
Population
difference between
L4 and L5 Trojans

due to Jupiter's
outward migration

A numerical analysis using actual Trojan data

by

Bonenkamp, J.D.
Student Name Student Number

Jasper Bonenkamp 5284023

Instructors: dr. P.M. Visser & prof. dr. B. Rieger

Project Duration: Feb, 2023 - Aug, 2023

Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science, Delft

Abstract

Ever since their discovery, the Trojans have raised many questions among astrophysicists. In 1989 it

was found that there were more L4 than L5 Trojans and the current L4:L5 ratio value is estimated to

be 1.6. However, this asymmetry could not be explained by Jupiter’s current orbit and must therefore

have arisen during the early development of the Solar System. It was suggested that an outward

migration as described by the Nice model could cause the asymmetry. To investigate this, we extended

a recent research by modelling an outward migration of Jupiter on the actual Trojans and their symmetric

copies. In this manner, we had a broad initial Trojan distribution, which allowed us to investigate several

effects of initial values like the Trojan inclinations and maximum angular deviations from the Lagrange

point. The simulations used a recently found midpoint Yoshida integrator, which allowed fourth order

symplectic simulations for our non-separable Hamiltonian problem. From the simulations it followed that

the ratio could only be explained if the Trojans initially had large angular deviations from the Lagrange

point, which is possible if they later lost energy due to for example mutual collisions. Also the small

initial inclinations as predicted for the early Trojans would in general have risen due to the migration, but

it could not explain the the inclinations up to 40 degrees for today Trojans, implying that the increase in

inclination must have been caused by other reasons. We found that not only the total migration distance

and duration are important, but also the function that describes the evolution of Jupiter’s semi-major

axis and the eccentricity of Jupiter’s orbit. For further research we suggest to use data sets on those

quantities from simulations with the Nice model, to investigate these related problems together. We

believe that our model and code is of great advantage for such a research, because of its optimisations

and it allows to implement the data on the distance and eccentricity directly into the model without

having to alter the equations of motion.

i

Contents

Abstract i

1 Symbols used 1

2 Introduction 2

2.1 Nice model and Li . 4

2.2 Actual Trojans . 7

3 Theory 8

3.1 Kepler elements . 8

3.1.1 Conversion to cylindrical system . 8

3.2 Three body system and Lagrange points . 11

3.3 Equations of motion . 12

3.3.1 Potential . 13

3.3.2 Kinetic energy . 13

3.3.3 Lagrangian . 14

3.3.4 Hamiltonian . 15

3.4 Cartesian coordinates and generalised momenta . 16

3.4.1 Full coordinate map . 16

3.4.2 Angular momentum . 17

3.4.3 Inclination . 17

3.5 L4 and L5 points . 18

3.5.1 Symmetry . 18

3.5.2 Asymmetry L4 and L5 . 20

4 Method 25

4.1 Initial data . 25

4.2 Numerical method . 26

4.2.1 Migration implementation . 27

4.3 Simulations and code implementation . 29

5 Results 31

5.1 Test Trojan . 31

5.2 Result tables . 34

5.2.1 Eccentricity . 35

5.2.2 Inclinations . 35

6 Discussion 38

6.1 Integrator comparison . 38

6.1.1 Code implementation . 39

6.2 Migration implementation . 40

6.2.1 Distance of Jupiter . 41

6.2.2 Jupiter’s orbital eccentricity . 43

6.3 Generated Trojans . 43

6.4 Inclination . 48

6.5 Total simulated time . 48

6.6 Further research . 49

7 Conclusion 51

References 52

ii

Contents iii

A Numerical methods 54

A.1 Original Yoshida integrator . 54

A.2 Stability analysis midpoint Yoshida integrator . 54

B Jacobian 59

C Alternative Trojan Conversion 63

D Additional results 64

D.1 Tables . 64

D.2 Plots . 69

E Code 74

E.1 C code . 74

E.2 Python functions . 81

E.3 Jupiter constants . 90

E.4 Integrator choice . 91

E.5 Stability Trojans . 93

E.6 Stability MYI . 98

E.7 Distance function plots . 99

1
Symbols used

In table 1.1 all the symbols used in this report are given, together with their meaning. These definitions

always have the same meaning in the report, unless explicitly mentioned otherwise. For some variables

Symbol Physical meaning

r, θ, z Cylindrical coordinates that describe the Trojan position

with respect to the centre of mass of the sun and Jupiter

p Generalised momentum of r
lz Generalised momentum of θ
pz Generalised momentum of z
R Distance Jupiter-sun

ωJ Jupiters angular velocity

V Total gravitational energy function, as derived in section 3.3.1

mS Mass of the Sun

mJ Mass of Jupiter

µ mJ

mS

G Gravitational constant

H Hamiltonian

L Lagrangian

τ Constant that is correlated with Jupiters migration duration

∆R Total change in R
a Semi-major axis

ε Eccentricity

ω Argument of periapsis

Ω Longitude of ascending node

I Inclination

ν True anomaly

M Mean anomaly

v̄ Velocity quasi pre-factor

∆θ Resonant angle

(maximum angular deviation from the corresponding Lagrange point)

AU Astronomical unit (1.496 · 1011 km)

Table 1.1: Symbols used to describe and derive the Hamiltonian and equations of motion of a Trojan in the cylindrical rotating

frame.

from the table as well as for other variables in the report, it is sometimes emphasised with a sub-scripted

J that it belongs to a description of Jupiter and not of a Trojan.

1

2
Introduction

Figure 2.1 shows a meteorite which exploded in 2013 above the Russian city Chelyabinsk. The

meteorite impact released more energy than the atomic bomb at Hiroshima [5], and caused a few

hundred people to be hospitalized and many more buildings to be damaged[5]. However, the asteroid,

was not discovered before the impact[5] despite all modern knowledge and technology, making it

impossible to start evacuations. One could imagine the consequences would be even worse if the

explosion happened above a more crowded city. Apparently, we do not have enough knowledge yet

about asteroids in space to prevent potential disasters like these.

Apart from asteroids that might threaten our lives, there are also many asteroids in space that could not

intrude the Earth. In fact, humans have used the knowledge about the orbits of those objects to created

their own ’asteroids’ such as the GPS satellite shown in figure 2.2. In modern society, artificial satellites

are used by millions of people on a daily basis, for example to find the road to work, family or anything

else. These two examples show how our knowledge of objects in space could improve our all day lives,

while our lack of knowledge might threaten our lives because unstable objects intrude our Earth. It is

therefore important to understand the orbits of objects in space better, in order to use the theory to our

advantage when creating our own ’asteroids’ and to predict the behaviour of potential harmful asteroids

better. One of the aspects of the Solar Systems that is poorly understood, is its early evolution and the

long term stability of its objects. While there are several theories about these problems, it is key to test

and improve those theories by observing actual objects in our Solar System. In this manner, we are

able to expand our knowledge piece by piece.

One of the objects that could give astronomers more insight in the current Solar System stability and its

early evolution are the Jupiter Trojans. The Trojans are asteroids, which orbit around Jupiter’s Lagrange

points L4 and L5, as described in section 3. An example of some Trojans is given in figure 2.3 and

figure 2.4 gives some insight in the distribution of Trojans relative to Jupiter. Already in the 17th century,

Lagrange predicted the existence of Trojans and more than a century ago Max Wolf discovered the first

Trojan[17]. Since then many questions about the Jupiter Trojans have been unanswered, such as its

asymmetric distribution.

We can define three types of Trojans: a Trojan orbiting around the L4 point, around the L5 point and

one in a horseshoe orbit. An example for each orbit in the xy reference plane corotating with Jupiter
is shown in figures 2.5, 2.6, 2.7. If a Trojan is no longer in one of these orbits, we say that its orbit

has become unstable. One notices that the orbits of L4 and L5 Trojans are all banana shaped, but

have different sizes, spreads and curvatures. However, at first glance, there does not appear to be

much difference between an L4 and an L5 Trojan. In fact, it will be proven in the theory chapter that

under the assumption that Jupiter makes perfect circular orbits, the Trojans are completely symmetric.

Due to this symmetry, one expects similar properties for L4 and L5 Trojans. However, there are

numerous differences observed between L4 and L5 Trojans, from which the number of Trojans is the

most noticeable. From observations, it is estimated that there are about 1.6 times as many Trojans

in the L4 Lagrange point than in the L5 point[2]. Although the symmetry is in fact broken on the long

2

3

Figure 2.1: Meteorite that exploded above the Russian city Celyabinsk in 2013. The meteorite was not discovered before the

disaster, but caused a few hundred hospitalizations and many more buildings to be destroyed. Source: [5]

Figure 2.2: GPS satellite, which is located in a stable orbit around Earth and is used by many people on a daily basis for navigation.

Source: [4]

time scale due to for example interactions with Saturn, these effects are not sufficient to explain the

current high ratio and at least part of this ratio should be related to the early formation or capture of the

Trojans[3]. Another difference is the inclination distribution. The inclination is a measure that defines

how skew the Trojan orbit is relative to Jupiter’s orbit. Although there is not much known about the

inclination distributions, there is a 99% confidence interval the distributions are different[2].

2.1. Nice model and Li 4

Figure 2.3: Constructed images of some Jupiter Trojans. Source: [6]

2.1. Nice model and Li
There have been several attempts to explain the ratio between the number of L4 and L5 Trojans, which

will be denoted by L4:L5 in this report, and a recent attempt was made by Li et al.[2]. They simulated

an outward migration of Jupiter as theorized by the Nice model. Before we are able to explain the

correlation between the Nice model and the Trojans, we have to briefly introduce the Nice model.

The Nice model is one of the models that attempts to explain the origin of our Solar System. One of the

peculiar things about our Solar System, is that not all planets could have been formed easily at their

current positions with their current orbit shapes. Therefore, several early-Solar System models have

migrations of gas giants, which is the phenomenon that the average distance of such a giant relative to

the Sun either increases or decreases. Most of those models assumed that Jupiter migrated due to

gravitational interactions with Saturn[2]. However, Nesvorný[15] noticed that many simulations with

these models fail to match the current orbits and led to unstable systems resulting in one of the gas

giants to be kicked out of the Solar System. He therefore proposed a model in which the early system

had five gas giants where one was kicked out due to continuous gravitational interactions. This model

was called the Nice model. The several unbounded planets observed traveling through space suggests

that such an ejection of a planet is indeed possible[15].

In the Nice model, one of the planets initially had a very elliptical orbit leading to several close encounters

between the gas giants. When a close encounter occurs, the orbits of the two planets are altered due to

their mutual gravitation. One of these encounters was responsible for an outward migration of Jupiter,

and Nesvorný[16] suggested that this could be the cause of the asymmetric L4:L5 ratio, due to Trojans

becoming unstable. Nesvorný had quite large uncertainties in his results, but in a different research, Li

et al.[2] found that such a migration might indeed cause the asymmetry in the number of L4 and L5

Trojans.

For their research, Li et al. simulated several randomised sets of Trojans using different migrations of

Jupiter. Although they do not use the Nice model explicitly in their research and this migration could also

be caused by other reasons, they did use this model to determine estimates for the migration rates and

distances that could be considered[2]. With this assumption, a migration rate of ṙ = 1.5 · 10−4AU y
−1

over a distance of 0.5 AU resulted in the estimated empirical L4:L5≈ 1.6. Provided the migration is not
too fast, they found that both a longer and a faster migration lead to an increase in this ratio.

2.1. Nice model and Li 5

Figure 2.4: The Solar System with the main-belt asteroids and the Jupiter Trojans. Source: [18]

6 4 2 0 2 4 6
x (AU)

6

4

2

0

2

4

6

y
(A

U) L1 L2L3

L4

L5

6 4 2 0 2 4 6
x (AU)

6

4

2

0

2

4

6

y
(A

U) L1 L2L3

L4

L5

Figure 2.5: Two examples of actual Trojans orbiting the L4 point in the horizontal plane together with the equipotential lines. The

black dot represents Jupiter and the colored circles ranges of the potentials, where the scale is logarithmic. One notices that the

curves are both banana shaped, but have different sizes and bendings.

2.1. Nice model and Li 6

6 4 2 0 2 4 6
x (AU)

6

4

2

0

2

4

6
y

(A
U) L1 L2L3

L4

L5

6 4 2 0 2 4 6
x (AU)

6

4

2

0

2

4

6

y
(A

U) L1 L2L3

L4

L5

Figure 2.6: Two examples of actual Trojans orbiting the L4 point in the horizontal plane together with the equipotential lines. The

black dot represents Jupiter and the colored circles ranges of the potentials, where the scale is logarithmic.

6 4 2 0 2 4 6
x (AU)

6

4

2

0

2

4

6

y
(A

U) L1 L2L3

L4

L5

Figure 2.7: Examples of an actual Trojan in a horse shoe orbit in the horizontal plane together with the equipotential lines. The

black dot represents Jupiter and the colored circles ranges of the potentials, where the scale is logarithmic.

However, according to the authors, the model is quite crude and they suggest some improvements.

One of the shortcomings of the model they mention are the behaviour of inclinations. Li et al. showed

that the ratio is dependent on the inclination distribution, although not strongly. They simulated most

results with low inclinations, but also mention that the inclination distribution of the L4 and L5 Trojans

are different but not well known. They suggest the model to be generalised for the actual Trojans with a

broad inclination distribution.

We believe that the restricted initial condition could be seen in a much broader manner. Li et al. did not

only use low inclinations, but also a very restricted range in other quantities. For example, the Trojans

they used all had the same semi-major axis initially and had relatively high deviations from the Lagrange

points in the angular directions. This is not necessarily wrong since the initial conditions are not known,

but it does not allow a proper research what initial conditions could lead to a high L4:L5 ratio. Therefore,

their research could be improved in general by using a broader initial range of Trojans, to investigate

2.2. Actual Trojans 7

the effect of the initial conditions.

2.2. Actual Trojans
This project attempts to investigate part of the effect of a broad Trojan distribution. This is done by

using the current actual Trojan data as start, since this gives a wide range of initial conditions for initially

stable orbits. The migration used will be described in the same manner as Li et al. and we will use their

found migration rates and distances as an estimate of what rates could be adopted. We will use several

of the migration durations to give a statistically more significant conclusion, but it is not our goal to find

the actual value of the migration rate. This research aims to find the required initial Trojan distribution

such that the outward migration as prescribed by Li et al. could explain the current asymmetry in the

population numbers. To exclude any effect of the initial data asymmetry between the L4 and L5 Trojans,

we created a symmetric initial distribution by adding minor particles for each actual Trojan.

We will also have a closer look on the inclinations distributions. It will not only be investigated what the

effect is of the initial inclinations as suggested by Li, but it will also be investigated how they change

due to the migration. Many theories namely predict that the Trojans had low initial inclinations relative

to Jupiter[11], while the present Trojans have inclinations up to 40 degrees. Furthermore, it can be

checked whether the migration could explain the asymmetry in inclination distribution between the L4

and the L5 point.

It has already been clear that a research on the effect of the migration might give insight in the original

Trojan distribution, but there are at least two other reasons to investigate the effect of the migration

on the actual Trojans. First of all, especially for the ratio L4:L5, there is no absolute certainty of the

distribution from only the observations. When Shoemaker et al. (1989)[19] observed the difference in

population, the L4 point was better observable than the L5 point[2]. Although the asymmetry is nowadays

commonly excepted as more and more Trojans are observed[2], the simulations help to strengthen the

claim that the asymmetry is real and not due to any observational bias. Also, scientists that hypothesise

the distribution, might have a bias in observing. It must be noted, however, that all biases are taken into

account when Li et al. estimated the ratio L4:L5 and therefore one has to emphasize the simulations

only strengthen or weaken the possible estimates. The second reason is that any theory about the

early Trojan development leading to an asymmetry are strengthened or weakened by simulating these

models. In our research, the asymmetry is hypothesised by the Nice model, which models the origin of

our Solar System. Therefore, if the simulations with this model indeed lead to more L4 than L5 Trojans,

the likeliness of the Nice model increases and it could help to describe the migrations by this model

better. Although this is investigated by Li et al. our research is of a major importance to improve such a

research, because it takes into account the effect of several initial conditions that might be relevant for

the L4:L5 ratio and therefore for the actual migration description.

3
Theory

In this chapter, we will derive all needed theory about the Trojans. For this, we will firstly discuss the

three body problem and the Lagrange points. This theory partly requires the theory of two body systems

because we will need the Kepler elements defined for this problem. Once all theory is set up, we will

define a coordinate system for our Trojans using cylindrical coordinates in the rotating frame, since this

is the most insightful set of coordinates. We can then derive the equations of motion using Hamiltonian

mechanics. This chapter will end with a more detailed look on the symmetry and asymmetry of the L4

and L5 Lagrange points.

3.1. Kepler elements
In space, the standard way to determine an object’s orbit, is to consider it as part of a two body system,

which is a system containing only two masses. For two body systems the orbits are called Kepler orbits

and can be described using the Kepler elements. Five of the Kepler elements are shown with name and

symbol in figure 3.1. The sixth is the eccentricity ε. In a two body system, the Kepler elements are all
constant over time, except for the True anomaly, and fully define the exact orbit of a two body system

relative to a reference vector. To describe a system with many small bodies orbiting a heavy central

mass, we pretend it is in a Kepler orbit where the Kepler elements are constantly altered due to mutual

gravitational attractions. Because the Kepler elements are no longer constant, it is important to know at

which time these coordinates are determined. This time is called the epoch and defined with the letter

E in this report.

Although we will need to be able to transform all Kepler elements to Cartesian coordinates, we need to

know the meaning of only two of them in this report: the eccentricity ε and the inclination I. Therefore,
we will start to give the transformations from Kepler coordinates to Cartesian coordinates and then

discuss the meaning of the eccentricity and the inclination.

3.1.1. Conversion to cylindrical system
As seen in figure 3.1, the Kepler coordinates are determined relative to a plane of reference. For the

data used in this project[14][13], the central reference point is the Sun. It is known how to convert

the Kepler elements to Cartesian coordinates with respect to the same reference frame. However,

in this project we will describe the positions of the Trojans relative to the position of Jupiter. We will

therefore choose our coordinate system such that Jupiter is stationary on the horizontal x-axis. That is,
we describe the Trojans as if the observer rotates around the centre of mass with the same angular

velocity ωJ as Jupiter. This frame is called the rotating frame. Therefore, for a correct conversion for a

Trojan in Kepler coordinates to Cartesian coordinates within the rotating frame of Jupiter, we will firstly

calculate the Cartesian coordinates in the non-rotating frame in the first three steps by known theory

and than rotate the system such that Jupiter is on the horizontal axis with the centre of mass on the

origin. In total, we have to execute the following 7 steps:

1. Calculate the absolute value of the distance to the Sun and the quasi velocity pre-factor of the Trojan

8

3.1. Kepler elements 9

Plane of reference

Reference direction

Orbital plane

Object a semi-major axis

ω Argument of periapsis

ν True anomaly

Longitude of ascending node Ω
I Inclination

Figure 3.1: Names and symbols of five of the Kepler elements. The sixth is called the eccentricity ε, which determines whether
the orbit is more circular or more elliptical. For a non two body system, the Kepler elements are all functions of time, thus the time

at which the elements are computed is necessary to define the orbit. This time is called the epoch. Generated with help of the

code from: [1]

at the epoch of the data in Cartesian coordinates.

2. Use these quantities and the anomaly to create vectors for the position and velocity in the xy-plane.
3. Use a rotation matrix to rotate the vectors to the plane of the orbit.

4. Rotate the Trojan and Jupiter by some rotation matrix such that Jupiter moves in the polar plane.

5. Calculate Jupiter’s anomaly at the epoch of a Trojan by assuming it is on a perfect Kepler orbit.

6. Rotate the position and velocity vectors of the Trojans such that Jupiter is on the positive x-axis.
7. Shift the Trojans such that the origin is at the centre of mass.

Mathematically, these steps are executed in the following manner:

1. From [25], one extracts for the distance rS of the Trojan to the Sun

rS =
b2

a+ c cos ν
, b :=

√
1− ε2a, c := aε

Combining these results yield

rS = a
1− ε2

1 + ε cos ν
(3.1)

Then, by combing some results in Visser[25], we define for simplicity the quasi velocity pre-factor v̄.

v̄ =

√
GmS

a(1− ε2)

2. Using the results above, the vectors in the Cartesian non-rotating frame are[25]:

~r = r

cos νsin ν
0

 , ~v = v̄

 − sin ν
cos ν + ε

0

 (3.2)

However, often the True anomaly ν is not given, but instead the mean anomalyM = 2π
T · t− τ , where T

is the orbit time and τ is the time of perihelion passage in positive direction, or in other words, the time
at which the true anomaly is zero[12]. The reason this quantity is used often, is that it changes linearly

in time for systems that can be estimated as a two-body system. The conversion between the mean

and true anomaly can be given by a Fourier series. In this research, we use the third order Fourier

series estimation:

ν =M + (2ε− ε
3
4) sin(M) +

5

4
ε2 sin(2M) + 13ε

3
12 sin(3M) (3.3)

3.1. Kepler elements 10

3. Multiply the vectors above by the following rotation matrix[25], constructed from the Trojan Kepler

orbits, to obtain the new vectors.

R =

cosΩ − sinΩ 0
sinΩ cosΩ 0
0 0 1

1 0 0
0 cos I − sin I
0 sin I cos I

cosω − sinω 0
sinω cosω 0
0 0 1

 (3.4)

Sometimes, the mean perihelion length ω̃ is given instead of the argument of perihelion ω. Then we can
calculate the latter by ω = ω̃−Ω. 4. If we would have calculated the Cartesian coordinates of Jupiter, we
would have used a rotation matrix as in equation 3.4, to transform Jupiter from the xy-plane to its actual
position. However, we would like Jupiter to be in the xy-plane, thus this operation must be inverted.
The position relative to the Trojans must remain the same, thus we have to apply the inverse operation

to the Trojans as well. All in all, we thus have to multiply the Trojans position and velocity vectors with

the inverse of matrix 3.4, but then with the Kepler elements substituted with Jupiter’s elements ωJ (not

the angular frequency here!), ΩJ , IJ . This yields the matrix:

R−1
J =

cosωJ − sinωJ 0
sinωJ cosωJ 0

0 0 1

−1 1 0 0
0 cos IJ − sin IJ
0 sin IJ cos IJ

−1 cosΩJ − sinΩJ 0
sinΩJ cosΩJ 0

0 0 1

−1

The individual matrices in this product can be recognized as rotation matrices, thus we could simply

calculate the inverse by inverting the rotation operations. We thus have to replace all the angles by their

opposites. This results in the matrix

R−1
J =

 cosωJ sinωJ 0
− sinωJ cosωJ 0

0 0 1

1 0 0
0 cos IJ sin IJ
0 − sin IJ cos IJ

 cosΩJ sinΩJ 0
− sinΩJ cosΩJ 0

0 0 1


5. Ddefine the epoch of the Trojan as ET and of Jupiter as EJ . Since the mean anomaly changes

linearly with time, we can thus convert the original MJ to the one at the epoch of the Trojan as

M ′
J =MJ + 2π

T (ET −EJ). After that, we use equation 3.3 to calculate Jupiter’s true anomaly νJ . To be
as accurate as possible, we consider Jupiter’s real, non-zero orbital eccentricity in contrast to the rest of

the research.

6. Since we could calculate Jupiter’s position vector relative to the position of the Sun using the matrixcos νJsin νJ
0

, we have to invert this operation. This could be achieved by multiplying the Trojans with the
rotation matrix:  cos νJ sin νJ 0

− sin νJ cos νJ 0
0 0 1

 (3.5)

The velocity vector of the Trojans must have the same position relative to the Trojans position after the

rotation, thus it should be multiplied with this matrix as well.

7. We have to shift Jupiter to the left over a distance of µR, thus we subtract the vector µRx̂ from the

Trojans position vector.

Now we will describe the meaning of the two important variables the eccentricity and the inclination.

Eccentricity
The eccentricity is the measure that determines whether the orbit of an object is circular, elliptical,

parabolic or hyperbolic, as shown in table 3.1. The last two belong to unbounded trajectories and the

hyperbolic one is very important for the discussed Nice model[15]. Stable objects part of a two-body

system have an elliptical orbit. However, when eccentricities are small, it is sometimes preferred to

approximate the orbits circular, since often this simplifies the calculations. In this report, we will run

simulations with both Jupiter having zero and non-zero eccentricity to investigate the influence of such

a simpler model. For the latter case, this can be implemented by letting Jupiter’s distance RJ oscillate

in the rotating frame as will be described in the method section. The disadvantage of considering the

3.2. Three body system and Lagrange points 11

eccentricity, is that it results in more difficult equations, making the code slower, and it causes extra

oscillations for the Trojans, making it harder to interpreted the results. Furthermore, we introduce

additional errors as we will have to make estimations for determining the position of Jupiter in the

rotating frame. On the other hand, if Jupiter had an eccentricity during the migration, this would be more

accurate than not considering the eccentricity.

Eccentricity Orbital shape

0 circular

0-1 elliptical

1 parabolic

>1 hyperbolic

Table 3.1: Possible eccentricity values for a two-body system and its corresponding orbit shape.

Inclination
The second element of interest is the inclination, whose importance was already briefly discussed in the

introduction. It is a measure that defines the angle between some reference plane and the plane in

which the object is moving. In this report, we will consider the plane of Jupiter’s orbit as reference plane

when discussing the inclination of a Trojan and we can thus interpreted it as the quantity describing how

skew the Trojans orbit is relative to Jupiter. Its definition is[28]

I = arccos
Lz

|~L|

where ~L is the angular momentum of a Trojan and Lz the z-component of this angular momentum.
In this project, we are interested in the effect of the migration on the distribution of inclinations, and

therefore, we need to be able to actually calculate the inclinations. These transformations are discussed

in subsection 3.4.3 since it is easiest to do this directly from the coordinate system that will be used in

the model.

3.2. Three body system and Lagrange points
We can now extend the two body to a three body system by adding a small mass, which is called an

asteroid. In a three body system, with two large masses and one small masses, there are five equilibrium

(in the rotating frame) points for the position of the small mass under the mutual gravitational forces.

The points are shown in figure 3.2.

The Lagrange points exist because in the rotating frame the gravitational forces on the small mass are

exactly in balance with the centrifugal force. As has become clear from the introduction, the points of

interest for this research are the L4 and L5 Lagrange point, which form an equilateral triangle with the

Sun and Jupiter. We will firstly provide a proof that these points are indeed equilibrium points. For this

proof, one does not have to assume that one of the masses is small. We can assume the masses form

an equilateral triangle and then prove that the resulting force on any of the masses is zero. That is,

assuming mass 1 at position ~r1 =

00
0

, mass 2 at ~r2 =

R0
0

, mass 3 at ~r2 =

 1
2

1
2

√
3

0

R (be aware that

we have chosen a slightly different coordinate system than will be used later in this report) one has to

prove that R is constant and all objects orbit with the same frequency under their mutual gravitational

force. This is equal to proving that assuming the particle is not accelerated in the rotating frame and

has no velocity in this frame, there exists an angular frequency ω with its corresponding vector in the

z-direction such that this assumptions hold. In other words, one needs to prove that Newtons second
law for all three particles give a unique solution for ω. Call the positions vectors of the particles with
respect to their centre of mass r̄1, r̄2 and r̄3. Then for all ri Newtons second law for the rotating frame

yield

~0 = ~Fg −mi~ω × (~ω × r̄i)− 2mi~ω × ~v = 0 ⇒
∑

j∈{1,2,3}\{i}

Gmimj

|~ri − ~rj |3
(~ri − ~rj) = −miω

2r̄i

3.3. Equations of motion 12

Figure 3.2: The five Lagrange points for a three body system. Source: [27]

Since |~ri − ~rj | = R for all i 6= j, we divide both sides by mi and simplify the expression to∑
j∈{1,2,3}

Gmj

R3
(~rj − ~ri) = −ω2r̄i =

−ω2

~ri − 1

M

∑
j∈{1,2,3}

~rjmj

 = −ω2

 ∑
j∈{1,2,3}

mj

M
~ri −

∑
j∈{1,2,3}

~rj


It thus follows that ω =

√
GM
R3 Since the above expression is independent of the individual masses of

the three particles, there indeed is a frequency such that the particles are in equilibrium in the frame

rotating with this ω. Therefore the L4 and L5 points are indeed equilibrium points in the rotating frame.

Notice that since the Trojan mass is small compared to the mass of the Sun and Jupiter, the angular

frequency found corresponds with Jupiter’s angular velocity around the Sun.

The reason these two Lagrange points are of interest is that they are, in contrast to the other Lagrange

points, stable under the condition that one of the large masses is more than about 24 times large than

the other large mass[27]. These conditions hold in the Sun-Jupiter system, which is why there could

orbit so many asteroids around this orbit. The asteroids around these Lagrange points of Jupiter are

called Trojans and make up about half of the total asteroids in our Solar System. After we have set up a

coordinate system and derived the equations of motion, we will have a look at the Lagrange points once

again to elaborate the theoretical pre knowledge about their symmetry and asymmetry.

3.3. Equations of motion
In the section, we will derive the equations of motion for the Trojans. The first step is to choose a

coordinate system, which will be the cylindrical coordinates in the rotating frame of Jupiter. This system

3.3. Equations of motion 13

is chosen, since it gives more insight about the stability of the L4 and L5 points, as will be clear in

section 3.5.2. Since Jupiter’s orbital eccentricity is small, the orbit is considered circular for simplicity.

The conversion from the Cartesian coordinates x, y and z to the cylindrical coordinates r, θ, z for the
radial, angular and z components respectively is given by

r =
√
x2 + y2

θ = atan2 (y, x)

z = z

(3.6)

and the unit directional vectors are given by

r̂ = cos θx̂+ sin θŷ

θ̂ = − sin θx̂+ cos θŷ

ẑ = ẑ

(3.7)

We can also express the Cartesian position vector in terms of this coordinates by:

~r = r cos θx̂+ r sin θŷ + zẑ (3.8)

With the coordinate system set up, we will derive the equations of motion using Hamiltonian mechanics.

One therefore firstly has to calculate the potential and kinetic energy, the Lagrangian and some gener-

alised momenta. If we would consider frictions, we would have mass dependent accelerations, but in

outer space there is negligible friction. Also, the Trojan masses are much smaller than Jupiter and the

Suns masses, such that they do not alter the orbit of those big masses. Therefore the Trojan masses

could be divided out in every concerned force and have no influence on the final equations of motion.

Therefore, we will choose the Trojan masses unit in the derivations for simplicity.

