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Adaptive Manual Control: a Predictive Coding Approach

Lorenzo Terenzi
Delft University of Technology

Delft, the Netherlands

Improved understanding of human adaptation canbe used to design better autonomous systems
and control systems that can support the human controller when the dynamics of the system
that is being controlled suddenly change. This paper evaluates the effectiveness of a model-
based adaptive control technique, Model-Based Reference Control (MRAC), for predicting the
adaptive control policy shown by human operators while controlling a time-varying system in
a pursuit-tracking task. Ten participants took part in an experiment, where they were asked to
control a time-varying system whose dynamics changed twice and approximated a single and
double integrator dynamics. AMRAC controller is composed of a feedforward and a feedback
controller and an internal model that is used to drive the adaptive control policy. The active
gains, the internal model parameters and the learning rates, have been estimated via an non-
linear optimization aimed at maximizing quality of fitting of the participants’ control output.
The participant’s control behavior rapidly changed when the dynamics of the controlled system
changed, in particular when going from controlling a first to second order system. The MRAC
model was able to accurately capture the transient dynamics exhibited by the participants
when the system changed approximately from a first to a double integrator while it failed to
do so when the system changed from double to first integrator. In the latter case the MRAC
gains changed too slowly. Therefore MRAC can be used to approximate human adaptations
in pursuit tracking tasks when a change in the dynamics of the controlled system requires an
increase in the rate feedback controller to ensure accurate tracking of the reference signal.

Nomenclature

� = State space matrix, –
�< = Reference model state space matrix, –
�= = Amplitude of the ith sine of the disturbance signal, rad
� = Control input matrix, –
�< = Reference model control input matrix, –
�.# = Controlled element dynamics label
4 = Roll attitude error, rad
�2 = Controlled dynamics transfer function
�? = Human operator transfer function
�? = Human operator transfer function
�<�! = Internal model closed loop transfer function
�>�! = Internal model open loop transfer function
:2 (C) = Time varying gain of the controlled element, –
:A = MRAC feedforward gain, –
 G = Vector of state gains, –
:G1 = MRAC state gain, –
:G2 = MRAC state derivative gain, s
;A = Learning Rate, –
A = Forcing function, rad B−1

'"(� = Root mean square of the roll error, deg
'"(* = Root mean square of the control input, deg
% = Positive definite matrix, –
C = Time, s
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G< = Reference model state
Dℎ = Human operator control output, rad
D< = MRAC model control output, rad
+�� = Variance accounted for, %
Z=< = Human operator neuromuscular damping, –
g = Human operator time delay, s
\ = Vector of the MRAC parameters, –
q= = Phase of the ith sine of the disturbance signal, rad
WA = Learning rate of the feedforward gain, –
ΓG = Vector of state gain’s learning rate, –
WG1 = Learning rate of the state gain, –
WG2 = Learning rate of the state derivative gain, –
l = Frequency, rad s−1

l1 (C) = Time-varying pole for the controlled element, –
l2 = Crossover frequency of the internal model, rad s−1

l= = Frequency of the ith sine of the disturbance signal, rad s−1

I. Introduction
Automation in the last decades has taken an increasingly important role in systems with humans in the loop, such as
aircraft or road vehicles. Tasks that are structured in a relatively controlled environment are easiest to automate. In
aerospace, for example, most parts of an actual flight have been automated because it is possible to rely on precise
positioning systems, sensor readings and lack of obstacles and preestablished navigation plans. The roles of pilots have
become more of a supervisor of automated sub-systems.
Current artificial systems can also achieve a human level of performance in perception, or better, in many tasks. For
example, superhuman performance in image classification on the ImageNet dataset was achieved five years ago [1].
These systems can also make use of sensory data not available for humans, such as Lidar.
Nonetheless humans are still driving billions of cars and piloting aircraft, thanks of their ability to quickly adapt to a
changing environment [2], carry out tasks that are complex and difficult to automate. A good understanding of how
humans adapt their control policy could serve as inspiration for machine learning researchers and automation engineers
to develop more advanced controllers, capable of exhibiting more adaptable behavior. Furthermore, it could help design
better training programs for human controllers and more suitable control systems to increase the safety of the systems
they operate [3].
This paper addresses the problem of understanding human motor adaptation for simple manual control tasks and it
proses a novel approach inspired by a neuroscience framework called "Predictive Coding" [4]. At the core of this
approach lies an adaptive control technique called model reference adaptive control (MRAC), which defines a controller
that imitates another controller taken as a reference. This work was inspired by the fact that McRuer found that the
open-loop dynamics of a system controlled manually, with a compensatory display, has the structure of a first-order
stable system with delay, independent of the dynamics of the controlled system.
The paper first presents the MRAC controller, the internal reference model chosen and the parameter estimation
procedure. The model output stability and sensitivity to its parameters is assessed. To further assess the ability of
MRAC to approximate time-varying dynamics of human controllers, an experiment was organized. The collected data
are useful for facilitate future studies on time-varying models and to understand how MRAC responds to different
transitions in the dynamics of the controlled system.

In Sec. II it is introduced and reviewed part of the work done on three fundamental areas, upon which this paper is
based on: internal models, predictive coding and time-varying/adaptive human operators models. In Sec. III a basic
introduction and analysis of the MRAC controller is presented together with a description of the control task performed
during the experiment. In Sec. IV the experimental conditions, dependent measures, procedures and setup of the
experiment are explained. In Sec. V the experimental results are analysed and presented and their discussion follows in
Sec. VI. Finally, the conclusions of the paper are drawn in Sec. VII.

2

3



II. Background

A. Role of internal models
In this section, an overview of internal models is presented, and we try to justify their use in the development of adaptive
and optimal control systems.
Internal models have been recognized to be an essential component for motor control in biological systems [5]. Animals
have internal models of their body and world dynamics that can be used for motor control and learning [6] [7].
It is commonly accepted that the cerebellum learns and encodes models of the world [8]. These models likely encode the
dynamics and properties of the human motor system and of objects that humans interact with. Patients with cerebellum
damage experience very poor motor control and jittering in their movement and have problems learning new skills [9, 8].
The imprecise motor control in these patients suggests that their brains cannot make use of internal models of the motor
system to find optimal motor commands and compute the set of probable future states. In this case, the brain will have
to rely only on sensory feedback, which is severely delayed (such as visual feedback) and does not allow for precise and
fast motor control [10].
Anatomically, the cerebellum contains the vast majority of the neurons present in the central nervous system, with
estimates ranging from 70% to 80%. The cerebellum contains around 69 billion neurons, and an equivalent number of
glial cells [11]. The human brain has only 19% of the neurons on the cerebral cortex, similar to the composition found in
other mammals. However, while the cellular composition is equivalent, the size of human networks is substantially larger
than those of other primates. The work done at OpenAI provides evidence for the hypothesis that what is commonly
understood as intelligence increases with the network size. A set of scaling laws for language models were found
and they highlighted that the model size is the principal parameter that affects performance: larger models are more
sample-efficient and expressive [12].
The exact nature of the models used for sensorimotor control is not currently known, but is hypothesized they could
be inverse and/or forward dynamical models [13]. Inverse models output the control action needed to achieve the
desired output, while forward models predict the output given a control action. On the other hand, given a probability
distribution of the current states and a control input, forward internal models can generate a distribution over future
states. There is substantial anatomical and behavioral evidence that points towards their presence in the cerebellum [14,
15].
Internal forward models have two main uses. The first one is to plan complex actions without acting them out in the real
world, by simulating the results of a control policy through the forward model. This way of controlling is compatible
with Optimal Feedback Control (OFC), a control method that makes use of the dynamics of a system to find the set
of optimal actions to define a feedback controller [16, 17, 18]. The OFC framework has shown predictive strength
in many experiments testing sensorimotor control and in particular hand-eye coordination [5]. Currently, it is the
dominant framework to model sensorimotor control [19, 20]. The second main use for internal forward models is state
estimation: the distribution over the current states (given the previous state and a control action) is compared with
sensory measurement to achieve the best estimate of the current state of the system [5]. A diagram that illustrates how
internal models can be used for state estimation and planning is shown in Fig. 1. The state estimator makes use of the
sensory measurements, I, and the predicted state G? by the internal model to obtain a more reliable estimation. The
expected state estimate, G4 can be fed back to the internal model. The internal model can be used to generate rollout
(sequence of predicted states G?) given of a policy (set of control inputs D) as part of an optimal control scheme.
The last piece of evidence we present here in favour of internal models is related to a manual control experiment with
a compensatory display task performed by Young [2]. Participants were asked to control and detect the change of
dynamics in a time-varying system. The participants of the experiment were divided into three groups: active controllers,
passive controllers and observers. The active controllers actively controlled the system. The passive controllers were
led to believe that they controlled the system, but the system was controlled by a different controller. The observers
just observed the screen. All participants had to press a button when they recognized the change in dynamics. It was
observed that the detection time across all conditions for the observers was significantly higher (mean of 3.74 s) than the
other two classes of participants, who on the other hand showed similar times (mean of 1.30 s for active controllers and
of 1.50 s for passive ones). The most probable cause for this delay for the observer is the absence of an internal model
for the dynamics of the controlled system. The participants that only observed engage in no motor actions and therefore
had a harder time estimating how the system would respond to input. This highlights the role that internal models have
in motor control tasks.
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Fig. 1 Diagram illustrates how sensory data and the internal model can be used for state estimation, control
and planning.

B. Predictive Coding
Predictive coding (PC) is a general framework to explain how the brain processes information. PC states that the human
brain continuously generates predictions about the stream of information that is coming from the world, and its objective
is to minimize the prediction error [18], and thus surprise. The minimization of the prediction error can be achieved by
either changing the internal model that lead to the predictions (learning) or the actions in the world of the agent. The
theory, very formal in nature, is further explained by Friston in a series of papers [21, 22].
It is postulated that the brain has an internal generative model of the world. This is a model that can generate a rich and
hierarchical representation of the expected/predicted sensory information from a latent, non-observable variable. [22].
For example, from a single "idea" (the latent variable) of an object, it is possible to generate richer representations in
the lower hierarchical cortical area, like its shape, sound, expected dynamic properties. The process that generates
the sensory predictions is "top-down", from the higher level of the cortical areas to the lower ones, while the sensory
information is processed "bottom-up" as illustrated in Fig. 2.
The sensory predictions at the very bottom of the abstraction hierarchy are compared with the actual sensory data. The
unexplained sensory inputs, i.e, the "errors" are propagated up the hierarchy for further processing. These prediction
errors are minimized either by acting on the world or by changing the internal model over time [24]. An essential part of
the PC theory is precision weighting, i.e., the estimation of the error’s reliability, which also depends on the level of
signal noise [4].
This theory of neural computation is supported by anatomical evidence and there are canonical microcircuit models of
PC [25]. As PC requires, there are different cells that are responsible for feedforward and feedback information [25, 4],
and these cells show interactions at different frequencies [26]. Computational models of the visual cortex explain many
of the unsolved visual phenomena like end-stopping and non-classical surround effects [27]. Similar results are reported
for the auditory cortex [28, 29]. Nonetheless, while it is recognized that the ability to predict is a key element of the
human type of intelligence, there is still not a consensus in the scientific community about PC: criticism highlights that
the theory is quite imprecise, difficult to test, and therefore susceptible to ad-hoc changes [30].

C. Time varying models
There have been successful attempts at identifying time-varying policies that human controllers exhibit in response
to a change in controlled system dynamics. A very flexible approach is based on state-estimation via Kalman Filters,
to recursively estimate parameters of human operator models [31, 32, 33]. The main drawback of this method is the
speed of convergence of the filter: in the event of a sudden change in the operator, the estimated parameters could be
unreliable during the transient phase. Another promising line of research uses ARX-based identification techniques [34].
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Fig. 2 Very simplified scheme of a predictive coding framework. The input enter a network region into the
superficial cortical layers (in red). There the input is processed together with the prediction, coming from a
deep cortical layer (blue) next in the hierarchy. The resulting error is further propagated up the hierarchy and
the process repeats. Figure adapted from [23].

The ARX models rely on minimal assumptions about the human operator behaviour and can be extended for multimodal
operators identification, such as control with the presence of motion feedback [35].
To identify human operators controlling a time-varying system, Zaal proposed a parametric model, the parameters of
which are all a time-varying function of sigmoidal shape centred at the time of the transition of the dynamics form [36].
The model parameters were found by maximum likelihood estimation (including the transition time of the dynamics)
augmented with a genetic algorithm [37]. The main drawback of the model is that the transient behavior is prescribed
once, and thus cannot handle more than one transition in dynamics.
The Hess model is also a popular rule-based system that relies on a two-loop description of the human operator. The
model relies on a hand-crafted set of gains and learning rules to ensure a representative adaptive behavior [38].

III. Methodology
This study uses Model Reference Adaptive Control (MRAC), an adaptive control technique, to predict a time-varying
human operator adaptations in tracking tasks in a pursuit display. MRAC is first introduced, then the selection of
the internal model, the architecture of the controller, and the considered parameter estimation method are presented.
A description of the tracking task follows, which consisted on controlling a time-varying system. The participants’
objective was to minimize the error between the indicated attitude and the current attitude, which could be inferred w.r.t.
the artificial horizon line. This task was chosen because the MRAC model uses the reference signal as an input and it is
simple enough to test the fundamental validity of the approach.

A. Model Reference Adaptive Control
MRAC was further researched to model time-varying human-operator policies for the following reasons:
1) Humans are adaptable: MRAC is an adaptive control algorithm for which the controlled system to track the trajectory

of a reference model. The gains of the controller are time-varying.
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2) Humans have internal models: while controlling the system, and receiving mostly visual feedback from the screen,
humans can learn the dynamics of the controlled element. This new model is used for control. Similarly, MRAC
uses its internal model for control by being the main drive behind the adaptation.

3) Humans in the loop show consistent open-loop dynamics when controlling a wide range of dynamical systems on a
compensatory display: McRuer et al. found that the open-loop dynamics in the crossover region resemble those of a
single integrator with delay [39]. In an analogous way MRAC uses an internal reference model to define the ideal
control policy independently of the controlled dynamics.

4) Human adapt in the presence of mismatched predictions: PC states that the errors, i.e., the difference between the
predicted and observed states, are propagated up the neuronal hierarchy to drive actions and/or change the encoded
world models in the neural network. MRAC works similarly, since the adaptation is driven by the difference between
the predicted output of the internal model and the observed one.

The mathematical details of MRAC and its formulation are explained here. More examples and further derivations of
MRAC controllers can be found in Nguyen’s work [40].
We first derive an expression for the dynamics of the error between the output of the reference model and the output of
the controlled system, see Fig. 3. Let’s assume that the reference model can be written in a state space form as:

¤G< = �<G< + �<A (1)

where G< is the state of the reference model and A is the reference signal. The controlled element can also be expressed
in state space form as:

¤G = �G + �D (2)

where D is the time-varying control input to be found. It is assumed a trivial observation equation such that the output
H = G and that the state space matrix � and the control input matrix � are unknown, which reflects the uncertainty about
the dynamics of the system. The aim of the control action is to minimize the error 4? = G< − G. The feedback control
signal is assumed to have the following form:

D =  G (C)G + :A (C)A (3)

where  G (C) = [:G1, :G2] and :A (C) are time-varying gains. MRAC assumes the existence of ideal gains,  ∗G and :∗A ,
that can be found if Eq. (3) is substituted into Eq. (2). These ideal gains must satisfy:

� + � ∗G = �<
�:∗A = �<

(4)

To simplify the derivation, two new quantities  ̃G and :̃A can be defined, which are the gain deviations from their
optimal values:

 ̃G =  G (C) −  ∗G
:̃A = :A (C) − :∗A

(5)

By combining Eq. (2), Eq. (5) and Eq. (3) the following expression for the error can be found:

¤4? = ¤G< − ¤G = �<4? − � ̃GG − �:̃AA (6)

MRAC relies on the Lyapunov stability theory to prove the stability of the system. To ensure tracking of the reference
model and therefore that limC→∞ 4? (C) = 0 the following conditions need to be satisfied:
1) Find a Lyapunov function + (C, 4? ,  ̃G , :̃A ) > 0, ∀C > 0
2) 3+ (C ,4? , ̃G , :̃A )

3C < 0 for all C > 0
3) 3+ (C ,4? , ̃G , :̃A )

3C ∈ !∞ norm, i.e., 3
2+ (C ,4, ̃G , :̃A )

3C2
must be bounded

The are no real guidelines to choose the Lyapunov function, but usually it is a quadratic function with respect to the
variables of interest [40]. It can also be interpreted as an energy function. In this case the following function was chosen

+ (4? ,  ̃A , :̃A ) = 4)?%4? + |1 | ( ̃GΓ−1
G  ̃

)
G +

:̃2
A

WA
) > 0 (7)
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where 1 is the only entry of the control effectiveness matrix �, with %, Γ−1
G , WA > 0, the function is also bigger than zero

at all times. Notice that this derivation is valid for a second order system as we assumed the control matrix is of the
form � = [0; 1]. By taking the time derivative of the Lyapunov function and using Eq. (6), the following is obtained

¤+ (4? ,  ̃G , :̃A ) = −4) (%�< + �<%)4? + 2|1 | ̃G (−G4)? %̄B6=(1) + Γ−1
G
¤̃ )G )

+2|1 | :̃A (−A4)? %̄B6=(1) +
¤̃:A
WA
)

(8)

and by selecting P to satisfy the Lyapunov equation

%�< + �)<% = −& (9)

it can be found that

¤+ (4? ,  ̃G , :̃A ) = −4)?&4? + 2|1 | ̃G (−G4) %̄ sign(1) + Γ−1
G
¤̃ )G )

+2|1 | :̃A (−A4)? %̄ sign(1) +
¤̃:A
WA
)

(10)

where & is a negative definite matrix and %̄ the second column of the matrix % (since it is assumed that matrix � has
only one entry equal 1). For the Lyapunov function derivative to be negative at all time the following conditions need to
be imposed

−G4)? %̄ sign(1) + Γ−1
G
¤̃ )G = 0

−A4)? %̄ sign(1) +
¤̃:A
WA
= 0

(11)

which implies

¤̃ G = ΓGG4)? %̄B6=(1)
¤̃:A = WAA4)? %̄B6=(1)

(12)

In this way an expression was derived for the rate of change of the feedback gain that would ensure the tracking of the
reference model. Finally, it is necessary to show that the derivative of the Lyapunov function is bounded. The derivative
of the Lyapunov function satisfies the following inequality

¤+ (4? ,  ̃G , :̃A ) = −4)?&4? ≤ −_<8=
4?2

2
(13)

where _<8= is the smallest eigenvalue of the matrix&. Since ‖4? ‖22 ∈ !∞ it can be shown that ¥+ (4? ,  ̃G , :̃A ) is bounded.
By using Barbalat’s lemma [40] it can be concluded that limC→∞ 4? (C) = 0.
Fig. 3 shows the diagram representing the used implementation of the MRAC controller, where the adaptative laws are
given in Eq. (12). The gains of the controller are  G = [:G1, :G2] and :A , the controlled plant is �2 , the closed-loop
reference model �<�! and the prediction error 4?. For readers more accustomed to the parameters used by El et al.
[41], the MRAC coefficients are related to them in the following way:

$ (:4) = $ (:G1)

$ ( 5 ) = $
(
:A
:G1

)

$ ()!) = $
(
:G2
:G1

) (14)

where  5 is the target weighting gain, )! the lead time gain and :4 the proportional error gain [41].
In the previous derivation, it was assumed that there was no delay in the control input to derive a simple adaptive control
law. Humans have quite considerable delays in perception and actuation delays that should be accounted for. The
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Fig. 3 Diagram of the MRAC controller.

presence of delay can severely affect the performance and stability of a linear state feedback controller. An adaptive
state feedback controller, such as MRAC, is also affected by such delay.
The system controller by the human operator can be written more formally as

¤G(C) = �(C)G(C) + �(C)D(C − g) (15)
D(C) =  GG(C) + :AA (C) (16)

where g stands for the input delay. The reference system, which is also delayed in the input, is given by

¤G< (C) = �<G< (C) + �<A (C − g<) (17)

This paper does not provide any formal guarantees on the stability of the considered MRAC controller, but there are
some techniques that establish bounded (not asymptotic) stability, such as BLAS (Bounded Linear Stability Analysis)
[42] and other techniques for time delay margin estimation [43]. More generally, the design of stable controllers and
their analysis in presence of delays and uncertainties has been reported with Lyapunov-Krasovskii functional techniques
[44]. A comprehensive tutorial and review on Lyapunov-methods for time-delayed system was written by Fridman [45].

