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1
Preface

I started this master thesis with a genuine new interest in high-tech engineering and the role
that dynamics of mechanical systems could play in this area of mechanical engineering. When
I was introduced to the idea of being able to implement the knowledge I acquired during my
master studies in a project with the potential of creating medical breakthroughs, I felt an in-
stant connection, as I realized it would be the perfect opportunity to implement engineering
knowledge to create a positive social impact. With this idea in mind and although I started
with basic knowledge about machine learning, embarking on this project was like planting a
seed in fertile ground, as my enthusiasm for learning and implementing new methodologies
was constantly growing since the very first day.

I wish to expressmy gratitude to Professor Farbod Alijani, my supervisors Aleksandre Japaridze,
Irek Rosłoń, and their entire team for their constant support and invaluable feedback through-
out the duration of this project. Their guidance was instrumental, and I am deeply appreciative
of the exceptional opportunity they afforded me to contribute to this initiative. I am also grateful
to my parents, family, and all my loved ones. Their unwavering faith and continuous encour-
agement, especially in moments of doubt, played a crucial role in the successful completion
of this project. This thesis is dedicated to them; it stands as a testament to their support and
is as much their achievement as it is mine.

In this master’s thesis, you will find a comprehensive account of my discoveries throughout this
profound journey. It details the complexities of the methodologies employed, the challenges
encountered, and the strategies devised to address them. More than anything, as you pursue
into the pages that follow, you will witness the culmination of unwavering effort and dedication
over the past year, made possible by the collective endeavors of everyone involved. It is my
earnest hope that this research contributes significantly to the field and serves as a catalyst
for further exploration and innovation.
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Abstract

Bacterial identification is crucial for addressing infectious diseases and enabling effective treat-
ment strategies. Conventional bacteria identification methods like MALDI-TOF, while efficient,
lack the capability for screening the effectiveness of antibiotics. On the other hand, existing
antimicrobial resistance (AMR) tests, despite being reliable, suffer from time inefficiency and
lack concurrent identification capabilities. In response to these challenges, the present study
employs the recent advancements in single-cell nanomotion detection using graphene drums
to address these limitations. We integrate nanomotion detection with Machine Learning (ML)
algorithms which enables us to simultaneously identify bacteria phenotype and their resistance
to antibiotics. Bacterial time signals are transformed into time-frequency spectrograms, which
then serve as inputs for machine learning algorithms. Through pattern recognition, these
algorithms identify features within the images, facilitating the development of robust classifica-
tion models. Utilizing single-cell nanomotion signals, differentiation is achieved between the
species Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae, as well as in
detecting antibiotic-resistant and -susceptible strains, achieving an accuracy of 98.57% in the
latter. This research marks the first instance of ML integrated with nanomotion detection for
bacterial species identification and antibiotic susceptibility testing. It provides a basis for ad-
vanced diagnostic tools, expediting the provision of vital data regarding bacterial identification
and antibiotic susceptibility, contributing significantly to medical diagnostics.

6



3
Introduction

Accurate bacterial identification is crucial in clinical microbiology to direct suitable treatments
and steer infection control in healthcare [1]. Efficient diagnosis is pivotal to reduce morbidity,
mortality, and associated costs. While accurate identification can prevent unnecessary antibi-
otic use, the prevalent culture-based methods prove laborious, often requiring over two days
to pinpoint pathogens and longer to generate antibiotic susceptibility profiles [2]. This latency
often prompts physicians to prescribe broad-spectrum antibiotics, in conjunction with these
culture-based methods that demand 48 to 96 hours until a correct prescription is found [3].

Current identification methodologies span from traditional techniques such as Polymerase
Chain Reaction (PCR) with gene sequencing or Enzyme-Linked Immunosorbent Assay (ELISA)
to more advanced approaches like Matrix-Assisted Laser Desorption/Ionization Time-of-Flight
(MALDI-TOF) mass spectrometry. MALDI-TOF has notably revolutionized both the identifica-
tion and characterization of bacterial species and the understanding of their antibiotic resis-
tance. By measuring the mass-to-charge ratio of ionized molecules in a sample, MALDI-TOF
not only enables the detection of unique bacterial signatures but also recently facilitates the
identification of enzymes that bacteria produce to inactivate antibiotic molecules. However, it
is sensitive to experimental conditions and its spectra can vary due to growth conditions and
extraction methods, highlighting the need for alternative procedures [1, 4–6]. Moreover, while
specific MALDI-TOF variations can suggest antibiotic resistance, they fail to provide direct
guidance on appropriate treatment methodologies.

In contemporary medical microbiology, Antibiotic Susceptibility Testing (AST) is critical for eval-
uating how bacterial strains respond to various antibiotics. Methodologies like the Kirby Bauer
Disk Diffraction Method, Unbiased High-Throughput Sequencing (UHTS) or Bacterial Capture
Sequencing (BacCapSeq), are effective procedures that have been developed to evaluate
bacterial susceptibility to antibiotics, but lack specificity in identifying bacterial species and
display variable efficacy based on the bacterial concentrations in the samples. While meth-
ods such as those advocated by Cockerill et al. [7] and Lee et al. [8] necessitate substantial
sample volumes for optimal sensitivity, genomic strategies like UHTS and BacCapSeq offer
comprehensive genetic assessments but are resource-intensive [2, 9, 10]. Importantly, no
current method offers rapid, comprehensive insights spanning phylogeny, strain identification,
and antimicrobial resistance [2], highlighting the need for advanced techniques adept at both
rapid bacterial identification and antibiotic susceptibility assessment.

Nanomotion detection is emerging as a potent technique for antibiotic susceptibility testing [11].
This approach, spotlighting tiny oscillations triggered by living microorganisms, has seen in-
creased attention due to advancements in sensitivity [12]. Although nanomotion spectroscopy
exhibits considerable promise, its potential to simultaneously conduct bacterial identification
and AST remains uncertain. This is because existing nanomotion signals obtained from AFM
cantilevers typically represent averagedmotions emanating from populations of 100-1000 bac-
teria [13–15]. Such aggregate signals make precise bacterial identification challenging, as indi-
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vidual bacterial vibrational profiles are crucial for accurate species differentiation [16]. Recog-
nizing these challenges, recent advancements in nanomotion measurement have culminated
in the use of graphene drums, further enhancing detection sensitivity [17]. This evolution in
the field potentially provides a renewed opportunity to explore the capability of nanomotion
spectroscopy in detailed bacterial identification and antibiotic susceptibility testing.

Addressing this concern, the present investigation explores the viability of utilizing nanomo-
tion drum detection signals in bacterial identification and classification. In tandem, the study
probes the efficacy of Machine Learning algorithms such as Convolutional Neural Networks
(CNNs) and Support Vector Machines (SVM), in discriminating between different bacterial
types, including Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae. In ad-
dition, these algorithms were adeptly selected to distinguish not only between bacterial species
but also between antibiotic-resistant and susceptible strains. Within this framework, a total of
456 data measurements were utilized for the identification study case, and a total of 347 data
measurements were employed for the antibiotic susceptibility study case. Bacterial nanomo-
tion signals were transformed into time-frequency spectrograms, serving as inputs for these
advanced machine learning algorithms. With an emphasis on pattern recognition, the algo-
rithms were designed to identify intricate features within the spectrogram images, culminat-
ing in the construction of robust classification models. In addition, the performance of these
models was critically evaluated using established metrics in machine learning theory such as
accuracy, sensitivity, specificity, and area under the Receiver Operating Characteristic (ROC)
curve, while considering computational efficiency. This study provides the first evidence of in-
tegration of ML algorithms with single-cell detection, targeting bacterial species identification
and antibiotic susceptibility testing. By assessing the viability of this approach for bacterial
identification and antibiotic testing, the investigation provides crucial insights, setting the stage
for subsequent research in this area.
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Nanomotion-Based Machine Learning for Simultaneous
Bacterial Identification and Antibiotic Susceptibility Testing

Santiago Mendoza Silva, Aleksandre Japaridze, Irek Rosłoń, Farbod Alijani

Precision and Microsystems Engineering, Delft University of Technology
Mekelweg 2, Delft, 2628LX, The Netherlands

Abstract

Bacterial identification is crucial for addressing infectious diseases and enabling
effective treatment strategies. Conventional bacteria identification methods like
MALDI-TOF, while efficient, lack the capability for screening the effectiveness of
antibiotics. On the other hand, existing antimicrobial resistance (AMR) tests, de-
spite being reliable, suffer from time inefficiency and lack concurrent identification
capabilities. In response to these challenges, the present study employs the re-
cent advancements in single-cell nanomotion detection using graphene drums to
address these limitations. We integrate nanomotion detection with Machine Learn-
ing (ML) algorithms which enables us to simultaneously identify bacteria pheno-
type and their resistance to antibiotics. Bacterial time signals are transformed into
time-frequency spectrograms, which then serve as inputs for machine learning al-
gorithms. Through pattern recognition, these algorithms identify features within
the images, facilitating the development of robust classification models. Utiliz-
ing single-cell nanomotion signals, differentiation is achieved between the species
Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae, as well as
in detecting antibiotic-resistant and -susceptible strains, achieving an accuracy of
98.57% in the latter. This research marks the first instance of ML integrated with
nanomotion detection for bacterial species identification and antibiotic susceptibility
testing. It provides a basis for advanced diagnostic tools, expediting the provision
of vital data regarding bacterial identification and antibiotic susceptibility, contribut-
ing significantly to medical diagnostics.

4.1. Introduction
Accurate bacterial identification is crucial in clinical microbiology to direct suitable treatments
and steer infection control in healthcare [1]. Efficient diagnosis is pivotal to reduce morbidity,
mortality, and associated costs. While accurate identification can prevent unnecessary antibi-
otic use, the prevalent culture-based methods prove laborious, often requiring over two days
to pinpoint pathogens and longer to generate antibiotic susceptibility profiles [2]. This latency
often prompts physicians to prescribe broad-spectrum antibiotics, in conjunction with these
culture-based methods that demand 48 to 96 hours until a correct prescription is found [3].

Current identification methodologies span from traditional techniques such as Polymerase
Chain Reaction (PCR) with gene sequencing or Enzyme-Linked Immunosorbent Assay (ELISA)
to more advanced approaches like Matrix-Assisted Laser Desorption/Ionization Time-of-Flight
(MALDI-TOF) mass spectrometry. MALDI-TOF has notably revolutionized both the identifica-
tion and characterization of bacterial species and the understanding of their antibiotic resis-
tance. By measuring the mass-to-charge ratio of ionized molecules in a sample, MALDI-TOF
not only enables the detection of unique bacterial signatures but also recently facilitates the
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identification of enzymes that bacteria produce to inactivate antibiotic molecules. However, it
is sensitive to experimental conditions and its spectra can vary due to growth conditions and
extraction methods, highlighting the need for alternative procedures [1, 4–6]. Moreover, while
specific MALDI-TOF variations can suggest antibiotic resistance, they fail to provide direct
guidance on appropriate treatment methodologies.
In contemporary medical microbiology, Antibiotic Susceptibility Testing (AST) is critical for eval-
uating how bacterial strains respond to various antibiotics. Methodologies like the Kirby Bauer
Disk Diffraction Method, Unbiased High-Throughput Sequencing (UHTS) or Bacterial Capture
Sequencing (BacCapSeq), are effective procedures that have been developed to evaluate
bacterial susceptibility to antibiotics, but lack specificity in identifying bacterial species and
display variable efficacy based on the bacterial concentrations in the samples. While meth-
ods such as those advocated by Cockerill et al. [7] and Lee et al. [8] necessitate substantial
sample volumes for optimal sensitivity, genomic strategies like UHTS and BacCapSeq offer
comprehensive genetic assessments but are resource-intensive [2, 9, 10]. Importantly, no
current method offers rapid, comprehensive insights spanning phylogeny, strain identification,
and antimicrobial resistance [2], highlighting the need for advanced techniques adept at both
rapid bacterial identification and antibiotic susceptibility assessment.
Nanomotion detection is emerging as a potent technique for antibiotic susceptibility testing [11].
This approach, spotlighting tiny oscillations triggered by living microorganisms, has seen in-
creased attention due to advancements in sensitivity [12]. Although nanomotion spectroscopy
exhibits considerable promise, its potential to simultaneously conduct bacterial identification
and AST remains uncertain. This is because existing nanomotion signals obtained from AFM
cantilevers typically represent averagedmotions emanating from populations of 100-1000 bac-
teria [13–15]. Such aggregate signals make precise bacterial identification challenging, as indi-
vidual bacterial vibrational profiles are crucial for accurate species differentiation [16]. Recog-
nizing these challenges, recent advancements in nanomotion measurement have culminated
in the use of graphene drums, further enhancing detection sensitivity [17]. This evolution in
the field potentially provides a renewed opportunity to explore the capability of nanomotion
spectroscopy in detailed bacterial identification and antibiotic susceptibility testing.
Addressing this concern, the present investigation explores the viability of utilizing nanomo-
tion drum detection signals in bacterial identification and classification. In tandem, the study
probes the efficacy of Machine Learning algorithms such as Convolutional Neural Networks
(CNNs) and Support Vector Machines (SVM), in discriminating between different bacterial
types, including Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae. In ad-
dition, these algorithms were adeptly selected to distinguish not only between bacterial species
but also between antibiotic-resistant and susceptible strains. Within this framework, a total of
456 data measurements were utilized for the identification study case, and a total of 347 data
measurements were employed for the antibiotic susceptibility study case. Bacterial nanomo-
tion signals were transformed into time-frequency spectrograms, serving as inputs for these
advanced machine learning algorithms. With an emphasis on pattern recognition, the algo-
rithms were designed to identify intricate features within the spectrogram images, culminat-
ing in the construction of robust classification models. In addition, the performance of these
models was critically evaluated using established metrics in machine learning theory such as
accuracy, sensitivity, specificity, and area under the Receiver Operating Characteristic (ROC)
curve, while considering computational efficiency. This study provides the first evidence of in-
tegration of ML algorithms with single-cell detection, targeting bacterial species identification
and antibiotic susceptibility testing. By assessing the viability of this approach for bacterial
identification and antibiotic testing, the investigation provides crucial insights, setting the stage
for subsequent research in this area.
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4.2. Measurement Setup
In our study, the experimental arrangement consisted of bi-layer CVD graphene, stretched over
circular cavities with dimensions of 8µm in diameter and 285nm in depth, etched into SiO2.
The assembly integrated an extensive array of these graphene-covered cavities on a silicon
substrate, which were submerged in a Luria-Bertani (LB) medium containing a single type
of bacteria. The bacteria-mediated nanomotion caused perturbations in the graphene layer,
the extent of which was captured using laser interferometry, as depicted in Figure 4.1a. The
nanomotion induced time-sensitive deflection at the centre of the graphene drum, discerned
via variations in the reflected light intensity. For this study, all measurements were acquired
over a 30-second interval [17]. Ultimately, all obtained measurements are duly annotated with
the corresponding bacterial type and the specific conditions under which the measurements
were conducted. Thus, this annotated dataset then serves as relevant information for the
subsequent training of the classification algorithms.