3.3.1. Potential
Using Cartesian coordinates one could firstly find a potential V . Since the potential is not dependent of
the velocity of particles but only relative to the positions, we will use the Cartesian rotating frame around

the common centre of mass of the Sun and Jupiter, which are then both positioned on the x-axis. Let
~RJ be the distance vector of Jupiter to this centre of mass, mJ , mS the mass of Jupiter and the Sun

respectively and ~RS the distance vector of the Sun to the centre of mass. Using that the centre of mass

is in the origin, we can express ~RS in terms of ~RJ . If we define µ = mJ

mS
in this report we then obtain:

0 =
~RJmJ + ~RSmS

mJ +mS
⇒ ~RS = − ~RJ

mJ

mS
= −µ ~RJ

We could find the potential due to the Sun and Jupiter by integrating Newton’s law of gravity which yields

V = − GmS

|~r − ~RJ |
− GmJ

|~r − ~RS |

Since Jupiter and the Sun are on the x-axis in the chosen reference frame, we could express ~RJ = Rx̂
and ~RS = −µRx̂ where RJ is defined as the distance from Jupiter to the centre of mass. Using equation

3.8, this can be rewritten as

V (r, θ, z) = − GmS√
r2 + µ2R2 + 2µrR cos θ + z2

− GmJ√
r2 +R2 − 2rR cos θ + z2

(3.9)

3.3.2. Kinetic energy
Apart from the potential energy, which is determined by the positional elements, there also is a kinetic

energy T which is determined by the velocity coordinates in the non-rotating frame. If ~r and ~v are the
position and velocity vectors within the rotating frame with angular frequency ωJ , then the total velocity

can be calculated by

~vtotal = ~v + ~ωJ × ~r (3.10)

3.3. Equations of motion 14

Although this formula is familiar among physicists when the angular velocity is constant, it is actually valid

as well when the angular velocity is a function of time. This is an important property for our research,

since we will consider migrations of Jupiter in which the angular velocity will not be constant. Therefore,

we will prove formula 3.10 for the general case. For this, suppose that in the rotating frame an object

has a position

xy
z

 in Cartesian coordinates and the frame has a rotation speed of ω(t) := d
dtφ(t), where

φ(t) is the argument of the frame relative to the inertial frame. The real position of the object in the

non-rotating frame is then given by the vector R

xy
z

 where

R =

cos(φ(t)) − sin(φ(t)) 0
sin(φ(t)) cos(φ(t)) 0

0 0 1

 (3.11)

is a rotation matrix. Using the chain rule and ω(t) := d
dtφ(t), we therefore find that the total velocity is

given by

~vtotal = −ωJ(t)

sin(φ(t)) − cos(φ(t)) 0
cos(φ(t)) sin(φ(t)) 0

0 0 1

xy
z

+R
˙xy
z

 = ~v + ~ω(t)× ~r

Hence we conclude that equation 3.10 indeed holds, even when ωJ is time dependent. We can convert

this equation to our cylindrical coordinates using the transformation in equation 3.8, which yields

~vtotal = ṙr̂ + rθ̇θ̂ + żẑ + (rr̂ + zẑ)× ωJ ẑ = ṙr̂ + r(θ̇ − ωJ)θ̂ + żẑ

Hence, the kinetic energy in our cylindrical coordinate system is given by

T =
1

2

(
v2 + ω2r2 + 2~v · (~ω × ~r)

)
=

1

2

(
v2 + ω2r2 + 2(ṙr̂ + rθ̇θ̂) · (ωrθ̂) = v2 + ω2r2 + 2θ̇r2ω

)
(3.12)

Since the equation for the total velocity is valid for all time dependent ωJ(t), the kinetic energy from
equation 3.12 has the same property.

3.3.3. Lagrangian
Now we have calculated the kinetic and potential energy, the Lagrangian L could be computed, which

is given by the differences of these energies

L = T − V =
1

2
m(v2 + ω2

Jr
2 + 2θ̇r2ωJ)− V (r, θ, z) (3.13)

The Lagrangian produces a set of generalised momenta for the coordinates r, θ, z. They are given by

p =
∂L
∂r

= ṙ

lz =
∂L
∂θ

= r2(θ̇ + ωJ)

pz =
∂L
∂z

= ż

(3.14)

These momenta, combined with the coordinates themselves, form a set of independent variables that

fully describe the system. Therefore, we will use these momenta instead of the regular derivatives.

Using these momenta, the Lagrangian can be rewritten as:

L =
p2 + p2z + r2(lz

r2 − ωJ)
2 + ω2

Jr
2 + 2(lz

r2 − ωJ)r
2ωJ

2
− V (r, θ, z) =

p2 + p2z + (lzr − ωJr)
2 + ω2

Jr
2 + 2(lzωJ − ωJr

2)

2
− V (x, y, z) =

p2 + p2z +
l2z
r2 − 2ωJ lz + ω2

Jr
2 + ω2

Jr
2 + 2(lzωJ − ω2

Jr
2)

2
− V (r, θ, z) =

p2

2
+
p2z
2

+
l2z
2r2

− V (r, θ, z)

(3.15)

3.3. Equations of motion 15

3.3.4. Hamiltonian
In general if there is a system with N degrees of freedom which can be fully described by N coordinates

qi, the Hamiltonian will generate a system of differential equations using the Lagrangian and the

generalised momenta pi corresponding to qi. It is defined as[21]

H =

N∑
i=1

piq̇i − L (3.16)

For our system with the coordinates from 3.6 and the generalised momenta from 3.14, this leads to a

Hamiltonian of

H = pṙ + lz θ̇ + pz ż − L = p2 + lz(
lz
r2

− ωJ) + pz ż − L =

p2

2
+
p2z
2

+
l2z
2r2

− lzωJ + V (r, θ, z)

(3.17)

Using this Hamiltonian, we can now finally compute the equations of motion as explained in[24]:

ṙ =
∂H
∂p

= p

θ̇ =
∂H
∂lz

=
lz
r2

− ωJ

ż =
∂H
∂pz

= pz

ṗ = −∂H
∂r

=
l2z
r3

− ∂V

∂r

l̇z = −∂H
∂p

= −∂V
∂θ

ṗz = −∂H
∂p

= −∂V
∂z

(3.18)

where the potential derivatives are given by:

∂V

∂r
= G

(
mS(r + µR cos(θ))

(r2 + µ2R2 + 2µrR cos θ + z2)
3
2

+
mJ(r −R cos(θ))

(r2 +R2 − 2rR cos θ + z2)
3
2

)
∂V

∂θ
= G

(
mS(−µRr sin(θ))

(r2 + µ2R2 + 2µrR cos θ + z2)
3
2

+
mJRr sin(θ)

(r2 +R2 − 2rR cos θ + z2)
3
2

)
∂V

∂z
= Gz

(
mS

(r2 + µ2R2 + 2µrR cos θ + z2)
3
2

+
mJ

(r2 +R2 − 2rR cos θ + z2)
3
2

)

In the code for the numerical method, the equations of motions are rewritten mathematically to save

computational time. All optimisations are summarised in section 6.1.1, but for the calculation of the

potential derivatives the optimisation is very mathematical and therefore derived here. The idea is to

define some variables and extract common base terms, to save computational time on ’heavy’ functions

like the fractional power. We therefore firstly defined ρ = r cos θ, ψ = Rr sin θ which yields for the

potential derivatives

∂V

∂r
=

GmS(r + µρ)

(r2 + µ2R2 + 2µrρ+ z2)
3
2

+
GmJ(r − ρ)

(r2 +R2 − 2rρ+ z2)
3
2

∂V

∂θ
=

−GmSµψ

(r2 + µ2R2 + 2µrρ+ z2)
3
2

+
GmJψ

(r2 +R2 − 2rρ+ z2)
3
2

∂V

∂z
= z

(
GmS

(r2 + µ2R2 + 2µrρ+ z2)
3
2

+
GmJ

(r2 +R2 − 2rρ+ z2)
3
2

)

3.4. Cartesian coordinates and generalised momenta 16

Lastly, we extracted some common base terms, which ware defined as

B1(r, rρ, z) =
GmS

(r2 + µ2R2 + 2µrρ+ z2)
3
2

, B2(r, rρ.z) =
GmJ

(r2 +R2 − 2rρ+ z2)
3
2

This yields:
∂V

∂r
= (r + µρ)B1 + (r − ρ)B2

∂V

∂θ
= ψ(B2 − µB1)

∂V

∂z
= z(B1 +B2)

In this way, the derivatives are no longer functions of θ but of ρ and ψ. In this way, we have to estimate
less trigonometric functions, which is a relative time consuming calculation compared to a simple

multiplication for example. Also, since we extracted a base term, we have to do many less operations

per time step, and in particular we only have to calculate a fractional power once instead of three times,

saving again on a heavy calculation.

3.4. Cartesian coordinates and generalised momenta
In the previous sections, the coordinate system was defined and the equations of motions where

computed. However, as described in section 3.1, the standard way to describe a Trojans orbit is using

Kepler elements and until now, we have only derived a map foam the Kepler elements to the Cartesian

coordinates. The Cartesian coordinates thus have to be converted to the cylindrical coordinate system,

but the map defined in equation 3.19 does not include the generalised momenta ans should therefore

be extended in this chapter. Once the map is extended to all six coordinates in the cylindrical system,

we are able to convert the Trojan data to our coordinate system using the method described in section

4.1. We will also convert the inclination from equation 3.24 to our coordinate system as we will need

this formula at the end of our simulations. For this, we firstly have to derive the formula for the angular

momentum in our coordinate system.

3.4.1. Full coordinate map
For the conversion from Cartesian coordinates to cylindrical ones, the elements in the z directions
remain unchanged. To construct the full map, we thus only have to consider the x and y components
of the position and velocity vector in Cartesian coordinates for which we will use a trick with complex

numbers. Since the complex numbers are two dimensional, they can be seen as two dimensional

vectors in the complex plane. Therefore we can represent the two dimension vector containing the x
and y components of the three dimensional ~r vector as a complex number ~r := x+ yi. We can now use

the rules for calculating with complex numbers.

By deriving the Cartesian position vector in 3.8 and comparing it with the equivalent definition above,

the Cartesian velocity follows in terms of the cylindrical coordinates:

x+ yi = reiθ

vx + ivy = ṙeiθ + rθ̇ieiθ = peiθ + (
lz
r
− ωJr)ie

iθ (3.19)

From equation 3.19, one directly extracts pz = vz. We subtract these terms on both sided such that we

lose the j terms and then multiply both sides with e−iθ to obtain

(vx + ivy)e
−iθ = ṙ + rθ̇i = p+ (

lz
r
− ωJr)i (3.20)

where the generalised momenta from equation 3.14 are substituted for the derivatives. The conversions

can now be found by comparing the real and imaginary parts:

p = <((vx + vyi)e
−iθ) = vx cos(θ)+vy sin(θ), lz −ω2

J = r=((vx + vyi)e
−iθ) = vxr sin(θ)+vyr cos(θ))

3.4. Cartesian coordinates and generalised momenta 17

Summarised, the full conversion is given by:

r =
√
x2 + y2

θ = atan2 (y, x)

z = z

p = vx cos(θ) + vy sin(θ)

lz = vxr sin(θ) + vyr cos(θ))− ω2
J

pz = vz

(3.21)

3.4.2. Angular momentum
The angular momentum is not directly part of the research, but it is an important quantity that is used in

the derivations of the inclinations and the symmetries. Therefore we will calculate the angular momentum

here. When calculating the angular momentum L, one has to consider the velocity in the non-rotating
frame. Therefore, one could not invert equation 3.21 directly, but firstly has to to add ωJ to the differential

equation for the θ coordinate to obtain θ̇′ = lz
r2 in equation 3.18. One does not have to adjust anything

about the position vector and the other velocity coordinates since these could just be considered as

a choice of axis, which in our case thus are the axes such that Jupiter and the Sun lie on the x-axis,

moving in the x,y-plane. Now the vector from equation 3.8 and the first three differential equations from

the equations of motion 3.18, can be used to obtain the following conversion needed for the specific

calculation of the angular momentum:

x = r cos θ

y = r sin θ

x = z

ẋ = ṙ cos θ − θ̇′r sin θ = p cos θ − lz
r sin θ

ẏ = ṙ sin θ + θ̇′r cos θ = p sin θ + lz
r cos θ

ż = pz

(3.22)

Hence one arrives at

~L = ~r × ~p =

∣∣∣∣∣∣∣
~x ~y ~z

r cos θ r sin θ z

p cos θ − lz
r
sin θ p sin θ +

lz
r
cos θ pz

∣∣∣∣∣∣∣ =(
rpz sin θ − z

(
p sin θ +

lz
r
cos θ

))
x̂+

(
z(p cos θ − lz

r
sin θ)− rpz cos θ

)
ŷ+(

r cos θ(p sin θ +
lz
r
cos θ)− r sin θ(p cos θ − lz

r
sin θ)

)
ẑ =(

rpz sin θ − z

(
p sin θ +

lz
r
cos θ

))
x̂+

(
z(p cos θ − lz

r
sin θ)− rpz cos θ

)
ŷ + lz ẑ

(3.23)

3.4.3. Inclination
Using the angular momentum from equation 3.23, one can express the inclination from equation 3.24 in

the cylindrical coordinates. For this, we firstly calculate some properties about the angular momentum

vector from equation 3.23:

L2
x + L2

y = r2p2z

(
sin

2 θ + cos2 θ
)
+ z2

(
p sin θ +

lz
r
cos θ

)2

+ z2(p cos θ − lz
r
sin θ)2+

−2rzpz

(
sin θ

(
p sin θ +

lz
r
cos θ

)
+ cos θ

(
p cos θ − lz

r
sin θ

))
=

r2p2z + z2p2
(
sin

2 θ + cos2 θ
)
+ z2

l2z
r2

(
cos2 θ + sin

2 θ
)
+ 2

z2lzp

r
(sin θ cos θ − cos θ sin θ) =

3.5. L4 and L5 points 18

r2p2z + z2p2
(
sin

2 θ + cos2 θ
)
+ z2

l2z
r2

(
cos2 θ + sin

2 θ
)
+ 2

z2lzp

r
(sin θ cos θ − cos θ sin θ) =

−2rzpz(p
(
sin

2 θ + cos2 θ
)
+
lz
r
(sin θ cos θ − cos θ sin θ)) =

r2p2z + z2p2 + z2
l2z
r2

− 2rzpzp = (rpz − zp)2 +
z2l2z
r2

We now realise that we will obtain less operations, and thus a faster code, if we use geometry to rewrite

the inclination in terms of an arc tangent to obtain:

I = arccos
Lz

|~L|
= arctan

√
L2
x + L2

y

Lz
= arctan

√
(rpz − zp)

2
+ z2

r2 l
2
z

lz
= arctan

√(
rpz − zp

lz

)2

+
(z
r

)2
(3.24)

3.5. L4 and L5 points
Now all important quantities and coordinate transformations are set up, we can investigate the Lagrange

points more closely. Since the stable L4 and L5 points are central in this research, we will first prove

that they indeed exist as equilibrium points. After then, we will define, prove and discuss the symmetry

of those points. Lastly, we will discuss the asymmetry for a migrating Jupiter.

3.5.1. Symmetry
Before we dive into a symmetry between the L4 and L5 point, we first note that there is also a simple

symmetry within each point by mirroring a particle in the x, y-plane, thus inverting the z-directions. That
is, in cylindrical coordinates:

r′ = r, θ′ = θ, z′ = −z, p′ = p, l′z = lz, p
′
z = pz (3.25)

where the prime denotes the coordinates after mirroring the original Trojan. This symmetry is trivial since

the equations of motion are symmetric in the z-direction even if Jupiter’s eccentricity or the migration
is taken into account. because all z dependent terms in the equations of motion 3.18 are of the form
z2, making the sign irrelevant. We will therefore refer to this as the trivial symmetry and only take into

into account for some results. In this way, we are able to show it indeed does not have an effect in

the numerical analysis as well, but we prevent unnecessary computational times by leaving out this

irrelevant symmetry.

More interesting is that on a first glance the L4 and L5 point appear to be symmetric in the rotating frame.

Before we are able to prove this symmetry does indeed exist, we have to define what we consider as a

symmetry. We define this symmetry that if an orbit exist around L4, we can define a Trojan such that its

orbit has exactly the same shape around L5. Thus, we must be able to mirror the orbit in the y-axis.
Before we will prove mathematically that this is indeed possible, it will be thought of intuitively how the

prove should look like. If the orbits are mirrored in the x-axis, every possible position vector on the orbit
r must be mirrored in the y-axis. But if we mirror an arbitrary vector ~r at some moment in time, it is
assured that any moment in time later the position vectors still is mirrored position vector if and only

if they change in the same way. In other words, there slopes or derivatives should be related. The

derivatives are given by the velocity vector and thus we expect these to be mirrored in the x-axis as well.
Since the slope is ’two-directional’, we also have the option to flip the velocity after wards. In the letter

case, the mirrored Trojan thus moves the other way around. The latter is now assumed, since we know

all Trojans move anti clockwise. This intuition will help us to find a proposed solution, from which we

could later prove it is indeed valid. It also tells us that the velocity is an important measure in this proof.

To execute the mathematically, we firstly start with some definitions. Without loss of generality start

at time t = 0. Since we have a physical problem, we must have unique solutions of the orbits as

functions of time. Therefore, we can parameterise every variable by the time. Call the position vector

in the original frame ~r(t) =

x(t)y(t)
z(t)

 with corresponding velocity vector ~v(t) =

vx(t)vy(t)
vz(t)

. After mirroring

3.5. L4 and L5 points 19

the position in the x-axis, we call the position vector ~r′(t) and velocity vector ~v′(t). In the rotating

frames, the cylindrical coordinates are called r(t), θ(t), z(t), p(t), lz(t), pz(t) for the original particle and
r′(t), θ′(t), z′(t), p′(t), l′z(t), p

′
z(t) for its mirror. For simplicity, if we look at time t = 0, the t dependence

is not written down thus for example ~r(0) = ~r(t) =

xy
z


We have to prove that after mirroring the Trojans stay mirrored at all time. However, as explained

in the first two paragraphs, they go around the orbits in different directions. In other words, if initially

~r′ =

 x
−y
z

, we expect that the solution is given by the symmetric orbit:

∀t ∈ R, ~r′(t) =

 x(−t)
−y(−t)
z(−t)

 (3.26)

Now we know that physical systems must have a unique solution, thus it is sufficient to just assume

that the orbit in equation 3.26 exist and than prove that it is a solution to the system. The uniqueness

then implies that it must be the orbit after mirroring and thus that the orbit is indeed symmetric with the

original one. We could prove the solution is a solution, by showing that it satisfies the equations of

motion.

Therefore, we now start by assuming equation 3.26. Since we already know the initial conditions for

the position, our intuition suggest that the velocity now determines the orbit. We therefore start by

computing it by deriving ~r′(t) =

 x(−t)
−y(−t)
z(−t)

. It follows that

~v′(t) =

−vx(−t)vy(−t)
−vz(−t)

 (3.27)

Plugging in t = 0 yields three other initial conditions (which agree with the intuitions from the first two

paragraphs) for the velocity vector ~v′ after mirroring. Combined with the ~r′(t) function, this can be

converted to six independent equations for the coordinates of the cylindrical system. Therefore, they

describe the entire system and thus form a unique solution if they all six obey the equations of motion.

Furthermore, it provides initial conditions for the generalised momenta, which are needed when we want

to simulate a mirrored Trojan. Since the equations of motions are in the cylindrical system, it is easier

to now rewrite the found vectors in cylindrical coordinates. For the positional elements. this is trivial:[
r′(t), θ′(t), z′(t)

]
=
[
r(−t), θ(−t), z(−t)

]
. For the general momenta, we observe from the vectors in

3.26 and 3.27 that the angular momentum components L′
x(t) and L

′
z(t) are time mirrors of the original

Trojans Lx and Lz as well. Thus from 3.23 it must follow that:
L′
z(t) = Lz(−t) ⇒ l′z(t) = lz(−t)

L′
x(t) = Lx(t) ⇒ r′(t)p′z(t) sin(θ

′(t))− z′(t)

(
p′(t) sin(θ′(t)) +

l′z(t)

r′(t)
cos(θ′(t))

)
=

r(−t)pz(−t) sin(θ(−t))− z(−t)
(
p(−t) sin(θ(−t)) + lz(−t)

r(−t)
cos(θ(−t))

) (3.28)

If we now plug in r′(t) = r(−t), θ′(t) = −θ(−t), z′(t) = z(−t), l′z(t) = lz(−t) in the bottom equation, this

yields

−r(−t)p′z(t) sin(θ(−t))− z(−t)
(
−p′(t) sin(θ(−t)) + lz(−t)

r(−t)
cos(θ(−t))

)
=

r(−t)pz(−t) sin (θ(−t))− z

(
p(t) sin(θ(−t)) + lz(−t)

r(−t)
cos(θ(−t))

) (3.29)

3.5. L4 and L5 points 20

Since this must hold for all combinations of coordinates for the non-mirrored particle, it follows that the

only solution is

r′(t) = r(−t), θ′(t) = −θ(−t), z′(t) = z(−t), p′(t) = −p(−t), l′z(t) = lz(−t), p′z(t) = −pz(−t) (3.30)

Since this is the unique solution to 3.29, we have found that this set solutions agrees with the sets of

solutions 3.26 in the Cartesian system, where the initial conditions are found by plugging in t = 0:

r′ = r, θ′ = −θ, z′ = z, p′ = −p, l′z = lz, p
′
z = −pz (3.31)

As explained, we are thus are only left to prove that equation 3.30 is a solution to the differential equation

with these initial conditions. This is done by showing that it satisfies the equations of motion 3.18.

Indeed,
ṙ′(t) = −ṙ(−t) = −p(−t) = p′(t)

θ̇′(t) = θ̇(−t) = lz(−t)
r2(−t)

− ωJ =
l′z(t)

r′2(t)
− ωJ

ż′(t) = −ż′(−t) = −pz(−t) = −pz(t)

ṗ′(t) = ṗ(−t) = l2z(−t)
r3(−t)

− ∂V

∂r
(−t) = − l′2z (t)

r′3(t)
− ∂V

∂r′
(t)

l̇z
′
(t) = −l̇z(−t) = −∂V

∂θ
(−t) = ∂V

∂θ′
(t)

ṗz
′(t) = ṗz(−t) = −∂V

∂z
(−t) = −∂V

∂z′
(t)

(3.32)

Therefore we conclude that the proposed solution indeed gives an equivalent orbit, albeit the time is

reversed. From this we conclude that the L4 and L5 point are indeed symmetric and we can mirror a

Trojan by using the map

r′ = r, θ′ = −θ, z′ = z, p′ = −p, l′z = lz, p
′
z = −pz

This symmetry will later be exploited in the method to be able to create a system with just as many L4

Trojans and L5 Trojans from any data set.

It has to be noted that the symmetry is broken in the actual system because of for example gravi-

tational permutations of Saturn and by Jupiter’s actual non-zero eccentricity. However, this leads to an

asymmetry of about 10% over a time of 4,5 billion years[3], which is a 4.5 · 103 times longer than the
maximal simulated time in this project. Therefore, it is acceptable to neglect these effects on the time

scales used in this project.

To give some more insight before we compare this result with the migrating case, we will show in figure

3.3 the plot for the stability regions of both points Li et al. found using Sicardy and Dubois theory[20].

This plot shows that the L4 and L5 have symmetric stability regions, which is necessary if the orbits are

symmetric. 3.3:

3.5.2. Asymmetry L4 and L5
As described in the introduction, this symmetry no longer exist for the migrating Jupiter. If the symmetry

form equation 3.26 would still exist, the equations of motion must still be satisfied for this case. However,

if we now compute θ̇, we must consider ωJ(t) as a function of time, since ωJ =
√

GmS

R3(t) and R is now a

function of time.

θ̇′(t) = θ̇(−t) = lz(−t)
r2(−t)

− ωJ(−t)

But since R(−t) 6= R(t) and both the square root and the third power are an injective function, we find
that it cannot hold that ωJ(−t) = ωJ(t). Therefore, equation 3.30 is not a solution to the equations of

3.5. L4 and L5 points 21

Figure 3.3: The stability regions of an L4 and an L5 Trojan as found by Li et al.[2]. X is proportional to the distance between a

Trojan and Jupiter and σ the angle in the rotating frame. The blue lines are the stability boundaries and the red line denotes the

bundary for very stable Trojans. The dots represent some test particles used by Li et al.

motion in this case and the symmetric orbits no longer exist.

Li et al. again used Sicardy and Dobois theory[20] to plot the stability regions for the L4 and L5 point

during the migration of Jupiter. These plots are shown in figure 3.4. We deduce that the stability region

has decreased for the L4 point, while it increases around the L5 point. The entire proof can be written

in [20], but we can make the part for large angles θ intuitive using our coordinate system. Suppose
that we have an L4 Trojan at the border of this region with a large angle θ. Then, in the normal case,
the forces pushing the Trojan in to the region and out of the region must cancel each other out. The

equation of motion for θ̇ thus gives lz
r2 = ωJ . But now, if we migrate Jupiter, ωJ decreases, thus the

force that pulls the Trojan into the stable region decreases, resulting in the Trojan being pushed out.

For the L5 Trojan, on the other hand, this is equivalent to the force pushing the Trojan out of the stable

region being decreased. Hence, we expect the boundary with balance r2 = ωJ to be further removed

from the L5 point. However, these derivations only hold for all moments in time when r and lz remain
the same for both particles at all time.

Li et al. described that one might expect intuitively that the shrunken L4 suitability region leads to the

outer L4 Trojans being left unstable during the migration. To test this, they picked an L4 Trojan at the

boundary of the L4 region in the normal case (with θ > 60◦) and a similar particle with this angle mirrored.
For this, they defined the resonance angle as the maximum angular deviation from the Lagrange point.

This will be an important quantity for our research as well and be denoted by the symbol ∆θ. The results
Li et al found for the test particles and their resonant angles are shown in figure 3.5.2. They concluded

3.5. L4 and L5 points 22

Figure 3.4: The stability regions of an L4 and an L5 Trojan as found by Li et al.[2]. X is proportional to the distance between a

Trojan and Jupiter and σ the angle in the rotating frame. The blue lines are the stability boundaries and the particles between the

blue and red lines have high angular and radial deviations. One observes that the stability region of the L4 point is smaller than

that of the L5 point. The dots represent some test particles used by Li et al, that are altered due to the migration.

3.5. L4 and L5 points 23

Figure 3.5: Evolution a Trojan resonant angle with initial resonant angle 137◦ during a migration of Jupiter. Both the plot for a L4

and a L5 Trojan are shown. σ is the angle θ in our report. Source: [2]

3.5. L4 and L5 points 24

that in this case, the resonant angle for the L4 Trojan in fact decreased, while that of the L5 Trojan

increased and eventually got ejected. They suggested that during the migrations, it might actually be

the case that the shrinking L4 regions pushes the Trojans inwards, leaving more stable Trojan at the

end of the migration, while the increasing L5 region pushes Trojans outwards, potentially pushing them

into unstable regions.

The fact that the shrunken stability leads to more stable L4 Trojans leaves the question where the loop

hole is. In fact, the stability regions plotted in 3.3 and 3.4, are only domains in position space. It thus only

accounts for potential energies and an initial kinetic energy. However, the migration can be described

by a force on the system over a certain distance. In other words, there is extra work performed on

the Trojan and the sum of the kinetic and potential energies is not be conserved. In fact we see from

our equations of motion that all derivative functions ṗ, l̇z and ṗz alters compared to the non-migrating
case, because the potentials are now time dependent. We can see this as some extra force altering

the Trojans velocities. These forces might cause the Trojan being pushed to or from the stable regions

during the migration. It is therefore possible that the migration pushes an L4 Trojan towards the stable

region, while its L5 mirrors are pushed out of this region.

Nonetheless, it is difficult to derive whether the shrinking stability regions always push L4 Trojans

inwards or not. Li et al. tested it for a small number of Trojans with certain initial conditions, but did not

consider for example the inclination in most simulations. For the inclinations it is more difficult to see

what happens, but since the the distribution of the L4 and L5 Trojans are altered in the θ directions by
the migration in a different manner, the potential energy alters as well leading to different velocities in the

z-directions. Therefore, we hypothesize the migration leads to an observable difference in inclinations.

4
Method

In order to answer how the Trojan distributions are effected by the migration, we need a model to

describe the migration of Jupiter and we need a code that is able to simulate the model. We decided to

create our own code since this allows us to use our coordinate system and to optimise the code for this

specific research. In order to execute the code, we will need to pick an appropriate numerical method.

However, before we look into the model and method in detail we will first discuss the initial data. The

initial Trojans are not created, but extracted from real Trojan data such that we obtain a large data set

of initial conditions. Therefore, we have to describe how we can implement this initial data correctly in

our coordinate system.

4.1. Initial data
The initial Trojan data was downloaded from NASA’s small object database[14], which contained 12.555

Trojans. In this way, we have many Trojans with different initial conditions to start our simulations from.

The NASA data is given in Kepler elements, thus we have to convert them to our coordinate system

using the conversions described in subsection 3.1.1. Then, we use formula 3.31 to obtain as many L4

and L5 Trojans and to make sure that these copies are symmetric, such that the data set is increased to

a set of 25.110 Trojans with just as many L4 and L5 Trojans. Also, we have ensured that each Trojan

has a copy in the L4 and L5 point and vice versa. We will refer to this as the symmetric copy or mirror,

although this symmetry is broken once the migration starts. In section 3.5, we have also written about

the trivial symmetry. We generated the Trojans described by this symmetry using formula 3.25, but we

will not use this copies in all simulations to save computational time.

Apart from the Trojan data, we need some data of Jupiter to be able to execute the conversion above.

The data used is given in table 4.1.

Quantity Corresponding symbol or equation value

Mass mJ 1, 898.13 · 1024 kg
Semi-major axis aJ 5.20336301 AU
Eccentricity ε 0.04839266
Inclination I 1.30530◦

Longitude of ascending node ΩJ 100.55615◦

Longitude of perihelion ωJ +ΩJ 14.75385◦

Mean Longitude MJ +ΩJ + ωJ 34.40438◦

Epoch EJ J2000 (2451545.0 days)

Table 4.1: Current data of Jupiter needed to calculate positions of Trojans[13]

It is worth noting that as a first attempt, it was assumed that Jupiter had a small influence on the Trojans

in the time elapsed between the different epochs. This simplifies some of the calculations by using

25

4.2. Numerical method 26

the numerical method and allows all simulations to start from the same moment in time, but of course

excluding Jupiter introduces other errors. In our attempt, it resulted to about 36% of the Trojans being

unstable after a simulation of 10000 years without migration, compared to less than a percent using the

current method. The alternative method is however described in the appendix C.

4.2. Numerical method
For numerically integration of Hamiltonian systems, one usually uses a symplectic integrator to maintain

the symplectic property as much as possible. The exact meaning of the symplectic property is beyond the

scope of this project, but a standard implicit symplectic integrator has a bounded energy error[8] which

is important since the Hamiltonian is conserved physically when there is no implicit time dependence in

its formula. Apart from the symplectic property, a high order method is preferred, since one wants to

use bigger time steps in order to be able to simulate many years in a short amount of time. The Yoshida

integrator (A.1) was therefore considered, but our non-migrating system was not exactly of the required

form. A Richardson estimation estimated the error to be of a second order instead of the desired fourth

order. However, Luo et. al [8], improved the integrator to a fourth order method, by duplicating the

system each time step, where in one system the position is constant and in the other the velocity, and

averaging out the results after each time step. For time independent separable Hamiltonians, that is

the Hamiltonian can be written as the sum of the time independent kinetic energy and the potential

energy, this integrator coincides with the original Yoshida integrator[8] (OYI). This improved method

will therefore be called the Midpoint Yoshida Integrator (MYI) in this report. They claim the method is

symplectic-like, thus yielding a bounded Hamiltonian error and claim it is mostly useful for the long term

evolution of problems with non-separable Hamiltonians[8], like ours. The method is as follows:

Firstly, one copies the canonical coordinates and momenta vectors ~r and ~p, call these variables r̃, p̃.
Then one sets a new Hamiltonian H(~r, ~p, r̃, p̃) = H1(~r, p̃) +H2(r̃, ~p), where H1 and H2 are copies of

the original Hamiltonian. Then it follows that:

~̇r = ~∇pH = ~∇pH2(r̃, ~p), ˙̃p = −~∇r̃H = −~∇r̃H2(r̃, ~p)

Since H2 is independent of ~r and p̃, these equations, merged in one vector [~r, p̃] can be solved and we
obtain the approximation for a time step h

[~r, p̃] ≈ [~r, p̃] + h[~∇H2(r̃, ~p), ~∇H2(r̃, ~p)]

which Junhie Luo et al. call the operationH1(h) (bold notation is used here for the vectors instead of arrays
to improve readability in combination with tilde symbol). Similarly, the operation H2(h) approximates the
solution for [r̃,~p]. Now set the operation

A2(h) = H2(h/2)H1(h)H2(h/2)

Then, the approximation with time step dt for [~r, ~p] is obtained by applying the operation
A2(d1dt)A2(d2dt)A2(d1dt) to the system (~r, ~p, r̃, p̃) and then averaging the results for [~r, p̃] and [r̃, ~p]. d1
and d2 are here the same constants as in A.1. Junjie et al. claim this methods gives a symplectic-like

integrator, which should suppress the unbounded energy changing behaviour of the OYI. The integrators

are compared in section 6.1. To determine a correct time step, one has to calculate the stability region

of the numerical method and the eigenvalues of the Jacobian of the system. Using the stability analysis

from appendix A.2, we have plotted the stability region of the numerical method and found a sufficient

bound of dt ≤ 2.5
|λ| provided <(λ) ≤ 0 as shown in figure 4.1 The eigenvalues could be determined

algebraically as described in appendix B.3 so we do not have to use any rude estimations. This is of

great advantage, as we would like as big time steps as possible in order to be able to run simulations of

a million of years. Combing the eigenvalues with the stability condition above one finds a bound for the

time step dt ≤ 4.74 y. However, if the Trojan is further removed from the equilibrium point, one might

need a smaller time step. Also, during the migration there are no equilibrium points in the chosen inertial

frame, potentially requiring a smaller time step. Therefore we take a much smaller time step of 1/3

years. The slow migration rate suggests this should be small enough. The errors could be estimated

for testing whether a chosen time step is sufficient or not, but this is left for further research on the

numerical method.