B. Selection of internal model
A key choice for every MRAC controller is the function of its internal model. The selected reference model proposed in
this paper is the open-loop model proposed by McRuer [46], which describes the open loop behavior of a skilled human
operator for a compensatory task. While the current model works with pursuit display (where the reference signal is
available), a single integrator open loop model still is able to approximate the behavior of a trained controller. It is
assumed that this model is also valid to describe the quasi-linear behavior of human operators for pursuit tasks. Further
information on how pursuit tracking differs from compensatory tracking can be found in the review by Mulder et al.
[47]. The crossover model in the Laplace domain has two free parameters: the effective time delay, g, and the crossover
frequency, l2:

�<$! (B) = l2
B
4−gB (18)

MRAC makes use of its closed loop version:

�<�! (B) = �<$! (B)
1 + �<$! (B) (19)

The time delay and the crossover frequency of the model are estimated together with the other parameters necessary in
an optimization routine.
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C. Parameter estimation
The value of the following parameters is needed in order to specify the MRAC controller:

\ = [:G1, :G2, :A , l2 , g, WG1, WG2, WA ] (20)

:G1 is the state gain, :G2 is the state derivative gain, :A is the feedforward gain, l2 and g are the parameter of the
internal reference model, and WG1, WG2, and WA are the learning rate of :G1, :G2 and :A , in this order. These parameters
can be found solving the following non-linear optimization problem:

min
\
� (\) = 1

#

(
#−1∑
8=0
(Dℎ − D<)2

)
(21)

where D< stands for the MRAC controller output and Dℎ the measured output of the human controller. This procedure
has been applied in the past to estimate the gains of human operators [36]. Since this is a non-linear optimization
scheme care must be taken in initializing the parameters to minimize to chance of finding a local minimum. For each
case, the optimization was run fifteen times, each time with a different initial condition. The set of parameters that
resulted in the minimum value of the objective function were selected. Additionally since the parameters have different
scales, they were normalized to improve the conditioning of the optimization problem. Finally, an upper bounds on
the learning rate (in this case the value of 50 was used for all learning rates) improves the chances of the optimization
converging. The optimization could otherwise diverge if very high learning rates are selected by the optimizer.

D. Control Task
This paper focuses on how the control policy of humans adapts in a single-axis pitch control task, done with a pursuit
display. Participants performed a pitch tracking control task. Fig. 4 shows the block diagram of the task. Participants
minimized the error 4 between the target attitude and the current attitude through a pursuit display, while controlling the
pitch dynamics of the system �2 (C). The target attitude was generated using the forcing function A (C), which was a sum
of ten sinusoids to make the task challenging and the signal unpredictable. The task was performed on the HMI (Human
Machine Interaction) lab at the TU Delft faculty of Aerospace Engineering [48].

y
r

H
cH

p

ur

x

x

Human Operator Controlled System

Fig. 4 Control task block diagram.

The controlled system dynamics �2 (C) can change through time and had the following structure

�2 (C) = :2 (C)
B(B + l1 (C)) (22)

where the parameters :2 (C) and l1 (C) were time-varying. In this task, participants controlled the system �2 (C) across
multiple and significant changes in the system dynamics. By modifying the parameter l2 the system response changed
either towards an single-integrator response (forl2 >> 1 rad/sec) or a double-integrator response (forl2 << 1 rad/sec).
The :2 was also varied over time to keep the level of control activity approximately constant. The mathematical
representation of l2 and :2 was the following

l1 (C) =
{
l11 + l12−l11

1+4−� (C−"1 ) , for C ≤ C0 + )2
l12 + l11−l12

1+4−� (C−"2 ) , for C ≥ C0 + )2
(23)
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:2 (C) =
{
:21 + :22−:21

1+4−� (C−"1 ) , for C ≤ C0 + )2
:22 + :21−:22

1+4−� (C−"2 ) , for C ≥ C0 + )2
(24)

where "1 = )
3 , "2 = 2)

3 , and the measurement time was ) = 90 s. The value of � which controlled the transition
speed, is kept constant at a value of 100 /sec to simulate a "step-like" change in the controlled system’s parameters.
The reference attitude signal was defined by

A (C) =
10∑
==1

�= sin(l=C + q=) (25)

where �= is the amplitude of the =th sine wave, q= the phase, and l= the frequency. While it was not necessary to
have a sinusoidal tracking signal, it was important to have an unpredictable signal to prevent humans from learning its
structure. The signal was also chosen to be periodic, with a period equal to % = )

3 , one-third of the measurement time.
The periodicity preserved the task difficulty, as participants were exposed to the same signal when transitioning from
one dynamics to the other and vice-versa. The parameters of the sinusoidal waves that make up the signal A (C) are
shown in Table 1.

Table 1 Parameters of the sinusoidal function used to construct the reference signal.

n �= [rad] l= [rad/s] q=[rad] Testing q= [rad] Validation
1 2.905 · 10−2 0.419 2.841 3.006
2 1.916 · 10−2 1.047 3.319 6.037
3 1.020 · 10−2 1.885 0.718 4.544
4 6.032 · 10−3 2.722 0.768 2.811
5 3.356 · 10−3 3.979 2.925 5.917
6 1.983 · 10−3 5.655 5.145 1.842
7 1.230 · 10−3 8.188 2.085 3.401
8 9.331 · 10−4 10.681 0.383 2.998
9 7.541 · 10−4 14.032 0.763 4.614
10 6.674 · 10−4 17.383 3.247 2.888

E. Stability of the estimated coefficients
This paragraph is used to explain how it was verified that the parameters estimated by MRAC do not vary excessively in
time, in particular when it is trying to represent a steady state controller.
To test the reliability of the obtained coefficients we first solved the optimization problem using data generated from
controllers with known, arbitrarily chosen and fixed values of the coefficients. The steady controllers controlled systems
with steady dynamics and a time varying system that alternates between two dynamics labelled �.# = 1 and �.# = 2.
It is important to test if the estimated coefficients will not vary much in time even in the case where a dynamical
transition in the controlled system happens.
Fig. 5 shows the a time-series plot of the estimated MRAC gains for controlled systems with steady and time-varying
dynamics. The controller chosen to control a time invariant system has as gains :BG = 0.15, :BG2 = 0.09, :BA = 0.15,
while the values of the found MRAC coefficients are :G1 = 0.150, :G2 = 0.089, :A = 0.151. The VAF u of the model is
0.997. The VAF between two vectors, G and H, is defined as:

+�� (G, H) = 1 − E0A (H − G)
E0A (H) (26)

and it’s a measures of the quality of fit similar to the '2 measure. For controlling the time-varying system a controller
was chosen with gains :G1 = 0.16, :G2 = 0.04, :A = 0.16, while the values of the found initial MRAC active gains are
:G = 0.167, :G2 = 0.039, :A = 0.179. The VAF of the model is 0.987.
Therefore when the controlled system is time-invariant we expect the estimates of the MRAC coefficient to be reliable
and that any change in their value reflects a real change in the underlying controller. When the controlled system is
time-varying, the coefficient that adapts the most is :A , which at the end of the run has increased to a value of 0.16, an
increase of approximately 5% over the true parameter. This change though barely affects the VAF u of the MRAC model.
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Fig. 5 Time series of the estimated MRAC gains using data from two steady state controllers.

F. Model Sensitivity
This paragraph is focused on the sensitivity of the MRAC control gains to the selected learning rates for their adaptation.
The learning rates control how quickly the model adapts to changes in the controlled dynamics, which are detected
through large errors between the expected and the observed output of the plant. In the current MRAC formulation there
are three learning rates WG1, WG2 and WA , i.e. one for each control gain, that can freely vary with respect to each other.
The results shown here are purely illustrative and should serve the reader in gaining an intuition about the effect of
the learning rates. Their effect strongly depends on the initial parameters of the controller, the internal model, the
present delay and the controlled system. A controlled system is considered whose dynamics change between the ones of
approximately a first order system (�.# = 1) and a second order system (�.# = 2) at frequencies close to the human
crossover. The label �.# = 121 indicates the order of the dynamics’ transition: first, second and first order.
Using the learning rates ;A = [0.5, 1, 5, 10, 30], we checked how the output of the controlled system, with �.# = 121,
and the gains of the MRAC controller varied through time.
Fig. 6 shows the output of the model for different learning rates. The lower the learning rate, the sharper the oscillation
observed after the change in dynamics at 30 seconds . In a similar way, when the dynamics of the plant are reverted
back, at 60 seconds, controllers with higher learning rates undershoot the reference signal. Fig. 7 depicts the time
traces for :A , :G1 and :G2. The most pronounced change is observed in the :G2 gain, which sharply increases after the
dynamics are changed from 1 to 2. The decline of the gain after the dynamics are reverted back to 1 is less pronounced,
and for small learning rates almost null. The gains change faster when the dynamics change from 1 to 2, since the
controller initially is not able to stabilize the system and large tracking error occur. On the other hand when switching
the dynamics from 2 to 1, the closed loop system is already stable and the error between the internal model output
and the system output remains smaller, which leads to slower rate of change in the gains. In addition, the parameters’
adaptation is also controlled by the value of the state and its derivative (the higher their value the faster the higher the
signal for adaptation) which are higher in absolute value in the transition from DYN 1 to 2. A relatively large increase of
the :A gain can also be observed at 60 seconds for larger values of learning rate. The increase in value is likely caused
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by the still elevated value of the :G2 gain which decreases the control output of the controller.
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Fig. 6 Output and control output sensitivity to the learning rate (;A).

IV. Experiment Setup

A. Independent Variables
The experiment has one independent variable: controlled dynamics (DYN). Additionally, the data are separated into
two datasets, one used to train the MRAC model and one used to validate it. Since the estimated parameters, whose
uncertainty is also unknown, are found by solving a non-convex optimization problem it is necessary to assess the real
performance of MRAC on a separated dataset as over-fitting is of real concern.

B. Controlled Dynamics
This study focused on testing whether the proposed model-based control algorithm, MRAC, is able to represent
how humans adapt to changes in the dynamics of the system they are controlling. Therefore most of the runs had
two transitions in the controlled dynamics. To make the runs more unpredictable, some of them kept the controlled
dynamics constant. A controlled system is studied whose dynamics change between approximately a first order system
(�.# = 1) and a second order system (�.# = 2) at frequencies close to the human crossover frequency range. The
label �.# = 121 indicated the order of the dynamics’ transition: first, second and first order.
The controlled dynamics (DYN) levels were: 121, 212, 1, 2. The dynamics labelled as �.# = 212 are approximately
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Fig. 7 Sensitivity of MRAC gains to the learning rate (;A).

equal to the ones of a first order system, for frequencies close to the crossover frequency. On the other hand the dynamics
labelled as �.# = 2 are approximately equal to the ones shown by a second order system, for frequencies close to the
crossover frequency. Sequences of these two basic labels, such as �.# = 121 and �.# = 212, represent the order in
which the time-varying system dynamics vary over time.
In the condition �.# = 121 the participant controlled a time-varying system that for the first 30 seconds behaved
approximately like a first order integrator, in the next 30 approximately as a double integrator and in the final 30 seconds
it returned to the initial dynamics. Condition �.# = 212, was essentially the same but with the order of the dynamics
swapped. In conditions �.# = 212 and �.# = 2 the participants controlled a steady state system for the whole
duration of the run.

C. Dataset type
The objective was to gather two datasets: a testing dataset and a validation dataset. The testing dataset is used to estimate
the parameters of the MRAC model, for it to approximate as well as possible the measured the human operator response.
The validation dataset is used to verify that the MRAC model is not overfitting and to gain an understanding of the
overall quality of the model predictions.
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For convenience, the dataset type was included as an independent variable in the experiment. The validation dataset
tracking signal used the same frequencies and amplitudes of the one in the training dataset but different phases. In
Table 1 the amplitudes, frequencies and phases of the sinusoidal signal tracking signal for the testing and validation
conditions are listed.

Table 2 Experimental settings across the main two independent variables for the testing dataset

DYN l11 [rad/s] l12 [rad/s] :21 [-] :22 [-] � [1/s] AC

121 6 0.2 90 30 100 A (C)
212 0.2 6 30 90 100 −A (C)
1 6 6 90 90 100 A (C)
2 0.2 0.2 30 30 100 A (C)

The variables that controlled the time-varying behavior of the controlled system across the different conditions are
shown in Table 2 for the testing dataset. The tracking signals were transformed by mirroring across the time and variable
axis across conditions. This was done to make the signal as unpredictable as possible while keeping it as close as
possible to the original in terms of tracking difficulty.

D. Apparatus
The experiment was performed in the Human-machine Interaction Laboratory (HMILab), in the faculty of Aerospace
of the Delft University of Technology. The facility uses the software DUSIME for real-time simulations [49]. The
participants sit behind a simple artificial horizon display as shown in Fig. 9. The display was updated at a frequency of
60 Hz and had a lag of approximately 20-25 milliseconds [48]. The control inputs were given through an hydraulically
actuated side-stick, that could rotate only around the pitch axis, located at the right hand side of the participant. The
stick torsional stiffness is 25 N m rad−1, the damping coefficient is 0.22 N s rad−1 and its inertia is 0.01 kg m2. The setup
of the experiment is shown in Fig. 9.

Fig. 8 Pursuit display used for the experiment. Fig. 9 Lab setup.

E. Participants
Ten participants performed the experiment. Since this study was focused on understanding the general adaptability of
human controllers, participants were not required to be professional pilots. Participants were seven males and three
females. Only two participants had experience with tracking tasks, prior to their participation in the experiment.

F. Procedures
The participants were given a briefing about the experiment and the manual control task, prior to performing the
experiment. They were told that the goal of the experiment was to understand how humans adapt their control policy
when controlling a time-varying experiment. They were made aware of the applicability of the study for producing safer
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automation and inspire machine learning researchers to create always more adaptable artificial agents. The participants
were encouraged to provide continuos control inputs at all time to follow the always moving target attitude indicator.
After the briefing the demographics data were collected.
The participants started with a familiarization phase, which was short and ended when the participants were able
to stabilize the system across the different conditions. It was followed by a training phase, with the objective to
bring participants to asymptotic performance in tracking the signal. During the training phase the participants were
exposed first to conditions 1 and 2 and then to the conditions with varying dynamics. The training phase ended when
the participant could achieve consistent performance for three consecutive runs in the time-varying conditions. The
measurement phase consisted of 22 runs. In the testing dataset five runs each were collected for the conditions with
�.# = 121 and �.# = 212 and three each for the validation dataset. Furthermore three additional runs for both
conditions �.# = 1 and �.# = 2 were added to make the experiment less predictable, i.e., to not have always expose
participants to time-varying control systems. The order of runs was determined using an incomplete Latin square:
considering each of the 22 runs as a separate entities, 22 different experimental sequencies were obtained. Of these 10,
randomly chosen were used in this experiment.

G. Dependent Measures
The following dependent measures were collected or estimated:
• The control outputs of the participants,
• The output of the system,
• The root mean square of the tracking error and the control input: RMSE and RMSU.
• The MRAC controller parameters are estimated using the control input,
• A time-windowed Variance Accounted For (VAF) measure of the MRAC model for the participant control output data
is computed.

The MRAC controller parameters are also estimated on a subset of the measured data, that included a single transition
in the dynamics of the controlled element. The subset of the data was obtained by excluding the last thirty seconds of
each run.

H. Hypotheses
The following hypotheses were formulated:
1) MRAC is expected to fit equally well the steady state conditions with �.# = 1 and �.# = 2. So far parametric

time-varying models of human control behavior fit better participants controlling systems that behave like a second
order systems at frequencies close to crossover [36].

2) MRAC is expected to fit equally the controlled system dynamics’s transition from �.# 1 −→ 2 and 2 −→ 1.
3) Since both conditions �.# = 121 and �.# = 212 have present both types of dynamics’ transitions, MRAC is

expected to have non significantly different values of learning rates across the two conditions.
Hypotheses 1 is used to test the baseline behavior of the MRAC controller and possibly expose limitation in using a
time-invariant reference model, whose open-loop dynamics resemble the ones of a single integrator. Futhermore if both
hypotheses 2 and 3 are accepted, then there would be evidence in favor of MRAC being a good model for human control
policy adaptation
Most of the work in the paper though does not aim at testing a specific hypothesis but rather at investigating in depth the
abilities and limitation of the MRAC controller.

V. Results
Firstly, the tracking performance and behavior of the participants is described, then it follows a statistical analysis on the
data and a description of the estimated MRAC controllers. A linear-mixed effect model, using the subject ID as random
factor, is fit to all the continuos variables averaged time-series. The orthogonal contrasts for the models are:
• "Steady vs Time-Varying": compares the steady state conditions, �.# = 1 and �.# = 2, against the time-varying
ones, �.# = 121 and �.# = 212.

• �.# = 1 vs �.# = 2.
• �.# = 121 vs �.# = 212.
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A. Main Results
Table 3 shows the number of datasets used for each of the DYN conditions and the tracking performance in terms of the
Root Mean Square Error and and the control output measured with Root Mean Square of the output signal ('"(*).
Each measurement corresponds to the average of 5 runs for the conditions �.# = 121 and �.# = 212 and of 2
runs for the conditions �.# = 1 and �.# = 2. The number of measurements, present in the final dataset, is not
equal to the number of participants for the conditions �.# = 2 and �.# = 212, since three and two measurements,
respectively, have been excluded because those were considered outliers. An explanation for the detection of these
outliers is presented in subsection V.B.
The '"(� is not significantly different between steady state conditions and time-varying ones, the same holds for
conditions with �.# = 121 (M = 1.008) and �.# = 212 (M = 1.029). Instead, the '"(� is significantly lower
between the condition �.# = 1 (M = 0.981) and �.# = 212 (M = 1.075) is significantly lower, 1 = −0.077
((� = 0.0189), C (22) = −4.115, ? = 0.0005. This has also been found repeatedly in the literature [41, 36].
The '"(* is not significantly different between steady state conditions and time-varying ones. It was significantly
lower for condition �.# = 1 (" = 0.1 deg) than for condition �.# = 2 (" = 0.14), 1 = −0.016 ((� = 0.004),
C (22) = −4.04, ? = 0.005 and suggestively lower for condition �.# = 121 (" = 0.117) compared to condition
�.# = 212 (" = 0.137), 1 = −0.007 ((� = 0.004), C (22) = −1.84, ? = 0.0778. This weak trend is probably a
consequence of the higher amount of time spent controlling �.# = 2 for condition �.# = 212 compared to condition
�.# = 121.

Table 3 Summary of tracking performance and control output levels across the different conditions in the
testing dataset

Dynamics Num. Meas. Mean '"(� [deg] Std '"(� [deg] Mean '"(* [deg] Std '"(* [deg]

1 10 0.980 0.175 0.108 0.027
2 7 1.075 0.208 0.148 0.049
121 10 1.028 0.191 0.117 0.029
212 8 1.009 0.183 0.137 0.034

The '"(� is not significantly different between steady state conditions and time-varying ones, the same holds for
conditions with �.# = 121 (M = 1.008) and �.# = 212 (M = 1.029). Instead the '"(� is significantly lower
between the condition �.# = 1 (M = 0.981) and �.# = 212 (M = 1.075), 1 = −0.077 ((� = 0.0189), C (22) = −4.115,
? = 0.0005. This was expected as second order dynamics are more difficult to control than first order ones.
Fig. 10 shows a box plot of the Variance Accounted For (VAF) of the aggregated control output for the found MRAC
controllers. There are not significant changes in the VAF across steady and time-varying conditions. The VAF is
significantly lower for the condition �.# = 1 (" = 0.601) compared to condition �.# = 2 (" = 0.722), 1 = −0.053
((�0.013), C (22) = −3.901, ? < 0.001. It is also significantly lower for �.# = 121 (" = 0.644) compared to
�.# = 212 (" = 0.71), 1 = −0.027, C (22) = −2.105, ? = 0.047.
Therefore overfitting of the model can be identified, as the VAF in the validation dataset for both time-varying DYN
conditions is lower compared to their counterparts in the testing dataset.
Because of the nature of the adaptive controller, it is more informative to look at the time series data to analyse the ability
of MRAC to capture how humans adapt. Fig. 11a and Fig. 11a show the time-series data of the VAF u of the MRAC
controller computed over a moving time window of ten seconds, respectively, for the conditions with �.# = 121 and
�.# = 212. The time windows of 10 seconds is able to show the ability of MRAC to capture the transient dynamics
without having too much noise in the signal. It’s possible to notice two things. First, the model fits the data better during
the periods when �.# = 2 (with a mean of approximately 0.75) compared to the periods when �.# = 1 (with a
mean of approx 0.6). This phenomenon is consistent with the VAFs shown in Fig. 10 where an equivalent difference is
observed between �.# = 1 and �.# = 2.Second, while the VAF tends to raise when �.# changes from 1 to 2, it
drops when �.# changes from 2 to 1. This indicates that the MRAC controller can capture how the participants adapt
their control strategy when the order of the dynamics of the controlled element changes from first to second order, while
the opposite is not true. After the �.# changes from 2 to 1 the VAF tends to increase to the baseline levels, established
in the time-invariant condition with �.# = 1.
To understand why this phenomenon happens it is useful to compare the control output and the related system output for
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Fig. 10 VAF u values for the MRAC controller’s output for the different conditions in the controlled dynamics
and dataset types.
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(b) Time-windowed EV u for the condition �.# = 212.
In the figure, the VAFs of the two outlier MRAC con-
trollers are shown with solid lines.