4.3. Signal Processing
For the successful integration of artificial intelligence in bacterial signal classification, it was
essential to develop a method to input the signal data into machine learning algorithms. Given
the extensive size, complexity and lack of periodicity of the time-domain signals used in our
study, which comprise 60,000 data points each, feature extraction methods were employed
to isolate relevant characteristics from the signals. These extracted features then provided
feasible input data for machine learning algorithms. This type of approach is common in Ar-
tificial Intelligence (AI), as underscored by earlier work for detection of apneas in human via
analysing cerebral blood flow signals [18].

Therefore, to distill pertinent features from the signal, the time-domain representation was
transposed into a frequency-domain format. This conversion renders a structure more suit-
able for artificial intelligence-driven analysis, as suggested in prior research [19, 20]. Such a
methodology finds precedence in biological signal classification research, including a study,
wherein Electroencephalogram (EEG) time signals were recast as spectrogram images to au-
tomate the detection of Autism Spectrum Disorders [21]. Hence, a fitting approach for this
study consisted of using the time-signal to be subdivided into concise segments through a
window function, and each segment was subsequently transformed into frequency-domain
data using a Short Time Fourier Transform (STFT), to generate a spectrogram image as seen
in Figure 4.1a. This technique transmutes the challenge of signal classification into an image
classification task and supposes an improved approach when compared to only using Fast
Fourier Transform, as STFT is capable of providing insights into both the time and frequency
domains which is crucial for examining biological signals with shifting frequency components
over time.
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Figure 4.1: Illustration of the summary of the methodology for bacteria identification and susceptibility tests.
A) Illustration of the procedure, from using the interferometric setup for capturing nanomotion bacterial signals,
through to the employment of the Short-Time Fourier Transform for generating the spectrograms. B) Illustration of
the remaining procedure steps, from the input of spectrograms into the AI algorithm for bacterial type identification
to ultimately discern susceptibility or resistance.

For the signals utilized in this study, each with a duration of 30 seconds, the choice of window
and overlap sizes was critical to effectively capture essential features and mitigate issues such
as spectral leakage. Thus, a window duration of 0.256 seconds and an overlap of 0.128 sec-
onds were selected to optimize feature representation while minimizing artifacts. The resultant
spectrograms, presented in Figure 4.2, provide a continuous time-frequency depiction where
each spectrogram is representative of an individual single-cell measurement. Considering the
extensive dataset, it was imperative to ensure consistency across all spectrograms. This con-
sistency was achieved not only by applying consistent window and overlap values but also by
using a standardized Power Spectral Density (PSD) scale. The endpoint of this scale were
determined by the averagemaximum andminimumPSD values across the dataset. Such stan-
dardization enabled a clearer distinction of intrinsic spectral features, with more pronounced
attributes manifesting higher PSD values.
In this study, a diverse selection of bacteria, including both gram-negative and gram-positive
categories, as well as motile and non-motile variants, was chosen to explore the distinctive
signal behaviors of these microorganisms. To provide a representative statistical depiction of
the majority of spectrograms for each case, Figure 4.2 displays a single measurement from
the most important scenarios in the investigation of bacterial species differentiation. For each
delineated condition, a measurement approximating the median value, that is, the second
quartile Q2 of the box plot, was selected to best characterize that particular instance.
In Figure 4.2a, the spectrogram represents an empty cavity without graphene or bacteria. The
absence of salient features underscores the lack of bacterial activity influencing the graphene
drum. However, minor features still can be seen in this image. Due to the sensitivity of the
measurement set-up, minor features, possibly arising from sources like Brownian motion, en-
vironmental noise, and instrumental or external harmonic interferences become pronounced,
presenting in some cases horizontal harmonic lines in the spectrograms. In contrast, Figure
4.2b presents the spectrogram for a live E. coli bacterium. This visualization reveals distinct
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and pronounced features, characterized by a series of brief pulses spanning a diverse fre-
quency range in a compact time frame. These distinct features emerge, likely attributable to
inherent bacterial activity or bacteria and flagella interactions with the graphene drum, under-
scoring the nuanced dynamics of bacterial behavior and nanoscale interactions.

Figure 4.2: Visualization of individual bacterial type spectrograms and their respective variances. A) Spectrogram
for a single empty cavity (with no graphene). B) Spectrogram for a single E. coli bacterium. C) Spectrogram for
a single S. aureus bacterium. D) Spectrogram for a single K. pneumoniae bacterium. E) Box plot for all type of
bacteria measurements on graphene as well as for empty control cavities without graphene in LB. The box plot
delineates quartiles 25th, 50th (mean as red line) and 70th. Outliers are marked with crosses.

It is imperative to acknowledge that the E. coli strains utilized in this research are inherently
motile, which might contribute to the pronounced intensity of the PSD observed. On the other
hand, the signal derived from a S. aureus bacterium, as illustrated in Figure 4.2c, manifests a
diminished PSD intensity and a narrower frequency range. Such observations align with the
understanding that this specific bacterium is a non-motile species, leading to reduced dynamic
activity on the drum. Subsequently, in Figure 4.2d, characteristics of the K. pneumoniae bac-
terium are displayed. While the broad frequency pulses remain, they show reduced intensity
and frequency range compared to E. coli and S. aureus. As a non-motile bacterium with-
out flagella, K. pneumoniae lacks the dynamic movements observable in motile E. coli or S.
aureus non-motile counterparts. Consequently, the spectrogram captures fewer pronounced
variances in frequency and intensity, reflecting the more stationary nature of the bacterium in
the observed environment.

After selecting the optimal parameters for spectrogram generation, it was considered essen-
tial to ensure the quality of data for machine learning training. The measurement procedure,
which could be influenced by factors such as impurities in the Luria-Bertani (LB) medium, in-
consistencies in the graphene coating, and external interferences, might introduce variances
in the obtained data. Such factors could alter bacterial behavior, affect graphene membrane
displacement, and introduce potential artifacts in the spectrograms. Considering these com-
plexities, a thorough analysis of signal variance was conducted. This allowed for the identifica-
tion and exclusion of anomalous datameasurements, as seen in the variance box-plot analysis
(Figure 4.2). Removing such outliers ensured a dataset more aligned with genuine bacterial
behavior, enhancing the accuracy and robustness of subsequent algorithmic predictions.
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4.4. Implementation of ML Algorithms
There are several reasons why inputting signals as imagesmay be preferable to othermethods.
Foremost, spectrograms provide a two-dimensional time-frequency representation of signals,
which allows to encapsulate more detailed information about the signal [22]. Furthermore,
using image-based data can facilitate the use of deep learning techniques popularly used in
machine learning applications, as it allows for robust local pattern recognition, contributing to a
higher degree of noise resilience in the classification process, particularly for cases where the
amount of training available data is limited. Therefore, two different types of machine learning
algorithms were widely used in this study, Support Vector Machines (SVM) and Convolutional
Neural Networks (CNN) as seen in Figure 4.3. These types of deep learning models, are
particularly well-suited to image-based data, as they are able to automatically identify features
and patterns in the data without the need for additional manual feature engineering [23].

Figure 4.3: Illustration of the two machine learning algorithms employed in the bacteria species identification
study case. A) Schematic representation of the applied procedure in the implementation of the SVM algorithm.
Spectrograms are transformed into RGBA matrices that are used during training for later performing classification.
B) Schematic representation of the applied procedure in the implementation of the CNN algorithm. Spectrograms
are used in convolution operations to train the algorithm to ultimately perform the classification task.

In order to implement the spectrograms, this data was divided into training, validation, and
testing datasets for both algorithms, aligning with the principles of supervised learning [24].
Figure 4.3 explains the general methodology implemented for both SVM and CNN algorithms
during their training stages in the multiclass classification study case of differentiating between
bacteria species.

4.4.1. Support Vector Machines Algorithm
For the implementation of SVM, the spectrograms are assessed based on their pixel intensity
and color attributes. Subsequently, as presented in Figure 4.3a, the method applies this color
map to the data in the image to create a new array of RGBA values. In this instance, the alpha
channel A, functions as an indicator of color opacity, where a value of 0 stands for complete
transparency and 1 denotes full opacity. After producing the 2D numpy array of RGBA values,
the matrix is subjected to a flattening process. This transformation changes the matrix from
two dimensions to a one-dimensional array, making it suitable for subsequent computational
evaluations, particularly as input for the SVM algorithm.
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Upon receiving the flattened RGBA array representations of the spectrograms, the SVM al-
gorithm processes these high-dimensional data. In its training phase, the algorithm identifies
an optimal hyperplane to maximize the margin between bacterial categories. This involves
weight adjustments based on input features and, when necessary, the use of a chosen kernel
function to refine the data representation. In this process, the solvers convergence bene-
fited from allowing maximal iterations, a technique particularly useful with smaller datasets.
This unrestricted exploration of parameter space, combined with SVM proficiency in manag-
ing dataset imbalances, ensured a robust prediction mechanism [25]. It should be emphasized
that the SVM architectural design required rigorous planning. The configuration was intricately
aligned with the particular scenario under study. Different architectures were utilized for clas-
sifying bacterial types and discerning between antibiotic-resistant and susceptible bacteria,
such as using linear or polynomial kernels, ensuring an algorithmic approach best suited to
each specific case.

4.4.2. Convolutional Neural Networks
In contrast, for the CNN approach shown in Figure 4.3b, the analysis now would not be fo-
cusing on the attributes of pixel intensity and color, but rather on the pattern recognition and
the spatial relationships across the input data using convolution operations, inherent in the
design of the Convolutional Neural Network algorithm. In this case, the spectrogram images
would also function as the primary inputs. However, upon integrating these images into the
CNN model, a sequence of convolution and pooling operations is in charge of extracting the
elemental features from the spectrograms, as depicted in Figure 4.3b.
The convolution operation serves as the foundation of the CNN algorithm, processing the
input image through several convolutional layers. These layers apply adaptable filters, termed
kernels, to recognize local patterns while preserving spatial relationships. Iterative training
refines these filters to detect features such as edges and corners [24, 26]. After convolution,
Rectified Linear Unit (ReLU) activation functions were implemented in the model to introduce
nonlinear elements. The rationale for this selection is that the use of ReLU addresses the
vanishing gradient issue, thereby enhancing both the learning efficacy and robustness of the
model. [27].
After this transformation, pooling operations condense the spatial dimensions of images while
retaining critical information. In this research, max pooling was utilized, highlighting prominent
features by selecting the maximum value from each feature map region. After several cycles
of convolution, activation, and pooling, the high-dimensional feature maps are flattened into
one-dimensional vectors. These flattened layer matched the input size of the subsequent fully
connected layers that interpret the complex feature representations of images [28].
In the last stage of the learning process, a Softmax activation function was used in the final
decision layer to generate a probability distribution across the multiple outcomes, to effectively
represent the mutually exclusive class probabilities for all three bacteria species. However, for
the classification of antibiotic resistance versus susceptibility, a binary distinction, the Sigmoid
activation function was employed in the final layer. As its output range, spanning from 0 to 1,
was ideally suited to yield precise probability estimates for this specific context [27].
Finally, to address potential overfitting, an image augmentation strategy was adopted for the
CNNmulticlass study case. Data augmentation, widely utilized in image-centric machine learn-
ing, counteracts this by introducing random transformations such as rotation, zoom, shift, and
flip [29]. Given their relevance to bacterial signal spectrograms, these alterations facilitated the
ability of the model to discern generalizable features. Alongside techniques like dropout layers,
the approach aimed to harmonize effective training with reliable out-of-sample predictions.
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4.5. Results
Utilizing all available data, two primary analytical scenarios were pursued. The first entailed
differentiating among three bacterial species, Escherichia coli, Staphylococcus aureus, and
Klebsiella pneumoniae. The second aimed to determine the susceptibility or resistance of
E. coli to antibiotics. Both scenarios employed the nanomotion signals with CNN and SVM
algorithms, each customized for the specific task. Performance metrics included accuracy,
sensitivity, specificity, and the area under the ROC curve, with emphasis on computational ef-
ficiency. Variations in data volume between the cases arose from variance analysis and outlier
exclusion to maintain dataset integrity. As Figure 4.2 illustrates, the aim is that this analysis
reveals marked distinctions in bacterial signals, emphasizing their importance in classification
and confirming genuine differences among bacterial species.

