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Abstract The DIA method for the detection, identification
and adaptation of model misspecifications combines esti-
mation with testing. The aim of the present contribution is
to introduce a unifying framework for the rigorous capture
of this combination. By using a canonical model formula-
tion and a partitioning of misclosure space, we show that
the whole estimation–testing scheme can be captured in one
single DIA estimator. We study the characteristics of this
estimator and discuss some of its distributional properties.
With the distribution of the DIA estimator provided, one can
then study all the characteristics of the combined estimation
and testing scheme, as well as analyse how they propagate
into final outcomes. Examples are given, as well as a discus-
sion on how the distributional properties compare with their
usage in practice.

Keywords Detection, Identification and Adaptation
(DIA) · Tienstra transformation · Baarda test statistic ·
Misclosure partitioning · Voronoi-partitioning unit sphere ·
DIA estimator · Best linear unbiased estimation
(BLUE) · Best linear unbiased prediction (BLUP) ·
Hazardous probability · Bias · Missed detection (MD) ·
Correct detection (CD) · Correct identification (CI)

B P. J. G. Teunissen
p.teunissen@curtin.edu.au

1 GNSS Research Centre, Curtin University of Technology,
Perth, Australia

2 Department of Geoscience and Remote Sensing, Delft
University of Technology, Delft, The Netherlands

1 Introduction

The DIAmethod for the detection, identification and adapta-
tion of model misspecifications, together with its associated
internal and external reliability measures, finds its origin in
the pioneering work of Baarda (1967, 1968a), see also e.g.
Alberda (1976), Kok (1984), Teunissen (1985). For its gener-
alization to recursive quality control in dynamic systems, see
Teunissen and Salzmann (1989), Teunissen (1990). The DIA
method has found its use in a wide range of applications, for
example, for the quality control of geodetic networks (DGCC
1982), for geophysical and structural deformation analyses
(VanMierlo 1980; Kok 1982), for different GPS applications
(Van der Marel and Kosters 1990; Teunissen 1998b; Tiberius
1998; Hewitson et al. 2004; Perfetti 2006; Drevelle and Bon-
nifait 2011; Fan et al. 2011) and for various configurations
of integrated navigation systems (Teunissen 1989; Salzmann
1993; Gillissen and Elema 1996).

The DIA method combines estimation with testing.
Parameter estimation is conducted to find estimates of the
parameters one is interested in and testing is conducted to
validate these results with the aim to remove any biases that
may be present. The consequence of this practice is that the
method is not one of estimation only, nor one of testing only,
but actually one where estimation and testing are combined.

The aim of the present contribution is to introduce a uni-
fying framework that captures the combined estimation and
testing scheme of the DIA method. This implies that one has
to take the intricacies of this combination into consideration
when evaluating the contributions of the various decisions
and estimators involved. By using a canonical model formu-
lation and a partitioning of misclosure space, we show that
the whole estimation–testing scheme can be captured in one
single estimator x̄ . We study the characteristics of this esti-
mator and discuss some of its distributional properties. With
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the distribution of x̄ provided, one can then study all the char-
acteristics of the combined estimation and testing scheme, as
well as analyse how they propagate into the final outcome x̄ .

This contribution is organized as follows. After a descrip-
tion of the null and alternative hypotheses considered, we
derive the DIA estimator x̄ in Sect. 2.We discuss its structure
and identify the contributions from testing and estimation,
respectively. We also discuss some of its variants, namely
when adaptation is combined with a remeasurement of
rejected data or when adaptation is only carried out for a
subset of misclosure space. In Sect. 3, we derive the distri-
bution of the estimator x̄ . As one of its characteristics, we
prove that the estimator is unbiased underH0, but not under
any of the alternative hypotheses. We not only prove this for
estimation, but also for methods of prediction, such as col-
location, Kriging and the BLUP. Thus although testing has
the intention of removing biases from the solution, we prove
that this is not strictly achieved. We show how the bias of x̄
can be evaluated and on what contributing factors it depends.

In Sect. 4, we decompose the distribution conditionally
over the events of missed detection, correct identification
and wrong identification, thus providing insight into the con-
ditional biases as well. We also discuss in this context the
well-known concept of the minimal detectable bias (MDB).
In order to avoid a potential pitfall, we highlight here that
the MDB is about detection and not about identification. By
using the same probability of correct detection for all alterna-
tive hypothesesHa , the MDBs can be compared and provide
information on the sensitivity of rejecting the null hypoth-
esis for Ha-biases the size of their MDBs. The MDBs are
therefore about correct detection and not about correct iden-
tification. This would only be true in the binary case, when
next to the null hypothesis only a single alternative hypoth-
esis is considered. Because of this difference between the
univariate and multivariate case, we also discuss the prob-
ability of correct identification and associated minimal bias
sizes.

In Sect. 5, we discuss ways of evaluating the DIA esti-
mator. We make a distinction between unconditional and
conditional evaluations and show how they relate to the pro-
cedures followed in practice. We point out, although the
procedures followed in practice are usually a conditional one,
that the conditional distribution itself is not strictly used in
practice. In practice, any follow-on processing for which the
outcome of x̄ is used as input, the distribution of the estima-
tor under the identified hypothesis is used without regards to
the conditioning process that led to the identified hypothesis.
We discuss this difference and show how it can be evaluated.
Finally, a summary with conclusions is provided in Sect. 6.
We emphasize that our development will be nonBayesian
throughout. Hence, the only random vectors considered are
the vector of observables y and functions thereof, while the

unknown to-be-estimated parameter vector x and unknown
bias vectors bi are assumed to be deterministic.

2 DIA method and principles

2.1 Null and alternative hypotheses

Before any start can be made with statistical model valida-
tion, one needs to have a clear idea of the null and alternative
hypotheses H0 and Hi , respectively. The null hypothesis,
also referred to as working hypothesis, consists of the model
that one believes to be valid under normal working condi-
tions. We assume the null hypothesis to be of the form

H0 : E(y) = Ax , D(y) = Qyy (1)

with E(.) the expectation operator, y ∈ R
m the normally

distributed random vector of observables, A ∈ R
m×n the

given design matrix of rank n, x ∈ R
n the to-be-estimated

unknown parameter vector, D(.) the dispersion operator and
Qyy ∈ R

m×m the given positive-definite variance matrix of
y. The redundancy of H0 is r = m − rank(A) = m − n.

Under H0, the best linear unbiased estimator (BLUE) of
x is given as

x̂0 = A+y (2)

with A+ = (AT Q−1
yy A)−1AT Q−1

yy being the BLUE-inverse
of A. As the quality of x̂0 depends on the validity of the
null hypothesis, it is important that one has sufficient confi-
dence inH0. Although every part of the null hypothesis can
be wrong of course, we assume here that if a misspecifica-
tion occurred it is confined to an underparametrization of the
mean of y, in which case the alternative hypothesis is of the
form

Hi : E(y) = Ax + Cibi , D(y) = Qyy (3)

for some vectorCibi ∈ R
m/{0}, with [A,Ci ] a knownmatrix

of full rank. Experience has shown that these types of mis-
specifications are by large themost common errors that occur
when formulating the model. ThroughCibi , one may model,
for instance, the presence of one or more blunders (outliers)
in the data, cycle slips in GNSS phase data, satellite failures,
antenna-height errors, erroneous neglectance of atmospheric
delays, or any other systematic effect that one failed to take
into account underH0.As x̂0 (cf. 2) looses itsBLUE-property
under Hi , the BLUE of x under Hi becomes

x̂i = Ā+y (4)
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with Ā+ = ( ĀT Q−1
yy Ā)−1 ĀT Q−1

yy the BLUE-inverse of

Ā = P⊥
Ci
A and P⊥

Ci
= Im −Ci (CT

i Q−1
yy Ci )

−1CT
i Q−1

yy being
the orthogonal projector that projects onto the orthogonal
complement of the range space of Ci . Note that orthogonal-
ity is here with respect to the metric induced by Qyy .

As it is usually not only one single mismodelling error
Cibi one is potentially concerned about, but quite often
many more than one, a testing procedure needs to be devised
for handling the various, say k, alternative hypotheses Hi ,
i = 1, . . . , k. Such a procedure then usually consists of the
following three steps of detection, identification and adapta-
tion (DIA), (Baarda 1968a; Teunissen 1990; Imparato 2016):

Detection: An overall model test onH0 is performed to diag-
nose whether an unspecified model error has occurred. It
provides information onwhether one can have sufficient con-
fidence in the assumed null hypothesis, without the explicit
need to specify and test any particular alternative hypothesis.
Once confidence in H0 has been declared, x̂0 is provided as
the estimate of x .

Identification: In case confidence in the null hypothesis is
lacking, identification of the potential source of model error
is carried out. It implies the execution of a search among the
specified alternatives Hi , i = 1, . . . , k, for the most likely
model misspecification.

Adaptation: After identification of the suspectedmodel error,
a corrective action is undertaken on theH0-based inferences.
With the null hypothesis rejected, the identified hypothesis,
Hi say, becomes the new null hypothesis and x̂i is provided
as the estimate of x .

As the above steps illustrate, the outcome of testing deter-
mines how the parameter vector x will be estimated. Thus
although estimation and testing are often treated separately
and independently, in actual practicewhen testing is involved
the two are intimately connected. This implies that one has
to take the intricacies of this combination into consideration
when evaluating the properties of the estimators involved.
In order to help facilitate such rigorous propagation of the
uncertainties, we first formulate our two working principles.

2.2 DIA principles

In the development of the distributional theory, we make use
of the following two principles:

1. Canonical form: as validating inferences should remain
invariant for one-to-one model transformations, use will
bemadeof a canonical versionofH0, thereby simplifying
some of the derivations.

2. Partitioning: to have an unambiguous testing procedure,
the k+1 hypothesesHi are assumed to induce an unam-
biguous partitioning of the observation space.

2.2.1 Canonical model

We start by bringing (1) in canonical form. This is achieved
by means of the Tienstra-transformation (Tienstra 1956)

T = [A+T , B]T ∈ R
m×m (5)

in which B is an m × r basis matrix of the null space of
AT , i.e. BT A = 0 and rank(B) = r . The Tienstra trans-
formation is a one-to-one transformation, having the inverse
T −1 = [A, B+T ], with B+ = (BT Qyy B)−1BT Qyy . We
have used the T -transformation to canonical form also for
LS-VCE (Teunissen and Amiri-Simkooei 2008) and for the
recursive BLUE-BLUP (Teunissen andKhodabandeh 2013).
Application of T to y gives under the null hypothesis (1),

[
x̂0
t

]
= T y

H0∼ N
([

x
0

]
,

[
Qx̂0 x̂0 0
0 Qtt

])
(6)

inwhich x̂0 ∈ R
n is theBLUEof x underH0 and t ∈ R

r is the
vector of misclosures (the usage of the letter t for misclosure
follows from the Dutch word ’tegenspraak’). Their variance
matrices are given as

Qx̂0 x̂0 = (AT Q−1
yy A)−1

Qtt = BT Qyy B (7)

As the vector ofmisclosures t is zeromean and stochastically
independent of x̂0, it contains all the available information
useful for testing the validity ofH0. Note, since a basismatrix
is not uniquely defined, that also the vector of misclosures is
not uniquely defined. This is, however, of no consequence as
the testingwill onlymake use of the intrinsic information that
is contained in the misclosures and hence will be invariant
for any one-to-one transformation of t .