Fig. 11 Time-windowed VAF u of the MRAC controller estimated using a window size of 10 seconds. The solid
line represents the mean value, while the shaded areas are one standard deviation away from the mean.

the MRAC controllers and the participants.
Since MRAC is a deterministic controller, the average control output data of each participant for each different dynamics’
conditions were used to estimate the parameters of the controller. In this way, four different controllers were fit per
participant. The validation dataset was used to benchmark and assess the generalization ability of MRAC, especially in
conditions with �.# = 121 and �.# = 212.
Fig. 12 depicts the reference signal and the system’s output aggregated across the participants for each of the different
conditions in the testing dataset. The aggregated output shows the mean response in a solid line and the standard
deviation at all times with a shaded area. The output of the participants is shown in blue while the output of the MRAC
models in red. The participants controlled the steady-state system with �.# = 1 and �.# = 2 consistently. On the
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other hand, the tracking ability of the participants decreases just after a change in dynamics in the controlled system. In
particular, they tend to overshoot the target, with a signal in average 35% than the reference signal, when the dynamics
change from 1 to 2 and undershoot it when the opposite happens, the output signal is 30% lower than the reference signal.
For the system with �.# = 121, after the 30-second mark in Fig. 12 (c), this phenomenon can be observed: the next
two stationary points in the reference signal are both significantly overshot. The same can be observed for �.# = 212,
in Fig. 12 (d) after the dynamics transition at 60 seconds. The standard deviation of the output also increases after a
dynamical transition. The tracking performance gradually improves after the transition, as participants adapt to the new
dynamics.
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Fig. 12 Standard deviation shaded plot of the aggregated output of the participants, Hℎ and of the MRAC
controllers, H<, for the four DYN conditions

Fig. 13 compares the aggregated control output of the participants and the estimated MRAC controller. For condition
�.# = 121, between C = 30 seconds and C = 40 seconds, MRAC captures the transient control behavior shown by
participants, who have a higher control activity and tend to overshoot the target reference signal as shown in Fig. 12. On
the other hand, MRAC is not equally able to capture the �.# = 2 to �.# = 1 transition: as it can be observed in
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Fig. 13 (c) and (d) the control output is lower and it has higher frequency component compared to the signal generated
by the participants. To better understand why the MRAC controller behaves this it is necessary to have a look at its gains
and at the prediction error.
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Fig. 13 Standard deviation shaded plot for the aggregated control output of the participants Dℎ and theMRAC
models D<

Fig. 14 shows the aggregated prediction error, 4? , for the estimated controllers. The prediction error is the difference
between the observed output the one generated by the internal model. This parameter, together with the state G, A and
learning rates drive the adaptation of the active MRAC gains. The prediction error is highest after the two dynamical
transitions at C = 30 seconds and C = 60 seconds. As expected the error never converges to zero, due to the presence
of the delay in the controller. Even though the magnitude of the prediction error is comparable for the transitions
�.# 1→ 2 and 2→ 1 it is expected that the gains change more for the transition �.# 1→ 2 since the values of the
state G and its derivative are higher.
The gains related to the steady state conditions are analyzed first. The gain :G1 is significantly higher in condition
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Fig. 14 Time series of the prediction error for �.# = 121 and �.# = 212. The prediction error is the
difference between the system output and the expected output of the internal model

�.# = 1 (" = 0.179) then in condition �.# = 2 (" = 0.145), 1 = 0.037 ((� = 0.01), C (6) = 3.696, ? = 0.01. The
gain :A is suggestively higher in condition �.# = 1 (" = 0.163) then in condition �.# = 2 (" = 0.153), 1 = 0.033
((� = 0.015), C (6) = 2.24, ? = 0.06. The gain :G2 is significantly lower in condition �.# = 1 (" = 0.045) then
in condition �.# = 2 (" = 0.070), 1 = 0.024 ((� = 0.002), C (6) = 11.81, ? < 0.001. These results, i.e., higher
state derivative gains and lower state feedback and feedforward gains for condition �.# = 2 compared to condition
�.# = 1, are in line with the findings of El et al., who modelled human control behavior in pursuit tasks [41].
In Fig. 15 it is shown a time-series of the aggregated MRAC gains: in solid lines are shown the mean and the colored
area encloses values that less than one standard deviation away from the mean. Fig. 16 also shows the time-series of
the MRAC gains for each participant. As it can be observed most of the variance in the gain values is across different
participants. While the feedforward gain :A (in black) and the state gain :G1 (in blue) do not show significant changes
in their mean values, the gain related to the state derivative :G2 (in red) changes significantly with after a change in
the controlled dynamics. For the conditions �.# = 121 after the 30 second mark and for the conditions �.# = 212
after the 60 seconds mark, :G2 increases from a value of 0.05 to 0.085. This means that the contribution of "lead"
increases as expected. On the other hand when the dynamics of the system change from second to first order the
gain :G2 gradually decreases from a the value of 0.085 to 0.06. As we noted before in the sensitivity analysis, see
subsection III.F, the rate of change of the gain is not symmetric to the order of the transition in dynamics: a change
from �.# = 1 to �.# = 2 leads to a much faster adaptation in the response compared to a change from �.# = 2
to�.# = 1. The other two gains changemostly across participants, depending on the control activity and tracking ability.
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To have a complete picture of the how the gains adapt through time it is useful to analyse the found learning rates for the
MRAC controllers.
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Fig. 15 Time-series of the aggregated MRAC gains.

Fig. 19 depicts the learning rates associated with the different gains. As expected, the learning rates are not significantly
different across the two conditions �.# = 121 and �.# = 212, since both types of transitions are present in the both
the time-varying conditions.
Fig. 17a and Fig. 17b show the parameters l2 (crossover frequency) and g (delay) of the internal model and of the
MRAC controller, respectively.
No significant changes across conditions have been found for the internal model crossover frequency parameter. The
value delay is only significantly different between �.# = 1 (" = 0.228 s) and �.# = 2 (" = 0.207 s), 1 = 0.009
((� = 0.003), C (22) = 2.64, ? = 0.014. Notice though that the effect size is very small. No other significant changes
across conditions have been found. Overall these results in line with the findings of [36].

B. Outlier analysis
The following data have been excluded from the aggregated analysis of the MRAC gains: data related to �.# = 2 and
�.# = 4 for "subject02", �.# = 2 for "subject05" and �.# = 2 and �.# = 4 for "subject07". These sets of runs
were excluded because the windowed VAF, resulting from the fitted MRAC controller, dropped to 0 for certain periods.
Therefore the estimated parameters are not indicative of the controller behavior and are therefore excluded from further
analysis. The VAF corresponding to these set of runs is still shown in Fig. 11b. The inability of MRAC to model the
data is caused by the poor and inconsistent tracking performance that the participants exhibited. At the same time we
can deduce that MRAC is relatively brittle when fitting it to participants that are not expert controllers.
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Fig. 16 Time series of the MRAC gains found for each participant.
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Fig. 17 Box plots of the internal model parameters.

C. MRAC controller fitted to one dynamical transition
In the previous section, we observed that MRAC is unable with the same learning rate to fit the human data equally well
the time-varying runs. This section investigates whether fitting MRAC to each transition separately can increase the
quality of fit. This is achieved by fitting the MRAC controller using only the first 70 seconds of every run for conditions
with �.# = 121 and �.# = 212. Since there is only one transition of the controlled dynamics we relabel the datasets
to �.# = 12 and �.# = 21, respectively.
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The MRAC gains found in this way are shown in Fig. 18, the aggregated mean is shown with a solid line while the shaded
areas include values closer than one standard deviation from the mean. It is useful to compare these time-series with the
ones shown in Fig. 15. Comparing condition �.# = 12 with �.# = 121, there are no significant differences in the
mean of the gains, nor in the rate of change of gain :G2, which transition from a value of 0.05 to 0.09 in approximately 4
seconds for both conditions. The main difference resides in the standard deviation of the gains which is reduced from
0.04 to 0.02 from the gain :G1.
If we compare conditions with �.# = 212 and �.# = 21 we can instead observe a difference in the time evolution
of the mean of the parameter :G2. In both cases the value of :G2 ≈ 0.08 while the controlled system has �.# = 2,
but after the transition to �.# = 1 the mean of the gain drops after 30 seconds to a value of approximately 0.03, in
condition �.# = 21 while in the condition �.# = 121 the mean has a final value value of 0.06.
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Fig. 18 Standard deviation shaded plot of the aggregated MRAC gains, estimated using only the first sixty
seconds of the each run

It is therefore useful to analyse the learning rates of the MRAC controller for conditions �.# = 12 and �.# = 21. In
Fig. 20 is shown a box plot of the MRAC learning rates for the two conditions. All the median leaning rates for condition
�.# = 12 are lower then ones for �.# = 21. This is expected, as the transition �.# 1 → 2 induces stronger a
adaptation compared to �.# 2→ 1 while keeping the learning rates constant. In particular for �.# = 12 the median
WG1 = 12 rad−1 and WG2 = 5 s−1 rad−1 while for �.# = 21 the median WG1 = 22 rad−1 and WG2 = 18 rad−1 s−1. These
values are also higher compared to ones found for �.# = 121 and �.# = 212 for which the median WG1 = 13.8 rad−1

and WG2 = 6 rad−1 s−1.
Fig. 21b andFig. 21b show thewindowedVAFof the obtainedMRACcontrollers on the reduced datasets. Notwithstanding
an increase in the learning rate, the mean windowed VAF at the transition for condition �.# = 12 is not significantly
different from its value for condition �.# = 121. The same hold for conditions �.# = 212 and �.# = 21.
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Fig. 20 Learning rates parameters found using
only the first sixty seconds of the measured run
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Fig. 21 Time windowed VAF u of the MRAC controller estimated using a window size of 10 seconds and a
reduced dataset.

VI. Discussion
The purpose of this paper was to evaluate whether a model-based adaptive controller, such as MRAC, would be a viable
candidate to model and predict human adaptive behavior under changes of the controlled dynamics. In particular, two
dynamical transitions were chosen to assess the validity of the adaptive law. In subsection VI.A it is discussed the ability
of MRAC of modelling human control behavior and adaptation. In subsection VI.B are presented the main findings and
implications of the comparison of the MRAC coefficients found on the truncated dataset (only one transition) with
respect to the ones found using the full dataset, whose runs have two show two transitions in the controlled dynamics.
Finally, in subsection VI.C we summarize the limitations of MRAC and propose future research directions.

A. MRAC ability to model human adaptation
We first assess the MRAC ability to capture the steady-state control behavior of the participants. MRAC unfortunately is
not very effective in capturing steady-state behavior. It has median VAF of 0.64 and 0.75 for conditions with �.# = 1
and �.# = 2 which are lower compared to the state of the art values of 0.77 and 0.85 reported by a time-varying
parametric model [36]. It also implies that MRAC is inherently less able to approximate human control behavior for
the first-order system that we used in the experiment. This finding is compatible with the literature [36]. Therefore
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hypotheses 1 is rejected.
This limitation stems probably from the limited amount of possible controllers that can be effectively represented
by having a first-order integrator as an open-loop internal model. Furthermore, the internal model is time-invariant
and assumes the same asymptotic control behavior for both first and second-order systems. Second-order systems
are arguably harder to control and especially not expert controllers make often mistakes and have a lower control
performance.
MRAC ability to approximate human time-varying behavior strongly depends on the type of transition that the controlled
system goes through. The transition from first to second order dynamical systems are well approximated. On the
contrary, there is a sharp drop in the aggregated VAF of the control output of the participants when the controlled system
transition from second to first order. This could be caused by a transient behavior that cannot be approximated by
MRAC. On the other hand it also possible, that while ideally this transient behavior could be captured by the set of gains
:A , :G1, :G2, they don’t change fast enough. This implies that hypothesis 2 must be rejected. Overall the experimental
results provide evidence that the current adaptive law is not a good approximation of the program that humans operators
use to adapt their control strategy.

B. MRAC fit to partial data
The MRAC learning rates across conditions �.# = 121 and �.# = 212 do not significantly vary which implies that
hypotheses 3 is accepted. Nonetheless, the found learning rates are not appropriate to model both types of transition in
the controlled dynamics. To investigate this issue further, the MRAC controllers were fit only using the data of the first
70 seconds of conditions �.# = 121 and �.# = 212. This was done to test if the transient control behavior, shown
while the controlled system transitions from first to second-order dynamics, could be better approximated. Unfortunately,
the results suggest that while the derivative gain changed twice as fast in condition �.# = 21 compared to condition
�.# = 212, the increased learning rate was still not sufficient to improve the VAF of the control output immediately
after the transition. Higher learning rates are, unfortunately, not possible since the MRAC controller can easily become
unstable. A nominal MRAC controller has theoretical convergence guarantees but for the one considered here, these
guarantees do not hold because of the presence of a delay. The presence of the delay makes the optimization itself
harder to perform. Without proper bounds on the parameter search, an optimization algorithm can easily pick values of
delay or learning rate that make the optimization diverge.

C. Limitations and future research
The use of a MRAC controller to model human time-varying behavior, as investigated in this paper, is limited by the
adaptive control law, by the time-invariant internal reference model and by the fact that it requires a reference signal.
It is unable to generate complex plans, possibly subject to constraints, that humans can carry out such as picking up
objects, parking a vehicle or driving avoiding obstacles.
Future experiments should include conditions where the human controller is asked to perform control task with a large
space of possible solutions, where a complex plan, that unrolls over many seconds, is a necessary condition to solve it.
In the aerospace field landing without instruments, performing an obstacle avoidance maneuver, reaching a hovering
target under disturbances with an helicopter are all tasks that fit those criteria. Any model that tries that has the potential
to model real-world human behavior must be able to deal with a high dimensional input (such as images) and to generate
a long sequence of planned actions.
Going back to MRAC, to improve the current formulation it could be worthwhile to couple it with an estimator of the
currently controlled system dynamics that could drive the adaptation of the internal model. Furthermore a different
adaptation law could be investigated, potentially causing a stronger adaptation even in absence of large errors but it is
strongly discouraged tinkering with adaptation laws that are not backed by a strong mathematical justification. There are
adaptive laws for the main MRAC gains that make the adaptation more stable, such as the f or the MIT rules [40], they
could help achieving higher learning rates while maintaining stability.
A promising line of research focuses on controllers based on model-based optimal control. These controllers have
been already used in capturing complex dynamical behavior shown by animals [17]. There is substantial evidence that
animals use internal dynamical models to move and plant their actions, furthermore, they can do open-loop planning
[5]. In particular, if they aim is to identify the behavior of human controllers, inverse reinforcement learning [50] and
probabilistic inference are promising frameworks to work with. Inverse reinforcement learning aims at estimating the
rewards function (or intention) of the observed control behavior and from that derive an explicit control policy for the
controller. Probabilistic inference relaxes the optimality condition and allows to estimate suboptimal controllers [51].
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Neural networks could be also used as function approximations to learn non-linear systems and for the policy itself to
allow for a wide range of complex behaviors.

VII. Conclusion
This paper evaluated the use of a model-based adaptive control algorithm, Model-Based Reference Control (MRAC), to
model the adaptive control policy shown by a human operator while controlling a time-varying system in a pursuit
tracking task. An experiment was conducted where participants (= = 10) performed a pursuit tracking task while
controlling a system that changed its dynamics twice. The dynamics are approximately the ones shown by either first
order and second order system at frequencies close to crossover.
The choice of this model was motivated by the fact that biological systems make use of internal models of the worlds
for sensorimotor control and by "Predictive Codings", a theory in neuroscience that states that brains constantly try to
predict incoming sensory input and mostly process prediction errors that drives the change in behavior shown by the
organism. The reference model of the MRAC controller was designed by closing the loop on single single integrator
with delay, aimed at approximating the open-loop dynamics of a proficient controller. The parameters of the model were
estimated with a non-linear optimization techniques aimed at minimizing the error between the MRAC output and the
response of the participant averaged across multiple runs.
MRAC has shown the ability to approximate the transient control policy of the participants while the controlled dynamics
transitioned from approximately first to second order, an adaptation that requires an increase in rate feedback control.
On the other hand, it cannot effectively, with the same learning rates, approximate the change in the control policy of the
participants for the opposite transition from second to first-order dynamics. It is hypothesized that the gains responsible
for lead changes too slowly compared to the speed of human adaption. Futhermore, MRAC is not able to achieve state
of the art results in approximating the steady steady-state dynamics of the human controllers, especially while they are
controlling first-order systems.
While MRACwas only partially successful at predicting human control behavior under different changes of the controlled
system, its highlighted limitations, innovations in machine learning (aimed at encoding always richer internal models),
in the neuroscience of predictive coding and in optimal control can be useful in creating model-based controllers with
human-like abilities to adapt their control policies.

References
[1] K. He et al. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”.

In: 2015 IEEE International Conference on Computer Vision (ICCV). 2015 IEEE International Conference on
Computer Vision (ICCV). Dec. 2015, pp. 1026–1034. doi: 10.1109/ICCV.2015.123.

[2] L. R. Young. “On Adaptive Manual Control”. In: IEEE Transactions on Man-Machine Systems 10.4 (Dec. 1969),
pp. 292–331. issn: 2168-2860. doi: 10.1109/TMMS.1969.299931.

[3] M. Mulder et al. “Manual Control Cybernetics: State-of-the-Art and Current Trends”. In: IEEE Transactions on
Human-Machine Systems 48.5 (Oct. 2018), pp. 468–485. issn: 2168-2305. doi: 10.1109/THMS.2017.2761342.

[4] K. Friston. “Does Predictive Coding Have a Future?” In: Nature Neuroscience 21.8 (Aug. 1, 2018), pp. 1019–1021.
issn: 1546-1726. doi: 10.1038/s41593-018-0200-7. url: https://doi.org/10.1038/s41593-018-
0200-7.

[5] D. McNamee and D. Wolpert. “Internal Models in Biological Control”. In: (Oct. 3, 2018). issn: 2573-5144. doi:
10.17863/CAM.30459. url: https://www.repository.cam.ac.uk/handle/1810/283097.

[6] R. Miall and D. Wolpert. “Forward Models for Physiological Motor Control”. In: Four Major Hypotheses in
Neuroscience 9.8 (Nov. 1, 1996), pp. 1265–1279. issn: 0893-6080. doi: 10.1016/S0893-6080(96)00035-4.
url: http://www.sciencedirect.com/science/article/pii/S0893608096000354.

[7] M. Kawato. “Internal Models for Motor Control and Trajectory Planning”. In: Current Opinion in Neurobiology
9.6 (Dec. 1, 1999), pp. 718–727. issn: 0959-4388. doi: 10.1016/S0959-4388(99)00028-8. url: http:
//www.sciencedirect.com/science/article/pii/S0959438899000288.

[8] A. J. Bastian. “Moving, Sensing and Learning with Cerebellar Damage”. In: Current opinion in neurobiology
21.4 (Aug. 2011), pp. 596–601. issn: 0959-4388. doi: 10.1016/j.conb.2011.06.007. pmid: 21733673. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177958/ (visited on 01/14/2021).

26

27



[9] C. J. Stoodley. “The Cerebellum and Neurodevelopmental Disorders”. In: Cerebellum (London, England)
15.1 (Feb. 2016), pp. 34–37. issn: 1473-4222. doi: 10.1007/s12311-015-0715-3. pmid: 26298473. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811332/ (visited on 01/13/2021).

[10] D. Wolpert, Z. Ghahramani, and M. Jordan. “An Internal Model for Sensorimotor Integration”. In: Science
269.5232 (Sept. 29, 1995), p. 1880. doi: 10.1126/science.7569931. url: http://science.sciencemag.
org/content/269/5232/1880.abstract.

[11] S. Herculano-Houzel. “The Human Brain in Numbers: A Linearly Scaled-up Primate Brain”. In: Frontiers
in Human Neuroscience 3 (2009). issn: 1662-5161. doi: 10.3389/neuro.09.031.2009. url: https:
//www.frontiersin.org/articles/10.3389/neuro.09.031.2009/full (visited on 01/13/2021).

[12] J. Kaplan et al. Scaling Laws for Neural Language Models. Jan. 22, 2020. arXiv: 2001.08361 [cs, stat].
url: http://arxiv.org/abs/2001.08361 (visited on 01/14/2021).

[13] D. M. Wolpert, R. C. Miall, and M. Kawato. “Internal Models in the Cerebellum”. In: Trends in Cognitive
Sciences 2.9 (Sept. 1, 1998), pp. 338–347. issn: 1364-6613. doi: 10.1016/S1364-6613(98)01221-2. url:
http://www.sciencedirect.com/science/article/pii/S1364661398012212 (visited on 01/14/2021).

[14] H. Tanaka et al. “The Cerebro-Cerebellum as a Locus of Forward Model: A Review”. In: Frontiers in
Systems Neuroscience 14 (2020). issn: 1662-5137. doi: 10.3389/fnsys.2020.00019. url: https://www.
frontiersin.org/articles/10.3389/fnsys.2020.00019/full (visited on 01/14/2021).

[15] S. Shipp. “Neural Elements for Predictive Coding”. In: Frontiers in Psychology 7 (2016). issn: 1664-1078. doi:
10.3389/fpsyg.2016.01792. url: https://www.frontiersin.org/articles/10.3389/fpsyg.2016.
01792/full.

[16] E. Todorov and M. I. Jordan. “Optimal Feedback Control as a Theory of Motor Coordination”. In: Nature
Neuroscience 5.11 (Nov. 1, 2002), pp. 1226–1235. issn: 1546-1726. doi: 10.1038/nn963. url: https:
//doi.org/10.1038/nn963.

[17] E. Todorov. “Optimality Principles in Sensorimotor Control”. In: Nature Neuroscience 7.9 (Sept. 1, 2004),
pp. 907–915. issn: 1546-1726. doi: 10.1038/nn1309. url: https://doi.org/10.1038/nn1309.

[18] K. Friston. “What Is Optimal aboutMotor Control?” In:Neuron 72.3 (Nov. 3, 2011), pp. 488–498. issn: 0896-6273.
doi: 10.1016/j.neuron.2011.10.018. url: http://www.sciencedirect.com/science/article/
pii/S0896627311009305.