4.5.1. Results for Bacteria Species Identification
CNN Implementation:

This algorithm demonstrated a robust performance, achieving a total accuracy of 88.04%. In
the confusion matrix presented in Figure 4.4a, the prediction accuracy for bacterial species
was observed as 73% for E. coli, 100% forK. pneumoniae, and 84% forS. aureus. Notably, the
primary inaccuracies of the CNN algorithm occurred in misclassifying S. aureus as E. coli with
an error of 20% and E. coli as S. aureus at 16%. The accuracy versus epochs graph in Figure
4.4b reveals a pronounced rise in accuracy during the early epochs, indicating efficient pattern
recognition from the training data. Although there are sporadic fluctuations in accuracy, such
unpredictable shifts, common in models using data augmentation, hint at the variability each
epoch introduces due to augmented transformations. However, the general trend confirms an
increase in accuracy until a convergence for the training and the validation curves is witnessed,
most prominently by the 100th epoch. This properly reflects the improved generalization of the
model and reduced risk of overfitting.

Figure 4.4: Results for the Identification of E. coli, K. pneumoniae and S. aureus using CNN. A) Table with the total size of the
dataset employed in the training and testing procedures. Confusion Matrix of CNN method with prediction results using the test
dataset to distinguish between the three types of bacteria species with a total accuracy of 88.04%. B) Accuracy of the CNN
algorithm versus epochs during the training procedure. C) Loss value versus epochs during the training procedure of the CNN
algorithm. D)Micro-Average Receiver operating Characteristic graph comparing the performance of all implemented algorithms.
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Furthermore, Figure 4.4c provides additional information about the learning dynamics of the
model. The starting loss value of 1.1, resulting from the randomweight initialization, decreases
steadily, signifying the proficiency of the model in learning data patterns. The smooth trajec-
tory of the loss function underscores stable learning, suggesting that the hyperparameters,
especially the learning rate, are appropriately configured and chosen. While the training loss
remains slightly below the validation loss, indicating mild overfitting, their overall proximity con-
firms the notable generalization capability of the model, illustrating its adeptness at fitting the
training data and generalizing to unseen samples.

SVM Implementation:
In parallel, the SVM algorithm exhibited a commendable performance, achieving an overall ac-
curacy of 84.04%. As illustrated in Figure 4.5a, the species-specific accuracies were recorded
as 70% for E. coli, 100% for K. pneumoniae, and 89% for S. aureus. Significant misclassifica-
tions included the prediction of S. aureus as E. coli with a 20% error rate, and K. pneumoniae
as E. coli with a 10% error rate.
In analyzing SVMmodels for bacterial differentiation via spectrograms, distinct trends became
evident for both linear and 4th-degree polynomial kernels. The linear kernel, as displayed in
Figure 4.5b, showed peak accuracy around regularization values of 0.2 to 0.5, hinting at an
optimal balance against overfitting. However, accuracy declined as values exceeded 0.5, sug-
gesting potential overfitting beyond this point. Conversely, the 4th-degree polynomial kernel
in Figure 4.5c, exhibited a steady accuracy increase from 0.1 to 2.0, followed by a plateau be-
tween values of 7 to 10. These patterns highlight the delicate balance between regularization
and SVM generalization from spectrogram data, suggesting that while the linear kernel might
offer marginally superior performance in certain parameter ranges, the polynomial kernel also
has the capability to capture non-linear nuances on the inherent characteristics of the dataset.

Figure 4.5: Results for the Identification of E. coli, K. pneumoniae and S. aureus using SVM. A) Table with the
total size of the dataset employed in the training and testing procedures. Confusion Matrix of Linear SVM with
prediction results using the test dataset to distinguish between the three types of bacteria species with a total
accuracy of 87.04%. B) Accuracy of a Linear Kernel SVM algorithm versus the regularization parameter C during
the training procedure. C) Accuracy of a fourth degree Polynomial Kernel SVM algorithm versus the regularization
parameter C during the training procedure. D) Micro-Average Receiver operating Characteristic graph comparing
the performance of all implemented algorithms.
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Evaluating both kernels, it was noted that they achieved peak accuracies close to 87%. How-
ever, the performance of the linear kernel, especially with a smaller regularization parameter
(C = 0.5), was particularly noteworthy, with results suggesting that the data is notably lin-
early separable in the transformed feature space. Such an observation implies that, within
this high-dimensional space, the distinct bacterial categories might be delineated with relative
simplicity. This linear nature not only minimizes overfitting risks but also makes the model
more interpretable. While the 4th-degree polynomial kernel can discern complex patterns, its
heightened complexity risks overfitting. Given their comparative performance, the linear SVM
is favored for its simplicity, robustness, and better generalization potential.

4.5.2. Results for Antibiotic Susceptibility
CNN Implementation:

In the second study case, where the distinction was made between resistant and susceptible
E. coli, the CNN achieved an overall accuracy of 98.57%. As illustrated in Figure 4.6a, the
specific accuracies in the confusion matrix for correct predictions were 100% for susceptible E.
coli and 95% for resistant E. coli. The most notable discrepancy was in the misclassification of
susceptible E. coli as resistant, occurring at a rate of 5%. In the subsequent analysis, Figure
4.6b illustrates a steady upward trend in the accuracy vs. epochs graph, converging around
the seventh epoch. This indicates once again a proficient pattern recognition from the training
data. The absence of random oscillations, is expected as the method of data augmentation
was not used in this scenario. Similarly, Figure 4.6c depicts a consistent decline in loss with
the progression of epochs, reinforcing that the model has improved generalization capabilities
and a mitigated risk of overfitting.

Figure 4.6: Results for the susceptibility tests using CNN. A) Table with the total size of the dataset employed in
the training and testing procedures. Confusion Matrix for CNNmethod with prediction results using the test dataset
to distinguish between Resistance and Susceptible E. coli bacteria under the influence of antibiotics with a total
accuracy of 98.57%. B) Accuracy of the CNN algorithm versus epochs during the training procedure. C) Loss
value versus epochs during the training procedure of the CNN algorithm. D) Receiver operating Characteristic
graph comparing the performance of all implemented algorithms.
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SVM Implementation:

Closely following the CNN results, the SVM algorithm exhibited a commendable performance,
achieving an overall accuracy of 97.14%. As presented in Figure 4.7a, the algorithm accurately
classified susceptible E. coli at a rate of 100% and resistant E. coli at 90%. It is pertinent to
note that the primary misclassification emerged from predictions where susceptible E. coli was
identified as resistant, marking a 10% error rate.

Figure 4.7: Results for the susceptibility tests using SVM. A) Table with the total size of the dataset employed in
the training and testing procedures. Confusion Matrix of SVM-predicted resistance vs. susceptibility in E. coli to
antibiotics using the test dataset with a total accuracy of 97.14%. B) Accuracy of a Linear Kernel SVM algorithm
versus the regularization parameter C during the training procedure. C) Accuracy of a fourth degree polynomial
Kernel SVM algorithm versus the regularization parameter C during the training procedure. D) Receiver Operating
Characteristic graph comparing the performance of all implemented algorithms.

In evaluating the two SVM kernel implementations, both the linear and 4th-degree polynomial
kernels achieved peak accuracies close to 96% and 97%, respectively. However, the linear
kernel in Figure 4.7b exhibited greater sensitivity to alterations in the regularization parameter.
As the regularization parameter increased, the accuracy significantly dropped from 96% to
89%, indicating a challenge for the model in distinguishing unseen data. This suggests that
data in this study might not be linearly separable in the hyperspace when compared to the
case discussed in Section 4.5.1. Contrarily, the 4th-degree polynomial kernel in Figure 4.7c,
displayed steadier accuracy rates under similar conditions, reflecting the datasets inherent
non-linear characteristics. Given the datasets skewed class distribution and the polynomial
kernels consistent performance in capturing non-linear relations, it emerged as the preferred
choice. As a result, the SVM with a 4th-degree polynomial kernel, using a regularization
parameter C = 1.0, was determined to be the optimal selection within the SVM options for this
particular study case.
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4.6. Discussion
4.6.1. Evaluation and Selection of Optimal Algorithmic Approaches
To ascertain the optimal algorithm for the classification tasks of bacterial species identification
and antibiotic susceptibility testing, both CNN and SVM were thoroughly evaluated. Emphasis
was placed onmetrics such as accuracy, computational efficiency, interpretability and the ROC
graph which presents information about the True Positive Rate (TPR), the False Positive Rate
(FPR) and the Area Under the Curve (ROC-AUC). The ROC graph reveals the performance
of the model through the balance between sensitivity or TPR and the FPR, with an optimal
curve nearing the top-left corner to signify high sensitivity with minimal FPR. In addition, the
ROC-AUC, when ranging close to 1, signifies a strong discrimination capacity and near 0.5
represents random chance classification (as depicted by the Random Classifier dotted line in
Figures 4.4d and 4.7d. Analysis of these metrics facilitates the assessment of the accuracy
of the algorithm in distinguishing bacterial types, aiding in the selection of the most suitable
method, particularly in imbalanced class situations.

In Section 4.5.1, Figures 4.4d and 4.5d present the micro-average ROC curve for species clas-
sification using CNN and Linear SVM. Micro-average ROC is used, as a traditional ROC curve
analyses binary classification, whereas the micro-average offers a comprehensive evaluation
for multiclass scenarios. In this instance, while the AUC provides an overarching assessment,
it may not spotlight finer intricacies within the ROC curve. In these figures, despite the CNN
exhibiting an AUC of 0.9469, slightly above the SVM AUC of 0.9442, a closer inspection of
the ROC curves reveals regions where the SVM surpasses the CNN. Such overlaps highlight
the capacity of SVM to achieve superior performance within specific FPR intervals, illustrat-
ing its efficacy in optimizing the TPR under designated conditions. Such distinctions can be
invaluable, especially in the biological context. In bacterial classification, minimizing false posi-
tives is crucial to prevent incorrect therapeutic interventions that may impact patient outcomes.
Considering the appropriate balance between specificity and sensitivity provided by the SVM,
the Linear SVM is recommended as the preferred classifier for bacterial species differentiation,
as it enables the attainment of the maximum TPR with the minimum FPR.

In the quest to differentiate between susceptible and resistant strains of E. coli, both a CNN
and a fourth degree polynomial SVM algorithms were rigorously selected. Examination of
the confusion matrices in Figure 4.6a and Figure 4.7a indicated that the CNN outperformed
the SVM approach, having only 5% of misclassification compared to the 10% of SVM. In de-
tailed terms, the CNN accurately detected all 49 resistant cases and 20 of the 21 susceptible
ones. Further clarity can be derived from the traditional ROC curves for binary cases in Figure
4.6d and Figure 4.7d. The AUC value was higher for the CNN at approximately 0.9981, in
comparison to the 0.9825 obtained value for 4th degree polynomial SVM. Importantly, at the
critical threshold where false positive rates initiate their rise from zero, the CNN displayed a
true positive rate of 0.9524, slightly exceeding the 0.9048 value of the SVM. This nuanced but
significant difference highlights the aptitude of the CNN algorithm to adeptly balance between
sensitivity and specificity in this decision case. Based on these assessments, and empha-
sizing the critical need for accurate classification in this domain, as bigger misclassification
values could produce a wrong diagnosis to a patient, it is decided that the CNN offers a more
promising approach for differentiating between susceptible and resistant E. coli strains.
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4.6.2. Error Mitigation
To reduce the risk of misclassification in these critical instances, it may be necessary to specify
the selected algorithm to reject errors in a more careful way, for example, by adjusting the cost
parameters or using a more complex kernel functions to better separate the involved classes.
To address potential inaccuracies, several mitigation strategies can be considered. Firstly, to
implement in a broader dataset to allow the model to learn even better the different features
of each classification class. Another alternative is more robust data augmentation. By encom-
passing both bacterial dataset expansion and synthetic data generation, it offers the potential
to substantially enhance model robustness by addressing data scarcity and imbalance. Al-
gorithmic enhancements, such as ensemble learning, can increase prediction accuracy by
aggregating insights from multiple models, and k-fold cross-validation could also ensure rigor-
ous evaluation across diverse data splits.

In addition, integrating domain-specific knowledge via tailored feature engineering can cap-
ture details that might be overlooked by the spectrogram models. A detailed error analysis,
including confusion matrix evaluations, could identity model weak points for improvements. By
analyzing the features that lead to misclassification in these weak areas, the model could be
modified to decrease errors. Ensuring model robustness against overfitting can be achieved
by fine-tuning regularization andmodel complexity. Post-deployment monitoring with expert in-
put for uncertain cases maintains the models relevance and accuracy. Investigating advanced
neural structures andmulti-modal learning can further elevate performance. By adopting these
strategies, future work can substantially augment the dependability and efficacy of diagnostic
algorithms in health informatics.

4.7. Conclusion
In assessing the potential of machine learning in clinical microbiology, the research sought to
gauge the effectiveness of these algorithms in analyzing signals from the nanomotion drum
method. Emphasis was placed on distinguishing between antibiotic-resistant and susceptible
bacteria and on differentiating among three bacterial species: E. coli, K. pneumoniae, and S.
aureus. The results highlight the capability of machine learning algorithms in classifying bac-
terial samples by their antibiotic resistance. In addition, these algorithms were also adept at
distinguishing among the three bacterial species examined in this study. Notably, the differen-
tiation between E. coli and K. pneumoniae, both Gram-negative bacteria with different motility
patterns, and S. aureus, a Gram-positive bacterium, suggests the ability of the algorithms to
discern variations based on species, Gram classifications, and motility using signals from the
graphene drum method.

An intriguing aspect of this study was the performance difference between CNN and SVM
within clinical microbiology, as a meticulous evaluation of both algorithms illuminated insights
into their strengths and limitations. The CNN models, known for their deep learning architec-
tures, showed particular efficacy in deciphering intricate data patterns, which wasmost evident
when differentiating between the resistant and susceptible strains of E. coli. This effectiveness
stems from the capability of the CNN model in detecting subtle variations in nanomotion drum
signals when analyzing features in the spectrograms. In contrast, SVM, grounded in a math-
ematical framework, was more proficient in differentiating between bacterial species. The
intrinsic design of the SVM model, which optimizes data classification by refining hyperplanes,
proved to be appropriate in scenarios where the ramifications of false positives are dire, allow-
ing for adjustments between sensitivity and specificity that became indispensable in species
recognition.
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One of the central takeaways from these findings is the importance of transcending conven-
tional metrics such as accuracy when selecting machine learning models for healthcare. The
broader clinical implications of potential outcomes must be factored in. While the pattern
recognition strengths of CNNs are evident, the versatility and precision of SVMs could be in-
dispensable in specific diagnostic contexts. This brings to the forefront the significance of
juxtaposing algorithmic precision with biological relevance, given the severe consequences of
misclassifications in clinical settings.

