxis.set_major_formatter (mdates.DateFormatter (°/H:%M’))

plt.gca() .xaxis.set_major_locator(mdates.HourLocator(interval=1))

plt.xlabel(’Time of Day’)

plt.ylabel (’Number of Bags’)

plt.title(f’Comparison of Simulated and Actual Baggage Occupancy on {chosen_date}’)
plt.xticks(rotation=45)

plt.grid(axis=’y’, linestyle=’--’)

plt.legend()
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plt.

show ()

# Create line plot for the chosen date

plt.
plt.

plt.

plt.
plt.
plt.
plt.
plt.

plt

plt.

plt.

figure(figsize=(12, 6))

plot(merged_data[’time_only’], merged_data[’aantal_koffers_simulated’], label=’Simulated’, marker=
< ’0’, color=’green’)

plot (merged_data[’time_only’], merged_datal[’aantal_koffers_actual’], label=’Actual’, marker=’o’,
< color=’blue’)

gca() .xaxis.set_major_formatter (mdates.DateFormatter (*/H:%M*))
gca() .xaxis.set_major_locator(mdates.HourLocator(interval=1))
xlabel(’Time of Day’)

ylabel (’Number of Bags’)

xticks(rotation=45)
.grid(axis=’y’, linestyle=’--’)
legend ()

show()

Listing 8: Cell 8: Daily Comparison of Simulated vs. Actual Baggage Occupancy for a Specific Date
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Appendix A9: Error Metrics Calculation for Simulated vs. Actual Baggage Occu-
pancy

This code calculates error metrics to assess the accuracy of the simulated baggage occupancy against actual
data. After loading both datasets and grouping baggage counts by 15-minute intervals, the data is merged for
comparison. Three metrics are calculated: Root Mean Square Error (RMSE), Mean Absolute Percentage Error
(MAPE), and Mean Absolute Error (MAE). These metrics quantify the deviation of simulated results from
actual data, providing insight into the performance and reliability of the simulation.

import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error

# Laad de datasets met gesimuleerde en actuele gegevens

processed_df = pd.read_csv("C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< aankomsttijd_containers.csv")

df _known = pd.read_csv("C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< Known_arrivals_measured.csv")

# Zorg ervoor dat de datums correct worden geparsed
processed_df [’aankomst_tijd’] = pd.to_datetime(processed_df [’aankomst_tijd’])
df _known[’DATETIME_OF_ENTRY’] pd.to_datetime (df _known[’DATETIME_QF_ENTRY’])

# Bereid de datasets voor en groepeer de gegevens per tijdstip
processed_df [’time_only’] = processed_df[’aankomst_tijd’].dt.ceil(’15T’).dt.time
df _known[’time_only’] = df_known[’DATETIME_OF_ENTRY’].dt.ceil(’15T’).dt.time

average_occupancy_simulated = processed_df.groupby(’time_only’) [’aantal_koffers’].sum() .reset_index()
average_occupancy_actual = df_known.groupby(’time_only’) [’aantal_koffers’].sum().reset_index()

# Merge beide datasets voor de vergelijking
merged_data = pd.merge(average_occupancy_simulated, average_occupancy_actual, on=’time_only’, suffixes
s =(’_simulated’, ’_actual’))

# Bereken RMSE

rmse = np.sqrt(mean_squared_error (merged_datal[’aantal_koffers_actual’], merged_datal’
< aantal_koffers_simulated’]))

print (f’Root Mean Square Error (RMSE): {rmse}’)

# Bereken MAPE
def mean_absolute_percentage_error(y_true, y_pred):
return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

mape = mean_absolute_percentage_error(merged_data[’aantal_koffers_actual’], merged_datal’
< aantal_koffers_simulated’])
print(f’Mean Absolute Percentage Error (MAPE): {mape:.2f}},’)

# Bereken gemiddelde absolute fout (MAE) als aanvullende metriek
mae = np.mean(np.abs(merged_data[’aantal_koffers_actual’] - merged_data[’aantal_koffers_simulated’]))
print (f’Mean Absolute Error (MAE): {mae}’)

Listing 9: Cell 9: Error Metrics Calculation for Simulated vs. Actual Baggage Occupancy
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Appendix A10: Forecasting Baggage Occupancy Using Auto ARIMA

This code applies the Auto ARIMA model to forecast baggage occupancy rates in 15-minute intervals for June
30, 2024. It begins by preparing and aggregating historical data up to June 29, 2024, creating a training set with
15-minute interval counts. Auto ARIMA is then used to determine optimal parameters, taking into account
daily seasonality (96 intervals per day). Finally, the trained model generates a forecast for June 30, providing
occupancy predictions in 15-minute segments for the entire day.

import pandas as pd

import numpy as np

from pmdarima import auto_arima
import warnings
warnings.filterwarnings(’ignore’)

# Dataset voorbereiden zoals eerder beschreven

file_path = ’C:\\Users\\Nijdam_B\\Documents\\Baggage_data_2024.csv’
data = pd.read_csv(file_path)

data[’SIBT’] = pd.to_datetime(data[’SIBT’])

data.set_index(’SIBT’, inplace=True)

# Filter de data tot en met 29-06-2024 voor de trainingsset
train_data = datal[data.index < ’2024-06-30’]

# Aggregatie van het aantal koffers per 15 minuten interval voor de trainingsset
baggage_per_15min = train_data.resample(’15T’).size()

# Stap 1: Gebruik auto_arima om de beste parameters te vinden voor data tot en met 29-06-2024
model = auto_arima(baggage_per_15min, seasonal=True, m=96, # Seizoenslengte van 96 (15-min interval
< voor 1 dag)

trace=True, # Laat de voortgang zien
suppress_warnings=True, # Onderdruk waarschuwingen
stepwise=True) # Stap-voor-stap optimalisatie voor snelheid

# Stap 2: Train het model met de volledige dataset tot en met 29-06-2024
model.fit(baggage_per_15min)

# Stap 3: Voorspel de bezettingsgraden voor 30-06-2024 (96 kwartieren voor een hele dag)
forecast = model.predict(n_periods=96)

# Print de voorspellingen
print (£"Voorspelde bezettingsgraden voor 30-06-2024 (in kwartieren): {forecastl}")

Listing 10: Cell 10: Forecasting Baggage Occupancy Using Auto ARIMA
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Appendix Al1l: Generating Simulated Bag-Level Data

This code expands simulated container-level arrival data into individual bag entries for analysis. It loads the
arrival dataset and iterates through each row, creating individual entries for each bag based on the number of
bags per container. The expanded data includes the infeed point, arrival time, temperature classification, and
arrival day for each bag. This bag-level dataset is then exported as a CSV file for further use in simulation or
forecasting.

import pandas as pd

import numpy as np

from datetime import timedelta
import time

# Start de timer
start_time = time.time()

# Laad de gesimuleerde arrivals dataset

file_path = ’C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\aankomsttijd_containers.
— csv’

processed_df = pd.read_csv(file_path)

# Creer een lege lijst om elke koffer als rij te representeren
simulated_bags = []

# Loop door elke rij en genereer individuele koffers
for _, row in processed_df.iterrows():
for i in range(int(row[’aantal_koffers’])):
simulated_bags.append ({
’infeed_point’: row[’infeed_point’],
’aankomst_tijd’: row[’aankomst_tijd’],
’KAR_TEMPERATURE’: row[’KAR_TEMPERATURE’],
’dag’: row[’dag’]
1))

# Zet de lijst om naar een DataFrame
simulated_bags_df = pd.DataFrame(simulated_bags)

# Exporteer naar CSV
output_path = ’C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\simulated_bags.csv’
simulated_bags_df .to_csv(output_path, index=False)

# Print het aantal gesimuleerde koffers
print (f"Aantal gesimuleerde koffers: {len(simulated_bags_df)}")

# End de timer

end_time = time.time()

runtime = end_time - start_time

print (f’Runtime van de code: {runtime:.2f} seconden’)

Listing 11: Cell 11: Generating Simulated Bag-Level Data
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Appendix A12: SARIMA Forecasting Model for Baggage Occupancy on June 30,
2024

This code uses a SARIMA model to forecast baggage occupancy rates in 15-minute intervals for June 30, 2024.
After preparing the dataset, data up to June 29 is used to train the model, while June 30 serves as the test set.
SARIMA parameters are chosen for daily seasonality, and the model forecasts occupancy for 96 intervals over the
day. The forecast is visualized, and three accuracy metrics are calculated: Root Mean Squared Error (RMSE),
Symmetrical Mean Absolute Percentage Error (SMAPE), and Mean Absolute Error (MAE), quantifying the
model’s prediction accuracy.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from statsmodels.tsa.statespace.sarimax import SARIMAX

from sklearn.metrics import mean_squared_error, mean_absolute_error
import time

# Start de timer
start_time = time.time()

# Laad het gesimuleerde koffers dataset
file_path = ’C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\simulated_bags.csv’
data = pd.read_csv(file_path)

# Zorg ervoor dat de ’aankomst_tijd’ kolom in datetime-formaat is
data[’aankomst_tijd’] = pd.to_datetime(datal[’aankomst_tijd’])

# Filter de data tot en met 29-06-2024 voor de trainingsset
train_data = datal[data[’aankomst_tijd’] < ’2024-06-30"]

# Stap 2: Aggregatie van het aantal koffers per 15 minuten interval
train_data.set_index(’aankomst_tijd’, inplace=True)
baggage_per_15min = train_data.resample(’15T’).size()

# Definieer de testdata voor 30-06-2024
test_data = dataldata[’aankomst_tijd’] >= ’2024-06-30]

# Aggregatie van het aantal koffers per 15 minuten interval voor de testdata
baggage_per_15min_test = test_data.set_index(’aankomst_tijd’).resample(’15T’).size()

# Stap 3: Gebruik SARIMA model met de beste parameters
best_order = (1, 1, 1) # ARIMA parameters (p, d, q)
best_seasonal_order = (1, 1, 1, 96) # Seizoensparameters (P, D, Q, s)

# Train SARIMA met alle data tot en met 29-06-2024
model = SARIMAX(baggage_per_15min, order=best_order, seasonal_order=best_seasonal_order)
model_fit = model.fit()

# Stap 4: Voorspel voor 30-06-2024 (96 kwartieren)
forecast = model_fit.forecast(steps=96)

# Stap 5: Visualiseer de voorspellingen voor 30-06-2024

plt.figure(figsize=(12, 6))

plt.plot(pd.date_range(start=’2024-06-30 00:00:00’, periods=96, freq=’15T’), forecast, label=’Forecast
< 30-06-2024°, color=’red’)

plt.title(’Voorspelde Bezettingsgraden voor 30-06-2024 per 15 minuten’)

plt.xlabel(’Tijd’)

plt.ylabel(’Aantal koffers’)

plt.legend()

plt.show()

# Bereken RMSE voor de tijdreeksvoorspelling

rmse = np.sqrt(mean_squared_error (baggage_per_15min_test, forecast[:len(baggage_per_15min_test)]))
print (£’Root Mean Squared Error (RMSE): {rmsel}’)
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# Bereken SMAPE
def smape(y_true, y_pred):
return 100 * np.mean(2 * np.abs(y_pred - y_true) / (np.abs(y_true) + np.abs(y_pred)))

smape_value = smape(baggage_per_15min_test, forecast[:len(baggage_per_15min_test)])
print (£’Symmetrical Mean Absolute Percentage Error (SMAPE): {smape_value:.2f}},’)

# Bereken MAE
mae = mean_absolute_error(baggage_per_15min_test, forecast[:len(baggage_per_15min_test)])
print (f’Mean Absolute Error (MAE): {mae}’)

# Runtime van de code

end_time = time.time()

runtime = end_time - start_time

print (f’Runtime van de code: {runtime:.2f} seconden’)

Listing 12: Cell 12: SARIMA Forecasting Model for Baggage Occupancy on June 30
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Appendix A13: Forecasting Baggage Occupancy Using TBATS

This code applies the TBATS model to forecast baggage occupancy rates in 15-minute intervals for June 30,
2024. The training data includes simulated bag arrivals up to June 29, aggregated to 15-minute intervals.
TBATS is configured with daily and weekly seasonal patterns to capture regular fluctuations in baggage flow.
The forecast for June 30 is generated, visualized, and evaluated using Root Mean Squared Error (RMSE),
Symmetrical Mean Absolute Percentage Error (SMAPE), and Mean Absolute Error (MAE), providing insights
into the model’s predictive accuracy.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from tbats import TBATS

from sklearn.metrics import mean_squared_error, mean_absolute_error
import time

# Start timer
start_time = time.time()

# Load simulated baggage dataset
file_path = ’C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\simulated_bags.csv’
data = pd.read_csv(file_path)

# Ensure ’aankomst_tijd’ column is in datetime format
data[’aankomst_tijd’] = pd.to_datetime(datal[’aankomst_tijd’])

# Filter data up to 29-06-2024 for the training set
train_data = datal[data[’aankomst_tijd’] < ’2024-06-30]

# Step 2: Aggregate the number of bags per 15-minute interval
train_data.set_index(’aankomst_tijd’, inplace=True)
baggage_per_15min = train_data.resample(’15T’).size()

# Definieer de testdata voor 30-06-2024
test_data = dataldatal’aankomst_tijd’] >= ’2024-06-30’]

# Aggregatie van het aantal koffers per 15 minuten interval voor de testdata
baggage_per_15min_test = test_data.set_index(’aankomst_tijd’).resample(’15T’).size()

# Step 3: Use TBATS model with daily and weekly seasonal components
estimator = TBATS(seasonal_periods=[96, 672]) # Daily and weekly seasonal patterns
tbats_model = estimator.fit(baggage_per_15min)

# Step 4: Forecast for 30-06-2024 (96 quarters)
forecast = tbats_model.forecast(steps=96)

# Step 5: Visualize the forecast for 30-06-2024

plt.figure(figsize=(12, 6))

plt.plot(pd.date_range(start=’2024-06-30 00:00:00°’, periods=96, freq=’15T’), forecast, label=’
< Predictions’, color=’red’)

plt.title(’Predicted Baggage Occupancy for 30-06-2024 per 15 minutes (TBATS)’)

plt.xlabel(’Time’)

plt.ylabel(’Number of Bags’)

plt.legend()

plt.show()

# Step 6: Calculate RMSE, SMAPE, and MAE
rmse = np.sqrt(mean_squared_error (baggage_per_1bmin_test, forecast[:len(baggage_per_15min_test)]))
print (f’Root Mean Squared Error (RMSE): {rmse}’)

# Calculate SMAPE

def smape(y_true, y_pred):
return 100 * np.mean(2 * np.abs(y_pred - y_true) / (np.abs(y_true) + np.abs(y_pred)))
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smape_value = smape(baggage_per_15min_test, forecast[:len(baggage_per_15min_test)])
print (f’Symmetrical Mean Absolute Percentage Error (SMAPE): {smape_value:.2f}}’)

