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Abstract

This papers examines an ant colony optimization
approach for solving a specific variant of the Flex-
ible Job Shop Problem faced by the Dutch chem-
istry company DSM. Jobs consisting of operations
on a specific enzyme need to be scheduled as effi-
ciently as possible on groups of available machines.
The most interesting requirement upon the general
FJSP are the sequence-dependent cleaning times
a machine needs when it processes two different
enzyme types consecutively. This can all be in-
tuitively represented using a weighted disjunctive
graph, which ACO uses as its input. The algo-
rithm consists of a number of epochs for which
multiple ants create a feasible schedule one oper-
ation at the time. Scheduling choices are made
using pheromones and an heuristic visibility func-
tion based on earliest starting times. Pheromone
amounts are updated using both a negative local
updating rule and a positive global update for the
best ant per epoch. Two hyperparameters, the ini-
tial pheromone amount τ0 and the cutting explo-
ration parameter q0 are experimentally evaluated.
Varying τ0 does not consistently impact the solu-
tion quality nor runtime, while the higher the value
of q0, the better both measures. Performance evalu-
ation of ACO is done using a provided MILP solver
as baseline and the makespan as objective function
for a range of different time limits. For the tested
instances, ACO shows to significantly outperform
MILP, finding good solutions exceptionally fast.
Based on this, ACO is an efficient method to solve
the production scheduling problem of DSM.

1 Introduction
Production scheduling is one of the most important matters in
manufacturing systems [1]. A concrete example is the chal-
lenge the Dutch chemistry company DSM faces. They repeat-
edly have to solve a complex scheduling question for their en-
zyme production line. In their plants batches of enzymes are
produced according to a product-specific recipe that consists
of different unit operations, which need to be scheduled as ef-
ficiently as possible on the available machines. The complex-
ity of the problem raises by the fact that specialized cleaning
is required if one machine successively processes two differ-
ent products. This makes it a special form of the flexible job
shop problem (FJSP).

This example from DSM does not stand on its own. There
are many significant real-world applications of the FJSP [1],
but being NP-hard [2], it is very challenging to solve. There-
fore the problem has been extensively studied in literature, the
first time being in 1990 [3]. An established graphical method
for the JSP was adapted so it could be used for it’s flexible
variant, but this approach turned out not to be very efficient
for three or more jobs. A better way to solve the FJSP was
found in the form of (mixed) integer (linear) programming
(MILP) [4]. This mathematical technique encompasses most

of the exact algorithms that are presented in literature. While
an exact approach like MILP guarantees the optimal solution,
as a consequence of the problem’s complexity, the runtime
grows quickly. Therefore this method is often not viable for
real-world instances with larger problem sizes.

Hence, much research has been done on heuristic ap-
proaches and the use of metaheuristics for the FJSP [1, 5].
An example for this last category is ant colony optimization
(ACO), a population-based probabilistic algorithm inspired
by the foraging strategies of ants. Initially developed for the
travelling salesman problem [6], it was first applied to the JSP
in 1994 [7]. Rossi showed it could also be extended to the
FJSP [8, 9]. In his flexible job-shop environment there were
sequence-dependent setup times, which can be compared to
the extra cleaning requirement in DSM’s problem. Subse-
quently, several improvements to the ACO strategy have been
suggested [10, 11, 12], showing good results for many differ-
ent problems [5].

Most of the previous work has been focused on pure re-
search, developing new/improving existing algorithms which
are tested on standard benchmarks, instead of applying it to a
concrete, practical problem [5]. Especially the personal needs
of real-world production environments, which are becoming
more and more complex, should be investigated [1]. This re-
search focuses on such a specific problem of a manufacturer:
DSM. ACO, chosen because of the good previous results with
sequence-dependent setup times, is applied to DSM’s specific
variant of the FJSP, followed by analyzing the performance.