Furthermore, this research underscores the pivotal role of error mitigation in such studies.
A deep dive into the decision tree structure accentuates the severity of repercussions stem-
ming from misclassification errors at distinct stages. As decision-making becomes more nu-
anced and categorical, the gravity of misclassification consequences escalates, highlighting
the imperative for precision and recall in diagnostic applications. Potential strategies to miti-
gate these risks include data augmentation, ensemble learning, and systematic error analysis.
These approaches pave the way for fortifying the resilience of future machine learning appli-
cations in diagnostics.

In essence, this research marks a noteworthy stride in harnessing advanced computational
strategies for bacterial identification and antibiotic resistance testing. While numerous chal-
lenges remain, the insights gleaned offer a robust scaffold for future researchers and clini-
cians. Succeeding endeavors in this sphere should aim to augment this foundational knowl-
edge, delve into more sophisticated neural architectures, and consistently incorporate direct
clinical feedback from patient care settings. Such a holistic approach promises to actualize
the immense potential machine learning holds in transforming diagnostic paradigms.

4.8. Methods
4.8.1. Signal Processing for ML Algorithms
To extract relevant features from the signal, the time-signal was partitioned into discrete seg-
ments using a window function. Each of these segments was then translated into frequency-
domain representations via the Short-Time Fourier Transform, culminating in a spectrogram
image as depicted in Figure 4.1a. Notably, leveraging the STFT offers a more nuanced ap-
proach compared to solely relying on the Fast Fourier Transform, as the STFT facilitates com-
prehension of both time and frequency domains simultaneously. This characteristic becomes
essential in the examination of biological signals, which often display frequency components
that shift over time. However, it is important to note that there is an intrinsic trade-off in
the STFT between time and frequency resolution. In essence, a smaller window size aug-
ments the clarity in the time domain but compromises the granularity in the frequency domain,
whereas a broader window achieves the opposite effect [30].

Thus, in order to create the spectrograms, a window size needed to be determined. Select-
ing an adequate window size and overlap value for a STFT without preceding insights into
the signal typically represents a challenging task [30]. Nonetheless, the application of cer-
tain methodologies can facilitate more informed decisions regarding these estimations. For
instance, when determining the window size, a common starting point in many applications
entails using a window size that accounts for 1 to 5 percent of the total signal length. This as-
sumption is predicated on the expectation that the signal of interest will exhibit changes over
the duration of the signal, rather than manifesting as a single brief event [22]. Additionally,
to determine the size of the overlap, a practical initial approximation often involves adopting
half the window size [22]. This approach aids in striking a balance between computational effi-
ciency and thorough feature capture from the signal. A small overlap risks omitting short-term
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features, whereas an excessively large overlap may impose unnecessary computational load
[22].

Considering that the signals were measured over a duration of 30 seconds, a meticulous selec-
tion of the window and overlap sizes was crucial to effectively capture the significant features
of the signal and mitigate potential issues, such as spectral leakage. After evaluating numer-
ous values, a window size of 0.256 seconds paired with an overlap size of 0.128 seconds was
selected, deemed to provide an optimal balance of feature capture and artifact minimization.
Thus, the resulting spectrograms were able to present a clear representation of the signal,
where continuity in the time-frequency representation can be seen, without the existence of
breaks or gaps on the image as can be seen in Figure 4.2.

To accomplish this, a custom Python function was developed using existing Scipy and Mat-
plotlib functions to process the signals. Specifically, the custom function took a single 30
seconds signal measurement at a time and inputted this data into the spectrogram() Scipy
function to generate an image. This last function divides the input signal into windows of
length nperseg with overlapping segments of length noverlap, and applies a window function
to each segment before computing a Discrete Fourier Transform to that segment. The value
of nperseg is usually inputted a power of 2 for computational efficiency, and should be chosen
based on the trade-off between frequency and time resolution as mentioned before [21].

After determining the optimal parameters for spectrogram generation, careful attention was
directed towards ensuring the quality of the data to be employed in the machine learning
training process. It must be recognized that the measurement procedure can be influenced
by numerous factors, potentially affecting the fidelity of data obtained during each individual
measurement process. Given the inherent intricacy of the experimental setup and the pos-
sible impact of various unpredictable factors during the measurement process, a systematic
investigation into signal variance was deemed necessary and performed accordingly. This pro-
cedure facilitated the detection and exclusion of anomalous data points, like outliers, which
might otherwise introduce undesirable variance and uncertainty into the dataset. By excluding
these outliers identified in the variance box-plot analysis (Figure 4.2), the resultant data set
was more representative of the actual bacterial behavior, enhancing the potential for accurate
and effective classification through the trained algorithms and consequently reinforcing the
robustness of the future predictions.

4.8.2. Implemented ML Algorithms Architectures
For all the algorithms employed in this study, the spectrogram data was partitioned into train-
ing, validation, and testing datasets. This approach is required for the execution of supervised
learning [24]. During the training phase, the machine learning algorithm was informed about
the labels assigned to each measurement, thereby enhancing its ability to discern the corre-
sponding types of bacteria. Typically, the training set, comprising input data and corresponding
desired outputs, is utilized by the model to learn the input-output relationship and adjust its pa-
rameters for minimized prediction errors. The validation set, a distinct segment of the dataset,
serves the purpose of parameter refinement and model performance evaluation rather than
contributing to training. This set plays a pivotal role in directing adjustments to the parameters
of the algorithm, without being directly involved in the training of the model. Subsequent to
training and validation, the test set, which comprises the final portion of the dataset, is utilized
to gauge the capacity of the model to generalize to novel, unseen data, thereby providing a
measure of the comprehensive accuracy of the model [20, 31].
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Support Vector Machines Algorithm

In this particular experimental configuration, the analysis of the spectrograms primarily focuses
on the attributes of pixel intensity and color. Therefore, once the spectrogram image is ob-
tained, a custom python function saves the result as an image object. Subsequently, a method
called .to_rgba() is implemented. This method in the Matplotlib Python library is used to con-
vert an image to RGBA (red, green, blue, alpha) format, which is a standard format for storing
and displaying images. In more detail, when the image.to_rgba() method is called on an
image object, it first checks the current color map of the image, which is a set of colors that
are used to represent different light intensity values in an image.

Subsequently, the method applies this color map to the data in the image to create a new
array of RGBA values. These values are determined by mapping the original data values to
colors in the color map and then adding an alpha channel value to each color. The alpha
channel specifies the opacity of the color, with 0 indicating fully transparent and 1 indicating
fully opaque. Once the new array of RGBA values is created, the image.to_rgba() method
returns this array as a 2D numpy array that can be used for further image analysis. However,
before the RGBA matrix is fed as an input to the machine learning algorithm, it is necessary
to flatten the 2D array. This process involves converting the two-dimensional matrix to a one-
dimensional array.

Furthermore, the structural design of the Support Vector Machine algorithm required careful
consideration as well, with its configuration being highly dependent on the specific scenario
under investigation. Thus, distinct architectures were employed for the classification of bacte-
rial types and the differentiation between antibiotic-resistant and susceptible bacteria. This
bifurcated design strategy ensured optimal algorithm performance tailored to each unique
case. Therefore, in the context of bacterial species identification, the optimal performance
was achieved using a linear kernel accompanied by a regularization parameter of 0.5. Con-
versely, for differentiation between susceptible and resistant bacterial strains, a polynomial
kernel of the fourth degree, coupled with a regularization parameter of 1.0, yielded the highest
accuracy. The selected parameters, based on the information provided in Section 7.3.1, are
detailed in Table 6.1.

The parameter max_iter in the Support Vector Machine (SVM) algorithm, which governs the
maximum number of iterations allowed for the solver to converge, was intentionally set to
its default value of -1, representing an unlimited number of iterations. This approach gives
the model an opportunity for complete convergence, which is particularly useful when using
a small size dataset. Permitting an unlimited number of iterations allows the model to fully
explore the parameter space and potentially arrive at an optimal solution. These strategies, in
combination with the use of SVM, which is particularly suited for cases with high unbalanced
datasets, gives the algorithm robustness to perform accurately during the prediction stage
[25].

Convolutional Neural Networks

In contrast, for this different experimental approach, the analysis now would not be focusing on
the attributes of pixel intensity and color, but rather on the pattern recognition and the spatial
relationships across the input data using convolution operations, inherent in the design of the
Convolutional Neural Network algorithm. In this case, the spectrogram images would also
function as the primary inputs. However, upon integrating these images into the CNN model,
a sequence of convolution and pooling operations is in charge of extracting the elemental
features from the spectrograms, as depicted in Figure 4.3b.
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The convolution operation is the core of the CNN algorithm, as the input image undergoes
multiple convolutional layers. These layers use adaptable filters, or ’kernels’, across the im-
age to discern local patterns while maintaining spatial pixel relationships. Through iterative
training, these filters learn to identify features like edges and corners [24, 26]. Following each
convolution operation, a Rectified Linear Unit (ReLU) activation function was implemented
with the objective of introducing a nonlinear elements into the model. The incorporation of
the ReLU activation function is instrumental in augmenting the effectiveness of the training
process. Specifically, it mitigates the vanishing gradient issue (See Section 7.4.4), thereby
enhancing the learning efficiency of the model and enhancing its robustness [27].

Following this, a pooling or subsampling operation is applied to the transformed images. The
objective of this operation is to condense the spatial dimensions while preserving the essential
information. In this study, max pooling methodology was employed, an operation that selects
the maximum value from each region of the feature map, hence accentuating the prominent
features. As the network undergoes numerous iterations of convolution, activation, and pool-
ing operations, the resulting high-dimensional feature maps are eventually flattened into a
one-dimensional vector. As a result, this final flattened array has a size equal to the number
of input neurons in the subsequent fully connected layers, which interpret the found intricate
feature representations of the images [28].

In the course of this research, strategic selections of activation functions were made accord-
ing to the specific classification objectives. For the experiment aimed at differentiating among
three types of bacteria, a Softmax activation function was employed in the final decision layer.
This choice was based on the nature of the Softmax function, which effectively generates a
probability distribution across multiple potential outcomes, offering an accurate representa-
tion of mutually exclusive class probabilities, ideal for multi-class classification problems [27].
Contrarily, in the study focused on classifying antibiotic resistance and susceptibility, which
is a binary classification problem, a Sigmoid activation function was implemented in the final
layer. The Sigmoid function confines its output to a range between 0 and 1, thereby providing
a probability representation for a single class [27]. For binary classification scenarios such as
this, where the objective is to decide whether a given instance belongs to a specific class or
not, the Sigmoid function presents as the most suitable option.

Given the significance of correct parameter selection, hyper-parameters for the CNN model
were diligently chosen with an iterative process, reflecting considerations of task complex-
ity, data specifics, and available data. This ensured a balance between convolutional layers
for feature abstraction, dropout layers for overfitting prevention, and fully connected layers
for interpreting feature representations. The learning rate and batch size were optimized for
efficiency and learning capacity, with iterative adjustments informed by accuracy and conver-
gence plots.

Finally, it is important to mention that to mitigate the risk of overfitting in the model, an image
augmentation strategy was implemented. Overfitting is characterized by a model’s excessive
reliance on intricate patterns and noise inherent in the training dataset, which hampers its abil-
ity to generalize effectively to unseen data [31]. Data augmentation, prevalent in image-based
machine learning, combats overfitting by applying random transformations like rotation, zoom,
shift, and flip to original images. Chosen for their relevance to bacterial signal spectrograms,
these modifications prompt the model to learn generalizable features. Paired with regulariza-
tion methods like dropout layers, data augmentation aimed to balance effective learning with
accurate prediction on unseen data.
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Fully Connected Neural Networks

To further elucidate the capabilities of neural networks, a fully connected neural network was
introduced specifically for analyzing time-domain signals derived from the graphene drums
method. The underlying rationale for this approach centered on assessing whether conven-
tional machine learning algorithms could discern subtle variances in the signals when solely
relying on their time-domain data, without resorting to spectrograms. In order to implement
this, the data was partitioned into training and testing datasets in equivalent proportions as pre-
viously utilized for the CNN and SVM algorithms. Yet, in this iteration, Principal Component
Analysis was employed to extract salient features from the unprocessed time-domain data.

Principal Component Analysis (PCA) is a statistical procedure that employs orthogonal trans-
formation to convert potentially correlated variables into a set of linearly uncorrelated variables
known as principal components. In the context of this study, wherein signals are derived from
the graphene drums method to analyze bacterial activity, PCA serves to reduce dimensional-
ity while retaining the most significant patterns in the data. This aids in simplifying the data
structure, potentially enhancing the efficiency and accuracy of subsequent analyses. In addi-
tion, PCA identifies the directions, or principal components, in the dataset where the variance
is maximized. By representing the original data in terms of these components, it effectively
captures the underlying patterns while often discarding noise or less informative variations.
For a signal, this means that PCA can isolate the most significant trends or patterns in the
data, rendering a clearer understanding of the main characteristics and potentially removing
extraneous information [32].