# Calculate MAE
mae = mean_absolute_error(baggage_per_15min_test, forecast[:len(baggage_per_15min_test)])
print (f’Mean Absolute Error (MAE): {mael}’)

# Runtime of the code

end_time = time.time()

runtime = end_time - start_time

print(f’Code runtime: {runtime:.2f} seconds’)

Listing 13: Cell 13: Forecasting Baggage Occupancy Using TBATS
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Appendix A14: Minute-Level Forecast Transformation

This code expands a quarter-hourly baggage arrival forecast to a minute-level granularity for June 30, 2024.
Initially, the forecast is generated for 96 intervals, each representing a 15-minute period. Each interval is
then repeated 15 times, and timestamps are adjusted to reflect minute-level precision. Additional columns are
created to distribute the baggage count per minute, calculate rolling sums over 15-minute intervals, and set
a per-minute target value. The final data is exported to a CSV file for further analysis in minute-by-minute
increments, facilitating a detailed view of predicted arrivals.

import pandas as pd
import numpy as np
import time

# Start timer
start_time = time.time()

# Bepaal de oorspronkelijke frequentie van 15 minuten en genereer de tijdstempels
kwartier_forecast_df = pd.DataFrame({
’dag’: pd.date_range(start=’2024-06-30 00:00:00’, periods=96, freq=’15T’) .date,
’aantal_koffers’: np.round(forecast).astype(int), # Rond de voorspelde waarden af op hele
— getallen
’voorspelde_aankomst_tijd_infeed’: pd.date_range(start=’2024-06-30 00:00:00’, periods=96, freq=’15
— T?),
‘target_value’: 600 # Voeg een kolom toe met de constante waarde van 600

b

# Herhaal elke rij 15 keer om het om te zetten naar minuten
forecast_per_minute = kwartier_forecast_df.loc[kwartier_forecast_df.index.repeat(15)].reset_index(drop
< =True)

# Pas de voorspelde aankomsttijd aan zodat deze per minuut is
forecast_per_minute[’voorspelde_aankomst_tijd_infeed’] = pd.date_range(start=’2024-06-30 00:00:00’,
— periods=len(forecast_per_minute), freq=’1T’)

# Zorg ervoor dat ’aantal_koffers_minute’ en ’target_value_minute’ als integers worden berekend en
— afgerond

forecast_per_minute[’aantal_koffers_minute’] = (forecast_per_minute[’aantal_koffers’] / 15).astype(int
< ) # Hele getallen
forecast_per_minute[’target_value_minute’] = (forecast_per_minute[’target_value’] / 15).astype(int) #

<—> Hele getallen

# Voeg de kolom ’voorspelde_laatste_15min’ toe als som van ’aantal_koffers_minute’ van de afgelopen 15
— minuten

forecast_per_minute[’voorspelde_laatste_15min’] = forecast_per_minute[’aantal_koffers_minute’].rolling
— (window=15, min_periods=1).sum() .astype(int)

# Zorg ervoor dat de getallen correct als integers worden opgeslagen
forecast_per_minute[[’aantal_koffers’, ’target_value’, ’aantal_koffers_minute’, ’target_value_minute’,
< ’voorspelde_laatste_15min’]] = forecast_per_minute[[’aantal_koffers’, ’target_value’, ’
< aantal_koffers_minute’, ’target_value_minute’, ’voorspelde_laatste_lSmin’]].apply(pd.to_numeric
— , errors=’coerce’, downcast=’integer’)

# Verwijder de aankomst_tijd kolom indien aanwezig
forecast_per_minute = forecast_per_minute.drop(columns=[’aankomst_tijd’], errors=’ignore’)

# Zet ’voorspelde_aankomst_tijd_infeed’ expliciet om naar datetime en zorg ervoor dat het hele minuten
— zijn

forecast_per_minute[’voorspelde_aankomst_tijd_infeed’] = pd.to_datetime(forecast_per_minutel[’
< voorspelde_aankomst_tijd_infeed’]).dt.floor(’min’)

# Exporteer naar CSV met punt als decimaal scheidingsteken en zonder extra aanhalingstekens

output_file_path = ’C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\Minuutwaarden
< voorspelling 30-06-2024.csv’

forecast_per_minute.to_csv(output_file_path, index=False)
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42| print (£’Voorspelling per minuut is succesvol opgeslagen in: {output_file_path}’)

# Runtime of the code

end_time = time.time()

runtime = end_time - start_time

print(f’Code runtime: {runtime:.2f} seconds’)

Listing 14: Cell 14: Minute-Level Forecast Transformation
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Appendix A15: Polynomial Fitting of Forecasted Data

This code applies a 9th-degree polynomial fit to forecasted baggage arrival data to smooth fluctuations over
time. First, the forecasted baggage counts for each 15-minute interval on June 30, 2024, are loaded and processed
to minute-level time points. The polynomial is fitted and then clamped within bounds (150 to 600) to ensure
realistic constraints on baggage counts. The plot visualizes both the actual data and the fitted polynomial,
demonstrating an adjusted target function that maintains practical upper and lower limits.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from numpy.polynomial.polynomial import Polynomial

# Laad het bestand ’Minuutwaarden voorspelling 30-06-2024.csv’

minuutwaarden_voorspelling path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< Minuutwaarden voorspelling 30-06-2024.csv"

minuutwaarden_voorspelling_df = pd.read_csv(minuutwaarden_voorspelling_path)

# Zet ’voorspelde_aankomst_tijd_infeed’ expliciet om naar datetime en zorg ervoor dat het hele minuten
— zijn

minuutwaarden_voorspelling_ df [’voorspelde_aankomst_tijd_infeed’] = pd.to_datetime(
— minuutwaarden_voorspelling_df [’voorspelde_aankomst_tijd_infeed’]).dt.floor(’min’)

# Haal de kolom ’voorspelde_laatste_15min’ op

= minuutwaarden_voorspelling_df [’voorspelde_laatste_15min’].values

pd.date_range(start=’2024-06-30 00:00’, periods=len(y), freq=’T’) # Maak een reeks tijdstempels
— voor de x-waarden

<

e
1]

# Pas een polynoom van graad 11 toe op de data

degree = 9

coefficients = np.polyfit(np.arange(len(y)), y, degree)
polynomial = np.polyld(coefficients)

# Genereer de y-waarden voor de polynoom
y_poly = polynomial(np.arange(len(y)))

# Zorg ervoor dat de polynoom niet lager gaat dan 150 en niet hoger dan 600
y_poly_clamped = np.clip(y_poly, 150, 600)

# Plot de originele data en de aangepaste polynoom

plt.figure(figsize=(12, 6))

plt.plot(x, y, label=’Bags in last 15 min’, color=’red’, linestyle=’-’, marker=’o’, markersize=2)
plt.plot(x, y_poly_clamped, label=f’Target function’, color=’black’, linestyle=’--’)

# Voeg labels en titel toe aan de plot

plt.xlabel(’Time’)

plt.ylabel (’Number of bags’)

# plt.title(’Polynoomfit over Voorspelde Laatste 15 minuten (Begrensd tussen 150 en 600)’)
plt.legend()

# Pas de x-as aan om de tijdstempels goed weer te geven

plt.xticks(rotation=45)

plt.gca() .xaxis.set_major_locator(mdates.HourLocator(interval=1)) # Toon een tick per uur

plt.gca() .xaxis.set_major_formatter (mdates.DateFormatter(’/H:%M’)) # Toon de tijd in uren en minuten

# Toon de plot
plt.grid(True)
plt.tight_layout()
plt.show()

Listing 15: Cell 15: Polynomial Fitting of Forecasted Data
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Appendix A16: Update of Target Values using Polynomial Fit

In this code cell, a 9th-degree polynomial is fitted to the forecasted ‘voorspelde;aatste, 5min‘data fromtheminute—

levelprediction file for June30, 2024.T hispolynomialprovidesasmoothedestimate f orthe‘target, alue‘column, withvaluescon

import pandas as pd
import numpy as np

# Load the file ’Minuutwaarden voorspelling 30-06-2024.csv’

minuutwaarden_voorspelling path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< Minuutwaarden voorspelling 30-06-2024.csv"

minuutwaarden_voorspelling df = pd.read_csv(minuutwaarden_voorspelling_path)

# Update the ’target_value’ column in the DataFrame with polynomial values
y = minuutwaarden_voorspelling_df [’voorspelde_laatste_15min’].values
degree = 9

coefficients = np.polyfit(np.arange(len(y)), y, degree)

polynomial = np.polyld(coefficients)

y_poly = polynomial(np.arange(len(y)))

y_poly_clamped = np.maximum(y_poly, 150)

minuutwaarden_voorspelling_ df [’target_value’] = y_poly_clamped.astype (int)

# Ensure that ’voorspelde_aankomst_tijd_infeed’ is consistent and fits a minute-level time range
tijd_range = pd.date_range("2024-06-30 00:00:00", "2024-06-30 23:59:00", freq="min"
minuutwaarden_voorspelling df = minuutwaarden_voorspelling_df [minuutwaarden_voorspelling df[’

— voorspelde_aankomst_tijd_infeed’].isin(tijd_range)]

# Export the updated DataFrame to CSV

updated_minuutwaarden_voorspelling_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base
— 3)\\Minuutwaarden voorspelling 30-06-2024.csv"

minuutwaarden_voorspelling_df.to_csv(updated_minuutwaarden_voorspelling_path, index=False)

print(f£"Updated ’target_value’ column saved in: {updated_minuutwaarden_voorspelling_pathl}")

Listing 16: Cell 16: Update of Target Values using Polynomial Fit
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Appendix A17: Simulation of Container Arrival Times and Occupancy Calculation

In this code, a simulation is performed to determine the arrival times of baggage containers at designated
infeed points for the date of June 30, 2024. This involves calculating travel times from specific departure points
(‘IN_RAMP CLUSTER) to the infeed areas (‘center of gravity‘) and applying these times to predict the
minute-level occupancy rates. This code calculates the arrival time at infeed points for each container on June
30, 2024, based on predefined travel times. The occupancy rate per minute is computed, including a rolling sum
of baggage counts over the last 15 minutes, and the results are saved in separate CSV files for further analysis.

import pandas as pd

import numpy as np

from datetime import timedelta
import time

import matplotlib.pyplot as plt

# Start timer to track the runtime
start_time = time.time()

# Load the containers output dataset and filter for June 30, 2024

containers_output_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< containers_output.csv"

containers_df = pd.read_csv(containers_output_path)

containers_df [’dag’] = pd.to_datetime(containers_df[’dag’], format=’%d-%m-%Y’)

containers_30june_df = containers_df [containers_df[’dag’] == ’2024-06-30’]

# Travel times between IN_RAMP_CLUSTER and Infeed Areas (in seconds)
travel_times = {
# Add specific (departure, arrival) travel time mappings here

}

# Calculate infeed arrival times for each container and create a new column in the dataset
arrival_times = []
for _, row in containers_30june_df.iterrows():
departure_point = row[’IN_RAMP_CLUSTER’]
destination = row[’center_of_gravity’]
if (departure_point, destination) in travel_times:
travel_time = travel_times[(departure_point, destination)]
start_time_train = pd.to_datetime(row[’tijd_eind_container’])
arrival_time = start_time_train + timedelta(seconds=travel_time)
row[’aankomst_tijd_infeed’] = pd.Timestamp(arrival_time).ceil(’min’)
arrival_times.append(row)

# Create a DataFrame with the new arrival times
arrival_df = pd.DataFrame(arrival_times)

# Calculate transfer times and save as a CSV
arrival_df[’Latest_time_container’] = pd.to_datetime(arrival_df[’Latest_time_container’])
arrival_df [’overstaptijd’] = arrival_df[’Latest_time_container’] - arrival_df[’aankomst_tijd_infeed’]
output_path_containers = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< aankomsttijd_containers_30-06-2024_18_1.csv"
arrival_df.to_csv(output_path_containers, index=False)

# Calculate container occupancy per minute and save as a CSV

arrival_df [’aankomst_minute’] = arrival_df[’aankomst_tijd_infeed’].dt.floor(’min’)

minute_agg_df = arrival_df.groupby(’aankomst_minute’) .agg(
aantal_containers=(’aankomst_tijd_infeed’, ’size’),
aantal_koffers=(’aantal_koffers’, ’sum’)

) .reset_index()

# Merge with the forecasted target values and save as a CSV

voorspelling_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\Minuutwaarden
< voorspelling 30-06-2024.csv"

voorspelling_df = pd.read_csv(voorspelling_path)

voorspelling_df [’voorspelde_aankomst_tijd_infeed’] = pd.to_datetime(voorspelling df[’
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— voorspelde_aankomst_tijd_infeed’])
minute_agg_df = pd.merge(minute_agg_df, voorspelling_ df [[’voorspelde_aankomst_tijd_infeed’, ’
— target_value’]],
left_on=’aankomst_minute’, right_on=’voorspelde_aankomst_tijd_infeed’, how=’
— left?)
minute_agg_df [’koffers_laatste_15min’] = minute_agg_df[’aantal_koffers’].rolling(window=15,
< min_periods=1) .sum() .astype (int)
output_path_bezettingsgraad = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< Bezettingsgraad_18_1.csv"
minute_agg_df.to_csv(output_path_bezettingsgraad, index=False)

# End timer and print runtime

end_time = time.time()

elapsed_time = end_time - start_time

print(f£"Simulation completed in {elapsed_time:.2f} seconds")

Listing 17: Cell 17: Simulation of Container Arrival Times and Occupancy Calculation
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Appendix A18: Known Arrivals Processing and Occupancy Calculation for 30-06-
2024

In this code, we filter and process known baggage arrival data specifically for June 30, 2024. The code groups
baggage entries by minute and computes the cumulative occupancy over the past 15 minutes. This data is
merged with target values to assess how the actual arrivals compare to the predicted target occupancy levels.
This script filters known baggage data for June 30, 2024, aggregates it by minute, and calculates the cumulative
occupancy over the last 15 minutes. It also integrates forecasted target occupancy values for comparative
analysis, with the output saved in a CSV file for further examination.

import pandas as pd

# Load the known arrivals file

known_arrivals_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
<~ Known_arrivals_measured.csv"

known_arrivals_df = pd.read_csv(known_arrivals_path)

# Convert the DATETIME_OF_ENTRY column to datetime format for precise timestamps
known_arrivals_df [’ DATETIME_OF_ENTRY’] = pd.to_datetime(known_arrivals_df [’DATETIME_OF_ENTRY’])

# Filter only rows for June 30, 2024
known_arrivals_30june_df = known_arrivals_df [known_arrivals_df [’DATETIME_OF_ENTRY’].dt.date == pd.
— to_datetime("2024-06-30").date()]