Formally, this expressed in the following research ques-
tion: Can ant colony optimization be used to efficiently
solve the production scheduling problem of DSM? In or-
der to determine whether the ACO approach is efficient, the
more conventional MILP method is used to establish a base-
line. To be able to tackle the research in a step-by-step man-
ner, the main research question can be broken down into the
following subquestions:

1. What is the performance of solvers for the mixed integer
linear programming formulation of this problem?

2. How can ant colony optimization best be applied to this
problem?

3. What is the performance of the ant colony optimization
method implemented for this problem?

4. How does ACO compare to MILP for tackling this prob-
lem?

For the above questions, minimizing the makespan is the ob-
jective function, which is also the case for most existing re-
search on the FJSP [5]. However, for DSM it is also impor-
tant to meet certain due dates for customers and minimize the
idle time of the machines. This leads to the following extra
subquestion:

5. How can be dealt with conflicting objectives in the opti-
mization problem?

The rest of the paper is organized in the following man-
ner. A formal description of DSM’s variant of the FJSP is
given in Section 2. Section 3 presents the ACO algorithm im-
plemented to solve this problem, followed by a description
of the experimental setup and results in Section 4. Section 5



reflects on the ethical aspects of the research. A discussion
of the results can be read in Section 6 and finally Section 7
provides the conclusions of this study.

2 Formal description of DSM’s Flexible Job
Shop Problem

To be able to give a more formal description of the DSM prob-
lem introduced in the previous section, it is helpful to first
define its generalizations. The general job scheduling prob-
lem [13] can be defined as follows: there are N jobs having
different processing times, and M machines having different
processing power. The jobs need to be scheduled on the ma-
chines in such a way that the total length of the schedule, also
called makespan, is minimized. A variant of this is the job
shop problem (JSP), where each job consists of a set of oper-
ations that need to be processed in order and each on a specific
machine. Finally, the flexible job shop problem (FJSP) is a
relaxation hereof, allowing each operation to be processed on
a set of identical machines.

DSM’s variant of the FJSP has an extra complication: the
required cleaning times when two operations of jobs of dif-
ferent enzyme type are consecutively processed on the same
machine. A generalization of this which can be found in lit-
erature [8, 9] is the FJSP with sequence-dependent setup
times. However, DSM’s problem becomes even more diffi-
cult, because the setup times can differ per machine within
the sets of identical machines. Hence the machines in each
set are actually not completely identical, as is generally the
case.

There are also some simplifications compared to the gen-
eral FJSP for DSM’s case. There are namely only three dif-
ferent operation types: preparation, filtering and reception.
Also, there is one set of available machines for each of these
unit operations, and these sets are disjoint, meaning no ma-
chine can support multiple operation types. The machines
within each set are identical in the sense that can all perform
the same operation type, with the same processing time. The
processing times for each unit operation differ per enzyme
type, which is associated with each job, but thus not per ma-
chine. However, as mentioned in the above paragraph, the
setup times do differ per machine within each set. The two
other variables that determine how long cleaning takes are the
enzyme types of the jobs including the two successive oper-
ations that are carried out on the machine, where the relative
order of the two operations is important. Therefore, if E is
the total number of different enzyme types over all jobs, this
results in M ExE change-over matrices.

The main objective for DSM, as for most FJSPs referenced
in literature [5], is the minimization of the makespan. How-
ever, each job also has a due date and meeting these can be
enforced by minimizing the tardiness of the schedule. Finally,
DSM also prefers to keep the idle times of the machines as
low as possible. Optimizing these three objectives at the same
time results in a multi-objective FJSP.

3 Ant Colony Optimization algorithm for
solving the DSM problem

Before diving into the specific ACO algorithm implemented
for this research, some general background explanation on
the method is given. As mentioned in the introduction, ACO
is a metaheuristic approach. This means it is a higher-level
algorithmic framework that can be applied to many different
problems to find feasible solutions. The fact that it does not
necessarily return the optimal solution makes it heuristic.

Of course the goal is to find as good as possible solutions,
and ACO does this by mimicing the foraging behaviour of
ants. The algorithm is population-based, creating multiple
artifical ants for different generations. While exploring the
search space, these agents lay down pheromones, to direct
ants in later generations to better solutions. Being proba-
bilistic, ants will not always exploit the path with the most
pheromones, but still explore other routes too.

ACO was initially invented [6] for the travelling salesman
problem (TSP), for which a set of cities needs to be visited
using the shortest route possible. An instance for the TSP
is intuitively represented as a graph, with the nodes being the
cities, and weighted edges representing the distances between
every pair of these. Using ACO for this problem would mean
that each individual ant walks a path through the graph, vis-
iting each node exactly once. The better the route of the ant
turns out to be, the more pheromones will put on the corre-
sponding edges. The idea is that later generations will find
better and better paths, and in the end the best route found is
chosen as the solution.

To be able to apply ACO to DSM’s problem, instances of
this problem also need to be modeled as a graph. This is pos-
sible using the disjunctive graph representation [8, 9], which
can be seen in Figure 1.