Under the alternative hypothesis (3), T y becomes dis-
tributed as

[
x̂0
t

]
= T y

Hi∼ N
([

In A+Ci

0 BTCi

] [
x
bi

]
,

[
Qx̂0 x̂0 0
0 Qtt

])

(8)

Thus, x̂0 and t are still independent, but now have differ-
ent means than under H0. Note that Cibi gets propagated
differently into the means of x̂0 and t . We call

by = Cibi = observation bias

bx̂0 = A+by = influential bias

bt = BT by = testable bias (9)
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These biases are related to the observation space Rm as

by = PAby + P⊥
A by

= Abx̂0 + B+T bt

= T −1[bTx̂0 , bTt ]T (10)

with the orthogonal projectors PA = AA+ and P⊥
A = Im −

PA.
As the misclosure vector t has zero expectation underH0

(cf. 6), it is the component bt of by that is testable. The
component bx̂0 on the other hand cannot be tested. As it
will be directly absorbed by the parameter vector, it is this
component of the observation bias by that directly influences
the parameter solution x̂0. The bias-to-noise ratios (BNRs)
of (9),

λy = ||by ||Qyy , λx̂0 = ||bx̂0 ||Qx̂0 x̂0
, λt = ||bt ||Qtt (11)

are related through the Pythagorian decomposition λ2y =
λ2x̂0

+λ2t (see Fig. 1; note: here and in the followingwe use the

notation ||.||2M = (.)T M−1(.) for a weighted squared norm).
As the angleφ between by and PAby determines howmuchof
the observation bias is testable and influential, respectively,
it determines the ratio of the testable BNR to the influential
BNR: λt = λx̂0 tan(φ). The smaller the angle φ, the more by
andR(A) are aligned and themore influential the biaswill be.
The angle itself is determined by the type of bias (i.e. matrix
Ci ) and the strength of the underlying model (i.e. matrices
A and Qyy). The BNRs (11) were introduced by Baarda in
his reliability theory to determine measures of internal and
external reliability, respectively (Baarda 1967, 1968b, 1976;
Teunissen 2000). We discuss this further in Sect. 5.2.

oH

ttQ||tb||=tλ

ox̂ox̂Q||ox̂b||=ox̂λ

yyQ||yb||=yλ

aH

φ

Fig. 1 ThePythagorianBNRdecompositionλ2y = λ2x̂0
+λ2t , withλy =

||by ||Qyy , λx̂0 = ||bx̂0 ||Qx̂0 x̂0
= ||Abx̂0 ||2Qyy

= ||PAby ||Qyy = ||bŷ ||2Qyy

and λt = ||bt ||Qtt = ||P⊥
A by ||Qyy (Teunissen 2000)

Due to the canonical structure of (8), it nowbecomes rather
straightforward to infer the BLUEs of x and bi underHi . The
estimator x̂0 will not contribute to the determination of the
BLUE of bi as x̂0 and t are independent and the mean of
x̂0 now depends on more parameters than only those of x .
Thus, it is t that is solely reserved for the determination of
the BLUE of bi , which then on its turn can be used in the
determination of the BLUE of x underHi . The BLUEs of x
and bi under Hi are therefore given as

x̂i = x̂0 − A+Ci b̂i

b̂i = (BTCi )
+t (12)

inwhich (BTCi )
+ = (CT

i BQ−1
t t BTCi )

−1CT
i BQ−1

t t denotes
the BLUE-inverse of BTCi . The result (12) shows how x̂0 is
to be adapted when switching from the BLUE of H0 to that
of Hi . With it, we can now establish the following useful
transformation between the BLUEs of x under Hi and H0,

[
x̂i
t

]
=
[
In −Li

0 Ir

] [
x̂0
t

]
(13)

in which

Li =
{
0 for i = 0
A+Ci (BTCi )

+ for i �= 0
(14)

Note that transformation (13) is in block-triangular form
and that its inverse can be obtained by simply replacing −Li

by +Li .
The distribution of (13) under Ha is given as

[
x̂i
t

]
Ha∼ N

([
x + A+RiCaba

BTCaba

]
,

[
Qx̂0 x̂0 + Li Qtt LT

i −Li Qtt

−Qtt LT
i Qtt

])
(15)

with the projector

Ri = Im − Ci (B
TCi )

+BT (16)

This projector projects along R(Ci ) and onto
R(A, Qyy B(BTCi )

⊥), with (BTCi )
⊥ a basis matrix of the

null space of CT
i B. Note that x̂i �=a is biased under Ha with

bias E(x̂i �=a − x |Ha) = A+Ri �=aCaba . Hence, any part of
Caba in R(A) gets directly passed on to the parameters and
any part inR(Ci �=a) or inR(Qyy B(BTCi )

⊥) gets nullified.

2.2.2 Partitioning of misclosure space

The one-to-one transformation (13) clearly shows how the
vector of misclosures t plays its role in linking the BLUEs
of the different hypotheses. This relation does, however, not
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yet incorporate the outcome of testing. To do so, we now
apply our partitioning principle to the space of misclosures
R
r and unambiguously assign outcomes of t to the esti-

mators x̂i . Therefore, let Pi ⊂ R
r , i = 0, 1, . . . , k, be

a partitioning of the r -dimensional misclosure space, i.e.
∪k
i=0Pi = R

r and Pi ∩ P j = {0} for i �= j . Then, the
unambiguous relation between t and x̂i is established by
defining the testing procedure such thatHi is selected if and
only if t ∈ Pi . An alternative way of seeing this is as fol-
lows. Let the unambiguous testing procedure be captured
by the mapping H : Rr 	→ {0, 1, . . . , k}, then the regions
Pi = {t ∈ R

r | i = H(t)}, i = 0, . . . , k, form a partition of
misclosure space.

As the testing procedure is defined by the partitioning
Pi ⊂ R

r , i = 0, . . . , k, any change in the partitioning will
change the outcome of testing and thus the quality of the
testing procedure. The choice of partitioning depends on
different aspects, such as the null and alternative hypothe-
ses considered and the required detection and identification
probabilities. In the next sections, we develop our distribu-
tional results such that it holds for any chosen partitioning
of the misclosure space. However, to better illustrate the var-
ious concepts involved, we first discuss a few partitioning
examples.

Example 1 (Partitioning: detection only) LetH0 be accepted
if t ∈ P0, with

P0 = {t ∈ R
r | ||t ||Qtt ≤ τ ∈ R

+} (17)

If testing is restricted to detection only, then the complement
ofP0,P1 = R

r/P0 becomes the region forwhich no parame-
ter solution is provided. Thus,P0 andP1 partitionmisclosure
space with the outcomes: x̂0 if t ∈ P0 and ‘solution unavail-
able’ if t ∈ P1. The probabilities of these outcomes, under
H0 resp.Ha , can be computed using the Chi-square distribu-

tion ||t ||2Qtt

Ha∼ χ2(r, λ2t ), with λ2t = ||P⊥
A Caba ||2Qyy

(Arnold
1981; Koch 1999; Teunissen 2000). ForH0, ba is set to zero.

�
Example 2 (Partitioning: one-dimensional identification
only) Let the design matrices [A,Ci ] of the k hypotheses
Hi (cf. 3) be of order m × (n + 1), denote Ci = ci and
BT ci = cti , and write Baarda’s test statistic (Baarda 1967,
1968b; Teunissen 2000) as

|wi | = ||Pcti t ||Qtt (18)

in which Pcti = cti (c
T
ti Q

−1
t t cti )

−1cTti Q
−1
t t is the orthogonal

projector that projects onto cti . If testing is restricted to iden-
tification only, then Hi �=0 is identified if t ∈ Pi �=0, with

Pi �=0 = {t ∈ R
r | |wi | = max

j∈{1,...,k} |w j |} , i = 1, . . . , k (19)

Also this set forms a partitioning of misclosure space,
provided not two or more of the vectors cti are the same.
When projected onto the unit sphere, this partitioning can be
shown to become a Voronoi partitioning of Sr−1 ⊂ R

r . The
Voronoi partitioning of a set of unit vectors c̄ j , j = 1, . . . , k,
on the unit sphere Sr−1 is defined as

Vi = {t̄ ∈ S
r−1| d(t̄, c̄i ) ≤ d(t̄, c̄ j ), j = 1, . . . , k} (20)

in which the metric d(u, v) = cos−1(uT v) is the geodesic
distance (great arc circle) between the unit vectors u and v

(unicity is here defined in the standard Euclidean metric). If
we now define the unit vectors

t̄ = Q−1/2
t t t/||t ||Qtt and c̄i = Q−1/2

t t cti /||cti ||Qtt (21)

we have |wi | = ||t ||Qtt c̄
T
i t̄ and therefore maxi |wi | ⇔

mini d(t̄, c̄i ), thus showing that

Vi = {t̄ ∈ S
r−1| t̄ = Q

− 1
2

t t t/||t ||Qtt , t ∈ Pi } (22)

For the distributions of t and t̄ under Ha , we have

t
Ha∼ N (μt , Qtt ) and t̄

Ha∼ PN (μt̄ , Ir ) (23)

with μt = BTCaba and μt̄ = Q−1/2
t t BTCaba . Thus, t̄

has a projected normal distribution, which is unimodal and
rotationally symmetric with respect to its mean direction
μt̄/||μt̄ ||Ir . The scalar ||μt̄ ||Ir = λt is a measure of the
peakedness of the PDF. Thus, the larger the testable BNR
λt is, the more peaked the PDF of t̄ becomes. The density of
t̄ is given in, e.g. Watson (1983). Under H0, when μt̄ = 0,
the PDF of t̄ reduces to

ft̄ (τ |H0) = �( r2 )

2π
r
2

(24)

which is one over the surface area of the unit sphere S
r−1.

Hence, under the null hypothesis, the PDF of t̄ is the uniform
distribution on the unit sphere. The selection probabilities

under H0 are therefore given as P(t ∈ Pi |H0) = |Vi |�( r2 )

2π
r
2
,

in which |Vi | denotes the surface area covered by Vi . �
An important practical application of one-dimensional iden-
tification is datasnooping, i.e. the procedure in which the
individual observations are screened for possible outliers
(Baarda 1968a; DGCC 1982; Kok 1984). If we restrict our-
selves to the case of one outlier at a time, then the ci -vector
of the alternative hypothesis takes the form of a canonical
unit vector having 1 as its ith entry and zeros elsewhere. This
would then lead to k = m regions Pi provided not two or
more of the vectors cti = BT ci are the same. If the latter hap-
pens only one of them should be retained, as no difference
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between such hypotheses can then be made. This would, for
instance, be the casewhen datasnooping is applied to levelled
height differences of a single levelling loop.

Example 3 (Partitioning: datasnooping) To illustrate the
datasnooping partitioning on the unit sphere, we consider
the GPS single-point positioning pseudorange model,

A =
⎡
⎢⎣
uT1 1
...