This approach was only implemented in the differentiation between resistant and susceptible
E. coli bacteria. Once the dataset was divided for training and testing, then the variance analy-
sis was performed to exclude all the outliers more effectively and ensure the quality of the data
used for the training of the algorithm. Subsequently, the raw input data undergoes normaliza-
tion using the StandardScaler function from the Scikit-learn library, ensuring that each feature
has a zero mean and a standard deviation of one. This normalization is important for stabiliz-
ing the numerical conditioning, facilitating faster convergence, and optimizing the performance
of subsequent machine learning algorithms. To reduce the computational burden and poten-
tially enhance the generalization capability of the model by minimizing the noise inherent in
the data, the dimensionality of the normalized data is reduced using PCA, retaining 277 prin-
cipal components. Following the preprocessing, a sequential fully connected neural network
was constructed. The network comprised 4 hidden fully connected layers, interspersed with
dropout layers for regularization to mitigate overfitting. Each dense layer employs the Recti-
fied Linear Unit (ReLU) activation function. The culmination of the architecture is an output
layer with 2 neurons, adopting a Softmax activation, yielding probabilities for the two classes:
resistant and susceptible. When compiling the model, the Adam optimizer is employed with
an exceptionally low learning rate of 1× 10−6, and Binary Cross Entropy is designated as the
loss function, considering the integer nature of the multiclass labels. The model is rigorously
trained on the PCA-transformed training data for an extensive 3,000 epochs and is subse-
quently evaluated on the transformed test set to discern its effectiveness in classifying the two
E. coli bacterial types.



5
Conclusions and Outlook

In assessing machine learning role in clinical microbiology, this research investigated the profi-
ciency of such algorithms in interpreting signals from the nanomotion drum method. The study
aimed to distinguish bacteria based on antibiotic susceptibility and to differentiate among E.
coli, K. pneumoniae, and S. aureus. The study findings indicate that the machine learning
algorithms employed effectively sorted bacteria into resistant and susceptible categories. Ad-
ditionally, they showed a commendable ability to distinguish among the three bacterial species,
reinforcing the promise of machine learning in the broader spectrum of clinical microbiology.
Notably, the first two species are categorized as Gram-negative bacteria; with E. coli be-
ing motile and K. pneumoniae characterized as non-motile, while S. aureus is recognized
as a Gram-positive bacterium. Such distinctions highlight the algorithm aptitude to identify
differences in species, Gram classifications, and motility features, especially within the Gram-
negative category.

In this research, a notable performance difference was observed between CNN and SVM
within the clinical microbiology landscape. The endeavors to ascertain an optimal algorithm for
both classification tasks involved rigorous evaluations of both algorithms, resulting in valuable
insights into their accuracies and limitations. The CNN approach, characterized by their deep
learning architectures, displayed an adeptness in handling intricate data patterns, particularly
evident when discerning between susceptible and resistant strains of E. coli, owing to their
proficiency in detecting nuances in nanomotion drum signals. Conversely, SVM, underpinned
by mathematical rigor, demonstrated their prowess in bacterial species differentiation. The ar-
chitecture of SVM, which fine-tunes hyperplanes for optimal data class segregation, becomes
especially important in scenarios where false positives bear significant clinical repercussions.
SVM offered the ability to modulate the trade-offs between sensitivity and specificity, tailoring
decision boundaries, that became crucial in species identification.

In the ever-evolving landscape of machine learning, Large Language Models (LLMs) stand out
for their proficiency in processing and generating text. Beyond their role in natural language
tasks, LLMs show promise in diverse applications, including the analysis of signals from the
nanomotion drum method. The architectural foundation of LLMs, often rooted in recurrent
neural networks or transformers, enables adept analysis of sequential data, making them suit-
able for time-series datasets like those from the nanomotion drum. Additionally, LLMs can
extract deeper insights from data sequences, potentially interpreting bacterial behaviors or
health from nanomotion patterns. As clinical microbiology pursues advanced computational
methods, the incorporation of LLMs might bring enhanced depth and precision. Nevertheless,
thorough exploration and validation remain crucial to ascertain the applicability and reliability
of LLMs in such contexts.

In the research field of machine learning applied to clinical microbiology, the value of compre-
hensive and quality data is crucial. For current and emerging techniques, especially Large
Language Models, robust datasets are indispensable. Although the current database has a
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considerable size, further enrichment is essential to capture a comprehensive view of bac-
terial dynamics. Such a dataset can reveal pivotal insights into bacterial characteristics and
resistance profiles. In diagnostics, where precision is critical, an enriched dataset significantly
enhances algorithmic accuracy. Thus, expanding and diversifying data sources remain funda-
mental to future research endeavors.

Drawing upon the insights and advancements delineated in this study, there exists an unde-
niable momentum driving forward the fusion of clinical microbiology and computational tech-
niques. As we stand at the cusp of a transformative era, it is a collective aspiration that this
research not only sets the stage for innovative diagnostic paradigms but also kindles further
inquiry, collaboration, and dedication in the scientific community. The future beckons with
promise, and with continued diligence and unity, the horizon is ripe with possibilities awaiting
exploration.



6
Supplementary Materials

6.1. Decision Tree for all Analyzed Cases
in the case that is desired to implement these ML algorithm as future diagnostic tools, dis-
cerning not only between different bacteria but also between non-bacterial elements such as
cavities without graphene or drums without bacteria becomes crucial, as this precision ensures
that the diagnostic analysis exclusively targets data reflecting bacterial nanomotion.

Figure 6.1: Illustration of the decision tree used for signal type determination with its different decision stages.
Stage 1: Empty Cavities vs Intact Drums, Stage 2: Drums with and without Bacteria, Stage 3: Bacteria Species
Identification and Stage 4: Resistant vs Susceptible E. coli. Each stage highlights the accuracy of the implemented
algorithm and the corresponding classification error.

Therefore, the algorithms were further trained to discern among various signal types that might
be encountered in a prospective diagnostic tool employing machine learning. In a real-world
application, the signals must be classified without prior knowledge of whether they originate
from a drum with bacteria, thereby ensuring that only signals associated with bacterial pres-
ence are utilized for accurate diagnosis. Figure 6.1 illustrates the accuracy levels of the trained
algorithms at different decision stages within this automated diagnostic procedure.
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Figure 6.1 delineates the classification flow to be adopted during the automated algorithmic
implementation. Given the inherent challenges in ascertaining the origin of a signal from spe-
cific drum types, the algorithm first identifies whether the signal emanates from a drum with
undamaged graphene and if it possesses bacteria on its surface. Only after such determi-
nations can it advance to stages that discern bacterial type and assess their susceptibility or
resistance. At every decision juncture, various algorithms were evaluated, and the optimal
performer was chosen. This ensures that each stage is approached with the most effective
method tailored to its specific requirements.

6.2. Consequences of Misclassification Errors
In machine learning, particularly in medical contexts, a detailed examination of algorithm lim-
itations, including misclassifications, is required. Recognizing the severe consequences that
certain errors may have, especially in patient treatment, an analysis of these errors provides
information necessary to perform adjustments to the algorithms.

Decision Stage 1: Empty Cavities vs Intact Drums

1. Empty Cavity predicted as Intact Drum:
In this context, errors appear minimal. If an empty cavity is misclassified initially, sub-
sequent decision stages likely rectify this due to the signal’s diminished characteristics:
low intensity, variance, and Power Spectral Density compared to a drum with bacte-
ria. Misclassifications may be corrected at secondary stages, limiting error propagation.
However, if a highly noisy empty cavity persists in being misclassified, it may be wrongly
identified as sensitive bacteria. This could lead to the prescription of standard-intensity
antibiotics, potentially proving ineffective if the actual bacterium is resistant. Such an
error may exacerbate the patient’s health complications, although the likelihood of this
scenario is considered low.

2. Intact drum as predicted as Empty Cavity:
In this case, as there is no further continuation of the decision tree, another run would
of the algorithms would need to be made to actually be able to performed a diagnosis.
However, if hypothetically the tree would also ramify here to ultimately arrived to a clas-
sification and a final diagnosis, this signal then most likely would be misclassified as a
drum without bacteria. However, in case is not classified there, then it would be misclas-
sified most likely as sensitive bacteria, with the risk connotation of probably prescribing
an antibiotic that would not work.

Decision Stage 2: Drums without Bacteria vs Drums with Bacteria

1. Drum without Bacteria predicted as Drum with Bacteria:
In this specific scenario, the measured signal, potentially exhibiting minor variations and
diminished amplitude compared to a drum containing bacteria, might be misclassified
as indicative of sensitive bacteria during the final decision stage. Such misclassification
can have considerable implications. If the bacterium responsible for the condition of
the patient is actually resistant, this could lead to an inappropriate treatment strategy
involving standard-intensity antibiotics. Consequently, this might result in an inaccurate
diagnosis, potentially compromising the health outcome of patient.

2. Drum with Bacteria as predicted as Drum without Bacteria:
In this scenario, given the absence of further branches in the decision tree of Figure
6.1, another iteration of the algorithms would be required to reach a definitive diagnosis.
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Nevertheless, if one were to assume a continuation in this decision branch leading to
a diagnosis, subsequent misclassification of the signal could hinge on its intensity. If
a drum with bacteria were mistakenly classified as an empty drum, it is plausible that
the signal would exhibit reduced amplitude and variance. Consequently, during the final
decision stage, the signal could be misidentified as indicative of sensitive bacteria. If the
actual bacterium affecting the patient is resistant, this misclassification would potentially
result in the patient not receiving the correct treatment.

Decision Stage 3: Differentiating Among Bacterial Species

1. Misclassification between E. coli and K. pneumoniae:
Misclassification between these two bacterial species can appear when an E. coli bac-
terium has a small signal with small variance or when a K. pneumoniae has a higher
variance and higher intensity signal. Such a misclassification can lead to prescribe an-
tibiotics specific to the incorrect pathogen, which may reduce treatment efficacy. How-
ever, it is noteworthy that both E. coli and K. pneumoniae are categorized as Gram-
negative bacteria. Consequently, if a patient is administered a broad-spectrum antibiotic,
the likelihood of an effective treatment increases due to the structural similarities in the
membranes of Gram-negative bacteria [33]. Nonetheless, resistance patterns distinct to
each bacterial strain, coupled with the specific site of infection, may play a pivotal role
in influencing the choice of treatment. Therefore, a misclassification in this context is
suboptimal, but if it occurs, it may represent a minor error.

2. Misclassification between E. coli and S. aureus:
In cases where E. coli signals manifest with reduced intensity, characterized by notably
decreased variance and amplitude, there exists a risk of erroneously classifying them as
S. aureus. This distinction is critical given the differing characteristics of the two bacteria,
as E. coli is Gram-negative and S. aureus is Gram-positive. These differences inher-
ently dictate separate optimal treatment approaches, as S. aureus bacteria, especially
drug-resistant strains, require a specific set of antibiotics [34]. Administering antibiotics
tailored for Gram-positive bacteria like S. aureus when the patient actually has a Gram-
negative infection, such as E. coli, may represent an ineffective treatment, leading to
complication of the overall health status of the patient.

3. Misclassification between K. pneumoniae predicted as S. aureus: A misclassifica-
tion of K. pneumoniae as S. aureus could be attributed to potential overlaps or similarities
in the spectral signal. These organisms, although distinct in their cellular architecture
and typical presentations, can occasionally present similar motion behaviour as both
are non-motile specimens. A misclassification between K. pneumoniae and S. aureus is
significant, as K. pneumoniae often resists many Gram-positive-targeted antibiotics, re-
quiring distinct treatments [34]. Conversely, drugs effective against K. pneumoniae are
ineffective for S. aureus. Due to their distinct antibiotic responses, incorrect treatments
can lead to unwarranted antibiotic exposure and treatment failure, extending patient mor-
bidity.

Decision Stage 4: Resistant Bacteria vs Susceptible Bacteria

1. Sensitive Bacteria predicted as Resistant Bacteria:
In this situation, if the signal is misclassified as indicative of resistant bacteria, it is proba-
ble that the error arises from a particularly noisy measurement of sensitive bacteria. As
a result, the medical recommendation may lean towards prescribing powerful antibiotics.
Although this approach might inadvertently foster antibiotic resistance among bacteria in
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the future, it prioritizes ensuring that the patient undergoes suitable treatment, thereby
reducing potential health hazards.

2. Resistant Bacteria as predicted as Sensitive Bacteria:
In this scenario, there is significant cause for concern. Themisclassification of a resistant
bacteria signal, which likely has a low amplitude and variance, as indicative of sensitive
bacteria presents a critical risk. Such a misclassification can lead physicians to rec-
ommend standard-intensity antibiotics. If these antibiotics prove ineffective against the
bacteria responsible for the condition of the patient, the treatment becomes inadequate,
thereby elevating potential health liabilities.

Overall, misclassification in the decision tree could have significant consequences for patient
outcomes and should be minimized as much as possible. Therefore, it is important to carefully
evaluate the accuracy of the algorithm and take steps to improve it if necessary, such as
through further training, refinement of the decision tree, or the incorporation of additional data
sources. It is important to mention that, it is expected that the risk of misclassification in
the proposed decision tree would be more serious as the tree progresses to more specific
instances.
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6.3. Detailed Additional Results
6.3.1. Cavities with and without Graphene Results

Figure 6.2: Illustration of the results obtained during the first stage of the decision tree where the signal is being
classified in Empty cavities without graphene and intact drums with graphene, i.e., both with and without bacteria.
A) Results obtained with the CNN implementation. B) Results obtained with the best SVM implementation.
C) Results obtained with the Fully Connected Neural Network with Principal Component Analysis (PCA) imple-
mentation.

At this juncture in the decision tree, all algorithms demonstrated remarkable accuracy: CNN
at 98.91%, SVM at 97.55%, and NN with PCA at 91.28%. Such elevated accuracy can be
attributed to the pronounced signal differences between an empty cavity without graphene
and a drum with intact graphene, irrespective of the drum being empty or having bacteria on
it. Achieving high accuracy early in the decision tree bolsters the robustness of the classifi-
cation process, minimizing errors such as misidentifying empty cavities as intact drums. It is
noteworthy to mention the commendable accuracy achieved by the Fully Connected Neural
Network, likely a consequence of utilizing the PCA feature extraction method. The method
enhances variance differences in the signal, thereby facilitating the classification task.
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6.3.2. Drums with and without Bacteria Results

Figure 6.3: Illustration of the results obtained during the second stage of the decision tree where the signal is
being classified in Empty Drums without bacteria and Drums with bacteria. A) Results obtained with the CNN
implementation. B) Results obtained with the best SVM implementation. C) Results obtained with the Fully Con-
nected Neural Network with Principal Component Analysis (PCA) implementation.