Figure 1: An example of a weighted disjunctive graph for the FJSP,
taken from [8]. The specific variant of the problem investigated in
the cited paper has some differences compared to one researched in
this paper. For the DSM problem the different node outlines can be
ignored. Also, there is only one weight per node, instead of four,
and one weight per undirected edge, instead of zero in this graph.

In the graph there is a node for each operation plus a
dummy start and end node. The picture shows three indices
per operation node representing the job, operation number
and machine pool. For the DSM problem, this can actually
be simplified to two indices, since the machine pools are de-
fined to be disjoint sets per operation type.

The nodes are connected with two types of edges: directed
and undirected, both serving a different purpose. All consec-



utive operation nodes of the same job have a directed edge
between them to specify the operation order within this job.
All operation nodes that can be scheduled on the same pool
of machines are connected with an undirected edge, one for
each individual machine in this pool. During the ACO al-
gorithm, these are either directed or removed, indicating that
they respectively have been included in the schedule or can
not be included in the schedule anymore.

Both the nodes and edges have weights. At the start each
operation node has only one weight: the corresponding pro-
cessing time, which is the same for each machine in the same
machine pool. On runtime, it is convenient to also store the
start and completion time of each operation on the node, once
it has been scheduled. Since the cleaning times vary for the
different machines, these cannot be stored on the nodes as
done in [8, 9]. A solution is to instead put them on the undi-
rected edges, one value for both directions specifying the or-
der in which the connected operations may be included in the
loading sequence of the respective machine.

Using the just described weighted disjunctive graph as in-
put, ACO can be applied. Figure 2 shows conceptual pseu-
docode for this. A few parts of the algorithm require some
more detailed explanation, which is given below.

Figure 2: The pseudocode for the implemented ACO algorithm.

The first component to discuss is the transition probability
rule, which is used to select a move S from the set of fea-
sible moves FM . A move M of ant is defined as walking
over a specific an undirected edges in one of the two direc-
tions. This is based on both the pheromone amount τ of this
move, indicating the previous experience with including it in
the schedule, and a visibility function η, a heuristic predicting
the quality of this move. The latter is especially important for
the first generations of ants, which moves will this way not be
completely random. This would be the case when only using
the pheromones, which are initialized equally at the start of
the ACO algorithm with a small positive constant τ0.

Move selection is done using the following equation:

S =

{
argmaxM∈FM{τ(M)α ∗ η(M)β} if q ≤ q0

J : P (J) = τ(J)α ∗ η(J)β∑
M∈FM τ(M)α ∗ η(M)β

if q > q0
(1)

Here q is a number which is each time randomly generated
between 0 and 1. q0 is the cutting exploration parameter from
[14], also between 0 and 1, with the purpose of creating a
balance between exploitation and exploration. α and β de-
termine the influence of respectively the pheromones and the
heuristic visibility function.

For the visibility function the Earliest Starting Time (EST)
dispatching rule is chosen. This turned out to be the best
heuristic for ACO among several dispatching rules [15]. In
this reference the authors investigated the general problem
without sequence-dependent setup times, but to make it suit-
able for DSM’s variant of the FJSP, the cleaning times are
simply incorporated in the starting time calculation:

st(Onr) = max{ct(On′r) + clt(M), ct(Onr−1)} (2)

ct(Onr) = st(Onr) + pt(Onr) (3)
st, ct, clt and pt are respectively the start, completion, clean-
ing and processing times. r − 1 refers to the previous opera-
tion of job n and M is the move On′r

m−→ Onr.
After selecting a move using the transition probability rule,

the ant decreases the corresponding amount of pheromones
using the following local updating rule:

τ(M) = (1− ρ) ∗ τ(M) + ρ ∗ τ0 (4)

Where ρ is the evaporation rate, meant to avoid convergence
to a local optimum.

Only at the end of an epoch, a positive global update is
applied for all the moves of the best ant B in this generation:

τ(M) = (1− ρ) ∗ τ(M) + ρ ∗ 1

makespan(SB)
(5)

The size of the update is proportional to the makespan of
the schedule SB produced by the ant, which is the maximum
completion time among all the operations. The better the so-
lution, the more pheromones will be laid down on the edges.

4 Computational experiments and results
After discussing the practical setup and the evaluation of dif-
ferent hyperparameter values, the performance of the devel-
oped ACO algorithm is compared to that of the MILP solver.