...

uTm 1

⎤
⎥⎦ , Qyy = σ 2 Im (25)

in which the ui , i = 1, . . . ,m, are the receiver-satellite unit
direction vectors of the m satellites. First we assume that the
receiver position is known, thus reducing the designmatrix to
A = [1, . . . , 1]T . Because of the symmetry in thismodel, one
can expect the unit vectors c̄i (cf. 21), i = 1, . . . ,m, to have
a symmetric distribution over the unit sphere and thus the
datasnooping partitioning to be symmetric as well. Indeed,
for the correlation between thewi -statistics and therefore for
the angle between the c̄i vectors, we have

ρwiw j = cos � (c̄i , c̄ j ) = 1

m − 1
, i �= j. (26)

Thus for m = 3, we have cos−1( 12 ) = 60◦ and for m = 4,
we have cos−1( 13 ) = 70.53◦. The partitioning of this latter
case is shown in Fig. 2 (top). In case the receiver position
is unknown, the receiver-satellite geometry comes into play
through the variations in the unit direction vectors ui of (25).
In that case, we expect a varying partitioning on the unit
sphere. This is illustrated in Fig. 2 (bottom) for the casem =
7, n = 4. �

Example 4 (Partitioning: detection and identification) Again
let the design matrices [A,Ci ] of the k hypotheses Hi (cf.
3) be of order m × (n + 1) and now consider detection and
identification. Then

P0 = {t ∈ R
r | ||t ||Qtt ≤ τ ∈ R

+} (27)

and

Pi �=0 = {t ∈ R
r | ||t ||Qtt > τ ; |wi | = max

j∈{1,...,k} |w j |} (28)

form a partitioning of the misclosure space, provided not
two or more of the vectors cti are the same. An example of
such partitioning is given in Fig. 3 for r = 2, k = 3, and
τ 2 = χ2

α(r = 2, 0). The inference procedure induced by
this partitioning is thus that the null hypothesis gets accepted
(not rejected) if ||t ||Qtt ≤ τ , while in case of rejection, the
largest value of the statistics |w j |, j = 1, . . . , k, is used for

Fig. 2 Datasnooping partitioning on the unit sphere S
2 ⊂ R

r=3 for
two cases of the GPS single-point positioning model: (top) position
constrained; (bottom) position unconstrained

identifying the alternative hypothesis. In the first case, x̂0 is
provided as the estimate of x , while in the second case, x̂i =
x̂0−Li t (cf. 13) is provided for the identified alternative. The
false- alarm selection probabilities under H0 are now given

as P(t ∈ Pi �=0|H0) = α|Vi |�( r2 )

2π
r
2
, in which α is the overall

level of significance. Note, the more correlated two w-test
statistics wi and w j are, the smaller the angle � (cti , ct j ) (see
Fig. 3) and the more difficult it will be to discern between the
two hypotheses Hi and H j , especially for small biases, see
e.g. Foerstner (1983), Tiberius (1998), Yang et al. (2013b).

�

In the above examples, the partitioning is formulated in
terms of the misclosure vector t . It can, however, also be
formulated bymeans of the least-squares residual vector ê0 =
y − Ax̂0, thus providing a perhaps more recognizable form
of testing. As t ∈ R

r and ê0 ∈ R
m are related as t = BT ê0,

we have (Teunissen 2000)

||t ||2Qtt
= ||ê0||2Qyy

(29)
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1tc

3tc

2tc

1P

2P

3P

1P

2P

3P

α1−

τ
0P

Fig. 3 Example of a partitioning of misclosure space Rr=2 for k = 3.
The circular region centred at the origin is P0, while the remaining
three sectors, having their borders at the bisector axes of adjacent cti ’s,
represent the regions Pi for i = 1, 2, 3. Note, since the figure has been
drawn in the metric of Qtt , that the detection region P0 is shown as a
circle instead of an ellipse

and

|wi | = ||Pcti t ||Qtt = |cTi Q−1
yy ê0|√

cTi Q−1
yy Qê0 ê0

Q−1
yy ci

(30)

Thus, the actual verification in which of the regionsPi the
misclosure vector t lies can be done using the least-squares
residual vector ê0 obtained under H0, without the explicit
need of having to compute t .

Note that in case of uncorrelated observations, i.e. Qyy =
diag(σ 2

1 , . . . , σ 2
m), the adapted design matrix Ā(i) = P⊥

ci A
for computing the BLUE under Hi is the original design
matrix with its i th row replaced by zeros. Hence, in case of
datasnooping, the BLUE x̂i = Ā+

(i)y = x̂0 − A+ci b̂i is then
the estimator with the i th observable excluded. Such is, for
instance, done in exclusion-based RAIM (Kelly 1998; Yang
et al. 2013a).

As a final note of this subsection, we remark that also
other than the above partitioning examples can be given.
For instance, in case of Ha’s with one-dimensional biases,
one can also find examples in which the ellipsoidal detec-
tion region (27) has been replaced by the intersection of half
spaces, {t ∈ R

r ||wi | ≤ c, i = 1, . . . , k}, see e.g. Joerger and
Pervan (2014), Imparato (2016), Teunissen et al. (2017). In
fact, it is important to recognize that in the multivariate case
of multihypotheses testing, no clear optimality results are
available. Baarda’s test statistic wi and the detector ||t ||Qtt

are known to provide for uniformly most powerful invariant
(UMPI) testing when H0 is tested against a single alterna-
tive (Arnold 1981; Teunissen 2000; Kargoll 2007), but not
necessarily when multiple alternatives are in play. To be able
to infer the quality of the various possible partitionings, one

1x̂ ˆkx

y

0x̂

0H

y

1H

y

kH

0x̂ k

?iPt

0Pt 1Pt kPt

y

=x̄ 1x̂=x̄ x̂=x̄

Fig. 4 The DIA estimator x̄ = ∑k
i=0 x̂i pi (t): (left) BLUEs x̂i of indi-

vidual Hi ’s; (right) outcomes of x̄ in dependence on testing

should therefore be able to diagnose their impact on the actual
output of the DIA method.

2.3 The DIA estimator

With the DIA method, the outcome of testing determines
how the parameter vector x gets estimated. As the outcome
of such estimation is influenced by the testing procedure, one
cannot simply assign the properties of x̂0 or x̂i to the actual
DIA estimator computed. That is, the actual estimator that is
produced is not x̂0 nor x̂i , but in fact (see Fig. 4)

x̄ =
{
x̂0 if t ∈ P0

x̂i if t ∈ Pi �=0
(31)

By making use of the indicator functions pi (t) of the
regions Pi (i.e. pi (t) = 1 for t ∈ Pi and pi (t) = 0 else-
where), the DIA estimator x̄ can be written in the compact
form

x̄ =
k∑

i=0

x̂i pi (t). (32)

This expression shows how the x̂i s and t contribute to the
estimator x̄ . If we now make use of the transformation (13),
we can obtain its counterpart for x̄ as

[
x̄
t

]
=
[
In −L̄(t)
0 Ir

] [
x̂0
t

]
(33)

with L̄(t) = ∑k
i=1 Li pi (t). This important result shows how

[x̄ T , t T ]T stands in a one-to-one relation to [x̂ T0 , t T ]T = T y
and thus to the original vector of observables y. Although
the structure of (33) resembles that of the linear transforma-
tion (13), note that (33) is a nonlinear transformation due to
the presence of t in L̄(t). Hence, this implies that the DIA
estimator x̄ will not have a normal distribution, even if all
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the individual estimators x̂i , i = 0, . . . , k, are normally dis-
tributed. In the next section, we derive the probability density
function (PDF) of x̄ . But before we continue, we first briefly
describe two variations on the above-defined DIA procedure.

Remeasurement included In case of datasnooping, with
Qyy = diag(σ 2

1 , . . . , σ 2
m), one may take the standpoint

in certain applications that rejected observations should be
remeasured. After all, onemay argue, themeasurement setup
was designed assuming the rejected observation included. If
one remeasures and replaces the rejected observation, say yi ,
with the remeasured one, say ȳi , one is actually not produc-
ing x̂i as output, but instead the solution for x based on the
following extension of the model under Hi ,

E
[
x̂i
ȳi

]
=
[
In
aTi

]
x , D

[
x̂i
ȳi

]
=
[
Qx̂i x̂i 0
0 σ 2

i

]
(34)

with aTi the i th row of A and σ 2
i the variance of the rejected

and remeasured observations. The BLUE of x under this
model is

ˆ̂xi = x̂i + A+ci (ȳi − aTi x̂i ). (35)

Hence, in case the remeasurement step is included, the
computed DIA estimator is the one obtained by replacing x̂i
by ˆ̂xi in (32).
Undecided included Above, each hypothesis Hi was given
its own region Pi , such that together these regions cover the
whole misclosure space, ∪k

i=0Pi = R
r . This implies, what-

ever the outcome of t , that one always will be producing one
of the estimates x̂i , i = 0, . . . , k, even, for instance, if it
would be hard to discriminate between some of the hypothe-
ses or when selection is unconvincing. To accommodate such
situations, one can generalize the procedure and introduce
an undecided region � ⊂ R

r for which no estimator of x is
produced at all when t ∈ �. Thus when that happens, the
decision is made that a solution for x is unavailable,

x̄ = unavailable if t ∈ � ⊂ R
r (36)

This is similar in spirit to the undecided regions of the
theory of integer aperture estimation (Teunissen 2003a). As a
consequence of (36), the regionsPi of each of the hypotheses
have become smaller and now only partition a part of the
misclosure space,

∪k
i=0 Pi = R

r/� (37)

As an example, consider the following generalization of
(28),

P̄i �=0 = Pi �=0 ∩ {t ∈ R
r | ||t ||2Qtt

− w2
i ≤ τ̄ 2} (38)

1tc

3tc

2tc

1P

2P

3P

1P

2P

3P

α1−

τ
0P

Ω

Fig. 5 Example of undecided region � (yellow) for t far away from
H0 and all Hi s. Compare with Fig. 3

Now it is also tested whether the maximum w-test statis-
tic achieves a sufficient reduction in ||t ||2Qtt

, i.e. whether

||P⊥
cti
t ||2Qtt

= ||t ||2Qtt
− w2

i is small enough. If this is not
the case, then the undecided decision is made, see Fig. 5.