At this specific stage in the decision tree, each of the employed algorithms maintained com-
mendable accuracy levels. The CNN method registered an accuracy of 96.05%, and the
learning pattern observed suggests effective feature recognition via convolution. Neverthe-
less, the loss versus epochs graph displayed slight indications of overfitting, evidenced by a
less smooth convergence compared to other examined cases. In parallel, the SVM method
reported an accuracy of 96.08%. Given SVM’s inherent strength in handling unbalanced class
distributions, it might demonstrate superior performance on new, unseen data compared to the
CNN method. Meanwhile, the Fully Connected Neural Network incorporating PCA continued
to exhibit substantial accuracy. Yet, its performance lagged behind the other two spectrogram-
based algorithms. In addition, in the fully connected neural network employing PCA, the non-
smooth learning curve observed during training in the accuracy vs epochs graph can be at-
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tributed to factors such as PCA feature selection, learning rate dynamics, batch size variability,
and potential dataset inconsistencies.

6.3.3. Parameters of the Support Vector Machine Algorithm

Parameters implemented for SVM algorithm

Parameter Cavities with and
without Graphene

Drum with and
without Bacteria

Bacteria Type
Classification

Resistance
Susceptibility
Identification

kernel linear linear linear poly

C 2.0 0.1 0.5 1.0

max_iter -1 -1 -1 -1

Table 6.1: Implemented parameters used in the SVM algorithm in study cases to differentiate empty cavities vs
intact drums, drums with and without bacteria, for Bacteria species identification and for susceptibility tests.



7
Appendix

7.1. Short-Time Fourier Transform
The Fourier Transform, is a fundamental tool in signal processing and image analysis, which
operates by decomposing a complex signal into its constituting frequencies, essentially con-
verting data from the time or spatial domain to the frequency domain. For a continuous function
of time f(t), the Fourier Transform F (ω), is obtained by calculating Equation 7.1, where ω is
the angular frequency. This process enables the extraction of frequency-based information
from the signal, which can reveal underlying periodic patterns or resonances that are less
discernible in the original time-domain representation [22].

F (ω) =

∫ ∞

−∞
f(t) · e−jwtdt (7.1)

Although is an invaluable tool, it has its own limitations. One primary issue arises when dealing
with non-stationary signals, as the Fourier Transform assumes that signals are stationary and
thus provides no temporal information, meaning it cannot discern when specific frequency
components occur. In such scenarios, the Short-Time Fourier Transform (STFT) can offer a
substantial advantage [22].

F (τ, ω) =

∫ +∞

−∞
f(t)w(t− τ)e−iωtdt (7.2)

As seen in Equation 7.2, The STFT analyzes a small window w(t− τ) of the signal at a time,
where τ is a translation parameter, thereby enabling the capture of time-varying frequencies
within the signal. This operation involves performing a series of Fourier Transforms on these
windows, which overlap to provide a time-continuous representation. By partitioning the signal
into these windows, the STFT can give information about both frequency and time. In addition,
it can highlight when certain frequencies occur in the signal, which is pivotal when analyzing
biological signals, where frequency components evolve over time. Nevertheless, it is crucial
to underscore that the STFT inherently involves a compromise between time and frequency
resolution. Specifically, reducing the window size improves the time resolution at the cost of
diminishing frequency resolution, and conversely, a larger window enhances frequency reso-
lution while decreasing the precision in the time domain. [30].
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7.2. Artificial Intelligence and Machine Learning

Artificial Intelligence
Artificial Intelligence (AI) is a field that combines computer science and physiology, aimed
at making computers behave in a way that resembles human intelligence. Intelligence can
be defined as the computational aspect of the ability to achieve goals in the world, which
encompasses a range of cognitive abilities such as thinking, imagining, creating, memorizing,
understanding, recognizing patterns, making choices, adapting to change, and learning from
experience. The goal of AI is to enable computers to perform these human-like tasks in a more
efficient and time-saving manner. AI technologies are used in a wide range of applications,
from simple expert systems to more complex applications such as autonomous robots, natural
language processing, and computer vision [35].

Machine Learning
On the other hand, Machine Learning (ML) is a subfield of AI that focuses on the development
of algorithms and statistical models that enable computers to ”learn” from data and improve
their performance on a specific task over time. Machine learning algorithms use statistical
techniques to give computer systems the ability to learn with data, without being explicitly
programmed. The goal of machine learning is to develop algorithms that can automatically
improve their performance by learning from these provided data [35].

Therefore, in this context, the term ”learning” refers to the process by which a model is trained
to perform a task by iteratively improving its accuracy through experience, i.e, by the input of
new data. Thus, the objective of the learning stage in machine learning is to enable the model
to generalize from the examples it has been trained on to new, unseen examples. This is done
through adjusting the parameters of the model based on the performance on a validation set,
with the goal of minimizing the error or loss between the predictions of the model and the actual
outcomes. As the model continues to learn from its experiences, it can produce increasingly
accurate predictions and make more informed decisions [36].

Supervised and Unsupervised Machine Learning
Unsupervised machine learning is a type of machine learning algorithm in which the system is
trained on a dataset that contains only input data, and no corresponding output variables. In
this case, the approach is to identify patterns or relationships within the input data. Once this
relations are found, the algorithm attempts to group similar instances together and discover
hidden structures in the data. Examples of unsupervised machine learning algorithms include
clustering and dimensionality reduction. Clustering, for instance, is a commonly utilized tech-
nique in various applications, including Google News, where it groups news articles from the
web and categorizes them into related collective stories [36].

Supervised machine learning, on the other hand, is a type of machine learning algorithm that
trains on a labeled dataset, which contains both input data and corresponding output variables.
To begin, a model that can accurately predict the output variables given the input data is built.
The algorithm uses the labeled data to learn the relationship between the input and output
variables. Once the model is trained, it can be used to make predictions on new, unseen data.
This type of algorithms are typically used in problems that include regression, Decision Trees,
and Support Vector Machines [36].
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Training, Validation and Test Datasets
Prior to an exploration of prevalent machine learning algorithms, it is essential to comprehend
a crucial procedure in regards to the utilization of datasets by these algorithms. One of the
fundamental aspects of machine learning involves the utilization of a training set, which con-
sists of a collection of examples of data and their corresponding outcomes. The objective is to
develop a model that can predict outcomes based on the given data. The process of learning
involves the application of algorithms that possess a set of parameters, and the task of learn-
ing requires the inference of parameters that are consistent with the training data. To achieve
this, the dataset is typically divided into three distinct groups: the training set, the validation
set, and the test set [20].

Figure 7.1: Illustration of how the dataset is divided in 3 different datasets in Machine Learning. The dataset
used for training, the validation set used for efficiency validation and the test set used for evaluation of the

performance of the model when using new unseen data [20].

The training set consists of input data and the corresponding desired outputs. The model
uses the training set to learn the relationship between the inputs and outputs, and adjust its
parameters tominimize the difference between the predicted outputs and the actual outputs. In
addition, the validation set is another subset of the dataset that is used to tune the parameters
of the model. The validation set is used to evaluate the efficiency of the model, and determine
which combination of parameters results in the best performance. Here it is important to note
that the model is not trained on the validation set, but its performance on the validation set
is used to make decisions about how to adjust the parameters. Finally, the test set is a final
subset of the dataset that is used to evaluate the performance of the model. However, the
test set is used to evaluate the ability of the model to generalize to new, unseen data. This
means that the model does not use the test set during the training or validation phases, and
its performance on the test set is used to measure the overall accuracy of the model [20].



7.3. Machine Learning Algorithms 40

7.3. Machine Learning Algorithms

7.3.1. Support Vector Machines

Support Vector Machines (SVM) is a type of supervised learning algorithm that is commonly
used for classification and regression analysis. It is based on the concept of finding the maxi-
mum margin hyperplane that separates the data points into different classes. The hyperplane
is chosen such that it maximally separates the data points, while also ensuring that the distance
between the hyperplane and the closest data points, known as support vectors, is maximized.
During the training procedure, the SVM algorithm tries to find a boundary that separates the
data into different classes, while also making sure that the boundary is as far away from the
data points as possible. This boundary is referred to as the maximum margin hyperplane, and
it is computed using mathematical optimization techniques [25].

This algorithm is particularly useful when the data is not linearly separable, and it can still per-
form well in these cases by using a non-linear transformation of the input data and mapping
it into a higher-dimensional feature space. This is achieved through the use of a kernel func-
tion, which is a mathematical function that transforms the input data into a higher-dimensional
space where a linear boundary can be found. This makes SVM a powerful tool for complex
classification problems, as it can handle non-linear relationships between the features and the
target. In addition, SVM can be used for both binary and multi-class classification problems
and can also be used for regression problems by modifying the implemented optimization ob-
jective function. Finally, this algorithm is known for having good generalization performance,
meaning that they can perform well on unseen data, and they are robust to outliers in the data
[25].

Figure 7.2: 2D Illustration of the boundary decision hyperplane in a Support Vector Machine algorithm. The red
continuous line is the hyperplane, while the lack dotted lines represent the support vectors or margin size of the

decision boundary.

If the equation of the continuous red hyperplane line is calculated, the following expression
can be found:

w1x1 + w2x2 + ...+ wixi + b = 0 → w⃗x⃗+ b⃗ = 0
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By using this expression, it is possible to find the equation for the margin size of the support
vectors. This can be done by adding to the equation of the hyperplane a step k that goes in
the direction of w⃗ until one the support vectors is reached. Then an unit vector is added so
that the step k is:

w⃗x⃗+ b⃗ = 0 → w⃗

(
x⃗+ k

w⃗

∥ w⃗ ∥

)
+ b⃗ = 0 → w⃗x⃗+ k

w⃗

∥ w⃗ ∥
+ b = 0 → k =

1

∥ w⃗ ∥

However, as the margin consists of the entire area of the decision boundary, then the final
equation of the margin is:

margin =
2

∥ w⃗ ∥
(7.3)

Therefore, the calculation becomes an optimization problem where the margin needs to be
maximized. Mathematically, the optimization problem can be explain given the training vectors
xi ∈ R and the vector y ∈ {1,−1}n. Here, the objective is to find w ∈ R and b ∈ R such that
the prediction given by sign(wTϕ(xi) + b) is correct for most samples. Therefore, the SVM
algorithm would solve the problem stated in Equation 7.4:

min
w,b,ζ

1

2
wTw + C

n∑
i=1

ζi (7.4)

subject to yi(w
Tϕ(xi) + b) ≥ 1− ζi

Where w is the vector from the decision boundary plane up to the support vector, C is the
regularization term, ζ is the maximum allowed distance for a sample to be inside the decision
boundary. These two last terms are added due to the fact that classification problems are not
usually perfectly separable with an hyperplane under every circumstance. Therefore, the ζ
term is used to allow some samples to be at a distance from the correct margin boundary or
support vector while the regularization term C, or penalty term, controls the strength of this
penalty, and as a result, acts as an inverse regularization parameter [37].

7.3.2. Logistic Regression

Logistic regression is a statistical method for analyzing a dataset in which there are one or
more independent variables that determine an outcome. The outcome is measured with a di-
chotomous variable, in which there are only two possible outcomes. This algorithm is typically
used to predict a binary outcome given a set of independent variables. However, implemen-
tations for multiclass classification are also possible. In this particular computational tool, the
dependent variables are modeled as a function of the independent variables, and a logistic
function is used to represent the relationship between them. The method is designed to map
the input values to a value between 0 and 1, which can then be interpreted as the probability
of the dependent variable taking a certain value [25].

The logistic regression algorithm is trained using a maximum likelihood estimation technique,
which finds the coefficients that maximize the likelihood of the observed data given the model.
Once the coefficients have been estimated, the logistic regression model can be used to make
predictions about new observations, by plugging in the values of the independent variables
and computing the predicted probability of the dependent variable with a determined value.
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Figure 7.3: Illustration of the learning process used in Logistic Regression. This consists in using the training set
in the inputs of the algorithm, so that its log-likelihood would determine how much the parameters would need to

be changed in the next iteration [20].

As this algorithm only has one layer of latent processes, i.e., that there is a single underlying
feature or factor that that influences the dependent variable. Its mathematical explanation
can be easily explained. In the first stage, the algorithm would performed a linear combination
between all the input values xi and the automatically predefined weights bM , which correspond
to the importance of each input variable. A b0 bias value is also added.

zi = (b1 · xi) + (b2 · x2) + ...+ (bM · xM ) + b0

Once the mapping from the feature variables to the variable zi is calculated, then the value of
zi is inputted into a logistic equation σ(zi), which can also be seen as a predicted probability
function. This function is used, as it provides a more confident perspective on the prediction.
Rather than simply assigning a prediction to a specific class, the function assigns a probabil-
ity to the prediction, indicating the level of confidence with which it belongs to a determined
class, which offers a more refined understanding of the prediction and its associated level of
confidence [20].

σ(zi) =
L

1 + e−k(zi−z0)
(7.5)

The standard logistic function is represented by Equation 7.5. Variations of this function can
be derived based on the values of the parameters L, k, and z0. For instance, when L = 1,
k = 1, z0 = 0, the resulting function is known as the Sigmoid function. If this function is used
with the results of zi, the outcome would be a number between 0 and 1. Therefore, when the
value of zi is significantly positive, the Sigmoid function converts it into a value that is close to
one, indicating high confidence that it will belong to a class, given the value of zi. In contrast,
when zi is highly negative, the output of the Sigmoid function is close to zero, which indicates
a low probability of belonging to another class [38].