4.1 Experimental Settings
All experiments were ran on a Intel Core i7-8750H with 16
GB RAM. All code was written in Python 3.8 and can be
found on the Github repository used for this research. The
implementation of the ACO algorithm was done individually,
while for general code such as that for performance evalua-
tion efforts were combined within the peer group. The MILP
model was provided by the supervisor of the project, as well
as the instances which can also be found on the repo. Ex-
ternal software from Gurobi was used for solving the MILP
model, specifically the deterministic concurrent simplex LP
optimizer.

Hyperparameters for ACO were chosen in the following
manner:

• β = 0.4, ρ = 0.12: best values selected according to re-
sults from [8].

• α = 1: although it is possible for this parameter to have a
value different from 1, in practice it is easier to only vary
beta to balance the influence of the pheromone amounts
and visibility function. This is in line with the way the
values for the above parameters were obtained.

• τ0 = 0.1, q0 = 0.9: resulting from experimental evalua-
tion of different values as discussed directly below.

After initially playing around with the parameters to see
which values work reasonably well, τ0 = 0.1 and q0 = 0.3
were chosen as a starting point. Subsequently for both these
hyperparameters independently, five different values were
tried:

• τ0: 0.01, 0.05, 0.1, 0.5 and 1 (q0 = 0.3)

• q0: 0.1, 0.3, 0.5, 0.7 and 0.9 (τ0 = 0.1)

The values of the other parameters were kept constant and
as specified above. Both the solution quality, defined by the
makespan of the returned schedule, and the runtime were
measured, with the stopping condition for each run being
three epochs without improvement of the makespan. For all
values three runs were done and the average and standard de-
viation for both performance measures were calculated. The
results can be seen in Table 1 for τ0 and Table 2 for q0. The
top values in each cell are for the makespan, while the bottom
ones represent the runtime in seconds.

Table 1 shows that the five tested values for τ0 do not result
in significantly different performance. This holds for both
the makespan and runtime. Since τ0 = 0.1 was also used for
tuning q0, it was decided to use this value for the numerical
results in the next subsection.

Looking at Table 2, varying the value of q0, does make a
notable difference for the performance. The larger q0, the
lower the makespans that were found. Also, for the two high-
est values, the runtime significantly decreases. Overall, q0 =
0.9 gives the best performance, and was chosen to be used for
the coming experiments.

4.2 Performance comparison of ACO to MILP
Figure 3 and 4 show the performance of the ACO algorithm
and MILP solver for respectively small and large time lim-
its. No other stopping conditions are enabled to allow for an