The choicemade for the undecided region�mayof course
affect the regions Pi �=0 of some hypotheses more than oth-
ers. For instance, if one or more of the alternative hypotheses
turn out to be too poorly identifiable, one may choose to have
their regionsPi completely assigned to the undecided region
�. In that case, one would only proceed with identification
for a subset of the k alternative hypotheses. In the limiting
special case when all alternative hypotheses are considered
too poorly identifiable, the undecided strategywould become
one forwhich� = R

r/P0. In this case, one thus computes x̂0
ifH0 gets accepted, but states that the solution is unavailable
otherwise. As a result, the testing procedure is confined to
the detection step. This was, for instance, the case with ear-
lier versions of RAIM which had detection but no exclusion
functionality, see e.g. Parkinson and Axelrad (1988), Sturza
(1988).
To conclude this section, we pause a moment to further high-
light some of the intricacies of the estimator (32). As the
construction of x̄ has been based on a few principles only,
it is important to understand that the estimator describes the
outcome of anyDIAmethod. In it, we recognize the separate
contributions of pi (t) and x̂i . Both contribute to the uncer-
tainty or randomness of x̄ . The uncertainty of testing, i.e.
of detection and identification, is channelled through pi (t),
while the uncertainty of estimation is channelled through x̂i .
Their combined outcome provides x̄ as an estimator of x .
It is hereby important to realize, however, that there are for
now no a priori ’optimality’ properties that one can assign
to x̄ , despite the fact that its constituents do have some of
such properties. The estimator x̂0, for instance, is optimal
underH0 as it is then the BLUE of x . And in case of a single
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alternative hypothesis (k = 1), also the testing can be done
in an optimal way, namely by using uniformly most power-
ful invariant tests. These properties, however, are individual
properties that do not necessarily carry over to x̄ . One may
ask oneself, for instance, why use x̂i when Hi is selected.
Why not use, instead of x̂i , an estimator that takes the knowl-
edge of t ∈ Pi into account. Also note, as the testing itself
gives discrete outcomes, that the DIA estimator is a binary
weighted average of all of the k + 1 x̂i s. But one may won-
der whether this binary weighting is the best one can do
if the ultimate goal is the construction of a good estima-
tor of x . For instance, although the weights pi (t) are binary
in case of the DIA estimator, smoother weighting functions
of the misclosures will provide for a larger class of estima-
tors that may contain estimators with better performances
for certain defined criteria. This in analogy with integer (I)
and integer-equivariant (IE) estimation, for which the latter
provides a larger class containing the optimal BIE estimator
(Teunissen 2003b). And just like the nonBayesian BIE esti-
mator was shown to have a Bayesian counterpart (Teunissen
2003b; Betti et al. 1993), the nonBayesian DIA estimator
with smoother weights may find its counterpart in methods
of Bayesian and information-theoretic multimodel inference
(Burnham and Anderson 2002).

Answering these and similar questions on ‘optimizing’ the
estimator x̄ is complex and not the goal of the present con-
tribution. The aim of the present contribution is to provide
a general framework that captures the testing and estimation
characteristics in a combined way through the single estima-
tor x̄ . For that purpose, we present distributional properties
of the DIA estimator x̄ in the next and following sections,
thus making a rigorous quality evaluation of any estimator
of the form of (32) possible.

3 The distribution of the DIA estimator

3.1 The joint, conditional and marginal PDFs

In order to be able to study the properties of the DIA estima-
tor, we need its probability distribution. As its performance
is driven for a large part by the misclosure vector t , we
determine the joint PDF fx̄,t (x, t) and the conditional PDF
fx̄ |t (x |t), next to the marginal PDF fx̄ (x). We express their
PDFs in the PDFs fx̂0(x) and ft (t) of x̂0 and t , respectively.
We have the following result.
Theorem 1 (PDFs of x̄ and t)Let x̄ be given as (32), with the
x̂i s related to x̂0 and t as in (13). Then, the joint, conditional
and marginal PDFs of the DIA estimator x̄ and misclosure
vector t can be expressed in the PDFs fx̂0(x) and ft (t) as

fx̄,t (x, t) =
k∑

i=0

fx̂0(x + Li t) ft (t)pi (t)

Fig. 6 The PDF fx̄ (x |H0) of the DIA estimator x̄ under H0 (Exam-
ple 5) for two values of α

fx̄ |t (x |t) =
k∑

i=0

fx̂0(x + Li t)pi (t)

fx̄ (x) =
k∑

i=0

∫
Pi

f x̂0(x + Liτ) ft (τ )dτ (39)

Proof See Appendix. �
This result shows that the PDF of x̄ is constructed from a

sum with shifted versions fx̂0(x + Li t) of the PDF of x̂0. In
fact, it is a weighted average of these shifted functions,

fx̄ (x) =
k∑

i=0

E( fx̂0(x + Li t)pi (t)), (40)

thus showinghow it is drivenby the distributionof themisclo-
sure vector t . It is thus indeed a nonnormal distribution,which
only will approach one when the PDF of the misclosures is
sufficiently peaked. For instance, when ft (t) = δ(t − τ) and
τ ∈ P j , then fx̄ (x) = fx̂0(x + L jτ).

Example 5 (PDF for k = n = r = 1) It follows from (39)
that in case of only one alternative hypothesis (k = 1), the
PDF of x̄ under H0 can be written as

fx̄ (x |H0) = fx̂0(x |H0) +
∫
R/P0

[ fx̂0(x + L1τ |H0)

− fx̂0(x |H0)] ft (τ |H0)dτ (41)

Let x̂0
H0∼ N (0, σ 2

x̂0
= 0.5), t

H0∼ N (0, σ 2
t = 2) (thus

n = r = 1), and L1 = 1
2 , with acceptance interval P0 =

{τ ∈ R|(τ/σt )
2 ≤ χ2

α(1, 0)}. Figure 6 shows this PDF for
α = 0.1 and α = 0.001. Note that fx̄ (x |H0), like fx̂0(x |H0),
is symmetric about 0, but that its tails become heavier the
larger α gets. �

Quite often in practice one is not interested in the complete
parameter vector x ∈ R

n , but rather only in certain functions
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of it, say θ = FT x ∈ R
p. As its DIA estimator is then

computed as θ̄ = FT x̄ , we need its distribution to evaluate
its performance.

Corollary 1 Let θ̄ = FT x̄ and θ̂0 = FT x̂0. Then, the PDF
of θ̄ is given as

fθ̄ (θ) =
k∑

i=0

∫
Pi

f
θ̂0

(θ + FT Liτ) ft (τ )dτ. (42)

Although we will be working with x̄ , instead of θ̄ , in the
remaining of this contribution, it should be understood that
the results provided can similarly be given for θ̄ = FT x̄ as
well.

We also remark that here and in the remaining of this con-
tribution, a k + 1 partitioning covering the whole misclosure
space, Rr = ∪k

i=0Pi is used. Thus, no use is made of an
undecided region. The results that we present are, however,
easily adapted to include such event as well. For instance,
in case the Pi do not cover the whole misclosure space and
� = R

r/ ∪k
i=0 Pi becomes the undecided region, then the

computed estimator is conditioned on t ∈ �c = ∪k
i=0Pi and

its PDF reads as,

fx̄ |t∈�c(x) =
∑k

i=0

∫
Pi

f x̂0(x + Liτ) ft (τ )dτ

P(t ∈ �c).
(43)

The approach for obtaining such undecided-based results
is thus to consider the undecided region � ⊂ R

r as the (k +
2)th region that completes the partitioning of Rr , followed
by the analysis of the DIA estimator x̄ conditioned on �c,
the complement of �.

3.2 The mean of x̄ under H0 and Ha

The estimators x̂i , i = 0, 1, . . . , k, (cf. 2, 4) are BLUEs
and therefore unbiased under their respective hypotheses,
e.g. E(x̂0|H0) = x and E(x̂a |Ha) = x . However, as shown
earlier, these are not the estimators that are actually com-
puted when testing is involved. In that case, it is the DIA
estimator x̄ that is produced. As unbiasedness is gener-
ally a valued property of an estimator, it is important to
know the mean of x̄ . It is given in the following theo-
rem.

Theorem 2 (Mean of DIA estimator) The mean of x̄ under
H0 and Ha is given as

E(x̄ |H0) = x

E(x̄ |Ha) = x + A+b̄ya (44)

with

b̄ya = Caba −
k∑

i=1

Ciβi (ba)

βi (ba) = (BTCi )
+E(tpi (t)|Ha) (45)

where

E(tpi (t)|Ha) =
∫
Pi

τ ft (τ |Ha)dτ

∝
∫
Pi

τ exp{−1

2
||τ − BTCaba ||2Qtt

}dτ (46)

Proof See Appendix. �
The theorem generalizes the results of Teunissen et al.

(2017). It shows that x̄ , like x̂0, is unbiased under H0, but
that, contrary to x̂a , x̄ is always biased under the alternative,

E(x̄ |H0) = E(x̂0|H0) and E(x̄ |Ha) �= E(x̂a |Ha) (47)

It is thus important to realize that the result of adaptation
will always produce an estimator that is biased under the
alternative. Moreover, this is true for any form the adapta-
tion may take. It holds true for, for instance, exclusion-based
RAIM (Brown 1996; Kelly 1998; Hewitson andWang 2006;
Yang et al. 2013a), but also when adaptation is combined
with remeasurement (cf. 35).

To evaluate the bias, one should note the difference
between E(x̄ |Ha) and E(x̂0|Ha) = x + A+Caba ,

E(x̄ |Ha) = E(x̂0|Ha) − A+
k∑

i=1

Ciβi (ba). (48)

This expression shows thepositive impact of testing.With-
out testing, one would produce x̂0, even when Ha would be
true, thus giving the influential bias A+Caba (cf. 9). How-
ever, with testing included, the second term in (48) is present
as a correction for the bias of x̂0 under Ha . The extent to
which the bias will be corrected for depends very much on
the distribution of the misclosure vector t . In the limit, when
ft (t |Ha) is sufficiently peaked at the testable bias BTCaba
(cf. Theorem 2), the second term in (48) reduces to A+Caba ,
thereby removing all the bias from x̂0 underHa . A summary
of the means of x̂0, x̄ and x̂a is given in Table 1.

Table 1 The mean of x̂0, x̄ and x̂a underH0 andHa , with bya = Caba
and b̄ya = bya − ∑k

i=1 Ciβi (ba)

H0 Ha

x̂0 E(x̂0|H0) = x E(x̂0|Ha) = x + A+bya
x̄ E(x̄ |H0) = x E(x̄ |Ha) = x + A+b̄ya
x̂a E(x̂a |H0) = x E(x̂a |Ha) = x
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Example 6 (Bias in x̄) LetH0 have a single redundancy (r =
1) and let there be only a single alternativeHa (k = 1). Then,
(45) simplifies to

b̄ya = cab̄a with b̄a = ba − βa(ba). (49)

For the partitioning, we have: P0 being an origin-centred
interval and Pa = R/P0. The size of P0 is determined
through the level of significance α asP(t ∈ P0|H0) = 1−α.
In the absence of testing (i.e. P0 = R), the bias would be
b̄a = ba . In the presence of testing however, we have b̄a ≤ ba
for every value of ba > 0, thus showing the benefit of testing:
the bias that remains after testing is always smaller than the
original bias. This benefit, i.e. the difference between b̄a and
ba , will kick in after the bias ba has become large enough.
The difference is small, when ba is small, and it gets larger
for larger ba , with b̄a approaching zero again in the limit.
For smaller levels of significance α, the difference between
b̄a and ba will stay small for a larger range of ba values. This
is understandable as a smaller α corresponds with a larger
acceptance intervalP0, as a consequence ofwhich onewould
have for a larger range of ba values an outcome of testing that
does not differ from the no-testing scenario. �

One can also compare the weighted mean squared errors
of the three estimators x̂0, x̄ and x̂a under Ha . By making
use of the fact that E(||u||2Q) = trace(Q−1Quu) + μT Q−1μ

if E(u) = μ and D(u) = Quu (Koch 1999), we have the
following result.

Corollary 2 (Mean squared error) Let bx̂0 = A+by and
bx̄ = A+b̄y be the bias in x̂0 and x̄, respectively, and
Qx̂a x̂a = Qx̂0 x̂0 + LaQtt LT

a the variance matrix of x̂a. Then

E(||x̂0 − x ||2Qx̂0 x̂0
|Ha) = n + ||bx̂0 ||2Qx̂0 x̂0

E(||x̄ − x ||2Qx̂0 x̂0
|Ha) = trace(Q−1

x̂0 x̂0
Qx̄x̄ ) + ||bx̄ ||2Qx̂0 x̂0

E(||x̂a − x ||2Qx̂0 x̂0
|Ha) = n + ||Q− 1

2
yy PACaQ

1
2

b̂a b̂a
||2F (50)

with ||.||2F = trace(.)T (.) denoting the squared Frobenius
norm.