In the learning process, the objective is to determine the values of the learned parameters
vector b⃗ = (b1, b2, ..., bM ), that result in an optimal performance of the algorithm. This is accom-
plished through the application of Empirical Risk Minimization, which requires the definition of
a performance metric. To this end, a Loss Function is introduced into the algorithm, which
measures the discrepancy between the true outcome and the prediction made by the model.
Thus, the loss function is designed to penalize poor predictions and it is used as a measure of
the discrepancy between the predicted and actual outcomes. An example of a loss function is
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the Negative Log-Likelihood, also called Cross Entropy Loss, which is shown in equation 7.6
for a binary classification problem:

L{yi, σ(zi)} = −yi · log (σ(zi))− (1− yi) · log (1− σ(zi)) (7.6)

Where yi is the true label and σ(zi) is the predicted probability of belonging to a class. The
idea behind the implementation of a Loss Function is that once a great prediction is done, then
the algorithm would pay a small loss value. In contrast, whenever there is a poor prediction,
the algorithm would pay a high loss value. Thus, a low loss value indicates an accurate pre-
diction, while a high loss value suggests a poor prediction as seen in Figure 7.4. Ultimately,
the objective is to minimize the average loss value to achieve an optimal performance. This is
performed by modifying the values of learned parameters vector b⃗, so that the error function
is decreased as much as possible [20]. This recalculation is achieved by using equation 7.7:

b⃗ = arg min
b

1

N

N∑
i

L{yi, σ(zi)} (7.7)

Figure 7.4: Graph of the Negative Log-Likelihood for a binary classification problem. It can be seen how an
accurate prediction has a low loss value, while a poor prediction has a high loss value [20].

It can be seen from Equation 7.7 that the calculation of the optimal learned parameters b⃗ deeply
depends on the minimization of the average of the implemented loss function.

7.3.3. Neural Networks
Neural networks, also called Multilayer Perceptron, are a type of machine learning model in-
spired by the structure and function of the human brain. They are composed of interconnected
processing nodes called artificial neurons that process and transmit information. The process-
ing nodes in a neural network are organized into multiple layers, where the input layer receives
data and each subsequent layer performs progressively more complex computations. The
output layer produces the final prediction based on the computations performed by the other
layers [20]. The artificial neurons in a neural network are connected through directed edges,
which are associated with weights that represent the strength of the connection between neu-
rons. During the training process, the weights are updated based on the error between the
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predicted output and the actual output, using an optimization algorithm such as gradient de-
scent. This process adjusts the strengths of the connections in order to improve the overall
accuracy of the predictions of the network [20].
Neural networks are a natural extension of the Logistic Regression algorithm. However, it
is better suited for a wide range of more complex applications, including image recognition,
speech recognition, natural language processing, and predictive analytics. The versatility of
neural networks is due to their ability to learn complex relationships in data and generalize to
new examples, making them a powerful tool for solving complex problems in various domains
as it can also support nonlinear decision boundaries [23].

Structure of a Neuron
A neuron is a mathematical model that is inspired by the structure and function of biological
neurons in the nervous system. It is composed of four key elements: an input, a linear combi-
nation, an activation function, and an output. The input to a neuron is a set of numerical values,
each representing a feature or characteristic of the data being processed. These inputs are
multiplied by a set of weights, representing the importance of each input, and then combined
through an activation function. Therefore, the activation function is responsible for determining
whether the neuron will be ”activated” and produce an output, based on the weighted inputs
received. In the end, this output represents the neuron’s prediction or decision about the input
data. Mathematically, a neuron can be represented by Equation 7.8:

y = f(w1x1 + w2x2 + ...+ wnxn + b) (7.8)

Where y is the output of the neuron, f is the activation function, wi is the weight associated with
each feature input xi, and b is a bias term that allows the activation function to be shifted. At
the beginning of the learning process, weights can be assigned to the input features according
to their importance or prominence. Additionally, the activation function can be any non-linear
function, such as the Sigmoid or the Rectified Linear Unit (ReLU) function, which allows for
non-linear relationships between inputs and outputs to be captured. More details about the
mathematical structure of these functions would be mention on Section 7.4. The output of a
neuron is then passed on as input to other neurons in the network, allowing for the processing
of multiple levels of abstractions and the extraction of increasingly complex features. The
connections between neurons are weighted, and the weights are adjusted during training to
minimize a loss function and optimize the performance of the network [20].

Figure 7.5: Illustration of the structure of a single neuron. Every neuron is composed by its inputs with their
corresponding weights, a section that performed the linear combination, an activation function and its output.
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In a neural network, instead of solely utilizing a single template vector to project the data points
as it was done in logistic regression, a set of k filters or reference factors, denoted as b1 to bk,
are considered as it can be seen in Figure 7.6. The inner product of each data point xi with
each of these filters b1 to bk is calculated, followed by the addition of biases consistent with the
previously procedure used in logistic regression. The outputs of these operations, referred to
as zi1 to zik in Figure 7.6, would become the k features from the first hidden layer. Afterwards,
these features are then passed through a logistic function σ(zik), which maps real numbers
to a range between 0 and 1, to introduce probability into the k latent features. Subsequently,
these k latent probabilities are then processed through a logistic regression model once again,
resulting in a single output ζi, calculated from the inner product of the latent features and a
single template filter Cik. Finally, ζi is then further passed through a final activation function
σ(ζi), providing the probability of the data being associated with a particular binary label [28].

Figure 7.6: Structure of a simple neural Network with one single hidden layer. It can be seen how the hidden
layer is represented by two continuous operations which correspond to the linear combination with its

corresponding activation function calculation.

Once this procedure is finished, then the calculation of the error with a loss function is per-
formed, to determine how accurate was the first prediction of the algorithm. Subsequently,
this loss value is calculated and the algorithm starts an optimization procedure call Backprop-
agation (see section 7.6), where all the weights in the networks are modified in order to reduce
the loss value in the next learning iteration. Upon completion of the learning process, the neu-
ral network is prepared to undergo testing with previously unseen data in order to generate
predictions [20].
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7.3.4. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of deep learning neural network that are
commonly used for data that have spatial structures and correlations, this is why some popu-
lar applications for this model involve image classification and object recognition tasks. The
fundamental idea behind CNNs is to extract meaningful features from the input image data
through a series of convolutional, activation, and pooling operations. It is important to note
that a CNN does not need to be entirely composed of convolutional layers, in fact, many pop-
ular CNN architectures are composed of different type of layers and typically end in a fully
connected layer structure [23].

Figure 7.7: Structure of a Convolutional Neural Network. All basic structural components are being shown in the
order in which they are typically implemented. That is, a Convolution layer, Pooling layers, a Flatten layer and a

section with fully connected layers [26].

The architecture of a CNN typically consists of several distinct layers. The convolutional, ac-
tivation, and pooling operations are repeated multiple times to create multiple feature maps,
which are then fed into a fully connected layer to produce the final output. The weights of
the filters and the biases in the fully connected layer are learned through the training process,
where the objective is to minimize a loss function between the predicted output and the true
output. In the following discussion, each of these structures will be explained in further detail.

Convolutional Layers

The convolution operation involves the extraction of essential features from an input image
through the use of filters. The filters, also referred to as kernels or templates, are small matri-
ces that scan through the input image and perform element-wise multiplications and accumu-
lations to generate a set of intermediate feature maps. These feature maps are then passed
through a activation function to introduce non-linearities into the model.

In image processing and computer vision, a motif is a recurring pattern or structure in an
image. Motifs represent the basic building blocks of an image, and they can be used to extract
important information and identify objects or structures in an image. In machine learning, a
motif is a feature that is learned by the network from the training data and is used to identify
objects and patterns in the input image. These motifs can be combined to form more complex
features, which help the network to learn how recognize increasingly complex patterns in the
input image [23].
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During the convolution, each motif would be used as an elemental filter of size k by k. This
operation starts with the motif filter positioned at the top-left corner of the input image of size
N by N. Then, the filter is moved one step at a time, either vertically or horizontally, performing
element-wise multiplications and accumulations with the elements of the image that it covers.
The result of this operation is stored in a single entry of a featuremap of size (N−k+1)×(N−k+
1). This process is repeated until the filter has scanned all regions of the input image. Finally,
the outcome is a first layer feature map that capture the presence of certain features, such as
edges, corners, or textures, in the input image through high-correlation regions. Subsequently,
to generate higher-layer feature maps, the method aggregates the elemental motif filters to
form more intricate patterns, resulting in the generation of higher-order features which would
act as final filters in the later classification process. Convolutional Layers are typically formed
by the following elements:

• Filter Size: Is the size of the filter utilized to obtain the feature map which typically ranges
from (3x3) to (7x7). It is recommended to choose a size that is large enough to capture
small local features, such as edges and spaces.

• Stride: This represents the amount of pixels that one filter would move at a time. A stride
of one would make the filter move along the image on row of pixels at a time whereas
a stride of 2 would make the filter move two rows of the image at a time. This element
can help to reduce the computational load by down sampling the input image. Common
values would be around 1 to 2.

• Filter Number: The amount of filters in the neural network. These represents the amount
of unique features that one could be looked for in the input image so that every unique
feature has its one independent feature map.

• Padding: The result of convolution operations often yield outputs larger than the input
size, which is due to the kernel extending beyond the edges of the input. This issue
can be resolved by adjusting the padding of the input. Usually, padding is employed to
maintain the output’s spatial dimensions equal to the input’s, when the stride is set to 1.
By using this, it is easier to keep track of the size of the model.

Figure 7.8: Illustration of the convolution algorithm. The triangle represents the motifs that are in every type of
image. Once an elemental motif is found in the image while being scanned, a high correlation area is added to

the current Feature Map [20].
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Pooling layers
The pooling operation is then performed on the feature map to reduce its spatial dimension,
while retaining the most important features. This process typically occurs in CNN architectures
after the activation function in the convolutional layer. This operation is typically performed by
taking the maximum value in a local neighborhood of the feature map, or by taking the average
of the values in that neighborhood [20].

The pooling process is performed by the pooling layer, which utilizes a pooling filter. This
filter functions similarly to a convolutional filter, but instead of conducting a convolution, it
compresses all the pixel information within its window to a single value. This compression is
achieved by taking either the maximum or average pixel value within the window of the pooling
filter. For example, as seen in Figure 7.9, if the input is represented as a 4x4 matrix and a
pooling layer employs a 2x2 max pooling filter with a stride of 2, the output will be a 2x2 matrix
containing the maximum pixel values from the pooling filter’s window. In this context, the stride
refers to the step size with which the pooling filter moves over the input matrix. It determines
the spatial resolution of the output produced by the pooling layer, as a larger stride results in
a smaller output size. The stride affects the size of the output by skipping over some of the
pixels in the input matrix, effectively reducing the size of the matrix [23].

Figure 7.9: Example of a (2x2) Max Pooling Filter with a stride of 2

The use of pooling layers in a neural network presents several benefits, including reduction of
computational complexity and facilitation of the training process. I addition, pooling layers also
help to prevent overfitting during training while also encouraging the existence of translational
invariance. In the context of machine learning, translational invariance refers to the ability of
a neural network to still classify the identity of a particular feature of an image independently
of its spacial location. This means that no matter where a particular feature is located inside
an image, this feature is still being translated or transferred and the neural network can still
determine its identity. This prevents to reduce the potential loose of information in the down
sampling process of the image [20].

Fully Connected layers
In a typical convolutional neural network there are convolution operations in the convolutional
layer to build feature maps. Then there are activation functions to introduce nonlinearities
to the network. Subsequently, there is a pooling layer with pooling filters to down sample
the feature maps. However, the network can have more subsequent convolutions and pooling
layers. At the end of this process, the stacked results would create a high level representations
of the features within the image. In order to process these high level features before the final
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classification, a fully connected multilayer perceptron is used, with the implementation of a
final set of the fully connected layers as seen in Figure 7.10 [20].

The process of inputting the high level features of the image into the dense layers involves
flattening or vectorizing the feature matrices produced in the final pooling layer. An illustration
of this process is shown in 7.10 with the presence of an intermediate latent or hidden layer of
neurons that are connected to the elements in the pooling layer. Furthermore, a fully connected
readout layer, consisting of class readout neurons, is connected to the latent hidden layer. This
structure enables the algorithm to provide meta feature representations that can effectively
address classification problems.

Figure 7.10: Example of a set of fully connected layers after a pooling layer in a Convolutional Neural Network.
For simplicity, in the image only the connections for the first neuron of each hidden and output layer is being

shown. However, every neuron is fully interconnected to its neighbor neurons in other layers.

Transfer Learning

It is important to note the significance of transfer learning. It involves utilizing the already
learned parameters of a convolutional neural network that has been trained on a broad image
dataset, in a more specialized model. This way, the need for learning all parameters from
scratch is eliminated, and only the parameters specific to the desired classification task need
to be learned. This is possible because elementary features present in an image of a cat,
for instance, are similar to those present in an image of a person. These elemental low-level
features are universal across all images.

The power of transfer learning lies in the ability of a convolutional neural network, once trained
to identify these elementary low-level features in a large data set, to apply the learned features
to quickly learn the higher-level and more specific features in a new desired classification task.
This results in a significant increase in the speed of the entire training process.

7.4. Activation functions
Activation functions are used to regulate the output of neurons in a neural network. Inside
a neuron, they are applied after the linear combination of features and weights, and provide
a nonlinear transformation to the input. This is necessary because linear functions alone are
insufficient to solve complex problems, and adding nonlinearities via activation functions helps
the neural network better capture complex relationships. The use of activation functions allows
for the creation of nonlinear relationships between layers, preventing the collapse of multiple
linear transformations into a single linear one and enabling the neural network to approximate
more complex functions and solve more challenging problems [27].
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When evaluating an activation function, the most significant aspect to consider is its threshold-
based classification, which determines whether a neuron is activated or deactivated based on
whether the input to the activation function surpasses a specified threshold value. If the input
does not exceed the threshold, the neuron is deactivated, and the output is not passed on
as input to the next layer [20]. In the rest of this section some activation functions would be
explained.