Instances τ0
0.01 0.05 0.1 0.5 1

0 23.0 += 0.0
0.1 += 0.0

24.0 += 1.0
0.1 += 0.0

23.0 += 0.0
0.1 += 0.0

23.7 += 1.2
0.1 += 0.0

23.7 += 1.2
0.1 += 0.0

1 37.0 += 1.0
0.6 += 0.1

37.0 += 1.0
0.5 += 0.0

36.7 += 0.6
0.5 += 0.1

36.7 += 0.6
0.5 += 0.1

36.7 += 1.5
0.7 += 0.1

2 51.3 += 2.1
1.5 += 0.4

50.0 += 2.0
2.9 += 1.2

50.0 += 1.7
2.6 += 0.9

50.3 += 0.6
2.2 += 0.3

49.7 += 0.6
2.0 += 0.5

3 64.3 += 2.5
4.5 += 0.3

65.0 += 2.6
4.3 += 0.9

63.0 += 2.0
3.6 += 0.7

65.3 += 1.2
5.0 += 0.6

65.3 += 0.6
3.9 += 1.1

4 79.3 += 0.6
6.5 += 0.7

79.3 += 2.1
7.4 += 1.7

79.0 += 1.7
7.8 += 2.2

78.3 += 1.2
9.5 += 3.5

79.0 += 1.0
10.2 += 4.1

5 93.3 += 1.5
14.4 += 5.2

92.0 += 1.0
10.1 += 1.4

95.3 += 2.9
14.1 += 0.6

95.3 += 1.5
15.5 += 7.1

96.0 += 1.7
14.1 += 4.7

6 107.7 += 3.8
24.1 += 6.2

108.3 += 1.2
25.7 += 6.0

108.0 += 1.0
21.3 += 7.6

109.0 += 2.0
17.1 += 4.0

108.7 += 0.6
18.9 += 3.8

7 122.0 += 2.0
33.0 += 9.6

122.3 += 4.0
25.0 += 3.3

121.3 += 2.5
23.7 += 3.0

122.7 += 4.2
29.0 += 3.4

122.7 += 1.2
51.1 += 27.0

8 133.0 += 5.3
57.3 += 12.6

139.7 += 1.5
51.4 += 16.7

135.3 += 2.5
50.9 += 10.6

139.7 += 1.2
35.5 += 4.0

138.7 += 1.2
43.9 += 4.6

9 152.7 += 3.8
62.5 += 36.8

151.3 += 4.5
62.8 += 21.5

154.3 += 0.6
47.0 += 5.7

150.3 += 2.5
54.9 += 5.7

150.3 += 2.9
66.6 += 33.5

10 165.3 += 4.5
124.1 += 35.5

167.7 += 2.1
77.6 += 15.0

165.3 += 1.5
91.3 += 8.0

163.7 += 4.0
95.7 += 41.1

167.3 += 4.0
76.4 += 20.8

11 181.7 += 0.6
140.0 += 46.9

180.0 += 2.0
112.4 += 20.8

181.3 += 1.5
121.8 += 57.7

181.0 += 3.6
94.8 += 40.7

184.3 += 0.6
116.5 += 20.2

12 196.3 += 6.4
181.7 += 140.6

194.0 += 2.0
145.2 += 28.0

193.7 += 6.4
129.0 += 36.6

196.3 += 4.0
156.7 += 45.1

194.0 += 5.6
145.7 += 13.4

Table 1: Experimental evaluation of τ0 using β = 0.4, ρ = 0.12, α =
1 and q0 = 0.3. The top entry in each cell is the average makespan
+= standard deviation, with below it the same for the runtime in
seconds. Results were calculated over three independent runs, each
having three epochs without improvement as stopping condition.