Note that for Ca = ca ,

E(||x̂0 − x ||2Qx̂0 x̂0
|Ha) − n

E(||x̂a − x ||2Qx̂0 x̂0
|Ha) − n

=
(

ba
σb̂a

)2

= λ2t . (51)

3.3 Bias in BLUP, Kriging and collocation

We nowmake a brief side step and show that also methods of
prediction, like collocation, Kriging and best linear unbiased
prediction (BLUP), are affected by the bias b̄ya of Theorem
2. Let our prediction–aim be to predict the random vector

z = Azx + ez , in which ez is zero mean and matrices Az ,
Qzy = Cov(z, y) and Qzz = Cov(z, z) = D(z) are known.
Then, we may extend our Hi -model (3) as

Hi : E
[
y
z

]
=
[
A Ci

Az 0

] [
x
bi

]
, D

[
y
z

]
=
[
Qyy Qyz

Qzy Qzz

]

(52)

With the Hi -BLUEs x̂i and b̂i , the BLUP of z under Hi is
then given as

ẑi = Az x̂i + QzyQ
−1
yy (y − Ax̂i − Ci b̂i ) (53)

But with the DIA method in place to validate the different
hypotheses, the actual output of the combined estimation–
testing–prediction process is then given as

z̄ =
k∑
j=0

ẑ j p j (t)

= Az x̄ + QzyQ
−1
yy

⎛
⎝y − Ax̄ −

k∑
j=1

C j b̂ j p j (t)

⎞
⎠ (54)

As the aim is to predict z = Azx + ez , it is of interest to
know the difference E(z̄ − Azx |Ha). The following result
shows how the bias in z̄ can be expressed in the vector b̄ya of
(45).

Corollary 3 (Bias in DIA predictor) The bias in the DIA
predictor z̄ = ∑k

i=0 ẑi pi (t) is given as

bz̄ = E(z̄ − Azx |Ha) = Az A
+b̄ya + QzyQ

−1
yy P

⊥
A b̄ya (55)

with P⊥
A = Im − AA+.

4 Decomposition of probabilities

4.1 Correct and incorrect decisions

The decisions in the testing procedure are driven by the out-
come of the misclosure vector t , i.e. choose Hi if t ∈ Pi .
Such decision is correct if Hi is true, and it is incorrect oth-
erwise. The probabilities of such occurrences can be put into
a probability matrix:

Pi j = P(t ∈ Pi |Hj ) , i, j = 0, 1, . . . , k (56)

As we are working with a partitioning of misclosure space,
each of the columns of this matrix sums up to one,∑k

i=0 Pi j = 1, ∀ j . Ideally one would like this matrix to be
as diagonally dominant as possible, i.e. Pi j large for i = j
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(correct decision) and small for i �= j (wrong decision). By
making use of the translational property of the PDF of t under
H j and H0 (cf. 8), the entries of the probability matrix can
be computed as

Pi j =
∫
Pi

ft (τ − BTC jb j |H0)dτ. (57)

Instead of addressing all entries of this probability matrix,
we concentrate attention to those of the first column, i.e. of
the null hypothesis H0, and of an arbitrary second column
a ∈ {1, . . . , k}, i.e. of alternative hypothesis Ha . We then
discriminate between two sets of events, namely under H0

and under Ha . Under H0 we consider,

CA = (t ∈ P0|H0) = correct acceptance

FA = (t /∈ P0|H0) = false alarm. (58)

Their probabilities are given as

PCA = P(t ∈ P0|H0) = ∫
P0

ft (τ |H0)dτ
PFA = P(t /∈ P0|H0) = ∫

Rr /P0
ft (τ |H0)dτ

1 = PCA + PFA

(59)

These probabilities are usually user defined, for instance
by setting the probability of false alarm (i.e. level of signifi-
cance) to a certain required small valuePFA = α. In Example
1, this would, for instance, mean choosing τ 2 as the (1−α)-
percentile point of the central Chi-square distribution with r
degrees of freedom, τ 2 = χ2

α(r, 0).
For the events under Ha , we make a distinction between

detection and identification. For detection, we have

MD = (t ∈ P0|Ha) = missed detection

CD = (t /∈ P0|Ha) = correct detection (60)

with their probabilities given as

PMD = P(t ∈ P0|Ha) = ∫
P0

ft (τ |Ha)dτ
PCD = P(t /∈ P0|Ha) = ∫

Rr /P0
ft (τ |Ha)dτ

1 = PMD + PCD

(61)

Althoughwe refrained, for notational convenience, to give
these probabilities an additional identifying index a, it should
be understood that they differ from alternative to alternative.
For each suchHa , the probability of missed detection can be
evaluated as

PMD =
∫
P0

ft (τ − BTCaba |H0)dτ (62)

Note, as ba is unknown, that this requires assuming the
likely range of values ba can take.

With identification following detection, we have

WI = (t ∈ ∪k
j �=0,aP j |Ha) = wrong identification

CI = (t ∈ Pa |Ha) = correct identification (63)

with their probabilities given as

PWI = P(t ∈ ∪k
j �=0,aP j |Ha) = ∑k

j �=0,a

∫
P j

ft (τ |Ha)dτ

PCI = P(t ∈ Pa |Ha) = ∫
Pa

ft (τ |Ha)dτ
PCD = PWI + PCI

(64)

Note, as the three probabilities of missed detection, wrong
identification and correct identification sum up to unity,

1 = PMD + PWI + PCI (65)

that a small missed detection probability does not necessar-
ily imply a large probability of correct identification. This
would only be the case if there would be a single alternative
hypothesis (k = 1). In that case, the probability of wrong
identification is identically zero, PWI = 0, and we have
PCI = 1 − PMD. In the general case of multiple hypothe-
ses (k > 1), the available probability of correct detection is
spread out over all alternative hypotheses, whether correct or
wrong, thus diminishing the probability of correct identifi-
cation. It is up to the designer of the testing system to ensure
that PCI remains large enough for the application at hand.
We have more to say about PCI �= 1−PMD when discussing
the concept of minimal detectable biases in Sect. 4.4.

4.2 The bias decomposition of x̄

We will now use the events of missed detection (MD), cor-
rect detection (CD), wrong identification (WI) and correct
identification (CI), to further study the mean of x̄ . We have
already shown that the DIA estimator is biased underHa (cf.
44). To study how this bias gets distributed over the different
events of testing, we define

bx̄ = E(x̄ − x |Ha)

bx̄ |MD = E(x̄ − x |t ∈ P0,Ha)

bx̄ |CD = E(x̄ − x |t /∈ P0,Ha)

bx̄ |WI = E(x̄ − x |t ∈ ∪k
j �=0,aP j ,Ha)

bx̄ |CI = E(x̄ − x |t ∈ Pa,Ha) (66)

By application of the total probability rule for expectation,
E(x̄) = ∑k

j=0 E(x̄ |t ∈ P j )P(t ∈ P j ), we may write the
unconditional bias bx̄ as the ‘weighted average’,

bx̄ = bx̄ |MDPMD + bx̄ |WIPWI + bx̄ |CIPCI︸ ︷︷ ︸
bx̄ |CDPCD

(67)
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This expression shows how the unconditional bias is formed
from its conditional counterparts. These conditional biases
of the DIA estimator are given in the following theorem.

Theorem 3 (Conditional biases) The conditional counter-
parts of the unconditional bias bx̄ = A+[Caba
− ∑k

i=1 Ciβi (ba)] are given as

bx̄ |MD = A+Caba

bx̄ |CD = A+
[
Caba −

k∑
i=1

Ciβi (ba)/PCD

]

bx̄ |WI = A+
⎡
⎣Caba −

k∑
i=1,�=a

Ciβi (ba)/PWI

⎤
⎦

bx̄ |CI = A+Ca
[
ba − βa(ba)/PCI

]
(68)

Proof See Appendix. �

The above result shows that the DIA estimator x̄ is not
only unconditionally biased under Ha , bx̄ �= 0, but even
also when it is conditioned on correct identification, bx̄ |CI �=
0. Thus if one would repeat the measurement–estimation–
testing experiment of the DIA estimator a sufficient number
of times under Ha being true and one would then be only
collecting the correctly adapted outcomes of x̄ , then still their
expectation would not coincide with x . This fundamental
result puts the often argued importance of unbiasedness (e.g.
in BLUEs) in a somewhat different light.

Note that in case of datasnooping, when the vectors Ci =
ci take the form of canonical unit vectors, the conditional
bias under correct identification is given as

bx̄ |CI = A+b̄ya |CI, b̄ya |CI = ca[ba − βa(ba)/PCI] (69)

while the corresponding unconditional bias is given as

bx̄ = A+b̄ya ,

b̄ya =
⎡
⎣ca(ba − βa(ba)) −

k∑
i=1,�=a

ciβi (ba)

⎤
⎦

(70)

Comparison of these two expressions shows that where in the
CI case the bias contribution to bx̄ |CI stays confined to the
correctly identified ath observation, this is not true anymore
for the bias contribution in the unconditional case. In the
unconditional case, the bias in x̄ also receives contributions
from the entries of b̄ya other than its ath, i.e. instead of b̄ya |CI,
which only has its ath entry being nonzero, the vector b̄ya has
next to its ath entry also its other entries being filled up with
nonzero values.

4.3 The PDF decomposition of x̄ under H0 and Ha

Similar to the above bias decomposition, we can decompose
the unconditional PDF of x̄ into its conditional constituents
under H0 and Ha . We have the following result.

Theorem 4 (PDF decomposition) The PDF of x̄ can be
decomposed under H0 and Ha as,

fx̄ (x |H0) = fx̄ |CA(x |CA)PCA + fx̄ |FA(x |FA)PFA

fx̄ (x |Ha) = fx̄ |MD(x |MD)PMD + fx̄ |CD(x |CD)PCD (71)

with fx̄ |CA(x |CA)= fx̂0(x |H0), fx̄ |MD(x |MD)= fx̂0(x |Ha),
and where

fx̄ |CD(x |CD) = fx̄ |WI(x |WI)
PWI

PCD
+ fx̄ |CI(x |CI) PCI

PCD
(72)

with

fx̄ |CI(x |CI) =
∫
Pa

fx̂a ,t (x, τ |Ha)dτ/PCI (73)

Proof See Appendix. �

The above decomposition can be used to evaluate the
performance of the DIA estimator for the various different
occurrences of the testing outcomes. Note that the PDF of
x̄ , when conditioned on correct acceptance (CA) or missed
detection (MD), is simply that of x̂0 underH0 andHa , respec-
tively. Such simplification does, however, not occur for the
PDF when conditioned on correct identification (CI cf. 73).
This is due to the fact that x̂a , as opposed to x̂0, is not inde-
pendent from the misclosure vector t . Thus

fx̄ |CA(x |CA) = fx̂0(x |H0), but

fx̄ |CI(x |CI) �= fx̂a (x |Ha) (74)

Also note, since Ha depends on the unknown bias ba , that
one needs to make assumptions on its range of values when
evaluating fx̄ (x |Ha). One such approach is based on the
well-known concept of minimal detectable biases (Baarda
1968a; Teunissen 1998a; Salzmann 1991).