[19] J. Diedrichsen, R. Shadmehr, and R. B. Ivry. “The Coordination of Movement: Optimal Feedback Control and
Beyond”. In: Trends in Cognitive Sciences 14.1 (Jan. 1, 2010), pp. 31–39. issn: 1364-6613. doi: 10.1016/j.tics.
2009.11.004. url: http://www.sciencedirect.com/science/article/pii/S1364661309002587.

[20] S. H. Scott. “The Computational and Neural Basis of Voluntary Motor Control and Planning”. In: Trends in
Cognitive Sciences 16.11 (Nov. 1, 2012), pp. 541–549. issn: 1364-6613. doi: 10.1016/j.tics.2012.09.008.
url: https://doi.org/10.1016/j.tics.2012.09.008 (visited on 09/02/2020).

[21] K. J. Friston et al. “Action and Behavior: A Free-Energy Formulation”. In: Biological Cybernetics 102.3 (Mar.
2010), pp. 227–260. issn: 1432-0770. doi: 10.1007/s00422-010-0364-z. pmid: 20148260.

[22] K. Friston. “The Free-Energy Principle: A Unified Brain Theory?” In: Nature Reviews Neuroscience 11.2 (Feb. 1,
2010), pp. 127–138. issn: 1471-0048. doi: 10.1038/nrn2787. url: https://doi.org/10.1038/nrn2787.

[23] W. Jiahui. Python Interactive Network Visualization Using NetworkX, Plotly and Dash. url: https://
towardsdatascience . com / python - interactive - network - visualization - using - networkx -
plotly-and-dash-e44749161ed7.

[24] M. Heilbron and M. Chait. “Great Expectations: Is There Evidence for Predictive Coding in Auditory Cortex?”
In: Sensory Sequence Processing in the Brain 389 (Oct. 1, 2018), pp. 54–73. issn: 0306-4522. doi: 10.1016/
j.neuroscience.2017.07.061. url: http://www.sciencedirect.com/science/article/pii/
S030645221730547X.

[25] A. Bastos et al. “Canonical Microcircuits for Predictive Coding”. In: Neuron 76 (Nov. 21, 2012), pp. 695–711.
doi: 10.1016/j.neuron.2012.10.038.

27

28



[26] J. F.Mejias et al. “Feedforward and Feedback Frequency-Dependent Interactions in a Large-Scale LaminarNetwork
of the Primate Cortex”. In: Science Advances 2.11 (Nov. 1, 2016), e1601335. doi: 10.1126/sciadv.1601335.
url: http://advances.sciencemag.org/content/2/11/e1601335.abstract.

[27] R. P. N. Rao and D. H. Ballard. “Predictive Coding in the Visual Cortex: A Functional Interpretation of Some
Extra-Classical Receptive-Field Effects”. In: Nature Neuroscience 2.1 (1 Jan. 1999), pp. 79–87. issn: 1546-1726.
doi: 10.1038/4580. url: https://www.nature.com/articles/nn0199_79.

[28] M. I. Garrido et al. “Dynamic Causal Modeling of the Response to Frequency Deviants”. In: Journal of
Neurophysiology 101.5 (May 1, 2009), pp. 2620–2631. issn: 0022-3077. doi: 10.1152/jn.90291.2008. url:
https://doi.org/10.1152/jn.90291.2008.

[29] A. Todorovic and F. P. de Lange. “Repetition Suppression and Expectation Suppression Are Dissociable in
Time in Early Auditory Evoked Fields”. In: The Journal of Neuroscience 32.39 (Sept. 26, 2012), p. 13389.
doi: 10.1523/JNEUROSCI.2227-12.2012. url: http://www.jneurosci.org/content/32/39/13389.
abstract.

[30] N. Kogo and C. Trengove. “Is Predictive Coding Theory Articulated Enough to Be Testable?” In: Frontiers in
computational neuroscience 9 (Sept. 8, 2015), pp. 111–111. issn: 1662-5188. doi: 10.3389/fncom.2015.00111.
PMID: 26441621. url: https://pubmed.ncbi.nlm.nih.gov/26441621.

[31] A. Popovici, P. Zaal, and D. M. Pool. “Dual Extended Kalman Filter for the Identification of Time-Varying
Human Manual Control Behavior”. In: AIAA Modeling and Simulation Technologies Conference. American
Institute of Aeronautics and Astronautics, June 2, 2017. doi: 10.2514/6.2017-3666. url: https://arc.
aiaa.org/doi/10.2514/6.2017-3666.

[32] J. Rojer et al. “UKF-Based Identification of Time-Varying Manual Control Behaviour”. In: IFAC-PapersOnLine.
14th IFAC Symposium on Analysis, Design, and Evaluation of Human Machine Systems HMS 2019 52.19
(Jan. 1, 2019), pp. 109–114. issn: 2405-8963. doi: 10.1016/j.ifacol.2019.12.120. url: http:
//www.sciencedirect.com/science/article/pii/S240589631931955X (visited on 01/18/2021).

[33] E. R. Boer and R. V. Kenyon. “Estimation of Time-Varying Delay Time in Nonstationary Linear Systems:
An Approach to Monitor Human Operator Adaptation in Manual Tracking Tasks”. In: IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans 28.1 (Jan. 1998), pp. 89–99. issn: 1558-2426. doi:
10.1109/3468.650325.

[34] A. van Grootheest et al. “Identification of Time-Varying Manual Control Adaptations with Recursive ARX
Models”. In: 2018 AIAA Modeling and Simulation Technologies Conference. AIAA SciTech Forum. American
Institute of Aeronautics and Astronautics, Jan. 7, 2018. doi: 10.2514/6.2018-0118. url: https://arc.
aiaa.org/doi/10.2514/6.2018-0118.

[35] M. Linssen. “Identifying Time-Varying Multimodal Manual Control Using Recursive ARX Model Techniques”.
In: (2020). url: https://repository.tudelft.nl/islandora/object/uuid%3A442f4308-0ea2-
41a5-b38c-ee6b1a289f78 (visited on 01/18/2021).

[36] P. M. Zaal. “Manual Control Adaptation to Changing Vehicle Dynamics in Roll–Pitch Control Tasks”. In:
Journal of Guidance, Control, and Dynamics 39.5 (2016), pp. 1046–1058. doi: 10.2514/1.G001592. url:
https://doi.org/10.2514/1.G001592.

[37] P. M. T. Zaal et al. “Modeling Human Multimodal Perception and Control Using Genetic Maximum Likelihood
Estimation”. In: Journal of Guidance, Control, and Dynamics 32.4 (July 1, 2009), pp. 1089–1099. doi:
10.2514/1.42843. url: https://arc.aiaa.org/doi/10.2514/1.42843 (visited on 09/22/2020).

[38] R. A. Hess. “Modeling Human Pilot Adaptation to Flight Control Anomalies and Changing Task Demands”.
In: Journal of Guidance, Control, and Dynamics 39.3 (2016), pp. 655–666. doi: 10.2514/1.G001303. url:
https://doi.org/10.2514/1.G001303.

[39] D. T. McRuer, R. E. Magdaleno, and G. P. Moore. “A Neuromuscular Actuation System Model”. In: IEEE
Transactions on Man-Machine Systems 9.3 (Sept. 1968), pp. 61–71. issn: 2168-2860. doi: 10.1109/TMMS.1968.
300039.

[40] N. T. Nguyen.Model-Reference Adaptive Control: A Primer. Advanced Textbooks in Control and Signal Processing.
Springer International Publishing, 2018. isbn: 978-3-319-56392-3. doi: 10.1007/978-3-319-56393-0. url:
https://www.springer.com/gp/book/9783319563923.

28

29



[41] K. van der El et al. “Effects of Preview on Human Control Behavior in Tracking Tasks With Various Controlled
Elements”. In: IEEE Transactions on Cybernetics 48.4 (Apr. 2018), pp. 1242–1252. issn: 2168-2275. doi:
10.1109/TCYB.2017.2686335.

[42] N. Nguyen et al. “Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive
Control”. In: Aug. 1, 2009. doi: 10.2514/6.2009-5968.

[43] N. Nguyen and E. Summers. “On Time Delay Margin Estimation for Adaptive Control and Robust Modification
Adaptive Laws”. In: Aug. 1, 2011. doi: 10.2514/6.2011-6438.

[44] E. Fridman and S.-I. Niculescu. “On Complete Lyapunov–Krasovskii Functional Techniques for Uncertain
Systems with Fast-Varying Delays”. In: International Journal of Robust and Nonlinear Control 18.3 (Feb. 2008),
pp. 364–374. issn: 10498923, 10991239. doi: 10.1002/rnc.1230. url: http://doi.wiley.com/10.1002/
rnc.1230 (visited on 01/12/2021).

[45] E. Fridman. “Tutorial on Lyapunov-Based Methods for Time-Delay Systems”. In: European Journal of Control
20.6 (Nov. 1, 2014), pp. 271–283. issn: 0947-3580. doi: 10.1016/j.ejcon.2014.10.001. url: http:
//www.sciencedirect.com/science/article/pii/S0947358014000764.

[46] D. McRuer and H. Jex. “A Review of Quasi-Linear Pilot Models”. In: IEEE Transactions on Human Factors in
Electronics HFE-8.3 (Sept. 1967), pp. 231–249. issn: 2168-2852. doi: 10.1109/THFE.1967.234304.

[47] M. Mulder et al. “Manual Control with Pursuit Displays: New Insights, New Models, New Issues”. In: IFAC-
PapersOnLine. 14th IFAC Symposium on Analysis, Design, and Evaluation of Human Machine Systems HMS
2019 52.19 (Jan. 1, 2019), pp. 139–144. issn: 2405-8963. doi: 10.1016/j.ifacol.2019.12.125. url:
http://www.sciencedirect.com/science/article/pii/S2405896319319603.

[48] O. Stroosma et al. “Measuring Time Delays in Simulator Displays”. In: AIAA Modeling and Simulation
Technologies Conference. Aug. 20, 2007. isbn: 978-1-62410-160-1. doi: 10.2514/6.2007-6562.

[49] M. M. Van Paassen, O. Stroosma, and J. Delatour. “DUECA - Data-Driven Activation in Distributed Real-
Time Computation”. In: AIAA Modeling and Simulation Technologies Conference. Aug. 14, 2000. doi:
10.2514/6.2000-4503.

[50] A. Y. Ng and S. Russell. “Algorithms for Inverse Reinforcement Learning”. In: In Proc. 17th International Conf.
on Machine Learning. Morgan Kaufmann, 2000, pp. 663–670.

[51] S. Levine. Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review. May 20, 2018.
arXiv: 1805.00909 [cs, stat]. url: http://arxiv.org/abs/1805.00909 (visited on 03/03/2021).

29

30



Part II

Literature Study



Chapter 1

Introduction

Understanding and modeling the human motor system has a large variety of applications ranging
from manual control of aerospace vehicles, to driving, prosthetic engineering and robotic tele-
operations among many.

One framework to model the human motor system uses classical control theory to generate
representative controllers. This approach had success in modeling humans that were performing
restricted and simple tasks that were easy to formalize. Examples of these tasks are following a
reference signal on a display with the help of a joystick. This approach though presents currently
some limitations: the neuromuscular system description and the understanding of learning and
adaptation is quite limited. The neuromuscular system is a redundant system of actuators and
joints that is very difficult to accurately model and current descriptions (in a low dimensional
state space) are not accurate enough to capture many phenomena. Learning is also hard to
study as experiments require a high number of participants that have to be measured at large
intervals of time. Finally adaptation is also an open problem and arguably is the most important
feature of human’s controllers. The ability to adapt and apply generalized learned polices of
actions to new situations is a key feature of intelligence. This feature has kept human in the
loop either as supervisor, as is it the case for most commercial aerospace applications, or directly
controlling the vehicle as it is the case for cars.

In this thesis we address the problem of understanding human motor adaptation for simple
manual control tasks and we propose a novel approach inspired by a neuroscience framework
called "Predictive Coding". At the core of this approach lies an adaptive control technique
called model reference adaptive control (MRAC), which defines a controller that imitates another
controller taken as reference. The key insight that made this work possible is that McRuer found
that the open loop dynamics of a system controlled manually has the structure of a first order
stable system with delay.

This report is structured as follows. In chapter 2 we present the literature study done on
the field of motor control in biological systems. In chapter 3 are presented a series of models
that, either have been used in the past to model the control strategy of humans in very simple
tasks, or that have certain features that are promising to model adaptive behavior. Follow in
chapter 4 an overview is presented of the research objective and related questions that we hope
are going to be answered. The theoretical foundation and simulation results of the selected
model, "Model Reference Adaptive Control", are presented in chapter 5. Finally the report
concludes in chapter 6 describing future developments and the experimental plan.



Chapter 2

Literature Study: Sensorimotor Control

The literature study focuses on sensorimotor control, i.e how control is achieved by biological
systems by means of perception and action. We often abbreviate the term sensorimotor control
for motor control, taking it for granted that biological systems gather information from the world,
through their sensors, to plan and act. In this chapter, we give an overview of two fundamental
and interrelated aspects: internal models and predictive coding. We present evidence that
indicates that humans use an internal model of the dynamics of the system to general actions.
Furthermore, we briefly summarize the most important aspect of predictive coding. Predictive
coding is a paradigm in neuroscience that recently received more support and that tries to
explain many aspects of human intelligence.

2.1 Neocortex structure

We layout here a basic overview of the structure of the cortex. In the end, every theory of
intelligence must be mapped and explained causally in terms of its basic computational
operations that are carried out by the canonical microcircuits in the brain.

The neocortex is a convoluted structure on the surface of the brain that it is suspected to be
the key component for higher-order brain functions in human beings. The neocortex, which
only recently evolved, is present only on mammals brains and contains the vast majority of the
neurons in the brain. The cortex structurally is a "quasi" 2D surface, or sheet with a relatively
small thickness of 2-4 mm. It is efficiently organized in 3D space, inside the skull, with a highly
convoluted structure, rich of ridges and sulci.

The cortex has an underlying basic topological structure that is repeated throughout it: the
micro-column. It can be seen a fundamental computational unit constituted by 100-110 neurons,
which share similar inputs and outputs and strictly interconnected. For example in the cortical
area V1, the primary visual cortex, different micro-columns are activated by edges with different
orientations. The fundamental unit of computation for a micro-column is a neuron which can
have both excitatory and inhibitory synapses.

The cortex is globally divided into 4 lobes: temporal, partial, visual and frontal. In humans
have been distinguished hundreds of different areas. These subdivisions are based on both the
function of that specific area of the cortex and their connectivity. The cortex depth-wise is
subdivided into six different layers, each layer has different cell types and connectivity patterns.
In particular from an anatomical perspective:

• Layer 1: It is a thin layer with a lower than average density of neurons

• Layer 2-3: Thick layers rich in deep pyramidal cells

• Layer 4: It is the layer rich in different kinds of neuronal cells that receive cortical input
from the thalamus
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• Layer 5: Layer where the largest pyramidal neural cells are found. Parts of cells are
connected to layer 1 and 2-3 while others, mostly in the motor cortex, project directly in
the motor area in the basal ganglia

• Layer 6: This layer sends feedback signals to the Thalamus

In Figure 2.1 you can observe a schematic representation of the layers in the cortex.

Figure 2.1: Overview of the cortical layers, visualized using three different stain techniques. The
Nissi stain mostly highlights the central body, the Weigert stain the synapses and the Golgi both.

In Figure 2.2 is shown the flow of information through the cortical layers. Information flows
from the Thalamus to mostly layer 4. Layer 4 sends feed-forward information in terms of both
an excitatory and inhibitory stimulus to the higher layers. Layer 2/3 is in contact with the
dendrites of the pyramidal cells in layer 5/6 to which the information continues to flow in a
forward fashion. Feed-forward connections seem to be driving, stimulating spiking responses to
the efferent neurons. On the other hand feedback responses, i.e. the flow of information from
regions of higher hierarchy to lower ones, seem to be mostly modulatory and inhibitory [1].

2.2 Predictive coding

During the last decades, our understating of the brain has significantly improved and changed.
In the past we were mostly focused on understating how the brain extracted information from
the sensory information and in building a functional map of the different areas of the organ.
Today there is more attention and research dedicated to which general learning programs and
principles are employed/embodied in our brains [2]. This shift was made possible by a series
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Figure 2.2: Canonical microcircuit and established information flow in the cortex [1]

of new empirical observations, thanks also to advances in neuroimaging, that propelled the
theoretical development of "predictive coding". We lay first the basic principle of predictive
coding, we then proceed to lay out how the canonical microcircuits can produce the type of
computation required for predictive coding and finally we present more evidence in its favor.

2.2.1 Computational Framework

How do we process information coming from the world? Understating the computations and
programs that define intelligent systems has been the dream of both neuroscientists and AI
researchers for decades.
Predictive coding (PC) lays a framework to explain how the brain processes information and
how we make sense of the world.
PC states that our brains continuously generates predictions about the stream of information
that is coming from the world. The sensory information is used to update the prediction system
and continuously "tune it" to reality.
In particular, the brain has an internal generative model of the world. By generative model we
mean a model that can generate a richer and hierarchical representation of the expected sensory
information [3]. The process that generates the sensory predictions is "top-down" while the
sensory information is processed "bottom-up". Given an abstract and compressed representation
of the world and a generative model (implemented in the neural network), a prediction about the
expected information can be generated continuously at all the levels of the hierarchy: starting
from the very abstract representation at the top until the lower levels where the brain predicts
the exact raw sensory information.

In Figure 2.3 you can observe how a concept, i.e. a compressed representation, can generate
hierarchical expectations in the cortex down to the raw sensory data. From the concept of the
bird, the brain can generate expectations over its shape or the series of sounds that it makes.
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Figure 2.3: Hierarchical model that generates expectations from concepts [1]

The sensory predictions, at the very bottom of the abstraction hierarchy, are compared with
the actual sensory data. The unexplained sensory inputs, i.e the "errors", are propagated up
the hierarchy for further processing. These predictions errors are minimized either by acting
on the world or overtime changing the internal model[4]. An essential part of the PC theory is
precision weighting, i.e. the estimation of the error’s reliability, which also depends on the level
of signal noise [2].

Friston developed also a formal theory of PC based on Bayesian inference. Each biological, self-
organizing, adaptive system tends to resist disorder and maintain itself in a state of homeostasis.
The set of internal and sensory states is rather limited and the probability that an organism
is in one of these states is high. Now let’s recall the notion of entropy, as the logarithmic
measure of the number of states that have a probability pi of being occupied, in particular
S = kb

∑N
i=0 pilog(pi), where kb is the Boltzmann constant. Friston states that the entropy

of functioning biological systems is low and that agents must minimize the average long term
entropy, or surprise, to continue keeping the entropy low, defined from the amount of information
present in the sensory data. In a Bayesian framework, entropy or surprise is equivalent to the
evidence variational lower bound (ELBO) on the model evidence. ELBO is a technique to
make tractable the computation of posterior high dimensional distributions of models over the
evidence. By minimizing ELBO the neural systems would be maximizing probability for the
current generative internal models given the current evidence gathered from the world. We refer
to Friston [3] for more details.

This theory of neural computation breaks away with the tradition viewed that saw perception
mainly as feed-forward computational phenomena [2]. Certainly, there are concerns that part
of the theory is based on untested assumptions [5], or that the PC is not the all grad theory
of perceptions and inference that Friston proclaims [2]. Nonetheless, there is a great amount of
evidence, both physiological and in term of neural population dynamics, that support the view
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that the brain generates an internal model of the world.

2.2.2 Microcircuit

With this section, we try to explain the abstract concepts presented in the previous section by
presenting a plausible biological neural implementation of predictive coding. The sensory cortex
is a layered structure of neurons that is hierarchically organized. For example, the visual cortex
region V1 receives feed-forward connections from the lateral geniculate nucleus (LGN), a part of
the thalamus that receives retinal input. The information is then passed through feed-forward
connections to higher cortical areas such as V2, V3, V4, V5 and V6. Nonetheless, there are
strong feedback connections from higher to lower cortical areas and between the layers of the
cortex. A schematic representation is shown in Figure 2.2. Forward connections arrive at layer 4,
information is then passed the superficial cells in layer 2/3 and then to the deep-pyramidal cells
in layer 5-6, which send feedback to lower cortical areas and to layer 4. Feedback connections
appear to be mostly modulating and inhibitory [1].
There is not a definite answer yet on how the predictive coding computation maps on onto
the canonical microcircuit. Here we explore one way in which the brain does the necessary
computations but there are other possibilities [4] [1] [5]. The scheme is shown in Figure 2.4
show where the computations required by PC are carried out. The error is computed in layers
2/3 by comparing the received signals with the predicted one. The predictions happen in the deep
cortical layers 5/6 and are sent to cortical areas of lower hierarchy. The errors are propagated
up the hierarchy and are used to update the conditional expectations.

Figure 2.4: Hierarchical model for predictive coding [6]

2.2.3 Evidence

In this section, we present the experimental evidence that supports PC. Nonetheless, there is
still substantial controversy in the field, with many pointing out parts of the theory that are
not fully testable or that lack evidence [5]. A deeper understanding of the visual cortex made
predictive the predicting coding framework relatively popular. It was discovered that, in the
visual cortex, the feed-forward connections across the cortical area transmit residual errors, the
difference between the predicted activity and the actual one at lower cortical areas. The feedback
connection, in particular, helped to modulate the activity of neurons lower in the hierarchy. A
neural model of this kind showed phenomena like end-stopping and non-classical surround effects
[7].
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As for the auditory cortex, the evidence for predictive coding is not as strong. Several studies
presented evidence that a bottom-up model of neuronal dynamics cannot account for phenomena
like "Mismatch Negativity" (MMN) [4]. MMN is a deviant response that appears in the event-
related potential to an odd stimulus in a series of repetitive patterns. Predictive coding models of
auditory perception could explain the neural suppression after a repeated stimulus and activation
for an odd stimulus [8] [9]. Such phenomena appear also in case of omission of an expected
stimulus, i.e silence [10]. In the field of natural language processing, there is also evidence that
predicts incoming stimuli and that letters are more easily identified when embedded in a word
[4]. On a physiological level, as predicted by PC, different cells are responsible for feedforward
and feedback information [1] [2]. Furthermore these neuronal populations show interactions at
different frequencies [11].