# Export the filtered file to a new CSV

output_path_30june = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
— Known_arrivals_measured_30_06_2024.csv"

known_arrivals_30june_df.to_csv(output_path_30june, index=False)

# Load the filtered file for Jumne 30, 2024
known_arrivals_df = pd.read_csv(output_path_30june)
known_arrivals_df [’ DATETIME_OF_ENTRY’] = pd.to_datetime(known_arrivals_df [?’DATETIME_OF_ENTRY’])

# Group data by minute and count baggage entries per minute

known_arrivals_df [’entry_minute’] = known_arrivals_df [’DATETIME_OF_ENTRY’].dt.floor(’min’)

minute_agg_df_known = known_arrivals_df.groupby(’entry_minute’).size().reset_index(name=’
— aantal_koffers’)

# Fill missing minutes with O baggage entries

all_minutes = pd.date_range(start="2024-06-30 00:00:00", end="2024-06-30 23:59:00", freq="min"

minute_agg_df_known = minute_agg_df_known.set_index(’entry_minute’).reindex(all_minutes, fill_value=0)
< .rename_axis(’entry_minute’).reset_index()

# Load the target values from the updated forecast

voorspelling path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\Minuutwaarden
< voorspelling 30-06-2024.csv"

voorspelling df = pd.read_csv(voorspelling_path)

# Ensure timestamps align with those in minute_agg_df_known

voorspelling_df [’voorspelde_aankomst_tijd_infeed’] = pd.to_datetime(voorspelling df[’
< voorspelde_aankomst_tijd_infeed’])

voorspelling_df = voorspelling_df [voorspelling_ df [’voorspelde_aankomst_tijd_infeed’].dt.date == pd.
— to_datetime("2024-06-30") .date()]

# Merge the target values with minute_agg_df_known based on timestamps
minute_agg_df_known = pd.merge(minute_agg_df_known, voorspelling_ df[[’voorspelde_aankomst_tijd_infeed’
— , ’target_value’]],
left_on=’entry_minute’, right_on=’voorspelde_aankomst_tijd_infeed’, how
— =’left’)

# Remove the extra timestamp column and calculate occupancy over the past 15 minutes

minute_agg_df_known = minute_agg_df_known.drop(columns=[’voorspelde_aankomst_tijd_infeed’])

minute_agg_df_known[’koffers_laatste_15min’] = minute_agg_df_known[’aantal_koffers’].rolling(window
— =15, min_periods=1) .sum() .astype(int)
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45| # Save the results to a CSV file

6| output_path_bezettingsgraad_known = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< Bezettingsgraad_known_arrivals.csv"

47| minute_agg_df_known.to_csv(output_path_bezettingsgraad_known, index=False)

IS

Listing 18: Cell 18: Known Arrivals Processing and Occupancy Calculation for 30-06-2024
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Appendix A19: Comparison of Occupancy Rate Between Known Arrivals and Sim-
ulation Output

This code segment loads occupancy rate data from known arrivals and simulation output for June 30, 2024.
It then plots both data sets to visually compare the 15-minute rolling occupancy rates, highlighting any dis-
crepancies between the actual and simulated arrivals. Differences in occupancy levels can indicate discrepancies
between the actual and forecasted baggage arrivals, providing insights into the accuracy of the simulation model.

import pandas as pd
import matplotlib.pyplot as plt

# Load occupancy rate files

bezettingsgraad_known_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
— Bezettingsgraad_known_arrivals.csv"

bezettingsgraad_18_1_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
— Bezettingsgraad_18_1.csv"

bezettingsgraad_known_df = pd.read_csv(bezettingsgraad_known_path)
bezettingsgraad_18_1_df = pd.read_csv(bezettingsgraad_18_1_path)

# Convert timestamps to datetime for both datasets

bezettingsgraad_known_df [’entry_minute’] = pd.to_datetime(bezettingsgraad_known_df [’entry_minute’])

bezettingsgraad_18_1_df [’aankomst_minute’] = pd.to_datetime(bezettingsgraad_18_1_df [’aankomst_minute’
— 1)

# Plot occupancy rates of both datasets

plt.figure(figsize=(14, 7))

plt.plot(bezettingsgraad_known_df [’entry_minute’], bezettingsgraad_known_df [’koffers_laatste_15min’],
— label=’0Occupancy Rate Known Arrivals’, color=’blue’)

plt.plot(bezettingsgraad_18_1_df [’aankomst_minute’], bezettingsgraad_18_1_df[’koffers_laatste_15min’],
— label=’Occupancy Rate 18.1’, color=’orange’)

# Add labels and title

plt.xlabel(’Time’)

plt.ylabel(’Bags in Last 15 Min’)

plt.title(’Occupancy Rate Comparison: Known Arrivals vs. Simulation 18.17)
plt.legend()

plt.grid()

# Display the plot
plt.show()

Listing 19: Cell 19: Occupancy Rate Comparison Plot
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Appendix A20: Buffering and Occupancy Rate Adjustment for Baggage Arrival
Simulation

In this code cell, several key data files related to baggage occupancy rates, container arrival times, and target
values are loaded. The script iterates through each minute of June 30, 2024, analyzing and adjusting occupancy
rates by buffering containers with the longest transfer times until occupancy falls below the target threshold.
This process involves dynamically adjusting return times for buffered containers and recalculating occupancy
rates to ensure smoother operational flow. The simulation results are exported to CSV files, allowing further
analysis of the buffer effectiveness in controlling peak occupancy rates.

import pandas as pd
from IPython.display import display
from IPython.core.display import HTML

# Load ’Aankomsttijd_containers_30-06-2024_18_1.csv’

aankomsttijd_containers_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< Aankomsttijd_containers_30-06-2024_18_1.csv"

aankomsttijd_containers_df = pd.read_csv(aankomsttijd_containers_path)

# Load ’Bezettingsgraad_18_1.csv’

bezettingsgraad_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< Bezettingsgraad_18_1.csv"

bezettingsgraad_df = pd.read_csv(bezettingsgraad_path)

# Load ’Minuutwaarden voorspelling 30-06-2024.csv’

minuutwaarden_voorspelling path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< Minuutwaarden voorspelling 30-06-2024.csv"

minuutwaarden_voorspelling_df = pd.read_csv(minuutwaarden_voorspelling_path)

# Ensure columns are formatted correctly
aankomsttijd_containers_df[’tijd’] = pd.to_datetime(aankomsttijd_containers_df[’tijd’])
aankomsttijd_containers_df [’aankomst_tijd_infeed’] = pd.to_datetime(aankomsttijd_containers_df[’
— aankomst_tijd_infeed’])
aankomsttijd_containers_df [’overstaptijd’] = pd.to_timedelta(aankomsttijd_containers_df[’overstaptijd’
— 1)

# Create arrival time column
aankomsttijd_containers_df [’aankomst_tijd_infeed_time’] = aankomsttijd_containers_df[’
— aankomst_tijd_infeed’].dt.time

# Sort the DataFrame based on arrival time and transfer time
cols = [’aankomst_tijd_infeed_time’, ’overstaptijd’] + [col for col in aankomsttijd_containers_df.
< columns if col not in [’aankomst_tijd_infeed_time’, ’overstaptijd’]]
aankomsttijd_containers_df = aankomsttijd_containers_df [cols]
aankomsttijd_containers_df_sorted = aankomsttijd_containers_df.sort_values(by=[’
< aankomst_tijd_infeed_time’, ’overstaptijd’], ascending=[True, False])

# Simulate buffering logic and update target occupancy
# (The rest of the code continues as per your example)

Listing 20: Cell 20: Buffering and Occupancy Rate Adjustment
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Appendix A21: Calculating Minute-Based Occupancy for Baggage Arrival Simu-
lation

In this code cell, the occupancy rate for baggage arrivals is calculated on a per-minute basis for June 30,
2024. Using data from the file aankomst_containers_after_loop.csv, the code aggregates the number of
containers and bags per minute. Additionally, a rolling sum of the bags over the last 15 minutes is calculated
in the koffers_laatste_15min column. This metric helps analyze the occupancy dynamics and ensures a
smoother operational flow by understanding minute-based variations in baggage arrivals. The processed data
is then exported for further analysis.

import pandas as pd

# Load the ’aankomst_containers_after_loop.csv’ file

aankomst_containers_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< aankomst_containers_after_loop.csv"

aankomst_containers_df = pd.read_csv(aankomst_containers_path)

# Create a DataFrame for ’bezettingsgraad_after_loop’ with each minute of the day
tijd_range = pd.date_range("2024-06-30 00:00", "2024-06-30 23:59", freq=’T’)
bezettingsgraad_after_loop_df = pd.DataFrame ({

’aankomst_minute’: tijd_range,

aantal_containers’: O,

aantal_koffers’: O,

koffers_laatste_15min’: O

b

# Loop through ’aankomst_containers_after_loop.csv’ and update ’bezettingsgraad_after_loop’
for index, row in aankomst_containers_df.iterrows():
aankomst_tijd = pd.to_datetime(row[’aankomst_infeed_final’])

# Locate the corresponding minute in ’bezettingsgraad_after_loop_df’
tijd_index = bezettingsgraad_after_loop_df [bezettingsgraad_after_loop_df [’aankomst_minute’] ==
— aankomst_tijd].index[0]

# Update the container and bag counts for the specific minute
bezettingsgraad_after_loop_df.at[tijd_index, ’aantal_containers’] += 1
bezettingsgraad_after_loop_df.at[tijd_index, ’aantal_koffers’] += row[’aantal_koffers’]

# Calculate the rolling sum of ’koffers_laatste_15min’ over the last 15 minutes
for index in range(len(bezettingsgraad_after_loop_df)):
# Select the last 15 minutes
start_index = max(0, index - 14)
end_index = index + 1
bezettingsgraad_after_loop_df.at[index, ’koffers_laatste_15min’] = bezettingsgraad_after_loop_df[’
< aantal_koffers’].iloc[start_index:end_index].sum()

# Export the resulting occupancy data to a CSV file

bezettingsgraad_export_path_after = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
— bezettingsgraad_after_loop.csv"

bezettingsgraad_after_loop_df.to_csv(bezettingsgraad_export_path_after, index=False)

print (f"Bezettingsgraad_after_loop gexporteerd naar: {bezettingsgraad_export_path_after}")

Listing 21: Cell 21: Calculating Minute-Based Occupancy for Baggage Arrival Simulation
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Appendix A22: Plotting Occupancy Levels Before and After Buffering in Baggage
Arrival Simulation

This code cell visualizes the difference in occupancy levels before and after implementing a buffering strategy
for baggage arrivals on June 30, 2024. By plotting the rolling sum of bags over the last 15 minutes for each
case, the effect of buffering on reducing peak occupancy at infeed points can be analyzed. The occupancy levels
before buffering are shown in blue, while the buffered occupancy levels are shown in orange. The generated plot
is saved as a high-resolution PNG file for reporting purposes.

import pandas as pd
import matplotlib.pyplot as plt

# Load files

bezettingsgraad_18_1_export_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
— bezettingsgraad_18_1_export.csv"

bezettingsgraad_after_loop_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
> bezettingsgraad_after_loop.csv"

output_plot_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< C18_occupancy_levels_plot.png"

bezettingsgraad_18_1_export = pd.read_csv(bezettingsgraad_18_1_export_path)
bezettingsgraad_after_loop = pd.read_csv(bezettingsgraad_after_loop_path)

# Ensure ’aankomst_minute’ is read as datetime

bezettingsgraad_18_1_export[’aankomst_minute’] = pd.to_datetime(bezettingsgraad_18_1_export[’
< aankomst_minute’])

bezettingsgraad_after_loop[’aankomst_minute’] = pd.to_datetime(bezettingsgraad_after_loopl[’
< aankomst_minute’])

# Create the plot
plt.figure(figsize=(12, 6))
plt.plot(bezettingsgraad_18_1_export[’aankomst_minute’], bezettingsgraad_18_1_export[’
< koffers_laatste_15min’], label=’0Occupancy levels without buffer’, color=’tab:blue’)
plt.plot(bezettingsgraad_after_loop[’aankomst_minute’], bezettingsgraad_after_loop[’
— koffers_laatste_15min’], label=’Occupancy levels with buffer’, color=’tab:orange’)

# Add labels (no title)

plt.xlabel(’Minute of arrival at infeed point?)
plt.ylabel(’Number of bags over the last 15 minutes’)
plt.legend()

plt.grid()

plt.xticks(rotation=45)

plt.tight_layout ()

# Export the plot to PNG without title
plt.savefig(output_plot_path, dpi=300, bbox_inches=’tight’)

# Show the plot
plt.show()

print (£"Plot successfully saved as: {output_plot_pathl}")

Listing 22: Cell 22: Plotting Occupancy Levels Before and After Buffering
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Appendix A23: Calculation of Differences in Occupancy and Buffer Analysis

This code calculates the difference in occupancy levels between two scenarios (with and without buffering) and
exports the results for further analysis. Additionally, it plots the maximum number of containers in the buffer
across the day, visualizing how the buffer system operates to maintain optimal occupancy at infeed points. The
plot indicates when and how much the buffer is utilized, and the output is saved as a high-resolution image.

import pandas as pd
import matplotlib.pyplot as plt

# Calculate the difference between the two DataFrames

combined_df = pd.merge(bezettingsgraad_18_1_export[[’aankomst_minute’, ’koffers_laatste_15min’]],
bezettingsgraad_after_loop[[’aankomst_minute’, ’koffers_laatste_15min’]],
on=’aankomst_minute’,
suffixes=(’_18_1’, ’_after_loop’))

# Add a column for the difference
combined_df [’difference’] = combined_df[’koffers_laatste_15min_after_loop’] - combined_df[’
< koffers_laatste_15min_18_1’]

# Define export path
combined_export_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< bezettingsgraad_combined_export.csv"

# Export combined DataFrame to CSV
combined_df.to_csv(combined_export_path, index=False)

print (£"Combined data exported to: {combined_export_path}")

# Load the ’Bezettingsgraad_buffer_after_loop’ file and create a plot
bezettingsgraad_buffer_after_loop_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base
— 3)\\bezettingsgraad_buffer_after_loop.csv"
output_plot_buffer_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< C18_buffer_occupancy_plot.png"

bezettingsgraad_buffer_after_loop = pd.read_csv(bezettingsgraad buffer_after_loop_path)

# Convert ’tijd’ column to a full datetime object for a specific date
bezettingsgraad_buffer_after_loop[’tijd’] = pd.to_datetime(bezettingsgraad_buffer_after_loop[’tijd’],
— format=’%H:%M:%S?)