4.2. Numerical method 27

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
Im(dt)

Re(dt)

dt 2.5

Figure 4.1: Stability region for the midpoint Yoshida integrator with sufficient stability condition

4.2.1. Migration implementation
According to Malhorta[9], the migration of Jupiter can be estimated as

R(t) = Rinitial +

(
1− exp

(
− t

τ

))
∆R (4.1)

Here we define τ = 10
3 T where T is the time at which Jupiter has travelled about 96% of the total

migration distance, see figure 4.2. The total migration duration is then comparable to a constant migration

over a time T . Furthermore, our definition is now consistent with the migration used by Li et al.[2], which

allows us to use their results as estimates of values for parameters. Although Li et al. described the

migration using a force on Jupiter in the direction of its velocity[2], we do not simulate Jupiter and can

simply substitute formula 4.1 together with a formula for the angular velocity into the equations of motion.

This follows from the fact that when RJ and ωJ are functions of the time, formulas 3.12 and 3.9 are still

valid as explained in these sections. Therefore the equations of motion which were derived using these

energies are still valid. The difference is that the Hamiltonian is no longer conserved, but this is not a

requirement for the equations of motion. For the case when Jupiter’s orbit is a circle, the formula for the

angular velocity is given by ωJ =
√

GmS

R3 . The initial value chosen for R is Jupiter’s current semi-axis

from table4.1 and we have a simulation time of one million years. We expect that it takes some time for

the effect to become visible.

Since RJ and ωJ are known functions, we have to choose a time at which they are evaluated during

each time step. We have chosen to pick the value it has at the mean time of the interval.

4.2. Numerical method 28

0 2000 4000 6000 8000 10000
Time (year)

5.2

5.4

5.6

5.8

6.0

6.2

Ju
pi

te
rs

 d
ist

an
ce

 R
J t

o
th

e
su

n
(A

U)

Constant migration rate
Rinit + R(1 exp (t/))

Figure 4.2: The exponential function used to describe Jupiter’s radial distance to the sun during an outward migration of 1 AU. If

we compare the graph with a constant migration of 1 AU over a time T , we can define τ = 10
3
T . From the plot follows that in that

case Jupiter has travelled about 96% of its total migration distance with the exponential description and therefore the duration of

both migrations are comparable. For this plot τ = 1000 is used.

4.3. Simulations and code implementation 29

4.3. Simulations and code implementation
After the initial data is set up using section 4.1, we first ran simulations of a hundred thousand years

to determine the Trojan types on the long term without migration. Also, we run small simulations of

ten thousand years to determine the maximum and minimum angular deviations from the Lagrange

point before the migration. This has to be executed once. After that, several simulations can be run

with different parameters for the migration. An important note is that saving the orbits is not possible.

Even when the data is compressed, a simulation of a hundred thousand years would lead to several

gigabytes of data for our large data set. One therefore has to calculate the quantities needed directly

after a simulation has ended. In our case, this are the final inclination and the type of Trojan. In words,

the used scheme is as follows:

1. Load the converted Trojan data into one vector with the six initial conditions for our coordinate system.

2. Make symmetric copies of these Trojans.

3. Update the time to dt/2 where dt is the time step.
4. Calculate the new value of RJ using formula 4.1.

5. Calculate the new angular velocity ωJ using the new RJ .

6. Perform one step of the midpoint Yoshida integrator.

7. Add dt to the time.
8. Repeat 4-7 until the total simulation time is reached.

9. Calculate the inclination at the last moment of the simulation.

10. Determine the Trojan type.

The simulations themselves (step 2 up and till 7) are executed in a C code. This is very fast, especially

after we implemented several optimisations. The code is shown in appendix E.1. To handle the initial

data and code easily, we created a Python library with several functions and classes as shown in

appendix E.2. These can be called from Python function, as in the example code from appendix E.5.

In this example we used multi threading to run several simulations simultaneously. This is of great

importance to allow the required long simulations for the large numbers of Trojans. In the discussion

section 6.1.1, we have elaborated more details on our code performance and efficiency. Step 9 is in

fact inaccurate, since the inclination is not constant. However, if the inclination is a slowly changing

variable after the migration, this is a valid and time efficient estimation. This is taken as an assumption

in this report.

Jupiter's orbital eccentricity
Although our initial research did not include Jupiter’s orbital eccentricity, the effect is investigated and

elaborated in the discussion. However, the implementation in the model is not trivial and therefore

elaborated here. In the code, Jupiter’s orbital eccentricity will only be considered in the migrating case

and will still be ignored in the non-migrating case for time saving and simplicity, since the effect is already

known to be small on our timescale. We will however derive the equations for the non-migrating case,

since we had the requirement that Jupiter always is on a Kepler orbit during the migration.

When Jupiter’s orbit has an eccentricity this can be seen as oscillations of Jupiter in the rotating frame.

We have already discussed in the main section that a time dependent RJ does not change the equation

of motion. However, we choose as a condition that Jupiter remains on the x-axis, since otherwise the
formula for the potential derived in subsection 3.9 is invalid. This could be solved by making the angular

velocity ω of the rotating frame time dependent in such a manner, that Jupiter is always on the x-axis in
this frame. This is allowed in our problem, since we have already proven that the equations of motion

are valid for time dependent angular velocities. We thus only have to find such an ω. For the derivation
of what the angular velocity should be, we consider the rotation matrix of equation 3.11 again. We will

ignore the z directions, since they are zero in our frame. Now, we need to find a function for φ(t) in this

rotation matrix such that the two dimensional positional vector is given by

[
R
0

]
in the rotating frame.We

4.3. Simulations and code implementation 30

have to find an ω = d
dtφ(t) such that the following conditions hold

R

[
cos(φ) − sin(φ)

sin(φ) cos(φ)

][
1

0

]
= R

[
cos(ν)

sin(ν)

]

v̄

[
− sin(ν)

cos(ν) + ε

]
= −ω

[
sin(φ) cos(φ)

− cos(φ) sin(φ)

][
R

0

]
+

[
cos(φ) − sin(φ)

sin(φ) cos(φ)

][
Ṙ

0

]
R = a 1−ε2

1+ε cos(ν)

(4.2)

From this it follows that φ = ν and Ṙ = aε sin(ν)ω 1−ε2

(1+ε cos(ν))2 = εRω sin(ν)
1+ε cos(ν) . Combining this results with

system of equations 4.2, implies that we have to find an ω such that the following set of equations hols:{
−v̄ sin(ν) = −ωR sin(ν) + εRω cos(ν) sin(ν)

1+ε cos(ν)

v̄(cos(ν) + ε) = ωR cos(ν) + εRω sin2(ν)
1+ε cos(ν)

We now multiply the top equation with
cos(ν)
sin(ν) and add it to the bottom. If this yields a unique solution, it

directly implies that the original system of two equations for one variable was mathematically consistent.

We obtain

v̄ε =
εRω(sin2(ν) + cos2(ν))

1 + ε cos(ν)
=

εRω

1 + ε cos(ν)

which finally evaluates to

ω =

√
GmS(1 + ε cos(ν))2

aR2(1− ε2)
=

√
GmS(1 + ε cos(ν))

R3

The angular velocity is no longer constant and does no longer represent the mean motion of Jupiter.

The only criterion, about the angular velocity of the rotating frame and Jupiter’s distance function, in

order to keep the found equations of motion valid is that Jupiter is on the horizontal axis which is now

the case. We now have to pick an arbitrary initial value for the true anomaly, which we choose to have

value 0 at time dt/2, where dt is the time step used in the numerical method. Note that since it holds
that ω = dν

dt , we can estimate the new true anomaly at a time step by adding ωdt to the old one. The full
scheme to implement the eccentricity in a numerical method is therefore given by:

1. Start with calculating ωJ =
√

GmS

R3 at time zero.

2. Estimate the mean anomaly at t = 1
2dt by mJ ≈ 1

2ωJdt.
3. Calculate Jupiter’s distance R using formula 4.1 at the same time as used there.

4. Calculate Jupiter’s true anomaly using equation 3.3.

5. Calculate the new angular frequency using ωJ =
√

GmS

R3 .

6. Update R to correct for the eccentricity by using equation 3.1 with Jupiter’s eccentricity and true

anomaly and the calculated R form step 4 plugged in for a.
7. Perform one iteration step over the equations of motion.

8. Update the mean anomaly by adding the approximation ωJdt to it.
9. Repeat steps 3-9 until the desired simulation time is reached.

5
Results

After the methods described in the method chapter are executed, we were able to generate some graphs

and tables with the results. In this chapter, we will provide results that are directly related to our original

method and research question. Some more results that were created to investigate our model and

several different effects are given in the discussion chapter in the section where they are discussed.

Apart from these results, there are some additional results which are not discussed. Some of these

where only created for the first few Trojans or contained short simulation times to obtain some insight.

Others where accidentally created (not wrong, but not with the investigated values). However, in all

cases these are valid results nonetheless and therefore they are given in appendix D.

5.1. Test Trojan
Before we proceeded to simulate many results, we firstly reproduced the results using a test particle

with a high resonant initial angle to check whether our results where consistent with Li et al[2]. Because

they did not provide the full initial conditions and we did not consider eccentricities, it is not possible to

recreate the exact same graphs, but we can compare whether the results have the same properties.

We choose our test particles with zero initial velocity in the rotating frame with a high initial angle. The

used initial conditions are:
r = R

θ = ±150◦

z = 0

p = 0

lz = ωJR
2

pz = 0

(5.1)

We simulated these particles over 10000 years with a time step of 1/3 years. We firstly plot the orbits in

the horizontal plane. This led to different plots for the L4 and L5 point shown in figures 5.1. In these

figures one observes that the yellow orbit is in both cases more dense further away from the centre.

The orbit actually consists of many lines printed over each other, thus indicating that the Trojan is in

this region for a long time. Since the migration is much shorter than the total simulation time, this thus

means that the Trojan has moved outwards during the migration, which is as expected. However, what

differs between the plots, is that the L4 Trojan appears to have a smaller range in angles, while the L5

orbit widens. For some more details on this effect and to be able to compare it with figure 3.5, we now

plot the angles over time in figure 5.2. The plot shows that the maximum angle for the L4 Trojan rapidly

decreases and then remains constant after the migration. However, for the L5 Trojans, the resonant

angle is increased and this effect develops long after the migration. This indicates that it could take

many years before the L5 Trojan is kicked out of orbit, which is consistent with the findings of Li et al.[2].

On the other hand, the fast stabilisation of the maximum angle for the L4 Trojan, suggest a long term

stability of the L4 Trojan. This hypothesis is supported by continuing the simulations to a total duration

of a hundred thousand years. The resulting orbits are plotted in figure 5.3. The test particle gives some

31

5.1. Test Trojan 32

6 4 2 0 2 4 6
x (AU)

6

4

2

0

2

4

6
y

(A
U) L1 L2L3

L4

L5

(a) L4 Trojan

6 4 2 0 2 4 6
x (AU)

6

4

2

0

2

4

6

y
(A

U) L1 L2L3

L4

L5

(b) L5 Trojan

Figure 5.1: Orbit of a test Trojan initially placed near the Lagrange point with angles with respect to Jupiter of ±150◦. Jupiter is
then migrated outward over 1 AU. From the figure one deduces that the Trojans move outward as well but the orbit of the L4

Trojan narrows, while the orbit of the L5 Trojan broadens. The total simulated time is 10000 years. The position of the Lagrange

points and Jupiter, which is represented by the black dot, are determined at the beginning of the migration.

0 2000 4000 6000 8000 10000
t (y)

40

60

80

100

120

140

 (°
)

(a) L4 Trojan

0 2000 4000 6000 8000 10000
t (y)

160

140

120

100

80

60

40

20

 (°
)

(b) L5 Trojan

Figure 5.2: Angles of a test Trojan initially placed near the Lagrange point with angles with respect to Jupiter of ±150◦ during the

migration of Jupiter. Jupiter is then migrated outward over 1 AU. The resonant angle for the L4 Trojan decreases rapidly, while for

the L5 Trojan it increases for a much longer time and more irregularly.

first insight in the behaviour of the model and the migration duration, but both are elaborated further in

the discussion.

5.1. Test Trojan 33

6 4 2 0 2 4 6
x (AU)

6

4

2

0

2

4

6

y
(A

U) L1 L2L3

L4

L5

(a) L4 Trojan

6 4 2 0 2 4 6
x (AU)

6

4

2

0

2

4

6

y
(A

U) L1 L2L3

L4

L5

(b) L5 Trojan

Figure 5.3: Orbit of a test Trojan initially placed near the Lagrange point with angles with respect to Jupiter of ±150◦. Jupiter is
then migrated outward over 1 AU. From the figure one deduces that the Trojans move outward as well but the orbit of the L4

Trojan narrows and remain stables while the L5 Trojan is eventually kicked out, denoted by the line on the right leaving the figure.

The total simulated time is 100000 years.

5.2. Result tables 34

5.2. Result tables
Using the method described in the methods section 4, tables 5.1, 5.4 and 5.3 were created, which

contain the original Trojan types and the types after a migration of 1 AU using the values 500, 1000 and
1500 for τ . For the case with τ = 1000, we also simulated a migration of 2 AU, for which the results are
shown in table5.2. The used values for these variables are a small selection of the values investigated

in the research of Li et al[2]. As explained in the method section, we did nonetheless use several of

their investigated values to get more reliable results. The tables belonging to the simulations that did

take Jupiter’s eccentricity into account are given in subsection 5.2.1.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 11915 0 119 154 12188

L5 0 12141 30 16 12187

Horse shoe 11 25 37 33 106

Unstable 33 67 73 456 629

Total’ 11959 12233 259 659 25110

Table 5.1: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of one million years using a

time step of 1/3 years. The migration rate is described equation 4.1 with τ = 1000 y. The initial Trojans are 12555 actual Trojans
from [14] with its symmetric copies to obtain as many L4 and L5 Trojans initially. The prime denotes the types after the migration.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 9448 1 1359 1380 12188

L5 0 12119 28 40 12187

Horse shoe 5 24 40 37 106

Unstable 22 96 93 418 629

Total’ 9475 12240 1520 1875 25110

Table 5.2: Trojans of each type after a migration of 2 AU of Jupiter from its current position over a time of one million years using a

time step of 1/3 years. The migration rate is described equation 4.1 with τ = 1000 y. The initial Trojans are 12555 actual Trojans
from [14] with its symmetric copies to obtain as many L4 and L5 Trojans initially. The prime denotes the types after the migration.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 12101 0 41 46 12188

L5 0 12160 18 9 12187

Horse shoe 13 21 44 28 106

Unstable 35 57 74 463 629

Total’ 12149 12238 177 536 25110

Table 5.3: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of one million years using a

time step of 1/3 years. The migration rate is described equation 6.2 with τ = 1500 y. The initial Trojans are 12555 actual Trojans
from [14] with its symmetric copies to obtain as many L4 and L5 Trojans initially. The prime denotes the types after the migration.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 10045 0 10 2133 12188

L5 0 12097 0 90 12187

Horse shoe 8 21 1 76 106

Unstable 18 65 0 546 629

Total’ 10071 12183 11 2845 25110

Table 5.4: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of one million years using

a time step of 1/3 years. The migration rate is described equation 4.1 with τ = 500 y. The initial Trojans are 12555 actual Trojans
from [14] with its symmetric copies to obtain as many L4 and L5 Trojans initially. The prime denotes the types after the migration.

5.2. Result tables 35

5.2.1. Eccentricity
In the initial model, the eccentricity of Jupiter’s orbit was neglected. In order to be able to test the model,

we ran the simulations of the migration over 1 AU again for τ = 1000 and τ = 500, but now with taking

Jupiter’s orbital eccentricity into account during the entire simulation. The results will be compared with

the principle results form section 5.2 in the discussion section, but here we will show the results for each

Trojan type in tables 5.5 and 5.6.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 11692 0 1 495 12188

L5 0 12082 0 105 12187

Horse shoe 5 16 0 85 106

Unstable 8 47 0 574 629

Total’ 11705 12145 1 1259 25110

Table 5.5: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of one million years

using a time step of 1/3 years. The migration rate is described equation 4.1 with τ = 1000 y. The initial Trojans are 12555 actual
Trojans from [14] with its symmetric copies to obtain as many L4 and L5 Trojans initially. The prime denotes the types after the

migration. During the entire simulation, Jupiter had its current eccentricity of 0.04839266.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 9904 0 2 2282 12188

L5 0 12057 0 130 12187

Horse shoe 7 20 0 79 102

Unstable 13 67 0 549 629

Total’ 9924 12144 2 3040 25110

Table 5.6: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of one million years using

a time step of 1/3 years. The migration rate is described equation 4.1 with τ = 500 y. The initial Trojans are 12555 actual Trojans
from [14] with its symmetric copies to obtain as many L4 and L5 Trojans initially. The prime denotes the types after the migration.

During the entire simulation, Jupiter had its current eccentricity of 0.04839266.

5.2.2. Inclinations
From the simulations, graphs were created using the inclinations before and after the simulation for the

original L4 and L5 Trojans with the migration of 1 AU using τ = 1000. For this, we considered the case
without Jupiter’s eccentricity in figure 5.4 and the case with Jupiter’s eccentricity in figure 5.6. Also, a

close up of the stable Trojans with low initial inclinations is shown for both graphs in figure 5.5 and 5.7

respectively.

5.2. Result tables 36

0 10 20 30 40 50
Inclination I before migration (°)

0

20

40

60

80

In
cli

na
tio

n
I a

fte
r m

ig
ra

tio
n

(°
)

Stable
Unstable
Reference line I=I ′

(a) L4

0 10 20 30 40 50
Inclination I before migration (°)

0

20

40

60

80

In
cli

na
tio

n
I a

fte
r m

ig
ra

tio
n

(°
)

Stable
Unstable
Reference line I=I ′

(b) L5

Figure 5.4: Inclinations before and after a migration of Jupiter of the Trojans from table 5.1. The type of a Trojan is determined

before the migration and the stability is determined after the migration.

0 1 2 3 4 5
Inclination I before migration (°)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

In
cli

na
tio

n
I′

af
te

r m
ig

ra
tio

n
(°

)

Reference line I=I ′

(a) L4

0 1 2 3 4 5
Inclination I before migration (°)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

In
cli

na
tio

n
I′

af
te

r m
ig

ra
tio

n
(°

)

Reference line I=I ′

(b) L5

Figure 5.5: Zoomed in on Trojans that had low inclinations before the migration in figure 5.4. Only the Trojans that were stable

after the migration are considered

0 10 20 30 40 50
Inclination I before migration (°)

0

10

20

30

40

50

60

70

80

90

In
cli

na
tio

n
I′

af
te

r m
ig

ra
tio

n
(°

)

Stable
Unstable
Reference line I=I ′

(a) L4

0 10 20 30 40 50
Inclination I before migration (°)

0

10

20

30

40

50

60

70

80

90

In
cli

na
tio

n
I′

af
te

r m
ig

ra
tio

n
(°

)

Stable
Unstable
Reference line I=I ′

(b) L5

Figure 5.6: Inclinations before and after a migration of Jupiter of the Trojans from table 5.5. The type of a Trojan is determined

before the migration and the stability is determined after the migration.

5.2. Result tables 37

0 1 2 3 4 5
Inclination I before migration (°)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

In
cli

na
tio

n
I′

af
te

r m
ig

ra
tio

n
(°

)

Reference line I=I ′

(a) L4

0 1 2 3 4 5
Inclination I before migration (°)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

In
cli

na
tio

n
I′

af
te

r m
ig

ra
tio

n
(°

)

Reference line I=I ′

(b) L5

Figure 5.7: Zoomed in on Trojans that had low inclinations before the migration in figure 5.6. Only the Trojans that were stable

after the migration are considered

6
Discussion

Before we are able to draw any conclusions about the results found, it is important to consider potential

flaws in the method. The first part of the model that will be tested is the numerical method. Although

it is difficult and time consuming to properly test it for all results, we will verify whether it behaves as

expected for Trojans near the equilibrium. Then we will test the model itself by investigating the effect

on different migration implementations and the Jupiter’s orbital eccentricity. Also the migration duration

will be varied as well as the effect of several initial conditions by comparing the data with generated

Trojan data. Finally, we will investigate whether the migration could explain some of the properties

of the current inclinations as described in the introduction. Although we will do some suggestions for

further research within these sections, we will end with further research recommendations on parts that

we did not investigate in this discussion.

6.1. Integrator comparison
A good integrator for our Hamiltonian problem should at least obey two properties: the order of the

method should equal the theoretical order near the mathematical equilibrium and for the non-migrating

non-eccentric case the Hamiltonian should be more or less conserved, since it is physically conserved

for this system by the conservation of energy. Typically, a numerical method will not conserve energies

at all times, but if the deviations are relatively small and approach zero on average, the method is

appropriate.

The two criteria are tested by comparing the two different Yoshida integrators, namely the original one

described in appendix A.1 and the midpoint Yoshida integrator we used, for the orbit of a Trojan very

close to the Lagrange point. We have tested the simplest case where there is no migration and Jupiter

has zero orbital eccentricity. This choice is made because if we find a method being inappropriate for

this simple near-equilibrium case, it is unlikely that it will be appropriate for the more complex case.

To test whether the methods obeys the first criterion of the order, we used a Richardson estimation. If a

numerical solution of a one dimensional problem is given by a wN
dt, where N is the number of iterations

at the moment the solution is determined and dt is the used time step, the Richardson estimation is
given by[26]

2p ≈
w2dt

N/2 − w4dt
N/4

wdt
N − w2dt

N/2

(6.1)

where p is the order. Now since we have six equations of motions, our solution thus is a vector containing

the approximations for the six variables after iteration N . Equation 6.1 is still valid, but now one must

choose a variable out of the vector to calculate the values. We estimated the order with θ as variable,
since this variable was certain to vary a lot during the simulation (if we consider variables that change

too little, the division of the near zero numbers may actually lead to a high numerical error itself which

results in a false error estimation). using dt = 1/10 -which is much less than the limit for the MYI derived
in appendix A.2- and N = 30000. it led to an estimated order of 1 for the original Yoshida integrator,

38

6.1. Integrator comparison 39

while the midpoint Yohsida integrator had the expected order of 4. We conclude that the non separability

of the Hamiltonian indeed does not preserve the desired first order of the OYI. While it might get the

order of the OYI as expected for smaller time steps, it is not of our interest to investigate this effect as a

smaller time step would make the simulations to slow, making the method still inappropriate.

To test whether both methods do satisfy the second criterion that it conserves the Hamiltonian, we

plotted the Hamiltonian compared with the initial energy over a time of 30000 years using a time step of

1/10 years. Since the behaviour of the MYI did not change over this time, its graph appeared to be a

block, thus we zoomed in on the first 3000 years to obtain some insight in the behaviour. The results

are shown in figure 6.1 The behaviour of the MYI is as expected. The Hamiltonian does change, but the

0 500 1000 1500 2000 2500 3000
t (y)

20

15

10

5

0

H
H

0
H

0
 (

10
7)

(a) Original Yoshida Integrator

0 5000 10000 15000 20000 25000 30000
t (y)

0

500

1000

1500

2000

2500

3000

3500

4000

H
H

0
H

0
 (1

0
8)

(b) Midpoint Yoshida Integrator

Figure 6.1: Hamiltonian of a Trojan near a Lagrange point using the original and an improved midpoint Yoshida integor over

30000 years with a time step of 1/10 years. The behaviour of the midpoint Yoshida integrator did not change over time, making

the graph appear like a block due to the consistent rapid oscillations. Therefore, this graph is zoomed in to the first 3000 years to

give insight in the oscillation. For the original Yoshida integrator, the effect is not constant but changes over time. Therefore this

graph is not zoomed in.

amplitude of this change is small (more than 9 orders of magnitude smaller than the original energy) and

the change is oscillating around a constant value, giving an on average conserved energy. Therefore,

this is indeed a symplectic integrator for our problem.

To visualize the behaviour of both integrators on the same time scale of 30000 years, we have plotted

the average relative change of the Hamiltonian at each time step in figure 6.2. For a stable method, we

expect this average change to converge to zero, which seems to hold for the midpoint Yoshida integrator.

However, for the OYI, we see that it is an increasing function, meaning that the Hamiltonian is changing

faster and faster, leading to a highly unstable method for our problem. When the results are extended

on much longer time scales till one million years, the found characteristics did not shown any visible

change for the MYI. Also decreasing the time step to 1/3 years did not create any visible difference.

Since the method appears to allow small time steps, is stable for stable Trojans and conserves the

symplectic property on the desired simulation duration, we conclude that the MYI is an appropriate

method to simulate near equilibrium Trojans. However, for the OYI the errors kept increasing on the

longer time scale, resulting in massive energy changes and unstable Trojans. We therefore conclude

that this integrator is not a valid choice for our problem. A side note on our method is that we have

not proven its behaviour for the migrating case. A possible test for this behaviour is to use Richardson

estimations to check whether the errors are small enough. The disadvantage is that it costs a lot of

computation time to estimate the errors of many results and therefore we chose to leave it for further

research. Nonetheless, the code for such an error estimation is provided in the library from appendix

E.2.

6.1.1. Code implementation
Apart from the method itself, it is important how the method is implemented in a code. In order to

make our code very useful for further research, we developed it with ideas in mind: firstly, it should be

6.2. Migration implementation 40

0 5000 10000 15000 20000 25000 30000
t (y)

0.5

0.0

0.5

1.0

1.5

Av
er

ag
e

re
la

tiv
e

ch
an

ge
 o

f H
 (1

0
10

)

(a) Original Yoshida Integrator

0 5000 10000 15000 20000 25000 30000
t (y)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Av
er

ag
e

re
la

tiv
e

ch
an

ge
 o

f H
 (1

0
10

)

(b) Midpoint Yoshida Integrator

Figure 6.2: Hamiltonian of a Trojan near a Lagrange point using a regular Yoshida integrator with 100000 time steps of 1/30

years. The Hamiltonian is increasing, which is seen in the normal plot on the left as well as in the right relative plot where the

average appears to converge to a nonzero horizontal line, implying a constant Hamiltonian increment, indicating unstable long

term behaviour.

sufficiently fast in order to run many long simulations on a regular computer. Secondly, its basics should

be easily readable. As described in section 4, this is done by writing a very optimised C code for the

simulations themselves, but handling the data in Python using a library with some commented standard

functions. The most noticeable optimisations used are:

1. Multi threading to run multiple simulations simultaneously.

2. Finding as base therm in the potentials and calculating them once.

3. Writing out powers like x ∗ x instead of using the build in power function.
4. Defining an additional; function for the power of 3/2 by x*sqrt*(x) since the square root function is
much faster than the power function in C.

5. Merging constants and defining them as one global variable, such as the variableGmS for the product

G ·mS .

6. Calculating extensive variables, for example because they contain a trigonometric function, that are

used multiple times in a step once and given them as function parameters, such as r cos(θ).
7. Giving the compiler several instructions about the type of functions, such that it could be optimised.

For the last step, one should also use the flag ’-O3’ when compiling the code. This is the case for

the automatic compilation in the example code in appendix E.5. Although the final performances

are dependent on among other things the machine used, we will provide estimates of our observed

performances to give the reader an idea of the order of magnitude of the expected run times. For

our system, the optimisations finally resulted in a code that was more than 1000 times as fast as the

original Python attempt. With the current code, we could simulate 3 million time steps in about 1.4-1.6

seconds on our system for the non-migrating case and about 1.5-1.8 seconds for the migrating case

when ignoring the eccentricity. Using our time step of 1/3, this corresponds to the desired 1 million

simulated years. When run in parallel, it took about 6 hours to simulate the 25110 migrating Trojans

for a million years. The optimisations together with the Python library and comments make our code

greatly appropriate for further research. The performance could optionally be improved by using a faster

computer or several computers simultaneously, to simulate even more Trojans or longer time spans.

6.2. Migration implementation
Every physical model is a simplification of the real world and therefore introduces errors. It is therefore

important to estimate how accurate the used model is. In the next section it will be discussed whether

the model satisfies our expectations, but we firstly tested how different implementations of the model

effected the results on migrations. We did not bother to test our model for the non-migrating case, since

the orbits of Trojans in this case are well known and our plots in for example figure 2.5 already satisfy

6.2. Migration implementation 41

our expectations. The two investigated effects on the migrations are a different description of Jupiter’s

distance RJ and implementing the Jupiter’s orbital eccentricity in the model.

6.2.1. Distance of Jupiter
The Distance function 4.1 used to estimate the migration in this project was used since it consisted

with the choice of Li et al. and was to our knowledge the only function substantiated (by Malhorta[9]).

However, the simplest model is to use a constant migration rate. We have already met the function

describing this migration in figure 4.2. To test this function, we choose a comparable migration speed.

We firstly tested this model on a time scale of 100000 years. The results are shown in table 6.1 It follows

L4 L5 Horse shoe Unstable

14823 1 505 9466

3 14846 533 9402

9 3 4 32

4 17 0 376

Table 6.1: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of one million years using

a time step of 1/3 years. The migration rate is 1.5 · 10−4 AU y−1 over a distance of 0.5 AU. The initial Trojans are 12555 actual

Trojans from [14] with its symmetric copies in both the horizontal plane and their copies in the other Lagrange point to obtain as

many L4 and L5 Trojans initially. The prime denotes the types after the migration.

that there are much more unstable Trojans after the migration when compared to table 5.1. As we

already derived in the method section, the total migration duration is comparable for both simulations.

Since the total migration distance simulated for the constant migration rate is shorter than the 1 AU used

for the results from table 5.1, we would have expected more stable Trojans instead if the two functions

had comparable properties. From the plots in figure 4.2 follows that the key differences are that the

migration of the exponential function behave like a steeper horizontal function which smoothens of at

the end. Apparently, the abrupt stop forms a shock effect resulting in much more unstable Trojans.