2.3 Adaptive Sensorimotor Control

In this section, we give an overview of the current understanding of adaptive motor control.
We start by listing what are the current problems that a framework for adaptive motor control
should address. We proceed in explaining what is the role of internal models in motor control.
We then describe what is the current view on the internal model and of what is the state of the
art framework "optimal feedback control" that best describes and predicts the adaptive motor
control of biological systems.

Sensory-motor control is a very difficult control task to solve, in particular, the brain faces many
challenges: uncertainty, redundancy, noise, delays and time-varying dynamics [12].

Uncertainty There is always uncertainty about the state and future states of external objects
and of parts of the motor-system itself, like position and velocity of limbs, etc ... We may ask
what is a natural framework to reason, plan and act given a set of random variables that come
from a range of statistical distributions?

Redundancy Biological systems are incredibly redundant in the set of actuators that can be
used. There are hundreds of muscular fibres that can be controlled individually in addition
to numerous joints and ligaments. How does the brain solve this control allocation problem?
The brain learns to solve these problems, as infants start to walk only around at the age of 12
months. Furthermore, there is another problem to tackle, out of the possible infinite trajectories
to solve a task why do we pick a specific one? The answer to both these questions probably lies
in optimization, since it’s a way to deal with these higher dimensional problems.

Noise Noise is present in all the feedback information that we receive from the world. It
could be external noise, present in the objects we observe or interact with, or internal. Internal
noise is chemical noise, electrical noise that is inherent in the way biological systems propagate
information inside their bodies. Given that certain observation has higher reliability than others,
how does the brain weight different information based on their precision? How is information
from multiple senses properly integrated?

Delays Biological systems live in the past. Visual and sensory information has inherent delays
due to the upper bound on the transmission speed of information across nerves. Furthermore,
extra computation time is needed to process such information. How can we then produce smooth
and fast movements without much effort? Part of the answer to this problem is having internal
models.
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Time-varying dynamics Our sensory-motor system is highly time-varying, the impedance of
our muscles, change very rapidly depending on the task at hand. Furthermore, we continue
to update our control policies as growing and our muscular-skeletal system change or becomes
affected by ageing.

2.4 Internal Models

In this section, we present an overview on internal models. Internal models have been recognized
to be an essential component for motor control in biological systems [13]. Animals have internal
dynamics models that can be used to control the body and act in the environment [14] [15].
Internal models can be used in many ways: to predict future actions, to do state estimation
and filtering by comparing the predicted state with the stream of data generated by biological
sensors, to try-out in simulation the possible outcomes of an action.

In this section, we shortly introduce internal models and present an old one of the first
experiments that indicated the role that internal models play in motor control. We proceed
then to give a more updated overview of the current view on internal models.

We can distinguish several types of internal models [13]:

• Prior models: encode the priors over observations p(z) and states of the world p(x), where
z represent a measurement and x the state of a system.

• Precision models: encode the reliability of a particular source of information

• Forward dynamics: estimates the future state of a system p(xk+1|xk, u) given the current
state, xk and a control action, u.

• Hierarchical latent models: these can be graphical models that encode hierarchical
relationships between different states. These models can be used to direct planning
across large time-scales.

2.4.1 Young’s manual control experiment

Young proposed several models that would account for human adaptation. In subsection 3.3.4
we explore the qualitative model that he proposed to model a human controller. The scheme
assumes that humans develop internal models of the dynamics of the system that they control.
This assumption was tested in a later experiment where participants, using a compensatory
display, where asked to control and detect the change of dynamics in a time-varying system.
The participants of the experiment were divided into three groups: active controller, passive
controllers and observers. The active controllers actively controlled the systems. The passive
controllers were led to believe that they controlled the system but the system was controlled by
an active controller. A scheme of the experiment is shown in Figure 2.5. The observers on the
contrary just observed the screen. All participants had to press a button when they recognized
the change in dynamics. The measured time for detection is shown in Table 2.1.

As we can observe the time for the observers is significantly higher than the other two classes of
participants, who on the other hand show similar times. The most probable cause for this delay
on the observation is the lack of an internal model for the dynamics of the controlled elements.
The participants that only observe, engage in no motor actions and therefore have a harder
time in estimating how the system responds to input. We claim this is evidence for the role
that internal models have in motor control tasks. Furthermore since both active and passive
controllers have a similar detection time we speculate that the open loop dynamics might be a
good model for the internal model of the human controllers.
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Figure 2.5: Detection times of the change in dynamics and their standard deviation for the three
different groups [16]

Subject 2nd to 1st 1st to 2nd
Active Controller 1.23 1.36
Passive Controller 1.45 1.56
Passive Observer 2.48 5

Table 2.1: Time, in seconds, for the detection in the change of dynamics of the controlled element.
The controlled elements switches from first integrator to double integrator and vice-versa
. The participants could only observe the error between the target state and their state.

2.4.2 Cerebellum’s motor models

The cerebellum seems to create internal models of the world that can be used to more effectively
operate in it. In particular, we can produce models of the dynamics of body parts or systems
that we interact with. Internal models present several advantages: reduced sampling from our
sensors and lower reliance from sensory feedback signals. The cerebellum could produce either
an inverse (feed-forward) model or forward model, that encodes the dynamics of the system in
consideration. The feedback signals, produced by the visual cortex and sensory-motor system,
play still an important role in error-correcting. A possible schema, in which the cerebellum
produces a forward-model of the dynamics is shown in Figure 2.6.

The ability to create internal models is also necessary to create efficient learning adaptive
programs. This is what happens to a human when they learn to drive, ride a bicycle or other
motor tasks. The creation of internal models affects also the way we process information. The
voluntary movements commands are generated in the premotor cortex or anterior cingulate
cortex, then the information flows to the motor cortex and the cerebellum. The output of the
cerebellum, in the possible presence of feedback, can further be processed by the cortex and
then sent to the motor system. The exact information flow has not yet been established [17].
The computation that happens in the cerebellum is not consciously accessible. In fact, in

general, while learning a new motor skill or the cognitive ability the amount of conscious
computation will decrease with time.

2.4.3 State Estimation and Planning

State estimation is essential to accurately estimate the current state and integrate all the sensory
information to predict future state of the motor system. Internal forward models of the dynamics
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Figure 2.6: Possible control scheme where the cerebellum encodes the forward dynamics (FM) of a
system. The input arrives and together with the current information from the sensory system (SS)
and prediction of the cerebellum, are sent to the motor cortex (MT) which elaborate the signals to
be sent to the peripheral motor system (CO). The FM is trained by minimizing the difference the
output of the model itself (b) with the feedback information (a) gathered by the sensory system
(SS). This comparison is thought to happen in the inferior olive (IO), a specific component of the
cerebellum [17].

of a system make state estimation and filtering possible through the comparison of the predicted
state with the actual information coming from the sensory system. The way state estimation
could be implemented could be related to Bayesian inference [13].

Bayesian inference is a framework that could explain how the neural system makes decisions
and plans in an uncertain world and the presence of noise [3]. Bayesian inference relies on the
application of Bayes’ rules to find the most probable posterior state of the world, p(x|z) given
observations with likelihood p(z|x) and a set of priors p(x):

p(x|z) = p(z|x)p(x)
p(z) (2.1)

where p(z) = ∑
y p(z|x)p(x) is the prior probability of an observation. This framework can also

be used to infer the current state of a system given a series of observations and priors about
the precision of the measurement. The Kalman filter is a specific implementation of the general
class of Bayesian filters. There is evidence that humans behave like optimal bayesian estimators
in visual tasks [18] [19] and with other sensory cues [12].

Bayesian inference can be used also to select the best model that explains the observed data.
This is particularly relevant when the dynamics of a system change and we have to infer the
change of model. In the case of multiple modelsMi and observations x the posterior distribution
of the new state given the previous state is the weighted average by the priors over the possible
models

p(xk|xk−1) =
N∑
i=0

p(xk|xk−1,Mi)p(Mi|xk−1) (2.2)

where

p(Mi|xk−1) = p(xk−1|Mi)p(Mi)
p(x) (2.3)

in this case the prior probability p(x) is not particularly important and can be neglected as it
is the same for all models.
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2.5 Optimal Feedback Control

Optimal feedback control (OFC) is currently the framework able to better predict and explain
motor behavior [20] [13] [21] [22]. OFC is the dominant framework to model voluntary control
[23][24]. Optimal feedback control solves the redundancy in the number of actuators and
combines optimal control with sensory feedback. An optimal control policy computes the
optimal solutions to complete a certain task and continuously corrects for disturbances. One of
key difference from normal feedback control lies in the way disturbances are corrected.
Disturbances are only corrected if actually needed to optimize the given task. An example is
given below: consider the task of reaching a target point with a limb, the target point could be
either stationary or perturbed after 100, 200 or 300 ms from the start of the task. The
controller has the following form:

u(t) = kp(t)(p∗ − p(t))− kv(t)v(t)− ka(t)a(t) (2.4)

where p∗ is the target position and p(t), v(t), a(t) are the position, velocity and acceleration of
the limb at time t. The gains has been found by solving the optimization problem minimizing
the final position error and control effort:

J ≈ ||p∗ − p(tf )||2 + k

∫ tf

t0
||u(t)||2dt (2.5)

The results of the experiment are further described in Figure 2.7. An OFC model matches
extremely well the findings of the experiment, in particular, you can notice that if the
perturbation is done early enough the followed trajectory does not immediately change. If the
perturbation is not yet relevant (i.e. final objective can be reached at not extra cost) there no
change in the chosen trajectory. This phenomenon cannot be explained with a simple feedback
system. OFC has strong experimental evidence: it is successful in predicting eye movements
[25] and limb trajectories in several other tasks [26] [12].

The optimal control problem is formulated in terms of a cost function that penalized the endpoint
variance and the energy used [21]. The assumption that the control policy minimizes energy
consumption can be justified from an evolutionary perspective. In this review, we will not
go into the details of the implementation of optimal feedback control, which can be found in
[20]. Briefly, the trajectory is computed, with an infinite time-horizon, using the classical linear
quadratic Gaussian framework (LQG). The main drawback of a basic LQG optimal feedback
methods is that the control time horizon is infinite (or until the end of the reference signal)
and cannot anticipate changes. Also, the open-loop solution is computed once and feedback is
introduced by optimizing a different objective function [20].

Finally the internal models are essential for OFC since they provide a model of dynamics that
can be used to predict the future (with MPC for example) and they provide a way to reduce
the effect of sensory delay and to perform state estimation.

Summarizing, the key components of OFC are three [27]:

1. Control actions are generated by optimizing for a function

2. Perturbations from the planned trajectory are corrected in an optimal fashion prioritizing
what is important for the task

3. Internal models are used for the optimization routine, to compensate for sensory delays
and to perform state estimation
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Figure 2.7: On the left column you can observed the participants’ measured limb position (A),
velocity (B) and lateral deviation from the target (C) while on the are shown the optimal computed
trajectories. Subfigure D, F, G show the same information but for policy generated by the optimal
feedback system. Subfigure E shows how the different computed gains (shown in Equation 2.4) of
the system change [28]

2.6 Hierarchical control

The motor control in biological systems is hierarchical. The cortex, hypothalamus, basal ganglia,
cerebellum and spine are all involved in generating movements. In particular the cortex is a high
level controller responsible for a broad and adaptive repertoire of behaviors. The basal ganglia
and hypothalamus are thought to be involved in the selection of the appropriate motor program
while the cerebellum and spine effectively send low level command to actuate the muscle fibers
[27]. The advantages of having a hierarchical motor control system are numerous [27]:

• Information factorization: only relevant information is send to the specific subsystems.
For example, the low level motor control system is not fed high level objectives, therefore
it’s able to generalize better since once it’s trained it can be used for a large variety of
objectives.

• Partial autonomy: lower level systems are somewhat autonomous and can operate robustly.
Many studies have been performed with decorticated cats showing that they preserve most
of the locomotion patters.

• Temporal abstraction: allows different systems to plan and act at different time-scales. The
cortex might plan to make dinner, while the a lower level system like the basal ganglia
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might take care of actually walking to the kitchen. Finally the cerebellum, hippocampus
and spinal circuits are responsible to activate the specific muscle fibers that are necessary
to perform a step.

We believe that a hierarchical motor control structure is key to produce ever more complex
movements across large time scales. In the context of a pursuit or compensatory manual control
task the agent is told to either follow a signal or perform disturbance rejection. Since the agent
cannot look into the future there is no opportunity to do medium-long term planning and since
the task is already tightly specified there is also not much room to plan complex operations.
Not tightly constrained experiments, that require planning across time scales of approximately
10 seconds are more appropriate to study the hierarchical and possibly optimal (in some sense)
control structure of the human motor system. An example of such experiment could be picking
up objects and repositioning them, obstacle avoidance while driving or other locomotor tasks.
For our task what is most relevant is creation of internal models, encoded in the cerebellum and
the activity of the cortex that is utilizing new incoming data to either act, probably directing the
basal ganglia and spinal circuit to continue their execution program, or to modify the internal
model.



Chapter 3

Literature Study: Models

This chapter presents a series of models aimed at capturing the human behavior in motor tasks.
We aimed at finding a model that is adaptive, learns from predictions errors, has an internal
model itself, is related to Optimal Feedback Control and is hierarchical. These are some of the
key features of intelligent biological systems.

3.1 Steady State Models

This is a brief overview of steady-state models usually considered for the human operators.
These models describe the human steady-state behavior in only relatively restrictive control
tasks and controlled plant dynamics. The tasks are usually carried out on preview, pursuit and
compensatory displays. One of the first and most used models of human control behavior is
McRuer’s crossover model [29]. Given the plant transfer function Hc and the human controller
transfer function Hp, as shown in Figure 3.1, McRuer model states that the open-loop response
of the system with the human in the loop can be approximated by

HOL = HpHc = ωc
iω
e−iωτ , ω ≈ ωc (3.1)

where ωc and τ are correspond to the crossover frequency and delay of the human operator
model. The model is valid for frequencies close to the crossover frequency.

Figure 3.1: Control diagram for a typical reference tracking task

This model presents few interesting features. First of all the model can be used for different
types of dynamical systems as the model prescribes the open loop behavior response. It also
implies that humans form an internal model of the plant dynamics and cancel the poles of the
plant via a partial dynamic inversion. McRuer also modeled explicitly the human operator,
including in the model the dynamics of the neuro-muscular actuators [30]. The updated model
(not in his notation) can be written as

Hp = kp
1 + Tlead(iω)
1 + Tlag(iω)

ω2
nm

(iω)2 + 2ζωnm(iω) + ω2
nm

e−iωτ (3.2)

This model contains the dynamics of a classical phase compensator and of an harmonic oscillator,
that represents the neuro-muscular actuators dynamics.

The stochastic and non-linear behavior of human controllers in simple tracking tasks cannot be
captured by a steady-state linear model. The part that cannot be directly modeled in this way
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is referred to as the remnant. To simplify the problem of modeling human adaptation we will
ignore the contribution of the remnant.

3.2 Models based on system identification’s methods

In this section, we listed and briefly described time-varying identification approaches.

3.2.1 Zaal model

The underlying idea behind this method is to create a time-varying parametric model of the
human operator and then find the parameters that lead to the best fit of the observed control
behavior. P. Zaal proposed a parametric model with similar form to the one in Equation 3.2,
but where each parameter is a time-varying function of the form [31]

P (t) = P0 + P1 − P0
1 + eG(t−M) (3.3)

where G and M represent the speed of the parameter change and the time at which adaptation
happens. The model parameters were found by maximum likely-hood estimation augmented
with a genetic algorithm [32].

Pros The advantages of these methods are the relative stability of the algorithm and the
"sigmoid-like" parameters that guarantee the convergence to appropriate steady-state models.
The sigmoid shape of the parameters allows for both a fast (step-like) and a more slow
adaptation. The parameters can be tuned specifically for each controller.

Cons The behavior during the adaptation is prescribed and it is the same for all parameters.
Therefore rather than estimating the transient behavior a sigmoid structure is imposed on it.
It is hard to validate this assumption since other verification methods, like Kalman Filters, do
not guarantee the estimated parameters are optimal. The model can only be used off-line since
the optimizer needs the whole time-trace of the experiment.

3.2.2 Model based on Kalman Filter

Another attempt to identify the parameters of a human operator model is through state
estimation via a Kalman filter [33]. Popovici used a Dual Extended Kalman Filter to estimate
separately the compensator gains kp and kv and the neuromuscular parameters and delay ξ,
ωnm and τ of the following model [34]

Hp = (kp + kv(iω)) ω2
nm

(iω)2 + 2ξωnm(iω) + ω2
nm

e−iωτ (3.4)

The parameters to be estimated are augmented into the state space corresponding to
Equation 3.4, and their dynamics are driven by white noise. A representation of the two filters
is shown in Figure 3.2.

Pros This model is extremely flexible and does not prescribe any adaptation dynamics. The
estimated parameters are also specific to an individual human operator.
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Figure 3.2: Scheme of the Dual Extended Kalman Filter [34]

Cons The major drawback of this model is the lack of convergence guarantees on the estimated
parameters. During adaptation, the model parameters can vary relatively fast and it’s important
to have a responsive yet stable estimation of those.

3.2.3 Autoregressive models

The ARX (autoregressive) model is a general linear model. To describe the model we need to
introduce the discrete time shift operator q, defined as q−1u(tk) = u(tk−1). The ARX model
can be written is the following form

u(tk) = B(q)
A(q)e(tk−n) + 1

A(q)ε(tk) (3.5)

where B(q), A(q) are polynomials of the linear operator q, e represent an error signal and ε(tk),
white noise. This model has already been successfully applied to identify human time-varying
behavior in simple control tasks [35]. The model can be fitted with a variety of techniques
including ordinary least-squares and regressive least square, for online estimation.

Pro This method depends less on the initial conditions to a stable convergence of the estimated
parameters. The method can also be used online using a regressive least square as a fitting
method. The ARX also is very flexible in its model structure since the order of the polynomial
can be freely chosen.

Cons ARX estimated parameters have some unknown amount of bias. In the simulation, it
has been shown that bias can be minimized by an appropriate choice of remnant filter for the
human operator noise [36].

3.3 Rule based models

In the ’60s great effort has been placed in creating qualitative and quantitative human adaptation
models that are rule-based. By rule-based, we mean that the conditions for the start and type
of adaptation are set by an expert in the forms of explicit rules. Most information about
these models and experimental observation about human adaptation under change of dynamical
systems are compiled in a review article by L.R. Young [16] and more recently by Shutting et
all [37].

We start the section with older proposed models and we conclude it with an overview of fuzzy
systems and a recent rule-based system proposed by Hess.
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3.3.1 Supervisory Phatak model

Phatak proposed a model of human adaptation for tasks on a compensatory display that is
a supervisory adaptive switching controller [38]. He identified three main discrete phases of
adaptation:

• change of dynamics detection

• identification of the dynamics

• explicit adaptation

Phatak organized an experiment to verify his model. In Phatak’s experiment participants had
to perform a tracking task with one dynamical system (out of four available) that suddenly (or
slowly) changed dynamics during the run. The design of the supervisory algorithms directly
reflects the experiment design: the supervisory system chooses between four types of steady
steady-state human operator models according to the error trajectory in the phase plane of the
closed-loop system. In Figure 3.3 is shown the state space used to detect the change in dynamics
of the system and switch controller. On one axis is reported the error rate and on another the
error. The space R2 is subdivided into convex sub-spaces, called decision regions. The decision
regions are predetermined and set to multiples of the maximum error rate, that the participants
achieve when controlling a dynamical system without change in dynamics. When the dynamical
system passes from a lower to a higher decision region (as numbered in Figure 3.3) it triggers a
switch in the used human operator’s steady-state model used.

Figure 3.3: Example of convex partitioning of the state space into decision regions [38]

To avoid constant switching, which is a common problem in switching systems
[SwitchingSystemsControla], the supervisory system makes a binary choice between two
possible controllers at the time. The supervisory algorithm can be summarized as follows:

• check current decision region based on the error and error rate

• if the state trajectory crossed the decision boundary, switch the current controller with
the next one in the queue

• remove the previous controller from the queue

• repeat
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Pros The advantage of this model is that it can be customized and made relatively reliable for
a specific task with some engineering effort. Furthermore, the models at which the algorithm
converges are guaranteed to be realistic of human behavior.

Cons The system is not guaranteed to be stable. The partitions in decision regions depend
both on the order, type of dynamical system and number of possible human controller models. It
becomes quickly unfeasible to handle many different conditions. The supervisory algorithm does
sequential binary choices, therefore if the "right" controller is at the end of the queue, the system
might become unstable. There is no guarantee that the transient behavior is representative at
all of what humans do. If more than one controller can make the system stable the supervisory
algorithm will choose the one that is in front of the queue, independently of the actual human
behavior.