# Calculate the maximum number of containers in the buffer
max_containers_in_buffer = bezettingsgraad_buffer_after_loop[’containers_at_buffer’].max()
print (f"Maximum number of containers in the buffer: {max_containers_in_buffer}")

# Create a plot of ’containers_at_buffer’ and ’koffers_at_buffer’ over time
plt.figure(figsize=(12, 6))

# Plot containers_at_buffer
plt.plot(bezettingsgraad_buffer_after_loop[’tijd’], bezettingsgraad_buffer_after_loopl[’
< containers_at_buffer’], label=’Containers in buffer’, color=’tab:blue’)

# Add labels without title
plt.xlabel(’Time’)
plt.ylabel(’Count’)
plt.legend()

plt.gridQ)
plt.xticks(rotation=45)
plt.tight_layout ()

# Export the plot to a PNG file without a title
plt.savefig(output_plot_buffer_path, dpi=300, bbox_inches=’tight’)

# Show the plot
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52| plt.show()
53
54| print (f"Buffer plot successfully saved as: {output_plot_buffer_pathl}")

Listing 23: Cell 23: Calculation of Differences in Occupancy and Buffer Analysis
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Appendix A24: Statistical Analysis of Occupancy with and without Buffering

This code provides a comparative analysis of occupancy levels at infeed points with and without the use of
buffering for baggage containers. Key statistical metrics such as the standard deviation, mean absolute change
(MAC), and autocorrelation are calculated to assess the smoothness and variability in baggage handling flows.
The code also calculates the coefficient of variation, peak values, and total buffered containers, which help in
evaluating the effectiveness of buffering in reducing peak occupancy.

import pandas as pd
import numpy as np

# Load ’Bezettingsgraad_18_1’ file

bezettingsgraad_18_1_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< bezettingsgraad_18_1.csv"

bezettingsgraad_18_1 = pd.read_csv(bezettingsgraad_18_1_path)

# Convert ’aankomst_minute’ to datetime format without specifying a format
bezettingsgraad_18_1[’aankomst_minute’] = pd.to_datetime(bezettingsgraad_18_1[’aankomst_minute’])

# Calculate standard deviation of bags (flow smoothness)
std_koffers = bezettingsgraad_18_1[’koffers_laatste_15min’].std()

# Mean absolute change (MAC) between successive time steps
mac_koffers = bezettingsgraad_18_1[’koffers_laatste_15min’].diff().abs() .mean()

# Autocorrelation with lag 1
autocorr_koffers = bezettingsgraad_18_1[’koffers_laatste_15min’].autocorr(lag=1)

# Smoothness Index (relative change)
si_koffers = (bezettingsgraad_ 18_1[’koffers_laatste_15min’].diff().abs() / bezettingsgraad_18_1[’
< koffers_laatste_15min’].shift (1)) .mean()

# Coefficient of variation (std/mean)
mean_koffers = bezettingsgraad_18_1[’koffers_laatste_15min’].mean()
cv_koffers = std_koffers / mean_koffers

# Calculate peak value (highest number of bags)
peak_koffers = bezettingsgraad_18_1[’koffers_laatste_15min’].max()

# Print results for without buffer

print (£"Without Buffer")

print (f"Peak number of bags: {peak_koffers}")

print(f"Standard deviation of bags at infeed points: {std_koffers:.2f}")
print(f"Mean absolute change (MAC) of bags: {mac_koffers:.2f}")
print(£"Autocorrelation of bags (lag-1): {autocorr_koffers:.2f}")
print(f"Coefficient of variation of bags: {cv_koffers:.2f}")

print ()

# Load ’Bezettingsgraad_after_loop’ file

bezettingsgraad_after_loop_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< bezettingsgraad_after_loop.csv"

bezettingsgraad_after_loop = pd.read_csv(bezettingsgraad_after_loop_path)

# Convert ’aankomst_minute’ to datetime format
bezettingsgraad_after_loop[’aankomst_minute’] = pd.to_datetime(bezettingsgraad_after_loopl[’

<+ aankomst_minute’])

# Calculate standard deviation of bags after buffering
std_koffers = bezettingsgraad_after_loop[’koffers_laatste_15min’].std()

# Mean absolute change after buffering
mac_koffers = bezettingsgraad_after_loop[’koffers_laatste_15min’].diff().abs().mean()
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# Autocorrelation after buffering
autocorr_koffers = bezettingsgraad_after_loop[’koffers_laatste_15min’].autocorr(lag=1)

# Smoothness Index after buffering
si_koffers = (bezettingsgraad_after_loop[’koffers_laatste_15min’].diff().abs() /
— bezettingsgraad_after_loop[’koffers_laatste_15min’].shift (1)) .mean()

# Coefficient of variation (std/mean)
mean_koffers = bezettingsgraad_after_loop[’koffers_laatste_15min’].mean()
cv_koffers = std_koffers / mean_koffers

# Calculate peak value
peak_koffers = bezettingsgraad_after_loop[’koffers_laatste_15min’].max()

# Print results for with buffer

print (£"With Buffer")

print (f"Peak number of bags: {peak_koffersl}")

print (£"Standard deviation of bags at infeed points: {std_koffers:.2f}")
print(f£"Mean absolute change (MAC) of bags: {mac_koffers:.2f}")

print (f"Autocorrelation of bags (lag-1): {autocorr_koffers:.2f}")
print(f£"Coefficient of variation of bags: {cv_koffers:.2f}")

# Load the ’containers_naar_buffer_after_loop.csv’ file

containers_naar_buffer_path = "C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
< containers_naar_buffer_after_loop.csv"

containers_naar_buffer_df = pd.read_csv(containers_naar_buffer_path)

# Convert time columns to datetime for ease of calculations

containers_naar_buffer_df[’tijd’] = pd.to_datetime(containers_naar_buffer_df[’tijd’])

containers_naar_buffer_df [’aankomst_tijd_infeed_time’] = pd.to_datetime(containers_naar_buffer_df[’
— aankomst_tijd_infeed_time’])

containers_naar_buffer_df [’terugkomtijd’] = pd.to_datetime(containers_naar_buffer_df[’terugkomtijd’])

# Calculate the peak number of containers in the buffer and total buffered containers
total_containers_buffered = containers_naar_buffer_df[’aantal_containers’].sum()
peak_containers_in_buffer = containers_naar_buffer_df[’containers_at_buffer’].max()

# Print results for buffer analysis

print )

print (f"Buffer Analysis")

print (f"Peak number of containers in buffer: {peak_containers_in_buffer}")
print(£"Total buffered containers: {total_containers_buffered}")

Listing 24: Cell 24: Statistical Analysis of Occupancy with and without Buffering
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Appendix A25: AGV Assignment for Baggage Transportation Simulation

This code simulates the assignment and scheduling of AGVs for transporting baggage containers between the
apron, buffer, and infeed points. The script follows two main actions: (1) transporting containers to the buffer
if they require temporary storage before infeed and (2) transporting containers from the buffer to infeed points
based on specific timing constraints. The code keeps a log of each trip, including AGV assignment, start and
end times, pickup and dropoff locations, and the number of containers transported per trip.

import pandas as pd
import math
from datetime import timedelta

# Parameters

MAX_CONTAINERS_PER_AV = 6

TIME_FROM_APRON_TO_BUFFER = 3

TIME_FROM_BUFFER_TO_INFEED = 6

CONTAINER_CONNECT_TIME = 2

AV_REST_TIME = 6 # Time an AV must rest before it can be reused

# Load and sort container data by ’tijd’ and ’vluchtcode’

containers_data = pd.read_csv("C:\\Users\\Nijdam_B\\Documents\\Configuratie 18 (18 en Base 3)\\
— containers_naar_buffer_after_loop.csv")

containers_data[’tijd’] = pd.to_datetime(containers_datal[’tijd’])

containers_data[’tijd_eind_container’] = pd.to_datetime(containers_data[’tijd_eind_container’])

containers_data[’terugkomtijd’] = pd.to_datetime(containers_datal[’terugkomtijd’])

containers_data.sort_values([’tijd’, ’vluchtcode’], inplace=True)

# Log to track actions performed by each AV

trip_log = []

av_count = 0

available_avs = {} # Dictionary to track AV availability {av_id: available_time}

def log_trip(av_id, action_type, containers, pickup_location, dropoff_location, start_time, end_time):
"""Log a trip in the trip log."""
trip_log.append ({
"AV_ID": av_id,
"Action_Type": action_type,
"Pickup_Location": pickup_location,
"Dropoff_Location": dropoff_location,
"Start_Time": start_time,
"End_Time": end_time,
"Containers_Count": len(containers),
"Container_IDs": ’, ’.join(containers[’ContainerID’].astype(str))

b

def assign_av(start_time):
"""Find an available AV or assign a new one if none are available.
global av_count
# Check for availability
for av_id, available_time in available_avs.items():
if available_time <= start_time:
return av_id
# Assign a new AV if none are available
av_count += 1
available_avs[av_count] = start_time # New AV available from start_time
return av_count

# Buffer to store containers for later transport to infeed point
buffer = []

# Action 1: Process containers heading to the buffer

for vluchtcode, group in containers_data.groupby(’vluchtcode’):
containers_to_buffer = group[(group[’terugkomtijd’] - group[’tijd_eind_container’]) >= pd.
— Timedelta(minutes=20)]
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direct_to_infeed = group[(group[’terugkomtijd’] - group[’tijd_eind_container’]) < pd.Timedelta(
— minutes=20)]

# Group and transport containers to buffer
if not containers_to_buffer.empty:
start_time = containers_to_buffer[’tijd_eind_container’].min()
load_time = CONTAINER_CONNECT_TIME * len(containers_to_buffer)
end_time = start_time + timedelta(minutes=load_time + TIME_FROM_APRON_TO_BUFFER)

av_id = assign_av(start_time) # Assign available AV or create a new one
log_trip(av_id, "To_Buffer", containers_to_buffer, "Apron", "Buffer", start_time, end_time)

# Update AV availability after rest time
available_avs[av_id] = end_time + timedelta(minutes=AV_REST_TIME)

# Add containers to buffer for later processing
buffer.extend(containers_to_buffer.to_dict(’records’))

# Transport containers going directly to infeed point
for _, container in direct_to_infeed.iterrows():
start_time = container[’tijd_eind_container’]
load_time = CONTAINER_CONNECT_TIME
end_time = start_time + timedelta(minutes=load_time + TIME_FROM_BUFFER_TO_INFEED)

av_id = assign_av(start_time) # Assign available AV or create a new one
log_trip(av_id, "Direct_To_Infeed", pd.DataFrame([container]), "Apron", container[’
< center_of_gravity’], start_time, end_time)

# Update AV availability after rest time
available_avs[av_id] = end_time + timedelta(minutes=AV_REST_TIME)

# Action 2: Process containers from buffer to their infeed point
buffer = sorted(buffer, key=lambda x: x[’terugkomtijd’]) # Sort buffer by return time

for infeed_point, group in pd.DataFrame(buffer).groupby(’center_of_gravity’):
group = group.sort_values(by=’terugkomtijd’)

# Iterate over containers in sets of max 6
for i in range(0, len(group), MAX_CONTAINERS_PER_AV):
containers_for_trip = group.iloc[i:i + MAX_CONTAINERS_PER_AV]
start_time = containers_for_trip[’terugkomtijd’].min() - timedelta(minutes=
< TIME_FROM_BUFFER_TO_INFEED + CONTAINER_CONNECT_TIME * len(containers_for_trip))
load_time = CONTAINER_CONNECT_TIME * len(containers_for_trip)
end_time = start_time + timedelta(minutes=load_time + TIME_FROM_BUFFER_TO_INFEED)

av_id = assign_av(start_time) # Assign available AV or create a new one
log_trip(av_id, "From_Buffer_To_Infeed", containers_for_trip, "Buffer", infeed_point,
< start_time, end_time)

# Update AV availability after rest time
available_avs[av_id] = end_time + timedelta(minutes=AV_REST_TIME)

# Export trip log to an Excel file

trip_log_df = pd.DataFrame(trip_log)
trip_log_df.to_excel("AV_Trip_Log.xlsx", index=False)
print ("AV trip data exported to ’AV_Trip_Log.xlsx’")

# Results
print (f"Total AVs used: {av_count}")

Listing 25: Cell 25: AGV Assignment and Scheduling for Baggage Transportation
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All Results of Strateg

Table B.1
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Strategic Options

Conf. Option Alternative | Scenario | Peak | STD MAC | CoV | Peak buff | Buff. containers | AGVs
1 1: Fixed 1: Early 1: Normal | 1462 349.90 | 26.25 1.04 113 199 27
7 2: Polynomial 1: Early 1: Normal | 1492 346.89 | 25.82 1.03 104 57 33
13 3: Combination | 1: Early 1: Normal | 1492 | 346.89 | 25.82 1.03 104 57 33
Base 1 | 0. No buffer 0. No buffer | 1: Normal | 1958 | 404.83 | 28.82 | 1.2 0 0
Table B.2: Results on Strategic Options with Alternative 1 and Scenario 1
Conf. Option Alternative | Scenario Peak | STD | MAC | CoV | Peak buff | Buff. containers | AGVs
2 1: Fixed 1: Early 2: Reduced capacity | 1454 | 348.81 | 26.99 1.04 114 205 26
8 2: Polynomial 1: BEarly 2: Reduced capacity | 1484 | 345.25 | 26.57 | 1.03 105 259 32
14 3: Combination | 1: Early 2: Reduced capacity | 1484 | 345.25 | 26.57 1.03 105 259 32
Base 2 | 0. No buffer 0. No buffer | 2: Reduced capacity | 1958 | 404.15 | 29.4 1.2 0 0 0
Table B.3: Results on Strategic Options with Alternative 1 and Scenario 2
Conf. Option Alternative | Scenario Peak | STD | MAC | CoV | Peak buff | Buff. containers | AGVs
3 1: Fixed 1: Early 3: Increased inflow | 1734 | 411.03 | 29.64 | 1.02 138 288 34
9 2: Polynomial 1: Early 3: Increased inflow | 1819 | 413.07 | 30.15 1.02 127 311 40
15 3: Combination | 1: Early 3: Increased inflow | 1819 | 413.07 | 30.15 1.02 127 311 40
Base 3 | 0. No buffer 0. No buffer | 3: Increased inflow | 2283 | 485.38 | 33.88 1.2 0 0 0
Table B.4: Results on Strategic Options with Alternative 1 and Scenario 3
Conf. Option Alternative | Scenario | Peak | STD MAC | CoV | Peak buff | Buff. containers | AGVs
10 2: Polynomial 2: Optimized | 1: Normal | 1433 | 350.48 | 26.55 1.04 118 251 31
16 3: Combination | 2: Optimized | 1: Normal | 1433 | 350.48 | 26.55 1.04 118 251 31
4 1: Fixed 2: Optimized | 1: Normal | 1454 | 347.95 | 26.94 1.03 116 199 28
Base 1 | 0. No buffer 0. No buffer 1: Normal | 1958 | 404.83 | 28.82 1.2 0 0
Table B.5: Results on Strategic Options with Alternative 2 and Scenario 1
Conf. Option Alternative | Scenario Peak | STD | MAC | CoV | Peak buff | Buff. containers | AGVs
11 2: Polynomial 2: Optimized | 2: Reduced capacity | 1459 | 349.25 | 26.77 1.04 115 251 31
17 3: Combination | 2: Optimized | 2: Reduced capacity | 1459 | 349.25 | 26.77 1.04 115 251 31
5 1: Fixed 2: Optimized | 2: Reduced capacity | 1464 | 350.19 | 27.23 1.04 117 205 28
Base 2 | 0. No buffer 0. No buffer | 2: Reduced capacity | 1958 | 404.15 | 29.4 1.2 0 0 0
Table B.6: Results on Strategic Options with Alternative 2 and Scenario 2
Conf. Option Alternative | Scenario Peak | STD | MAC | CoV | Peak buff | Buff. containers | AGVs
12 2: Polynomial 2: Optimized | 3: Increased inflow | 1663 | 417.77 | 30.98 1.03 139 300 31
18 3: Combination | 2: Optimized | 3: Increased inflow | 1663 | 417.77 | 30.98 | 1.03 139 300 31
6 1: Fixed 2: Optimized | 3: Increased inflow | 1736 | 414.84 | 30.49 1.03 142 288 28
Base 3 | 0. No buffer 0. No buffer | 3: Increased inflow | 2283 | 485.38 | 33.88 1.2 0 0 0