Since the smoothing appears to have a huge effect, this makes one wondering what would happen if

the start is smooth as well. Therefore, we also tried to generate some simulations using the function

R = Rinitial + exp

(
−τ
t

)
(6.2)

The function is plotted in figure 6.3 using two different values for the parameter τ . As seen in the

figure, the function starts as a near horizontal line and then rapidly rises to a steep function as the other

exponential function and it also stops smoothly. However, we have to make a choice between a similar

steepness to the other exponential figure or a similar total migration time by choosing different values

for τ . This makes it hard to compare two individual results of the two functions together, but we can
compare the overall results. Using a slow migration of τ = 1000 years, we obtained the following results
in table 6.2. For a migration with τ = 500, the result is shown in table 6.3 for the case Jupiter’s orbit is
circular and in table 6.4 for the case when Jupiter has a nonzero orbital eccentricity. We conclude that

without considering Jupiter’s orbital eccentricity, it is possible to obtain more L4 than L5 Trojans using

this function, bit the margins are small when the migration is fast. From the three different functions

L4’ L5’ Horse shoe’ Unstable’ Total

L4 12103 0 0 85 12188

L5 0 12082 0 105 12187

Horse shoe 11 8 0 87 106

Unstable 9 12 0 608 629

Total’ 12123 12102 0 885 25110

(a) τ = 1000 y

Table 6.2: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of one million years using a

time step of 1/3 years. The migration rate is described equation 6.2 with τ = 1000 y. The initial Trojans are 12555 actual Trojans
from [14] with its symmetric copies to obtain as many L4 and L5 Trojans initially. The prime denotes the types after the migration.

6.2. Migration implementation 42

0 2000 4000 6000 8000 10000
Time (year)

5.2

5.4

5.6

5.8

6.0

6.2
Ju

pi
te

rs
 d

ist
an

ce
 R

J t
o

th
e

su
n

(A
U)

Constant migration rate
Rinit + R(1 exp (t/ 1))
Rinit + Rexp (2/t)

(a) Similar steepness (τ2 = 500 y)

0 2000 4000 6000 8000 10000
Time (year)

5.2

5.4

5.6

5.8

6.0

6.2

Ju
pi

te
rs

 d
ist

an
ce

 R
J t

o
th

e
su

n
(A

U)

Constant migration rate
Rinit + R(1 exp (t/ 1))
Rinit + Rexp (2/t)

(b) Similar migration duration (τ2 = 150 y)

Figure 6.3: Graphs for several descriptions of Jupiter’s radial distance to the Sun during an outward migration of 1 AU from its

current position. Here the total migration time of the constant migration is 3333 years and τ1 = 1000 years to obtain a similar total
migration time. For the smoother exponential function, we can either pick τ2 = 500 years such that its steepness is comparable
with the other exponential function or τ2 = 150 years such that its total migration time is comparable.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 12069 0 2 117 12188

L5 0 12059 1 127 12187

Horse shoe 13 8 1 84 106

Unstable 16 13 0 600 629

Total’ 12098 12080 4 928 25110

Table 6.3: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of one million years using

a time step of 1/3 years. The migration rate is described equation 6.2 with τ = 500 y. The initial Trojans are 12555 actual Trojans
from [14] with its symmetric copies to obtain as many L4 and L5 Trojans initially. The prime denotes the types after the migration.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 12022 0 0 166 12188

L5 0 12048 0 139 12187

Horse shoe 13 9 0 84 106

Unstable 20 13 0 596 629

Total’ 12055 12070 0 1085 25110

Table 6.4: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of one million years using

a time step of 1/3 years. The migration rate is described equation 6.2 with τ = 500 y and Jupiter’s orbital eccentricity is taken into
account. The initial Trojans are 12555 actual Trojans from [14] with its symmetric copies to obtain as many L4 and L5 Trojans

initially. The prime denotes the types after the migration.

considered, it is clear that the way in which the migration is implemented is of major importance for our

results. In particular, the three different functions that could be adopted to have comparable migration

speeds or duration indicate that not only the migration speed itself is important, but also how fast it

reaches and slows down the migration. With the smoother start, it appears that for our initial conditions

there could be more L4 than L5 Trojans at the end of the simulations, but the differences are small.

Although one could imagine that the first function with a constant migration rate is not physical as we

expect a differentiable function, there are still many differentiable functions to choose from. For example,

we could choose a function of the form exp−τ/t2 to obtain an even smoother start of migration, but
arrive at a faster migration stop. For the best estimate of the distance function, it is best to use data

from simulations with the Nice model, as described in the further research section 6.6.

6.3. Generated Trojans 43

6 4 2 0 2 4 6
x (AU)

6

4

2

0

2

4

6
y

(A
U) L1 L2L3

L4

L5

(a) L4 Trojan

6 4 2 0 2 4 6
x (AU)

6

4

2

0

2

4

6

y
(A

U) L1 L2L3

L4

L5

(b) L5 Trojan

Figure 6.4: Orbit of a test Trojan initially placed at the Lagrange point with angles with respect to Jupiter of ±130◦. Jupiter is
migrated outward over 0.5 AU and its current eccentricity is used during the entire migration. From the figure one deduces that

the Trojans move outward as well but the orbit of the L4 Trojan narrows and remain stables while the L5 Trojan is eventually

kicked out after a long time in a Horse shoe orbit. The total simulation run is 70000 years, but for the L4 only the first 10000

years are plotted. This choice is made because otherwise the individual lines would not be distinguishable from the yellow blob.

Nonetheless, the orbit has the same shape over the longer time span.

6.2.2. Jupiter's orbital eccentricity
To simplify the model, Jupiter’s eccentricity is neglected. However, Li et al[2] already showed that the

Jupiter’s orbital eccentricity has an effect on the L4:L5 ratio, although they did not consider the case

without eccentricity. We have already met some results when considering the eccentricity in 5.2.1 and

when considering the alternative exponential migration function. We conclude that more Trojans have

become unstable due to the migration for both Lagrange points. The interesting part is that when there

are more L5 Trojans than L4 Trojans after a migration such as in 5.2, the ratio L5:L4 increases when

adding the eccentricity to the same simulations. Also, when we look at the test Trojan from section 5.1,

it is unstable for both the L4 and the L5 point, but when we decrease the angle to 130 degrees, we

see that once again it happens that the L4 Trojan is stable, while the L5 Trojan is unstable as seen in

figure6.4. This did not happen without eccentricity for this angle. On the other hand, if we did use the

initial angle of 130 degree without eccentricity, both Trojans are stable. Furthermore, the orbits of both

Trojans have obtained larger deviations from Jupiter compared to 5.1. All in all we conclude that the

eccentricity changes the stability region for both the L4 and the L5 point and since the ratio’s change as

well, the change is asymmetric. Nonetheless, it is known that the eccentricity already creates an initial

asymmetry[3], so to be able to support this conclusion more strongly, it is best to have a data set with

more unstable Trojans after the migration such as Li had. Therefore, we will generate some Trojans

with comparable initial conditions to investigate the effect of the eccentricity further. Furthermore, this

data will be used to compare what the influence is of the initial conditions we chose. These parts will

both be discussed in the next section.

6.3. Generated Trojans
Since our initial attempts did not entirely match our expectations, we tried to test our model to initial

conditions comparable to those used by Li et al. If the model works as expected on these initial conditions,

this yields information about what the possible initial conditions are to obtain more L4 than L5 Trojans.

Li made several attempts with different initial conditions and migrations, but we have tested fewer

cases, since it is not our research to reproduce all their results, but only to check whether our model

and integrator give likewise results. For this test, we generated a thousand L4 Trojans with random

eccentricities in a range of 0 and 0.3. All Trojans had the Lagrange distance as semi-major axis as

6.3. Generated Trojans 44

in Li et al. The initial deviation from Jupiter are chosen randomly as well, by picking the initial true

anomaly of each Trojan randomly. Using a minimum value of this true anomaly, the Trojans are forced

to at least obtain this high angle and are therefore forced in an orbit with a high resonant angle. We

only considered inclinations of 0 and 0.01 ◦ and the other Kepler elements where 0. The symmetry

described in 3.5 was used to obtain as many L5 Trojans as L4 Trojans with compatible initial conditions.

All simulations where run for a simulated time of a million years with time step of 1/3 years and the input
variables with the corresponding results are given in table 6.5.

From this table, it appears that it is indeed possible to obtain more L4 than L5 Trojans. To obtain a

Inclination (◦) Jupiter eccentricity ∆R (AU) Initial true anomaly (◦) L4 L5 L4:L5

0 0 1 30-140 586 5 1.09

0 0 1 30-140 577 531 1.09

0 0.04839266 1 80-140 650 502 1.29

0.01 0.04839266 0.5 90-140 649 550 1.18

0.01 0.04839266 1 90-140 667 480 1.39

Table 6.5: Number of 1000 L4 and 1000 L5 Trojans after a million years of simulation with a migrating Jupiter. The Trojans

initially had randomly eccentricities between 0 and 0.3 and started at the current Lagrange point, as is Jupiter. The initial angle is

relative to Jupiter and chosen randomly as well. ∆R is the total traveled migration distance of Jupiter and τ is a quantity that

determines the migration speed, where a bigger τ means a bigger migration speed. The L4 Trojans are created randomly using

the described conditions, from which the L5 Trojans are mirrors in angle to ensure to have an equal data set in both points. The

velocities were mirrored such that in the non-migrating case without eccentricities, the copied Trojans would give the same orbits

as the original, but mirrored.

more statistical accurate result we firstly reproduced the last simulation with ten times as many Trojans.

This resulted in 7220 stable L4 Trojans and 5285 Stable L5 Trojans resulting in a ratio L4:L5 of 1.37. As

the uncertainty in a variable can generally be estimated by
√
N where N is the number of Trojans in

that point, we can estimate the uncertainty in the ratio by
√
7220
7220 +

√
5285
5285 ≈ 0.03. We conclude that the

ratio L4:L5 is given by 1.37± 0.03 and thus that our simulations indeed lead to more L4 Trojans than L5
Trojans.

One of the remarkable things from table 6.5, is that Jupiter’s orbital eccentricity has a major influence

on the final results. To compare the results better, we generated once again 10000 L4 Trojans with its

10000 L5 copies and now ran the simulation with and without eccentricity on this same data set. This

resulted in table 6.6. We conclude that the eccentricity has a great influence on these generated Trojans

as well. However, a difference with the results for the actual Trojans, is that this eccentricity increases

the L4:L5 ratio, while for the actual Trojans from for example table 5.1 it decreases the L4:L5 ratio. In

conclusion, Jupiter’s orbital eccentricity emphasizes the ratio arisen by the migration. Nonetheless,

the bottom result form table 6.6 suggests that even without an eccentricity population differences are

possible, but at least for our results the difference is marginal.

Inclination (◦) Jupiter eccentricity ∆R (AU) Initial true anomaly (◦) L4 L5 L4:L5

0.01 0 1 90-140 6902 4965 1.39±0.03
0.01 0.04839266 1 90-140 8150 7806 1.05±0.02

Table 6.6: Number of 10000 L4 and 10000 L5 Trojans after a million years of simulation with a migrating Jupiter. The Trojans

initially had randomly generated eccentricities between 0 and 0.3 and started at the current Lagrange point. The initial angle is

relative to Jupiter and chosen randomly as well. ∆R is the total traveled migration distance of Jupiter and τ is a quantity that

determines the migration speed, where a bigger τ means a bigger migration speed. The L4 Trojans are created randomly using

the described conditions, from which the L5 Trojans are mirrors in angle to ensure to have an equal data set in both points. The

velocities were mirrored such that in the non-migrating case without eccentricities, the copied Trojans would give the same orbits

as the original, but mirrored.

The generated Trojan data has given us some insight in the effect of the eccentricity, but it leaves us

puzzling what parameters in the generated data and the real Trojan data lead to this differences in

the L4:L5 ratio. We have hypothesised several quantities to cause this effect, which are given below

using some graphs. All graphs where generated using τ = 1000 y, a total migration of ∆R = 1 AU and

6.3. Generated Trojans 45

simulated during one million years. Jupiter’s orbit was approximated circular in the simulation.

The first attempt was to make a plot of the resonance angle ∆θ in the non-migrating case versus the
maximal change in r which we called the maximal horizontal displacement δr. These quantities are
determined by running the simulations for the non-migrating case , without considering the Jupiter’s

orbital eccentricity, 10000 years using a time step of 1/30 years. To obtain a readable plot, we have

taken a close look into the symmetric Trojan pairs; only Trojans which are stable after the simulation

while its mirror is not are plotted. The result is shown in figure 6.5. From this figure, it appears that it

40 60 80 100 120 140
Resonant angle before migration (°)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
ax

im
al

 d
isp

la
ce

m
en

t
R

be
fo

re
 m

ig
ra

tio
n

(A
U)

Stable in L5, unstable in L4
Stable in L4, unstable in L5

Figure 6.5: Plots of the initial resonant angle ∆θ of some Trojans versus the initial maximum horizontal displacement δR. The
stability is determined after a migration of Jupiter over 1 AU described by equation 4.1 with parameter τ = 1000 years. The total
simulation time is one million years. The Trojans considered in both cases are the same and are actual Trojans from the NASA

database[14] and its mirrored counterparts. For this plot. Trojans that led to unstable Trojans for both the original Trojan and a

copy or to stable Trojans in both cases, are omitted to emphasize the different between the original Trojans and the mirrors.

mostly happens that an L4 Trojan is stable and an L5 Trojan is unstable, when the resonance angle is

very high. On the other hand, if the resonant angle is not very high, it is still possible that L4 Trojans

become unstable, it happens much more often that an L4 Trojan becomes unstable, while an L5 Trojan

becomes stable. Since their are much more Trojans with low resonance angles under the actual Trojans

while 6.5 forces relative high resonant angles, this might explain the differences found between our

research and that of Li. If the outward migration of Jupiter indeed has caused the asymmetry, this

suggest that initially the Trojans had very high resonant angles which decreased over time due to other

reasons. The latter could be caused by collisions of Trojans[10]. The data suggests that in the case

with very low resonant angles, there are no unstable Trojans at all after a migration.

Sometimes it happens, as shown in figure 6.5, that a L5 Trojan may be stable with an unstable L4 copy

after a migration with high resonant angles. This suggest that another variable, apart from the resonant

angle, is also responsible for the effect that a L4 Trojan is stable after the migration while its L5 mirror is

not. Therefore we plotted the resonance angle against four other variables of the initial Trojans: the

6.3. Generated Trojans 46

eccentricity ε, the inclination I, the initial semi-major axis a and the Hamiltonian H. The latter is relevant

since it represents the total energy for the non-migrating case. The results are shown in figure 6.6.

From this figure it appears that the initial inclinations has a small influence on the asymmetric population

40 60 80 100 120 140
Resonant angle before migration (°)

0.00

0.05

0.10

0.15

0.20

Ec
ce

nt
ric

ity

 b
ef

or
e

m
ig

ra
tio

n)

Stable in L5, unstable in L4
Stable in L4, unstable in L5

(a) Eccentricity

40 60 80 100 120 140
Resonant angle before migration (°)

0

5

10

15

20

25

30

35

In
cli

na
tio

n
I b

ef
or

e
m

ig
ra

tio
n

(°
)

Stable in L5, unstable in L4
Stable in L4, unstable in L5

(b) Inclination

40 60 80 100 120 140
Resonant angle before migration (°)

4.9

5.0

5.1

5.2

5.3

5.4

Se
m

i m
aj

or
-a

xi
s a

 b
ef

or
e

m
ig

ra
tio

n
(A

U)

Stable in L5, unstable in L4
Stable in L4, unstable in L5

(c) Semi-major axis

40 60 80 100 120 140
Resonant angle before migration (°)

2.55

2.50

2.45

2.40

2.35

2.30

2.25

2.20
Ha

m
ilt

on
ia

n
H

 b
ef

or
e

m
ig

ra
tio

n
(1

08 J
kg

1)
Stable in L5, unstable in L4
Stable in L4, unstable in L5

(d) Hamiltonian

Figure 6.6: Plots of the initial resonant angle ∆θ of some Trojans versus several different other initial quantities. The stability is
determined after a migration of Jupiter over 1 AU described by equation 4.1 with parameter τ = 1000 years. The total simulation
time is one million years. The Trojans considered in both cases are the same and are actual Trojans from the NASA database[14]

and its mirrored counterparts. For this plot. Trojans that led to unstable Trojans for both the original Trojan and a copy or to stable

Trojans in both cases, are omitted to emphasize the different between the original Trojans and the copies.

numbers and that higher initial energies lead to more stable L4 Trojans after the migration. The last plot

we make is the plot where the minimum and maximum angles are plotted in absolute values in figure

6.7. From this figure, we conclude that especially low minimum angles are important to create stable L4

Trojans with unstable L5 Trojans.

From the attempts, we conclude that it is possible that Jupiter’s outward migration leads to more stable

L4 Trojans than L5 Trojans, but only given a restricted set of initial conditions containing large resonant

angles. This leaves the question what this implies for our Solar System. The data suggests that if the

outward migration is indeed responsible for the asymmetry, the original Trojans had large resonance

angles. Due to other effects, the Trojans then must have obtained lower resonant angles to obtain

the distribution of the current Trojans. Since higher resonance angles correspond to higher energies,

this could have occurred due to Trojan collisions, as investigated by Marzari et al.[10]. This is also

suggested by Li. However, the important difference with their resource is that our results prove that

such a Trojan distribution is a necessary conditions for obtaining the current asymmetry. Therefore, if

the Nice model is indeed correct, our results yields insight in the Trojan distribution of the early Solar

System.

6.3. Generated Trojans 47

0 5 10 15 20 25 30 35 40
Minimum angle | | before migration (°)

110

120

130

140

150

160

170

180

M
ax

im
um

 a
ng

le
 |

| b
ef

or
e

m
ig

ra
tio

n
(°

)

Stable in L5, unstable in L4
Stable in L4, unstable in L5

Figure 6.7: Plots of the initial minimum and maximum angle θ of some Trojans relative to Jupiter. The stability is determined after
a migration of Jupiter over 1 AU prescribed by an exponential function with parameter τ = 1000 years and the current Jupiter’s
orbital eccentricity is used. The total simulation time is one million years. The Trojans considered in both cases are the same and

are actual Trojans from the NASA database[14] or symmetric copies of those. For this plot. Trojans that led to unstable Trojans

for both the original Trojan and a copy or to stable Trojans in both cases, are omitted to emphasize the different between the

original Trojans and the copies.

6.4. Inclination 48

6.4. Inclination
Although we have discussed the influence of the initial inclinations in the section above, we have not yet

discussed whether the migration could lead to a different final inclination distribution for the L4 and L5

Trojans and whether the current observed high inclinations angles could also have occurred due to the

migration. For this, we first have a look at figure 5.4. The first thing that stands out is that there does not

is a clear difference between the final inclinations for the L4 and the L5 Trojans, apart from the fact that

more L4 Trojans are lost. The second aspect that stands out, is that most Trojans have reduced their

inclination angles, which would imply that the high inclinations are not caused by the outward migration.

However, if we zoom in on the stable Trojans with initial inclination less than 5 degrees, as shown in

figure 5.5, we see that in this range more Trojans have increased their inclinations. Therefore since the

early Trojans had nearly co planar orbits, it is likely that the Trojans have risen inclinations due to the

migration, but this could not explain the high inclinations we find today. In fact, figure 5.4 imply that it is

also unlikely that the high inclinations where existing before the migration, since these inclinations would

decrease due to the migration. Therefore, the most likely explanation is that the outward migration of

Jupiter has caused a first increase in inclination for the nearly coplanar initial Trojans, but that this effect

is strengthened by a different phenomenon that occurred after the migration. If one has a look at figures

5.6 and 5.7, one would not make different conclusions for the eccentric case.

Apart from the increase or decrease in inclinations, there appears to be a minor difference in the

inclination distribution for the L4 and the L5 Trojans as can be seen in the subplots in figures 5.5. For

the L5 Trojans, it namely seems that there are higher increases in inclinations possible than for the

L4 Trojans. A remarkable aspect is that this is exactly complementary to the eccentric case in figure

5.7, where there are higher increases possible for the L4 Trojans than for the L5 Trojans. All in all, we

conclude that the eccentricities have an effect on the inclination distribution and that the migration could

cause an asymmetric inclination distribution for the L4 and L5 Trojans, but the effects are marginal for

our simulations and therefore hard to separate from numerical and statistical errors. Furthermore, the

exact differences are strongly dependent on Jupiters orbital eccentricity.

6.5. Total simulated time
It is desired to minimize the runtime of the simulation, so that many simulation can be done in the time

given for the research. Li et al. showed that the simulated time of one million years is sufficient to cover

the influence of the migration, because when they extended the simulations to a billion years, there only

is a ten percent increase in the number of L4 and L5 Trojans, which they explain without the migration

by the research of Romina et al.[3]. It has to be noted that the researches are not entirely comparable

as Li did not for example investigate the effect of Saturn on this long term, while Romina et al.[3] did.

Furthermore, we use a slightly different model, so our results do not have to be one to be compatible.

Therefore, we have investigated this effect partly. Since we had many Trojans to be simulated under

many conditions using a laptop, we first tried to run the simulations using a 100000 years. However,

when we compared this simulation with the longer simulation of one million years, it turned out that the

ratio L4:L5 was still increasing. Therefore, the short term simulations give insight in the migration, but

the full effect of the migration might be missed on the long term. Therefore, we also implemented a one

million year simulation.

Although Li et al. found that a one million year simulation is sufficient for their research, it might not be

the case for our research, since our initial conditions are different. It is possible that a longer simulation

indeed does not yield a different result for the Trojans with large resonant angles used by them, but

does yield a different result for the initial conditions we used. The shorter simulated time could also be

an alternative explanation of why the current Trojans have smaller resonant angles than in the resulting

Trojans of Li’s research: the small resonant angles where pre-existent but only after a very long time

the effect of the migration lead to an asymmetry in this small resonant angle Trojans in contrast to

the Trojans with high resonant angles. Therefore, we investigated if we could exclude this effect by

selecting a thousand random Trojans and simulate them five times longer than the previous case. The

simulation was done without Jupiter’s orbital eccentricity and of course compared to the simulation

without this eccentricity. The results are shown in table 6.7. From the table we conclude that there is

indeed a difference when we simulate longer. Although the effect appears to be smaller than compared

6.6. Further research 49

L4’

L4

L5

HS

Unstable

Total

L4’ L5’ HS’ Unstable’ Total

936 0 10 12 958

0 954 3 2 959

1 6 4 3 14

2 3 8 56 69

939 963 25 73 2000

(b) One million years

L4’ L5’ HS’ Unstable’ Total

924 0 0 34 958

0 950 0 9 959

1 3 0 10 14

1 3 0 65 69

926 956 0 118 2000

(c) Five million years

Table 6.7: Trojans of each type after a migration of 1 AU of Jupiter from its current position over two different simulation times

using a time step of 1/3 years. The migration rate is described equation 4.1 with τ = 1000 y. The initial Trojans are 1000 randomly
selected actual Trojans from [14] with its symmetric copies to obtain as many L4 and L5 Trojans initially. The prime denotes the

types after the migration and HS stands for Horse shoe.

to the increase from 100000 years to one million years, we see that the L4:L5 ratio is still changing.

Since Jupiter’s orbital eccentricity is not considered in this simulation, the effect can only be due to

the migration or numerical errors. It appears that the estimation for the simulation time of one million

years as used in Li et al., might not be sufficient for our set of Trojans. In a further research, the best

simulation time could be determined more carefully.

6.6. Further research
In general, research on the Trojans is a relevant topic because it yields much information about the

early development of the Solar System. There are also practical applications for the knowledge about

the Trojans orbits. So could we potentially use the knowledge about stable Trojans to put a satellite

in the Earth’s L4 and L5 Lagrange points. this could be advantageous because such a satellite has

always the same position relative to the Earth and the Sun, but it does not need any fuel for stabilisation.

Also, we could potentially could our knowledge about unstable Trojans and the Trojan distributions to

identify potential dangers to Earth, since it is known that it is possible that some Trojans could collide

with the Earths orbit when becoming unstable[22]. Although the applications are broad, we will focus in

our further research recommendations related more closely to the migration of Jupiter, in line with the

specific focus of this project.

Apart from the suggestions made earlier in this chapter, we have three other suggestions for further

research, namely merging with the Nice model, considering inward migrations and finally considering

the gravitational attractions of the gas giant on the Trojans themselves. These three suggestions are

elaborated in the next three paragraphs.

Merging with Nice model From our results, it becomes clear that the Jupiter’s orbital eccentricity

plays a crucial role for the stability of Trojans during the migration. Li et al suggested that the Jupiter’s

orbital eccentricity might have been higher at the time of migration[2] than Jupiter’s current eccentricity.

Although Li et al.[2] have investigated this effect for different eccentricity on part of their results, they

used a constant eccentricity like we did for both the migration and the non-migration part. However, we

know that gravitational encounters by the other planets do not only lead to a migration of a planet, but

alters the orbital eccentricity of the planet as well. Also, the research of Li et al. did not include the effect

of a combined change in eccentricity, migration rate and migration distance, while they might be closely

related due to the Nice model. We therefore suggest that in further research, simulations of the Nice

model are used as a data set for Jupiter’s time dependent position instead of the modeled function for

this distance and constant eccentricities. These simulations could both help in the research of finding

the best initial conditions for our Solar System for the Nice model, as supporting the theory about the L4

and L5 asymmetry. As described in section 6.1.1, our code is of great advantage for such a research

over the code used by Li.

Inward migrations In the Nice model, there where several different types of migrations of Jupiter,

both inward and outward. Li et al. predicted that there was one more outward migration than inward and

that the effect of one outward migration was not cancelled out by an inwards one. This ’extra’ migration

was hypothesized to cause the different Trojan populations. However, these cancellations might not

6.6. Further research 50

be a good assumption, since it is very well possible that the inward migrations lead some Trojans to

obtain high resonant angles. Our data suggests that this is the only possible position where we can

obtain stable L4 Trojans after migration, with unstable L5 copy. To investigate this result, once again

our model could be used and it could even be combined with data from Nice model simulations as

described above.

Gravitational attractions by close encounters Li et al. suggested the model could be improved by

taking into account the effect of Saturn, Uranus and Neptune. They referred to two papers of Marzari et

al. that indicates that direct perturbations by Saturn indeed increases the L4:L5 ratio, but also mention

that this is on a timescale that is one or two orders of magnitude bigger than our their and our simulations.

There are other influences of Jupiter that might be more present, for which they refer to Freistetter.

Nonetheless, they mention that it is very hard to investigate the perturbations, since it is very uncertain

how the Solar System was exactly in its early stage and they mention this could lead to unreliable results

due to arbitrarily designed models[2].

However, they did not consider the effect of the fifth gas giant. As described in 2.1, Jupiter’s migration is

caused by the gravitational attraction of this giant at close encounters. However, since the Trojans have

all more or less the same distance to the Sun as Jupiter, it is very well possible that the close encounters

of this gas giant also had close encounters with the Trojans, resulting in similar accelerations as on

Jupiter. We hypothesize that these influences are much more present than the influence of Saturn,

since the effect of the gas giant on Jupiter was also bigger than that of Saturn according to the Nice

model. Therefore, we suggest that in further research the close encounters of the fifth gas giant are not

only considered when determining Jupiter’s migration, but also considered as an additional force to the

Trojans. Several models could be used, but as a simple approximation to implement it in the current

model, we suggest that in our model the Trojans obtain the same acceleration as Jupiter. Using our

current description of the evolution of Jupiter’s semi-major axis RJ = Rinitial + (1− exp(−t/τ))∆R, this
lead to an acceleration aj of[9]

aJ =
v̂

τ

(√
GmS

RJ
−
√

GmS

RJ +∆RJ

)
exp

(
− t

τ

)
This acceleration then has to be converted to our cylindrical system and then be added to the equation

of motion. Of course this is a rough estimate of the acceleration, since the Trojans are not at the same

position as Jupiter and probably better estimates can be found. This is left for further research.

7
Conclusion

Ever since their discovery, the Trojans have raised many questions among astrophysicists. One of

the mysteries about the Trojans is its asymmetric distribution in the L4 and the L5 points. The ratio

between the number of L4 and L5 Trojans is estimated to be about 1.6, which can not be explained

by simulations to its current orbits. In this research, it was investigated whether an outward migration

of Jupiter, comparable to one prescribed by the Nice model, could cause its current distribution. For

this a recent research of Li et al. is used as a basis. In this research they found the ratio of 1.6 for

a restricted initial distribution of Trojans. We extended the research by using the actual Trojans as

initial distribution to obtain a broader data set. To obtain as many L4 as L5 Trojans initially, we doubled

the data set by using pairs of symmetric copies. In this manner, we have investigated what initial

conditions are essential for the L4:L5 ratio and we investigated whether the current high inclinations

could be explained by the outward migration, since theories predict the initial Trojan orbots were nearly

coplanar. We used Hamiltonian mechanics in the rotating frame of Jupiter for our model and we used

a recently found improved Yoshida integrator to obtain a symplectic fourth order integrator for the

non-separable Hamiltonian. Firstly, Jupiter’s orbital eccentricity was ignored. We found that in fact there

were more stable L5 Trojans than L4 Trojans after the migration, which is contrary to our expectation.

When the initial inclinations were smaller than 5 degrees, for most Trojans the inclination was indeed

increased. However, it did not increase to the current inclinations which reach values to about 40

degrees and Trojans that had high initial inclinations in fact had their inclinations decreased. It follows

that the migration could have caused the higher inclinations, but the most extreme inclinations must

have occurred after the migration.

We found that the L4:L5 ratio could only explain today’s high value if the Trojans initially had high

resonant angles. Furthermore, we found that Jupiters orbital eccentricity has a major influence on the

results and leads to an increase of any asymmetry in the populations due to the migration. Furthermore,

we investigated different model functions for the migration and found that both the migration speed, total

migration duration and the type of function describing the migration alters the results. Since it is difficult

to find a proper function for the evolution of Jupiter’s major semi-axis and orbital eccentricity during the

migration, we suggest to use simulations of the Nice model for these two quantities. Our model is of

great use for this, since it allows to directly load these values instead of having to describe them as

a force on Jupiter. Another effect that could be investigated during further research, is to not only let

Jupiter be attracted during close encounters with the fifth gas giant, but to let the Trojans experience

this force as well.

51

References

[1] URL: https://www.overleaf.com/project/5f0d576145959f000121398a (visited on

06/06/2023).

[2] Li et al. “Asymmetry in the number of L4 and L5 Jupiter Trojans driven by jumping Jupite”. In:

Physica Scripta 669.68 (2023). DOI: 10.10510004-6361202244443. URL: https://doi.
org/10.1051/0004-6361/202244443.

[3] Romina P. Di Sisto, Ximena S. Ramos, and Cristián Beaugé. “Giga-year evolution of Jupiter

Trojans and the asymmetry problem”. In: Icarus 243 (2014), pp. 287–295. ISSN: 0019-1035.

DOI: https://doi.org/10.1016/j.icarus.2014.09.002. URL: https://www.
sciencedirect.com/science/article/pii/S0019103514004643.

[4] National Ocean Service US government.What is GPS. URL: https://oceanservice.noaa.
gov/facts/gps.html (visited on 04/21/2023).

[5] Kate Howels.What was the Chelyabinsk meteor event? 2023. URL: https://www.planetary.
org/articles/what-was-the-chelyabinsk-meteor-event (visited on 04/21/2023).

[6] NASA’s Goddard Space Flight Center Conceptual Image Lab. How Were the Trojan Asteroids

Discovered and Named? Author belongs to the image used. URL: https://www.nasa.gov/
feature/goddard/2021/how-were-the-trojan-asteroids-discovered-and-
named (visited on 08/13/2023).