3.3.2 Fuzzy controllers

Fuzzy controllers were introduced to better capture nuances and a non-precise assessment made
by humans. Let’s assume for example that humans use a function of the error rate and error to
determine if the system has changed. Putting simple thresholds for the values of the considered
variable is probably too simplistic, and one could define decision regions as in subsection 3.3.1
as fuzzy sets.
A simple schematics of the model is shown in Figure 3.4. The inputs are first fuzzified to establish
the degree their membership for each fuzzy set. Then if-then rules, designed by engineers, are
applied to the fuzzy sets, the results are then combined and defuzzified. The defuzzification is
an interpolation procedure. The output now is a scalar number and it represents the output of
the controller.

Figure 3.4: Fuzzy system architecture [37]

An example of a fuzzy system applied to model a human controller can be found in [39], few
more example in the review article [37]. The fuzzy controller can also be combined with neural
networks to generate fuzzy rules, which are interpretable to humans.

Pros They can capture the uncertainty present in humans in categorizing objects or signals.

Cons They are usually very laborious for engineers to design. Great care must be taken in
defining the fuzzy sets, then the many fuzzy rules and the defuzzification scheme. Part of these
problems could be alleviated by using neuro-fuzzy systems.
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3.3.3 Hess Model

The Hess model is a popular rule-based system that relies on a two-loop description of the
human operator. Details of the inner and outer loop are shown in Figure 3.5. While the outer
loop is a simple proportional controller, the inner loop works with the derivative of the state of
the system.

Figure 3.5: Hess’s model of human adaptive behavior [40]

Hess hand-crafted a set of gains and learning rule to ensure a representative adaptive behavior
[40]. The learning rule is active only after the change in the dynamics of the controlled element.

Pros The model is relatively simple, intuitive and can be used and adapted to several cases.

Cons One of the disadvantages of the model is the lack of convergence guarantees. The final
values of the gains of the system both depend on the controlled dynamics and the input.
Depending on the input the final controller can end up in a configuration far from
representative of a human controller. Furthermore, the rules are found ad-hoc and lack
theoretical justification. Finally, this model requires knowledge about the time at which the
dynamics of the controlled plant change.

3.3.4 Young and Stark model

Young and Stark proposed a qualitative model for the human controller adaptation [41]. Their
model relies on the mismatch between the observed error and error rate and the observed
variables which we call δe. The expected error rate is generated by an internal model of the
dynamics of the controlled elements. The signal δe is then fed to an adaptive control operator
that changes both the internal model of the plant dynamics and the current human operator
model. A control diagram of the model is shown in Figure 3.6.

Figure 3.6: Block diagram representation of the Young and Stark model for a compensatory display
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Pros This model has several desirable characteristics probably also present in biological
systems: the adaptation is driven by the error between the expected and actual observed state
of the controlled system, it has an internal model and it is hierarchical.

Cons This model is only qualitative and does not prescribe a way to implement the adaptive
mechanism and what is the internal model that should be used.

3.4 Adaptive control models

In this section we describe two inherently adaptive algorithms that do not have explicit hand-
crafted rules for adaptation.

3.4.1 Incremental Non-Linear Dynamics Inversion (INDI)

An INDI controller is an extension of a non linear dynamics inversion (NDI) controller, therefore
we briefly introduced the latter in the following paragraph.

NDI The basic idea behind NDI is that if you have a model of the dynamics of your system,
then you could invert to find a specific action to obtain for example a desired acceleration.
This allows you to design an outer loop linear control system to control directly the desired
acceleration and then map it to a control action through the inverted model.
For example consider the following system{

ẋ = f(x) +Gū

ȳ = h(x)
(3.6)

We would like to obtain an expression of the kind

dNy

dtN
= v (3.7)

because then the problem is reduced to the design of a linear control system with input v. A
convenient formula for v is

v =
N∑
i=0

ki
di(y − yref )

dti
+ dNyref

dtN
(3.8)

because substituting it in Equation 3.7 we can obtain an homogeneous ordinary differential
equation of e = y − yref .
Now to obtain a mapping from v (virtual input) to u (actual input to the system) we want to
differentiate the output y in Equation 3.6 until the control input u appears in it

˙̄y = ∂h

∂x
ẋ = ∂h

∂x
f(x) + ∂h

∂x
Gū := b(x) + a(x)ū (3.9)

For this example we assume the order of the system is 1 which means we have only to differentiate
the output once to express it as an explicit function of the control input u. In this way we find
that the function that maps v unto u is

u = a(x)−1(v − b(x)) (3.10)

Therefore by designing a linear controller, w.r.t the system acceleration and with output v, as
defined in Equation 3.8, we can then obtain the actual control input u using Equation 3.10.
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INDI The INDI controller does not need an explicit model of the system f(x) and relies only
a very precise measurement of the state derivatives ẋm and the control effectiveness matrix G.
A very important assumption is that the sampling rate of the sensors is high enough such that
between two measurement the effect of the autonomous system dynamics can be neglected. We
show here a simple derivation of the INDI controller.
If we consider a ẋ = f(x, u) as our system to control and we Taylor expand around the current
state x0 and input u0

ẋ = f(x, u) = f(x0, u0) + ∂f

∂xx=x0,u=u0
(x− x0) + ∂f

∂ux=x0,u=u0
(u− u0) +H.O.T (3.11)

and we assume that the system dynamics related to u are more influential than the one related
to x and that we can measure fast enough the state derivatives, we can simplify the equation
further

ẋ = ẋ0m + ∂f

∂ux=x0,u=u0
(u− u0) = ẋ0m +G(x0)∆u (3.12)

As we did for in the previous chapter we can use a virtual input to linearize the system ẋ = v
and the actual control input change ∆u can be obtained by

∆u = G(x0)−1(v − ẋ0m) (3.13)

A scheme of the INDI controller is shown in Figure 3.7. The virtual input can be designed using
Equation 3.8.

Figure 3.7: Block diagram representation of an INDI controller

Example We present here a simple example for a linear system (note that if the system is
linear most of the benefits of NDI and INDI controller is lost), that should convince the reader
that an INDI controller is definitively not right scheme to model human controllers.
Given the following system: 

ẋ =
[

0 1
−k −b

]
x+

[
0
1

]
u

y = x

(3.14)

We could define the following outer loop linear controller

v = kp(x− xref ) + dxref
dt

(3.15)

Taking the pseudo inverse of the control action we can recover the actual input actual input

u =
[
0 1

]
(v − ẋ0m)) (3.16)

For second order system the vector ẋ0m contains both the velocity and acceleration of the system.
You can immediately spot two problems:
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• the visual estimation of the acceleration of the state is very poor for humans

• humans are heavily delayed and INDI requires very fast sampling rates, even a small delay
can make the system unstable.

Pros -

Cons While an INDI controller relies on a reliable and fast the measurement of its state
derivatives. Given this constraint we can hope at best to model how humans control first order
systems. Humans cannot easily perceive visually derivatives or order higher then one.
Furthermore humans are also heavily delayed, which also violates the assumption of fast
measurements for the INDI controller. There are more drawbacks from a theoretical
prospective in using INDI to model human adaptive control behavior. All humans rely on a
model of the dynamics of the vehicles they are controlling [42]. Furthermore, INDI adaptation
is very limited and does not allow the system controlled to change its order or radically change
its dynamics. The virtual input, which is pre-specified, would have to change when the order
of the system changes. Given these observation we see not reason to further investigate INDI
controllers as possible model of human manual control policy.

3.4.2 Model Reference Adaptive Control (MRAC)

In this subsection we briefly describe MRAC. This method was selected to be further explored
and a whole chapter is dedicated to its in-depth description.

MRAC is an adaptive control scheme that requires minimal knowledge about the dynamics of
the system. Only the sign of the input matrix must be known in advance. In its essence, the
MRAC scheme creates a controller that converges to a specified reference controller, called the
reference model.

McRuer observed that the structure of the open-loop dynamics of a system with a human in
the loop is invariant to changes in the dynamics of the controlled plant. We use the dynamics
specified in section 3.1 to define a reference model that should be followed independently of the
controlled system.

Figure 3.8: MRAC controller scheme[43] for a pursuit configuration

Pros The MRAC controller provides strong guarantees of convergence of the time-varying
controller towards the reference model. It can handle a very wide range of dynamical systems of
different orders. The MRAC controller can be extended to MIMO systems that could be used
to describe the control policy of humans in more complex tasks.
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Cons One of the disadvantages of MRAC is the fact that in its basic form it cannot capture
changes in the crossover frequency or delay without knowing in advance when such changes
should happen. Furthermore, the reference model and controlled plant should have the same
structure and order to ensure asymptotic convergence.

3.5 Machine learning methods

In this section, we briefly describe a few ideas that have the potential to model human control
behavior even in high dimensional input spaces, such as controlling a vehicle given a video as
input.

3.5.1 End to end Learning

Neural Networks are extremely promising for learning to control time-varying dynamical
systems with a high level of reliability. Tesla and Waymo are using mostly an end to end
learning to create self-driving cars. This approach requires a lot of data that is provided by
drivers and sensors on board of the car, about the correct trajectory and behavior. Driving a
car is a highly non-linear control task and the car itself is a time-varying dynamical system.
While the reliability of self-driving systems is not high enough for driving in all conditions and
situations, these systems perform well in highway driving under nominal conditions. Highways
driving is again a non-linear time varying-task that requires an adaptive control strategy.
Given the relative simplicity of compensatory, pursuit or preview time-varying tasks, it is
probable that Neural Network could learn extremely well the adaptive behavior of human
operators. In Figure 3.9 is shown one possible architecture for end-to-end learning for a driving
task. LSTMs (Long Short Term Memory) networks have been used for system identification of
non-linear dynamical systems, a convex superposition of LSTMs seems particularly promising
for online identification[44].

Pros With enough training data, the Neural Network model should be able to learn both the
steady-state and transient behavior of human operators. If the aim is solely to produce a good
model of human adaptation we suggest Neural Networks as the best information processing
system for the task.

Cons The main drawback of this method is the interpretability of the results. A large number
of parameters in neural networks makes it almost impossible for humans to understand or find
a non-trivial explanation for the network behavior.

3.5.2 Neural ODEs

A promising new approach to solve ordinary differential equations (ODEs) is called Neural ODEs.
The main idea behind this method is that residual network and recurrent neural networks hidden
layers follow an update rule can be seen as a step in an Euler integration scheme [46]. The hidden
is updated as follows

ht+1 = ht + f(ht, θt) (3.17)

where ht stands for the hidden layer at time step t and θt are the parameters of the network.
The objective with Neural ODEs is not to parametrize and learn the response or output of a
system but rather to learn it’s dynamics. In practice, this means to parametrize with a neural
network the differential equation that describes the system behavior. The main advantages of
this method are the lower memory costs, lower amount of parameters and the fact that the model
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Figure 3.9: End-to-End learning architecture [45]

is a continuous-time model. In Figure 3.10 is shown the reconstruction of the spiral trajectory
of a system done by a Recurrent Neural Network (RNN) and a Neural ODE.

Figure 3.10: Reconstruction and extrapolation task comparison between a RNN and Neural ODE
[46]



3.5 Machine learning methods 56

Pros It is a very natural way to solve ODEs using neural networks and it has been shown to
work effectively for fluid problems [46].

Cons One of the main drawbacks of this method is that, as of now, Neural ODEs can model
only autonomous systems, which are not driven by control inputs.

3.5.3 Weight Agnostic Neural Networks (WANNs)

The main idea behind this architecture is that humans have learning algorithms directly encoded
in the topology of their neural networks. The topology of our brain has been optimized and
transformed by evolution throughout hundreds of millions of years and throughout of billions of
sentient living information processing beings like ourselves [47]. Humans learn extremely fast
even from a few examples while current neural networks are much less efficient. Ducks after
just hatched can swim and snakes and lizards show innate behavior in avoiding predators [48].
These are just of the few examples of behavior that is caused by the topology of the brains of
these systems. Therefore instead of just focusing on training the weights of the network, we
should investigate what neural architectures can improve learning itself. The invention of the
Convolutional Neural Network is one of the examples where the topology highly facilitates the
processing of information coming from images. WANNs are evolved by running an evolutionary
network topology optimization algorithm called NEAT [49], that gradually improves the topology
network based on how it performs on a task. The weights of the network are all kept equal to 1
so that all the observed behavior is a consequence of the network’s topology. The authors of the
original paper managed to create simple networks able to solve cart-inverted pendulum problem
and to control a bipedal robot in simulation [49]. In Figure 3.11 is shown the topology of the
best network for the cart-inverted pendulum control problem.

Figure 3.11: WANN architecture for the cart-pendulum task[46]

This model could be useful for the current research because it can evolve adaptive control
strategies with the functional building blocks and sensor data available to humans. The fitness
of the model could be related to both minimizing the tracking error and following, for example,
McRuer model. The sensor data available to human can be restricted, for a compensatory
display to the error and its derivative.
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Pros This model matches what we currently know about the brain of most animals: the
topology of the brain already encodes learning algorithms to solve problems. It an evolutionary
model that given the right task and building blocks could perform well in large variety of control
problems.

Cons It might be very difficult to evolve such a system for complex tasks. Furthermore the
system that evolves to solve a specific task, effectively lives in an another universe and not
necessarily will show the characteristic of a biological controller such as humans. Loosely
speaking, we evolved to solve many different tasks therefore the objective or fitness function
that has been optimized to produce our motor system is very different from the one set up to
solve a simple control task.



Chapter 4

Research Objectives

The research project aims at identifying human in the loop adaptive behavior for changes in
dynamics of the controlled vehicle. It started initially by investigating if a model-free control
technique called INDI could be used to develop an adaptive controller that would mimic the
way humans adapt. Unfortunately the way the INDI works prevents it from adapting to strong
changes in the dynamics of the controlled system. Furthermore INDI adapts using all the
variables present on the state space of a system, this means that potentially it could use derivative
of higher degree than two, which cannot be perceived by humans.

By investigating several other adaptive control techniques we found that Model Reference
Adaptive Control (MRAC), an adaptive control technique, could effectively be used to model
human adaptation. MRAC can be heuristically justified since it implements some of the
important principles, like predictive coding, that neuroscientists discovered are at the base of
human cognition. Nonetheless MRAC distances itself from current state-of-the-art models for
the field of human sensorimotor control. The state of the art is currently a flavor of optimal
feedback control, which is supported by a large body of evidence. OFC does not require the
choice of internal model, like in MRAC, and can do some basic motor and planning tasks. It’s
not trivial though to adapt optimal control to changes in the dynamics of the controlled
system. Another line of research that looks very promising is the implementation in state
space of "Active Inference" (a form of predictive coding), presented in section 2.2 and
supported by Friston [50].

Therefore the research question of the project is:

Do humans use internal models and are prediction errors key elements for sensory-motor
adaptation under change of dynamics of the controlled elements?

To answer this research question we decided to model the human control policy with an
adaptive control scheme called MRAC (Model Reference Adaptive Control). This choice is
justified in the following chapter.

The overall research questions can be broken in further theoretical and experimental
sub-questions.

Theoretical sub-questions:

• What is the most appropriate model reference?

• How can you approximate non-linear dynamics in the model reference?

• The existence of optimal feedback parameters is guaranteed only if the model reference
has the same structure as the controlled element, is there still convergence when this
assumption is relaxed?

• What is the influence of the learning rate on the convergence of the model?

• Do the estimated gains drift in absence of a persistent excitation of the system?
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• How should the system identification be performed? What parameters should be optimized
to match the observed data?

• Can a time-varying reference model be used in MRAC?

• What is the relation between MRAC and predictive coding?

• What datasets can be used to validate the method before performing an experiment?

Experimental questions:

• Do humans use prediction error to drive the adaptation?

• Does the rate of change of changing controlled dynamics affect how fast human controllers
adapt?

• Is the speed of human adaptation symmetric with respect to switches in the controlled
plant between two dynamical systems?

Experimental design questions:

• What kind of experiment will allow to determine if MRAC is indeed a good model of
human motor adaptation?

• What kind of experiment will disprove the MRAC hypothesis?

• What are the dynamics that the operator should control?

• What experiment will allow to determine if MRAC also models correctly the transient
dynamics exhibited by humans during adaptation?

The rest of this report will address most of the theoretical sub-questions and formulate a potential
plan for the experiment to be conducted.



Chapter 5

Model Reference Adaptive Control

This chapter is dedicated to an in-depth explanation of MRAC, why it was selected to pursue
the research objective, its theoretical justification and its ties to predictive coding.

5.1 MRAC main ideas

We start by explaining the main ideas behind MRAC, how predictive coding and the presence
of internal models provide a justification for it. We will explain how it possibly relates to the
accepted view that human motor control can be best described and explain in light of optimal
feedback control.

Humans are highly adaptable MRAC is an adaptive control algorithm that allows the
controlled element to track the trajectory of a reference model. The direct MRAC modifies the
controller gains online and can adapt very rapidly to significant changes in the measured
dynamics. MRAC can show asymptotic convergence for the parameters and bounded
convergence in the presence of delays/non-minimum phase behavior.

Humans have internal models We believe that MRAC can represent how humans adapt their
motor behavior because humans also have created internal models of the expected dynamics.
While controlling the object, and receiving mostly visual feedback from the screen, humans
can learn the dynamics of the controlled element. This new model is used together with the
already present internal neuromuscular model. Let’s consider the example of steering a bike:
the cortex can make use of an internal model of a bike to plan it’s next steps to follow the road.
It can test whether under the current policy (center of gravity shift and handle rotation) the
can be achieved and can simulate the next expected state of the bike. The gravity shift and
handle rotations are also transformed into lower level commands thanks to internal models of
our neuromuscular system. The process of predictions and state estimation can continue down
the hierarchy until arriving at the level of regulating muscle fibers activations. This open loop
predictive model is then used by the human create an expectation about the future states of the
system

Open loop dynamics McRuer measured that the structure of open loop dynamics of humans
controllers in tracking or compensatory tasks tend to be approximately the same independently
of the controlled element close to the crossover region. As we reviewed in section 3.1, humans’
open loop dynamics resemble a first order system or "integrator-like" dynamics.

HOL = ωc
iω
e−iωτ , ω ≈ ωc (5.1)

The fact that the open-loop dynamics always resemble single integrator dynamics, makes the
problem particularly suited for MRAC whose reference model (closed-loop) is invariant with
respect to the controlled dynamics. In this formulation the crossover frequency and delay are
kept fixed. This possibly limits the ability of the model to predict phenomena like crossover
regression [29].
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Adaptation is triggered by mismatched expectations Predictive coding states that our brain
creates an internal model of the world and continually predicts the future states across all the
neural hierarchies. The errors, the difference between the predicted and observed states, are
propagated up the hierarchy to drive actions and/or change the encoded world models in the
neural network. The aim is to reduce surprise and minimize errors. MRAC works in a similar
way: the adaptation is driven by the difference between the predicted behavior of the internal
model and the observed one. The adaptation continues until the observed behavior matches the
expected models, by minimizing a Lyapunov function, that can be interpreted as measuring the
level of surprise experienced.

Figure 5.1 shows the block diagram of the MRAC controller. You can observe that the error
between the expected output and the measured one is feedback to change the controller.