Table B.7: Results on Strategic Options with Alternative 2 and Scenario 3
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Strategic Alternatives

Conf. Option Alternative | Scenario | Peak | STD | MAC | CoV | Peak buff. | Buff. containers | AGVs
4 1: Fixed 2: Optimized | 1: Normal | 1454 347,95 | 26,94 1,03 116 199 28
1 1: Fixed 1: Early 1: Normal | 1462 | 349,90 | 26,25 1,04 113 199 27
Base 1 | 0. No buffer | 0. No buffer 1: Normal | 1958 | 404,83 | 28,82 1,20 0 0 0
Table B.8: Results on Strategic Alternatives with Option 1 and Scenario 1
Conf. Option Alternative | Scenario Peak | STD MAC | CoV | Peak buff. | Buff. containers | AGVs
2 1: Fixed 1: Early 2: Reduced capacity | 1454 | 348,81 | 26,99 1,04 114 205 26
5 1: Fixed 2: Optimized | 2: Reduced capacity | 1464 350,19 | 27,23 1,04 117 205 28
Base 2 | 0. No buffer | 0. No buffer 2: Reduced capacity | 1958 404,15 | 29,4 1,2 0 0 0
Table B.9: Results on Strategic Alternatives with Option 1 and Scenario 2
Conf. Option Alternative | Scenario Peak | STD MAC | CoV | Peak buff. | Buff. containers | AGVs
3 1: Fixed 1: Early 3: Increased inflow | 1734 | 411,03 | 29,64 1,02 138 288 34
6 1: Fixed 2: Optimized | 3: Increased inflow | 1736 | 414,84 | 30,49 1,03 142 288 35
Base 3 | 0. No buffer | 0. No buffer | 3: Increased inflow | 2283 | 485,38 | 33,88 1,2 0 0 0
Table B.10: Results on Strategic Alternatives with Option 1 and Scenario 3
Conf. Option Alternative | Scenario | Peak | STD MAC | CoV | Peak buff. | Buff. containers | AGVs
10 2: Polynomial | 2: Optimized | 1: Normal | 1433 350,48 | 26,55 1,04 118 251 31
7 2: Polynomial | 1: Early 1: Normal | 1492 346,89 | 25,82 1,03 104 257 33
Base 1 | 0. No buffer 0. No buffer | 1: Normal | 1958 | 404,83 | 28,82 1,20 0 0 0
Table B.11: Results on Strategic Alternatives with Option 2 and Scenario 1
Conf. Option Alternative | Scenario Peak | STD MAC | CoV | Peak buff. | Buff. containers | AGVs
11 2: Polynomial | 2: Optimized | 2: Reduced capacity | 1459 | 349,25 | 26,77 | 1,04 115 251 31
8 2: Polynomial | 1: Early 2: Reduced capacity | 1484 | 345,25 | 26,57 | 1,03 105 259 32
Base 2 | 0. No buffer 0. No buffer | 2: Reduced capacity | 1958 | 404,15 | 29,4 1,2 0 0 0
Table B.12: Results on Strategic Alternatives with Option 2 and Scenario 2
Conf. Option Alternative | Scenario Peak | STD | MAC | CoV | Peak buff. | Buff. containers | AGVs
12 2: Polynomial | 2: Optimized | 3: Increased inflow | 1663 417,77 | 30,98 1,03 139 300 39
9 2: Polynomial | 1: Early 3: Increased inflow | 1819 | 413,07 | 30,15 1,02 127 311 40
Base 3 | 0. No buffer 0. No buffer 3: Increased inflow | 2283 485,38 | 33,88 1,2 0 0 0
Table B.13: Results on Strategic Alternatives with Option 2 and Scenario 3
Conf. Option Alternative | Scenario | Peak | STD MAC | CoV | Peak buff. | Buff. containers | AGVs
16 3: Combination | 2: Optimized | 1: Normal | 1433 | 350,48 | 26,55 1,04 118 251 31
13 3: Combination | 1: Early 1: Normal | 1492 346,89 | 25,82 1,03 104 257 33
Base 1 | 0. No buffer 0. No buffer 1: Normal | 1958 | 404,83 | 28,82 1,20 0 0 0
Table B.14: Results on Strategic Alternatives with Option 3 and Scenario 1
Conf. Option Alternative | Scenario Peak | STD MAC | CoV | Peak buff. | Buff. containers | AGVs
17 3: Combination | 2: Optimized | 2: Reduced capacity | 1459 | 349,25 | 26,77 1,04 115 251 31
14 3: Combination | 1: Early 2: Reduced capacity | 1484 | 345.25 | 26.57 1,03 105 259 32
Base 2 | 0. No buffer 0. No buffer | 2: Reduced capacity | 1958 | 404,15 | 29,4 1,2 0 0 0

Table B.15: Results on Strategic Alternatives with Option 3 and Scenario 2
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Conf. Option Alternative | Scenario Peak | STD | MAC | CoV | Peak buff. | Buff. containers | AGVs
18 3: Combination | 2: Optimized | 3: Increased inflow | 1663 | 417,77 | 30,98 1,03 139 300 39
15 3: Combination | 1: Early 3: Increased inflow | 1819 | 413,07 | 30,15 1,02 127 311 40
Base 3 | 0. No buffer 0. No buffer | 3: Increased inflow | 2283 | 485,38 | 33,88 1,2 0 0 0

Table B.16: Results on Strategic Alternatives with Option 3 and Scenario 3
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Results and Graphs per Configuration

Configuration 1

Configuration | Option | Alternative | Scenario | Peak of bags | Peak shaving in % | Peak in buffer | Buffered containers | AGVs
1 1: Fixed | 1: Early 1: Normal | 1462 25.3% 113 199 27
Table B.17: Results of Configuration 1
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Figure B.2: Buffer occupancy levels for Configuration 1
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Configuration 2

[ Configuration | Option | Alternative | Scenario

| Peak of bags [ Peak shaving in % | Peak in buffer | Buffered containers | AGVs |

2

| 1: Fixed | 1: Early | 2: Reduced capacity | 1454 | 25.7% | 114 | 205

| 26
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Table B.18: Results of Configuration 2

—— Occupancy levels without buffer |
——— Qccupancy levels with buffer

A

——
~= |
————

LNEYa!

N LB il “’JA"M

Figure B.3: Transfer infeed point occupancy levels for Configuration 2 and Base 2

> o O J » d Y
Q Qo N N .2 N Vv
?’D N (,50 N 6,50 :)’Q (,,)Q

Minute of arrival at infeed point

%

<

100

T
IJ_'\ —— Containers in buffer

80

60

40

20

™

’0'\/

%

0
%
%
£
s

%
o
2.
o
o
%
o

Time

Figure B.4: Buffer occupancy levels for Configuration 2

132

QQ



Configuration 3

‘ Configuration ‘ Option ‘ Alternative ‘ Scenario

‘ Peak of bags ‘ Peak shaving in % ‘ Peak in buffer ‘ Buffered containers ‘ AGVs ‘

3

‘ 1: Fixed ‘ 1: Early ‘ 3: Increased inflow ‘ 1734 ‘ 24.0% ‘ 138 ‘ 288

[ 34

Number of bags over the last 15 minutes

Count

Table B.19: Results of Configuration 3
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Configuration 4

[ Configuration | Option | Alternative | Scenario | Peak of bags | Peak shaving in % | Peak in buffer | Buffered containers | AGVs |
‘ 4 | 1: Fixed | 2: Optimized | 1: Normal | 1454 | 25.7% | 116 | 199 | 28 ‘

Table B.20: Results of Configuration 4
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Configuration 5

[ Configuration | Option

Alternative | Scenario

| Peak of bags [ Peak shaving in % | Peak in buffer [ Buffered containers [ AGVs |

\ 5 | 1: Fixed | 2: Optimized | 2: Reduced capacity | 1464 | 25.2% | 117 | 205 | 28 |
Table B.21: Results of Configuration 5
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Figure B.9: Transfer infeed point occupancy levels for Configuration 5 and Base 2
1201 —— Containers in buffer
100
80
£ 60
Q
o
40 A
20 1
0
N < © o o o G 5 N
0\/0 &o 0\/0 &o 0\,«, 0\,«, & 0\,@ &o
¥ & & & S ¥ & ¥ ¥
Time

Figure B.10: Buffer occupancy levels for Configuration 5
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Configuration 6

‘ Configuration ‘ Option ‘ Alternative ‘ Scenario

‘ Peak of bags ‘ Peak shaving in % ‘ Peak in buffer ‘ Buffered containers ‘ AGVs ‘

6 ‘ 1: Fixed ‘ 2: Optimized ‘ 3: Increased inflow ‘ 1736 ‘ 24.0% ‘ 142 ‘ 288 ‘ 35 ‘
Table B.22: Results of Configuration 6
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Figure B.11: Transfer infeed point occupancy levels for Configuration 6 and Base 3
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Figure B.12: Buffer occupancy levels for Configuration 6
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Configuration 7

‘ Configuration ‘ Option

‘ Alternative ‘ Scenario ‘ Peak of bags ‘ Peak shaving in % ‘ Peak in buffer ‘ Buffered containers ‘ AGVs ‘

7 ‘ 2: Polynomial ‘ 1: Early ‘ 1: Normal ‘ 1492 ‘ 23.8% ‘ 104 ‘ 257 ‘ 33 ‘
Table B.23: Results of Configuration 7
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Figure B.13: Transfer infeed point occupancy levels for Configuration 7 and Base 1
—— Containers in buffer
100 [
80 /
60
40
. Wﬁ\
0 A . m’f _\\
® < © &) 5 ) 3 N o
&S &S &S &S o & o N &S
N Nd ¥ Nd ¥ ¥ Nd ¥ d
Time

Figure B.14: Buffer occupancy levels for Configuration 7
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Configuration 8

[ Configuration | Option

Alternative | Scenario

[ Peak of bags | Peak shaving in % | Peak in buffer | Buffered containers | AGVs |

‘ 8 ‘ 2: Polynomial | 1: Early ‘ 2: Reduced capacity ‘ 1484 ‘ 24.2% ‘ 105 ‘ 259 ‘ 32 ‘
Table B.24: Results of Configuration 8
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Figure B.15: Transfer infeed point occupancy levels for Configuration 8 and Base 2
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Figure B.16: Buffer occupancy levels for Configuration 8
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Configuration 9

[ Configuration | Option

| Alternative [ Scenario

| Peak of bags | Peak shaving in % [ Peak in buffer [ Buffered containers | AGVs |

9

| 2: Polynomial | 1: Early | 3: Increased inflow [ 1819 | 20.3% | 127 | 311

[ 40
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Table B.25: Results of Configuration 9
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Figure B.17: Transfer infeed point occupancy levels for Configuration 9 and Base 3
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Figure B.18: Buffer occupancy levels for Configuration 9
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Configuration 10

‘ Configuration ‘ Option ‘ Alternative ‘ Scenario ‘ Peak of bags ‘ Peak shaving in % ‘ Peak in buffer ‘ Buffered containers ‘ AGVs ‘
‘ 10 ‘ 2: Polynomial ‘ 2: Optimized ‘ 1: Normal ‘ 1433 ‘ 26.8% ‘ 118 ‘ 251 ‘ 31 ‘

Table B.26: Results of Configuration 10
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Figure B.19: Transfer infeed point occupancy levels for Configuration 10 and Base 1
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Figure B.20: Buffer occupancy levels for Configuration 10
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Configuration 11

[ Configuration | Option [ Alternative | Scenario [ Peak of bags | Peak shaving in % | Peak in buffer [ Buffered containers | AGVs |
‘ 11 ‘ 2: Polynomial ‘ 2: Optimized ‘ 2: Reduced capacity ‘ 1459 ‘ 25.5% ‘ 115 ‘ 251 ‘ 31 ‘

Table B.27: Results of Configuration 11
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Figure B.21: Transfer infeed point occupancy levels for Configuration 11 and Base 2
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Figure B.22: Buffer occupancy levels for Configuration 11
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Configuration 12

[ Configuration | Option [ Alternative [ Scenario

[ Peak of bags | Peak shaving in % [ Peak in buffer | Buffered containers | AGVs |

\ 12 | 2: Polynomial | 2: Optimized | 3: Increased inflow | 1663 | 27.2% | 139 | 300 | 39 |
Table B.28: Results of Configuration 12
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Figure B.23: Transfer infeed point occupancy levels for Configuration 12 and Base 3
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Configuration 13

‘ Configuration ‘ Option

‘ Alternative ‘ Scenario ‘ Peak of bags ‘ Peak shaving in % ‘ Peak in buffer ‘ Buffered containers ‘ AGVs ‘

‘ 13 ‘ 3: Combination ‘ 1: Early ‘ 1: Normal ‘ 1492 ‘ 23.8% ‘ 104 ‘ 257 ‘ 33 ‘
Table B.29: Results of Configuration 13
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Figure B.25: Transfer infeed point occupancy levels for Configuration 13 and Base 1
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Figure B.26: Buffer occupancy levels for Configuration 13
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Configuration 14

[ Configuration [ Option

[ Alternative | Scenario

[ Peak of bags | Peak shaving in % [ Peak in buffer | Buffered containers | AGVs |

\ 14 | 3: Combination | 1: Early | 2: Reduced capacity | 1484 | 24.2% | 105 | 259 [ 32 |
Table B.30: Results of Configuration 14
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——— Qccupancy levels with buffer
1750 1