[7] Leapfrog integration. URL: https://en.wikipedia.org/wiki/Leapfrog_integration.
[8] Junjie Luo et al. “EXPLICIT SYMPLECTIC-LIKE INTEGRATORS WITH MIDPOINT PERMUTA-

TIONS FOR SPINNING COMPACT BINARIES”. In: Physica Scripta 834.1 (Jan. 2017), pp. 1–5.

DOI: 10.38471538-4357/834/1/64. URL: https://dx.doi.org/10.3847/1538-
4357/834/1/64.

[9] Renu Malhotra. “The Origin of Pluto’s Orbit: Implications for the Solar System Beyond Neptune”. In:

aj 110 (July 1995), p. 420. DOI: 10.1086/117532. arXiv: astro-ph/9504036 [astro-ph].
[10] F Marzari and H Scholl. “The growth of Jupiter and Saturn and the capture of Trojans”. In:

Astronomy and Astrophysics, v. 339, p. 278-285 (1998) 339 (1998), pp. 278–285.

[11] F. Marzari et al. “Origin and Evolution of Trojan Asteroids”. In: Asteroids III (), pp. 725–739.

[12] Carl D. Murray and Stanley F. Solar System Dynamics. Cambridge university press, 2009. DOI: 10.
1017/CBO9781139174817.003. URL: https://doi.org/10.1017/CBO9781139174817.
003.

[13] NASA. Jupiter Fact Sheet. URL: https://nssdc.gsfc.nasa.gov/planetary/factshee
t/jupiterfact.html (visited on 04/21/2023).

[14] NASA. Small-Body Database. URL: https://ssd.jpl.nasa.gov/tools/sbdb_query.
html (visited on 04/21/2023).

[15] David Nesvorny. Young Solar System’s fifth giant planet? Sept. 2011. URL: https://arxiv.
org/abs/1109.2949.

[16] D. Nesvorný, D. Vokrouhlický, and A. Morbidelli. “CAPTURE OF TROJANS BY JUMPING

JUPITER”. In: (2013). URL: https://arxiv.org/pdf/1303.2900.pdf.
[17] Seth B. Nicholson. “The Trojan Asteroids”. In: Astronomical Society of the Pacific Leaflets 8.381

(1962), p. 239.

[18] The Planets.What Are The Trojan Asteroids? URL: https://theplanets.org/what-are-
the-trojan-asteroids (visited on 07/12/2023).

[19] E.M. Shoemaker, C.S. Shoemaker, and R.F. Wolfe. “Trojan asteroids - Populations, dynamical

structure and origin of the L4 and L5 swarms”. In: (Mar. 1989), p. 487.

52

https://www.overleaf.com/project/5f0d576145959f000121398a
https://doi.org/10.10510004-6361202244443
https://doi.org/10.1051/0004-6361/202244443
https://doi.org/10.1051/0004-6361/202244443
https://doi.org/https://doi.org/10.1016/j.icarus.2014.09.002
https://www.sciencedirect.com/science/article/pii/S0019103514004643
https://www.sciencedirect.com/science/article/pii/S0019103514004643
https://oceanservice.noaa.gov/facts/gps.html
https://oceanservice.noaa.gov/facts/gps.html
https://www.planetary.org/articles/what-was-the-chelyabinsk-meteor-event
https://www.planetary.org/articles/what-was-the-chelyabinsk-meteor-event
https://www.nasa.gov/feature/goddard/2021/how-were-the-trojan-asteroids-discovered-and-named
https://www.nasa.gov/feature/goddard/2021/how-were-the-trojan-asteroids-discovered-and-named
https://www.nasa.gov/feature/goddard/2021/how-were-the-trojan-asteroids-discovered-and-named
https://en.wikipedia.org/wiki/Leapfrog_integration
https://doi.org/10.38471538-4357/834/1/64
https://dx.doi.org/10.3847/1538-4357/834/1/64
https://dx.doi.org/10.3847/1538-4357/834/1/64
https://doi.org/10.1086/117532
https://arxiv.org/abs/astro-ph/9504036
https://doi.org/10.1017/CBO9781139174817.003
https://doi.org/10.1017/CBO9781139174817.003
https://doi.org/10.1017/CBO9781139174817.003
https://doi.org/10.1017/CBO9781139174817.003
https://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html
https://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html
https://ssd.jpl.nasa.gov/tools/sbdb_query.html
https://ssd.jpl.nasa.gov/tools/sbdb_query.html
https://arxiv.org/abs/1109.2949
https://arxiv.org/abs/1109.2949
https://arxiv.org/pdf/1303.2900.pdf
https://theplanets.org/what-are-the-trojan-asteroids
https://theplanets.org/what-are-the-trojan-asteroids

References 53

[20] Bruno Sicardy and Véronique Dubois. “Co-Orbital Motion with Slowly Varying Parameters”. In:

Celestial Mechanics and Dynamical Astronomy 86.4 (Aug. 2003), pp. 321–350.

[21] John R. Taylor. Classical Mechanics. 9th ed. printing 2020. Californy: University Sience Books,

2005.

[22] Nola Taylor Tillman. Dangerous Asteroids May Be Lurking in Jupiter’s Shadow. URL: https:
//www.space.com/hidden-jupiter-asteroids-threaten-earth.html (visited on

08/19/2023).

[23] Github user. equipotentials.py. URL: https://github.com/zingale/astro_animations/
blob/main/binary_exoplanets/equipotentials/equipotentials.pys (visited on

04/12/2023).

[24] Visser. “A&A proofs: manuscript”. In: (2023).

[25] P. M. Visser. “Collision detection for N-body Kepler systems”. In: (Sept. 2022). DOI: 10.1051/
0004-6361/202243754. URL: https://doi.org/10.1051%5C%2F0004-6361%5C%
2F202243754.

[26] C. Vuik et al. Numerical Methods For Ordinary Differential Equations. 2nd ed. Delft Academic

Press, 2016.

[27] Wikipedia. Lagrange point. URL: https://simple.wikipedia.org/wiki/Lagrange_
point (visited on 06/21/2023).

[28] Wikipedia. Orbital inclination. URL: https://en.wikipedia.org/wiki/Orbital_inclin
ation (visited on 07/13/2023).

https://www.space.com/hidden-jupiter-asteroids-threaten-earth.html
https://www.space.com/hidden-jupiter-asteroids-threaten-earth.html
https://github.com/zingale/astro_animations/blob/main/binary_exoplanets/equipotentials/equipotentials.pys
https://github.com/zingale/astro_animations/blob/main/binary_exoplanets/equipotentials/equipotentials.pys
https://doi.org/10.1051/0004-6361/202243754
https://doi.org/10.1051/0004-6361/202243754
https://doi.org/10.1051%5C%2F0004-6361%5C%2F202243754
https://doi.org/10.1051%5C%2F0004-6361%5C%2F202243754
https://simple.wikipedia.org/wiki/Lagrange_point
https://simple.wikipedia.org/wiki/Lagrange_point
https://en.wikipedia.org/wiki/Orbital_inclination
https://en.wikipedia.org/wiki/Orbital_inclination

A
Numerical methods

A.1. Original Yoshida integrator
The Yoshida integrator is a fourth order method to solve differential equations of the from ẍ = A(x)[7],
given by[7]

x1i = xi + c1 vi ∆t,

v1i = vi + d1 a(x
1
i)∆t,

x2i = x1i + c2 v
1
i ∆t,

v2i = v1i + d2 a(x
2
i)∆t,

x3i = x2i + c2 v
2
i ∆t,

v3i = v2i + d1 a(x
3
i)∆t,

xi+1 ≡ x4i = x3i + c1 v
3
i ∆t,

vi+1 ≡ v4i = v3i

(A.1)

where w0 = −
3√2

2− 3√2
, w1 = 1

2− 3√2
,c1 = w1

2 ,c2 = w0+w1

2 ,d1 = w1 ,d2 = w0. In this project, the equations of

motion are not of the form ẍ = A(x) and therefore this method might not be fourth order, symplectic
and/or stable. In section 6.1 it is shown that this common integrator is indeed not applicable to these

equations of motion.

A.2. Stability analysis midpoint Yoshida integrator
In section 6.1, the performance of the midpoint Yoshida integrator is tested near the equilibrium. From

these analysis, it appeared that the method is symplectic, stable and fourth order. The latter two

properties are here proven analytically for a near-stable Trojan. This analysis is important to determine

an upper bound for the time step used when numerically integrating the equations of motion for a near

equilibrium Trojan. Due to H2(h/2) we map:

[~r, p̃] → [~r, p̃] +
h

2
J[r̃, ~p]

H1(h)H2(h/2) : [~r, p̃] → [~r, p̃]+
h

2
J[r̃, ~p], [r̃, ~p] → [r̃, ~p]+hJ([~r, p̃]+

h

2
J[r̃, ~p]) = [r̃, ~p]+hJ[~r, p̃]+

h2

2
J2[r̃, ~p]

H2(h/2)H1(h)H2(h/2) : [~r, p̃] → [~r, p̃] +
h

2
J[r̃, ~p] +

h

2
J([r̃, ~p] + hJ[~r, p̃] +

h2

2
J2[r̃, ~p]) =

[~r, p̃] +
h

2
J[r̃, ~p] +

h

2
J[r̃, ~p] +

h2

2
J2[~r, p̃] +

h3

4
J3[r̃, ~p]

A2(d1dt) : [~r, p̃] → (I +
(d1dt)

2

2
J2)[~r, p̃] + (d1dtJ+

(d1dt)
3

4
J3)[r̃, ~p],

54

A.2. Stability analysis midpoint Yoshida integrator 55

[r̃, ~p] → (I +
(d1dt)

2

2
J2)[r̃, ~p] + d1dtJ[~r, p̃]

For simplicity, we define w := d1 + d2

A2(d2dt)A2(d1dt) : [~r, p̃] → (I +
(d2dt)

2

2
J2)((I +

(d1dt)
2

2
J2)[~r, p̃] + (d1dtJ+

(d1dt)
3

4
J3)[r̃, ~p])

+(d2dtJ+
(d2dt)

3

4
J3)((I +

(d1dt)
2

2
J2)[r̃, ~p] + d1dtJ[~r, p̃]) =

(I2 +
d21 + d22

2
dt2J2 +

d21d
2
2dt

4

4
J4 +

d1d
3
2dt

4

4
J4 + d1d2dt

2J2)[~r, p̃]+

(d1dtJ+
d1d

2
2dt

3

2
J3 +

d31dt
3

4
J3 +

d31d
2
2

8
dt5J5 + d2dtJ+

d32dt
3

4
J3 +

d21d2dt
3

2
J3 +

d21d
3
2dt

5

8
J5)[r̃, ~p] =

(I +
w2

2
dt2J2 +

d1d
2
2w

4
dt4J4)[~r, p̃] + (wdtJ+

d31 + d32 + 2d1d2w

4
dt3J3+

d21d
2
2w

8
dt5J5)[r̃, ~p]

[r̃, ~p] → (I +
(d2dt)

2

2
J2)((I +

(d1dt)
2

2
J2)[r̃, ~p] + d1dtJ[~r, p̃]) + d2dtJ((I +

(d1dt)
2

2
J2)[~r, p̃]+

(d1dtJ+
(d1dt)

3

4
J3)[r̃, ~p]) =

(I2 +
d21 + d22

2
dt2J2 +

d21d
2
2

4
dt4J4)[r̃, ~p] + (d1dtJ+

d1d
2
2

2
dt3J3)[~r, p̃]+

(d2dtJ+
d2d

2
1

2
dt3J3)[~r, p̃] + (d1d2dt

2J2 +
d31d2dt

4

4
J4)[r̃, ~p] =

(I +
w2dt2

2
J2 +

d21d2w

4
dt4J4)[r̃, ~p] + wdtJ+

d1d2w

2
dt3J3)[~r, p̃]

A2(d1dt)A2(d2dt)A2(d1dt) :

[~r, p̃] → (I+
(d1dt)

2

2
J2)((I+

w2

2
dt2J2+

wd1d
2
2

4
dt4J4)[~r, p̃]+(wdtJ+

d31 + d32 + 2d1d2w

4
dt3J3+

d21d
2
2w

8
dt5J5)[r̃, ~p])+

(d1dtJ+
(d1dt)

3

4
J3)((I +

w2

2
dt2J2 +

wd21d2
4

dt4J4)[r̃, ~p] + (wdtJ+
wd1d2

2
dt3J3)[~r, p̃]) =

(I2 +
d21 + w2

2
dt2J2 +

wd1d
2
2 + w2d21
4

dt4J4 +
wd31d

2
2

8
dt6J6 + wd1dt

2J2 +
wd21d2

2
dt4J4+

wd31
4
dt4J4 +

wd41d2
8

dt6J6)[~r, p̃]+

(wdtJ+
d31 + d32 + 2wd1d2 + 2wd21

4
dt3J3 + d21

d31 + d32 + 2wd1d2 + wd22
8

dt5J5 +
wd41d

2
2

16
dt7J7

+d1dtJ+
d31 + 2w2d1

4
dt3J3 +

2wd31d2 + w2d31
8

dt5J5 +
wd51d2
16

dt7J7)[r̃, ~p] =

(I +
1

2
dt2J2 +

w2d1
4

dt4J4 +
w2d31d2

8
dt6J6)[~r, p̃]+

(dtJ+
1 + 2wd1(d1 − 1)

4
dt3J3 +

w2d21(d2 + 1)

8
dt5J5 +

w2d41d2
16

dt7J7)[r̃, ~p]

A.2. Stability analysis midpoint Yoshida integrator 56

[r̃, ~p] → (I +
(d1dt)

2

2
J2)((I +

w2dt2

2
J2 +

d21d2w

4
dt4J4)[r̃, ~p] + (wdtJ+

d1d2w

2
dt3J3)[~r, p̃])+

d1dtJ((I +
w2

2
dt2J2 +

d1d
2
2w

4
dt4J4)[~r, p̃] + (wdtJ+

d31 + d32 + 2d1d2w

4
dt3J3+

d21d
2
2w

8
dt5J5)[r̃, ~p]) =

(I2 +
d21 + w2

2
dt2J2 +

w2d21 + wd21d2
4

dt4J4+

wd41d2
8

dt6J6 + wd1dt
2J2 + d1

d31 + d32 + 2wd1d2
4

dt4J4 +
d31d

2
2w

8
dt6J6)[r̃, ~p]+

(wdtJ+
wd21 + wd1d2

2
dt3J3 +

wd31d2
4

dt5J5 + d1dtJ+

w2d1
2

dt3J3 +
wd21d

2
2

4
dt5J5)[~r, p̃] =

(I +
1

2
dt2J2 +

w2d1
4

dt4J4 +
w2d31d2

8
dt6J6)[r̃, ~p]+

(dtJ+ w2d1dt
3J3 +

w2d21d2
4

dt5J5)[~r, p̃]

Now averaging the results and using the fact that originaly [~r, p̃] = [r̃, ~p] yields:

[~r, ~p] → (I/2 +
1

4
dt2J2 +

w2d1
8

dt4J4 +
w2d31d2

16
dt6J6)+

dtJ/2+
1 + 2wd1(d1 − 1)

8
dt3J3+

w2d21(d2 + 1)

16
dt5J5+

w2d41d2
32

dt7J7+I/2+
1

4
dt2J2+

w2d1
8

dt4J4+
w2d31d2

16
dt6J6+

dtJ/2 +
w2d1
4

dt3J3 +
w2d21d2

8
dt5J5)[~r, ~p]) =

(I + dtJ+
1

2
dt2J2 +

1 + 2w2d1
8

dt3J3 +
w2d1
4

dt4J4+

w2d31d2
8

dt5dt5J5 +
wd31(w + d2)

16
dt6J6 +

w2d41d2
32

dt7J7)[~r, ~p] =

(I+dtJ+
1

2
dt2J2+

1

6
dt3J3+

1

24
dt4J4+

1− 2 3
√
2

48(2− 3
√
2)2

dt5J5−
3
√
2

48(2− 3
√
2)3

dt6J6−
3
√
2

192(2− 3
√
2)4

dt7J7)[~r, ~p]

(A.2)

Comparing this with the Taylor series, one indeed notices that the method is a fourth order method.

Using, Python the stability region could be plotted in figure A.1. Drawing a half circle in the same image,

as shown in A.2, one obtains that for <(λ) ≤ 0, dt ≤ 2.5
|λ| is a sufficient condition for stability.

A.2. Stability analysis midpoint Yoshida integrator 57

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
Im(dt)

Re(dt)

Figure A.1: Stability region for the midpoint Yoshida integrator

A.2. Stability analysis midpoint Yoshida integrator 58

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
Im(dt)

Re(dt)

dt 2.5

Figure A.2: Stability region for the midpoint Yoshida integrator with sufficient stability condition

B
Jacobian

The Jacobian of the system of differential equations 3.18 is given by:

J =



0 0 0 1 0 0

− 2lz
r3 0 0 0 1

r2 0
0 0 0 0 0 1

− 3l2z
r4 − ∂2V

∂r2 − ∂2V
∂r∂θ − ∂2V

∂r∂z 0 2lz
r3 0

− ∂2V
∂θ∂r −∂2V

∂θ2 − ∂2V
∂θ∂z 0 0 0

− ∂2V
∂z∂r − ∂2V

∂z∂θ −∂2V
∂z2 0 0 0


Using our initial conditions, this yields:

J ≈


0 0 0 1 0 0

−5.52161612 · 10−32 0 0 0 1.65032152 · 10−24 0
0 0 0 0 1 0

5.58920164 · 10−16 −3.78785157 · 10−7 4.19854017 · 10−19 0 5.52161612 · 10−32 0
−3.78785157 · 10−7 8.60581879 · 104 −2.56484810 · 10−10 0 0 0
−2.79950087 · 10−16 −2.56484810 · 10−10 −2.79950087 · 10−16 0 0 0


Usually, one estimates the eigenvalues, for example Gresgorin’s theorem, because of its simplicity.

Now, it is easily observed that Gresgorin’s theorem bounds:

|λ| ≤ 8.606 · 104 (B.1)

Therefore, one obtains a stable time step:

dt ≤ 2.5

8.606 · 104
≈ 2.9 · 10−5 (B.2)

This is far lower than preferred, thus the theorem doesn’t help in this problem. Therefore, one has to

calculate the eigenvalues.

0 = |J − λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 1 0 0

− 2lz
r3 −λ 0 0 1

r2 0
0 0 −λ 0 0 1

− 3l2z
r4 − ∂2V

∂r2 − ∂2V
∂r∂θ − ∂2V

∂r∂z −λ 2lz
r3 0

− ∂2V
∂θ∂r −∂2V

∂θ2 − ∂2V
∂θ∂z 0 −λ 0

− ∂2V
∂z∂r − ∂2V

∂z∂θ −∂2V
∂z2 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 1 0 0

− 2lz
r3 −λ 0 0 1

r2 0
0 0 −λ 0 0 1

− 3l2z
r4 − ∂2V

∂r2 − ∂2V
∂r∂θ − ∂2V

∂r∂z −λ 2lz
r3 0

− ∂2V
∂θ∂r −∂2V

∂θ2 − ∂2V
∂θ∂z 0 −λ 0

− ∂2V
∂z∂r − ∂2V

∂z∂θ −∂2V
∂z2 − λ2 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

59

60

∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 1 0 0

− 2lz
r3 −λ 0 0 1

r2 0
0 0 −λ 0 0 1

− 3l2z
r4 − ∂2V

∂r2 − ∂2V
∂r∂θ − ∂2V

∂r∂z −λ 2lz
r3 0

− ∂2V
∂θ∂r −∂2V

∂θ2 − ∂2V
∂θ∂z 0 −λ 0

− ∂2V
∂z∂r − ∂2V

∂z∂θ −∂2V
∂z2 − λ2 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

−

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 1 0

− 2lz
r3 −λ 0 0 1

r2

− 3l2z
r4 − ∂2V

∂r2 − ∂2V
∂r∂θ − ∂2V

∂r∂z −λ 2lz
r3

− ∂2V
∂θ∂r −∂2V

∂θ2 − ∂2V
∂θ∂z 0 −λ

− ∂2V
∂z∂r − ∂2V

∂z∂θ −∂2V
∂z2 − λ2 0 0

∣∣∣∣∣∣∣∣∣∣∣
=

−

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 1 0

− 2lz
r3 −λ 0 0 1

r2

− 3l2z
r4 − ∂2V

∂r2 − λ2 − ∂2V
∂r∂θ − ∂2V

∂r∂z 0 2lz
r3

− ∂2V
∂θ∂r −∂2V

∂θ2 − ∂2V
∂θ∂z 0 −λ

− ∂2V
∂z∂r − ∂2V

∂z∂θ −∂2V
∂z2 − λ2 0 0

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
− 2lz

r3 −λ 0 1
r2

− 3l2z
r4 − ∂2V

∂r2 − λ2 − ∂2V
∂r∂θ − ∂2V

∂r∂z
2lz
r3

− ∂2V
∂θ∂r −∂2V

∂θ2 − ∂2V
∂θ∂z −λ

− ∂2V
∂z∂r − ∂2V

∂z∂θ −∂2V
∂z2 − λ2 0

∣∣∣∣∣∣∣∣∣ =∣∣∣∣∣∣∣∣∣
− 2lz

r3 −λ 0 1
r2

l2z
r4 − ∂2V

∂r2 − λ2 − ∂2V
∂r∂θ + 2lz

r λ − ∂2V
∂r∂z 0

− ∂2V
∂θ∂r −∂2V

∂θ2 − ∂2V
∂θ∂z −λ

− ∂2V
∂z∂r − ∂2V

∂z∂θ −∂2V
∂z2 − λ2 0

∣∣∣∣∣∣∣∣∣ =∣∣∣∣∣∣∣∣∣
− 2lz

r3 −λ 0 1
r2

l2z
r4 − ∂2V

∂r2 − λ2 − ∂2V
∂r∂θ + 2lz

r λ − ∂2V
∂r∂z 0

− ∂2V
∂θ∂r − 2lz

r λ −∂2V
∂θ2 − λ2r2 − ∂2V

∂θ∂z 0

− ∂2V
∂z∂r − ∂2V

∂z∂θ −∂2V
∂z2 − λ2 0

∣∣∣∣∣∣∣∣∣ =

− 1

r2

∣∣∣∣∣∣∣
l2z
r4 − ∂2V

∂r2 − λ2 − ∂2V
∂r∂θ + 2lz

r λ − ∂2V
∂r∂z

− ∂2V
∂θ∂r − 2lz

r λ −∂2V
∂θ2 − λ2r2 − ∂2V

∂θ∂z

− ∂2V
∂z∂r − ∂2V

∂z∂θ −∂2V
∂z2 − λ2

∣∣∣∣∣∣∣ =∣∣∣∣∣∣∣
− l2z

r4 + ∂2V
∂r2 + λ2 ∂2V

∂r∂θ − 2lz
r λ

∂2V
∂r∂z

∂2V
∂θ∂r + 2lz

r λ
∂2V
∂θ2 + λ2r2 ∂2V

∂θ∂z
∂2V
∂z∂r

∂2V
∂z∂θ

∂2V
∂z2 + λ2

∣∣∣∣∣∣∣ =
(− l2z
r4

+
∂2V

∂r2
+ λ2)

∣∣∣∣∣∂
2V
∂θ2 + λ2r2 ∂2V

∂θ∂z
∂2V
∂z∂θ

∂2V
∂z2 + λ2

∣∣∣∣∣− (
∂2V

∂r∂θ
− 2lz

r
λ)

∣∣∣∣∣ ∂
2V

∂θ∂r + 2lz
r λ

∂2V
∂θ∂z

∂2V
∂z∂r

∂2V
∂z2 + λ2

∣∣∣∣∣+
(
∂2V

∂r∂z
)

∣∣∣∣∣ ∂
2V

∂θ∂r + 2lz
r λ

∂2V
∂θ2 + λ2r2

∂2V
∂z∂r

∂2V
∂z∂θ

∣∣∣∣∣ =
(− l2z
r4

+
∂2V

∂r2
+ λ2)((

∂2V

∂θ2
+ λ2r2)(

∂2V

∂z2
+ λ2)− (

∂2V

∂θ∂z
)2)+

(− ∂2V

∂r∂θ
+

2lz
r
λ)((

∂2V

∂θ∂r
+

2lz
r
λ)(

∂2V

∂z2
+ λ2)− ∂2V

∂θ∂z

∂2V

∂z∂r
)+

(
∂2V

∂r∂z
)((

∂2V

∂θ∂r
+

2lz
r
λ)(

∂2V

∂z∂θ
)− (

∂2V

∂θ2
+ λ2r2)(

∂2V

∂z∂r
)) =

61

(− l2z
r4

+
∂2V

∂r2
+ λ2)(

∂2V

∂θ2
∂2V

∂z2
+ λ2r2

∂2V

∂z2
+ λ2

∂2V

∂θ2
+ λ4r2 − (

∂2V

∂θ∂z
)2)+

(
4l2z
r2
λ2 − (

∂2V

∂θ∂r
)2)(

∂2V

∂z2
+ λ2) +

∂2V

∂r∂θ

∂2V

∂θ∂z

∂2V

∂z∂r
− 2lz

r
λ
∂2V

∂θ∂z

∂2V

∂z∂r
+

(
∂2V

∂r∂z
)((

∂2V

∂θ∂r
+

2lz
r
λ)(

∂2V

∂z∂θ
)− (

∂2V

∂θ2
+ λ2r2)(

∂2V

∂z∂r
)) =

(− l2z
r4

+
∂2V

∂r2
+ λ2)(

∂2V

∂θ2
∂2V

∂z2
+ λ2r2

∂2V

∂z2
+ λ2

∂2V

∂θ2
+ λ4r2 − (

∂2V

∂θ∂z
)2)+

((
4l2z
r2
λ2 − (

∂2V

∂θ∂r
)2)(

∂2V

∂z2
+ λ2) +

∂2V

∂r∂θ

∂2V

∂θ∂z

∂2V

∂z∂r
− 2lz

r
λ
∂2V

∂θ∂z

∂2V

∂z∂r
+

∂2V

∂r∂z

∂2V

∂z∂θ

∂2V

∂θ∂r
+

2lz
r
λ
∂2V

∂r∂z

∂2V

∂z∂θ
− (

∂2V

∂θ2
+ λ2r2)(

∂2V

∂z∂r
)2 =

(− l2z
r4

+
∂2V

∂r2
+ λ2)(

∂2V

∂θ2
∂2V

∂z2
+ λ2r2

∂2V

∂z2
+ λ2

∂2V

∂θ2
+ λ4r2 − (

∂2V

∂θ∂z
)2)+

(
4l2z
r2
λ2 − (

∂2V

∂θ∂r
)2)(

∂2V

∂z2
+ λ2) + 2

∂2V

∂r∂z

∂2V

∂z∂θ

∂2V

∂θ∂r
+

−∂
2V

∂θ2
(
∂2V

∂z∂r
)2 − λ2r2(

∂2V

∂z∂r
)2 =

(
∂2V

∂r2
+ λ2)(

∂2V

∂θ2
∂2V

∂z2
+ λ2r2

∂2V

∂z2
+ λ2

∂2V

∂θ2
+ λ4r2 − (

∂2V

∂θ∂z
)2)+

− l2z
r4
∂2V

∂θ2
∂2V

∂z2
− l2z
r2
λ2
∂2V

∂z2
− l2z
r4
λ2
∂2V

∂θ2
− l2z
r2
λ4 +

l2z
r4

(
∂2V

∂θ∂z
)2+

−(
∂2V

∂θ∂r
)2λ2 +

4l2z
r2
λ4 +

4l2z
r2
λ2
∂2V

∂z2
− (

∂2V

∂θ∂r
)2
∂2V

∂z2
+ 2

∂2V

∂r∂z

∂2V

∂z∂θ

∂2V

∂θ∂r
+

−∂
2V

∂θ2
(
∂2V

∂z∂r
)2 − λ2r2(

∂2V

∂z∂r
)2 =

(
∂2V

∂r2
+ λ2)(

∂2V

∂θ2
∂2V

∂z2
+ λ2r2

∂2V

∂z2
+ λ2

∂2V

∂θ2
+ λ4r2 − (

∂2V

∂θ∂z
)2)+

− l2z
r4
∂2V

∂θ2
∂2V

∂z2
+

3l2z
r2
λ2
∂2V

∂z2
− l2z
r4
λ2
∂2V

∂θ2
+

3l2z
r2
λ4 +

l2z
r4

(
∂2V

∂θ∂z
)2+

−(
∂2V

∂θ∂r
)2λ2 − (

∂2V

∂θ∂r
)2
∂2V

∂z2
+ 2

∂2V

∂r∂z

∂2V

∂z∂θ

∂2V

∂θ∂r
+

−∂
2V

∂θ2
(
∂2V

∂z∂r
)2 − λ2r2(

∂2V

∂z∂r
)2 =

∂2V

∂θ2
∂2V

∂z2
λ2 + λ4r2

∂2V

∂z2
+ λ4

∂2V

∂θ2
+ λ6r2 − (

∂2V

∂θ∂z
)2λ2+

∂2V

∂r2
∂2V

∂θ2
∂2V

∂z2
+ λ2r2

∂2V

∂r2
∂2V

∂z2
+ λ2

∂2V

∂r2
∂2V

∂θ2
+ λ4r2

∂2V

∂r2
− ∂2V

∂r2
(
∂2V

∂θ∂z
)2

− l2z
r4
∂2V

∂θ2
∂2V

∂z2
+

3l2z
r2
λ2
∂2V

∂z2
− l2z
r4
λ2
∂2V

∂θ2
+

3l2z
r2
λ4 +

l2z
r4

(
∂2V

∂θ∂z
)2+

−(
∂2V

∂θ∂r
)2λ2 − (

∂2V

∂θ∂r
)2
∂2V

∂z2
+ 2

∂2V

∂r∂z

∂2V

∂z∂θ

∂2V

∂θ∂r
+

−∂
2V

∂θ2
(
∂2V

∂z∂r
)2 − λ2r2(

∂2V

∂z∂r
)2 =

62

r2λ6 + (r2
∂2V

∂z2
+
∂2V

∂θ2
+ r2

∂2V

∂r2
+

3l2z
r2

)λ4

(−(
∂2V

∂θ∂z
)2+

∂2V

∂θ2
∂2V

∂z2
+ r2

∂2V

∂r2
∂2V

∂z2
+
∂2V

∂r2
∂2V

∂θ2
− r2(

∂2V

∂z∂r
)2 +

3l2z
r2

∂2V

∂z2
− (

∂2V

∂θ∂r
)2 − l2z

r4
∂2V

∂θ2
)λ2

−∂
2V

∂r2
(
∂2V

∂θ∂z
)2+

−(
∂2V

∂θ∂r
)2
∂2V

∂z2
+ 2

∂2V

∂r∂z

∂2V

∂z∂θ

∂2V

∂θ∂r
+
∂2V

∂r2
∂2V

∂θ2
∂2V

∂z2
+−∂

2V

∂θ2
(
∂2V

∂z∂r
)2 − l2z

r4
∂2V

∂θ2
∂2V

∂z2
+
l2z
r4

(
∂2V

∂θ∂z
)2

This is a cubic equation in λ2 which can be solved algebraically using Cardano’s formula. After taking
the square roots, this yields for the current orbit of Jupiter:

λ1 = −4.13590306 · 10−25 + 1.67189035 · 10−8i, λ2 = −4.13590306 · 10−25 − 1.67189035 · 10−8i,

λ3 = −5.88073717 · 10−25 + 9.49530837 · 10−10i, λ4 = −5.88073717 · 10−25 − 9.49530837 · 10−10i,

λ5 = −1.53228342 · 10−26 + 1.67249205 · 10−8i, λ6 = −1.53228342 · 10−26 − 1.67249205 · 10−8i (B.3)

The real parts are very small and due to numerical errors. In fact, we know they should actually be zero,

since the Trojans orbits do not converge towards the Lagrange point. From the eigenvalues we obtain a

time step of

dt ≤ 2.5

|λ|max
=

2.5

1.6724920458162246 · 10−8
≈ 149477542 s ≈ 4.74 y (B.4)

which is less than a half times the orbital cycle time of Jupiter. One could, however, expect a smaller

time step further away from the equilibrium point. Using the analysis above and taking into consideration

that Ji et al. used a time step of a half a year[2], a time step less than half a year seems a reasonable

estimate. One could do an error estimation to determine whether the used time step is indeed small

enough for a specific Trojan.