7.4.1. Binary Step Function
The Binary Step Function is the simplest activation function that can be implemented with
simple if-else statements in Python. It is commonly utilized in the creation of binary classi-
fiers. However, it is not suitable for use in the context of multiclass classification, as it cannot
accurately represent a target variable with multiple classes. Additionally, the gradient of the
Binary Step Function is zero, which can lead to hindrance in the backpropagation step as the
derivative of the function with respect to x is equal to zero [27]. Mathematically, this activation
function can be express as shown in Equation 7.9:

σ(zi) =

{
1, zi ≥ 0

0, zi < 0
(7.9)

7.4.2. Sigmoid Function
It is one of the most widely used activation functions due to its nonlinear properties. This
function has the advantage of providing a smooth and continuous output, which makes it con-
tinuously differentiable. This enables an easier to calculation of gradients during the back-
propagation phase of training a neural network. Moreover, the Sigmoid function can provide a
clear interpretation of the output as a probability between 0 and 1, making it easy to interpret
the results of binary classification problems, while facilitating the creation of a threshold line
suitable for a classification problem. Mathematically, the Sigmoid function can be written as
in Equation 7.10:

σ(zi) =
1

1 + e−zi
(7.10)

However, the Sigmoid function also has some disadvantages. One of the main drawbacks of
the Sigmoid function is that it has a saturation effect, meaning that the output of the function
becomes close to either 0 or 1, causing the gradients to become very small, this issue is called
Vanishing Gradients. This can cause slow convergence, which can result in poor training
performance of the network. Additionally, the sigmoid function is not zero-centered, meaning
that the mean of the activation function is not zero, which can lead to asymmetrical behavior in
the network. Another disadvantage is that the Sigmoid function is not well suited tomodel multi-
class problems, as it only outputs a single probability value. In those cases, other activation
functions such as the Softmax function are typically used [27].

7.4.3. Softmax Function
This function is a commonly used activation function, specifically in the output layer of a mul-
ticlass classification problem. Its main purpose is to convert a vector of arbitrary real values
into a probability distribution over several classes. Thus, the function operates by squashing
the input values into the range between 0 and 1, while ensuring that the sum of the values is
equal to 1. Mathematically, the Softmax function is defined as:
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σ(zi) = Softmax(yi) =
ezi∑K
k=1 e

zj
(7.11)

where zi is a vector of real values, i is the current index, and j is over all other indices. The
exponential operator (ezi) is applied to each input value, and then the resulting values are
normalized by dividing by the sum of all exponentials. The output of the function will be a set
of values that add up to 1 and can be interpreted as probabilities of each class. One important
property of the Softmax function is that it produces outputs that are proportional to the relative
probabilities of each class. This means that if two classes have a large difference in their
input values, the Softmax function will produce a large difference in their output values, which
reflects the confidence of the prediction [27].

7.4.4. Rectified Linear Unit: ReLU Function
The Rectified Linear Unit (ReLU) is a commonly used activation function in the field of machine
learning. It is defined as a piecewise linear function, where for an input value greater than
zero, the output is equal to the input value. In constrast, for an input value less than or equal
to zero, the output is zero. The ReLU function can be mathematically represented as shown
in Equation 7.12:

σ(zi) = ReLU(zi) = max(0, zi) (7.12)

ReLU is favored for its simplicity and computational efficiency compared to other activation
functions, particularly in between hidden layers. It can also alleviate the vanishing gradient
problem in deep neural networks, where the gradient becomes extremely small and makes it
difficult for the network to learn. However, the ReLU function has a drawback known as the
”dying ReLU” problem, where if a ReLU neuron receives a negative input, it remains inactive
and produces a constant output of zero. This can cause a large portion of the network to
become ineffective and negatively impact the learning process. To address this issue, variants
of the ReLU function have been proposed, such as the leaky ReLU [27].

σ(zi) = ReLU(zi) = max(0, x) (7.13)

7.5. Loss functions
In a neural network, the loss function plays a crucial role in determining how well the model
is performing. It provides a measure of how far the predictions of the model are from the
true values in the training data. As mention in prevous sections, the objective of the training
process is to minimize the average value of the loss function, so that the prediction error of the
model is as small as possible. This is done by updating the weights of the model and biases in
the direction of minimizing the loss. The gradient of the loss function is used to determine the
direction of update, and optimization algorithms such as gradient descent are used to perform
the update [20].

The loss function is a scalar value that summarizes the difference between the predictions of
the model and the true values in the training data. It is calculated for each training example
and then averaged over the entire training set. The choice of loss function depends on the
specific problem being solved and the type of data being used. This function are used as a
feedback signal for the optimization algorithm to adjust the parameters of the neural network.
During training process, the optimization algorithm iteratively updates the parameters of the
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model to minimize the value of the loss function. Once the optimization algorithm has found
the optimal set of parameters, the model can be used to make predictions on new, unseen
data [20]. In the rest of this section, some popular loss functions are explained.

7.5.1. Mean Square Error
The Mean Squared Error (MSE) loss function is a commonly used measure of the difference
between the actual and predicted outputs of a machine learning model, particularly in regres-
sion problems. In a neural network, the MSE loss is calculated as the average of the squared
differences between the predicted outputs and the actual outputs. This function can be ex-
pressed as in Equation 7.14:

L{yi, σ(zi)} =
1

N

N∑
i=1

(yi − ŷi)
2 (7.14)

The MSE loss function is widely used because it is differentiable and convex, which makes
it easy to optimize. It also provides a clear measure of the accuracy of the predictions of the
model. However, theMSE loss function can be sensitive to outliers, meaning that a single large
error in the prediction can significantly impact the overall loss value. This can be mitigated by
using a robust loss function, such as the Huber loss, which is less sensitive to outliers [39].

7.5.2. Cross-Entropy
The Cross-Entropy loss function is a widely used especially in the field of deep learning. It
is primarily used for training multi-class classification models, as it provides a measure of the
distance between the predicted class probabilities and the true class label. The basic idea
behind Cross-Entropy is to penalize the model for making confident, but incorrect predictions.
This is achieved by calculating the negative logarithm of the predicted class probabilities and
averaging it over all the classes. The resulting loss is then backpropagated through the neural
network to update the model’s parameters and reduce the prediction error. The Cross-Entropy
loss function is defined as follows in Equation 7.15:

L{yi, σ(zi)} = −
∑
i

y′i · log(yi) (7.15)

Where yi is the set of probabilities predicted by the model and y′i is the true label, which is
what we wanted the model to predict. Thus, equation 7.15 measures the average information
content or uncertainty of the predicted class probabilities, relative to the true class label. Mini-
mizing this loss function results in themodel makingmore accurate predictions, as it converges
towards the true class label [39].

7.5.3. Sparse Categorical Cross Entropy
This is a variant of the Cross-Entropy loss function, with the main difference being that the
target values are given as integers instead of one-hot encoded vectors, whichmakes themodel
computationally more efficient. This function calculates the difference between the predicted
class probabilities and the true class labels. This is done by first converting the true class
labels into a one-hot encoded vector and then computing the Cross-Entropy loss between this
vector and the predicted class probabilities. Subsequently, the loss value is computed for each
example in the batch and then averaged over the batch size to obtain the final loss value for
a single training step [39].
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L{yi, σ(zi)} = −
∑
i

y′i · log(yi) (7.16)

Being C the amount of classes in the classification and yint the integer label for a data point
(i.e., an integer between 0 and C−1), then the one-hot encoded label y can be derived as:{

1 if c = yint

0 otherwise

7.6. Backpropagation Algorithm
The backpropagation algorithm is a method used to update the weights in a neural network. It
is a supervised learning algorithm that is used in the training process of a neural network. The
goal of backpropagation is to minimize the error between the predicted output of the neural
network and the actual target output. The algorithm accomplishes this by updating the weights
of the network in such a way that the prediction error is reduced. As a first step, the algorithm
starts by making a forward pass through the network, which involves passing the input through
the network and making predictions using the current weights. After making predictions, the
algorithm calculates the error with the loss function between the predicted output and the
actual target output. This error is then propagated backwards through the network, where the
weights are updated in such a way that the error is reduced [24].

Subsequently, the algorithm uses the gradient descent optimization algorithm to update the
weights of the network. The gradient descent algorithm calculates the gradient of the error with
respect to the weights, and updates the weights in the direction of the negative gradient. This
reduces the error between the predicted output and the actual target output, and eventually
leads to convergence to a minimum error value. Finally, the algorithm iteratively updates the
weights until the error between the predicted output and the actual target output is reduced to
an acceptable level. This procedure is considered to be computationally efficient and is widely
used in training neural networks. It is one of the most important algorithms in deep learning,
and is the basis for many popular deep learning models such as convolutional neural networks
and recurrent neural networks [39].

7.6.1. Optimizers
During the error backpropagation algorithm, that is, when the training is being accomplished,
the optimizer allows to train the neural network efficiently. Optimization algorithms in backprop-
agation algorithm are used to update the model’s parameters, such as weights and biases,
based on the gradients computed during the backpropagation process. There are various op-
timization algorithms such as Stochastic Gradient Descent, Adagrad, Adadelta, Adam, among
others. The choice of optimization algorithm often depends on the specific problem and data
being modeled [24].

Gradient decent Method

The Gradient Descent Method that involves iteratively updating the weights of the network in
the direction of the negative gradient of the loss function with respect to the weights. The
magnitude of the update is determined by a learning rate, which determines the step size of
the update. The method is based on the idea of continuously decreasing the error by moving
towards the minimum of the loss function. This iterative process continues until the gradient
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of the loss function with respect to the weights is close to zero or a stopping criteria is met.
The Gradient Descent Method is widely used due to its simplicity and computational efficiency.
The update rule for the parameters in gradient descent is given by the following equation:

wt+1 = wt − α · ∇L(wt) (7.17)

where w(t) represents the model parameters at iteration t,∇L(w(t)) is the gradient of the cost
function with respect to the parameters and α is the learning rate, which determines the size
of the update step [40].

Standard Stochastic Gradient Decent

Standard Stochastic Gradient Descent (SGD) is a variation of the Gradient Descent optimiza-
tion algorithm. This algorithm randomly selects a single samples from the training data and
compute the gradient with respect to the loss function for that single samples. This gradient
is then used to update the model parameters in a single step. Subsequently, the process is
repeated iteratively, using a different random samples from the training data each time, until
the model reaches convergence, or the training accuracy reaches a satisfactory level. Mathe-
matically, it can be represented as shown in Equation 7.18:

wt+1 = wt − α · ∇L(wt, xi) (7.18)

Where wt is the weight of the model at iteration t, α is the learning rate, ∇L(wt, xi) is the
gradient of the cost function L with respect to the weights wt for a single training example
xi. It can be seen that Equation 7.17 and Equation 7.18 are similar. However, the difference
between the two methods lies in the way the gradients are computed. The standard Gradient
Descent algorithm computes the average of the gradients over all the training examples, while
the Stochastic Gradient Descent computes the gradient with respect to a single training sample.
The use of a single sample in SGD results in a more efficient optimization process and also
helps the algorithm to converge faster by providing a more stochastic optimization process,
which can escape from local minima. However, the increased randomness in the optimization
process also increases the risk of overfitting compared to gradient descent [40].

7.6.2. Adam Optimizer
The Adam optimizer is a popular optimization algorithm used in the training of neural networks
in machine learning. It is a combination of two optimization methods, Stochastic Gradient
Descent and Root Mean Square Propagation, which are combined to form a computationally
efficient and effective optimization method. At its core, Adam optimizer uses a running av-
erage of the gradient, as well as a running average of the squared gradient, to dynamically
adjust the learning rate for each weight in the network. This helps to avoid the oscillation of
the optimization process and converge to the optimal solution more effectively. The learning
rate is updated adaptively, allowing the algorithm to make larger updates early in the optimiza-
tion process, when the gradient is still large, and smaller updates as the optimization process
approaches convergence. In comparison to other optimization algorithms, such as SGD, the
Adam optimizer has been shown to converge faster and provide more stable convergence
in a wide range of applications. Additionally, the algorithm requires relatively little computa-
tional overhead, making it an attractive choice for deep neural networks and other large-scale
machine learning problems [41].
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7.6.3. Receiver Operating Characteristic (ROC) Curve
The ROC graph illustrates the performance of the model by showcasing the balance between
the True Positive Rate or sensitivity (Equation 7.19) and the False Positive Rate which can be
calculated with Equation 7.21.

TPR = Sensitivity =
True Positives (TP)

True Positives (TP)+ False Negatives (FN)
(7.19)

Specificity =
True Negatives (TN)

True Negatives (TN)+ False Positives (FP)
(7.20)

FPR = 1− Specificity (7.21)

The optimal ROC curve of a model approaches the top-left corner, denoting high sensitiv-
ity without loss of specificity. The Area Under the Curve (AUC) serves as a comprehensive
metric to quantify this performance. An AUC with values close to 1, as seen in Figure 7.11,
indicates superior discriminatory power, while values near 0.5 suggest no better performance
than random chance. A steeper ROC curve signifies enhanced sensitivity with minimal speci-
ficity loss. Analyzing the ROC and AUC metrics for the studied algorithms provides insights
into their precision in differentiating bacterial categories to determine the optimal approach
choice, particularly in scenarios with class imbalances [42].

Figure 7.11: ROC curve displaying various scenarios. The AUC, or Area Under the Curve, measures diagnostic
precision. An AUC of 0.5 signifies chance performance (represented by a diagonal line), while a maximum value

of 1.0 reflects a perfect classifier, where sensitivity is maintained across all specificity values. [42]
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