Number of bags over the last 15 minutes

Count

1500

1250

1000

~
u
o

u
o
S

\

e
—

k

VA

\V\ ﬁv(
| »\U/ |

L,
. YU T

250 " u U ' "v
0
o O () O o » 2 N Q
?)QQ ?’00 :5°° :5°° :5°\/ S ?)Q“’ ?’Q’l« (&0
& & & & & & & &
Minute of arrival at infeed point
Figure B.27: Transfer infeed point occupancy levels for Configuration 14 and Base 2
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Figure B.28: Buffer occupancy levels for Configuration 14

144



Configuration 15

[ Configuration | Option

[ Alternative | Scenario

[ Peak of bags | Peak shaving in % | Peak in buffer [ Buffered containers | AGVs |

‘ 15 ‘ 3: Combination ‘ 1: Early ‘ 3: Increased inflow ‘ 1819 ‘ 20.3% ‘ 127 ‘ 311 ‘ 40 ‘
Table B.31: Results of Configuration 15
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Figure B.29: Transfer infeed point occupancy levels for Configuration 15 and Base 3
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Configuration 16

‘ Configuration ‘ Option

‘ Alternative ‘ Scenario ‘ Peak of bags ‘ Peak shaving in % ‘ Peak in buffer ‘ Buffered containers ‘ AGVs ‘

| 16

‘ 3: Combination ‘ 2: Optimized ‘ 1: Normal ‘ 1433

| 26.8% | 118 | 251 |31 |

Table B.32: Results of Configuration 16
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Figure B.31: Transfer infeed point occupancy levels for Configuration 16 and Base 1
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Figure B.32: Buffer occupancy levels for Configuration 16
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Configuration 17

Configuration ‘ Option

‘ Alternative ‘ Scenario

‘ Peak of bags ‘ Peak shaving in % ‘ Peak in buffer ‘ Buffered containers ‘ AGVs ‘

17 | 3: Combination | 2: Optimized | 2: Reduced capacity | 1459

| 25.5% | 115 | 251 |31 |

Table B.33: Results of Configuration 17
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Figure B.33: Transfer infeed point occupancy levels for Configuration 17 and Base 2
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Figure B.34: Buffer occupancy levels for Configuration 17
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Configuration 18

[ Configuration | Option

[ Alternative | Scenario

[ Peak of bags | Peak shaving in % [ Peak in buffer | Buffered containers [ AGVs |

‘ 18 ‘ 3: Combination ‘ 2: Optimized ‘ 3: Increased inflow ‘ 1663 ‘ 27.2% ‘ 139 ‘ 300 ‘ 39 ‘
Table B.34: Results of Configuration 18
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Figure B.35: Transfer infeed point occupancy levels for Configuration 18 and Base 3
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Abstract

Amsterdam Airport Schiphol (AAS) faces oper-
ational challenges from fluctuating baggage vol-
umes and limited infrastructure, necessitating in-
novative approaches to optimize baggage handling.
This study focuses on strategic buffering of super
cold transfer baggage to reduce peak occupancy
at transfer infeed points. A simulation model, in-
tegrated with TBATS forecasting, evaluates three
buffering strategies (fixed target, polynomial, hy-
brid) and two reintroduction strategies (early, opti-
mized release) under normal, disrupted, and high-
demand scenarios.

The results demonstrate peak occupancy reduc-
tions of up to 26.8%, with the polynomial buffer-
ing strategy and optimized release proving the
most effective, though requiring additional AGV
resources. Fixed target strategies offer a more
resource-efficient alternative while maintaining sub-
stantial improvements in peak shaving. Early re-
lease strategies further reduce buffer congestion,
optimizing operations for space-constrained envi-
ronments.

This research provides actionable insights for
AAS and similar airports, highlighting trade-offs
between efficiency, resource requirements, and op-
erational constraints. The findings contribute to
scalable solutions for managing growing baggage
volumes within existing infrastructure, enhancing
system resilience and performance.

1. Introduction

Efficient baggage handling systems (BHS) are cru-
cial for the smooth operation of hub airports, en-
suring the timely transfer of passengers’ baggage
while minimizing errors and delays. At major tran-
sit hubs such as AAS, fluctuating baggage volumes
during peak times pose significant operational chal-
lenges. These fluctuations can lead to imbalances in

staffing, strain on sorting systems, and inefficiencies
in temporary storage buffers, ultimately disrupting
overall airport operations [T [5].

AAS faces additional constraints due to its ex-
isting infrastructure and limited opportunities for
expansion. With a fixed number of infeed points
and no immediate possibilities for additional capac-
ity, the airport must manage increasing baggage
volumes within the current system. This makes
optimizing the use of existing resources a critical
priority. Addressing peak loads at transfer infeed
points is particularly challenging, as these points
often experience bottlenecks during periods of high
demand.

One promising approach to mitigate these chal-
lenges is peak shaving, a strategy aimed at re-
distributing baggage handling workloads over time
to reduce operational strain. Previous studies
have explored optimization techniques such as dy-
namic routing, robust scheduling, and heuristic ap-
proaches to address variability in baggage flows
[2, ). However, limited attention has been given
to the strategic buffering and reintroduction of
cold transfer baggage—a category of baggage with
longer layover times that can be temporarily stored
without compromising outbound flight schedules.
This category represents a unique opportunity to
alleviate peak loads, but research on dynamic and
predictive strategies for its management remains
scarce [7].

This study aims to address this gap by answer-
ing the research question: How to support Ams-
terdam Airport Schiphol to identify the best
distribution strategy for super cold transfer
baggage through a simulation model? To this
end, a simulation model was developed to replicate
the baggage journey from aircraft arrival to transfer
infeed points, incorporating time series forecasting
to dynamically inform buffering and release deci-
sions.
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The findings provide actionable insights into bal-
ancing operational efficiency, resource allocation,
and peak shaving effectiveness within the con-
straints of AAS’s existing infrastructure. By iden-
tifying optimal buffering strategies for super cold
transfer baggage, this research contributes to more
resilient baggage handling systems and supports
airports in managing growing demands without re-
quiring costly infrastructure expansion.

2. Literature

Efficient BHS are a cornerstone of modern airport
operations, facilitating the seamless transfer of bag-
gage across check-in counters, transit flights, and
reclaim areas. The rising complexity of airport op-
erations, driven by increasing passenger volumes
and stricter security requirements, necessitates con-
tinuous optimization of these systems to enhance
efficiency and passenger satisfaction [2] [4].

Extensive research has been conducted on op-
timizing BHS processes, with a focus on routing,
scheduling, and resource allocation. Barth et al.
[1] proposed a fuzzy logic model to enhance adapt-
ability in baggage handling operations under fluc-
tuating conditions, demonstrating improvements in
resource allocation and system efficiency. Simi-
larly, Huang et al. [6] introduced robust optimiza-
tion models for assigning baggage unloading zones
to outgoing flights, emphasizing stability under op-
erational uncertainties such as flight delays and
varying baggage volumes. These studies highlight
the importance of adaptability and robust decision-
making in managing complex airport operations.

In the context of inbound baggage handling, Frey
[3] employed hybrid heuristics, combining GRASP
with path-relinking, to optimize the distribution
of baggage at Munich Airport. This approach re-
duced peak loads at carousels and improved passen-
ger waiting times, underscoring the potential of ad-
vanced optimization techniques in mitigating bot-
tlenecks.

Peak shaving, a strategy commonly used in lo-
gistics and energy systems, focuses on redistribut-
ing workloads to manage capacity constraints effec-
tively. In the aviation sector, Clausen and Pisinger
[2] explored dynamic routing algorithms to man-
age short transfer baggage, improving reliability
and reducing delays during peak periods. While
these approaches are effective in managing routing
and scheduling, limited attention has been given to
strategies for buffering transfer baggage to achieve
peak shaving at specific points in the BHS.

Cold transfer baggage, characterized by longer
layover times, offers a unique opportunity for
strategic buffering. Studies have shown that decen-
tralized buffers can enhance operational efficiency
by reducing transportation times and facilitating
smoother reintegration of baggage into the sys-

tem [7]. However, existing research often addresses
buffering as a static process, neglecting the dynamic
and variable nature of baggage inflow. Few studies
have examined the impact of predictive modeling
and adaptive buffering strategies on peak shaving.

Despite the advancements in BHS optimization,
a significant gap exists in the literature regard-
ing the use of distribution strategies for dynami-
cally managing and cold buffered transfer baggage.
While prior studies have explored general optimiza-
tion techniques, they often overlook the potential of
integrating predictive models with buffering strate-
gies to address the fluctuating occupancy levels at
transfer infeed points. Specifically, the role of cold
transfer baggage as a targeted solution for peak
shaving remains underexplored.

This study addresses the knowledge gap by de-
veloping and evaluating distribution strategies for
buffering cold transfer baggage. The simulation
model is specifically tailored to the operational con-
text of AAS, ensuring its findings are directly ap-
plicable to mitigating peak loads at transfer in-
feed points. In addition, this research provides a
foundation for the future integration of Automated
Guided Vehicles (AGVs) by optimizing the timing
and flow of buffered baggage. These contributions
enhance operational efficiency, reduce system bot-
tlenecks, and offer a scalable framework that can
be adapted to other major hub airports.

3. Methodology

This research employs a systematic approach to in-
vestigate how distribution strategies for buffering
cold transfer baggage can alleviate peak occupancy
at transfer infeed points. By combining insights
from expert interviews, a review of relevant litera-
ture, and innovative problem-solving, the method-
ology is tailored to the operational context of AAS.
The research process consists of five interconnected
phases: current state analysis, simulation devel-
opment and validation, forecasting model creation
and validation, distribution strategy design, and
comparative evaluation.

The study begins with a thorough analysis of the
current baggage handling processes at AAS. This
analysis focuses on mapping the baggage journey,
identifying bottlenecks, and understanding vari-
ability in transfer baggage flows. Insights from dis-
cussions with industry professionals and a review
of optimization techniques from literature provided
valuable perspectives, while historical baggage flow
data over a 10-week period established baseline per-
formance metrics and variability patterns. This
foundational analysis informed the development of
the simulation model.

The simulation model was developed to repli-
cate the transfer baggage journey at AAS, cover-
ing the process from the arrival of an aircraft to
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the point where baggage is unloaded onto the quay
of the transfer infeed points. This includes key
operational steps such as unloading baggage from
the aircraft, packing containers, and transporting
them from the parking area to either a buffer or
the designated infeed point. The transport oper-
ations are facilitated by AGVs, which handle two
primary tasks: moving containers from the apron
to the buffer and transporting them from the buffer
to the infeed points. The simulation incorporates
distinct baggage streams—ShoCon, cold transfer,
and super cold transfer baggage—while accounting
for operational constraints such as infeed capacities,
buffer storage limits, and varying layover durations.
Historical data from AAS was used to define input
parameters and validate the simulation by compar-
ing its outputs against key metrics such as occu-
pancy levels at infeed points and throughput times.
This validation confirmed the model’s accuracy in
representing real-world operations, providing a re-
liable platform for testing distribution strategies.

To support dynamic decision-making within the
simulation, a time series forecasting model was de-
veloped to predict occupancy levels at transfer in-
feed points. This forecasting model employs tech-
niques such as Seasonal ARIMA (SARIMA) and
TBATS (Trigonometric, Box-Cox transformation,
ARMA errors, Trend and Seasonal components),
which are well-suited for capturing the seasonal and
cyclical patterns inherent in baggage flows. The
model uses historical occupancy data from the sim-
ulation as input, generating forecasts that inform
the timing of baggage release from buffers. Vali-
dation of the forecasting model was conducted us-
ing holdout datasets from the 10-week data pe-
riod, with performance metrics such as Mean Ab-
solute Error (MAE) and Root Mean Square Error
(RMSE) confirming its predictive accuracy. By in-
tegrating this predictive capability into the simula-
tion, the research enables proactive management of
baggage flows based on forecasted occupancy levels.

Building on the validated simulation and fore-
casting models, six distribution strategies for
buffered baggage were designed. These strategies
range from simple fixed-time release methods to
more advanced dynamic approaches guided by fore-
casted occupancy levels. Each strategy was tested
within the simulation to evaluate its impact on
peak shaving and operational efficiency. The test-
ing phase included three distinct scenarios to assess
the robustness of the strategies: normal operations
with typical baggage volumes and full infeed avail-
ability, disrupted operations with one infeed point
out of service, and high-demand conditions simu-
lating a 20% increase in baggage volumes.

The effectiveness of the distribution strategies
was evaluated using key performance metrics, in-
cluding the percentage reduction in peak occupancy

levels at transfer infeed points, the peak occupancy
in the buffer, and the required AGV resources. This
comparative analysis highlights the trade-offs be-
tween the strategies, providing actionable insights
into their operational viability and effectiveness un-
der different scenarios.

By combining expert knowledge, literature in-
sights, historical data analysis, and innovative mod-
eling techniques, this research presents a robust
methodology to address peak occupancy challenges
at AAS. The integration of simulation and fore-
casting ensures dynamic adaptability to fluctuating
baggage volumes, while the evaluation of distribu-
tion strategies under various scenarios provides a
comprehensive framework for optimizing baggage
handling operations.

4. The Baggage Journey

The BHS is a complex network that facilitates the
movement of baggage through various stages, en-
suring timely delivery to its destination. At AAS,
the BHS handles three primary baggage flows:
check-in baggage, transfer baggage, and reclaim
baggage. Each of these flows interacts with distinct
airport processes, as visualized in Figure

Check-in baggage enters the system landside,
where it is processed through security checks and
routed into storage or directly to make-up stations,
where it is prepared for loading onto departing air-
craft. Reclaim baggage flows in the opposite direc-
tion, as it is unloaded from arriving aircraft and
routed landside to the reclaim area for passenger
collection. Transfer baggage represents the most
dynamic and complex flow, involving the movement
of bags from one flight to another during layovers.
Within transfer baggage, several streams are dis-
tinguished: tail-to-tail, ShoCon, cold transfer, and
super cold transfer baggage. These streams differ
in their processing requirements and layover dura-
tions.

The BHS at AAS incorporates multiple oper-
ational subsystems, including storage buffers, in-
feed stations, sorting systems, and make up areas.
While the system is designed to handle average de-
mand levels efficiently, peaks in baggage volumes
caused by fluctuating flight schedules create oper-
ational bottlenecks. To address these challenges,
this research proposes the addition of an external
buffer for super cold transfer baggage. The buffer,
indicated in Figure [I] is not yet operational but
represents the critical component introduced and
analyzed in this study to reduce peak occupancy
at transfer infeed points. This figure schematically
represents the baggage journey through the BHS,
highlighting the interconnected nature of baggage
handling processes.
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Figure 1: Baggage Handling System of Amsterdam
Airport Schiphol

5. Data

The analysis and simulation in this study are based
on a comprehensive dataset from AAS, covering 10
weeks of baggage handling operations. The dataset
includes Baggage Source Messages (BSM) and scan
data, capturing key timestamps, baggage volumes,
and flight schedules. For each piece of baggage,
detailed information is available about the time of
arrival at a specific parking position and the time
of departure from the departing parking position.
These data provide insights into the flow of trans-
fer baggage, including ShoCon, cold transfer, and
super cold transfer baggage.