4.4 On the minimal detectable bias

Theminimal detectable bias (MDB) of an alternative hypoth-
esisHa is defined as the (in absolute value) smallest bias that
leads to rejection ofH0 for a given CD probability. It can be
computed by ‘inverting’
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PCD =
∫
Rr /P0

ft (τ |Ha)dτ

=
∫
Rr /P0

ft (τ − BTCaba |H0)dτ (75)

for a certain CD probability, say PCD = γCD. For the P0 of
example 1 (cf. 27), with τ 2 = χ2

α(r, 0), it can be computed
from ‘inverting’

P(||t ||2Qtt
> χ2

α(r, 0)|Ha) = γCD (76)

using the fact that underHa , ||t ||2Qtt
∼ χ2(r, λ2t ), with λ2t =

||P⊥
A Caba ||2Qyy

(Arnold 1981;Koch1999). For the caseCa =
ca , inversion leads then to the well-known MDB expression
(Baarda 1968a; Teunissen 2000)

|ba,MDB| = λt (α, γCD, r)/||P⊥
A ca ||Qyy (77)

in which λt (α, γCD, r) denotes the function that captures the
dependency on the chosen false-alarm probability, PFA = α,
the chosen correct detection probability,PCD = γCD, and the
model redundancy r . For the higher-dimensional case when
ba is a vector instead of a scalar, a similar expression can be
obtained, see Teunissen (2000).

The importance of the MDB concept is that it expresses
the sensitivity of the detection step of the DIA method in
terms of minimal bias sizes of the respective hypotheses.
By using the same PCD = 1 − PMD = γCD for all Ha ,
the MDBs can be compared and provide information on the
sensitivity of rejecting the null hypothesis forHa-biases the
size of their MDBs. For instance, in case of datasnooping
of a surveyor’s trilateration network, the MDBs and their
mutual comparisonwould reveal forwhich observed distance
in the trilateration network the rejection ofH0 would be least
sensitive (namely distancewith largestMDB), as well as how
large its distance bias needs to be to have rejection occur with
probability PCD = γCD.

It is important to understand, however, that the MDB is
about correct detection and not about correct identification.
This would only be true in the binary case, when next to
the null hypothesis only a single alternative hypothesis is
considered. For identification in themultiple hypotheses case
(k > 1), one can, however, pose a somewhat similar question
as the one that led to the MDB: what is the smallest bias of
an alternative hypothesis Ha that leads to its identification
for a given CI probability. Thus similar to (75), suchminimal
identifiable bias is found from ’inverting’

PCI = P(t ∈ Pa |Ha)

=
∫
Pa

ft (τ − BTCaba |H0)dτ (78)

for a given CI probability. Compare this with (75) and note
the difference.

Example 7 (Minimal Identifiable Bias) Let t
Ha∼

N (cta ba, Qtt ) and define [b̂Ta , t̄ Ta ]T = Tat , using the Tien-
stra transformation Ta = [c+T

ta , dta ]T , in which c+
ta is the

BLUE-inverse of cta and dta is a basis matrix of the null space
of cTta . Then t̄a and wa are independent and have the distribu-

tions t̄a
Ha∼ N (0, Qt̄a t̄a ) and wa

Ha∼ N (ba/σb̂a , 1), with the

decomposition ||t − cta ba ||2Qtt
= ||t̄a ||2Qt̄a t̄a

+ (wa − ba
σb̂a

)2.

As the identification regions, we take the ones of (38). For a
given ba , the probability of correct identification can then be
computed as

P(t ∈ Pa |Ha)

=
∫
Pa

exp
{
− 1

2 ||t̄a ||2Qt̄a t̄a

}
√|2πQt̄a t̄a |

exp
{
− 1

2 (wa − ba/σb̂a )
2
}

√
2π

dt̄adwa

(79)

with the Pa-defining constraints given as τ 2 − w2
a <

||t̄a ||2Qt̄a t̄a
≤ τ̄ 2 and |wa | = max j |w j |. Reversely, one can

compute, for a given CI probability, the minimal identifiable
bias by solving ba from PCI = P(t ∈ Pa |Ha). As a useful
approximation of the CI probability from above, onemay use

P(t ∈ Pa |Ha) ≤ P(τ2 − w2
a < ||t̄a ||2Qt̄a t̄a

≤ τ̄2|Ha)

≤ P(||t̄a ||2Qt̄a t̄a
≤ τ̄2|Ha)P(w2

a > τ2 − τ̄2|Ha)

(80)

The first inequality follows from discarding the constraint
|wa | = max j |w j |, the second from discarding the curvature
ofP0 and the fact that t̄a andwa are independent. A too small
value of the easy-to-compute upper bound (80) indicates then
that identifiability of Ha is problematic. �

SincePCD ≥ PCI, one can expect theminimal identifiable
bias to be larger than the MDB when PCI = γCD. Correct
identification is thus more difficult than correct detection.
Their difference depends on the probability ofwrongful iden-
tification. The smaller PWI is, the closer PCI gets to PCD.

We note that in the simulation studies of Koch (2016,
2017) discrepancies were reported between the MDB and
simulated values. Such discrepancies could perhaps have
been the consequence of not taking the difference between
the MDB and the minimal identifiable bias into account.

As the ‘inversion’ of (78) is more difficult than that of
(75), one may also consider the ’forward’ computation. For
instance, if all alternative hypotheses are of the same type
(e.g. distance outliers in a trilateration network), then (78)
could be used to compare the PCI’s of the different hypothe-
ses for the same size of bias. Alternatively, if one wants to
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infer the PCI for hypotheses that all have the same correct
detectionprobabilityPCD = γCD, the easy-to-computeMDB
can be used in the ’forward’ computation as

PCI,MDB =
∫
Pa

ft (τ − BTCaba,MDB|H0)dτ (81)

This is thus the probability of identifying a bias the size of
the MDB. As the computation of (81) is based on the same
PCD for each Ha , it again makes comparison between the
hypotheses possible. It allows for a ranking of the alterna-
tive hypotheses in terms of their identifiability under the same
correct detection probability. Would the probabilityPCI,MDB

then turn out to be too small for certain hypotheses (given the
requirements of the application at hand), a designer of the
measurement–estimation–testing system could then either
try to improve the strength of the model (by improving the
design matrix A and/or the variance matrix Qyy) or decide to
have the regions Pi �=0 of the poorly identifiable hypotheses
added to the undecided region. In the latter case, one would
allow such hypotheses to contribute to the rejection of H0,
but not to its adaptation.

4.5 On the computation of PCI

Many of the relevant probabilities in this contribution are
multivariate integrals over complex regions. They therefore
need to be computed by means of numerical simulation,
the principles of which are as follows: as a probability can
always be written as an expectation and an expectation can
be approximated by taking the average of a sufficient number
of samples from the distribution, the random generation of
such samples is used for the required approximation. Thus,
the approximation of the probability of correct identification,

PCI = P(t ∈ Pa |Ha) = E(pa(t)|Ha) (82)

for ba = ba,MDB, is then given by

P̂CI,MDB = 1

N

N∑
i=1

pa(τi ) (83)

(cf. 81), with N the total number of samples and τi , i =
1, . . . , N , being the samples drawn from ft (τ |Ha) = ft (τ −
BTCaba,MDB|H0) and thus from themultivariate normal dis-
tribution N (BTCaba,MDB, Qtt ). Whether or not the drawn
sample τ = τi contributes to the average is regulated by
the indicator function pa(τ ) and thus the actual test. The
approximation (83) constitutes the simplest of simulation-
based numerical integration. For more advanced methods,
see Robert and Casella (2013).

5 How to evaluate and use the DIA estimator?

5.1 Unconditional evaluation

The unconditional PDF fx̄ (x) (cf. 39) contains all the nec-
essary information about x̄ . As the DIA estimator x̄ is an
estimator of x , it is likely to be considered a good estimator
if the probability of x̄ being close to x is sufficiently large.
Although the quantification of such terms as ’close’ and ’suf-
ficiently large’ is application dependent, we assume that a
(convex) shape and size of an x-centred region Bx ⊂ R

n , as
well as the required probability 1−ε of the estimator residing
in it, is given. Thus if H would be the true hypothesis, the
estimator x̄ would be considered an acceptable estimator of
x if the inequality P(x̄ ∈ Bx |H) ≥ 1 − ε, or

P(x̄ /∈ Bx |H) ≤ ε (84)

is satisfied for (very) small ε.With reference to safety-critical
situations, for which occurrences of x̄ falling outside Bx are
considered hazardous, the probability (84) will be referred to
as the hazardous probability. Using (33) and (39) of Theorem
1, we have the following result.

Corollary 4 (Hazardous probability) The hazardous proba-
bility can be computed as

P(x̄ /∈ Bx |H) =
∫
Rn/Bx

fx̄ (x |H)dx (85)

with the PDF of x̄ given as

fx̄ (x |H) =
k∑

i=0

∫
Pi

f x̂0(x + Liτ |H) ft (τ |H)dτ (86)

for which, when H = Ha,

fx̂0(x + Liτ |Ha) =
exp

{
− 1

2 ||x − μ(τ)||2Qx̂0 x̂0

}
√|2πQx̂0 x̂0 |

ft (τ |Ha) =
exp

{
− 1

2 ||τ − BTCaba ||2Qtt

}
√|2πQtt | (87)

with μ(τ) = A+(E(y|H0) + Caba − Ci (BTCi )
+τ). To get

the PDF under H = H0, set ba = 0 in the above.

By computing (85) for all Hi s, one gets a complete pic-
ture of how the DIA estimator performs under each of the
hypotheses. Such can then be used for various designing pur-
poses, such as of finding a measurement–design (i.e. choice
of A and Qyy) and/or a testing–design (i.e. choice ofPi ’s and
their partitioning) that realizes sufficiently small hazardous
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probabilities. Onemay then also take advantage of the differ-
ence between influential and testable biases, by testing less
stringent for biases that are less influential. Under certain cir-
cumstances, one may even try to optimize the DIA estimator,
by minimizing an (ordinary or weighted) average hazardous
probability

P(x̄ /∈ Bx ) =
k∑

i=0

ωiP(x̄ /∈ Bx |Hi ) (88)

as function of certain estimator defining properties, such as,
for instance, the chosen partitioning of the misclosure space.
In the event that one has information about the frequency of
occurrence of the hypotheses, the weights ωi would then be
given by these a priori probabilities.