Figure 5.1: MRAC scheme for a pursuit display [43]

5.1.1 MRAC for second-order SISO systems

In this subsection, we go into the mathematical details of MRAC and derive its formulation for
second-order dynamical systems. These are the models of the kind of systems that are usually
controlled by humans. Let’s assume that the reference model can be written in state space form
as

ẋm = Amxm +Bmr (5.2)
where xm is the state of the reference model and r is the reference signal. The controlled element
can also be expressed in state space form as

ẋ = Ax+Bu(t) (5.3)

where u(t) is the time-varying control input to be found. We assume that the state space matrix
A and the control input matrix B are unknown, which reflect the uncertainty about the dynamics
of the system. The aim of the control action is to minimize the error e(t) = xm−x. We assume
the form the feedback control signal to have the following form

u = Kx(t)x+ kr(t)r (5.4)

where Kx(t) and kr(t) are time-varying gains. If we substitute Equation 5.4 into Equation 5.3
we find that the ideal gains K∗x and k∗r to obtain perfect tracking of the reference signal are

A+BK∗x = Am

Bk∗r = Bm
(5.5)

This set of equations is solvable only if A and Am share same structure. To simplify the derivation
we define two new quantities K̃x and k̃r, which are the gain deviations from their optimal values

K̃x = Kx(t)−K∗x
k̃r = kr(t)− k∗r

(5.6)
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By expressing the feedback law in Equation 5.4 in terms of K̃x and k̃r and substituting it into
Equation 5.3 we obtain

ẋ = (A+BK∗x +BK̃x)x+ (Bk∗r +Bk̃r)r (5.7)

Now we can find an expression for the error (which we want minimize) by making use of
Equation 5.7 and Equation 5.5

ė = ẋm − ẋ = Ame−BK̃xx−Bk̃rr (5.8)

MRAC relies on the Lyapunov stability theory to prove the stability of the system. To ensure
tracking of the reference model and therefore that limt→∞ e(x) = 0 we need to satisfy the
following conditions:

1. Find a Lyapunov function V (t, e, K̃x, k̃r) > 0∀t > 0

2. dV (t,e,K̃x,k̃r)
dt < 0 for all t > 0

3. dV (t,e,K̃x,k̃r)
dt ∈ L∞ norm, i.e d2V (t,e,K̃x,k̃r)

dt2 must be bounded

The are no real guidelines to choose the Lyapunov function, but usually it is a quadratic function
with respect to the variables of interest. It can also be interpreted as an energy function. In
this case we can choose the following function [43]

V (e, K̃r, k̃r) = eTPe+ |b|(K̃xΓ−1
x K̃T

x + k̃2
r

γr
) > 0 (5.9)

where b is the only entry of the control effectiveness matrix B, with P, Γ−1
x , γr > 0, the function

is also bigger than zero at all time. Now by taking the time derivative of the Lyapunov function
we obtain

V̇ (e, K̃x, k̃r) = ėTPe+ eTP ė+ |b|
(

2K̃xΓ−1
x

˙̃Kx + 2
˙̃krk̃r
γr

)
(5.10)

By substituting for the expression for the error we obtain

V̇ (e, K̃x, k̃r) = −eT (PAm +AmP )e+ 2|b|K̃x(−xeT P̄ sgn(b) + Γ−1
x

˙̃KT
x )

+2|b|k̃r(−reT P̄ sgn(b) +
˙̃kr
γr

)
(5.11)

and by selecting P to satisfy the Lyapunov equation

PAm +ATmP = −Q (5.12)

we obtain

V̇ (e, K̃x, k̃r) = −eTQe+ 2|b|K̃x(−xeT P̄ sgn(b) + Γ−1
x

˙̃KT
x )

+2|b|k̃r(−reT P̄ sgn(b) +
˙̃kr
γr

)
(5.13)

where Q is negative definite matrix. In order for the Lyapunov function derivative to be negative
at all time we have to impose the following conditions

−xeT P̄ sgn(b) + Γ−1
x

˙̃KT
x = 0

−reT P̄ sgn(b) +
˙̃kr
γr

= 0
(5.14)
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Figure 5.2: Diagram of the MRAC controller. The gains of the controller are Kx and kr, the
controlled plant is Hc, the closed loop reference model HmCL and the prediction error ep. Signals
and diagrams related to predictions using the reference models are in blue while the ones directly
used to adapt the gains are in red.

which implies

˙̃Kx = ΓxxeT P̄ sgn(b)
˙̃kr = γrre

T P̄ sgn(b)
(5.15)

In this way we found an expression for the rate of change of the feedback gain to ensure the
tracking of the reference model. Finally we just have to show that the derivative of the Lyapunov
function is bounded. The derivative of the Lyapunov function satisfies the following inequality

V̇ (e, K̃x, k̃r) = −eTQe ≤ −λmin
∥∥∥e∥∥∥2

2
(5.16)

where λmin is the smallest eigenvalue of the matrix Q. Since ‖e‖22 ∈ L∞ we can conclude that
V̈ (e, K̃x, k̃r) is bounded. By using Barbalat’s lemma [43] we conclude than that limt→∞ e(x) = 0.

In Figure 5.2 you can see the a diagram representing the used implementation of the MRAC
controller.

5.1.2 Remarks

The model error ep(t) = xm(t) − x(t) can be interpreted as difference between the expected
model error and the actual error that is observed, if we add and subtract the reference signal r
to the model error:

e(t) = xm(t)− x(t) = r − x(t)− (r − xm(t)) = eact − eexp (5.17)

this quantity was used by L.R. Young to qualitatively design an adaptive controller [16]. The
Lyapunov function can also be interpreted as a measure of surprise since it’s an always positive
quantity that measures the deviation from the expected response. As in predictive coding neural
system is adjusting the gains of the feedback control to minimize (V̇ < 0) surprise [50].
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Figure 5.3: three channel model for modelling human behavior in a tracking task (objective is to
follow signal ft)on a pursuit display. The transfer function Hot represent the feedforward component
of the controller, Hox

the state feedback component while Hoe
is the fed the tracking error.

Figure 5.4: Two channel model for modelling human behavior in a tracking task (objective is to
follow signal ft) on a pursuit display. The transfer function Hot

represent the feedforward component
of the controller, Hox the state feedback component.

5.1.3 Comparison with classical pursuit architectures

Models of human operators for manual control tracking task using a pursuit display have been
already developed. These models though are often linear and time-invariant, characteristic that
strongly limit their usability. Mulder et all. give an overview of current challenges and state of
the art for manual pursuit tracking [51]. A general controller that makes use of three available
features is a three channel model as shown in Figure 5.3. The three channel model can be further
simplified since the the tracking error, the state and the signal are linearly related. A simplified
version is a two channel model with only the feedforward and state feedback components as
shown in Figure 5.4.

Interpretation of MRAC coefficients At every instant in time the MRAC controller is
equivalent to a two channel model, with a state feedback and a state feedforward component.
For the moment we ignore the time delay but we will analyse it late. The state feedback
transfer function is related ot the MRAC gain Kx = [kx1, kx2] by

Hox = kx1 + kx2s (5.18)

while the feedforward transfer function corresponds to the MRAC feedforward gain

Hot = kr (5.19)

This correspondence is exact if the delay is explicitly introduced in the MRAC controller. The
interpretation of the gains in therefore straightforward: higher kr and kx1 imply high level of
proportional control and high value of kx2 imply that model is using lead (or derivative control).
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Otherwise if the delay is not explicit, the MRAC controller can still approximate the delay
by changing the feedback gains and feedforward gains in a non trivial way. For example if the
reference model is chosen to be a simple integrator with delay, we can use the Padé approximation
of a first order to create a second order system, that approximate the desired behavior and can
be followed by the MRAC controller

Href = ωc
s

exp(−τs) ≈= ωc(2− τs)
s(2 + τs) (5.20)

5.1.4 Delay in MRAC

In the previous derivation we assumed no delay in the control input to derive a simple adaptive
control law. Unfortunately humans have delays in perception and actuation delays that should
be accounted for. The presence of delay can severely affect the performance and stability of a
linear state feedback controller. An adaptive state feedback controller, such as MRAC, is also
affected by such delay. In this section we briefly reformulate the problem including the input
delay and direct the reader to possible improvements on a the model considered in this thesis.

More formally we can write the system controller by the human operator as

ẋ(t) = A(t)x(t) +B(t)u(t− τ) (5.21)
u(t) = Kxx(t) + krr(t) (5.22)

where τ stands for the input delay. The reference system, which is also delayed in the input, is
given by

ẋm(t) = Amxm(t) +Bmr(t− τ) (5.23)

More generally the design of stable controllers and their analysis in presence of delays and
uncertainties can be done with Lyapunov-Krasovskii functional techniques [52]. A comprehensive
tutorial and review on Liapunov-methods for time-delayed system was written by Fridman [53].
For example consider a system with a constant input time delay tau

ẋ(t) = Ax(t) +A1x(t− τ) (5.24)

where A1 = BK. We can write a functional of the form

V (xt) = xT (t)Px(t) +
∫ t

t−τ
xT (s)Qx(s)ds (5.25)

with P and Q positive semidefinite, that satisfies the condition V (x) > 0 ∀xand∀t > 0 By
differentiating the Lyapunov function and applying the stability conditions we can derive the
following two conditions, which guarantee stability [53]

• A and A+A1 are Hurwitz

• A−1A is Schur matrix, i.e. all eigenvalues are inside the unit circle.

Therefore for each choice of feedback matrix K we can check with the above conditions if the
system is stable.

Specifically for evaluating the stability and robustness of MRAC controllers, Nguyen proposes
three different methods that make use of[54]:

• Pade approximation for delay

• Lyapunov-Krasovskii functionals with sum of squares optimization
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• Matrix measure method

Having a more robust MRAC controller or more information on its stability is highly valuable
when doing system identification. In particular. if an optimization routine is selected to find
parameters such as delay, gains and the reference model then having a robust controller can
prevent the optimization steps from diverging.

5.2 Selection Internal Model

We first examined the open-loop model proposed by McRuer. The model in the Laplace
domain has two free parameters: the time delay, τ , and the crossover frequency, ωc. These two
parameters can be found by a general non-linear optimization procedure or using the McRuer
rules [29].

To check the validity of the model, we fitted it on data provided by Zaal, that was collected in a
previous experiment [31]. In that experiment, participants were asked to perform a disturbance
rejection task, controlling the first order, a second-order and other 6 time-varying dynamical
systems.

In Figure 5.5a are shown the reference signal in yellow r, the time-averaged response of the
human operator in blue x and the predicted response by the model xm in red for the control
task of a first-order system. The same can be observed in Figure 5.5b where this time the system
was of second order. The parameters of the model have been optimized to minimize the mean
square error with the actual pilot response. As you can see, while McRuer original model fits
relatively well the human operator’s response for the control of a first-order system, it fails to
capture many of the oscillations present in the control of a second-order system. This is also
reflected in the much higher MSE of the model for the case in which the controlled dynamics
were of second order.

To solve this problem we propose to introduce "harmonic-oscillator" like dynamics that should
allow the model to better capture oscillations. From a physical point of view, these new dynamics
approximate the behavior of the arm of the controller. The proposed model is

HOL = HpHc = ωc
iω

ω2
n

s2 + 2ξωn + ω2
n

e−iωτ (5.26)

where ωn and ξ are the natural frequency and damping of the arm dynamics. These coefficients
can either be found with an optimization technique or set to ωn ≈ 8 and ξ ≈ 0.7 (critically
damped), as Hess suggests [40].

The results for the new model can be observed in Figure 5.5c and Figure 5.5d. You can observe
that the overall fitting improved for both conditions. In particular, the MSE is significantly
lower for fitting the control behavior for a second-order system. The higher level of oscillation
present in the tracking task for a second-order system is probably due to the higher bandwidth
required to control the system. The neuromuscular system could be therefore excited close to
its resonance frequency usually between 5/10 rad/s.

Therefore we consider the new proposed model as an alternative to the original McRuer model
for the reference controller in the MRAC algorithm. To be able to actually use it, we need to
transform it into a state-space representation. This is accomplished by using a Pade
approximation for the time delay.



5.3 Control under changing dynamics 67

(a) McRuer’s original model with a first order system
controlled.

(b) McRuer’s original model with second order system
controlled.

(c) New reference model with a first order system
controlled.

(d) New reference model with a second order system
controlled.

Figure 5.5: MSE of reference model fitted over the averaged output of a participant of Zaal’s
reference tracking experiment [31].

5.3 Control under changing dynamics

In this section, we examine how the MRAC algorithms behave, in a pursuit task, with drastic
changes in the dynamics of the controlled plant. In the following section, we consider sharp
changes in the dynamics all happening at time t = 25 seconds. We tested how the algorithm
responded for two classes of dynamical systems: first and second-order systems. For we used
the transfer function in Equation 5.27, Equation 5.28 as representative respectively of second,
first order systems. Figure 5.6 shows the bode plots for system H1 and H2.

H2(s) = 1
s(s+ 0.1) (5.27)

H1(s) = 1
(s+ 10)(s+ 0.1) (5.28)
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(a) H1 (b) H2

Figure 5.6: Bode plots showing magnitude and phase of two of the controlled systems.

5.3.1 Time-varying systems

To assess the adaptive capacities of MRAC we select the following two time-varying systems
H21, H12, to control

H21(t) =
{
H1, for t ≤ 25
H2, for t > 25

H12(t) =
{
H2, for t ≤ 25
H1, for t > 25

All cases are interesting and we expect a different transient response when going from controlling
a double to a single integrator w.r.t single to a double integrator. In the latter case, the control
policy of the human operator adapted to control a single integrator will lead to an unstable
system when the dynamics are changed.

The open loop reference model used to assess the transitions is

HOL = 3
iω

82

s2 + 20.78 + 82 e
−i0.3ω (5.29)

The values of the crossover frequency and delay are chosen equal to 3 rad/s and 0.3 s. These
values were chosen because they are in the range of values usually observed in these type of
experiment.

5.3.2 Initial conditions and sensitivity to learning rate

To perform the simulations we had to select initial values for the feedback gains kr and Kx and
for the learning rates.

Given the task of controlling the system Hij , the initial value of the gains kr0 and Kx0 are equal
to the steady state gains kr and Kx that MRAC converges to while controlling system Hi. In
this way, the initial gains do not change much before the dynamics of the controlled elements
are modified.

The value of the learning rate is also important. A higher learning rate can have several effects:
it could the convergence towards the optimal gains faster but at the same time, it could make
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the controller less robust towards noise and change of dynamics. A learning rate that is too high
effectively prevents the system from learning and converging to the reference model dynamics.

We examined the effect of the learning on the control of H21, which involves a rapid change of
gains to prevent system output to diverge. In Figure 5.7a, Figure 5.7c, Figure 5.7e are shown
the outputs of the MRAC system for an increasing value of the learning rate. A higher value
leads to faster convergence and more moderate oscillations during the transient control regime,
just after the change of dynamics. In Figure 5.7b, Figure 5.7d, Figure 5.7f you can see the
corresponding gains associated to the previous conditions. It is remarkable how fast the gains
can change and how small differences in the gains can already lead to very different transient
behaviors as shown in Figure 5.7c and Figure 5.7e.

5.3.3 Double to single integrator dynamics

In this subsection we consider the task of controlling the time-varying system H12. The learning
rates for the gains are set to γkr = 0.2 and γkx = [0.05; 0.1]. The initial values of the gains
were kx = [−15, 5], kr = 15. In Figure 5.8a you can see the time series of the output of the
reference model, of the MRAC operator model and of the reference signal. You can see that at
time t = 25 seconds.

In Figure 5.8a you can see that just after t = 25 seconds the MRAC controller undershoots
the reference signal and deviates from the reference model. The system adapts overtime: in
Figure 5.8c you can see the change in sign of the gain kx1 over a span of 10 seconds approximately.
With time the system learns to follow better the signal by increasing the gains kr and kx1.

5.3.4 Single to double integrator dynamics

In this subsection we consider the task of controlling the time-varying system H21. The learning
rates for the gains are set to γkr = 0.2 and γkx = [0.05; 0.1]. The initial values of the gains
were kx = [−15, 5], kr = 15. In Figure 5.8a you can see the time series of the output of the
reference model, of the MRAC operator model and of the reference signal. You can see that at
time t = 25 seconds.

In Figure 5.8a you can see that just after t = 25 seconds the MRAC controller overshoots the
reference signal and the closed-loop system is unstable. Nonetheless, the system quickly adapts:
in Figure 5.8c you can see the change in sign of the gain kx1. With time the system learns to
follow better the signal by increasing slightly the gains kr and kx1.
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(a) γr = 0.001 and γx = [0.0005, 0.0005] (b) γr = 0.001 and γx = [0.0005, 0.0005]

(c) γr = 0.011 and γx = [0.0055, 0.0055] (d) γr = 0.011 and γx = [0.0055, 0.0055]

(e) γr = 0.1 and γx = [0.05, 0.05] (f) γr = 0.1 and γx = [0.05, 0.05]

Figure 5.7: Time series of the output (left column) and gains (right column) of the MRAC model
while controlling system H21. yref , y and ym stand for the reference signal, the actual output and
the reference model output.
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(a) Outputs for H21 (b) Outputs for H12

(c) Gains for H21 (d) Gains for H12

Figure 5.8: Time series of the output of the reference model, ym, operator (MRAC) model, y,
the reference signal, yref (top row) and the gains (bottom row) of the MRAC model for controlling
system H21 (left column) and H12 (right column)



Chapter 6

Future Directions and Conclusion

In this chapter, we discuss the next steps in the research project.

6.1 Method’s developments and simulations

There are some limitations to the current methods that could potentially be addressed. To
obtain asymptotic convergence towards the reference model the matrices Am and A must be of
the same order and structure. A higher-order for the matrix Am is desirable to increase the order
of the padé approximation as well as to include the effect of the neuromuscular system. There
is a formulation of MRAC that is robust and guarantees bounded convergence of the adaptive
parameters even in case of a mismatch between the structure of Am and A. It would be also
interesting to include the optimal control modification of MRAC [43] to be consistent with the
discovered optimal nature of motor control [55].

We plan to verify the current method using the data collected by Zaal in a tracking experiment
with a plant with time-varying dynamics [31]. In particular, we plan to verify the quality of
fitting of the data and find the optimal value of the learning rate of the MRAC controller and
the delay and crossover frequency of the reference model.

6.2 Preliminary experimental plan

With the experimental plan, we plan to test whether MRAC is a good model of the human
motor control system. The experiment design is simple to reduce the number of participants for
the experiment.

Participants will be asked to perform a roll compensatory tracking task using a display, similar
to Figure 6.1, where the error, between the current state and the reference signal, is visualized.
The current state can be modified with the help of a joystick. The task of the participant is to
minimize the difference between the reference signal and the current state. The reference signal
is be a sum of sinusoidal functions at several frequencies.

The task will consist in controlling the system Hr21, a time-varying transfer function that
alternates between H2 and H1. A single run will last 100 seconds, the participant will have to
control system H1 for the first 40 seconds, then system H2 until the 70 seconds mark and
finally system H1 again until the end of the run. The first 10 seconds of the run will be
discarded.
In total there are two conditions. The first condition corresponds to an abrupt change in the
controlled dynamics in "step-like" fashion. In the second condition the change will happen
more gradually during an interval of 10 seconds. We chose these two conditions to test weather
the current adaptive scheme is able to model both situations.

The measured run will be ten per condition. Five runs will be used to train the model and the
other five to validate it. The five validation runs will be randomly distributed across the 10
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Figure 6.1: Example of a display that could be used for the experiment

runs. The validation and training set will have two different forcing functions. The sinusoidal
forcing functions will have the same set of frequencies and amplitudes but different phases.
The forcing function across different runs of the same set will be the same. This condition is
necessary to obtain an average policy by averaging across multiple runs the participant
response. The average or expected policy will then either be used to either train or validate
the model.

Sufficient training will be given to the participants until they reach asymptotic performance.
For each training run a forcing function with different phases will be used to ensure that the
participants don’t memorize the moment in time at which the system changes.

A sketch of the experimental procedure for the case Hr21 is shown in Figure 6.2.

Figure 6.2: Sketch of the experimental procedure controlling system Hr21. The system switches
between the H1 and H2, indicated in the sketch respectively with the numbers 1 and 2
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We would like to test whether MRAC with a constant learning rate can be a good model of
human adaptive motor behavior going from controlling H1 to H2 and vice-versa.

6.3 Conclusions

In this report, we addressed the problem of human adaptation under changes in the controlled
dynamics in the context of manual control with a joystick.

With the literature review, we surveyed the state of the art human motor control and
predictive coding, which is a well-supported theory of how the brain process information about
the world. Currently, the mainstream opinion about human motor control is that human
behave like optimal controllers to complete a task. The optimal control framework solves the
problem of redundancy, noise, uncertainty, delays and time-varying dynamics that are
properties of the human sensorimotor system. The optimal control framework has substantial
experimental evidence and it’s motivated by evolutionary ideas. Furthermore, it has been
found that humans optimally perform motor tasks making use of an internal model of the
motor system. The internal model allows the brain to predict the future, find the optimal
policy to accomplish the task and mostly rely on feedback for disturbance rejection rather than
planning. There is evidence that the cerebellum’s network encodes the integral model of the
dynamics of the human body.

The predictive coding framework is instead of a more general framework about intelligence. It
broadly states that intelligent systems have internal generative models about the world and make
a prediction about its future states. These predictions are then compared to the actual observed
sensory input and the resulting errors are minimized. The errors, the mismatch between the
expected state of the world and reality, are further propagated up the hierarchical neural network
for further processing. They can either drive actions or change the internal model so that the
errors are minimized.

Inspired by predictive coding we selected the adaptive control technique "Model Reference
Adaptive Control" (MRAC) to model human adaptation, as it leverages McRuer’s insight that
the open-loop dynamics of a system controlled manually has the structure of a first-order
stable system with delay. In its essence, the MRAC scheme creates a controller that converges
to a specified reference controller, called the reference model. The reference model used is the
McRuer model for open-loop dynamics. The reference model corresponds to the internal model
that human development while learning to control a new dynamical system.

To validate the MRAC framework we plan first to test it in simulation using data collected by
P. Zaal [31]. We aim at establishing the best learning rate, delay and crossover frequency, which
are the free parameter of the MRAC controller, by using an optimization procedure. After
the validation in the simulation, we plan to perform a the reference tracking experiment where
participants are asked to control a time-varying system. We hope in this way to establish if
MRAC can predict the transient behavior of the human operators.
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Chapter A

Time Traces of System Outputs
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Figure A.1: Time traces of the output of the system controlled by the participants. Each line
represent the system’s output for a single participants. For conditionsDYN = 212 andDYN = 121,
the controlled system in the areas colored in blue behaved approximately a double integrator while
in the area left uncolored as a single integrator.
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Figure A.2: Time traces of the output of the system controlled by the MRAC controllers fitted on
the participants data. Each line represent the system’s output for a single MRAC controller. For
conditions DYN = 212 and DYN = 121, the controlled system in the areas colored in blue behaved
approximately a double integrator while in the area left uncolored as a single integrator.



Chapter B

Time Traces of Participants and MRAC
Control Outputs
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Figure B.1: Time traces of the control output of the participants. Each line represent the system’s
output for a single participants. For conditions DYN = 212 and DYN = 121, the controlled
system in the areas colored in blue behaved approximately a double integrator while in the area left
uncolored as a single integrator.