C
Alternative Trojan Conversion

As described in 4, it is also possible to convert the Trojans by making the rough assumption Jupiter

has no influence on a Trojans orbit during small periods of time, allowing all Trojans to start from the

same moment. The 9 steps described in 4 then become the following instead: 1. Assume Jupiter’s

influence on the Trojan is a slow and small effect. Thus the Kepler elements from NASA represent

constant Kepler orbits around the Sun (mJ = 0).
2. Calculate the distance to the sun and the velocity of the Trojan at the time of the data in cartesian

coordinates.

3. Use these quantities and the anomaly to create vectors for the position and velocity in the x,y (polar)

plane.

4. Use a rotation matrix to rotate the vectors to the plane of the orbit.

5. Calculate the last moment in time before J2000 that Jupiter has 0 anomaly

6. Use numerical integration to calculate the position and velocity vectors of the Trojan at the same

moment in time.

7. Rotate the Trojan such that Jupiter moves in the polar plane.

8. Assume Jupiter now is present and correct for the shifted centre of mass.

9. Convert to cylindrical coordinates in the rotating frame.

63

D
Additional results

Below are all the result tables of the found simulations that are not considered in the main text. Some

tables are not discussed in the main text, since the simulation times were to short to make proper

conclusion. However, they were used to obtain some first insight at early attempts on what short of

simulations one could run.

D.1. Tables

L4’ L5’ Horse shoe’ Unstable’ Total

L4 190 0 0 6 196

L5 0 196 0 0 196

Horse shoe 0 0 0 0 0

Unstable 0 0 8 8 8

Total’ 190 196 0 38 400

Table D.1: Trojans of each type after a migration of 2 AU of Jupiter from its current position over a time of 100 ky, τ = 1000 y.
The primes stand for the new types after migration, while the types without prime stand for the type without migration. The first

100 Trojans from [14] and its four symmetric copies were used. Jupiter was assumed to be in a perfect circular orbit.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 75 0 0 23 98

L5 0 98 0 0 98

Horse shoe 0 0 0 0 0

Unstable 0 0 0 4 4

Total’ 75 98 0 27 200

Table D.2: Trojans of each type after a migration of 2 AU of Jupiter from its current position over a time of one million years with

τ = 1000 y. The primes stand for the new types after migration, while the types without prime stand for the type without migration.

The first 100 Trojans from [14] and its primal symmetric copies were used. Jupiter was assumed to have its current eccentricity of

0.04839266 during the entire simulation.

64

D.1. Tables 65

L4’ L5’ Horse shoe’ Unstable’ Total

L4 1 16 0 81 98

L5 1 52 0 45 98

Horse shoe 0 0 0 0 0

Unstable 0 0 0 4 4

Total’ 2 68 0 130 200

Table D.3: Trojans of each type after a migration of 2 AU of Jupiter from its current position over a time of one million years with

τ = 300 y. The primes stand for the new types after migration, while the types without prime stand for the type without migration.

The first 1000 Trojans from [14] and its primal symmetric copies were used. Jupiter was assumed to have its current eccentricity

of 0.04839266 during the entire simulation.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 888 0 0 102 1000

L5 1 952 1 38 991

Horse shoe 0 0 0 0 4

Unstable 0 0 0 15 15

Total’ 889 952 1 155 2000

Table D.4: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of one million years with

τ = 300 y. The primes stand for the new types after migration, while the types without prime stand for the type without migration.

The first 1000 Trojans from [14] and its primal symmetric copies were used. Jupiter was assumed to have three times its current

eccentricity of 0.04839266 during the entire simulation.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 806 0 0 184 1000

L5 1 986 1 5 992

Horse shoe 0 2 0 2 4

Unstable 0 3 0 12 15

Total’ 806 991 1 155 2000

Table D.5: Trojans of each type after a migration of 2 AU of Jupiter from its current position over a time of one million years with

τ = 300 y. The primes stand for the new types after migration, while the types without prime stand for the type without migration.

The first 1000 Trojans from [14] and its primal symmetric copies were used. Jupiter was assumed to have its current eccentricity

of 0.04839266 during the entire simulation.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 490 0 0 2 492

L5 0 486 0 0 486

Horse shoe 0 4 0 2 6

Unstable 0 0 0 16 16

Total’ 490 490 0 20 10000

Table D.6: Trojans of each type after a migration of 0.5 AU of Jupiter from its current position over a time of 100k y, tau=500y

L4’ L5’ Horse shoe’ Unstable’ Total

L4 466 0 0 30 492

L5 0 496 0 0 486

Horse shoe 0 0 0 2 6

Unstable 0 0 8 8 16

Total’ 466 496 0 38 1000

Table D.7: Trojans of each type after a migration of 2 AU of Jupiter from its current position over a time of 100.000 year. The

migration is described by equation 4.1, with τ=500 y. The primes stand for the new types after migration, while the types without

prime stand for the type without migration. The initial conditions of the first 250 Trojans are from [14], after which we used all the

symmetries to create 1000 Trojans. The 250 Trojans could not be considered fully random, but this result can be used for a first

insight in what might happen.

D.1. Tables 66

L4’ L5’ Horse shoe’ Unstable’ Total

L4 494 0 0 2 496

L5 0 496 0 0 496

Horse shoe 0 0 0 0 0

Unstable 0 0 0 0 8

Total’ 494 496 0 2 1000

Table D.8: Trojans of each type after a migration of 0.5 AU of Jupiter from its current position over a time of 100 ky, τ = 500 y.
The primes stand for the new types after migration, while the types without prime stand for the type without migration.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 1945 0 7 417 1952

L5 0 1968 4 397 1972

Horse shoe 45 14 7 1361 1427

Unstable 5 2 1 42932 42939

Total’ 1995 1984 19 45107 50220

Table D.9: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of 100 ky, τ = 1000 y.
The primes stand for the new types after migration, while the types without prime stand for the type without migration. There is a

2000 years pre run before the migration started.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 14021 0 13 2513 16547

L5 0 14509 16 2009 16534

Horse shoe 945 986 6 1354 3291

Unstable 2080 2525 27 9001 13633

Total’ 17046 18020 62 14877 50220

Table D.10: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of 100 ky, τ = 1000 y.
The primes stand for the new types after migration, while the types without prime stand for the type without migration. There is a

2000 years pre run before the migration started. The Trojans had no radial speed initially.

L4 L5 Horse shoe Unstable Total

24832 0 0 5 24837

0 24844 0 38 24882

0 6 0 42 48

0 4 0 394 398

Table D.11: Trojans of each type after a migration of 0.5 AU of Jupiter from its current position over a time of 33333 years using a

time step of 1/3 years using the function 6.2.

L4’ L5’ Horse shoe’ Unstable’ Total’

L4 24820 0 0 64 24884

L5 0 24836 0 46 24882

Horse shoe 0 6 0 44 50

Unstable 0 4 0 398 402

Table D.12: Trojans of each type after a migration of 0.5 AU of Jupiter from its current position over a time of 33333 years using a

time step of 1/3 years.

D.1. Tables 67

L4’ L5’ Horse shoe’ Unstable’ Total

L4 492 0 0 2 2

L5 0 488 0 6 6

Horse shoe 2 0 2 4 4

Unstable 0 0 0 4 4

Total’ 494 488 2 16 16

Table D.13: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of 100 ky, τ = 1000 y.
The primes stand for the new types after migration, while the types without prime stand for the type without migration. There is a

2000 years pre run before the migration started. The Trojans had no radial speed initially. The R function is now smooth

L4’ L5’ Horse shoe’ Unstable’ Total

L4 24236 0 20 330 24586

L5 0 24248 2 322 24572

Horse shoe 26 16 14 336 4

Unstable 4 0 0 628 632

Total’ 24266 24264 36 1616 50182

Table D.14: Trojans of each type after a migration of 1 AU of Jupiter from its current position over a time of 100 ky, τ = 500 y.
The primes stand for the new types after migration, while the types without prime stand for the type without migration. There is a

2000 years pre run before the migration started. The Trojans had no radial speed initially. The R functions is now smooth

L4’ L5’ Horse shoe’ Unstable’ Total

L4 24188 0 20 166 24586

L5 0 24198 0 176 24572

Horse shoe 32 3 14 128 4

Unstable 46 32 2 115 632

Total’ 24266 24264 36 1616 50182

Table D.15: Same as D.13, but now the normal simulation is run for 100000 years as well to match up the lengths of the

simulations.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 24184 0 20 151 24586

L5 0 24194 0 162 24572

Horse shoe 30 28 14 101 4

Unstable 0 0 2 0 0

Total’ 24266 24264 36 1616 50182

Table D.16: Same as D.14, but now originally unstable Trojans and its mirrors are removed

L4’ L5’ Horse shoe’ Unstable’ Total

L4 2686 0 0 20 2686

L5 0 2674 0 38 2674

Horse shoe 0 8 14 0 22

Unstable 8 2 2 0 12

Total’ 2694 2684 14 17

Table D.17: Same as D.13, but now only Trojans with initial inclinations of 5 degrees are used.

D.1. Tables 68

L4’ L5’ Horse shoe’ Unstable’ Total

L4 2684 0 0 22 2686

L5 0 2670 0 42 2674

Horse shoe 0 4 0 20 22

Unstable 8 0 0 0 172

Total’ 2694 2684 14 17

Table D.18: Same as D.17, but now the simulations are extended to a million years, resulting to a more strict result.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 1006 0 0 10 1016

L5 0 1000 0 14 1014

Horse shoe 0 0 0 6 6

Unstable 2 0 0 94 94

Total’ 1008 1000 0 134

Table D.19: Same as D.17, but now inclinations less than 3 degrees are considered.

L4’ L5’ Horse shoe’ Unstable’ Total

L4 132 0 0 6 138

L5 0 130 0 2 132

Horse shoe 0 0 0 0 0

Unstable 0 0 0 24 24

Total’ 132 130 0 32

Table D.20: Same as D.17, but now inclinations less than 1 degrees are considered.

L4 L5 Horse shoe Unstable Total’

L4’ 24820 0 0 64 24884

L5’ 0 24836 0 46 24882

Horse shoe’ 0 6 0 44 50

Unstable’ 0 4 0 398 402

Table D.21: Trojans of each type after a migration of 0.5 AU of Jupiter from its current position over a time of 33333 years using a

time step of 1/3 years.

L4’

L4

L5

HS

Unstable

Total

L4’ L5’ HS’ Unstable’ Total

975 0 0 4 979

0 971 0 5 976

0 0 0 8 8

0 0 0 36 36

975 971 0 43

(b) One million years

L4’ L5’ HS’ Unstable’ Total

972 0 0 7 979

0 969 0 7 976

0 0 0 8 8

0 0 0 36 36

972 969 0 48

(c) Five million years

Table D.22: Trojans of each type after a migration of 1 AU of Jupiter from its current position over two different simulation times

using a time step of 1/3 years. The migration rate is described equation 6.2 with τ = 1000 y. The initial Trojans are 1000 randomly
selected actual Trojans from [14] with its symmetric copies to obtain as many L4 and L5 Trojans initially. The prime denotes the

types after the migration and HS stands for Horse shoe.

D.2. Plots 69

D.2. Plots
Figures D.2, 6.6, D.7 and D.3 show some plots belonging to different migrations and are not discussed

in the main text.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x (m) 1e12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y
(m

)

1e12

L1 L2L3

L4

L5

Figure D.1: Distribution of the initial data set. The Trojans that have become unstable after a migration of 1 AU over 100000 years

using τ = 1000 y are marked red. The Trojan data is downloaded from NASA[14]. It has different epochs, thus the distribution

shown does not represent any current distribution, while each position is an actual existing position.

6.6. From this figure it appears that first two quantities and the last one are not relevant and therefore

they will not be considered in other plots. In the third plot, it appears that L5 Trojans are ’better’ at

handling extreme semi-major axes than L4 Trojans, but this has to be investigated. The last plot we

make is the plot where the minimum and maximum angles are plotted in absolute values in figure 6.7.

Figure D.4, D.5 and 2.7 show some more examples of Trojan orbits.

D.2. Plots 70

0 10 20 30 40 50 60
Inclination I before migration (deg)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

In
cli

na
tio

n
I′

af
te

r m
ig

ra
tio

n
(d

eg
)

Stable after migration
Untable after migration
Reference line I=I ′

(a) L4

0 10 20 30 40 50 60
Inclination I before migration (deg)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

In
cli

na
tio

n
I′

af
te

r m
ig

ra
tio

n
(d

eg
)

Stable after migration
Untable after migration
Reference line I=I ′

(b) L5

Figure D.2: The inclinations of Trojans before and after a migration of 1 AU over 100000 years of Jupiter using τ = 1000 y. The
red Trojans are unstable, but it have to be noted that the inclinations after are not well defined for unstable Trojans. From the

figure one deduces that most Trojans obtain lower inclinations after the migration and that for L5 Trojans, higher inclined Trojans

might have a higher probability to survive the migration.

(a) Eccentricity (b) Inclination

(c) Semi-major axis (d) Hamiltonian

Figure D.3: Plots of the initial resonant angle ∆θ of some Trojans versus several different other initial quantities. The stability
is determined after a migration of Jupiter over 1 AU by the function from equation 6.2 with parameter τ = 1000 years and the
current Jupiter’s orbital eccentricity is used. The total simulation time is one million years. The Trojans considered in both cases

are the same and are real Trojans from the NASA database[14] or symmetric copies of those. For this plot. Trojans that led to

unstable Trojans for both the original Trojan and a copy or to stable Trojans in both cases, are omitted to emphasize the different

between the original Trojans and the copies.

D.2. Plots 71

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x (m) 1e12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y
(m

)

1e12

L1 L2L3

L4

L5

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x (m) 1e12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y
(m

)

1e12

L1 L2L3

L4

L5

Figure D.4: Two examples of actual Trojans orbiting the L4 point in the horizontal plane together with the equipotential lines. The

black dot represents Jupiter and the colored circles ranges of the potentials, where the scale is logarithmic. One notices that the

curves are both banana shaped, but have different sizes and bendings.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x (m) 1e12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y
(m

)

1e12

L1 L2L3

L4

L5

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x (m) 1e12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y
(m

)

1e12

L1 L2L3

L4

L5

Figure D.5: Two examples of actual Trojans orbiting the L4 point in the horizontal plane together with the equipotential lines. The

colored represent circles ranges of the potentials, where the scale is logarithmic.

D.2. Plots 72

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x (m) 1e12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y
(m

)

1e12

L1 L2L3

L4

L5

Figure D.6: Examples of an actual Trojan in a horse shoe orbit in the horizontal plane together with the equipotential lines. The

colored circles represent ranges of the potentials, where the scale is logarithmic.

Figure D.7: Plots of the initial minimum and maximum angle θ of some Trojans relative to Jupiter. The stability is determined
after a migration of Jupiter over 1 AU prescribed by the function from equation 6.2 with parameter τ = 1000 years and the current
Jupiter’s orbital eccentricity is used. The total simulation time is one million years. The Trojans considered in both cases are the

same and are real Trojans from the NASA database[14] or symmetric copies of those. For this plot. Trojans that led to unstable

Trojans for both the original Trojan and a copy or to stable Trojans in both cases, are omitted to emphasize the different between

the original Trojans and the copies. The resonant angle has a different definition than in the main text and is defined by the

difference between the maximum and minimum angle.

D.2. Plots 73

0 2500 5000 7500 10000 12500 15000 17500 20000
t (y)

350

300

250

200

150

100

50

 (°
)

Figure D.8: Graph 5.2 extended for the L5 Trojan. Here we see that the Trojan obtains a horse shoe orbit before it becomes

unstable.

E
Code

Below, all used code is printed. The two main codes, which are the C code, which executes the actual

simulations, and the Python_function code, which is a library to easily handle the C code and create

some quick plots to obtain some insight. This allows fast simulation, but also humanly readable code

and easy data handling using Numpy. There is also an example code provided of some data handling.

Furthermore,the code used to create some plots are provided.

E.1. C code
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <math.h>
4 #include <string.h>
5

6

7 #define G (6.6384e-11) // Gravitational constant
8 #define m_S (1.98847e30) // Mass sun (kg)
9 #define m_J (1.89813e27) // Mass Jupiter (kg)
10 #define mu (m_J/m_S)
11 #define AU (1.496e11) // Astronomical unit (m)
12 #define year (3600*24*365) // convert year to seconds
13 //#define m (m_J + m_S) // Combined mass(kg)
14 #define Gm_S (6.6384e-11*m_S)
15 #define Gm_J (6.6384e-11*m_J)
16

17 // Constants for the Yoshida integrator
18 #define d1 1/(4-cbrt(16)) // d1/2 = d3/2 (the numbers are

halved to save computation time later)
19 #define d2 -cbrt(2)/(4-cbrt(16)) // d2/2 (the numbers

are halved to save computation time later)
20

21

22 // much faster than pow(x, 3.0/2.0)
23 __attribute__((const))double pow32(double x) {
24 return x*sqrt(x);
25 }
26

27 /*Rc and Rs are R*cosθ() and R*sinθ(). Since they have to be calculated multiple times, they
are given as paramters to decrease execution times*/

28

29 // B1 and B2 are some common base terms, which are given as parameters to save computation
time (2-3x improvement)

30 __attribute__((const)) double V2_r(double r,double Rc, double B1, double B2){
31 return B1*(r+mu*Rc)+B2*(r-Rc);
32 }
33

34 __attribute__((const)) double θV2_(double rRs, double B1, double B2){
35 return (B2-mu*B1)*rRs;
36

74

E.1. C code 75

37 }
38

39 __attribute__((const)) double V2_z(double z, double B1, double B2){
40 return z*(B1+B2);
41 }
42

43

44 __attribute__((const)) double B_1(double r, double rRc, double z, double R){
45 return Gm_S/pow32(r*r+z*z+2*mu*rRc+R*R*mu*mu);
46 }
47

48

49 __attribute__((const)) double B_2(double r, double rRc, double z, double R){
50 return Gm_J/pow32(r*r+z*z-2*rRc+R*R);
51 }
52

53

54

55 // Normal orbit calculations. Not optimised since it is unstable for our system. Could be
commented.

56 __declspec(dllexport) void calc_orbits_c(double wn[][6], double R, size_t N, double dt, const
char* method){

57

58 double ω_J = sqrt(Gm_S/(R*R*R));
59 dt = dt*year;
60

61 if(strcmp(method, "Yoshida")==0){
62 double c1 =1/(8-cbrt(128)); // c1 = c4
63 double c2 =(1-cbrt(2))/(4-cbrt(16)); // c2 = c3
64 double buffer[6];
65 void mat_add(double *vec1, double *vec2, double N){ //add vector 2 to vector

1 and return the result to vector 1
66 for(int i=0; i<N; i++){
67 vec1[i] += vec2[i];
68 }
69 }
70

71 double *mul_c(double c, double* vec, int N){ //multiplies a vector with a constant and
changes its value. Size of array needed

72 for(double *ptr=vec; ptr<vec+N; ptr++){
73 *ptr *= c;
74 }
75 return vec;
76 }
77 // Potential
78 double V(double r, double rRc, double z, double R){
79 return -(Gm_S/sqrt(pow(r,2)+pow(z,2)+2*mu*rRc+pow(R*mu,2))+Gm_J/sqrt(pow(r,2)+pow(z,2)-2*

rRc+pow(R,2)));
80 }
81

82 // V derivatives:
83

84 double V_r(double r,double Rc, double z, double R){
85 return (Gm_S*(r+mu*Rc)/pow32(pow(r,2)+pow(z,2)+2*mu*r*Rc+pow(R*mu,2))+Gm_J*(r-Rc)/pow32(

pow(r,2)+pow(z,2)-2*Rc*r+pow(R,2)));
86 }
87

88 double θV_(double r, double rRc, double rRs, double z, double R){
89 return ((-Gm_J*rRs)/pow32(pow(r,2)+pow(z,2)+2*mu*rRc+pow(R*mu,2))+Gm_J*(rRs)/pow32(pow(r

,2)+pow(z,2)-2*rRc+pow(R,2)));
90

91 }
92

93 double V_z(double r, double rRc, double z, double R){
94 return z*(Gm_S/pow32(pow(r,2)+pow(z,2)+2*mu*rRc+pow(R*mu,2))+Gm_J/pow32(pow(r,2)+pow(z,2)

-2*rRc+pow(R,2)));
95 }
96

97 // Acceleration part of the differential vector
98 double *a(double x[3], double v[3]){
99 double r, θ, z, p, l_z, p_z;

E.1. C code 76

100 r = x[0];θ
101 = x[1];
102 z = x[2];
103 p = v[0];
104 l_z = v[1];
105 p_z = v[2];
106 double Rc = R*cosθ();
107 buffer[0] = pow(l_z,2)/pow(r,3)-V_r(r, Rc , z, R), buffer[1]=-θV_(r,r

*Rc, r*R*sinθ(), z, R), buffer[2]= -V_z(r, r*Rc, z, R);
108 return buffer;
109 }
110

111 // Velocity part of the differential vector
112 double *b(double x[3], double v[3]){
113 double r, θ, z, p, l_z, p_z;
114 r = x[0];θ
115 = x[1];
116 z = x[2];
117 p = v[0];
118 l_z = v[1];
119 p_z = v[2];
120 //double *vecb = malloc(sizeof(double)*3);
121 buffer[0] = p, buffer[1]=l_z/pow(r,2)ω-_J, buffer[2] = p_z;
122 return buffer;
123 }
124

125 void Yoshida(double wn[][6], int i){ // i is the
iterative

126 double x[3] = {wn[i][0], wn[i][1], wn[i][2]};
127 double v[3] = {wn[i][3], wn[i][4], wn[i][5]};
128 //dt = dt*year;

// convert dt to seconds
129

130 mat_add(x, mul_c(c1*dt, b(x,v), 3), 3);
131 mat_add(v, mul_c(d1*dt/2, a(x,v), 3), 3);
132 mat_add(x, mul_c(c2*dt, b(x,v), 3), 3);
133 mat_add(v, mul_c(d2*dt/2, a(x,v), 3), 3);
134 mat_add(x, mul_c(c2*dt, b(x,v), 3), 3);
135 mat_add(v, mul_c(d1*dt/2, a(x,v), 3), 3);
136 mat_add(x, mul_c(c1*dt, b(x,v), 3), 3);
137

138

139 wn[i+1][0] = x[0];
140 wn[i+1][1] = x[1];
141 wn[i+1][2] = x[2];
142 wn[i+1][3] = v[0];
143 wn[i+1][4] = v[1];
144 wn[i+1][5] = v[2];
145 }
146

147 size_t j;
148 for(j=0; j<N; j++){
149 Yoshida(wn, j);
150

151 }
152 }
153

154 if(strcmp(method,"Improved_Yoshida")==0){
155

156

157 __attribute__((always_inline)) void f(double x[6], double y[6], double h){
158

159 double r = x[0];
160 double θ = x[1];
161 double z = x[2];
162 double p = x[3];
163 double l_zdivr = x[4]/r; // l_z/r to improve

speed
164 double Rc = R*cosθ();
165 double B1 = B_1(r, r*Rc, z, R);
166 double B2 = B_2(r, r*Rc, z, R);

E.1. C code 77

167

168

169 y[0] += h*p;
170 y[1] += h*(l_zdivr/rω-_J);
171 y[2] += h*x[5], y[3] += h*(l_zdivr*l_zdivr/r-V2_r(r, Rc, B1, B2));
172 y[4] +=-h*θV2_(r*R*sinθ(), B1, B2);
173 y[5] += -h*V2_z(z, B1, B2);
174

175 }
176

177 double h1 = d1*dt;
178 double h2 = d2*dt;
179

180 __attribute__((always_inline)) void A2(double h, double r_norm[6], double
p_norm[6]){

// h is some 'step size', depending on dt and Yoshida constants
181 f(p_norm, r_norm, h);
182 f(r_norm, p_norm, 2*h);
183 f(p_norm, r_norm, h);
184 }
185

186

187 // Bit slower, but fourth order!
188 for(int i=0; i<N; i++){
189 double r_norm[6] = {wn[i][0], wn[i][1], wn[i][2], wn[i][3], wn[i][4],

wn[i][5]}; // vector containing (r, p~)
190 double p_norm[6];
191 //

vector

containing

(
r
~,

p
)

192 memcpy(p_norm, r_norm, sizeof(double)*6);

// Initially, the vectors equal
193 //

convert

dt

to

seconds

194 A2(h1, r_norm, p_norm);
195 A2(h2, r_norm, p_norm);
196 A2(h1, r_norm, p_norm);
197

198 for(int j=0; j<6; j++){
199 wn[i+1][j] = (r_norm[j]+p_norm[j])/2.0;
200 }
201 }
202

203 }
204 }
205

206 __declspec(dllexport) void migration_orbits_c(double wn[][6], double init_R, double tau,
size_t N, double dt){

207

208 double R = init_R;
209 double ω_J;

// Jupiters angular velocity (rad/s)

E.1. C code 78

210 double t = dt/2;
// The time will be evaluated at the mean time of an iteration

211

212 __attribute__((always_inline)) void f(double x[6], double y[6], double h){
213

214

215 double r = x[0];
216 double θ = x[1];
217 double z = x[2];
218 double p = x[3];
219 double l_zdivr = x[4]/r; // l_z/r to improve

speed
220 double Rc = R*cosθ(); // Speed improvement
221 double B1 = B_1(r, r*Rc, z, R);
222 double B2 = B_2(r, r*Rc, z, R);
223

224

225 y[0] += h*p;
226 y[1] += h*(l_zdivr/rω-_J);
227 y[2] += h*x[5], y[3] += h*(l_zdivr*l_zdivr/r-V2_r(r, Rc, B1, B2));
228 y[4] +=-h*θV2_(r*R*sinθ(), B1, B2);
229 y[5] += -h*V2_z(z, B1, B2);
230

231 }
232

233 register double h1 = d1*dt*year;
234 register double h2 = d2*dt*year;
235

236 __attribute__((always_inline)) void A2(double h, double r_norm[6], double p_norm[6]){
// h is some 'step size', depending on dt and

Yoshida constants
237 f(p_norm, r_norm, h);
238 f(r_norm, p_norm, 2*h);
239 f(p_norm, r_norm, h);
240 }
241

242 //double εj = 0.04839266;
// Jupiters eccentricity. Uncomments when considering it

243

244 //double νj = 0;
// Initial value of Jupiters True Anomly. Uncomment when

consideren Jupiters eccentricity
245

246 // Bit slower, but fourth order!
247 for(int i=0; i<N; i++){
248 double r_norm[6] = {wn[i][0], wn[i][1], wn[i][2], wn[i][3], wn[i][4],

wn[i][5]}; // vector containing (r, p~)
249 double p_norm[6];
250 memcpy(p_norm, r_norm, sizeof(double)*6);

// Initially, the vectors equal
251

252

253

254 // For all different descriptions of the migration rate, it is important to
uncomment exactly one.

255 //if(R<init_R+AU){

// Used for a constant migration
256 // R+=AU*3*0.0001*dt;
257 //}
258

259 R = (init_R + (1- exp(-t/tau))*1*AU); // Standard migration
discription considerd. When considering the eccentricity, replace
R by double a ω

260 _J = sqrt(Gm_S/(R*R*R)); // Jupiters
angulat velocity. Comment when considering eccentricity

261

262 //R = init_R + exp(-tau/t)*AU; // Alternative migration
descriprion (smoother start)

263

E.1. C code 79

264

265

266

267

268 //Migration code//
269 //R = aε*(1-jε*j)ε/(1+j*cosν(j));ω
270 //_J = sqrt(Gm_Sε*(1+j*cosν(j))/(R*R*R));
271 //R = R*(1-mu);
272

273 // Midpoint Yoshida integration step
274 A2(h1, r_norm, p_norm);
275 A2(h2, r_norm, p_norm);
276 A2(h1, r_norm, p_norm);ν
277

278

279 //j += ω_J*dt*year; //
Update Jupiters true anomaly. Uncomment when considering Jupiters
eccentricity

280

281 for(int j=0; j<6; j++){
282 wn[i+1][j] = (r_norm[j]+p_norm[j])/2.0; // Write new values

to result matrix
283 }
284 t+=dt;

// Update time
285 }
286

287

288 }
289

290

291

292

293

294 // The following code could be uncommented and used for the alternative Trojan conversion
295 /*
296 __declspec(dllexport) void J2000(double wn[6], double dt, double epoch){
297 double t=0;
298 double t_end = epoch - 2354767.4;
299 dt = dt*year;

// convert dt to seconds
300

301 wn[4]=-wn[4], wn[5]=-wn[5], wn[3]=-wn[3]; // Time
reversing, thus flipping velocity

302

303

304 // Potential
305 double V(double r, double θ, double z, double R){
306 return -G*(m_S/sqrt(pow(r,2)+pow(z,2)));
307 }
308

309 // V derivatives:
310 double V_r(double r,double θ, double z, double R){
311 return G*(m_S*(r)/pow(pow(r,2)+pow(z,2),3.0/2.0));
312 }
313

314 double θV_(double r, double θ, double z, double R){
315 return 0;
316 }
317

318

319 double V_z(double r, double θ, double z, double R){
320 return G*(m_S*z/pow(pow(r,2)+pow(z,2),3.0/2.0));
321 }
322

323 double buffer[6]; //Max
length of matrixes used

324

325

326 double R = 5.20336301*AU;
327 double ω_J = sqrt(G*m_S/pow(R,3));

E.1. C code 80

328

329

330 // Acceleration part of the differential vector
331 double *a(double x[3], double v[3]){
332 double r, θ, z, p, l_z, p_z;
333 r = x[0];θ
334 = x[1];
335 z = x[2];
336 p = v[0];
337 l_z = v[1];
338 p_z = v[2];
339 //double *veca = malloc(sizeof(double)*3);
340 buffer[0] = pow(l_z,2)/pow(r,3)-V_r(r, θ, z, R), buffer[1]=0, buffer[2]= -V_z

(r, θ, z, R);
341 return buffer;
342 }
343

344 // Velocity part of the differential vector
345 double *b(double x[3], double v[3]){
346 double r, θ, z, p, l_z, p_z;
347 r = x[0];θ
348 = x[1];
349 z = x[2];
350 p = v[0];
351 l_z = v[1];
352 p_z = v[2];
353 buffer[0] = p, buffer[1]=l_z/pow(r,2), buffer[2] = p_z;
354 return buffer;
355 }
356 double *f(double x[6]){
357 double r, θ, z, p, l_z, p_z; // executed

nine times per timestep
358 double ω_J = sqrt(G*m/pow(R,3));
359 r = x[0];θ
360 = x[1];
361 z = x[2];
362 p = x[3];
363 l_z = x[4];
364 p_z = x[5];
365

366 buffer[0] = p, buffer[1]=l_z/pow(r,2)ω-_J, buffer[2] = p_z, buffer[3] = pow(
l_z,2)/pow(r,3)-V_r(r, θ, z, R), buffer[4]=-θV_(r, θ, z, R), buffer[5]= -
V_z(r, θ, z, R);

367 return buffer;
368 }
369

370 void midY(double wn[6], double dt){ // i is the
iterative, midpoint Yoshida improved method

371 double r_norm[6] = {wn[0], wn[1], wn[2], wn[3], wn[4], wn[5]};
// vector containing (r, p~)

372 double p_norm[6];
// vector containing (r~, p)

373 memcpy(p_norm, r_norm, sizeof(double)*6);
// Initially, the vectors equal

374

375 void A2(double vecpold[6], double vecrold[6], double h){
// h is

some 'step size', depending on dt and Yoshida constants
376 mul_c(h, f(p_norm));
377 mat_add(r_norm, buffer);
378 mul_c(2*h, f(r_norm));
379 mat_add(p_norm, buffer);
380 mul_c(h, f(p_norm));
381 mat_add(r_norm, buffer);
382

383 }
384

385

386 A2(r_norm, p_norm, 2*d1*dt*year);
387 A2(r_norm, p_norm, 2*d2*dt*year);
388 A2(r_norm, p_norm, 2*d1*dt*year);

E.2. Python functions 81

389

390 for(int j=0; j<6; j++){
391 wn[j] = (r_norm[j]+p_norm[j])/2.0;
392 }
393 }
394

395 while(t<t_end){
396 midY(wn, dt);
397 t += dt;
398

399 }
400 wn[3] = -wn[3];
401 wn[4] = -wn[4];
402 wn[5] = -wn[5];
403 }*/

E.2. Python functions
Below is the code for all useful python functions. The location of the files should be changed to the

directories of the operating computer. The code for the equipotential plots is an edited version of the

code from [23].