Example 8 (Continuation of Example 5) It follows from (39)
that in case of only one alternative hypothesis (k = 1), the
PDF of x̄ under Ha can be written as

fx̄ (x |Ha) = fx̂0(x |Ha) +
∫
R/P0

[ fx̂0(x + L1τ |Ha)

− fx̂0(x |Ha)] ft (τ |Ha)dτ (89)

Let x̂0
Ha∼ N (bx̂0 = 1

2ba, σ
2
x̂0

= 0.5), t
H0∼ N (bt =

ba, σ 2
t = 2) (thus n = r = 1), and L1 = 1

2 , with accep-
tance interval P0 = {τ ∈ R|(τ/σt )

2 ≤ χ2
α(1, 0)}. Figure 7

shows this PDF for the three cases ba = 1, 3, 5 usingα = 0.1

and α = 0.001, while Fig. 8 shows these same three cases but
now with twice improved variance. Note the positive effects
that increasingα (cf. Fig. 7) and improving precision (cf. Fig.
8) have on the estimator x̄ . The larger α gets, the more prob-
ability mass of the PDF of x̄ becomes centred again around
the correct value 0, this of course at the expense of heavier
tails in fx̄ (x |H0), see Fig. 6. For small values of α, thus when
the acceptance interval ofH0 is large, the estimator x̄ is more
biased as its PDF fx̄ (x |Ha) becomes more centred around
bx̂0 . Also the effect of precision improvement is clearly visi-
ble, with ultimately, for ba = 5, a PDF of x̄ that has most of
its mass centred around 0 again. �
To provide further insight in the factors that contribute to
(85), we make use of the decomposition

P(x̄ /∈ Bx |H)

= P(x̄ /∈ Bx , t ∈ P0|H) + P(x̄ /∈ Bx , t /∈ P0|H) (90)

The first term of the sum is relevant for detection, the second
when identification is included as well. We first consider the
detection-only case.

5.2 Detection only: precision and reliability

In the detection-only case, the solution x̄ is declared unavail-
able when the null hypothesis is rejected, i.e. when t /∈ P0.
The probability of such outcome is underH0, the false alarm

Fig. 7 PDF fx̄ (x |Ha) of estimator x̄ underHa (Example 8, σ 2
x̂0

= 0.5, σ 2
t = 2). Left ba = 1 (bx̂0 = 0.5),middle ba = 3 (bx̂0 = 1.5), right ba = 5

(bx̂0 = 2.5)

Fig. 8 PDF fx̄ (x |Ha) of DIA estimator x̄ underHa (Example 8, σ 2
x̂0

= 0.25, σ 2
t = 1). Left ba = 1 (bx̂0 = 0.5), middle ba = 3 (bx̂0 = 1.5), right

ba = 5 (bx̂0 = 2.5)
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P(t /∈ P0|H0) = PFA, and under Ha , the probability of
correct detection P(t /∈ P0|Ha) = PCD. The false alarm is
often user controlled by setting the appropriate size of P0.
The probability of correct detection, however, depends on
which Ha is considered and on the size of its bias ba . We
have PCD = PFA for ba = 0, but PCD > PFA otherwise.

The estimator x̄ is computed as x̂0 when the null hypoth-
esis is accepted, i.e. when t ∈ P0. Its hazardous probability
is then given for H = H0,Ha as

P(x̄ /∈ Bx , t ∈ P0|H) =
{
P(x̂0 /∈ Bx |H0)PCA

P(x̂0 /∈ Bx |Ha)PMD
(91)

where use has been made of the independence of x̂0 and t .

As PCA is user fixed and x̂0
H0∼ N (x, Qx̂0 x̂0), the hazardous

probability under H = H0 is completely driven by the vari-
ance matrix Qx̂0 x̂0 and thus by the precision of x̂0. This is
not the case under Ha , however, since the hazardous proba-
bility, also referred to as hazardous missed detection (HMD)
probability, becomes then dependent on ba as well,

PHMD(ba) = P(x̂0 /∈ Bx |Ha)PMD (92)

Note, since x̂0
Ha∼ N (x+bx̂0 , Qx̂0 x̂0) and t

Ha∼ N (bt , Qtt )

(cf. 8), that the two probabilities in the product (92) are
affected differently by ba . The probability P(x̂0 /∈ Bx |Ha)

is driven by the influential bias bx̂0 = A+Caba , while the
missed detection probability is driven by the testable bias
bt = BTCaba (cf. 9).

To compute and evaluate the probability of hazardous
missed detection PHMD, one can follow different routes. The
first approach, due to Baarda (1967, 1968a), goes as fol-
lows. For each Ha , the MDB is computed from inverting
(75). Then, each MDB is taken as reference value for ba and
propagated to obtain the corresponding bx̂0 , thus allowing
for the computation of PHMD for eachHa . The set of MDBs
is said to describe the internal reliability, while their prop-
agation into the parameters is said to describe the external
reliability (Baarda 1968a; Teunissen 2000). The computa-
tions simplify, if one is only interested in PHMD, while Bx

and P0 are defined as Bx = {u ∈ R
n| ||u − x ||2Qx̂0 x̂0

≤ d2}
and P0 = {t ∈ R

r | ||t ||2Qtt
≤ χ2

α(r, 0)}. Then, since
||x̂0 − x ||2Qx̂0 x̂0

Ha∼ χ2(n, λ2x̂0
) and ||t ||2Qtt

Ha∼ χ2(r, λ2t ), one

can make a direct use of the Pythagorian relation (see Fig. 1)
and use

λx̂0 = ||PAca ||Qyy

||P⊥
A ca ||Qyy

λt (α, γCD, r) (93)

to compute the hazardous missed detection probability as
PHMD = P(χ2(n, λ2x̂0

) > d2) × (1 − γCD) for each Ha .
By comparing the PHMDs between hypotheses, one would

know which of theHas would be the most hazardous to miss
detection of and what its hazardous probability would be for
a given PMD.

An alternative, more conservative approach would be to
directly evaluate (92) as function of the bias ba . As PMD

gets smaller, but P(x̂0 /∈ Bx |Ha) larger, for larger biases,
the probability (92) will have a maximum for a certain bias.
With this approach, one can thus evaluatewhether the ’worst-
case’ scenario maxba PHMD(ba) for each of the hypotheses
still satisfies ones criterion (Ober 2003; Teunissen 2017).

As the above computations can be done without the need
of having the actual measurements available, they are very
useful for design verification purposes. Starting from a cer-
tain assumed design or measurement setup as described by
A and Qyy , one can then infer how well the design can be
expected to protect against biases in the event that one of the
alternative hypotheses is true.

5.3 Detection and identification

The above analysis is not enough when next to detection,
identification is involved aswell.With identification included
one eliminates (or reduces) the unavailability, but this goes
at the expense of an increased hazardous probability. That
is, now also the second term in the sum of (90) needs to
be accounted for. This extra contribution to the hazardous
probability is given for H = H0,Ha as

P(x̄ /∈ Bx , t /∈ P0|H)

=
{
P(x̄ /∈ Bx , t /∈ P0|H0) ≤ PFA

P(x̂a /∈ Bx |CI)PCI + P(x̄ /∈ Bx |WI)PWI

(94)

Thus in order to limit the increase in hazardous probability,
the design–aim should be to keep the hazardous probability
under correct identification, P(x̂a /∈ Bx |CI), small, as well
as the probability of correct identification, PCI, close to that
of correct detection, PCD, thus giving a small probability of
wrong identification, PWI.

Note that the computation of (94) is more complex than
that of (91), since it involves all x̂i �=0’s aswell. UnderH0, one
can get rid of this dependency, when one is willing to work
with the, usually small, upper bound PFA. In that case, by
adding (94) to (91), the unconditional hazardous probability
under H0 can be bounded from above as

P(x̄ /∈ Bx |H0) ≤ P(x̂0 /∈ Bx |H0)PCA + PFA

= P(x̂0 /∈ Bx |H0) + P(x̂0 ∈ Bx |H0)PFA

(95)

With this upper bound, the computational complexity is
the same as that of the detection-only case. The situation
becomes a bit more complicated under Ha however. One
can then still get rid of a large part of the complexity if one is
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willing to use the upper bound P(x̄ /∈ Bx |WI)PWI ≤ PWI =
1 − PCI − PMD. In that case the unconditional hazardous
probability can be bounded from above as

P(x̄ /∈ Bx |Ha)

≤ P(x̂0 /∈ Bx |Ha)PMD + P(x̂a /∈ Bx |CI)PCI + PWI

= 1 − P(x̂0 ∈ Bx |Ha)PMD − P(x̂a ∈ Bx |CI)PCI (96)

But to assure identification, the computation remains of
course stillmore complex than that of the detection-only case.
As the upper bound depends on ba , its computation can be
done (using e.g. the MDB) in a similar way as discussed for
(92).

Note that the upper bound of (96) can be sharpened by
using

P(x̄ /∈ Bx |Ha) ≤ 1 −
∑
i∈I

P(x̂i ∈ Bx |t ∈ Pi ,Ha)Pia (97)

in which I denotes the set of hypothesis identifiers for which
the probabilities Pia = P(t ∈ Pi |Ha) are considered signif-
icant.

5.4 Conditional evaluation

In practice, the outcome produced by an estimation–testing
scheme is often not the end product but just an intermediate
step of a whole processing chain. Such follow-on process-
ing, for which the outcome of the DIA estimator x̄ is used as
input, then also requires the associated quality description.
This is not difficult in principle and only requires the proper
forward propagation of the unconditional PDF of x̄ . This
is, however, not how it is done in practice. In practice, often
two approximations are made when using the DIA estimator.
The first approximation is that x̄ is not evaluated uncondi-
tionally, but rather conditionally on the outcome of testing.
Thus instead of working with the PDF of x̄ , one works with
the PDF of (x̄ |t ∈ Pi ), i.e. the one conditioned on the out-
come of testing, t ∈ Pi . The second approximation is that
one then neglects this conditioning and uses the uncondi-
tional PDF of x̂i instead for the evaluation. But the fact that
the random vector (x̄ |t ∈ Pi ) has the outcome x̂i does not
mean that the two random vectors (x̄ |t ∈ Pi ) and x̂i have the
same distribution. This would only be the case if x̂i and t are
independent, which is true for x̂0 and t , but not for x̂i �=0 and
t .

From a practical point of view, of course, it would be eas-
iest if indeed it would suffice to work with the relatively
simple normal PDFs of x̂i . In all subsequent processing,
one could then work with the PDF of x̂0, N (x, Qx̂0,x̂0),
if the null hypothesis gets accepted, and with the PDF of
x̂a , N (x, Qx̂a ,x̂a ), if the corresponding alternative hypothe-
sis gets identified. To showwhat approximations are involved

when doing so, we start with the case the null hypothesis gets
accepted.

We then have, as x̂0 and t are independent,

(x̄ |t ∈ P0) = (x̂0|t ∈ P0) = x̂0 (98)

Thus in this case, it is correct to use the PDF fx̂0(x)
to describe the quality of the conditional random vector
(x̄ |t ∈ P0). This PDF may thus then indeed be used in the
computation of

P(x̄ /∈ Bx , t ∈ P0) = P(x̂0 /∈ Bx )P(t ∈ P0) (99)

However, since in contrast to (98),

(x̄ |t ∈ Pa) = (x̂a |t ∈ Pa) �= x̂a (100)

it is not correct to use thePDF fx̂a (x) for describing the uncer-
taintywhen t ∈ Pa . It depends thenon the difference between
the two PDFs, fx̂a (x) and fx̂a |t∈Pa (x |t ∈ Pa), whether the
approximation made is acceptable. The relation between the
two PDFs is given in the following.

Corollary 5 ThePDFof x̂a canbe expressed in that of x̂a |t ∈
Pa as

fx̂a (x) = fx̂a |t∈Pa (x |t ∈ Pa)P(t ∈ Pa) + R(x) (101)

in which

fx̂a |t∈Pa (x |t ∈ Pa) =
∫
Pa

fx̂0(x + Laτ)
ft (τ )

P(t ∈ Pa)
dτ

(102)

and R(x) = ∑k
i=0,�=a fx̂a |t∈Pi (x |t ∈ Pi )P(t ∈ Pi ).