Instances q0
0.1 0.3 0.5 0.7 0.9

0 23.7 += 1.2
0.1 += 0.1

23.0 += 0.0,
0.1 += 0.0

23.0 += 0.0
0.1 += 0.0

23.0 += 0.0
0.1 += 0.0

23.0 += 0.0
0.1 += 0.0

1 40.0 += 3.5
0.6 += 0.2

37.3 += 1.5
0.7 += 0.2

35.3 += 0.6
0.4 += 0.1

35.0 += 0.0
0.6 += 0.2

34.7 += 1.2
0.4 += 0.1

2 58.7 += 1.5
2.1 += 1.0

51.3 += 1.5
2.0 += 0.7

47.7 += 1.2
1.6 += 0.3

44.3 += 0.6
2.1 += 0.2

44.7 += 1.2
1.3 += 0.2

3 72.7 += 3.2
4.1 += 1.0

66.0 += 1.0
5.2 += 3.2

60.7 += 1.5
3.2 += 0.4

57.0 += 1.0
3.6 += 0.3

56.0 += 1.0
4.3 += 0.0

4 86.0 += 1.0
8.4 += 3.0

79.3 += 2.3
8.8 += 1.9

73.0 += 1.0
6.9 += 3.0

67.3 += 1.2
9.9 += 2.9

65.0 += 0.0
6.9 += 2.0

5 106.7 += 3.5
13.3 += 2.9

94.7 += 0.6
16.7 += 4.1

82.7 += 0.6
13.3 += 3.9

81.0 += 1.0
10.0 += 2.4

78.0 += 0.0
9.0 += 1.1

6 123.7 += 3.2
25.1 += 8.2

109.0 += 1.7
25.7 += 3.9

98.3 += 1.2
20.8 += 0.1

92.7 += 0.6
15.3 += 1.8

90.3 += 0.6
17.7 += 4.8

7 143.0 += 2.6
28.7 += 0.4

121.3 += 4.0
35.2 += 5.8

111.3 += 2.1
25.5 += 5.0

104.7 += 2.5
22.5 += 3.0

100.7 += 1.5
26.8 += 5.3

8 158.0 += 3.6
44.1 += 12.1

141.0 += 2.6
31.2 += 0.4

124.3 += 1.2
36.3 += 12.5

116.7 += 1.5
32.0 += 8.0

112.3 += 1.2
29.8 += 7.5

9 175.3 += 3.2
73.4 += 17.1

149.3 += 2.5
66.3 += 12.2

137.7 += 1.2
59.3 += 9.4

128.3 += 0.6
40.8 += 5.3

123.3 += 2.1
51.6 += 29.9

10 192.7 += 4.0
73.2 += 14.4

164.0 += 6.1
92.7 += 32.5

146.3 += 3.2
86.7 += 8.0

138.3 += 2.1
76.8 += 6.6

135.3 += 1.2
71.4 += 2.9

11 208.7 += 4.0
133.0 += 19.1

182.3 += 2.1
78.0 += 10.2

162.0 += 1.7
109.5 += 28.0

152.3 += 0.6
103.0 += 19.9

147.0 += 0.0
71.0 += 17.4

12 234.3 += 1.2
119.8 += 24.0

198.0 += 4.6
113.5 += 39.4

175.7 += 2.3
135.5 += 69.1

165.7 += 2.3
95.5 += 11.7

159.3 += 0.6
113.9 += 31.1

Table 2: Experimental evaluation of q0 using β = 0.4, ρ = 0.12, α =
1 and τ0 = 0.1. The top entry in each cell is the average makespan
+= standard deviation, with below it the same for the runtime in
seconds. Results were calculated over three independent runs, each
having three epochs without improvement as stopping condition.

as fair comparison as possible, so for ACO as many epochs
are executed as there is time for. Values of the hyperparam-
eters are as defined in the above subsection. The makespan
of the returned schedules is used as the performance measure
and because of the randomness in the ACO algorithm, again
averages over three runs were taken.

It can be seen in Figure 3 that with the small time windows,
MILP can only keep up for the first few instances, being the
simplest ones. As soon as the complexity rises, the method
starts to return low quality solutions, followed by nothing at

https://github.com/tnuman/research-project-aco


Figure 3: Comparison of the performance of the ACO algorithm and
MILP solver for small time limits. For ACO, averages over three
runs were taken, using β = 0.4, ρ = 0.12, α = 1, τ0 = 0.1 and q0 =
0.9.

all. ACO can solve all instances, also finding good solutions
with low makespans. When there is a time for more epochs,
a slight improvement can be seen in the solution quality, es-
pecially for the most complex instances.

Looking at Figure 4, only for the largest time limit MILP
can finally find a solution for all instances. The makespans
found by ACO are still significantly lower, but the gap be-
tween the methods decreases the higher the time limits. Com-
pared to the small time ranges, the solutions ACO finds after
more epochs are not much better, possibly because they are
already at or near the global optimum.

Figure 4: Comparison of the performance of the ACO algorithm and
MILP solver for large time limits. For ACO, averages over three runs
were taken, using β = 0.4, ρ = 0.12, α = 1, τ0 = 0.1 and q0 = 0.9.

5 Responsible Research
Investigating a concrete problem for the Dutch chemistry
company DSM, the research could have some moral impli-
cations. With the firm potentially benefiting from the results,
it’s ethics were reviewed. DSM has a clear point of view, as
can be read in their code of conduct: ”we want to help solve
some of the most pressing issues of today’s world, like cli-
mate change and malnutrition. We use our science and exper-
tise to develop innovative solutions that matter” [16, p. 3].
This research makes it possible to contribute towards this
moral goal.

Another important aspect of responsible research is repro-
ducibility. This is achieved by sharing the full experimen-
tal setup in Subsection 4.1, including hyperparameter val-
ues, hardware and external software utilized. Also, a link to
the Github repository with the implemented code, including
documentation, and all instances used for the experiments is
provided. If someone would want to not only replicate the
numerical results, but the complete research, all theoretical
background behind the implemented algorithm is also pro-
vided in Section 3, with references where applicable. With
the problem being formally defined in the section before that
and all research questions and general background informa-
tion discussed in the introduction, full reproducibility is made
possible.

6 Discussion
The presented work is not of as high quality and quantity as it
could be, at least not as personally wished and used to. With
only ten weeks available for the project the time was already
very limited, but personal circumstances also impacted the
research significantly.

Most important, the shown results are only based on thir-
teen instances. No time was found to create more and do
experiments with these. This makes it hard to validate draw-
ing general conclusions about the performance of ACO for
the investigated problem. Ideally, the ACO algorithm and
MILP solver would have been tested on a large number of
instances of high complexity, comparable to real-world sce-
narios. Even better, there would have been different groups
of instances with similar properties, such as many machines
and/or many jobs. This way more interesting and general con-
clusions could have been made about the ACO method: in
what cases it works well, but also when it does not.