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from numpy import sqrt, cos, sin, pi, matmul, cbrt
4 import time
5 from ctypes import c_double, c_int, CDLL, pointer, POINTER, c_size_t, windll, c_char_p
6 import ctypes
7 import math, os
8 import pickle
9 from Jupiter_physical_constants import * # All constants are in one file for easy acces
10 import csv
11 import bz2
12 from copy import deepcopy
13

14 # Imporing the ctools library
15 dirpath = os.path.dirname(__file__) # directory

path
16 ctools = np.ctypeslib.load_library("Trojan_ctools.dll", dirpath) # import c

library
17 doublep = POINTER(c_double) # Pointer

type for double arrays
18 ctools.calc_orbits_c.argtypes = [doublep, c_double, c_size_t, c_double, c_char_p]

C function Paramter types
19 ctools.calc_orbits_c.restype = None # Void func

has no return value
20 ctools.migration_orbits_c.argtypes = [doublep, c_double, c_double, c_size_t, c_double]

C function Paramter types
21 ctools.migration_orbits_c.restype = None
22

23 # Needed for alternative Trojan conversion
24 #ctools.J2000.argtypes = [doublep, c_double, c_double] # C function

Paramter types
25 #ctools.J2000.restype = None # Void func has no

return value
26

27

28 # Constants for Yoshida integrator
29 d1 = 1/(2-np.cbrt(2)) # d1 = d3
30 d2 = -np.cbrt(2)/(2-np.cbrt(2)) # d2
31 c1 = 1/(4-np.cbrt(16)) # c1 = c4
32 c2 = (1-np.cbrt(2))/(4-np.cbrt(16)) # c2 = c3
33

34

35 # After the orbits are calculated, they can be put into a class
36 class orbits:
37

38 def __init__(self, cilindrical, t, dt, method='MYI'):
39 t1 = time.time()
40 self.r = cilindrical[0]
41 selfθ. = cilindrical[1]

E.2. Python functions 82

42 self.z = cilindrical[2]
43 self.p = cilindrical[3]
44 self.l_z = cilindrical[4]
45 self.p_z = cilindrical[5]
46 self.t = t
47 self.dt = dt
48 self.method = method
49

50 def save(self, name=None, dirname = ''): # save as Python object
51 if name == None:
52 name = dirname+str(self.w0).replace(',',"_")+str(self.N)+'_'+str(self.dt)+'.obj'
53 else:
54 name = dirname+name+'.obj'
55 file = open(name, 'wb')
56 pickle.dump(self, file)
57 file.close()
58

59 @property
60 def w0(self):
61 return [self.r[0],selfθ.[0], self.z[0],self.p[0],self.l_z[0],self.p[0]]
62

63 @property
64 def N(self):
65 return len(self.r)-1
66

67 # Merging two consecuetive simulations of a Trojan
68 def __add__(self, other):
69 return orbits(np.array([np.append(self.r, other.r),np.append(selfθ., otherθ.),np.

append(self.z, other.z),np.append(self.p, other.p),np.append(self.l_z, other.l_z)
,np.append(self.p_z, other.p_z)]), np.append(self.t, other.t) ,self.dt, self.
method)

70

71 # Returns the final Trojan position
72 @property
73 def position(self):
74 return [self.r[-1],selfθ.[-1], self.z[-1],self.p[-1],self.l_z[-1],self.p[-1]]
75

76 # Function for quickly plotting quantities. For the best axis labels, it is adviced to
create the plots manually

77 def plot(self, quantity, relative=False, show=True, save=False, mean=False, name=None,
dirname=''):

78

79 # Orbit in the regular cartesian x,y-plane
80 if quantity == 'carthesian':
81 r = self.rθ
82 = selfθ.
83

84 # Coordinates transform to carthesian coordinates
85 x = r*cosθ()
86 y = r*sinθ()
87 plt.plot(x, y)
88 plt.xlabel('x (m)')
89 plt.ylabel('y (m)')
90 if not save:
91 plt.title('Orbit of a Trojan')
92

93 # In astronomical units
94 elif quantity == 'equipotential':
95 r = self.rθ
96 = selfθ.
97

98 # Coordinates transform to carthesian coordinates
99 x = r*cosθ()/AU
100 y = r*sinθ()/AU
101 make_plot(m_J/(m_J+m_S), 2)
102 plt.plot(x, y, color= 'yellow', linewidth=.5)
103

104 # Other quantities over time
105 else:
106 vec = getattr(self,quantity)
107

E.2. Python functions 83

108 # Relative change
109 if relative:
110 rel = (vec[1:]-vec[:-1])/vec[:-1]
111 plt.plot(self.t[1:], rel)
112 plt.xlabel('t (y)')
113 plt.ylabel('Relative change of $'+quantity+ '$')
114 if mean:
115 mean_arr = [np.mean(rel[:i+1]) for i in range(len(self.t)-1)]
116 plt.plot(self.t[1:], mean_arr, color='yellow', label='mean')
117 plt.legend()
118 if not save:
119 plt.title('Relative change of' + names[quantity] + ' of a Trojan over

time')
120

121 # Values
122 else:
123 plt.plot(self.t*self.dt, vec)
124 plt.xlabel('t (y)')
125 plt.ylabel('$'+quantity+ '$ (' + units[quantity] +')')
126 if mean:
127 mean_arr = [np.mean(vec[:i+1]) for i in range(len(self.t)-1)]
128 plt.plot(self.t[1:], mean_arr, color='yellow', label='mean')
129 plt.legend()
130 if not save:
131 plt.title(names[quantity] + ' of a Trojan over time')
132

133 if save:
134 if relative:
135 name = dirname+'_'+quantity+ '_rel_'+ str(self.w0).replace(',',"_")+str(self.

N)+'_'+str(self.dt)+'.pdf'
136 else:
137 name = dirname+'_'+quantity+ '_'+ str(self.w0).replace(',',"_")+str(self.N)+'

_'+str(self.dt)+'.pdf'
138 plt.savefig(name, format='pdf')
139

140 if show:
141 plt.show()
142

143 # Richardson error estimation. Works best when N is even
144 def error(self):
145 return [(getattr(calc_orbits(self.w0, int(self.N/2), 2*self.dt, b'Improved_Yoshida'),

var)[-1]-getattr(self,var)[-1])/15 for var in ('r', 'θ', 'z')]
146

147 @property
148 def Lpoint(self):
149 if not self.stable:
150 return 'False'
151 # Changed to half the running time to allow Horse Shoe orbits to become stable after

a migration
152 if max(selfθ.[int(len(self.t)/2):-1])-min(selfθ.[int(len(self.t)/2):-1])>pi:
153 return 'None'
154 if 0<selfθ.[-1]<pi:
155 return 'L4'
156 elif -pi<selfθ.[-1]<0:
157 return 'L5'
158 # Back up for when none of the creteria is met
159 else:
160 return 'error'
161

162 @property
163 def stable(self):
164 # Once unstable in a run, it is assumed a Trojan always remains unstable
165 if lenθ([for θ in selfθ. if absθ()>2*pi])>0:
166 return False
167 else:
168 return True
169

170 # Richardson error estimation
171 def mig_error(self):
172 return [(getattr(migration_orbits(self.w0, r_Lgr, .5/10**4*AU, int(self.N/2), 2*self.

dt),var)[-1]-getattr(self,var)[-1])/15 for var in ('r', 'θ', 'z')]

E.2. Python functions 84

173

174 def Incl(self, i): # Inclination
175 r, θ, z, p, l_z, p_z = self.r[i], selfθ.[i], self.z[i], self.p[i], self.l_z[i], self.

p_z[i]
176 return math.atan(sqrt(((r*p_z-z*p)/l_z)**2+(z/r)**2))
177

178 # Hamiltonian
179 @property
180 def H(self):
181 r, θ, z, p, l_z, p_z = self.r, selfθ., self.z, self.p, self.l_z, self.p_z
182 return (p**2+p_z**2)/2+l_z**2/2/r**2+V(rθ,, z)-l_zω*_J
183

184

185 # draw lines of equipotentials for a rotating binary system.
186 #
187 # The techniques here come from "Astrophysics with a PC: An
188 # Introduction to Computational Astrophysics" by Paul Hellings
189 # The code is copied from the above sources and adjusted to the needs of this project
190

191 class Equipotentials(object):
192 def __init__(self, mu, N):
193 self.mu = mu
194 self.N = N
195

196 self.xmin = -1.3
197 self.xmax = 1.3
198 self.ymin = -1.3
199 self.ymax = 1.3
200

201 self.EPS = 1.e-12
202 self.NITER = 100
203

204 self.x = np.linspace(self.xmin, self.xmax, self.N, dtype=np.float64)
205 self.y = np.linspace(self.ymin, self.ymax, self.N, dtype=np.float64)
206

207 self.X, self.Y = np.meshgrid(self.x, self.y)
208

209 # this is the dimensionless potential, in the z=0 plane
210 self.V = self.Vf(self.X, self.Y)
211

212 def get_L1(self):
213 # find L1
214 x0 = 0.0
215

216 x_L1 = self._solve(-1.0, 1.0, x0)
217 y_L1 = 0.0
218 V_L1 = self.Vf(x_L1, y_L1)
219

220 return x_L1, y_L1, V_L1
221

222 def get_L2(self):
223 # find L2
224 x0 = -1.0
225

226 x_L2 = self._solve(-1.0, -1.0, x0)
227 y_L2 = 0.0
228 V_L2 = self.Vf(x_L2, y_L2)
229

230 return x_L2, y_L2, V_L2
231

232 def get_L3(self):
233 # find L3
234 x0 = 1.0
235

236 x_L3 = self._solve(1.0, 1.0, x0)
237 y_L3 = 0.0
238 V_L3 = self.Vf(x_L3, y_L3)
239

240 return x_L3, y_L3, V_L3
241

242 def get_L4(self):

E.2. Python functions 85

243 # L4
244 x_L4 = self.mu - 0.5
245 y_L4 = math.sin(math.pi/3.0)
246

247 return x_L4, y_L4
248

249 def get_L5(self):
250 # L5
251 x_L5 = self.mu - 0.5
252 y_L5 = -math.sin(math.pi/3.0)
253

254 return x_L5, y_L5
255

256 def _solve(self, a, b, x0):
257

258 for n in range(self.NITER):
259 dVX = self.dVXdx(a, b, x0)
260 d2VX = self.d2VXdx2(a, b, x0)
261

262 x1 = x0 - dVX/d2VX
263 err = abs(x1 - x0)/abs(x0 + self.EPS)
264

265 if err < self.EPS:
266 break
267 x0 = x1
268

269 return x0
270

271 def Vf(self, x, y):
272 V = (1.0 - self.mu) / np.sqrt((x - self.mu)**2 + y**2) + \
273 self.mu/np.sqrt((x + 1.0 - self.mu)**2 + y**2) + \
274 0.5 * (x**2 + y**2)
275 return V
276

277 def dVXdx(self, h1, h2, x):
278 # this is the first derivative of V(x, y = 0) -- this is used
279 # to find L1, L2, and L3 (all of which lie on y = 0).
280 #
281 # Here, h1 and h2 are sign parameters:
282 #
283 # h1 = sign(x - mu)
284 # h2 = sign(x + 1 - mu)
285 #
286 # these appear in the denominator of V when we set y = 0,
287 # and take the sqrt([...]^2) as an absolute value
288

289 dVX = -h1*(1.0 - self.mu)/(x - self.mu)**2 - \
290 h2*self.mu/(x + 1.0 - self.mu)**2 + x
291 return dVX
292

293 def d2VXdx2(self, h1, h2, x):
294 # this is the second derivative of V(x, y = 0) -- this is used
295 # to find L1, L2, and L3 (all of which lie on y = 0).
296

297 d2VX = 2.0*h1*(1.0 - self.mu)/(x - self.mu)**3 + \
298 2.0*h2*self.mu/(x + 1.0 - self.mu)**3 + 1.0
299 return d2VX
300

301 # Creates a trojan object from inital values and can calculate an initial value
302 class Trojan:
303 def __init__(self, a, ε, I, ω, Ω, M, epoch, set_dt):
304 a, ε, I, ω, Ω, M, epoch = float(a)*AU, floatε(), float(I)/180*pi, floatω()/180*pi,

floatΩ()/180*pi, float(M)/180*pi, float(epoch)
305

306 # Trojan Kepler elements (saved to object)
307 self.a = a # Semi-major axis

(m)
308 selfε. = ε # Eccentricity
309 self.I = I # Inclination (

rad)

E.2. Python functions 86

310 selfω. = ω # Argument of
perihelion (rad)

311 selfΩ. = Ω # Ascending node
(rad)

312

313 self.M = M # mean anomaly (
rad)ν

314 = M + εε(2*-**3/4)*sin(M)ε+5/4***2*sin(2*M) ε+13***3/12*sin(3*M) # True anomaly (
rad) (Fourier series estimation)

315 selfν. = ν
316 self.epoch = epoch # Epoch
317

318 self.r = aε*(1-**2)ε/(1+*cosν())*matmul(Kepler_rot_mat(self.I, selfω., selfΩ.),[cos
ν(), sinν(), 0]) # distance to sun (m)

319 self.v = sqrt(G*(m_S)/(a*sqrtε(1-**2)))*matmul(Kepler_rot_mat(self.I, selfω., selfΩ.)
,[-sinν(), cosν() + ε,0]) # absolute velocity (m/s)

320 w0 = np.array([*self.r, *self.v], dtype=c_double)
Temporarily

in carthesian units
321 del a, ε, I, ω, Ω, M, ν
322

323 # Relevant Kepler elements for Jupiter
324 Ij = 1.30530 #

Inclination (deg)Ω
325 j = 100.55615 #

Argument of perihelion (deg)ω
326 j = Ω14.75385-j #

Ascending node (deg)
327

328 Mj = ω34.40438-jΩ-j #
Mean anomaly at J2000 (deg)

329

330 Mj = Mj + 0.08290676319200468*(epoch - 2451545.0) #
Using Jupiters mean motion to estimate the mean anomaly at the Trojan epoch

331

332 # Convert to radiansε
333 j = 0.04839266
334 Ij = Ij/180*piΩ
335 j = Ωj/180*pi #

Argument of perihelion (rad)ω
336 j = ωj/180*pi
337 Mj = Mj/180*piν
338 j = Mj + ε(2*jε-j**3/4)*sin(Mj)ε+5*j**2/4*sin(2*Mj) ε+13*j**3/12*sin(3*Mj)
339

340 # Matrix to transform Jupiters orbit to the polar plane
341 M3 = np.array([[cosΩ(j), sinΩ(j),0],[-sinΩ(j),cosΩ(j),0],[0,0,1]])
342 M2 = np.array([[1,0,0],[0, cos(Ij), sin(Ij)],[0, -sin(Ij), cos(Ij)]])
343 M1 = np.array([[cosω(j), sinω(j),0],[-sinω(j), cosω(j), 0],[0, 0, 1]])
344 R_inverse = np.matmul(np.matmul(M1,M2),M3)
345

346 # Transfering the Trojan with Jupiter
347 w0 = [*matmul(R_inverse, w0[:3]), *matmul(R_inverse, w0[3:])] #

Temporarily in Cartesian coordinates
348 A = np.array([[cosν(j),sinν(j),0],[-sinν(j), cosν(j), 0],[0,0,1]])
349 w0 = [*matmul(A, w0[:3]), *matmul(A, w0[3:])]
350 w0[0] = w0[0]-m_J/m_S*R #

Defining r with respect to the centre of mass
351

352

353 # Transfering w0 to cylindrical coordinates
354 r = sqrt(w0[0]**2+w0[1]**2)
355 z= w0[2]θ
356 = np.arctan2(w0[1],w0[0])
357 p = w0[3]*cosθ()+w0[4]*sinθ()
358 l_z = -w0[3]*r*sinθ()+w0[4]*r*cosθ()
359 p_z = w0[5]
360 self.w0 = [r, θ, z, p, l_z, p_z] # Now

in cylindrical coordinates
361

362 # Plotting the position in the horizontal plane
363 def plot(self, color='r', save=False, show = False, name=None, dirname=''):

E.2. Python functions 87

364

365 x = self.w0[0]*cos(self.w0[1])
366 y = self.w0[0]*sin(self.w0[1])
367

368 plt.plot(x, y, color, '.', linewidth=1)
369

370 if show:
371 make_plot(m_J/(m_J+m_S))
372 plt.show()
373

374 # Hamiltonian
375 @property
376 def H(self):
377 r, θ, z, p, l_z, p_z = self.w0
378 return (p**2+p_z**2)/2+l_z**2/2/r**2+V(rθ,, z)-l_zω*_J
379

380

381 def Kepler_rot_mat(I, ω, Ω): #
Rotation matrix for Kepler orbits

382 M1 = np.array([[cosΩ(), -sinΩ(),0],[sinΩ(),cosΩ(),0],[0,0,1]])
383 M2 = np.array([[1,0,0],[0, cos(I), -sin(I)],[0, sin(I), cos(I)]])
384 M3 = np.array([[cosω(), -sinω(),0],[sinω(), cosω(), 0],[0, 0, 1]])
385 return np.matmul(np.matmul(M1,M2),M3)
386

387

388 def Incl(r, θ, z, p, l_z, p_z): # Inclination
389 return math.atan(sqrt(((r*p_z-z*p)/l_z)**2+(z/r)**2)) # Faster than numpy
390

391

392 # Load initial data from sheet
393 def load_Trojan_values(sheet, set_dt, filetype='obj'):
394 if filetype == 'obj':
395 file = open(sheet + '.obj', 'rb')
396 Trojans = pickle.load(file)
397 file.close()
398

399 else:
400 file=open(sheet+'.csv', "r")
401 reader=(list(csv.reader(file))[1:])
402 Trojans = list(map(lambda x: Trojan(*x, set_dt), reader))
403 file.close()
404

405 name = sheet + '1.obj'
406 file = open(name, 'wb')
407 pickle.dump(Trojans, file)
408 file.close()
409 file = open(name, 'rb')
410 Trojans = pickle.load(file)
411 file.close()
412

413 return Trojans
414

415

416 def make_plot(mu, maxscale=1):
417

418 R=r_Lgr/AU
419 eq = Equipotentials(mu, 1024)
420

421 plt.imshow(np.log10(eq.V), origin="lower", cmap="Accent",
422 extent=[eq.xmin*R*maxscale, eq.xmax*R*maxscale, eq.ymin*R*maxscale, eq.ymax*R*

maxscale])
423

424 # draw contours -- these values seem reasonable for a range of mu's
425 Vmin = 1.5
426 Vmax = 1000.0 # np.max(V)
427 nC = 25
428

429 C = np.logspace(math.log10(Vmin), math.log10(Vmax), nC)
430

431 plt.contour(-eq.x*R, eq.y*R, eq.V, C, colors="b")
432

E.2. Python functions 88

433 x_L1, y_L1, V_L1 = eq.get_L1()
434 x_L2, y_L2, V_L2 = eq.get_L2()
435 x_L3, y_L3, V_L3 = eq.get_L3()
436

437 # special contours right through the lagrange points
438 plt.contour(eq.x*R, eq.y*R, eq.V, [V_L1], colors="b")
439 plt.contour(eq.x*R, eq.y*R, eq.V, [V_L2], colors="b")
440 plt.contour(eq.x*R, eq.y*R, eq.V, [V_L3], colors="b")
441

442 # mark the Lagrange points and write the names
443 xeps = 0.025
444 # changed some distances to have it in the regular plane
445 plt.scatter([-x_L1*R], [-y_L1*R], marker="x", color="r", s=50)
446 plt.text(-x_L1*R+xeps*R, -y_L1*R+xeps*R, "L1", color="r")
447

448 plt.scatter([-x_L2*R], [-y_L2*R], marker="x", color="r", s=50)
449 plt.text(-x_L2*R+xeps*R, -y_L2*R+xeps*R, "L2", color="r")
450

451 plt.scatter([-x_L3*R], [-y_L3*R], marker="x", color="r", s=50)
452 plt.text(-x_L3*R+xeps*R, -y_L3*R+xeps*R, "L3", color="r")
453

454 x_L4, y_L4 = eq.get_L4()
455 plt.scatter([-x_L4*R], [y_L4*R], marker="x", color="r", s=50)
456 plt.text(-x_L4*R+xeps*R, y_L4*R+xeps*R, "L4", color="r")
457

458 x_L5, y_L5 = eq.get_L5()
459 plt.scatter([-x_L5*R], [y_L5*R], marker="x", color="r", s=50)
460 plt.text(-x_L5*R+xeps*R, y_L5*R+xeps*R, "L5", color="r")
461

462 plt.axis([eq.xmin*R, eq.xmax*R, eq.ymin*R, eq.ymax*R])
463

464 #plt.title(r"Equipotentials, $\mu = M_2/(M_1 + M_2) = {:5.3f}$".format(mu), fontsize=12)
465

466 plt.xlabel("x (AU)")
467 plt.ylabel("y (AU)")
468

469 f = plt.gcf()
470 f.set_size_inches(10.8, 10.8)
471

472 plt.tight_layout()
473

474 def load_orbits(file, dirname = ''): # Load orbit data python object
475 file = open(dirname+file, 'rb')
476 temp = pickle.load(file)
477 file.close()
478 return temp
479

480 ### Functions to easily call the C functions ###
481 # Regular orbit calculation
482 def calc_orbits(w0, R, N, dt, method=b'Improved_Yoshida'):
483 w0 = np.array(w0, dtype=c_double) # Inital values
484 wn = (np.zeros((N+1,6), dtype=c_double)) # dtype needs to be defined for C
485 wn[0] = w0 # Plugging in the initial value
486 wn_c = wn.ctypes.data_as(doublep)
487 ctools.calc_orbits_c(wn_c, R, N, dt, method) # The pointer needs to be

passed trough the C function. Also the size is needed.
488 return orbits(wn.T, np.arange(N+1), dt=dt, method=str(method))
489

490 # Orbits with migrating Jupiter
491 def migration_orbits(w0, init_R, tau, N, dt):
492 w0 = np.array(w0, dtype=c_double) # Inital values
493 wn = (np.zeros((N+1, 6), dtype=c_double)) # dtype needs to be defined for C
494 wn[0] = w0 # Plugging in the initial value
495 wn_c = wn.ctypes.data_as(doublep)
496 ctools.migration_orbits_c(wn_c, init_R, tau, N, dt) # The pointer needs

to be passed trough the C function. Also the size is needed.
497 return orbits(wn.T, np.arange(N+1), dt=dt, method='migration')
498

499 ### ###
500

501 # Solving the cubic equation

E.2. Python functions 89

502 def Cardano(a,b,c,d):
503 R = complex((9*a*b*c-27*a**2*d-2*b**3)/(54*a**3))
504 Q = complex((3*a*c-b**2)/(9*a**2))
505 def ccbrt(a):
506 import cmath
507 r, phi = cmath.polar(a)
508 return cbrt(r)*cmath.exp(phi/3*1j), cbrt(r)*cmath.exp((phi+2*pi)/3*1j), cbrt(r)*cmath

.exp((phi+4*pi)/3*1j)
509

510

511 Sall = ccbrt(R+sqrt(Q**3+R**2))
512 Tall = ccbrt(R-sqrt(Q**3+R**2))
513

514 ls = []
515 for S in Sall:
516 for T in Tall:
517 if abs((S * T) + Q) < abs(Q)*10e-6:
518 ls += [S+T - b/(3*a)]
519 return ls
520

521 # Characteristic equation for the Jacobian
522 def solve_char_equation(r, θ, z, p, l_z, p_z):
523 Vrr = V_rr(rθ,,z)θ
524 Vr = θV_r(rθ,,z)
525 Vrz = V_rz(rθ,,z)
526 Vzz = V_zz(r, θ, z)θ
527 Vz = θV_z(rθ,,z)θθ
528 V = θθV_(rθ,,z)
529

530 a=r**2
531 b=r**2*Vrr+r**2*Vzz+θθV+3*l_z**2/r**2
532 c = θθV*(Vzz+Vrr-l_z**2/r**4)+Vzz*(r**2*Vrr+3*l_z**2/r**2)-r**2*(Vrz)**2-θVz**2-θVr**2
533 d = Vrr*(Vzz*θθV-θVz**2)-θθV*(Vrz**2+l_z**2/r**4*Vzz)-Vzz*θVr**2+l_z**2/r**4*θVz**2+2*Vrz

*θVz*θVr
534

535 return *sqrt(Cardano(a,b,c,d)), *(-sqrt(Cardano(a,b,c,d)))
536

537

538 # Funtions for the numerical integrators. These are implemented in C for a faster simulation
and therefore commented

539 ##def f(wn):
540 ## return np.append(b(wn), a(wn))
541 ##
542 ### Acceleration part of the differential vector
543 ##def a(wn):
544 ## r, θ, z, p, l_z, p_z = wn[0], wn[1], wn[2], wn[3], wn[4], wn[5]
545 ## return np.array([l_z**2/r**3-V_r(r, θ, z), -θV_(r, θ, z), -V_z(r, θ, z)])
546 ##
547 ### Velocity part of the differential vector
548 ##def b(wn):
549 ## r, θ, z, p, l_z, p_z = wn[0], wn[1], wn[2], wn[3], wn[4], wn[5]
550 ## return np.array([p, (l_z/rω**2-_J), p_z])
551

552 # Potential
553 def V(rθ,, z):
554 m = m_J+m_S
555 return -G*(m_S/sqrt(r**2+z**2+2*m_J/m_S*R*r*cosθ()+(R*m_J/m_S)**2)+m_J/sqrt(r**2+z**2-2*R

*r*cosθ()+R**2))
556

557 # V derivatives. Second order derivatives are only used in the Jacobian and therefore
estimated

558 def V_r(rθ,, z):
559 m = m_J+m_S
560 return G*(m_S*(r+m_J/m_S*R*cosθ())/(r**2+z**2+2*m_J/m*R*r*cosθ()+(R*m_J/m_S)**2)**(3/2)+

m_J*(r-R*cosθ())/(r**2+z**2-2*R*r*cosθ()+R**2)**(3/2))
561

562 def θV_(r, θ, z):
563 m = m_J+m_S
564 return G*((-m_J*R*r*sinθ())/(r**2+z**2+2*m_J/m_S*R*r*cosθ()+(R*m_J/m_S)**2)**(3/2)+m_J*(r

*R*sinθ())/(r**2+z**2-2*R*r*cosθ()+R**2)**(3/2))
565

E.3. Jupiter constants 90

566 def V_z(r, θ, z):
567 m = m_J+m_S
568 return G*z*(m_S/(r**2+z**2+2*m_J/m_S*R*r*cosθ()+(R*m_J/m_S)**2)**(3/2)+m_J/(r**2+z**2-2*R

*r*cosθ()+R**2)**(3/2))
569

570 def V_rr(rθ,, z):
571 dr = r/(10e6)
572 return (V_r(r+dr, θ, z)-V_r(r, θ, z))/dr
573

574 def θV_r(r, θ, z):θ
575 d = θ/1000
576 return (V_r(r, θ+θd, z)-V_r(r, θ, z))/θd
577

578 def V_rz(r, θ, z):
579 dz = r/(10e6)
580 return (V_r(r, θ, z+dz)-V_r(r, θ, z))/dz
581

582 def V_zz(r, θ, z):
583 dz = r/(10e6)
584 return (V_z(r, θ, z+dz)-V_z(r, θ, z))/dz
585

586 def θθV_(r, θ, z):
587 return -3/2*G*((m_J**2/m_S*R**2*r**2*sinθ()**2)/(r**2+z**2+2*m_J/m_S*R*r*cosθ()+(R*m_J/

m_S)**2)**(5/2)+m_J*(r*R*sinθ())**2/(r**2+z**2-2*R*r*cosθ()+R**2)**(5/2))+θV_(r, θ, z
)*cosθ()/sinθ()

588

589 def θV_z(r, θ, z):
590 dz = r/(10e6)
591 return (θV_(r, θ, z+dz)-θV_(r, θ, z))/dz
592

593 # Jacobian matrix
594 def Jacobian(r, θ, z, p, l_z, p_z):
595 return np.array([[0,0,0,1,0,0],[-2*l_z/r**3,0,0,0,1/r**2,0],[0,0,0,0,0,1],[-3*l_z**2/r

4-V_rr(r, θ, z), -θV_r(r, θ, z), -V_rz(r, θ, z),0, 2*l_z/r3,0],[-θV_r(r, θ, z), -
θθV_(r, θ, z), -θV_z(r, θ, z),0,0,0],[-V_rz(r, θ, z), -θV_z(r, θ, z), -V_zz(r, θ, z)
,0,0,0]])

596

597

598 # Richard estimation for the order. Returns 2^{order}, provided dt and N are 'applicable' for
the estimation.