83

0 10 20 30 40 50 60 70 80 90

t [s]

-5

0

5

u 
[r

ad
]

#10 -3 System with DYN 1

0 10 20 30 40 50 60 70 80 90

t [s]

-5

0

5

u 
[r

ad
]

#10 -3 System with DYN 2

0 10 20 30 40 50 60 70 80 90

t [s]

-5

0

5

u 
[r

ad
]

#10 -3 System with DYN 121

0 10 20 30 40 50 60 70 80 90

t [s]

-5

0

5

u 
[r

ad
]

#10 -3 System with DYN 212

Figure B.2: Time traces of the output of the MRAC controllers fitted on the participants data.
Each line represent the system’s output for a single MRAC controller. For conditions DYN = 212
and DYN = 121, the controlled system in the areas colored in blue behaved approximately a double
integrator while in the area left uncolored as a single integrator.



Chapter C

Time Traces of Estimated MRAC Gains

Figure C.1: Time series of the MRAC gains found for each participant.



Chapter D

Human Research Ethics Committee
Checklist



 

 

 

Delft University of Technology  
ETHICS REVIEW CHECKLIST FOR HUMAN RESEARCH 

(Version 18.06.2020) 
 
 
This checklist should be completed for every research study that involves human participants and 
should be submitted before potential participants are approached to take part in your research study. 
This also applies for students  doing their Master-thesis.  
 
In this checklist we will ask for additional information if need be. Please attach this as an Annex to 
the application. 
 
The data steward of your faculty can help you with any issues related to the protection of personal 
data. Please note that research related to medical questions/health may require special attention. 
See also the website of the CCMO. 
 
Please upload the documents (go to this page for instructions). 
 
Thank you and please check our website for guidelines, forms, best practices, meeting dates of the 
HREC, etc.  
 
 
I. Basic Data  

 
 

Project title: A predictive coding approach to adaptive 
manual control  

Name(s) of researcher(s): Lorenzo Terenzi 

Research period (planning)  January 2021 

E-mail contact person lterenzi@student.tudelft.nl 

Faculty/Dept.  Aerospace Engineering/C&S 

Position researcher(s): MSc Student 

Name of supervisor (if applicable): Dr. ir. D.M. (Daan) Pool 

Role of supervisor (if applicable): Assistant Professor 
I.  
 
  
II. A) Summary Research 

 
This research investigates the abilities of human operators to adapt to changing controlled element 
dynamics. The research objective is to come up with a model that can predict the human adaptation 
process. Earlier research was used to find already existing models and extend them into a more 
general framework. Our model was firstly tested by performing computer simulations. The results 
of a simple tracking task experiment will be used to verify and validate the model and the computer 
simulation findings.  
 
 
 
 
B) Risk assessment & risk management 
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Two potential risk factors are fully dealt with, as described below. Additionally, the COVID-19 
pandemic requires a protocol which is described in the remainder of this section.  
 
1. All stored data is anonymized and stored under only a numeric subject ID. In addition, only 

objective human control data is collected, no sensitive personal data is analysed.  
 

1. Simulator sickness is highly unlikely during this experiment, due to the use of a simple abstract 
display that is located directly in front of the participant. However, any discomfort experienced 
by the participants may be reported, after which the experiment will be aborted. Participants 
will be briefed on this prior to the experiment (see attached Experiment Briefing).  

 
COVID-19 protocol 
 
Given the health risks related to the outbreak of COVID-19 (‘coronavirus’), measures will be taken 
to reduce the risk of spreading this virus for experiment participants, the researcher and other 
people present at and around the facility. A detailed overview of these measures can be seen in 
the attached document “COVID-19 Protocols for Human Subject Experiments of the TU Delft 
Control & Simulation department”. They are in line with the latest advice given by the Dutch health 
authorities (see https://www.rijksoverheid.nl/coronavirus). A combination of hygiene actions and 
social distancing measures is applied to reduce the risk of spreading the virus. 

 
a. General measures 

 
In the case that participants show symptoms of the virus, they will not be allowed to take part 
in the experiment. As part of the strict entrance policy at the aerospace faculty, all participants 
are obliged to swipe their campus card or inscribe in a dedicated form when entering the 
building. Therefore, an overview is available of every person entering the building. This helps 
contact tracing in the exceptional (and hopefully absent) case of a positive COVID-19 test. 
Furthermore both the researcher and the participant will wear a face mask while in the public 
spaces of the Faculty building. 
 

b. Hygiene measures 
 
All parts of the simulator that the experiment participants touches will be cleaned with  
Disinfectant before the experiment and in between any possible break. Moreover, both 
participant and researcher will wash or disinfect their hands before and after the experiment. 
Disinfectant will be made available.  
 

a. Social distancing 
 
In line with the advice by the Dutch health authorities, 1.5 meters distance will be kept between 
researcher and participant at all times. During the experiment, the participant will sit in the 
simulator, while the researcher is at his control desk. These are two different spaces, separated 
by a glass wall. 
 

The following statements will be added to the informed consent form: 
 
- I confirm that the researcher has provided me with detailed safety instructions to ensure my 

experiment session can be performed in line with current RIVM COVID-19 regulations at all 
times and that these instructions are fully clear to me. 

- I understand that also for my travel to/from the experiment session I should adhere to all 
current RIVM COVID-19 regulations. I confirm that I have travelled to TU Delft’s Faculty of 
Aerospace Engineering with either my own car, by bicycle, or on foot. 
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III. Checklist 

 
    

Question Yes N
o 

1. Does the study involve participants who are particularly vulnerable or unable to 
give informed consent? (e.g., children, people with learning difficulties, patients, 
people receiving counselling, people living in care or nursing homes, people 
recruited through self-help groups). 

 X 

2. Are the participants, outside the context of the research, in a dependent or 
subordinate position to the investigator (such as own children or own students)? 

 X 

3. Will it be necessary for participants to take part in the study without their 
knowledge and consent at the time? (e.g., covert observation of people in non-
public places). 

 X 

4. Will the study involve actively deceiving the participants?  (For example,  will 
participants be  deliberately falsely informed, will information be withheld from 
them or will they be misled in such a way that they are likely to object or show 
unease when debriefed about the study). 

 X 

5. Sensitive personal data 
● Will the study involve discussion or collection of personal sensitive data 

(e.g., financial data, location data, data relating to children or other 
vulnerable groups)? Definitions of sensitive personal data, and special 
cases thereof are  provided here. 

 
 

X 

6. Will drugs, placebos, or other substances (e.g., drinks, foods, food or drink 
constituents, dietary supplements) be administered to the study participants?  

 X 

7. Will blood or tissue samples be obtained from participants? 
 

 X 

8. Is pain or more than mild discomfort likely to result from the study?   X 

9. Does the study risk causing psychological stress or anxiety or other harm or 
negative consequences beyond that normally encountered by the participants in 
their life outside research?  

 X 

10. Will financial inducement (other than reasonable expenses and compensation for 
time) be offered to participants?  
 

 X 

Important: 
if you answered ‘yes’ to any of the questions mentioned above, please submit a full 
application to HREC (see: website for forms or examples). 

11. Will the experiment collect and store videos, pictures, or other identifiable data 
of human subjects?   
. 

 X 

12. Will the experiment involve the use of devices that are not ‘CE’ certified?   
 
Only, if ‘yes’: continue with the following questions:    
   

X  
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Chapter E

Experiment Briefing



Experiment Briefing 
ADAPTIVE MANUAL CONTROL 

The experiment, conducted in the Human-Machine Interac6on Laboratory (HMI-Lab), analyses hu-
man tracking behaviour. The experiment consists of a simple tracking task. This briefing will introduce 
you to the experiment and what is expected of you as a par6cipant. 

The goal of this experiment is to inves6gate human adap6ve behaviour. A simple tracking task, con-
taining varia6ons in controlled element dynamics,  will be performed to gather data on this adap6ve 
behaviour. 

The task you will be carrying out is a tracking task with a pursuit display (i.e. you can only see the tar-
get signal and the output of the system you are controlling). It is your task to keep the error as low as 
possible by moving the side-s6ck on your right hand-side to leF or right. 

Each tracking run lasts about 100 seconds. During each run the controlled element dynamics of the 
system might change. It is important that you con6nue to focus on keeping the error as low as possi-
ble by con6nuously controlling the system. The researcher will keep track of your performance and 
will announce when the experiment has been completed. You will start the experiment with a train-
ing phase, where you will be familiarised with the different scenarios and controlled element dynam-
ics. 

Short breaks can be taken between runs to alleviate any discomfort that might occur due to control-
ling the side-s6ck or aFer siNng in a fixed posi6on for a prolonged period of 6me. A longer break will 
be taken aFer the first hour, where you will be taken out of the simulator for 5-10 minutes. The ex-
periment will last approximately 2 hours. 

For each driving trial, the subsequent procedure will be followed: 

1. The researcher applies the seNngs for the next run. 

2. The researcher checks whether the par6cipant is ready to proceed and ini6ates the run aFer 
a countdown from 3 (3-2-1-go). 

3. The par6cipant performs the tracking task. 

Experiment Goal

Experiment Task

Experiment Procedures
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4. The par6cipant will be no6fied of their performance in the run in terms of error score aFer 
the completed run. 

Due to the ongoing COVID-19 (’coronavirus’) pandemic, several measures are taken to reduce the risk 
of spreading it. First and foremost, researcher and par6cipant will follow the guidelines as indicated 
on the Dutch government website  on the day of the experiment. Related to this experiment, the fol1 -
lowing four measures are taken: 

• Both researcher and par6cipants confirm they do not have symptoms related to COVID-19. 

• 1.5 meter distance will be kept between researcher and par6cipant at all 6mes. 

• All touched objects in the simulator will be disinfected by the researcher before and aFer the 
experiment. 

• Before and aFer the experiment both researcher and par6cipant will wash or disinfect their 
hands. 

This experiment will be performed following the most recent "COVID-19 Protocols for Human Subject 
Experiments" of the Control and Simula6on department. 

Par6cipa6on in the experiment is voluntary. This means that you can terminate your coopera6on at 
any 6me. By par6cipa6ng in the experiment you agree that the collected data may be published. Your 
data will remain confiden6al and anonymous, so only the experimenter can link the results to a par-
6cular par6cipant. To make sure that you understand and comply with the condi6ons of the experi-
ment, you will be asked to sign an informed consent form. 

Thank you for par-cipa-ng! 
 

COVID-19 protocol

Your rights

Contact informa6on researcher: 
Lorenzo Terenzi 
lterenzi@student.tudelF.nl 
+31 640660024

Contact informa6on research supervisor 
Dr. ir. Daan Pool 
d.m.pool@tudelF.nl 
+31 15 2789611

 hfps://www.rijksoverheid.nl/coronavirus 1
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Chapter F

Experiment Consent Form



I hereby confirm, by .cking each box, that: 

Experiment Consent Form

Adap%ve Manual Control Experiment

1. I volunteer to par.cipate in the experiment conducted by the student re-
searcher (Lorenzo Terenzi) under supervision of Dr.ir. Daan Pool from the 
Faculty of Aerospace Engineering of TU DelH. I understand that my par.cipa-
.on in this experiment is voluntary and that I may withdraw and discon.nue 
par.cipa.on at any .me, for any reason.

!

2. I have read the experiment briefing and confirm that I understand the instruc-
.ons and have had all remaining ques.ons answered to my sa.sfac.on.

!

3. I understand that my par.cipa.on involves performing a tracking task in a 
fixed-based simulator.

!

4. I confirm that the researcher has provided me with detailed safety and opera-
.onal instruc.ons for the hardware (simulator setup, control-loaded s.ck, 
fire escape) used in the experiment.

!

5. I understand that (though very unlikely) it is possible that I may develop some 
feelings of discomfort caused by focussing on the display. If this is the case, I 
will inform the experimenter. I also understand that the experiment may be 
discon.nued for this reason.

!

6. I understand that the researcher will not iden.fy me by name in any reports 
or publica.ons that will result from this experiment, and that my confiden.al-
ity as a par.cipant in this study will remain secure.

!

7. I give permission to publish the anonymised data gathered in this study in a 
Open Access repository

!

My Signature Date

My Printed Name Signature of researcher

Contact informa.on researcher: 
Lorenzo Terenzi  
lterenzi@student.tudelH.nl 
+31 640660024

Contact informa.on research supervisor 
Dr. ir. Daan M. Pool 
d.m.pool@tudelH.nl 
+31 15 2789611
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Chapter G

COVID19 Protocol

It’s attached the part of the faculty COVID19 protocol that is relevant for this experiment.



Facility Report
COVID-�� Protocols for

Human Subject Experiments
by

Max Mulder,
Rene van Paassen,

Daan Pool,
Clark Borst,

Olaf Stroosma,
Olaf Grevenstuk,

Andries Muis,
Ferdinand Postema,

Harold Thung
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�
General protocols

In this document we formalize “COVID-19” protocols for human subject experiments in three facilities avail-
able at TU Delft’s Faculty of Aerospace Engineering – the SIMONA Research Simulator, the Human-Machine
Interaction Laboratory, and the Air Traffic Management Laboratory – to ensure experiments can still be per-
formed safely. Our main goal is to ensure that the current RIVM regulations (at the time of writing of this
document those dated October 20, 2020) as well as the advice from the TU Delft Human Research Ethics
Committee will be followed at all times. This includes maintaining 1.5 meters distance, no shaking hands,
ensuring proper ventilation, etc. Additionally, all experiments that would require close contact with partic-
ipants (e.g., placing heart-rate sensors) are forbidden. The general protocols described in this chapter will
be adhered to for human subject experiments in all three experiment facilities. In addition, we intend to
update this document, and our procedures, in line with any future changes of the RIVM regulations and
our experiences running experiments under this protocol.

1.1. Recruiting participants
Recruitment of participants for experiments shall be limited to TU Delft staff members, TU Delft students
and/or external professionals (e.g., pilots) only. Upon recruitment we will explain all safety precautions taken
before, during, and after the experiment (including travel requirements) to participants. In addition, for all
experiments we will add two additional statements to our Informed Consent forms to also record partici-
pants’ awareness of, and agreement to meet, these COVID-19 safety requirements:

• I confirm that the researcher has provided me with detailed safety instructions to ensure my experiment
session can be performed in line with current RIVM COVID-19 regulations at all times and that these
instructions are fully clear to me.

• I understand that also for my travel to/from the experiment session I should at all times adhere to to
current RIVM COVID-19 regulations. I confirm that I have travelled to TU Delft’s Faculty of Aerospace
Engineering with either my own car, by bicycle, or on foot.

Participants with symptoms cannot take part and should stay home. This will be checked and asked for
during planning the experiment sessions, but also before entering the faculty (similar to rules for “contact-
beroepen”). Facility-specific procedures are disclosed in the next chapters of this document.

Finally, we limit experiment participation to a maximum of two participants per facility per day, to avoid
having large numbers of additional people in the Faculty building. If two participants perform an experi-
ment in the same facility, the experimenter is responsible for planning in sufficient time between sessions to
guarantee that:

1. the two participants will not be in the Faculty building at the same time nor be at the Faculty entrance
at the same time

2. sufficient time is available between the two experiment sessions to ensure all surfaces can be properly
cleaned and the room can be ventilated
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1.2. Traveling 1. General protocols

1.2. Traveling
Due to the current RIVM guidelines, participants who will have to use the public transportation system for
travelling to the faculty are excluded by default. Participants should only travel to their experiment session
by either car, bicycle, or on foot. Traveling to and from the faculty shall be avoid the rush hours as much as
possible.

1.3. Entering and leaving the faculty
Given that there are three experiment facilities (i.e., SIMONA, HMILab and ATMLab) that are at different loca-
tions in the faculty (at more than 15 meters apart!), a maximum of six experiment sessions can be performed
per day. Scheduling the start and end time of an experiment will include at least a 15-minute interval between
different experiments, such that only one participant will arrive, and enter the faculty, per time slot. This will
avoid gatherings of researchers and participants at the entrance/exit of the faculty.

For participants to be able to enter the faculty for your experiment, it is required to register them before-
hand. This has to happen in two steps:

1. Registration of the experiment at C&S. To ensure we can coordinate who is experimenting when across
the different simulators, please send an email to Daan Pool (d.m.pool@tudelft.nl). This email should
include:

• Name of researcher (typically the student)

• Name of the responsible experiment supervisor (an employee who is present at the Faculty on
the day(s) of your experiment sessions)

• Simulator facility you will be using

• The dates and times at which you will test participants

2. Registering participants at the Servicepoint (main entrance). NOTE: This step should only be done
after getting approval from the experiment from C&S (point 1 above)! Participants can only be al-
lowed to enter the faculty if they have been registered prior to their arrival at the Servicepoint. For this
the researcher (i.e., the person who will run the experiment) has to send the following information to
the Servicepoint (Servicepunt-LR@tudelft.nl), with a “cc” to Joyce ten Berge (K.J.tenBerge@tudelft.nl):

• Name of researcher (typically the student) and contact phone number (cell phone)

• Name of the responsible experiment supervisor (an employee)

• A list of participant names and the dates and times at which they will be at the faculty

If your list is accepted, the Servicepoint will then receive your participants at the main entrance, sign
them in on the faculty attendance list, and call the researcher. Registering new participants with the
Servicepoint can be done until the morning of the day of the experiment. Please make sure that you
instruct your participants to contact you themselves upon their arrival at the Faculty, so that you pick
them up as quickly as possible.

After entering the faculty building, the researcher will pick up participants at the main entrance and lead
them (while keeping 1.5 meters distance) to the experiment facility, following all guiding indications and
signage for moving through the buildings safely. Under the current RIVM regulations, that means that both
the researcher and the participant will wear a face mask while in the public spaces of the Faculty building. So,
overall we will follow exactly the same procedures as used for graduating MSc. students entering the building.
All experiment sessions will be scheduled during the regular opening hours of the faculty during normal week
days (thus, no sessions in the evening and/or during the weekend).

1.4. Before, during and after an experiment
Before an experiment, the researcher and participant will both wash their hands according to the RIVM guide-
lines.
During the experiment, the distance norm of 1.5 meters will be respected at all times, and direct physical
contact with the participant will be avoided (e.g., no shaking of hands). Sharing objects, such as keyboards,
mouse devices, coffee cups, pens and papers will be avoided. When a paper briefing is required, a new set of
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papers will be printed for each individual participant.
After each break during an experiment, the researcher and participant will both wash their hands before
resuming the experiment session. Additionally, the researcher will sanitise the hardware equipment (using
disinfecting spray and dispensable paper towels) that will be in direct contact with the participant.
After each experiment, the researcher will guide the participant towards the building exit. Afterwards, the
researcher will again sanitise the hardware equipment. Other facility-specific procedures are defined in the
chapters that follow.

1.5. Evacuation
In case of an emergency situation (e.g., fire), any social distancing requirements are temporarily suspended
in favour of a safe and expeditious evacuation.

1.6. Experiment supervisors
The experiment supervisors will always be TU Delft staff members. In cases where the experimenter is an MSc
student, the experiment supervisor has to be “on call” in the Faculty building as the responsible supervisor.
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Human-Machine Interaction Laboratory

The Human-Machine Interaction Laboratory (HMILab), see Fig. 3.1, is located in low-rise part of the Aerospace
Engineering building in room LB037. There are two connected rooms, see Fig. 3.2: a control room for the ex-
perimenter and a room with the real experiment setup, consisting of car driving and aircraft control stations.
Access to the experiment room is only possible through the control room.

Figure 3.1: The Human-Machine Interaction Laboratory (HMILab).

Figure 3.2: COVID-19 access measures for the HMILab.

3.1. Recruiting participants
The HMILab recruiting protocol is the same as the general recruiting protocol.
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3.2. Traveling 3. Human-Machine Interaction Laboratory

3.2. Traveling
The HMILab traveling protocol is the same as the general traveling protocol.

3.3. Entering and leaving the faculty and facility
The HMILab entry protocol is the same as the general entry protocol. At the laboratory, the experimenter and
participant will avoid being both in the same room, see Fig. 3.2. This will be achieved by having the partici-
pant enter first, and continue directly to the experiment room. The experimenter enters second, keeping 1.5
m distance at all times. Exiting the HMILab happens in the reverse order.

3.4. Briefing
The briefing and debriefing of the participant will be performed at standing tables outside the HMILab, see
Fig. 3.3, while maintaining sufficient distance between experimenter and participant (e.g., separate tables for
experimenter and participant).

Figure 3.3: Briefing space for HMILab experiments.

3.5. Experiment
The rooms are too small to easily maintain the required 1.5 m distance, therefore the participant will use the
experiment room and only use the control room to enter or leave the experiment room, the experimenter only
uses the control room, and vacates that room when the participant wants to leave or enter the experiment
room.

All surfaces and objects the participant and experimenter handle during the experiment, shall be disin-
fected between participants, after each break and after the experiment. This includes:

• Control inceptors used by the experiment (side stick, steering wheel, throttle handle)

• Other interfaces used during the experiment (MCP, CDU)

• Simulator surfaces (emergency buttons, door handles, chair and armrest)

• Control room devices and surfaces (mouse, keyboard, door handles)

• Tables used for experiment briefing and debriefing.

3.6. Evacuation
The evacuation protocol is the same as the general evacuation protocol.
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Chapter H

Runtable Example

In appendix is shown an example of a run table used for one of the participants. The left most
column is used to fill the run number, the middle column states the experimental condition to
be tested and the third columns leaves space for possible comments on the runs.



schedule_5

Run Id  Condition  Comments 

 121T  

 121V  

 1  

 121T  

 2  

 121T  

 212T  

 2  

 121T  

 212T  

 1  

 212V  

 212V  

 212T  

 212T  

 212T  

 212V  

 121V  

 121V  

 121T  
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