The dataset was preprocessed to ensure accuracy
and reliability. Key preprocessing steps included
cleaning invalid or incomplete records, filtering the
data to focus exclusively on transfer baggage, and
standardizing timestamps for use in the simula-
tion. Based on the processed data, baseline metrics
such as average occupancy levels at transfer infeed
points, variability patterns, and peak periods were
calculated.

This historical dataset not only served as the
foundation for developing the simulation model but
was also used to validate the forecasting models and
evaluate the distribution strategies. By leveraging
real-world operational data, this study ensures that
its results are directly applicable to the context of
AAS, enhancing the reliability and relevance of the
proposed strategies.

6. Simulation

The simulation developed for this research serves as
a critical tool to evaluate how distribution strate-
gies for buffering cold transfer baggage can alleviate
peak occupancy at transfer infeed points. Designed
for the operational context of AAS, the simulation
captures the complexity of the transfer baggage
journey while incorporating key system constraints
and dynamics. This section outlines the main el-
ements of the simulation, as well as its validation
and verification process.

The primary objective of the simulation is to

model the journey of transfer baggage from aircraft
arrival to the infeed points of the BHS. By incor-
porating historical data and system constraints, the
simulation provides a platform to test distribution
strategies that optimize the timing and allocation
of buffered baggage to achieve peak shaving.

6.1.

The simulation model distinguishing between two
processes: the ”cold process” for buffered baggage
and the "hot process” for baggage that bypasses
buffering. Figure [2]illustrates the sequential stages
of this journey, including unloading, buffering, and
transportation to infeed points. The timeline is di-
vided into key milestones:

Transfer Baggage Journey

e t1: Time from aircraft arrival (AIBT) to the
unloading of the first baggage item.

e t2: Time to unload and pack the last baggage
item into a container.

e t3: Transport time for containers to reach ei-
ther the buffer or infeed points.

e t4: Time containers spend in the buffer before
being released to infeed points.

e t5: Transportation from the buffer or apron to
the infeed point and subsequent processing.

2 Wihs

0 s

Hot process

Figure 2: Transfer baggage journey from arrival to
transfer infeed point [7]

The simulation distinguishes between flights
based on their operational characteristics and the
types of transfer baggage they carry. Baggage is
categorized into four temperature classes—Tail-to-
tail, ShoCon, cold transfer, and super cold transfer
baggage—based on layover times. These classifi-
cations determine whether baggage can be directly
processed (hot process) or buffered (cold process)
before being reintroduced into the system.

The simulation differentiates between three bag-
gage types: bulk carts, which can carry up to 30
bags; AKE containers, with a capacity of 38 bags
per container; and AKH containers, designed to
hold 28 bags per container. These baggage types
play a significant role in shaping the packing, trans-
portation, and buffering processes modeled in the
simulation.

AAS is divided into multiple ramp clusters,
which serve as operational zones for loading and
unloading baggage. The simulation accounts for
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the spatial distribution of these clusters and their
role in determining transportation times to buffers
and infeed points.

The capacity constraints of infeed points and un-
loading quays are critical factors in the simulation.
These capacities are modeled to reflect the real-
world limits of the BHS at AAS, ensuring that
peak periods accurately represent operational bot-
tlenecks.

The buffer is a central feature of the simulation,
designed to temporarily store super cold transfer
baggage. AGVs are responsible for transporting
containers between the apron, buffer, and infeed
points. The simulation models AGV scheduling,
ensuring efficient use of these resources under vary-
ing operational scenarios.

6.2.

The simulation’s verification and validation pro-
cesses were essential to ensure its technical accuracy
and ability to reflect real-world operations at AAS.
The verification focused on ensuring the logical con-
sistency of the model under various scenarios, while
validation involved comparing the simulation out-
put with actual historical data.

To verify the model, a series of tests were con-
ducted to evaluate how the simulation responded
to changes in input parameters. For example,
key variables such as unloading times and travel
times were systematically adjusted, and the result-
ing shifts in baggage infeed times were observed.
These tests confirmed that the model responded
predictably and logically to such changes, with de-
layed inputs appropriately shifting the simulated
occupancy peaks to later intervals. The verifica-
tion demonstrated that the simulation’s underlying
logic was robust and aligned with operational ex-
pectations.

Validation compared the simulated occupancy
rates at transfer infeed points with historical data
collected from AAS. This was done using both vi-
sual and statistical methods. Visual validation in-
volved line plots that compared simulated and ac-
tual occupancy levels, both as averaged daily val-
ues and for a specific high-volume day, June 30,
2024. While the simulation successfully captured
general trends and patterns, slight deviations were
observed during peak periods. These discrepancies
highlighted a consistent time misalignment, with
simulated peaks occurring earlier than the actual
peaks.

To address this issue, a delay of 1500 seconds was
introduced into the simulation. This adjustment
significantly improved the alignment between sim-
ulated and actual data, resulting in a lower RMSE
and MAE. While this delay cannot be entirely ex-
plained empirically, discussions with simulation ex-
perts at AAS revealed that such unaccounted de-
lays are common and often included in operational

Verification and Validation

analyses to better reflect observed dynamics. This
validation step underscored the necessity of includ-
ing the delay to ensure the simulation closely mir-
rors real-world processes.

Statistical validation further supported the ac-
curacy of the simulation. Metrics such as
RMSE, MAE, and Mean Absolute Percentage Error
(MAPE) quantified the discrepancies between sim-
ulated and actual data. The configuration with the
1500 seconds delay consistently produced the most
accurate results across all metrics, confirming its
suitability for use in subsequent simulations (Figure
. This adjustment ensured that the model accu-
rately replicated baggage flow patterns and system
dynamics, particularly during peak periods.

Number of Bags
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Figure 3: Simulated and Actual Average Baggage
Occupancy per 15-Minute Interval

The combined verification and validation efforts
confirmed that the simulation is a reliable platform
for evaluating distribution strategies and testing
various scenarios. By addressing operational nu-
ances and aligning with historical data, the model
is well-equipped to support decision-making pro-
cesses aimed at optimizing baggage handling oper-
ations at hub airports.

7. Time Series Forecasting

To optimize the distribution of super cold trans-
fer baggage and reduce peak occupancy at infeed
points, this research incorporates time series fore-
casting models to predict occupancy levels. Fore-
casting provides a strategic basis for determining
the optimal moments to release buffered baggage
into the system, ensuring that the BHS operates
efficiently and avoids unnecessary peaks. By lever-
aging historical data, the models enable proactive
adjustments to baggage flow, supporting the goal
of balanced system loads.

Two forecasting models, SARIMA and TBATS,
were evaluated. These models were selected for
their suitability in capturing the seasonal patterns
inherent in baggage flows, such as daily and weekly
fluctuations, which are critical to the operation of
the BHS at AAS.

SARIMA was chosen for its effectiveness in cap-
turing single seasonal patterns, particularly the
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daily cycle in baggage volumes. The model’s com-
ponents—autoregressive, differencing, and moving
average—are extended with seasonal terms to han-
dle repeated patterns over time. For this study, the
seasonal period was set to 96 quarters (24 hours).
A grid search determined the optimal parameters,
and the model was validated using key metrics such
as RMSE, MAE, and SMAPE (Symmetric Mean
Absolute Percentage Error). SARIMA performed
well, achieving an RMSE of 144.37, indicating that
it effectively captured daily trends in baggage flows.

TBATS, a more flexible model, was employed to
capture multiple seasonal patterns, such as the in-
terplay between daily (96 quarters) and weekly (672
quarters) cycles. This capability makes it particu-
larly suitable for forecasting in complex systems like
the BHS, where both short-term and long-term sea-
sonal trends affect operations. While TBATS had
a slightly higher RMSE (151.02) and MAE (115.71)
compared to SARIMA its ability to model weekly
seasonality provided a more comprehensive view of
occupancy patterns.

The figure below demonstrates the performance
of the TBATS model in forecasting baggage occu-
pancy within the BHS. The blue line represents the
training data, which only shows one dat of the 10
weeks of historical baggage flows, excluding the fi-
nal day. This data was used to train the model, cap-
turing both daily and weekly patterns in occupancy
levels. The orange line depicts the actual test data
from June 30, 2024, a day with high baggage vol-
umes. The red line shows the TBATS model’s pre-
dictions for this day, leveraging the learned patterns
from the training data. The comparison highlights
the model’s ability to align closely with observed
trends, particularly capturing the daily and weekly
fluctuations in baggage flows. Although minor de-
viations occur, the predictions generally reflect the
actual occupancy levels, demonstrating the model’s
effectiveness in providing actionable forecasts for
optimizing baggage distribution strategies.

g
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Figure 4: Train, Test, and Predictions using
TBATS Model for 30-06-2024

Both models were validated using historical data
and tested against the actual occupancy levels for
June 30, 2024, a day with high baggage volumes
and the last day of the available 10-week dataset.

While SARIMA demonstrated slightly higher accu-
racy for daily forecasts, TBATS proved more robust
for capturing weekly variations. Given the impor-
tance of weekly cycles in baggage handling opera-
tions, TBATS was chosen as the primary model for
developing and evaluating distribution strategies.

The forecasting models form an integral part of
the simulation framework, enabling dynamic ad-
justments to the timing of baggage releases from the
buffer. By accurately predicting system occupancy,
the research ensures that the distribution strategies
are informed by data-driven insights, contributing
to the effective management of baggage flows and
reduction of peak loads at infeed points.

8. Distribution Strategies and Sce-
narios

This section outlines the distribution strategies de-
veloped for buffering super cold transfer baggage at
AAS and evaluates their performance under differ-
ent operational scenarios. The primary objective is
to minimize peak occupancy at infeed points, ensur-
ing smoother operations within the BHS. Two crit-
ical aspects are addressed: the timing of when bag-
gage should be buffered and when it should be rein-
troduced into the system. Together, these elements
enable effective management of baggage flows and
workload distribution.

8.1. Strategic Timing for Buffering Bag-
gage

Determining the optimal timing for buffering bag-
gage is a crucial component of peak shaving. Three
strategies were considered: fixed target, polynomial

function, and a hybrid of both.
8.1.1 Fixed Target Value

The fixed target strategy employs a predefined
threshold (600 bags per 15-minute interval) as the
occupancy limit. When this threshold is exceeded,
super cold baggage is buffered to alleviate strain on
the infeed points. This approach is simple and re-
liable but does not account for natural fluctuations
in baggage inflow caused by flight schedules, po-
tentially resulting in unnecessary buffering during
expected peaks.

8.1.2 Polynomial Target Value

A more adaptive approach is the polynomial func-
tion strategy, which uses a degree-9 polynomial to
smooth predicted occupancy patterns over time.
This dynamic target adapts to fluctuations in bag-
gage volumes, allowing for more realistic and flex-
ible buffering decisions. A minimum occupancy
boundary of 150 is set to avoid excessive buffer-
ing during low-demand periods. By capturing daily
trends and smoothing peak and trough variations,
the polynomial function achieves a balance between
operational flexibility and efficiency.
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8.1.3 Hybrid Target Value

The hybrid strategy combines the fixed target and
polynomial approaches, leveraging the stability of
a fixed baseline with the adaptability of a dynamic
curve. This method ensures consistent buffering
during low-variability periods while accommodat-
ing higher volumes when necessary, creating a ro-
bust solution for managing occupancy at the infeed
points.

Figure [5] illustrates the hybrid target value func-
tion, combining the fixed target and polynomial
function to provide a dynamic yet stable occupancy
threshold for buffering decisions.

Figure 5: Target Value on Time Series Forecasting
TBATS for 30-06-2024 with Hybrid Function

In summary, three options are proposed for deter-
mining when baggage should be buffered: a fixed
target, a polynomial function, and a combination
of both. These options provide varying levels of
adaptability and precision, ensuring flexibility in
addressing the fluctuating demands of the BHS.

8.2. Strategic Release of Buffered Baggage

The timing of reintroducing buffered baggage is
critical to maintaining system stability and ensur-
ing that no baggage misses its connecting flight.
Two strategies were developed for this purpose:
early release and optimized release.

8.2.1 Early Release

The early release strategy utilizes time series fore-
casts to determine the optimal moment for reintro-
ducing buffered baggage. At each simulation step
(indicated by the green line in Figure @, the fore-
casted occupancy levels are consulted to identify
the first time slot when the predicted occupancy
falls below the target value. This ensures that bag-
gage is reintroduced when the system can handle
additional load without exceeding the occupancy
threshold. If no such moment is found within the
permissible window, the baggage is scheduled to re-
turn during the time with the lowest predicted oc-
cupancy. The blue line in Figure [6] represents the
latest possible time by which the baggage must re-
turn to the system to ensure that no bags miss their
connecting flights. This approach balances system
load while adhering to operational constraints.

Figure 6: Early Reintroduction Strategy

The simulation continuously updates these deci-
sions at each step, ensuring dynamic adaptability
to changing system conditions.

8.2.2 Optimized Release

The optimized release strategy takes a broader view
of the available reintroduction windows, prioritiz-
ing the reintroduction of buffered baggage at the
moment when the predicted occupancy has the
largest gap below the target value. This approach
ensures that baggage is reintroduced during peri-
ods of minimal system load, further reducing the
risk of creating new peaks at the infeed points.

At each simulation step, such as the moment in-
dicated by the green line in Figure [7] the forecast-
ing model is used to identify the optimal reintro-
duction time. Rather than selecting the first avail-
able moment when the occupancy falls below the
target value, the model scans the allowable time-
frame, up to the latest possible return time (indi-
cated by the blue line), to find the moment with
the maximum gap below the target. For example,
if the forecast shows a significant drop at 10:45,
even though a smaller dip occurs earlier at 10:15,
the baggage will be scheduled for reintroduction at
10:45. This ensures that the system operates ef-
ficiently while avoiding unnecessary strain during
higher occupancy periods.

Figure 7: Optimized Reintroduction Strategy

This method leverages the flexibility of the fore-
casted occupancy data to maximize system capac-
ity during low-demand periods. By dynamically
scheduling reintroductions at the most opportune
times, the optimized release strategy enhances the
system’s overall efficiency and minimizes opera-
tional bottlenecks.
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8.3.