599 # This is assumed to be true if 'order' is almost a whole number.
600 def order(w0, N, dt, method, testvar):
601 if method == 'migration':
602 (getattr(migration_orbits(w0, 2*N, 2*dt, method), testvar)[-1]-getattr(

migration_orbits(w0, N, 4*dt, method), testvar)[-1])/(getattr(migration_orbits(w0
, 4*N,dt, method),testvar)[-1]-getattr(migration_orbits(w0, 2*N, 2*dt, method),
testvar)[-1])

603

604 return (getattr(calc_orbits(w0, 2*N, 2*dt, method), testvar)[-1]-getattr(calc_orbits(w0,
N, 4*dt, method), testvar)[-1])/(getattr(calc_orbits(w0, 4*N,dt, method),testvar)
[-1]-getattr(calc_orbits(w0, 2*N, 2*dt, method),testvar)[-1])

605

606 def randomise_w0(bounds): #inputs are vectors with the bounds. Only the positions
are randomised, initial velocities are zero in the rotating frame

607 r = np.random.uniform(*bounds[0])θ
608 = np.random.uniform(*bounds[1])
609 z = np.random.uniform(*bounds[2])
610 t1 = time.time()
611

612 return np.array([r, θ, z, 0, sqrt(G*m_S/R**3)*r**2, 0])

E.3. Jupiter constants
Below is the code for the constants of Jupiter used in the Python codes (be aware that they are defined

separately in the C code):

1 from numpy import sqrt
2 # Physical constants (source to be added)
3 G = 6.6384e-11 # Gravitational constant
4 m_S = 1.98847e30 # Mass sun (kg)

E.4. Integrator choice 91

5 m_J = 1.89813e27 # Mass Jupiter (kg)
6 AU = 1.496e11 # Astronomical unit (m)
7 r_Lgr = 5.20336301*AU # Lagrange distance, Jupiter distance (m)ω
8 _J = sqrt(G*(m_S+m_J)/r_Lgr**3) # Jupiter angular velocity
9 R=r_Lgr
10

11 #We will work in years to prevent numerical overflows:
12 year = 3600*24*365 # Convert year to seconds
13

14 # Some information directories used for plotting
15 units = {'r': 'm', 'θ': 'rad', 'z': 'm', 'p': 'm/s', 'l_z': 'rad/s', 'p_z': 'm/s', 'H': 'Jkg$

^{-1}$'}
16 names = {'r': 'Radius', 'θ': 'Angle θ', 'z': 'Hight z', 'p': 'Momentum', 'l_z': 'Angular

momentum', 'p_z': 'Momentum z', 'H': 'Hamiltonian'}

E.4. Integrator choice
1 # Important run constants:
2 '''Only put the following True if the C code has been changed or will be changed regularly'''
3 CCompile = False
4

5 import numpy as np
6 import matplotlib.pyplot as plt
7 from numpy import sqrt, cos, sin, pi
8 import time
9 import math
10 from ctypes import POINTER, c_double
11 import ctypes
12 from scipy.spatial.transform import Rotation
13

14 # Compile the C code if needed
15 if CCompile:
16 import os, subprocess
17 dirpath = os.path.dirname(__file__)
18 cmd = ['C:\\Users\\jaspe\\Downloads\\winlibs-x86_64-posix-seh-gcc-12.2.0-llvm-16.0.0-

mingw-w64ucrt-10.0.0-r5\\mingw64\\bin\\gcc', '-shared','-Os', '-s', '-o', dirpath+'\\
Trojan_ctools.dll', dirpath+'\\Trojan_ctools.c']

19 p = subprocess.run(cmd, cwd='C:\\', capture_output=True)
20 print(p)
21

22

23

24 # Modules files
25 from Trojan_pythonfunctions import orbits, V, calc_orbits, order, randomise_w0, load_orbits,

migration_orbits, ctools, Trojan, load_Trojan_values, solve_char_equation, Jacobian
26 from Jupiter_physical_constants import * # All constants are in one file for easy acces
27 doublep = POINTER(c_double)
28

29

30 # Constants numerical method (can be overruled later in the code)
31 dt = 1/300 # Time step (y)
32 N = 100000 # Number of simulations w0 =
33 w0 = np.array([r_Lgr, pi/3, 0, 0, sqrt(G*m_S*r_Lgr), 0]) # r, theta, z, p,

l_z,
34 bounds = [[r_Lgr*0.9, r_Lgr*1.1], [pi/4, pi/2], [-10**6, 10**6]] # bounds for generating

random initial values w0
35 dirname = 'Integrator_comp\\'
36

37 Trojans = load_Trojan_values('Trojan_data_20230514', dt/5, filetype='obj')
38 dirname = 'Trojan_data_dt0.0033333_N100000\\'
39

40 print(Jacobian(R, pi/3, 0, 0, sqrt(G*m_S*R), 0))
41 print(R,sqrt(G*m_S*R), r_Lgr)
42 print('\n\n')
43 print(np.linalg.eig(Jacobian(R, pi/3, 0, 0, sqrt(G*m_S*R), 0))[0])
44 print(max(np.abs(np.linalg.eig(Jacobian(R, pi/3, 0, 0, sqrt(G*m_S*R), 0))[0])))
45 print(solve_char_equation(R, pi/3, 0, 0, sqrt(G*m_S*R), 0))
46

47 t1 = time.time()

E.4. Integrator choice 92

48 nums = [i for i in range(1,5)]
49 Tlist = list(map(lambda i: calc_orbits(Trojans[i].w0, N, dt, b'Improved_Yoshida'), nums))
50 #list(map(lambda T: T.plot(quantity='H', relative=False, save=True, mean=False, dirname=

dirname, show=False), Trojans))
51 #list(map(lambda T: T.plot(quantity='carthesian',save=True, mean=False, dirname=dirname, show

=False), Trojans))
52 #list(map(lambda T: T.plot(quantity='equipotential',save=True, mean=False, dirname=dirname,

show=False), Trojans))
53 print(time.time()-t1)
54

55 for i in range(3):
56 #Torbit[i].check_stable
57 Tlist[i].plot(quantity='H',save=False, mean=False, dirname=dirname)
58 Tlist[i].plot(quantity='carthesian',save=False, mean=False, dirname=dirname)
59 Tlist[i].plot(quantity='equipotential',save=False, mean=False, dirname=dirname)
60

61 '''
62 for i, T in enumerate(Trojans):
63 w1 = T.w0
64 Torbit = calc_orbits(w1, N, dt, b'Improved_Yoshida')
65

66 Torbit.save('Torbit'+str(i), dirname)
67 #Trojanorbit.plot(quantity='H', relative=False, save=False, mean=False, dirname=dirname)
68 #Trojanorbit.plot(quantity='carthesian',save=True, mean=False, dirname=dirname)
69 #Trojanorbit.plot(quantity='equipotential',save=True, mean=False, dirname=dirname)
70 print('done. runtime: ', time.time()-t1)
71 exit()
72 '''
73

74

75

76 ## Testing the two Yoshida integrators for a L5 near Trojan
77 '''
78 N = 100000
79 # Testing the two orders
80 print(order(w0, 100, 1/30, b'Improved_Yoshida', θ''))
81 print(order(w0, 100, 1/30, b'Yoshida', θ''))
82 '''
83 #w1 = np.array([r_Lgr/2, -pi/3, 0, 0, sqrt(G*m_S*r_Lgr/2), 0]) # r, theta, z,

p, l_z,
84 MYIorbit = calc_orbits(w1, N, dt, b'Improved_Yoshida')
85 #print(Migorbit.r[0:2])
86 dirname = 'Trojan_data\\'
87 MYIorbit.plot(quantity='H', relative=False, save=True, mean=False, dirname=dirname)
88 MYIorbit.plot(quantity='carthesian',save=True, mean=False, dirname=dirname)
89 MYIorbit.plot(quantity='equipotential',save=True, mean=False, dirname=dirname)
90 exit
91 #Migorbit.save('Mig_100000_0.333y_nearstable1L4', dirname)
92

93 '''
94 # Saving the data
95 dirname = 'Integrator_comp\\'
96 MYIorbit.save('MYI_100000_0.333y_nearstable', dirname)
97 OYIorbit.save('OYI_100000_0.333y_nearstable', dirname)
98 '''
99 '''
100 # Generating and saving the Hamiltonian_plots
101 MYIorbit.plot(quantity='H', relative=True, save=True, mean=True, dirname=dirname)
102 MYIorbit.plot(quantity='H',save=True, mean=False, dirname=dirname)
103 OYIorbit.plot(quantity='H', relative=True, save=True, mean=True, dirname=dirname)
104 OYIorbit.plot(quantity='H', relative=False, save=True, mean=False, dirname=dirname)
105 '''
106 '''
107 N = 100000
108 MYIorbit = calc_orbits(w0, N, dt, b'Improved_Yoshida')
109 OYIorbit = calc_orbits(w0, N, dt, b'Yoshida')
110

111 # Saving the data
112 dirname = 'Integrator_comp\\'
113 MYIorbit.save('MYI_10000000_nearstable', dirname)
114 OYIorbit.save('OYI_10000000_nearstable', dirname)

E.5. Stability Trojans 93

115

116 #dirname = 'Integrator_comp\\'
117 #MYIorbit=load_orbits('MYI_100000_0.333y_nearstable.obj', dirname = dirname)
118 #OYIorbit=load_orbits('OYI_10000000_nearstable.obj', dirname = dirname)
119

120 #MYIorbit.plot(quantity='l_z',save=False, mean=False, dirname=dirname)
121 #OYIorbit.plot(quantity='H', relative=False, save=True, mean=False, dirname=dirname)
122 #MYIorbit.plot(quantity='carthesian',save=True, mean=False, dirname=dirname)
123 #MYIorbit.plot(quantity='equipotential',save=True, mean=False, dirname=dirname)
124 #OYIorbit.plot(quantity='carthesian',save=True, mean=False, dirname=dirname)
125 #OYIorbit.plot(quantity='equipotential',save=True, mean=False, dirname=dirname)
126 #MYIorbit.plot(quantity='H', relative =True, save=True, mean=False, dirname=dirname)
127 #OYIorbit.plot(quantity='H', relative=True, save=True, mean=False, dirname=dirname)
128 #MYIorbit = calc_orbits(w0, N, dt, b'Improved_Yoshida')
129 #MYIorbit.plot(quantity='equipotential',save=False, mean=False, dirname='')
130 #MYIorbit.plot(quantity='carthesian')
131

132 '''
133 ''''
134 N= 10000
135 for i in range(10):
136 w0 = randomise_w0(bounds)
137 x = calc_orbits(w0, N, dt, b'Improved_Yoshida')
138 x.plot('carthesian')
139 x.plot('equipotential')
140 #x.plot('H', relative=True)
141 '''
142

143

144

145

146 '''
147 dt = 1/30
148 N = int(1e4)
149

150 w1 = np.array([r_Lgr, pi/3, 0, 0, ω_J*r_Lgr**2, 0])
151 t1 = time.time()
152 orbit2 = calc_orbits(w1, N, dt)
153 t2 = time.time()
154 print(t2-t1)
155 print(orbit2.p)
156

157 orbit2.plot(quantity='carthesian')
158 #orbit2.plot(quantity='H')
159 #orbit2.plot(quantity='H', relative=True)
160 #orbit2.plot(quantity='equipotential')
161

162 #t1 = time.time()
163 #orbit2 = calc_orbits(w0, N*10, dt)
164 #print(time.time()-t1)
165 '''
166

167

168 N=1000000
169 dirname = 'randomised_w0\\'
170 for i in range(10):
171 w0 = randomise_w0()
172 print(order(w0, 30, dt, b'Improved_Yoshida', 'θ'))
173 MYIorbit=calc_orbits(w0, N, dt, b'Improved_Yoshida')
174 #OYIorbit=load_orbits('OYI_10000000_nearstable.obj', dirname = dirname)
175

176 MYIorbit.plot(quantity='carthesian',save=False, mean=False, dirname=dirname)
177 MYIorbit.plot(quantity='H',save=False, mean=False, dirname=dirname)
178 MYIorbit.save(('randomised3'+str(i)), dirname)
179 print(MYIorbit.r[0]/R)
180 #OYIorbit.plot(quantity='H', relative=False, save=True, mean=False, dirname=dirname)

E.5. Stability Trojans
The code below shows how the simulations where ran in parallel and how the data analyses are done.

The code could be commented out to use only the parts needed and the graphs etc. could be adjusted

E.5. Stability Trojans 94

to the exact graphs or variables desired. The code makes advantage of the library from appendix E.2.

1 # Important run constants:
2 '''Only put the following True if the C code has been changed or will be changed regularly'''
3 CCompile = False #Tau edited!, exp no none smooth at start!
4

5 import numpy as np
6 import matplotlib.pyplot as plt
7 from numpy import sqrt, cos, sin, pi, arctan2, matmul
8 import time
9 import math
10 from ctypes import POINTER, c_double
11 from multiprocessing.pool import ThreadPool, Pool
12 from threading import Lock
13 from copy import deepcopy
14 import csv
15

16

17 # Compile the C code if needed
18 if CCompile:
19 import os, subprocess
20 dirpath = os.path.dirname(__file__)
21 cmd = ['C:\\Users\\jaspe\\Downloads\\winlibs-x86_64-posix-seh-gcc-12.2.0-llvm-16.0.0-

mingw-w64ucrt-10.0.0-r5\\mingw64\\bin\\gcc','-O3','-shared','-Os', '-s', '-o',
dirpath+'\\Trojan_ctools.dll', dirpath+'\\Trojan_ctools.c']

22 p = subprocess.run(cmd, cwd='C:\\', capture_output=True)
23 print(p)
24

25 # Fast tau file: 'migtau500_300000_3_250x4T1707.txt'
26

27 # Modules files
28 from Trojan_pythonfunctions import orbits, calc_orbits, migration_orbits, Trojan,

load_Trojan_values, make_plot, Kepler_rot_mat, Incl
29 from Jupiter_physical_constants import * # All constants are in one file for easy acces
30

31

32 # Loading Trojan data
33 dt = 1/30
34 Trojans = load_Trojan_values('Trojan_data_20230514', dt/5, filetype='obj')
35 #Trojans2 = deepcopy(Trojans)
36 Trojans3 = deepcopy(Trojans) # Belonging to the primal symmetry
37 #Trojans4 = deepcopy(Trojans)
38

39

40 # Optionally, the other two symmetries could be used as well:
41 #def Tfunc1(T):
42 # T.w0[1] = -T.w0[1]
43 # T.w0[2] = -T.w0[2]
44 # T.w0[3] = -T.w0[3]
45 #list(map(Tfunc,Trojans2))
46 #Trojans = Trojans+Trojans2
47

48 # Using the primal symmetry
49 def Tfunc2(T):
50 T.w0[1] = -T.w0[1]
51 T.w0[3] = -T.w0[3]
52 T.w0[5] = -T.w0[5]
53 list(map(Tfunc,Trojans3))
54 Trojans = Trojans+Trojans3
55

56 # Optionally, the other two symmetries could be used as well:
57 #def Tfunc3(T):
58 # T.w0[2] = -T.w0[2]
59 # T.w0[5] = -T.w0[5]
60 #list(map(Tfunc,Trojans4))
61 #Trojans = Trojans+Trojans4
62

63

64 # Loading data without migration
65 normal = eval(open('enter filename', 'r').read())
66

E.5. Stability Trojans 95

67 # Example fast plots for a near equilibrium particle
68 P = calc_orbits([r_Lgr, pi/3,0,0,sqrt(G*m_S*r_Lgr),0], r_Lgr, 300000, 1/10, b'

Improved_Yoshida')
69 P.plot('equipotential')
70 P = migration_orbits([r_Lgr, pi/3,0,0,sqrt(G*m_S*r_Lgr),0], r_Lgr, 1000, 300000, 1/10, b'

Improved_Yoshida')
71 P.plot('equipotential')
72

73 # Generate random Trojans
74 def ranfunc():
75 Ij = 1.30530 #

Inclination (rad)Ω
76 j = 100.55615 #

Argument of perihelion (rad)ω
77 j = Ω14.75385-j #

Ascending node (rad)
78

79 a = r_Lgr #
Semi-major axis (m)ε

80 = np.random.uniform(0,0.3) #
Eccentricity

81 I = 0.01*180/pi #
Inclination (rad)ν

82

83 = np.random.uniform(90/180*pi,140/180*pi)
84 # Epoch
85

86 r = aε*(1-**2)ε/(1+*cosν())*np.array([cosν(), sinν(), 0]) #
distance to sun (m)

87 v = sqrt(G*(m_S)/(a*sqrtε(1-**2)))*np.array([-sinν(), cosν() + ε,0]) #
absolute velocity (m/s)

88 w0 = np.array([*r, *v], dtype=c_double)
Temporarily

in carthesian units
89 A = np.array([[1,0,0],[0, cos(I), -sin(I)],[0,sin(I),cos(I)]])
90 w0 = [*matmul(A, w0[:3]), *matmul(A, w0[3:])]
91 w0[0] = w0[0]-m_J/m_S*R #

Defining R with respect to the centre of mass
92

93

94 # Transfering w0 to cylindrical coordinates
95 r = sqrt(w0[0]**2+w0[1]**2)
96 z= w0[2]θ
97 = np.arctan2(w0[1],w0[0])
98 p = w0[3]*cosθ()+w0[4]*sinθ()
99 l_z = -w0[3]*r*sinθ()+w0[4]*r*cosθ()
100 p_z = w0[5]
101 return [r, θ, z, p, l_z, p_z]
102

103

104 # Generating random Trojans and saving the data
105 ##wlist = [ranfunc() for i in range(10000)]
106 ##wlist_90_140deg = [ranfunc() for i in range(10000)]
107 ##w2list = deepcopy(wlist_90_140deg)
108 ##file = open('wlist0708_90_140deg', 'w')
109 ##file.write(str(wlist0708_90_140deg))
110 #file.close()
111

112 #list(map(Tfunc2,wlist_90_140deg))
113 #wlistnew =wlist_90_140deg + w2list
114

115 # Some functions to be able to obtain the results when running in parrallel
116 def unstable_func(i):
117 T = calc_orbits(Trojans[i].w0, r_Lgr, 300000, 1/3, b'Improved_Yoshida')
118

119 r, θ, z, p, l_z, p_z = T.position
120

121 return [T.Lpoint, math.atan(sqrt(((r*p_z-z*p)/l_z)**2+(z/r)**2)), i]
122

123

124 def minmax_func(i):

E.5. Stability Trojans 96

125

126 T = calc_orbits(Trojans[i].w0, r_Lgr, 300000, 1/30, b'Improved_Yoshida')
127

128

129 return [min(Tθ.),max(Tθ.),i]
130

131 def minmax_funcr(i):
132

133 T = calc_orbits(Trojans[i].w0, r_Lgr, 30000, 1/3, b'Improved_Yoshida')
134

135

136 return [min(T.r),max(T.r),i]
137

138 def mig_unstable_func(i):
139 T = migration_orbits(Trojans[i].w0, r_Lgr, 1000, 3000000, 1/3)
140 r, θ, z, p, l_z, p_z = T.position
141

142 return [T.Lpoint, math.atan(math.sqrt(((r*p_z-z*p)/l_z)**2+(z/r)**2)), i, T.position]
143

144 # Running in a threadpool to use maximum computational power
145 nums = np.array([i for i in range(len(Trojans))])
146 pool = ThreadPool()#
147 result = pool.map(mig_unstable_func, nums)
148 pool.close()
149 pool.join()
150 file = open('savetofile', 'w')
151 file.write(str(result))
152 file.close()
153 print("TIME")
154 print(time.time()-t1) # Print elapsed time
155

156 # Load migration file
157 migration = eval(open('enterfilename', 'r').read())
158

159

160

161 # If less Trojans are simulated in the migration file, we select the correct Trojan indices
in the normal file, which allways consist of 50220 Trojans

162 def select_normT(normal, migration):
163 l = int(len(migration)/4)
164 indices = []
165 for j in range(4):
166 indices += [i for i in range(j*12555,l+j*12555)]
167 return np.array([normal[i] for i in indices])
168

169

170 # Easily establishing the result:
171 def result_num_mat(normal, migration):
172 nums = [i for i in range(len(normal))]
173 x = np.array([len([i for i in nums if migration[i][0]=='L4' and normal[i][0]=='L4']), len

([i for i in nums if migration[i][0]=='L5' and normal[i][0]=='L4']), len([i for i in
nums if migration[i][0]=='None' and normal[i][0]=='L4']), len([i for i in nums if
migration[i][0]=='False' and normal[i][0]=='L4']),

174 len([i for i in nums if migration[i][0]=='L4' and normal[i][0]=='L5']), len([i for i in
nums if migration[i][0]=='L5' and normal[i][0]=='L5']), len([i for i in nums if
migration[i][0]=='None' and normal[i][0]=='L5']), len([i for i in nums if migration[i
][0]=='False' and normal[i][0]=='L5']),

175 len([i for i in nums if migration[i][0]=='L4' and normal[i][0]=='None']), len([i for i in
nums if migration[i][0]=='L5' and normal[i][0]=='None']), len([i for i in nums if
migration[i][0]=='None' and normal[i][0]=='None']), len([i for i in nums if migration
[i][0]=='False' and normal[i][0]=='None']),

176 len([i for i in nums if migration[i][0]=='L4' and normal[i][0]=='False']), len([i for i
in nums if migration[i][0]=='L5' and normal[i][0]=='False']), len([i for i in nums if
migration[i][0]=='None' and normal[i][0]=='False']), len([i for i in nums if
migration[i][0]=='False' and normal[i][0]=='False'])], dtype=float)

177 return x.reshape([4,4])
178

179

180 # Or stablish the required indexes of the normal simulations manually:
181 Listlen = 12555
182 nums = [i for i in range(Listlen)]+[i for i in range(12555*2,12555*2+Listlen)]

E.5. Stability Trojans 97

183 normal = [normal[i] for i in nums]
184

185

186 L4 = [i for i in range(25110) if normal[i][0]=='L4']
187 L5 = [i for i in range(25110) if normal[i][0]=='L5']
188

189 # Determine the types after the migration
190 uL4 = [i for i in L4 if migration[i][0]=='False']
191 sL4 = [i for i in L4 if i not in uL4]
192 uL5 = [i for i in L5 if migration[i][0]=='False']
193 sL5 = [i for i in L5 if i not in uL5]
194

195

196 # Inclination plots L4 (adjust for zoomed version)
197 x = list(map(lambda i: Incl(*Trojans[i].w0)*180/pi, sL4))
198 y = list(map(lambda i: migration[i][1]*180/pi, sL4))
199 plt.plot(x, y, color=[0,0,0], marker='.', linestyle='', alpha=1, label='Stable')
200

201 x = list(map(lambda i: Incl(*Trojans[i].w0)*180/pi, uL4))
202 y = list(map(lambda i: migration[i][1]*180/pi, uL4))
203 plt.plot(x, y, color='r', marker='.', linestyle='', alpha=1, label='Unstable')
204

205 plt.ylabel(r"Inclination I' after migration °()")
206 plt.xlabel(r'Inclination I before migration °()')
207

208 plt.plot([0,200], [0,200], 'b', label='Reference line I=$I\'$')
209 plt.xlim(0,50)
210 plt.ylim(0,90)
211 plt.legend()
212 plt.savefig('saveL4withname.pdf', format='pdf')
213

214 plt.show()
215

216

217 # Inclination plots L5 (adjust for zoomed version)
218 x = list(map(lambda i: Incl(*Trojans[i].w0)*180/pi, sL5))
219 y = list(map(lambda i: migration[i][1]*180/pi, sL5))
220 plt.plot(x, y, color=[0,0,0], marker='.', linestyle='', alpha=1, label='Stable')
221

222 x = list(map(lambda i: Incl(*Trojans[i].w0)*180/pi, uL5))
223 y = list(map(lambda i: migration[i][1]*180/pi, uL5))
224 plt.plot(x, y, color='r', marker='.', linestyle='', alpha=1, label='Unstable')
225

226 plt.ylabel(r"Inclination I' after migration °()")
227 plt.xlabel(r'Inclination I before migration °()')
228

229 plt.plot([0,200], [0,200], 'b', label='Reference line I=$I\'$')
230 plt.xlim(0,50)
231 plt.ylim(0,90)
232 plt.legend()
233 plt.savefig('saveL5withname.pdf', format='pdf')
234

235 plt.show()
236

237

238

239

240 # The errors could occur when numpy is unable to allocate memory during a parallel run for
the high

241 # numbers that might occur for unstable Trojans. For the tables, they could be considered as
unstable, but for

242 # The inclination graphs they are omitted since the final inclination might not be correct.
243 for i in range(len(normal)):
244 if normal[i][0] == 'error':
245 normal[i][0] = 'False'
246

247 for i in range(len(migration)):
248 if migration[i][0] == 'error':
249 migration[i][0] = 'False'
250

251

E.6. Stability MYI 98

252 print(result_num_mat(normal, migration))
253

254

255 minmaxlist = eval(open('10kyminmaxr.txt', 'r').read())
256 minmaxlisttheta = eval(open('maxandminanglesallTrojans(eccignored)10000Y', 'r').read())
257

258 # Establishing the differences between the L4 and L5 copies
259 def findcopy(i):
260 if i<12555:
261 return i+12555
262 if 12555<=i<12555*2:
263 return i-12555
264 if 2*12555<=i<12555*3:
265 return i+12555
266 else:
267 return i-12555
268

269

270 ls1 = [i for i in L4 if migration[findcopy(i)][0]!='L5']
271 ls2 = [i for i in L5 if migration[findcopy(i)][0]!='L4']
272

273

274 # Inclination plots L5 (adjust for zoomed version)
275 x = list(map(lambda i: abs(minmaxlisttheta[i][1]-minmaxlisttheta[i][0])*180/pi, ls1))
276 y = list(map(lambda i: Incl(*Trojans[i].w0)*180/pi, ls1))
277 plt.plot(x, y, color='b', marker='.', linestyle='', alpha=1, label='Stable in L4, unstable in

L5')
278

279 x = list(map(lambda i: abs(minmaxlisttheta[i][1]-minmaxlisttheta[i][0])*180/pi, ls2))
280 y = list(map(lambda i: Incl(*Trojans[i].w0)*180/pi, ls2))
281 plt.plot(x, y, color='r', marker='.', linestyle='', alpha=1, label='Stable in L5, unstable in

L4')
282

283 plt.ylabel(r"Resonant angle $\Delta\theta$ before migration °()")
284 plt.xlabel(r'Inclination I before migration °()')
285

286 plt.xlim(0,180)
287 plt.ylim(0,50)
288 plt.legend()
289 plt.savefig('differencesbyinitialconditions.pdf', format='pdf')

E.6. Stability MYI
The code below is used to make a graph of the stability region of the MYI.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import matplotlib
4 from math import cbrt
5

6 def f(x,y):
7 z = x+y*1j
8 return np.abs(1+z+z**2/2+z**3/6+z**4/24+(1-2*cbrt(2))/(96-48*cbrt(2))**2*z**5-1*cbrt(2)

/(96-48*cbrt(2))**3*z**6-1*cbrt(2)/(384-192*cbrt(2))**4*z**7)
9

10 def xaxis(x,y):
11 return x
12

13 def yaxis(x,y):
14 return y
15

16 steps = 2000
17 bound = 4
18 stepsize = bound/steps
19

20 d = np.linspace(-bound,bound,steps)
21 x,y = np.meshgrid(d,d)
22 z = (f(x,y)<=1.0).astype(float)
23

24

E.7. Distance function plots 99

25 '''
26 cmap = matplotlib.colors.ListedColormap(["w",(0.8,0.8,0.8)])
27 plt.contourf(x,y,z, cmap=cmap, extent=(-3,1,-4,4))
28 #d = np.linspace(-4,4,20)
29 w = (f(x,y)<=1.0).astype(float)
30 cmap = matplotlib.colors.ListedColormap(["k","k"])
31

32 axiscolor = matplotlib.colors.ListedColormap([(0.5,0.5,0.5)])
33

34

35 axis = ((xaxis(x,y)<2*stepsize) & (xaxis(x,y)>-2*stepsize)).astype(float)
36 plt.contour(x,y, axis, cmap=axiscolor, alpha=0.01)
37 axis = ((yaxis(x,y)<2*stepsize) & (yaxis(x,y)>-2*stepsize)).astype(float)
38 plt.contour(x,y, axis, cmap=axiscolor, alpha=0.01)
39

40 plt.contour(x,y,w, cmap=cmap)
41

42 plt.text(0, bound*0.9, 'Im(λdt)', fontdict=None)
43 plt.text(bound*0.75, -0.1*bound, 'Re(λdt)', fontdict=None)
44

45 #plt.savefig('MYIstabilityregion.pdf')
46

47 plt.clf()
48 '''
49

50 def halfcircle(x,y):
51 return x**2+y**2
52

53 radius = 2.8
54 z = (2*(f(x,y)<=1) + ((halfcircle(x,y)<=2.5**2) & (x<=0))+4*(f(x,y)>1)).astype(float)
55 cmap = matplotlib.colors.ListedColormap([(0.8,0.8,0.8), (0,0,1), "w"])
56

57 plt.contourf(x,y,z, cmap=cmap, extent=(-3,1,-4,4))
58 #d = np.linspace(-4,4,20)
59 w = (f(x,y)<=1.0).astype(float)
60 cmap = matplotlib.colors.ListedColormap(["k","k"])
61

62 axiscolor = matplotlib.colors.ListedColormap([(0.5,0.5,0.5)])
63

64

65 axis = ((xaxis(x,y)<2*stepsize) & (xaxis(x,y)>-2*stepsize)).astype(float)
66 plt.contour(x,y, axis, cmap=axiscolor, alpha=0.01)
67 axis = ((yaxis(x,y)<2*stepsize) & (yaxis(x,y)>-2*stepsize)).astype(float)
68 plt.contour(x,y, axis, cmap=axiscolor, alpha=0.01)
69

70 plt.contour(x,y,w, cmap=cmap)
71

72 plt.text(0, bound*0.9, 'Im(λdt)', fontdict=None)
73 plt.text(bound*0.75, -0.1*bound, 'Re(λdt)', fontdict=None)
74 plt.plot([0],[0], 'b', label='λd$t\leq2.5$')
75 plt.legend()
76

77 plt.savefig('MYIstabilityregion_sufficient.pdf')
78

79

80

81

82 plt.show()

E.7. Distance function plots
The code below is used to plot the distance functions used to describe the migration of Jupiter.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from Jupiter_physical_constants import * # All constants are in one file for easy acces
4

5

6 t = np.array([t for t in range(10**6)])/10
7 t[0]=0.0000001

E.7. Distance function plots 100

8

9 # Constant migration
10 def constantmig(t, Rinit, T, dx):
11 if t<T:
12 return Rinit + dx*t/T
13 else:
14 return Rinit+dx
15

16 # Migration as in the research of Li and described by Malhorta
17 def LiR(Rinit, t, tau, dx):
18 return Rinit + (1-np.exp(-t/tau))*dx
19

20 # Smoother start of the migration
21 def smoothR(Rinit, t, tau, dx):
22 return Rinit + np.exp(-tau/t)
23

24 R = list(map(lambda t: constantmig(t, r_Lgr/AU, 3333, 1), t))
25

26 plt.plot(t,R, label='Constant migration rate')
27 plt.plot(t,LiR(r_Lgr/AU,t,1000,1), label='$R_{init}+\Delta R(1-\exp{(-t/\\tau)})$')
28 #plt.plot(t,smoothR(r_Lgr/AU,t,150,1), label='$R_{init}+\Delta R\exp{(-\\tau_2/t)}$')
29 plt.xlim(0,10000)
30 plt.xlabel('Time (year)')
31 plt.ylabel(r'Jupiters distance R_J to the sun (AU)')
32 plt.legend()
33 plt.savefig('RLicomp.pdf', format='pdf')
34

35 plt.show()

	Abstract
	Symbols used
	Introduction
	Nice model and Li
	Actual Trojans

	Theory
	Kepler elements
	Conversion to cylindrical system

	Three body system and Lagrange points
	Equations of motion
	Potential
	Kinetic energy
	Lagrangian
	Hamiltonian

	Cartesian coordinates and generalised momenta
	Full coordinate map
	Angular momentum
	Inclination

	L4 and L5 points
	Symmetry
	Asymmetry L4 and L5

	Method
	Initial data
	Numerical method
	Migration implementation

	Simulations and code implementation

	Results
	Test Trojan
	Result tables
	Eccentricity
	Inclinations

	Discussion
	Integrator comparison
	Code implementation

	Migration implementation
	Distance of Jupiter
	Jupiter's orbital eccentricity

	Generated Trojans
	Inclination
	Total simulated time
	Further research

	Conclusion
	References
	Numerical methods
	Original Yoshida integrator
	Stability analysis midpoint Yoshida integrator

	Jacobian
	Alternative Trojan Conversion
	Additional results
	Tables
	Plots

	Code
	C code
	Python functions
	Jupiter constants
	Integrator choice
	Stability Trojans
	Stability MYI
	Distance function plots