Another crucial part of DSM’s challenge are the multiple
conflicting objectives explained at the end of Section 2. It was
not achieved to implement these and do experiments using a
multi-objective function; all results only take the makespan
of the schedules into account.

Additionally, the tables for the hyperparameter evaluation
show there is still quite a bit of variance when doing three in-
dependent runs to base the results on. Averages over more
measurements would increase reliability and possibly also
show some consistent differences in performance when vary-
ing τ0.

Despite all this, there are some valuable insights this re-
search gives. Most important, it is clear that on the tested
instances, the ACO algorithm significantly outperforms the
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MILP solver when optimizing for the makespan. ACO is able
to find good solutions exceptionally fast. Even when limited
to one second, it finds better solutions for all instances than
MILP in 5 minutes, especially for the most complex ones.

Also, the results of the hyperparameter evaluation evi-
dently show that for all used instances, high values of q0 give
better performance than lower ones. For τ0, the experiments
might indicate that, next to averaging over more runs, it would
be good to try a broader range of values. Potentially these
would show impact of the parameter on the solution quality
or runtime of the algorithm.

7 Conclusions
This paper examines an ant colony optimization approach for
solving a practical problem the Dutch chemistry company
DSM faces. It can be characterized as a specific case of the
multi-objective FJSP with sequence-dependent setup times.
There are N jobs, each of one of E enzyme types and consist-
ing of a subset of three possible unit operations. There are M
machines, divided of three disjoint sets for the different op-
eration types. All operations of all jobs need to be processed
on a machine, which takes a certain amount of time defined
by operation type and enzyme type of the overarching job.
Also, specialized cleaning is required when a machine con-
secutively handles different enzyme types. The duration of
this setup time depends on the respective machine and en-
zyme types. Finally, the conflicting objectives are minimiz-
ing the makespan of a schedule, meeting due dates per job,
and keeping the idle time of the machines as low as possible.

To be able to apply ACO to the problem, instances need
to be represented as a weighted disjunctive graph. There is a
node for every operation, with directed edges to specify the
order within each of the jobs. Undirected edges connect oper-
ations of the same type that can be scheduled on the same pool
of machines. The processing times are specified as weights
on the nodes, the cleaning times as weights on the undirected
edges.

The ACO algorithm consists of a number of epochs, each
consisting of multiple ants creating a feasible schedule. This
is created one operation at the time. What scheduling choice
is made at each step is defined by a transition probability rule
depending on pheromones and a visibility function. The first
indicate previous experience of ants in prior generations, the
second is an heuristic based on the earliest starting time possi-
ble for a certain operation. Pheromone amounts are updated
using both a negative local updating rule after every sched-
uled operation of each ant, and a positive global update at the
end of a whole epoch, only favoring the best schedule gener-
ated by an ant in that generation. Finally, the best schedule
found over all epochs is returned.

Experimental evaluation of two hyperparameters is per-
formed. First τ0, a small positive constant defining the initial
amount of pheromones for each possible scheduling move.
The different values tried did not consistently impact the
makespan nor runtime for the used instances. q0, the cutting
exploration parameter determining the balance between ex-
ploitation and exploration when scheduling an operation, did
have a lot of influence on both performance measures. For

all tested instances, the higher the value of the parameter, the
better.

To determine whether the implemented ACO approach is
efficient, it is compared to a provided MILP solver for a num-
ber of different time limits. The makespan of the returned
schedules is used as performance measure. On the used in-
stances, ACO significantly outperforms MILP. As soon as the
complexity rises, MILP quickly struggles to find feasible so-
lutions. First bad solutions are returned, followed by no so-
lutions at all. In contrast, ACO is able to find good solutions
exceptionally fast. Even when limited to one second, it finds
better solutions for all instances than MILP in 5 minutes, es-
pecially for the most complex ones. Based on the tested in-
stances, ACO is an efficient method to solve the production
scheduling problem of DSM.

The research is carried out responsibly, having posi-
tive moral implications by potentially contributing towards
DSM’s goals. Reproducibility is made possible by sharing
the full experimental setup, including code and instances, and
all necessary background information.

Future work entails evaluating the performance of ACO on
a larger number of and more complex instances, to be able
to make more interesting and general conclusions about the
method. Secondly, the multiple conflicting objectives can be
implemented and experimented with, which was not achieved
within this research.
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