To evaluate the effectiveness and robustness of the
buffering and reintroduction strategies, three sce-
narios were developed, each reflecting different op-
erational conditions and levels of system stress.
The first scenario represents a baseline situation
where all infeed points and baggage halls are fully
operational. This scenario provides a controlled en-
vironment to assess how well the strategies main-
tain balanced occupancy levels under standard con-
ditions, where baggage inflow follows historical pat-
terns.

In the second scenario, one of the four infeed
points, baggage hall Z, becomes unavailable due
to maintenance or unforeseen breakdowns. This
results in the redistribution of 8.8% of the bag-
gage normally processed at this hall to the re-
maining infeed points, increasing their workload.
This scenario simulates real-world challenges, such
as reduced system capacity, and tests whether
the strategies can efficiently manage resources and
avoid bottlenecks despite this additional strain.

The third scenario introduces a 20% increase in
baggage inflow, reflecting conditions such as denser
flight schedules, delays, or seasonal surges. This
heightened demand places significant pressure on
the infeed points and the BHS as a whole. The in-
creased volume tests the resilience of the strategies
in maintaining balanced occupancy levels and en-
suring smooth operations under heightened stress.

Scenarios

Together, these scenarios allow for a compre-
hensive evaluation of the buffering and reintro-
duction strategies under varying operational chal-
lenges, providing critical insights into their adapt-
ability and performance in managing peak loads.

8.4.

Each of the three buffering strategies was paired
with the two reintroduction strategies, resulting
in six unique configurations. These configurations
were tested across the three scenarios, generating
18 distinct combinations. Baseline scenarios with-
out buffering were also included for comparison.

Configurations and Evaluation

9. Results

This section evaluates the impact of various buffer-
ing strategies for super cold transfer baggage on
peak shaving at transfer infeed points, based on
simulations conducted for a single operational day
(30-06-2024). Table [1] summarizes the results for
18 configurations, each combining different buffer-
ing options and release strategies under three sce-
narios: normal operations, reduced capacity, and

increased baggage inflow.
9.1. Key Performance Indicators

To assess the configurations, several Key Perfor-
mance Indicators (KPIs) were employed:

e Peak Occupancy: Maximum number of bags
at infeed points in a 15-minute interval (lower
values indicate effective peak shaving).

e Standard Deviation (STD): Variability in oc-
cupancy across the day, where lower values
suggest more consistent flows.

e Mean Absolute Change (MAC): Average
change in occupancy between consecutive min-
utes, reflecting flow stability.

o Coefficient of Variation (CoV): Normalized
variability (STD/mean) for relative compari-
son.

e Peak Buffer Occupancy: Maximum number of
containers in the buffer at any point, indicating
reliance on buffering.

e Buffered Containers: Total containers buffered
throughout the day.

e AGVs Required: Number of AGVs needed for
container transport.

Configurations using a buffer demonstrated sig-
nificant reductions in peak occupancy compared
to baseline scenarios without buffering. The best-
performing configurations achieved up to 26.8%
peak shaving under normal conditions, with Config-
urations 10 and 16 (Polynomial and Combination
buffering options paired with Optimized Release)
reducing peak occupancy from 1958 to 1433 bags.
In comparison, the Fixed Target buffering strategy
achieved slightly less peak shaving (1454 bags) but
required fewer AGVs.

The Polynomial and Combination options con-
sistently required more AGVs (31-39) compared to
the Fixed option (26-28). These strategies also ex-
hibited slightly higher buffer peaks (118 containers)
compared to the Fixed option (113 containers). De-
spite this, the Polynomial and Combination options
provided smoother occupancy profiles, reflected in
their lower STD, MAC, and CoV values.

9.2. Occupancy Levels and Buffer Utiliza-

tion for Configuration 10

To illustrate the effectiveness of the proposed distri-
bution strategies, the occupancy levels at the trans-
fer infeed points and the buffer utilization are an-
alyzed for Configuration 10, which combines the
Polynomial Target strategy with the Optimized Re-
lease strategy under normal operating conditions.
Figure [8| compares the occupancy levels at the
transfer infeed points for Configuration 10 against
the baseline (Base 1), where no buffering is applied.
The graph demonstrates a significant reduction in
peak occupancy levels, highlighting the impact of
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buffering super cold transfer baggage. Configura-
tion 10 achieves a 26.8% reduction in peak occu-
pancy compared to the baseline, effectively smooth-
ing the baggage flow over time.
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Figure 8: Transfer infeed point occupancy levels for
Configuration 10 and Base 1

Figure [J] presents the buffer occupancy levels
for Configuration 10, showcasing the dynamic use
of the buffer throughout the day. The maximum
buffer occupancy peaks at 118 containers.

Figure 9: Buffer occupancy levels for Configuration
10

10. Discussion

This section examines the key findings of the re-
search, discussing the implications of the simula-
tion model, forecasting approach, and distribution
strategies for buffering super cold transfer baggage
at AAS. Limitations, trade-offs, and opportunities
for further research are also addressed, with a fo-
cus on optimizing peak shaving at transfer infeed
points.

10.1. Simulation Model and Assumptions

The simulation model captures the complexity of
transfer baggage flows while introducing simplifi-
cations to maintain computational feasibility. Key
assumptions, such as excluding odd-sized baggage
and clustering ramp positions, streamlined the
analysis but may slightly underestimate operational
variability. Notably, a 1500-second delay was in-
corporated to align the simulation outputs with
observed data, highlighting the importance of ac-
counting for unmodeled delays in real-world pro-
cesses. While these assumptions allow for a focused
evaluation of buffering strategies, further refine-
ment of the model could enhance its realism, par-
ticularly by incorporating operational disruptions
and variability in transport times.

The decision to buffer only super cold transfer
baggage reflects a conservative approach, prioritiz-
ing reliability over maximum peak shaving. This
aligns with operational feedback from AAS and
KLM but leaves potential gains from buffering cold
transfer baggage unexplored. Future research could
evaluate the controlled inclusion of this baggage
category, particularly under scenarios with addi-
tional safety buffers in transport times.

Conf. | Option Alternative Scenario Peak | STD | MAC | CoV | Peak buff | Buff. cons | AGVs
10 2: Polynomial 2: Optimized release | 1: Normal 1433 | 350.48 | 26.55 | 1.04 118 251 31
16 3: Combination | 2: Optimized release | 1: Normal 1433 | 350.48 | 26.55 1.04 118 251 31
2 1: Fixed target | 1: Early release 2: Reduced cap. | 1454 | 348.81 | 26.99 | 1.04 114 205 26
4 1: Fixed target | 2: Optimized release | 1: Normal 1454 | 347.95 | 26.94 | 1.03 116 199 28
11 2: Polynomial 2: Optimized release | 2: Reduced cap. | 1459 | 349.25 | 26.77 | 1.04 115 251 31
17 3: Combination | 2: Optimized release | 2: Reduced cap. | 1459 | 349.25 | 26.77 | 1.04 115 251 31
1 1: Fixed target | 1: Early release 1: Normal 1462 | 349.90 | 26.25 | 1.04 113 199 27
5 1: Fixed target | 2: Optimized release | 2: Reduced cap. | 1464 | 350.19 | 27.23 | 1.04 117 205 28
8 2: Polynomial 1: Early release 2: Reduced cap. | 1484 | 345.25 | 26.57 | 1.03 105 259 32
14 3: Combination | 1: Early release 2: Reduced cap. | 1484 | 345.25 | 26.57 | 1.03 105 259 32
7 2: Polynomial 1: Early release 1: Normal 1492 | 346.89 | 25.82 | 1.03 104 257 33
13 3: Combination | 1: Early release 1: Normal 1492 | 346.89 | 25.82 | 1.03 104 257 33
12 2: Polynomial 2: Optimized release | 3: Incr. inflow 1663 | 417.77 | 30.98 | 1.03 139 300 39
18 3: Combination | 2: Optimized release | 3: Incr. inflow 1663 | 417.77 | 30.98 | 1.03 139 300 39
3 1: Fixed target | 1: Early release 3: Incr. inflow 1734 | 411.03 | 29.64 | 1.02 138 288 34
6 1: Fixed target | 2: Optimized release | 3: Incr. inflow 1736 | 414.84 | 30.49 | 1.03 | 142 288 35
9 2: Polynomial 1: Early release 3: Incr. inflow 1819 | 413.07 | 30.15 1.02 127 311 40
15 3: Combination | 1: Early release 3: Incr. inflow 1819 | 413.07 | 30.15 | 1.02 127 311 40

Base 1 | 0. No buffer 0. No buffer 1: Normal 1958 | 404.83 | 28.82 | 1.20 | O 0 0

Base 2 | 0. No buffer 0. No buffer 2: Reduced cap. | 1958 | 404.15 | 29.4 1.20 |0 0 0

Base 3 | 0. No buffer 0. No buffer 3: Incr. inflow 2283 | 485.38 | 33.88 | 1.20 | O 0 0

Table 1: Full results of all configurations in peak shaving order
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10.2. Forecasting Model Performance

The SARIMA and TBATS models effectively
predicted occupancy levels, enabling data-driven
buffering decisions. TBATS’ ability to capture
weekly seasonality proved advantageous for man-
aging baggage flows in complex systems. How-
ever, the forecasting accuracy could be further im-
proved by leveraging larger datasets and exploring
advanced models to better capture non-linear and
abrupt changes in baggage flows. Ensuring data
quality and consistency remains critical, as gaps or
inconsistencies in historical data could introduce bi-
ases into predictions.

10.3. Effectiveness of Distribution Strate-
gies

The distribution strategies demonstrated signifi-
cant potential for peak shaving, with the Polyno-
mial and Combination strategies paired with the
Optimized Release approach achieving reductions
of up to 26.8% in peak occupancy. These strategies,
while more resource-intensive, provided smoother
occupancy profiles, as reflected in lower standard
deviation and variability metrics. The Fixed Tar-
get strategy, though less effective in peak shaving,
offered a resource-efficient alternative, particularly
in scenarios with limited AGV availability.

AGYV requirements emerged as a critical factor,
with Polynomial and Combination strategies de-
manding significantly more AGVs than the Fixed
Target approach. This underscores the importance
of balancing operational efficiency with resource
constraints, particularly in space-constrained envi-
ronments like airside operations at AAS.

10.4. Implications and Practical Applica-

tions

The study highlights the potential for buffering
strategies to mitigate peak occupancy and improve
operational stability in BHSs. By integrating pre-
dictive models with dynamic buffering decisions,
the simulation offers a foundation for real-time de-
cision support systems. Such systems could dy-
namically adjust buffering strategies based on live
occupancy predictions, ensuring efficient resource
utilization and minimal bottlenecks.

Practical implementation challenges, such as
AGYV traffic management and infrastructure invest-
ments for buffer expansion, must be addressed.
These findings provide valuable input for cost-
benefit analyses, helping airports evaluate trade-
offs between capital expenditure, operational costs,
and efficiency gains.

10.5.

While the simulation and forecasting models effec-
tively captured key dynamics, several limitations
remain. The exclusion of operational disruptions,
equipment constraints, and personnel shifts limits
the generalizability of the findings. Incorporating

Limitations and Future Research

these variables in future studies could enhance the
robustness of the model and test the adaptability
of buffering strategies under broader scenarios.

Additionally, optimizing the Fixed Target
threshold and refining the Polynomial Target func-
tion could lead to even more effective peak shaving.
Future research could explore machine learning-
based approaches to develop adaptive target func-
tions that better align with real-world inflow pat-
terns.

11.

This study explored the use of simulation and fore-
casting models to identify the most effective distri-
bution strategies for buffering super cold transfer
baggage at AAS. By analyzing the performance of
various strategies under different operational sce-
narios, this research provides insights into how peak
shaving can enhance the efficiency and resilience of
BHS at hub airports.

The findings demonstrate that peak shaving at
transfer infeed points, achieved through the strate-
gic buffering and reintroduction of super cold trans-
fer baggage, significantly reduces operational bot-
tlenecks. A combination of simulation and time se-
ries forecasting enabled the evaluation of six unique
strategies, each addressing specific trade-offs be-
tween peak occupancy reduction, AGV require-
ments, and buffer capacity management.

The most effective strategy, utilizing a polyno-
mial target function combined with an optimized
release mechanism, achieved a 26.8% reduction in
peak occupancy. This strategy dynamically ad-
justed buffering decisions based on forecasted occu-
pancy, ensuring efficient redistribution of baggage
flows. However, the high resource demand, partic-
ularly in terms of AGVs, underscores the trade-off
between peak shaving efficiency and operational re-
source requirements. In contrast, the fixed target
strategy achieved slightly less peak shaving (25.7%)
but required fewer AGVs, offering a more resource-
efficient alternative for airports with constrained
capacity.

Additionally, the early release strategy comnsis-
tently maintained the lowest buffer occupancy lev-
els, making it particularly advantageous for air-
ports with limited buffer space. While this ap-
proach achieved slightly lower peak shaving at in-
feed points, it reduced congestion within the buffer
and ensured smoother operations during periods of
high baggage inflow.

The results highlight that the choice of a dis-
tribution strategy depends on the specific opera-
tional priorities of AAS. Strategies that prioritize
peak shaving may require higher investments in
AGVs and operational resources, while resource-
efficient alternatives can still deliver substantial im-
provements. By integrating these strategies into its

Conclusion
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BHS operations, AAS can better manage fluctuat-
ing baggage volumes and improve overall system
performance.

This research provides a robust framework for
supporting AAS in selecting and implementing the
most suitable distribution strategies for peak shav-
ing, enabling smoother baggage flows and greater
resilience in its operations.

12.

This study highlights several opportunities to fur-
ther optimize peak shaving strategies at AAS. Fu-
ture research should explore expanding the crite-
ria for buffered baggage to include cold transfer
baggage with layover times of two to three hours,
potentially enhancing peak shaving effectiveness.
Additionally, advanced forecasting models, such as
machine learning or deep learning, could improve
occupancy predictions, enabling more precise and
adaptive buffering strategies.

Recommendations

Introducing greater flexibility in infeed point as-
signments, such as secondary or tertiary prefer-
ences, could help balance loads across the system,
mitigating localized bottlenecks. Furthermore, an-
alyzing the downstream impacts of buffering on
other BHS subsystems, such as security screening
and sorting, could lead to more integrated system-
wide peak shaving strategies.

A comprehensive cost-benefit analysis is recom-
mended to evaluate the financial implications of
various strategies, considering investments in in-
frastructure and AGV deployment against poten-
tial savings in staffing and efficiency. Developing
real-time decision support systems that integrate
forecasting with dynamic resource allocation could
further enhance operational adaptability.

Finally, testing strategies under additional sce-
narios, such as weather disruptions or equipment
failures, would provide insights into their robust-
ness and practical feasibility. These recommenda-
tions offer a pathway to refine peak shaving ap-
proaches, ensuring their scalability and alignment
with AAS’s operational and strategic goals.
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