Proof Follows from an application of the PDF total proba-
bility rule and (39). �

The difference between the two PDFs gets smaller the
larger the probability P(t ∈ Pa), thus illustrating, when
under Ha , the importance of having a large enough prob-
ability of correct identification, PCI = P(t ∈ Pa |Ha). Note
that the conditional PDF is not normal (Gaussian), but can
be seen as a ’weighted sum’ of shifted versions of fx̂0(x).
The more peaked ft (τ ) is, the fewer terms in this ’sum’.

Although it is thus not correct to use the PDF of x̂a to
describe the uncertainty in x̄ when t ∈ Pa , it is perhaps com-
forting to know that the associated probability when using
fx̂a (x) will at least allow for giving a conservative conclu-
sion, since

P(x̄ /∈ Bx , t ∈ Pa) ≤ P(x̂a /∈ Bx ) (103)
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Depending on how Pa is defined, one may obtain a sharper
bound by making use of the property that x̂a and t̄a are inde-
pendent (just like x̂0 and t are).

Example 9 Byusing the same considerations and samePa as
inExample 5 andusing the fact that x̂a and t̄a are independent,
we have the following sharper upper bound,

P(x̄ /∈ Bx , t ∈ Pa)

≤ P(x̂a /∈ Bx , w
2
a > τ 2 − τ̄ 2)P(||t̄a ||2Qt̄a t̄a

≤ τ̄ 2)

≤ P(x̂a /∈ Bx )P(||t̄a||2Qt̄a t̄a
≤ τ̄ 2) (104)

Note that using the upper bound P(x̂a /∈ Bx |CI)PCI ≤
P(x̂a /∈ Bx |Ha) in (96) also allows for an easier-to-compute,
albeit looser, upper bound of the hazardous probability,

P(x̄ /∈ Bx |Ha)

≤ P(x̂0 /∈ Bx |Ha)PMD + P(x̂a /∈ Bx |Ha) + PWI

= 1 − P(x̂0 ∈ Bx |Ha)PMD + P(x̂a /∈ Bx |Ha) − PCI.

(105)

As x̂0
Ha∼ N (x +bx̂0 , Qx̂0 x̂0) and x̂a

Ha∼ N (x, Qx̂a x̂a ), the
complexity of the computation is now essentially concen-
trated in PCI, the probability of correct identification. The
more precise x̂a is the smaller, the upper bound becomes.

6 Summary and conclusions

This contribution introduced a unifying framework for the
combined estimation–testing scheme by capturing the over-
all problem of detection, identification and adaptation (DIA)
as one of estimation. The motivation for this approach stems
from the fact that although estimation and testing are often
treated separatedly and independently, in actual practice
when testing is involved the two are intimately connected.
This implies that one has to take the intricacies of this com-
bination into considerationwhen evaluating the contributions
of the various decisions and estimators involved. By using a
canonical model formulation and a partitioning of the mis-
closure space, it was shown that thewhole estimation–testing
scheme can be captured in one single estimator as

x̄ =
k∑

i=0

x̂i pi (t) (106)

with the x̂i ’s being the BLUEs of each of the hypotheses
and the pi (t)’s their indicator functions. All the characteris-
tics of estimation and testing can be studied by studying the
properties of the DIA estimator x̄ .

It was shown that although all the x̂i ’s are unbiased under
their respective hypotheses, the estimator x̄ itself is not unbi-
ased, except under the null hypothesis. The presence of such
bias was also proven to exist in results of prediction. The
nature of the biaswas studied, and itwas shown that a nonzero
bias remains even in case of correct identification. Thus, all
successful adaptations still produce results that are biased.
This implies, for instance, that any successful outlier detec-
tion and exclusion method will always produce parameter
outcomes that are still biased. It was shown how this bias can
be evaluated and on what contributing factors it depends.

The unconditional PDF of the DIA estimator was derived
and formulated in the PDFs of the BLUE x̂0 and the misclo-
sure t , as

fx̄ (x |H) =
k∑

i=0

∫
Pi

f x̂0(x + Liτ |H) ft (τ |H)dτ. (107)

It forms the basis for any probabilistic evaluation of
the estimator, such as, for instance, the evaluation of the
hazardous probability P(x̄ /∈ Bx |H). As the PDF gives a
complete picture of how the DIA estimator performs under
each of the hypotheses, it can be used for various designing
purposes, such as of finding a measurement–design and/or
a testing–design that realizes sufficiently small hazardous
probabilities.Onemayeven try to optimize theDIAestimator
by minimizing the hazardous probability as function of cer-
tain estimator defining properties. Although optimizing the
DIA estimator x̄ was not the goal of the present contribution,
we did reveal its ingredients that can be varied to influence its
performance. The degrees of freedom that one has available
for improving its performance are the x̂i ’s, i.e. the choice of
estimators under the respective hypotheses; the Pi ’s, i.e. the
choice of partitioning in misclosure space; and/or the pi ’s,
i.e. the x̄-defining choice of weights.

For the evaluation of the PDF of x̄ under H = Ha ,
one needs to make assumptions on the range of values the
unknown bias ba can take. This can be done bymaking use of
Baarda’s well-known concept of minimal detectable biases
(MDBs). Aswas pointed out however, one should understand
that in themultiple hypotheses case (k > 1) theMDB itself is
about correct detection and not about correct identification.
As the MDB ba,MDB is defined to satisfy

PCD =
∫
Rr /P0

ft (τ − BTCaba,MDB|H0)dτ (108)

for a certain chosen correct detection probability, sayPCD =
γCD, the MDB concept expresses the sensitivity of the detec-
tion step in terms of minimal bias sizes of the respective
hypotheses. Thus by using the same value γCD for all Ha’s,
the MDBs can be compared and provide information on the
sensitivity of rejecting the null hypothesis forHa-biases the
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size of their MDBs. This does, however, not necessarily pro-
vide information on the identifiability of the hypotheses.
We therefore introduced, in analogy of (108), a minimal
identifiable bias (MIB) as the smallest bias of an alterna-
tive hypothesis that leads to its identification for a given CI
probability. Would one want to compare the identifiability
of alternative hypotheses for the same probability of correct
detection however, then the ’forward’ computed probability

PCI,MDB =
∫
Pa

ft (τ − BTCaba,MDB|H0)dτ (109)

can be used as the diagnostic. It provides a direct link with
the MDB, and it is also somewhat easier to compute than the
‘inversion’ needed for obtaining MIBs.

We also considered conditional performances of the esti-
mator x̄ , thus enabling evaluation of its performance under
different occurrences of the testing outcomes. The increase in
the hazardous probability due to identification was described
by discriminating between the detection-only case and the
detection-and-identification case. We also pointed out that
for any follow-on processing for which the outcome of the
estimator x̄ is used as input, a rigorous forward propagation
of its nonnormal PDF is often missing in practice. Instead
one works with simpler to evaluate normal PDFs, namely
fx̂0(x) when the output of x̄ is x̂0 and fx̂a (x) if the output is
x̂a . This is correct for x̂0, but not for x̂a , even not in case of
correct identification, since

fx̄ |CI(x |CI) �= fx̂a (x |Ha) (110)

From the given relation between these two distributions, one
can infer whether the approximation made is acceptable for
the application at hand.
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Appendix

Proof of Theorem 1 By using the total probability rule and
the fact that x̄ = x̂i if t ∈ Pi , we have for any � ⊂ R

n+r ,

P
([

x̄
t

]
∈ �

)
=

k∑
i=0

P
([

x̂i
t

]
∈ �|t ∈ Pi

)
P(t ∈ Pi )

(111)

from which it follows that

fx̄,t (x, t) =
k∑

i=0
fx̂i ,t (x, t |t ∈ Pi )P(t ∈ Pi )

=
k∑

i=0
fx̂i ,t (x, t)pi (t)

(112)

in which the last equality was obtained from using

fx̂i ,t (x, t |t ∈ Pi ) = fx̂i ,t (x, t)

P(t ∈ Pi )
pi (t) (113)

To express the joint PDF fx̂i ,t (x, t) of (112) in that of x̂0 and
t , we apply the PDF transformation rule to (13) to obtain

fx̂i ,t (x, t) = fx̂0,t (x + Li t, t)
= fx̂0(x + Li t) ft (t)

(114)

in which the last equation follows from the independence of
x̂0 and t . Substitution of (114) into (112) gives the first equa-
tion of (39). The second equation of (39) follows from the
first by invoking the definition fx̄ |t (x |t) = fx̄,t (x, t)/ ft (t).
Similarly, the third equation of (39) follows from the first by
invoking the definition fx̄ (x) = ∫

Rr fx̄,t (x, t)dt . �

Proof of Theorem 2 From (32) and (13), we obtain

x̄ = x̂0 − ∑k
i=1 Li tpi (t)

= x̂0 − A+ ∑k
i=1 Ci (BTCi )

+tpi (t)
(115)

By taking the expectation, we get

E(x̄ |H) = E(x̂0|H) − A+
k∑

i=1

Ci (B
TCi )

+E(tpi (t)|H)

(116)

In this expression, we have for the mean of x̂0, E(x̂0|H0) =
x and E(x̂0|Ha) = x + A+Caba . For the mean of tpi (t),
i = 1, . . . , k, we have

E(tpi (t)|H) =
{
0 if H = H0∫
Pi

τ ft (τ |Ha)dτ if H = Ha
(117)

The zero result under H0 follows from the symmetry about
the origin of the PDF ft (τ |H0) and the regions Pi . Substitu-
tion of (117) into (116) proves the result. �
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Proof of Theorem 3 Since

E(tpi (t)|t ∈ �,Ha) =
∫
Pi∩�

τ
ft (τ |Ha)

P(t ∈ �|Ha)
dτ (118)

we have, with b̂i = (BTCi )
+t , for i = 1, . . . , k,

E(b̂i pi (t)|t ∈ �,Ha)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if � = P0 (MD)
βi (ba)
PCD

if � = R
r/P0 (CD){

0 (i = a)
βi (ba)
PWI

(i �= a)

}
if � = R

r/{P0,Pa} (WI)
{

βi (ba)
PCI

(i = a)

0 (i �= a)

}
if � = Pa (CI)

(119)

where βi (ba) = E(b̂i pi (t)|Ha). Substitution of (119) into

E(x̄ − x |t ∈ �,Ha) = E(x̂0 − x |t ∈ �,Ha)

−A+
k∑

i=1

CiE(b̂i pi (t)|t ∈ �,Ha)

(120)

proves (68). �
Proof of Theorem 4 The decompositions (71) and (72) fol-
low from applying the PDF total probability rule to the
PDF of x̄ , i.e. that fx̄ (x) = fx̄ |t∈�(x |t ∈ �)P(t ∈ �) +
fx̄ |t∈�c(x |t ∈ �c)P(t ∈ �c) for a partitioning � and �c =
R
r/�. The conditional PDFs fx̄ |CA(x |CA) = fx̂0(x |H0),
fx̄ |MD(x |MD) = fx̂0(x |Ha) and (73) follow similarly from
the general expression

fx̄ |t∈�(x |t ∈ �) =
∫

�

fx̄,t (x, τ )dτ/P(t ∈ �) (121)

where, in addition, use has been made of the fact that x̂0 and
t are independent. �
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